

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

## **Protocol: Theirworld Edinburgh Birth Cohort**

| Journal:                         | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | bmjopen-2019-035854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Article Type:                    | Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Date Submitted by the<br>Author: | 19-Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Complete List of Authors:        | Boardman, James; The University of Edinburgh, MRC Centre for<br>Reproductive Health; The University of Edinburgh, Centre for Clinical<br>Brain Sciences<br>Hall, Jill; The University of Edinburgh, MRC Centre for Reproductive<br>Health<br>Thrippleton, Michael; The University of Edinburgh, Edinburgh Imaging<br>Reynolds, Rebecca; The University of Edinburgh, Centre for<br>Cardiovascular Science<br>Bogaert, Debby; The University of Edinburgh, Centre for Inflammation<br>Research<br>Davidson, Donald ; The University of Edinburgh, Centre for Inflammation<br>Research<br>Schwarze, Jurgen; The University of Edinburgh, Centre for Inflammation<br>Research<br>Drake, Amanda; The University of Edinburgh, Centre for Cardiovascular<br>Sciences<br>Chandran, Siddharthan ; The University of Edinburgh, Centre for Clinical<br>Brain Sciences<br>Bastin, Mark; The University of Edinburgh, Centre for Clinical Brain<br>Sciences<br>Fletcher-Watson, Sue; The University of Edinburgh, Centre for Clinical<br>Brain Sciences |
| Keywords:                        | Neonatal intensive & critical care < INTENSIVE & CRITICAL CARE,<br>Paediatric neurology < NEUROLOGY, Maternal medicine < OBSTETRICS,<br>Developmental neurology & neurodisability < PAEDIATRICS, Child &<br>adolescent psychiatry < PSYCHIATRY, Magnetic resonance imaging <<br>RADIOLOGY & IMAGING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

## Protocol: Theirworld Edinburgh Birth Cohort

James P Boardman<sup>1,2</sup>, Jill Hall<sup>1</sup>, Michael J Thrippleton<sup>3</sup>, Rebecca M Reynolds<sup>4</sup>, Debby Bogaert<sup>5</sup>, Donald J. Davidson<sup>5</sup>, Jürgen Schwarze<sup>5</sup>, Amanda J Drake<sup>4</sup>, Siddharthan Chandran<sup>2</sup>, Mark E Bastin<sup>2</sup>, Sue Fletcher-Watson<sup>2</sup>

<sup>1</sup> Medical Research Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

<sup>2</sup> Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK

<sup>3</sup> Edinburgh Imaging, University of Edinburgh, UK

<sup>4</sup>Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK

<sup>5</sup> University of Edinburgh Centre for Inflammation Research, Edinburgh, UK

Corresponding author:

Professor James Peter Boardman

W1.26 Queen's Medical Research Institute,

47 Little France Crescent,

Edinburgh EH16 4TJ,

United Kingdom.

T: +44 131 242 2567

E: james.boardman@ed.ac.uk

Word count (excl title page, abstract, references, figures and tables): 3,083

#### Abstract

Introduction. Preterm birth is closely associated with altered brain development and is a leading cause of neurodevelopmental, cognitive and behavioural impairment across the life course. We aim to investigate neuroanatomic variation and adverse outcomes associated with preterm birth by studying a cohort of preterm infants and controls born at term, using brain magnetic resonance imaging (MRI) linked to biosamples and clinical, environmental and neuropsychological data.

Methods and Analysis. Theirworld Edinburgh Birth Cohort is a prospective longitudinal cohort study at the University of Edinburgh. We plan to recruit 300 infants born at <33 weeks gestational age (GA) and 100 healthy control infants born after 37 weeks GA. Multiple domains are assessed: maternal and infant clinical and demographic information; placental histology; immunoregulatory and trophic proteins in umbilical cord and neonatal blood; brain macro- and microstructure from structural and diffusion MRI; DNA methylation; hypothalamic-pituitary-adrenal axis (HPAA) activity; social cognition, attention and processing speed from eye-tracking during infancy and childhood; neurodevelopment; gut and respiratory microbiota; susceptibility to viral infections; and participant experience. Main analyses include creation of novel methods for extracting information from neonatal structural and diffusion MRI, regression analyses of predictors of brain maldevelopment and neurocognitive outcome associated with preterm birth, and determination of the quantitative predictive performance of MRI and other early life factors for childhood outcome.

Ethics and Dissemination. Ethical approval has been obtained from the National Research Ethics Service, South East Scotland Research Ethics Committee and NHS Lothian Research and Development. Results are disseminated through open access journals, scientific meetings, social media, newsletters, a study website (www.tebc.ed.ac.uk), and we engage with the University of Edinburgh public relations and media office to ensure maximum publicity and benefit.

## Strengths and limitations of this study

- 300 preterm infants and a comparator cohort of 100 term controls studied longitudinally from before birth to school age.
- Deep phenotyping using a combination of data from brain MRI, biosamples, • participant report, direct observation and clinical data from medical records.
- Collection of data about a range of theoretically informed variables to understand the wider impact of preterm birth on everyday lives of families.
- uith en policy en ead from a single cent. • Data access and collaboration policy sets out the terms and conditions on which deidentified TEBC data is available to the research community.
- Participants are recruited from a single centre.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### INTRODUCTION

Preterm delivery is estimated to affect 10.6% of all live births around the world, which equates to 14.84 million births per annum<sup>1</sup>. In resource rich settings advances in perinatal care and service delivery have led to improved survival over the past two decades: around 30% of infants born at 22 weeks who are offered stabilisation at birth will survive, and this number increases to around 80% for births at 26 weeks<sup>2-5</sup>. However, early exposure to extrauterine life can impact brain development, and is closely associated with long term intellectual disability, cerebral palsy, autism spectrum disorder, attention deficit hyperactivity disorder, psychiatric disease, and problems with language, behaviour, and socioemotional function (for review <sup>6</sup>). There are no treatments that reduce risk of impairment, which extends across the life course and carries considerable personal cost to affected individuals, and high health and education costs to society<sup>7</sup>.

Little is known about the ontogenesis of neurocognitive and psychiatric problems associated with preterm birth, or the biological, environmental and social risk factors associated with susceptibility and resilience. Much information about the cerebral effects of preterm birth comes from historic cohorts that do not reflect modern perinatal care practices; studies have been cross-sectional with outcomes assessed in very early childhood before important cognitive and social functions emerge; conventional diagnostic tools for assessing neurodevelopment are imprecise; and cohorts linked to imaging and biological metadata are few so mechanisms are poorly understood. There is an unmet need to study a contemporary cohort of preterm infants that is comprehensively characterised from genes to anatomy to function, integrated with information about the social graph.

Our aims are: first, to build a longitudinal cohort of preterm infants and term controls that is phenotyped with brain imaging and biological information to investigate causal pathways to, and consequences of, atypical brain development and injury; second, to develop novel computational algorithms for mapping brain growth and connectivity in early life; third, to identify new and multi-factorial methods for early detection of children at risk of long-term impairment; and fourth, to identify early life biological and environmental risk and resilience factors that affect the developing brain and so pave the way for new therapeutic strategies.

## METHODS AND ANALYSIS Study design Single-centre prospective I

 Single-centre prospective longitudinal cohort study.

## Study setting

The Theirworld Edinburgh Birth Cohort ("TEBC") study is conducted at the University of Edinburgh and the Simpson Centre for Reproductive Health (SCRH) which is located at the Royal Infirmary of Edinburgh, NHS Lothian, UK. The SCRH provides maternity and newborn services for residents of the City of Edinburgh and the Lothians. It receives 7,000 deliveries per annum and is the regional centre for all neonatal intensive care in South East Scotland. Approximately 100 infants with birthweight <1500g receive intensive care at SCRH per annum.

Participant recruitment, initial assessment and data collection points 1-3 (Table 1) take place in the SCRH or the Edinburgh Imaging Facility, Royal Infirmary of Edinburgh. Follow-up assessments take place in a dedicated child development laboratory at the University of Edinburgh, through online and in-person completion of questionnaires, and in Neonatal Outpatient clinics at the SCRH (timepoints 4-7, Table1). Recruitment began in November 2016 and is planned to complete in 2021.

## Study participants

## Inclusion criteria

Cases: 300 preterm infants born at <33 weeks gestational age (GA)\*.

Controls: 100 term infants born at >37 weeks GA\*.

\*GA is estimated based on first trimester ultrasound.

## Exclusion criteria

- Infants with congenital anomalies: structural or functional anomalies (e.g. metabolic disorders) that occur during intrauterine life and can be identified prenatally, at birth or later in life (World Health Organisation definition).
- 2. Infants with a contraindication to MRI at 3 Tesla.

## Sample selection and recruitment

## Sample size

The primary objective of the study is to investigate causes and consequences of preterm brain injury / atypical development by analysing data about brain macro- and microstructure from structural and quantitative MRI with biological, environmental and neuropsychological

 outcome data. There is no established methodology for power calculations using quantitative MRI techniques; sample size is based on sensitivity analysis for tract-based Spatial Statistics<sup>8</sup>, and precedents for detecting group differences in neonatal structural and diffusion MRI (dMRI) based on exposures and outcomes <sup>9-18</sup>. It assumes a successful image acquisition rate of 85%.

#### Identifying participants

Cases: Infants born to women who present to the SCRH with threatened preterm labour and for whom delivery is planned or expected at less than 32 completed weeks GA.

Controls: Infants born to women who attend the SCRH and deliver at >36 weeks GA.

The protocol reported here was partially developed through a separate, pilot "phase 1' cohort of 150 cases and 40 controls. This phase 1 pilot included neonatal MRI and infant-eyetracking, and a subset of this group are now participating in the 5-year assessment as described here (time point 7, table 1).

#### Screening for eligibility

The research nurse / clinical research fellow identifies potential participants using maternity TRAK, which is a system used by maternity services throughout NHS Lothian to record information about pregnancies and maternal care, and the neonatal electronic patient record. The clinical team provides an introductory leaflet about TEBC to eligible parents, and then informs the research team of parents who wish to discuss the study in greater detail. Those parents meet with a member of the research team and are provided with the Participant Information Sheet.

Participants from phase 1 studies being recalled for time point 7 (at 5 years) are contacted by the research team using contact details provided previously. Study information (introductory letter, patient information sheet, reply slip and prepaid envelope) is sent by post and followed up with a telephone call to answer any questions and review willingness to participate.

#### Consenting participants

Informed written consent is sought in two stages: first, consent for perinatal and neonatal sampling and assessment at initial enrolment to the study; second, consent for assessments post-discharge to 5 years is taken at time point 3 (see Table 1 below).

For phase 1 participants being recalled, consent is taken at the recall appointment, following circulation and discussion of the content by post and phone, as described above.

Informed consent may only be taken by a member of the research team with training in International Council for Harmonisation-Good Clinical Practice (ICH-GCP) and procedures for research involving children and young people.

#### Co-enrolment

The SCRH is an academic perinatal medicine centre that hosts observational research studies, and it is a recruiting centre for randomised controlled trials of therapies designed to improve the outcome of preterm infants and their mothers. Parents / carers of TEBC participants are encouraged to consider entry into such studies if eligible. Co-enrolment is informed by 'Guidelines for Co-enrolment' produced by the Academic and Clinical Central Office for Research and Development (ACCORD), which is a partnership between the University of Edinburgh and NHS Lothian Health Board. Co-enrolment will be recorded.

#### **Cohort retention**

Participants and their families are kept up to date with research progress through Newsletters, Twitter, Facebook and a website (www.tebc.ed.ac.uk). Birthday cards are sent to participants and we hold an annual event for research updates and public outreach.

#### Withdrawal of study participants

The decision to withdraw from the study is either at parental / carer request, or at the request of the attending consultant physician or the PI for clinical reasons.

#### **Outcomes and data analysis**

Table 1 summarises the assessment schedule, data collection methods, sample type / domain, and the test or task. Data from cases and controls are collected using the same data collection instruments.

Page 9 of 57

|               |           |                           |                                        | BMJ Open <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|-----------|---------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |           |                           |                                        | BMJ Open BMJ Open 50 Pen 2019 Pon 2019 |
| Time<br>point | Age       | Data collection method    | Sample type / domain of<br>measurement | Ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1             | Antenatal | Records & interview       | Socio-economic status                  | Maternal & paternal education, Scottish Index of Multigele Deprivation derived from home post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -             | /         |                           | Medical / demographic                  | Family and medical history and exposures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |           | Records, questionnaire &  | Medical                                | History and exposures     Anthropometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2             | Birth     | tissue                    | Placenta                               | Structured histopathology rating and storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |           |                           | Cord blood                             | Structured histopathology rating and storage       N         Panel of immunoregulatory and trophic proteins       N         Gene expression array*       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |           | Tissue: blood             | Blood spot                             | Panel of immunoregulatory and trophic proteins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |           | Tissue: saliva            | Epigenetics                            | DNA methylation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |           | Tionus model surely       | Nasal lining fluid                     | Antimicrobial peptides including cathelicidin levels*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |           | Tissue: nasal swab        | DNA/RNA                                | Respiratory microbiota*     5       Gut microbiota*     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |           | Stool                     | DNA/RNA                                | Gut microbiota*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |           | Direct observation        | Medical                                | Anthropometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3             | Neonatal  |                           | ROP assessment                         | Grade retinopathy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5             | Neonatai  |                           | Parent IQ                              | National Adult Reading Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |           | MRI                       | Brain structure and<br>connectivity    | Structural and diffusion 3T MRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |           |                           | Medical / demographic                  | Breast-feeding and updated perinatal medical history                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |           |                           |                                        | Edinburgh Post-natal Depression Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |           | Questionnaire             |                                        | Parenting Daily Hassles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |           |                           |                                        | World Health Organisation – Quality Of Life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |           |                           |                                        | Adult Temperament Questionnaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |           | Questionnaire, by post or | Demographics                           | Updated Socio-economic status, maternal education, Beeastfeeding / nutrition, activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | 4.5       | online or phone           | Infant temperament                     | Infant Behaviour Questionnaire, Revised, short form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4             | months    | interview                 | Parent wellbeing                       | Edinburgh Post-natal Depression Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |           | Tissue: nasal swab        | DNA/RNA                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |           | rissue. Hasal SWab        | Epigenetics                            | Respiratory microbiota*     org       DNAm     CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |           | Tissue: saliva            | HPA axis                               | Cortisol: Waking, 30 minutes after waking, before bed 5<br>Pre and post Still Face procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | 9 months  | Tissue: nasal swab        | Nasal lining fluid                     | Antimicrobial peptides including cathelicidin levels*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5             |           |                           | DNA/RNA                                | Respiratory microbiota*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |           | Eye-tracking              | 4                                      | Free scanning: neutral faces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |           |                           | Social development                     | Free scanning: "pop-out" task, looking to faces and disgractors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |           |                           |                                        | Free scanning: "social preferential looking" to social ard non-social images                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | I         |                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

 5/bmjopen-2019-

|  | Page | 10 of 57 |  |
|--|------|----------|--|
|--|------|----------|--|

|         |                    |                     | Free scanning: "dancing ladies" social and non-social vogeos                                  |  |
|---------|--------------------|---------------------|-----------------------------------------------------------------------------------------------|--|
|         |                    | Attention           | Switching and disengagement: "gap-overlap" task, fixagon to central and peripheral cues       |  |
|         |                    | Attention           | Sustained attention: "follow the bird" task, following recoving target                        |  |
|         |                    | Processing speed    | Free scanning: odd-one-out visual search task (simple letters version)                        |  |
|         |                    | Frocessing speed    | Free-scanning: word-picture matching task                                                     |  |
|         |                    | Visual acuity       | Keeler card assessment                                                                        |  |
|         | Direct observation | Social development  | Still Face procedure (sub-set with computational motor assessment)                            |  |
|         |                    | Social development  | Parent-child play, for later behavioural coding: (sub-setwith computational motor assessme    |  |
|         |                    | Infant temperament  | Infant Behaviour Questionnaire, Revised, short form                                           |  |
|         |                    |                     | Sleep & Settle Questionnaire Q                                                                |  |
|         | Questionnaire      | Language            | MacArthur Communicative Development Inventory (wards and gestures)                            |  |
|         |                    | Parent wellbeing    | World Health Organisation – Quality Of Life                                                   |  |
|         |                    | Feedback            | Feedback form, monitoring satisfaction with research 🖉 oject                                  |  |
|         | Direct observation | Anthropometry       | Growth 5                                                                                      |  |
|         | Doront interview   | Demographics        | Family circumstances update form including breastfeeding, socio-economic status (home postcod |  |
|         | Parent interview   | Developmental level | Vineland Adaptive Behaviour Scales: comprehensive interview form                              |  |
|         | Direct observation | Ophthalmology       | Refraction                                                                                    |  |
|         |                    | Anthropometry       | Growth                                                                                        |  |
|         | Tissue: nasal swab | Nasal lining fluid  | Antimicrobial peptides including cathelicidin levels*                                         |  |
|         |                    | DNA/RNA             | Respiratory microbiota*                                                                       |  |
|         | Eye-tracking       |                     | Free scanning: neutral faces                                                                  |  |
|         |                    | Social development  | Free scanning: "pop-out" task, looking to faces and distractors                               |  |
|         |                    |                     | Free scanning: "social preferential looking" to social and non-social images                  |  |
|         |                    |                     | Free scanning: "dancing ladies" social and non-social videos                                  |  |
|         |                    | Attention           | Switching and disengagement: "gap-overlap" task, fixation to central and peripheral cues      |  |
|         |                    | Attention           | Sustained attention: "follow the bird" task, following neoving target                         |  |
|         |                    |                     | Free scanning: odd-one-out visual search task                                                 |  |
| 2 years |                    | Processing speed    | Ereo scapping; word nicture matching tack                                                     |  |
| -       |                    | Social development  | Parent-child play, for later behavioural coding                                               |  |
|         | Direct observation | Executive function  |                                                                                               |  |
|         |                    | Bayley-III          | General developmental level*                                                                  |  |
|         |                    | Temperament         | Early Childhood Behaviour Questionnaire, Revised, short form                                  |  |
|         | Questionnaire      | remperament         | Child Sleep Habits Questionnaire                                                              |  |
|         |                    | Language            | MacArthur Communicative Development Inventory (words and sentences)                           |  |
|         |                    | Social development  | Quantitative Checklist for Autism in Toddlers                                                 |  |
|         |                    |                     |                                                                                               |  |
|         |                    | Executive function  | Behaviour Rating Inventory for Executive Function, Preschool (BRIEF-P)                        |  |
|         |                    |                     | Early Executive Function Questionnaire                                                        |  |
|         |                    | Developmental level | Vineland Adaptive Behaviour Scales: comprehensive part ating form                             |  |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

44 45

## BMJ Open

| I      |              |                    | Parent wellbeing         | World Health Organisation – Quality Of Life               | 5/bmiopen-2019-035           |
|--------|--------------|--------------------|--------------------------|-----------------------------------------------------------|------------------------------|
|        |              |                    | Feedback                 | Feedback form, monitoring satisfaction with research      | <u>n</u>                     |
|        |              | Parent interview   | Demographics             | Family circumstances update form including breastfeed     |                              |
|        |              |                    | Epigenetics              |                                                           | 4                            |
|        |              | Tissue: saliva     | HPA axis                 |                                                           |                              |
|        |              | Tissue: nasal swab | DNA/RNA                  |                                                           |                              |
|        |              |                    | Anthropometry            | Growth                                                    | 5<br>V                       |
|        |              |                    | Blood pressure           | Hypertension                                              | 202                          |
|        |              | Direct observation | Ophthalmology            | Refraction and acuity                                     | э<br><del>J</del>            |
|        |              | Direct observation | Social development       | Parent-child play, for later behavioural coding           |                              |
|        |              |                    | Executive function       |                                                           | <u> </u>                     |
|        |              |                    | Developmental level      | Mullen Scales of Early Learning                           |                              |
|        |              |                    |                          | Free scanning: neutral faces                              |                              |
|        |              |                    | Social development       | Free scanning: "pop-out" task, looking to faces and dis   |                              |
|        |              |                    |                          | Free scanning: "social preferential looking" to social an |                              |
| 7      | 5 years      | Eye-tracking       |                          | Free scanning: "dancing ladies" social and non-social v   |                              |
| 1      | 5 years      |                    | Attention                | Switching and disengagement: "gap-overlap" task, fixa     |                              |
|        |              |                    |                          | Sustained attention: "follow the bird" task, following n  |                              |
|        |              |                    | Processing speed         | Free scanning: odd-one-out visual search task (comple     |                              |
|        |              | Questionnaire      | Temperament              | Strengths and Difficulties Questionnaire (both teacher    | and parent report versions)  |
|        |              |                    | Language                 | Children's Communication Checklist                        | <b>7</b>                     |
|        |              |                    | Social development       | Social Communication Questionnaire: Current               |                              |
|        |              |                    | Executive function       | DUPaul ADHD rating scale                                  |                              |
|        |              |                    |                          | Behaviour Rating Inventory for Executive Function -Pre    | School (BRIEF-P)             |
|        |              |                    | Visual perception        | Cerebral Visual Impairment Inventory                      | -<br>                        |
|        |              |                    | Parent wellbeing         | World Health Organisation – Quality Of Life               |                              |
|        |              |                    | Feedback                 | Feedback form monitoring satisfaction with research p     |                              |
|        |              | Demonstrate start  | Developmental level      | Vineland Adaptive Behaviour Scales: domain-level pare     | <u> </u>                     |
|        |              | Parent interview   | Demographics             | Family circumstances update form including socio-eco      | tomic status (nome postcode) |
|        |              |                    | a collection methods, sa | mple type / domain, and the test or task.                 |                              |
| *subse | t of partici | pants              |                          |                                                           |                              |
|        |              |                    |                          |                                                           |                              |
|        |              |                    |                          |                                                           |                              |
|        |              |                    |                          | <u>c</u>                                                  | Tot                          |
|        |              |                    |                          |                                                           |                              |
|        |              |                    |                          | )<br>2                                                    | D<br>2                       |
|        |              |                    |                          | c,                                                        | Þ                            |
|        |              |                    |                          |                                                           | 2                            |
|        |              |                    |                          |                                                           |                              |
|        |              |                    |                          |                                                           | 2.                           |

#### Maternal and infant clinical and demographic information

Data are abstracted from the mothers' and infants' electronic medical records onto a standardised data collection sheet. A structured maternal interview is used to collect additional information that may not be recorded in routinely collected data, for example detailed family history about neurodevelopmental and mental health problems, and over-the-counter prescription and recreational drugs taken during pregnancy. For deaths the cause and post-mortem findings will be recorded.

#### Placentas

After delivery, placentae from all preterm infants are formalin fixed and stored at 4°C before sampling. The placentae are sampled according to a standardized protocol; distal and proximal sections of cord (the proximal section being taken at 1.5 cm from above the fetal surface), a roll of extraplacental membranes starting at the point of rupture and 4 full thickness sections from each quadrant. All are stained with Haematoxylin and Eosin and reported using a standardised, structured approach that describes any pathological features present, including but not limited to, fetal thrombotic vasculopathy, villitis, chorioamnionitis, funisitis and features of uteroplacental ischaemia<sup>19 20</sup>.

#### Immunoregulatory and trophic proteins

Analysis of a panel of immunoregulatory and trophic proteins (IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-12, IL-17, TNF-a, MIP-1b, BDNF, GM-CSF, IL-10, IL-18, IFN-g, TNF-b, MCP-1, MIP-1a, C3, C5a, C9, MMP-9, RANTES and CRP) is undertaken on umbilical cord and neonatal blood samples. These proteins are selected to offer information with respect to the pro- and antiinflammatory innate response as well as the adaptive immune response. Blood is collected using Schleicher and Schuell 903 filter paper (6 x 3.2mm spots per subject) and analysed using a multiplex immunoassay (Meso Scale Discovery) at Statens Serum Institute, Copenhagen. We use the approach described by Skögstrand et al<sup>21</sup> to analyse differences in concentration between cases and controls.

#### Structural and diffusion magnetic resonance imaging

A Siemens MAGNETOM Prisma 3T MRI clinical scanner (Siemens Healthcare, Erlangen, Germany) and 16-channel phased-array paediatric head receive coil is used to acquire: 3D T1weighted MPRAGE (T1w) structural volume scan (acquired voxel size = 1 mm isotropic) with TI 1100 ms, TE 4.69 ms and TR 1970 ms; a 3D T2-weighted SPACE (T2w) structural scan (voxel size = 1mm isotropic) with TE 409 ms and TR 3200 ms; and a multi-shell axial dMRI scan (16 ×

#### **BMJ** Open

b = 0 s/mm<sup>2</sup>, 3 × b = 200 s/mm<sup>2</sup>, 6 × b = 500 s/mm<sup>2</sup>, 64 × b = 750 s/mm<sup>2</sup>, 64 × b = 2500 s/mm<sup>2</sup>) with optimal angular coverage<sup>22</sup> (see Supplementary material 1-3). If the infant stays settled axial 3D susceptibility weighted imaging (SWI; TR = 28 ms, TE = 20 ms, 0.75 x 0.75 x 3 mm acquired resolution) and axial 2D fluid-attenuated inversion-recovery BLADE imaging (FLAIR; TR = 10000 ms, TE = 130 ms, TI = 2606 ms, 0.94 x 0.94 x 3 mm acquired resolution) are acquired. In a subgroup of participants magnetisation transfer saturation imaging is acquired for evaluation of tissue myelin content, consisting of three sagittal 3D multi-echo spoiled gradient echo scans (TE = {1.54 ms, 4.55 ms, 8.56 ms}, 2-mm isotropic acquired resolution): magnetisation-transfer and proton-density weighted (TR = 75 ms, FA = 5°), and T1-weighted (TR = 15 ms, FA = 14°) acquisitions, supplementary material 4. Tissue heating and acoustic noise exposure are limited throughout the examination through the use of active noise cancellation and by setting the gradient slew rate and other pulse sequence parameters appropriately. Participants are scanned in normal mode with respect to both tissue heating and peripheral nerve stimulation.

Conventional images are reported by a paediatric radiologist using a structured system <sup>18, 23</sup>. We use image data to generate novel processing techniques optimised for neonatal data<sup>15 24-27</sup>, and we will use these and other publicly available pipelines for processing neonatal data<sup>28-30</sup> to derive image features for analyses with collateral data relating to exposures and outcomes. These include but are not limited to tract-based, morphometric and structural connectivity analyses <sup>13 16 20 24 31-34</sup>.

#### DNA storage

DNA is extracted form saliva, stored and catalogued at the Edinburgh Clinical Research Facility, ready for downstream analyses.

#### DNA methylation

Saliva is sampled using the DNA OG-575 kit (DNAGenotek, Ottawa, ON, Canada). DNA extraction is performed using published methods<sup>16</sup> and DNAm analyses are carried out at the Genetics Core of the Edinburgh Clinical Research Facility (Edinburgh, UK), using Illumina Infinium MethylationEPIC (San Diego, CA, USA), with interrogation of the arrays against ~850k methylation sites. We will investigate perinatal influences on DNAm using principal component analysis, mediation, and correlation analyses.

#### Hypothalamic-pituitary-adrenal axis (HPAA)

Salivary cortisol is used as a marker of HPAA activity. Saliva is collected in Sarstedt tubes at specified times at 9 months and 5 years. Timed saliva samples are also collected during the 9 months appointment before and after a behavioural paradigm (Still Face) which is known to elicit a biological stress response (one sample pretest and two samples post test to capture reaction and recovery). Samples are stored at -20C and analysed in batches at each time point. Anthropometric data are recorded at 9 months, 2 years and 5 years, and blood pressure is measured at 5 years.

#### Eye-tracking

We record eye-movements in response to visual stimuli at 9 months, 2 years and 5 years using a Tobii© x60 eye-tracker and bespoke analysis software (Matlab). Images are presented on a display monitor with a resolution of 1,440 × 900 pixels. The Tobii© ×60 system tracks both eyes to a rated accuracy of 0.3 degrees at a rate of 60 Hz. We analyse looking patterns, including time to first fixate and looking time at areas of interest, in tasks designed to enable inference about social development, attention, and processing speed<sup>31 35</sup>.

#### Standardised assessments

Standardised assessments of neurodevelopment by direct observation at appropriate time points are: Bayley-III scales; Mullen Scales of Early Learning; parental IQ (National Adult Reading Test). We will use validated questionnaires to assess: infant/parent temperament; parent/family characteristics (postnatal depression, stress, quality of life, socioeconomic status); infant / child sleep habits; language development; social development; executive functions; cerebral visual impairment; medical diagnoses; and behavioural outcomes (parent and teacher ratings). We also record parent-child interaction for subsequent analysis via video coding of complex behaviours in a naturalistic context.

#### Susceptibility to viral infection

We collect unstimulated nasal secretion samples (nasosorption samples) using methods described by Thwaites et al<sup>36</sup>. This collection is brief, minimally invasive and a minimally distressing process. Nasosorption Nasal lining fluid is collected using Nasosorption Fxi synthetic absorption matrix strips inserted into the anterior part of the inferior turbinate of the nasal cavity. After 30 seconds of absorption, the strip is removed, capped, maintained at 4°C for up to 4 hours and then frozen at -80°C. From these nasal fluid samples we will assess the levels of antimicrobial peptides, including cathelicidin, and inflammatory cytokines, by

#### **BMJ** Open

ELISA or luminex assay. Collection of these at birth (term equivalent age), 9 months and 2 years will enable us to characterise birth levels, levels at timepoints significant for respiratory syncytial virus (RSV) infection/disease and at a later time point.

#### Respiratory and gut microbiota

We collect faecal and nasopharyngeal swabs (paediatric Copan e-swab with flocked nylon fiber tip) as has been described in the WHO-guideline for respiratory sampling of bacterial pathogens<sup>66</sup>. Fecal material and e-swabs (in RNA protect), are frozen at -80°C until further analyses. DNA and RNA will be extracted<sup>37</sup> and metagenomics analyses will be executed by 16S-based sequencing according to previously described methods<sup>38</sup>. We will study temporal relationships between preterm birth and early life characteristics, consecutive microbiota development, inflammation and methylation findings, and respiratory and neurocognitive developmental outcomes.

#### Computational Motor Assessment

Light-weight, wearable, wireless motion sensors are deployed to record the movement of a sub-set of infants at 9 months during the Still-Face paradigm and Parent-Child interaction. Data are anonymised before being securely transferred to the University of Strathclyde for analysis. These data will be analysed to test for differences in motor function between at-risk and low-risk infants, and will employ machine learning algorithms to detect patterns predictive of developmental outcome at 2 and 5 years, and their potential for clinical stratification across the neurodevelopmental disorders and psychometric profiles (IQ, adaptive function, language). Further, motor data at 9 months can be correlated against neuroanatomical features measured by MRI scan at birth and developmental scales at 9 months.

#### Patient and Public Involvement

We seek feedback from parents / carers to monitor satisfaction with research participation at 9 months, 2 years and 5 years, and we have a public facing website that describes results from the study.

#### **ETHICS AND DISSEMINATION**

Safety assessment

There are no safety issues associated with collection of: placental tissue, umbilical cord / neonatal blood, saliva, faeces or hair. There are no safety issues in the conduct of planned neuropsychological assessments.

MRI does not involve ionizing radiation and there are no known risks from MRI provided standard safety measures for 3T scanning are in place. Infants are fed and wrapped and allowed to sleep naturally in the scanner. Pulse oximetry, electrocardiography and temperature are monitored. Flexible earplugs and neonatal earmuffs (MiniMuffs, Natus) are used for acoustic protection. All scans are supervised by a doctor or nurse trained in neonatal resuscitation. The scan is interrupted if there are any abnormalities in monitoring or if the baby wakes.

It is possible that incidental findings may be found on MRI or from questionnaires, for example intracranial structural anomalies or postnatal depression, respectively. In these circumstances, the findings are discussed with the participant's parent, and referral to the appropriate NHS service is made.

#### **Ethical approvals**

 The study has been approved by the National Research Ethics Service (South East Scotland Research Ethics Committee), NRES numbers 11/55/0061 and 13/SS/0143 (Phase 1) and NRES number 16/SS/0154 (Phase 2); and by NHS Lothian Research & Development (2016/0255).

#### Governance

The study is run by a management group that includes the principal investigator, a minimum of two co-investigators, the study coordinator and administrative and financial officers. A delegation log details the responsibilities of each member of staff working on the study. A scientific advisory board oversees the conduct and progress of the study. The study is co-sponsored by the University of Edinburgh & NHS Lothian Academic and Clinical Central Office for Research and Development (ACCORD).

#### **Publication and data statement**

The principles set down by the International Committee of Medical Journal Editors for authorship and non-author contributors are followed for publications and presentations resulting from the study. A Data Access and Collaboration Policy sets out the terms and conditions on which deidentified TEBC data, stimuli and tasks are accessible to the research community following reasonable request (www.tebc.ed.ac.uk).

#### SUMMARY

The aim of TEBC is to recruit a longitudinal cohort of 300 preterm infants and 100 term controls and to acquire brain MRI data that are linked to comprehensive biosampling and detailed clinical, environmental and neuropsychological data.

Data from TEBC will be used to:

- develop novel image processing algorithms for mapping brain growth and connectivity in early life;
- identify biological and environmental exposures that modify brain development;
- deepen understanding of the complex interaction between perinatal events and later environmental influences on brain health and outcome after preterm birth;
- develop methods for early detection of risk and resilience factors for long-term outcome.

#### **Author contributions**

JPB designed the study with input from all the authors. JPB, JH, MJT, RMR, SC, JS, DB, DJD, AJD, MEB and SF-W contributed to the establishment and refinement of study procedures and critically revised the manuscript. All authors approved the final version of the manuscript.

#### **Competing interests**

None declared.

#### Acknowledgements

The authors would like to thank participating families, and NHS colleagues at the Simpson Centre for Reproductive Health who support this study. We would like to thank Mrs Bavanthe Navarathne, a parent representative on the scientific advisory board, and other past and present members of the scientific advisory board (Frances Cowan, Chiara Nosarti, David Porteous, Hugh Rabagliati, Joanna Wardlaw, Heather Whalley). We are grateful to the following collaborators, colleagues and students who support the study: Gayle Barclay, Justyna Binkowska, Gillian Black, Manuel Blesa, Nis Borbye-Lorenzen, Geoff Carlson, Yu Wei Chua, Simon Cox, Hilary Cruikshank, Bethan Dean, Jonathan Delafield-Butt, Fiona Denison, Margaret Evans, Paola Galdi, Peter Ghazal, Lorna Ginnell, Charlotte Jardine, Gillian Lamb, Victoria Ledsham, Riccardo Marioni, Andrew McIntosh, Barbara Nugent, Lee Murphy, Sinéad O'Carroll, Alan Quigley, Alan Mulvihill, Magda Rudnicka, Scott Semple, Kristin Skögstrand, Sarah Stock, David Stoye, Gemma Sullivan, Kadi Vaher, colleagues at the Genetics Core of the Edinburgh Clinical Research Facility, and radiographers at the Edinburgh Imaging Facility Royal Infirmary of Edinburgh.

#### **Funding statement**

The TEBC study is funded by the charity Theirworld (www.theirworld.org) and is carried out in the University of Edinburgh MRC Centre for Reproductive Health (MRC G1002033). Susceptibility to viral infection studies are supported by grants from Action Medical Research (GN2703) and Chief Scientist Office (TCS/18/02). Respiratory microbiota studies are supported by grants from the Chief Scientist Office (SCAF/16/03), and DNA methylation and gut microbiota studies are supported by the Wellcome Trust (203769/Z/16/A and 220043/Z/19/Z). The MRI facility is funded by Wellcome Trust 104916/Z/14/Z, Dunhill Trust R380R/1114, Edinburgh and Lothians Health Foundation 2012/17, Muir Maxwell Research Fund, and Edinburgh Imaging, University of Edinburgh. MJT was supported by NHS Lothian Research and Development Office, and RMR and AJD receive support from the British Heart Foundation (RE/18/5/34216).

4 5

6

7

8

9 10

11

12

13

14

15 16

17

18

19

20 21

22

23

24

25

26 27

28

29

30

31 32

33

34

35

36

37 38

39

40

41

42 43

44

45

46

47

48 49

50

51

52

53 54

55

56

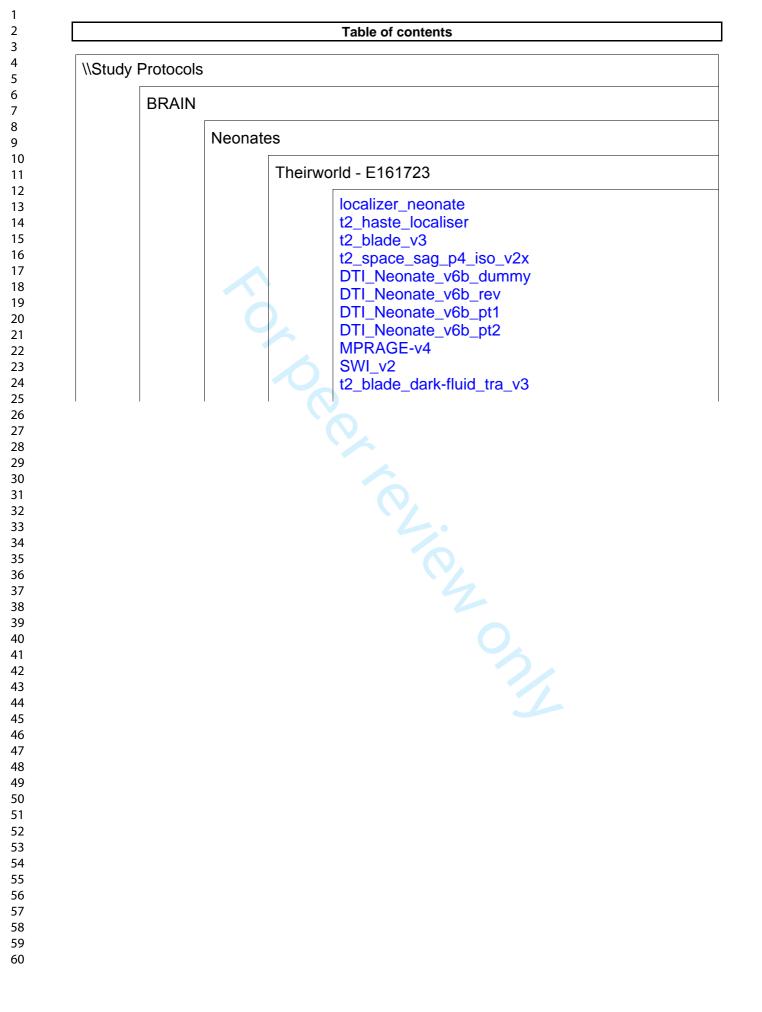
57

58

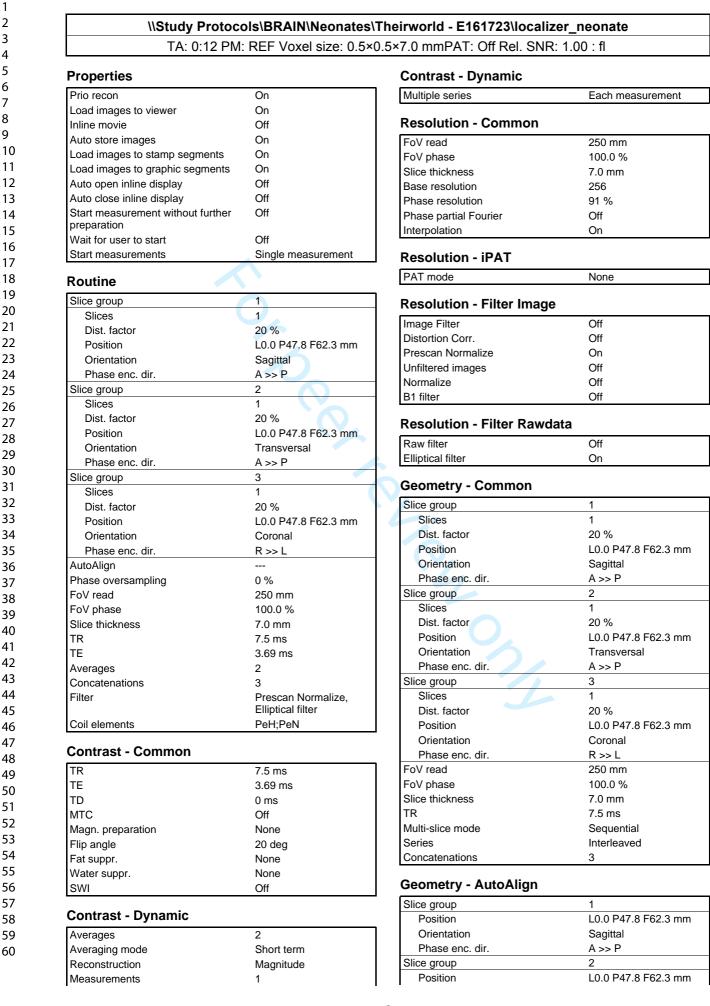
59 60

## REFERENCES

- Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. *The Lancet Global health* 2019;7(1):e37-e46. doi: 10.1016/s2214-109x(18)30451-0 [published Online First: 2018/11/06]
- Mehler K, Oberthuer A, Keller T, et al. Survival Among Infants Born at 22 or 23 Weeks' Gestation Following Active Prenatal and Postnatal Care. JAMA pediatrics 2016;170(7):671-7. doi: 10.1001/jamapediatrics.2016.0207 [published Online First: 2016/05/24]
- 3. Patel RM, Rysavy MA, Bell EF, et al. Survival of Infants Born at Periviable Gestational Ages. *Clinics in perinatology* 2017;44(2):287-303. doi: 10.1016/j.clp.2017.01.009 [published Online First: 2017/05/10]
- Norman M, Hallberg B, Abrahamsson T, et al. Association Between Year of Birth and 1-Year Survival Among Extremely Preterm Infants in Sweden During 2004-2007 and 2014-2016. Jama 2019;321(12):1188-99. doi: 10.1001/jama.2019.2021 [published Online First: 2019/03/27]
- Myrhaug HT, Brurberg KG, Hov L, et al. Survival and Impairment of Extremely Premature Infants: A Meta-analysis. *Pediatrics* 2019;143(2) doi: 10.1542/peds.2018-0933 [published Online First: 2019/02/02]
- Johnson S, Marlow N. Early and long-term outcome of infants born extremely preterm. Archives of disease in childhood 2017;102(1):97-102. doi: 10.1136/archdischild-2015-309581 [published Online First: 2016/08/12]
- 7. Mangham LJ, Petrou S, Doyle LW, et al. The cost of preterm birth throughout childhood in England and Wales. *Pediatrics* 2009;123(2):e312-e27.
- 8. Ball G, Boardman JP, Arichi T, et al. Testing the sensitivity of tract-based spatial statistics to simulated treatment effects in preterm neonates. *PLoSOne* 2013;8(7):e67706.
- 9. Peterson BS, Vohr B, Staib LH, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. *JAMA* 2000;284(15):1939-47.
- 10. Boardman JP, Counsell SJ, Rueckert D, et al. Early growth in brain volume is preserved in the majority of preterm infants. *AnnNeurol* 2007;62(2):185-92.
- 11. Boardman JP, Craven C, Valappil S, et al. A common neonatal image phenotype predicts adverse neurodevelopmental outcome in children born preterm. *Neuroimage* 2010;52(2):409-14.
- 12. Ball G, Boardman JP, Aljabar P, et al. The influence of preterm birth on the developing thalamocortical connectome. *Cortex* 2012
- Boardman JP, Walley A, Ball G, et al. Common genetic variants and risk of brain injury after preterm birth. *Pediatrics* 2014;133(6):e1655-63. doi: 10.1542/peds.2013-3011 [published Online First: 2014/05/14]
- Ball G, Aljabar P, Zebari S, et al. Rich-club organization of the newborn human brain. *Proceedings of the National Academy of Sciences of the United States of America*  2014;111(20):7456-61. doi: 10.1073/pnas.1324118111 [published Online First: 2014/05/07]
- 15. Anblagan D, Bastin ME, Sparrow S, et al. Tract shape modeling detects changes associated with preterm birth and neuroprotective treatment effects. *NeuroImage: Clinical* 2015;8:51-58. doi: doi:10.1016/j.nicl.2015.03.021
- 16. Sparrow S, Manning JR, Cartier J, et al. Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural function. *Translational*


| <i>psychiatry</i> 2016;6:e716. doi: 10.1038/tp.2015.210 [published Online First: 2016/01/20]                              |
|---------------------------------------------------------------------------------------------------------------------------|
| 17. Kersbergen KJ, de Vries LS, van Kooij BJ, et al. Hydrocortisone treatment for                                         |
| bronchopulmonary dysplasia and brain volumes in preterm infants. J Pediatr                                                |
| 2013;163(3):666-71.e1. doi: 10.1016/j.jpeds.2013.04.001 [published Online First:                                          |
| 2013/05/28]                                                                                                               |
| 18. Woodward LJ, Anderson PJ, Austin NC, et al. Neonatal MRI to predict                                                   |
| neurodevelopmental outcomes in preterm infants. NEnglJ Med 2006;355(7):685-94.                                            |
| 19. Redline RW, Faye-Petersen O, Heller D, et al. Amniotic infection syndrome: nosology and                               |
| reproducibility of placental reaction patterns. Pediatric and developmental                                               |
| pathology : the official journal of the Society for Pediatric Pathology and the                                           |
| Paediatric Pathology Society 2003;6(5):435-48. doi: 10.1007/s10024-003-7070-y                                             |
| [published Online First: 2004/01/08]                                                                                      |
| 20. Anblagan D, Pataky R, Evans MJ, et al. Association between preterm brain injury and                                   |
| exposure to chorioamnionitis during fetal life. <i>Scientific reports</i> 2016;6:37932. doi:                              |
| 10.1038/srep37932 [published Online First: 2016/12/03]                                                                    |
| 21. Skogstrand K, Thorsen P, Norgaard-Pedersen B, et al. Simultaneous measurement of 25                                   |
| inflammatory markers and neurotrophins in neonatal dried blood spots by                                                   |
| immunoassay with xMAP technology. <i>Clinical chemistry</i> 2005;51(10):1854-66. doi:                                     |
| 10.1373/clinchem.2005.052241 [published Online First: 2005/08/06]                                                         |
| 22. Caruyer E, Lenglet C, Sapiro G, et al. Design of multishell sampling schemes with uniform                             |
| coverage in diffusion MRI. <i>Magnetic resonance in medicine</i> 2013;69(6):1534-40. doi:                                 |
| 10.1002/mrm.24736 [published Online First: 2013/04/30]                                                                    |
| 23. Leuchter RH, Gui L, Poncet A, et al. Association between early administration of high-                                |
| dose erythropoietin in preterm infants and brain MRI abnormality at term-                                                 |
| equivalent age. <i>Jama</i> 2014;312(8):817-24. doi: 10.1001/jama.2014.9645 [published                                    |
| Online First: 2014/08/27]                                                                                                 |
| 24. Blesa M, Sullivan G, Anblagan D, et al. Early breast milk exposure modifies brain                                     |
| connectivity in preterm infants. <i>NeuroImage</i> 2019;184:431-39. doi:                                                  |
| 10.1016/j.neuroimage.2018.09.045 [published Online First: 2018/09/22]                                                     |
| 25. Blesa M, Serag A, Wilkinson AG, et al. Parcellation of the Healthy Neonatal Brain into                                |
| 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood.                                        |
| <i>Frontiers in neuroscience</i> 2016;10:220. doi: 10.3389/fnins.2016.00220 [published                                    |
| Online First: 2016/06/01]                                                                                                 |
| 26. Serag A, Blesa M, Moore EJ, et al. Accurate Learning with Few Atlases (ALFA): an                                      |
| algorithm for MRI neonatal brain extraction and comparison with 11 publicly                                               |
| available methods. <i>Scientific reports</i> 2016;6:23470. doi: 10.1038/srep23470<br>[published Online First: 2016/03/25] |
| 27. Serag A, Wilkinson AG, Telford EJ, et al. SEGMA: An Automatic SEGMentation Approach                                   |
| for Human Brain MRI Using Sliding Window and Random Forests. <i>Frontiers in</i>                                          |
| neuroinformatics 2017;11:2. doi: 10.3389/fninf.2017.00002 [published Online First:                                        |
| 2017/02/07]                                                                                                               |
| 28. Ball G, Counsell SJ, Anjari M, et al. An optimised tract-based spatial statistics protocol for                        |
| neonates: applications to prematurity and chronic lung disease. <i>Neuroimage</i>                                         |
| 2010;53(1):94-102.                                                                                                        |
| 29. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise                              |
| analysis of multi-subject diffusion data. <i>Neuroimage</i> 2006;31(4):1487-505.                                          |
| · · · · · · · · · · · · · · · · · · ·                                                                                     |
|                                                                                                                           |

| 2                                                                                            |  |
|----------------------------------------------------------------------------------------------|--|
| 2                                                                                            |  |
| 3                                                                                            |  |
| 4                                                                                            |  |
| 5                                                                                            |  |
| 3<br>4<br>5<br>6<br>7<br>8                                                                   |  |
| 6                                                                                            |  |
| 7                                                                                            |  |
| 8                                                                                            |  |
| 9                                                                                            |  |
| 9                                                                                            |  |
| 10<br>11                                                                                     |  |
| 11                                                                                           |  |
| 12                                                                                           |  |
| 12                                                                                           |  |
| 13                                                                                           |  |
| 12<br>13<br>14<br>15<br>16<br>17                                                             |  |
| 15                                                                                           |  |
| 16                                                                                           |  |
| 10                                                                                           |  |
| 17                                                                                           |  |
| 18                                                                                           |  |
| 19                                                                                           |  |
| 20                                                                                           |  |
| 20                                                                                           |  |
| 21                                                                                           |  |
| 22                                                                                           |  |
| 23                                                                                           |  |
| 23                                                                                           |  |
| 24                                                                                           |  |
| 25                                                                                           |  |
| 26                                                                                           |  |
| 27                                                                                           |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 |  |
| 28                                                                                           |  |
| 29                                                                                           |  |
| 30                                                                                           |  |
| 21                                                                                           |  |
| 31                                                                                           |  |
| 32                                                                                           |  |
| 33                                                                                           |  |
| 31                                                                                           |  |
| 54                                                                                           |  |
| 35                                                                                           |  |
| 36                                                                                           |  |
| 37                                                                                           |  |
|                                                                                              |  |
| 38                                                                                           |  |
| 39                                                                                           |  |
| 40                                                                                           |  |
| 41                                                                                           |  |
|                                                                                              |  |
| 42                                                                                           |  |
| 43                                                                                           |  |
| 44                                                                                           |  |
| 45                                                                                           |  |
|                                                                                              |  |
| 46                                                                                           |  |
| 47                                                                                           |  |
| 48                                                                                           |  |
|                                                                                              |  |
| 49                                                                                           |  |
| 50                                                                                           |  |
| 51                                                                                           |  |
| 52                                                                                           |  |
| 52                                                                                           |  |
| 53                                                                                           |  |
| 54                                                                                           |  |
| 55                                                                                           |  |
| 56                                                                                           |  |
| 20                                                                                           |  |
| 57                                                                                           |  |
| 58                                                                                           |  |
| 59                                                                                           |  |
|                                                                                              |  |
| 60                                                                                           |  |


| 30. Makropoulos A, Robinson EC, Schuh A, et al. The developing human c | onnectome         |
|------------------------------------------------------------------------|-------------------|
| project: A minimal processing pipeline for neonatal cortical surfac    | e reconstruction. |
| Neurolmage 2018;173:88-112. doi: 10.1016/j.neuroimage.2018.0           | 1.054 [published  |
| Online First: 2018/02/08]                                              |                   |

- 31. Telford EJ, Fletcher-Watson S, Gillespie-Smith K, et al. Preterm birth is associated with atypical social orienting in infancy detected using eye tracking. *Journal of child psychology and psychiatry, and allied disciplines* 2016;57(7):861-8. doi: 10.1111/jcpp.12546 [published Online First: 2016/03/05]
- 32. Krishnan ML, Van Steenwinckel J, Schang AL, et al. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. *Nature communications* 2017;8(1):428. doi: 10.1038/s41467-017-00422-w [published Online First: 2017/09/07]
- 33. Telford EJ, Cox SR, Fletcher-Watson S, et al. A latent measure explains substantial variance in white matter microstructure across the newborn human brain. *Brain structure & function* 2017;222(9):4023-33. doi: 10.1007/s00429-017-1455-6 [published Online First: 2017/06/08]
- 34. Monnelly VJ, Anblagan D, Quigley A, et al. Prenatal methadone exposure is associated with altered neonatal brain development. *NeuroImage Clinical* 2018;18:9-14. doi: 10.1016/j.nicl.2017.12.033 [published Online First: 2018/01/13]
- 35. Gillespie-Smith K, Boardman JP, Murray IC, et al. Multiple Measures of Fixation on Social Content in Infancy: Evidence for a Single Social Cognitive Construct? *Infancy* 2016;21(2):241-57. doi: 10.1111/infa.12103 [published Online First: 2016/03/08]
- 36. Thwaites RS, Jarvis HC, Singh N, et al. Absorption of Nasal and Bronchial Fluids: Precision Sampling of the Human Respiratory Mucosa and Laboratory Processing of Samples. *Journal of visualized experiments : JoVE* 2018(131) doi: 10.3791/56413 [published Online First: 2018/02/15]
- 37. de Steenhuijsen Piters WA, Heinonen S, Hasrat R, et al. Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection. *American journal of respiratory and critical care medicine* 2016;194(9):1104-15. doi: 10.1164/rccm.201602-02200C [published Online First: 2016/11/01]
- 38. Bosch A, de Steenhuijsen Piters WAA, van Houten MA, et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. American journal of respiratory and critical care medicine 2017;196(12):1582-90. doi: 10.1164/rccm.201703-0554OC [published Online First: 2017/07/01]

#### SIEMENS MAGNETOM Prisma



#### SIEMENS MAGNETOM Prisma



For peer review only - http://bmjopen?bmj.com/site/about/guidelines.xhtml

### SIEMENS MAGNETOM Prisma

#### **Geometry - AutoAlign**

| Orientation         | Transversal         |
|---------------------|---------------------|
| Phase enc. dir.     | A >> P              |
| Slice group         | 3                   |
| Position            | L0.0 P47.8 F62.3 mm |
| Orientation         | Coronal             |
| Phase enc. dir.     | R >> L              |
| AutoAlign           |                     |
| Initial Position    | L0.0 P47.8 F62.3    |
| L                   | 0.0 mm              |
| Р                   | 47.8 mm             |
| F                   | 62.3 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |

#### **Geometry - Saturation**

| Saturation mode | Standard |
|-----------------|----------|
| Fat suppr.      | None     |
| Water suppr.    | None     |
| Special sat.    | None     |
|                 |          |

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| Positioning mode    | REF              |
|---------------------|------------------|
| Table position      | Н                |
| Table position      | 0 mm             |
| MSMA                | S-C-T            |
| Sagittal            | R >> L           |
| Coronal             | A >> P           |
| Transversal         | F >> H           |
| Coil Combine Mode   | Adaptive Combine |
| Save uncombined     | Off              |
| Matrix Optimization | Off              |
| AutoAlign           |                  |
| Coil Select Mode    | Default          |

#### System - Adjustments

| B0 Shim mode             | Tune up  |
|--------------------------|----------|
| B1 Shim mode             | TrueForm |
| Adjust with body coil    | Off      |
| Confirm freq. adjustment | Off      |
| Assume Dominant Fat      | Off      |
| Assume Silicone          | Off      |
| Adjustment Tolerance     | Auto     |

#### System - Adjust Volume

| Position    | Isocenter   |
|-------------|-------------|
| Orientation | Transversal |
| Rotation    | 0.00 deg    |
| A >> P      | 263 mm      |
| R >> L      | 350 mm      |
| F >> H      | 350 mm      |
| Reset       | Off         |

#### System - pTx Volumes

| B1 Shim mode | TrueForm   |  |
|--------------|------------|--|
| Excitation   | Slice-sel. |  |

#### System - Tx/Rx

| Frequency 1H        | 123.244318 MHz |
|---------------------|----------------|
| Correction factor   | 1              |
| Gain                | High           |
| Img. Scale Cor.     | 1.000          |
| Reset               | Off            |
| ? Ref. amplitude 1H | 0.000 V        |

#### Physio - Signal1

| 1st Signal/Mode | None   |  |
|-----------------|--------|--|
| TR              | 7.5 ms |  |
| Concatenations  | 3      |  |
| Segments        | 1      |  |

#### Physio - Cardiac

| Tagging           | None    |
|-------------------|---------|
| Magn. preparation | None    |
| Fat suppr.        | None    |
| Dark blood        | Off     |
| FoV read          | 250 mm  |
| FoV phase         | 100.0 % |
| Phase resolution  | 91 %    |

#### Physio - PACE

| Resp. control  | Off |
|----------------|-----|
| Concatenations | 3   |

## Inline - Common

| Subtract             | Off |  |
|----------------------|-----|--|
| Measurements         | 1   |  |
| StdDev               | Off |  |
| Liver registration   | Off |  |
| Save original images | On  |  |
|                      |     |  |

#### Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

#### Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

#### Inline - Composing

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

#### Inline - Maplt

| Save original images | On      |
|----------------------|---------|
| MapIt                | None    |
| Flip angle           | 20 deg  |
| Measurements         | 1       |
| Contrasts            | 1       |
| TR                   | 7.5 ms  |
| TE                   | 3.69 ms |

#### Sequence - Part 1

Introduction

## BMJ Open SIEMENS MAGNETOM Prisma

| Sequence - Part 1        |            |
|--------------------------|------------|
| Dimension                | 2D         |
| Phase stabilisation      | Off        |
| Asymmetric echo          | Allowed    |
| Contrasts                | 1          |
| Flow comp.               | No         |
| Multi-slice mode         | Sequential |
| Bandwidth                | 320 Hz/Px  |
| Sequence - Part 2        |            |
| Segments                 | 1          |
| Acoustic noise reduction | None       |
| RF pulse type            | Fast       |
| Gradient mode            | Fast       |
| Excitation               | Slice-sel. |
| RF spoiling              | On         |
| Sequence - Assistant     |            |
|                          | Off        |
| Allowed delay            | 0 s        |
|                          | Off<br>0s  |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |
|                          |            |

1 2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

TR

TE

TR

TE

Multiple series

#### \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\t2\_haste\_localiser TA: 6.0 s PM: REF Voxel size: 0.7×0.7×4.0 mmPAT: 2 Rel. SNR: 1.00 : h **Properties Resolution - Common** Prio recon Off FoV read 220 mm Load images to viewer On FoV phase 100.0 % Inline movie Off Slice thickness 4.0 mm Auto store images On Base resolution 320 80 % Load images to stamp segments On Phase resolution Phase partial Fourier Load images to graphic segments 4/8 On Auto open inline display Off Interpolation Off Auto close inline display Off **Resolution - iPAT** Start measurement without further Off preparation PAT mode GRAPPA Wait for user to start Off Accel. factor PE 2 Start measurements Single measurement Ref. lines PE 24 Reference scan mode Integrated Routine Slice group 1 **Resolution - Filter Image** Slices 1 Image Filter Off 30 % Dist. factor Distortion Corr. Off Position Isocenter Prescan Normalize On Sagittal Orientation Unfiltered images Off A >> P Phase enc. dir. Normalize Off Slice group 2 B1 filter Off Slices 1 Dist. factor 30 % **Resolution - Filter Rawdata** Position L0.0 P0.0 H5.2 mm Raw filter Off Orientation Transversal Elliptical filter On Phase enc. dir. R >> L Slice group 3 **Geometry - Common** Slices 1 Slice group 1 Dist. factor 30 % Slices 1 L0.0 P0.0 H10.4 mm Position 30 % Dist. factor Orientation Coronal Position Isocenter Phase enc. dir. R >> L Orientation Sagittal AutoAlign A >> P Phase enc. dir. Phase oversampling 0% Slice group 2 220 mm FoV read Slices 1 FoV phase 100.0 % Dist. factor 30 % Slice thickness 4.0 mm Position L0.0 P0.0 H5.2 mm 1500.0 ms Orientation Transversal 94 ms Phase enc. dir. R >> L Averages 1 Slice group 3 Concatenations 1 Slices 1 Filter Prescan Normalize, 30 % Dist. factor Elliptical filter Position L0.0 P0.0 H10.4 mm Coil elements HE1-4 Orientation Coronal **Contrast - Common** Phase enc. dir. R >> L FoV read 220 mm 1500.0 ms FoV phase 100.0 % 94 ms Slice thickness 4.0 mm MTC Off TR 1500.0 ms Magn. preparation None Multi-slice mode Single shot Flip angle 150 deg Series Interleaved Fat suppr. None Concatenations 1 Water suppr. None Restore magn. Off **Geometry - AutoAlign Contrast - Dynamic** Slice group 1 Position Isocenter Averages 1 Orientation Sagittal Averaging mode Long term Phase enc. dir. A >> P Reconstruction Magnitude Slice group 2 Measurements 1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Each measurement

Position

L0.0 P0.0 H5.2 mm

## BMJ Open

## SIEMENS MAGNETOM Prisma

| Orientation                                    | Transversal       |
|------------------------------------------------|-------------------|
| Phase enc. dir.                                | R >> L            |
| Slice group                                    | 3                 |
| Position                                       | L0.0 P0.0 H10.4 m |
| Orientation                                    | Coronal           |
| Phase enc. dir.                                | R >> L            |
| AutoAlign                                      |                   |
| Initial Position                               | Isocenter         |
| P                                              | 0.0 mm            |
| P<br>H                                         | 0.0 mm<br>0.0 mm  |
| Initial Rotation                               | 0.00 deg          |
| Initial Orientation                            | Sagittal          |
| Geometry - Saturation                          | eaginai           |
| Fat suppr.                                     | None              |
| Water suppr.                                   | None              |
| Restore magn.                                  | Off               |
| Special sat.                                   | None              |
| Geometry - Navigator                           | ~                 |
|                                                |                   |
| Geometry - Tim Planning S<br>Set-n-Go Protocol | Off               |
| Table position                                 | н 💦               |
| Table position                                 | 0 mm              |
| Inline Composing                               | Off               |
|                                                |                   |
| System - Miscellaneous                         |                   |
| Positioning mode                               | REF               |
| Table position                                 | H<br>0 mm         |
| Table position<br>MSMA                         | S - C - T         |
| Sagittal                                       | R >> L            |
| Coronal                                        | A >> P            |
| Transversal                                    | F >> H            |
| Coil Combine Mode                              | Adaptive Combine  |
| Save uncombined                                | Off               |
| Matrix Optimization                            | Off               |
| AutoAlign                                      |                   |
| Coil Select Mode                               | On - AutoCoilSele |
| System - Adjustments                           |                   |
| B0 Shim mode                                   | Tune up           |
| B1 Shim mode                                   | TrueForm          |
| Adjust with body coil                          | Off               |
| Confirm freq. adjustment                       | Off               |
| Assume Dominant Fat                            | Off               |
| Assume Silicone                                | Off               |
| Adjustment Tolerance                           | Auto              |
| System - Adjust Volume                         |                   |
| Position                                       | Isocenter         |
| Orientation                                    | Transversal       |
| Rotation                                       | 0.00 deg          |
| A >> P<br>R >> L                               | 263 mm            |
| R >> L<br>F >> H                               | 350 mm            |
| F >> H<br>Reset                                | 350 mm<br>Off     |
|                                                | Vii               |
| System - pTx Volumes                           |                   |
| B1 Shim mode                                   |                   |

#### System - Tx/Rx

| Fr  | equency 1H                     | 123.244318 MHz |
|-----|--------------------------------|----------------|
| Co  | equency 1H<br>prrection factor | 1              |
| Ga  | ain                            | High           |
| Im  | g. Scale Cor.                  | 1.000          |
| Re  | eset                           | Off            |
| ? I | Ref. amplitude 1H              | 0.000 V        |

#### Physio - Signal1

| 1st Signal/Mode | None      |
|-----------------|-----------|
| TR              | 1500.0 ms |
| Concatenations  | 1         |

#### Physio - Cardiac

| Magn. preparation | None    |
|-------------------|---------|
| Fat suppr.        | None    |
| Dark blood        | Off     |
| FoV read          | 220 mm  |
| FoV phase         | 100.0 % |
| Phase resolution  | 80 %    |

#### Physio - PACE

| Resp. control  | Off |  |
|----------------|-----|--|
| Concatenations | 1   |  |

## Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

#### Inline - Composing

| Inline Composing | Off |
|------------------|-----|
| Distortion Corr. | Off |

## Sequence - Part 1

| Introduction     | On          |
|------------------|-------------|
| Dimension        | 2D          |
| Contrasts        | 1           |
| Flow comp.       | No          |
| Multi-slice mode | Single shot |
| Echo spacing     | 7.22 ms     |
| Bandwidth        | 601 Hz/Px   |

#### Sequence - Part 2

| RF pulse type | Normal  |
|---------------|---------|
| Gradient mode | Whisper |
| Hyperecho     | Off     |
| Turbo factor  | 256     |

#### Sequence - Assistant

| Mode           | Min flip angle |  |
|----------------|----------------|--|
| Min flip angle | 130 deg        |  |
| Allowed delay  | 60 s           |  |

#### SIEMENS MAGNETOM Prisma

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\t2\_blade\_v3

TA: 2:29 PM: REF Voxel size: 0.7×0.7×3.0 mmPAT: 2 Rel. SNR: 1.00 : qtseBR\_rr

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
|                                               |                    |
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | On                 |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Slice group        | 1                   |
|--------------------|---------------------|
| Slices             | 40                  |
| Dist. factor       | 0 %                 |
| Position           | R1.2 P40.0 H50.2 mm |
| Orientation        | Transversal         |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0.0 %               |
| FoV read           | 220 mm              |
| FoV phase          | 100.0 %             |
| Slice thickness    | 3.0 mm              |
| TR                 | 4100.0 ms           |
| TE                 | 207 ms              |
| Averages           | 1                   |
| Concatenations     | 4                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN             |

#### **Contrast - Common**

| ٢ | R                 | 4100.0 ms |
|---|-------------------|-----------|
| Г | Ē                 | 207 ms    |
| Г | D                 | 0.0 ms    |
| Ν | ИТС               | Off       |
| Ν | Aagn. preparation | None      |
| F | Flip angle        | 90 deg    |
| F | at suppr.         | None      |
|   | Vater suppr.      | None      |
| F | Restore magn.     | On        |

#### **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |
|                 |                  |

#### **Resolution - Common**

| FoV read        | 220 mm  |
|-----------------|---------|
| FoV phase       | 100.0 % |
| Slice thickness | 3.0 mm  |
| Base resolution | 320     |
| BLADE coverage  | 100.0 % |
| Trajectory      | BLADE   |
| Interpolation   | Off     |

#### **Resolution - iPAT**

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 2          |
| Ref. lines PE       | 8          |
| Reference scan mode | Integrated |

#### **Resolution - Filter Image**

| Image Filter      | Off |  |
|-------------------|-----|--|
| Distortion Corr.  | Off |  |
| Prescan Normalize | On  |  |
| Unfiltered images | Off |  |
| Normalize         | Off |  |
| B1 filter         | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 40                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P40.0 H50.2 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | A >> P              |
| FoV read         | 220 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 3.0 mm              |
| TR               | 4100.0 ms           |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 4                   |

#### Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
| Position            | R1.2 P40.0 H50.2 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P40.0 H50.2    |
| R                   | 1.2 mm              |
| Р                   | 40.0 mm             |
| н                   | 50.2 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Transversal         |

#### **Geometry - Saturation**

| Fat suppr.    | None |
|---------------|------|
| Water suppr.  | None |
| Restore magn. | On   |
| Special sat.  | None |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| -                 | -    |
|-------------------|------|
| Set-n-Go Protocol | Off  |
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### **BMJ** Open

#### SIEMENS MAGNETOM Prisma

| 1                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                                                                | System - Miscellaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                 |
| 3                                                                                                                                                                                                                                                                                                | Positioning mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REF                                                                                                                                                             |
| 4                                                                                                                                                                                                                                                                                                | Table position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                               |
| 5                                                                                                                                                                                                                                                                                                | Table position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 mm                                                                                                                                                            |
| 6                                                                                                                                                                                                                                                                                                | MSMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S - C - T                                                                                                                                                       |
| 7                                                                                                                                                                                                                                                                                                | Sagittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R >> L                                                                                                                                                          |
| 8                                                                                                                                                                                                                                                                                                | Coronal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A >> P                                                                                                                                                          |
| 9                                                                                                                                                                                                                                                                                                | Transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F >> H                                                                                                                                                          |
| 10                                                                                                                                                                                                                                                                                               | Coil Combine Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Adaptive Combine                                                                                                                                                |
| 10                                                                                                                                                                                                                                                                                               | Save uncombined                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Off                                                                                                                                                             |
| 12                                                                                                                                                                                                                                                                                               | Matrix Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Off                                                                                                                                                             |
| 12                                                                                                                                                                                                                                                                                               | AutoAlign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |
| 13                                                                                                                                                                                                                                                                                               | Coil Select Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | On - AutoCoilSelect                                                                                                                                             |
| 14                                                                                                                                                                                                                                                                                               | System - Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                               |
| 16                                                                                                                                                                                                                                                                                               | B0 Shim mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tune up                                                                                                                                                         |
| 17                                                                                                                                                                                                                                                                                               | B1 Shim mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TrueForm                                                                                                                                                        |
| 18                                                                                                                                                                                                                                                                                               | Adjust with body coil                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Off<br>Off                                                                                                                                                      |
| 19                                                                                                                                                                                                                                                                                               | Confirm freq. adjustment<br>Assume Dominant Fat                                                                                                                                                                                                                                                                                                                                                                                                                                               | Off<br>Off                                                                                                                                                      |
| 20                                                                                                                                                                                                                                                                                               | Assume Silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Off                                                                                                                                                             |
| 21                                                                                                                                                                                                                                                                                               | Adjustment Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto                                                                                                                                                            |
| 22                                                                                                                                                                                                                                                                                               | Aujustinent Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto                                                                                                                                                            |
| 23                                                                                                                                                                                                                                                                                               | System - Adjust Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                 |
| 24                                                                                                                                                                                                                                                                                               | Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Isocenter                                                                                                                                                       |
| 25                                                                                                                                                                                                                                                                                               | Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Transversal                                                                                                                                                     |
| 26                                                                                                                                                                                                                                                                                               | Rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00 deg                                                                                                                                                        |
| 27                                                                                                                                                                                                                                                                                               | A >> P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 263 mm                                                                                                                                                          |
| 28                                                                                                                                                                                                                                                                                               | R >> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 350 mm                                                                                                                                                          |
| 29                                                                                                                                                                                                                                                                                               | F >> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 350 mm                                                                                                                                                          |
| 30                                                                                                                                                                                                                                                                                               | Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Off                                                                                                                                                             |
| 31                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                  | System - nTx Volumos                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |
| 32                                                                                                                                                                                                                                                                                               | System - pTx Volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |
| 32<br>33                                                                                                                                                                                                                                                                                         | B1 Shim mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TrueForm                                                                                                                                                        |
| 33                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TrueForm                                                                                                                                                        |
| 33<br>34                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TrueForm                                                                                                                                                        |
| 33<br>34<br>35                                                                                                                                                                                                                                                                                   | B1 Shim mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TrueForm 123.244318 MHz                                                                                                                                         |
| 33<br>34<br>35<br>36                                                                                                                                                                                                                                                                             | B1 Shim mode System - Tx/Rx                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |
| 33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                                                       | B1 Shim mode System - Tx/Rx Frequency 1H                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123.244318 MHz                                                                                                                                                  |
| 33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                                                 | B1 Shim mode<br>System - Tx/Rx<br>Frequency 1H<br>Correction factor                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.244318 MHz<br>1                                                                                                                                             |
| 33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                                           | B1 Shim mode<br>System - Tx/Rx<br>Frequency 1H<br>Correction factor<br>Gain                                                                                                                                                                                                                                                                                                                                                                                                                   | 123.244318 MHz<br>1<br>High                                                                                                                                     |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                                                     | B1 Shim mode<br>System - Tx/Rx<br>Frequency 1H<br>Correction factor<br>Gain<br>Img. Scale Cor.                                                                                                                                                                                                                                                                                                                                                                                                | 123.244318 MHz<br>1<br>High<br>1.000                                                                                                                            |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                                                                                                                                                                               | B1 Shim mode<br>System - Tx/Rx<br>Frequency 1H<br>Correction factor<br>Gain<br>Img. Scale Cor.<br>Reset<br>? Ref. amplitude 1H                                                                                                                                                                                                                                                                                                                                                                | 123.244318 MHz<br>1<br>High<br>1.000<br>Off                                                                                                                     |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                         | B1 Shim mode<br>System - Tx/Rx<br>Frequency 1H<br>Correction factor<br>Gain<br>Img. Scale Cor.<br>Reset<br>? Ref. amplitude 1H<br>Physio - Signal1                                                                                                                                                                                                                                                                                                                                            | 123.244318 MHz<br>1<br>High<br>1.000<br>Off                                                                                                                     |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                   | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode                                                                                                                                                                                                                                                                            | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V                                                                                                          |
| <ul> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> </ul>                                                                                                                                       | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR                                                                                                                                                                                                                                                                 | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms                                                                                     |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                       | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode                                                                                                                                                                                                                                                                            | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V                                                                                                          |
| <ol> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> </ol>                                                                                                               | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations                                                                                                                                                                                                                                          | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms                                                                                     |
| <ol> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> </ol>                                                                                                   | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac                                                                                                                                                                                                                 | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4                                                                                |
| <ul> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> </ul>                                                                                       | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation                                                                                                                                                                                       | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None                                                                        |
| <ol> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ol>                                                                           | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.                                                                                                                                                                    | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4<br>None<br>None<br>None                                                                     |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                                                         | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood                                                                                                                                                 | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>None<br>Off                                                 |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51                                                                                         | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV read                                                                                                                                | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>None<br>Off<br>220 mm                                       |
| <ul> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> </ul>                                       | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV read         FoV phase                                                                                                              | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>Off<br>220 mm<br>100.0 %                                    |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                                                                                                                                                                       | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV read         FoV phase         BLADE coverage                                                                                       | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>Off<br>220 mm<br>100.0 %<br>100.0 %                         |
| <ul> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> </ul>                                       | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV read         FoV phase                                                                                                              | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>Off<br>220 mm<br>100.0 %                                    |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                                                                                                                                                                       | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV read         FoV phase         BLADE coverage         Trajectory                                                                    | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>Off<br>220 mm<br>100.0 %<br>100.0 %                         |
| <ul> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> </ul>               | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV phase         BLADE coverage         Trajectory         Physio - PACE                                                               | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>None<br>Off<br>220 mm<br>100.0 %<br>BLADE                   |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55                                             | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV phase         BLADE coverage         Trajectory         Physio - PACE         Resp. control                                         | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>None<br>Off<br>220 mm<br>100.0 %<br>100.0 %<br>BLADE<br>Off |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56                                  | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV phase         BLADE coverage         Trajectory         Physio - PACE                                                               | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>None<br>Off<br>220 mm<br>100.0 %<br>BLADE                   |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57                       | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV phase         BLADE coverage         Trajectory         Physio - PACE         Resp. control                                         | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>None<br>Off<br>220 mm<br>100.0 %<br>100.0 %<br>BLADE<br>Off |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58            | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV read         FoV phase         BLADE coverage         Trajectory         Physio - PACE         Resp. control         Concatenations | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>Off<br>220 mm<br>100.0 %<br>100.0 %<br>BLADE<br>Off<br>4    |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58         59 | B1 Shim mode         System - Tx/Rx         Frequency 1H         Correction factor         Gain         Img. Scale Cor.         Reset         ? Ref. amplitude 1H         Physio - Signal1         1st Signal/Mode         TR         Concatenations         Physio - Cardiac         Magn. preparation         Fat suppr.         Dark blood         FoV phase         BLADE coverage         Trajectory         Physio - PACE         Resp. control         Concatenations                  | 123.244318 MHz<br>1<br>High<br>1.000<br>Off<br>0.000 V<br>None<br>4100.0 ms<br>4<br>None<br>None<br>None<br>Off<br>220 mm<br>100.0 %<br>100.0 %<br>BLADE<br>Off |

#### Inline - Common

| StdDev               | Off |  |
|----------------------|-----|--|
| Save original images | On  |  |

#### Inline - MIP

| MIP-Sag              | Off |
|----------------------|-----|
| MIP-Sag<br>MIP-Cor   | Off |
| MIP-Tra              | Off |
| MIP-Time             | Off |
| Save original images | On  |

#### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

#### Sequence - Part 1

| Introduction        | On          |
|---------------------|-------------|
| Dimension           | 2D          |
| Compensate T2 decay | Off         |
| Contrasts           | 1           |
| Flow comp.          | Read        |
| Multi-slice mode    | Interleaved |
| Free echo spacing   | Off         |
| Echo spacing        | 10.9 ms     |
| Bandwidth           | 363 Hz/Px   |

#### Sequence - Part 2

| Define                   | Turbo factor |
|--------------------------|--------------|
| Echo trains per slice    | 8            |
| Phase correction         | Automatic    |
| Acoustic noise reduction | Active       |
| RF pulse type            | Low SAR      |
| Gradient mode            | Fast         |
| Hyperecho                | On           |
| WARP                     | Off          |
| Motion correction        | On           |
| Red. EC sensitivity      | Off          |
| Turbo factor             | 36           |

## Sequence - Assistant

| Mode                  | Off  |  |
|-----------------------|------|--|
| Mode<br>Allowed delay | 30 s |  |
|                       |      |  |
|                       |      |  |
|                       |      |  |
|                       |      |  |

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\t2\_space\_sag\_p4\_iso\_v2x TA: 2:13 PM: REF Voxel size: 1.0×1.0×1.0 mmPAT: 4 Rel. SNR: 1.00 : spcR

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              |                     |
| Position           | R1.2 P36.9 H0.0 mm  |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 160                 |
| FoV read           | 128 mm              |
| FoV phase          | 150.0 %             |
| Slice thickness    | 1.00 mm             |
| TR                 | 3200 ms             |
| TE                 | 409 ms              |
| Averages           | 1.4                 |
| Concatenations     | 1                   |
| Filter             | Raw filter, Prescan |
|                    | Normalize           |
| Coil elements      | PeH;PeN             |

## **Contrast - Common**

| TR                | 3200 ms  |
|-------------------|----------|
| TE                | 409 ms   |
| MTC               | Off      |
| Magn. preparation | None     |
| Fat suppr.        | Fat sat. |
| Fat sat. mode     | Strong   |
| Blood suppr.      | Off      |
| Restore magn.     | On       |

## **Contrast - Dynamic**

| Averages        | 1.4              |
|-----------------|------------------|
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

## **Resolution - Common**

| FoV read              | 128 mm  |
|-----------------------|---------|
| FoV phase             | 150.0 % |
| Slice thickness       | 1.00 mm |
| Base resolution       | 128     |
| Phase resolution      | 100 %   |
| Slice resolution      | 100 %   |
| Phase partial Fourier | Allowed |
| Slice partial Fourier | Off     |
| Interpolation         | Off     |

## **Resolution - iPAT**

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 2          |
| Ref. lines PE       | 24         |
| Accel. factor 3D    | 2          |
| Ref. lines 3D       | 24         |
| Reference scan mode | Integrated |

## **Resolution - Filter Image**

| Image Filter      | Off |
|-------------------|-----|
| Distortion Corr.  | Off |
| Prescan Normalize | On  |
| Unfiltered images | Off |
| Normalize         | Off |
| B1 filter         | Off |

## **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

## Geometry - Common

| Slab group         | 1                  |
|--------------------|--------------------|
| Slabs              | 1                  |
| Position           | R1.2 P36.9 H0.0 mm |
| Orientation        | Sagittal           |
| Phase enc. dir.    | A >> P             |
| Slice oversampling | 0.0 %              |
| Slices per slab    | 160                |
| FoV read           | 128 mm             |
| FoV phase          | 150.0 %            |
| Slice thickness    | 1.00 mm            |
| TR                 | 3200 ms            |
| Series             | Interleaved        |
| Concatenations     | 1                  |

## Geometry - AutoAlign

| Slab group          | 1                  |
|---------------------|--------------------|
| Position            | R1.2 P36.9 H0.0 mm |
| Orientation         | Sagittal           |
| Phase enc. dir.     | A >> P             |
| AutoAlign           |                    |
| Initial Position    | R1.2 P36.9 H0.0    |
| R                   | 1.2 mm             |
| Р                   | 36.9 mm            |
| н                   | 0.0 mm             |
| Initial Rotation    | 0.00 deg           |
| Initial Orientation | Sagittal           |

## **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Restore magn. | On       |
| Special sat.  | None     |

## **Geometry - Navigator**

## **Geometry - Tim Planning Suite**

| -                 | •    |
|-------------------|------|
| Set-n-Go Protocol | Off  |
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### **BMJ** Open

#### SIEMENS MAGNETOM Prisma

| System - Miscellaneous                           |                       | Inline - Common                      |
|--------------------------------------------------|-----------------------|--------------------------------------|
| Positioning mode                                 | REF                   | Measurements                         |
| Table position                                   | Н                     | StdDev                               |
| Table position                                   | 0 mm                  | Save original images                 |
| MSMA                                             | S - C - T             |                                      |
| Sagittal                                         | R >> L                | Inline - MIP                         |
| Coronal                                          | A >> P                | MIP-Sag                              |
| Transversal                                      | F >> H                | 5                                    |
| Coil Combine Mode                                | Adaptive Combine      | MIP-Cor                              |
|                                                  | Off                   | MIP-Tra                              |
| Save uncombined                                  | -                     | MIP-Time                             |
| Matrix Optimization                              | Off                   | Save original images                 |
| AutoAlign<br>Coil Select Mode                    | <br>On AutoCoilSoloot | Inline Composing                     |
| Coll Select Mode                                 | On - AutoCoilSelect   | Inline - Composing                   |
| System - Adjustments                             |                       | Inline Composing<br>Distortion Corr. |
| B0 Shim mode                                     | Standard              |                                      |
| B1 Shim mode                                     | TrueForm              | Sequence - Part 1                    |
| Adjust with body coil                            | Off                   | Introduction                         |
| Confirm freq. adjustment                         | Off                   | Dimension                            |
| Assume Dominant Fat                              | Off                   |                                      |
| Assume Silicone                                  | Off                   | Elliptical scanning                  |
| Adjustment Tolerance                             | Auto                  | Reordering                           |
|                                                  |                       | Flow comp.                           |
| System - Adjust Volume                           |                       | Echo spacing                         |
|                                                  |                       | Adiabatic-mode                       |
| Position                                         | R1.2 P36.9 H0.0 mm    | Bandwidth                            |
| Orientation                                      | Sagittal              |                                      |
| Rotation                                         | 90.00 deg             | Sequence - Part 2                    |
| F >> H                                           | 128 mm                | Echo train duration                  |
| A >> P                                           | 192 mm                | RF pulse type                        |
| R >> L                                           | 160 mm                | Gradient mode                        |
| Reset                                            | Off                   | Excitation                           |
|                                                  |                       |                                      |
| System - pTx Volumes                             |                       | Flip angle mode                      |
| B1 Shim mode                                     | TrueForm              | Turbo factor                         |
| Excitation                                       | Non-sel.              | Sequence - Assistar                  |
|                                                  |                       | Allowed delay                        |
| System - Tx/Rx                                   |                       |                                      |
| Frequency 1H                                     | 123.244318 MHz        |                                      |
| Correction factor                                | 1                     |                                      |
| Gain                                             | High                  |                                      |
| Img. Scale Cor.                                  | 3.000                 |                                      |
| Reset                                            | Off                   |                                      |
| ? Ref. amplitude 1H                              | 0.000 V               |                                      |
| Physio - Signal1                                 |                       |                                      |
| 1st Signal/Mode                                  | None                  | 1                                    |
| Trigger delay                                    | 0 ms                  |                                      |
| TR                                               | 3200 ms               |                                      |
| Concatenations                                   | 1                     |                                      |
|                                                  | ·                     | <b>_</b>                             |
| Physio - Cardiac                                 | None                  | 1                                    |
| Magn. preparation                                | None                  |                                      |
| Fat suppr.                                       | Fat sat.              |                                      |
| Dark blood                                       | Off                   |                                      |
| FoV read                                         | 128 mm                |                                      |
| FoV phase                                        | 150.0 %               |                                      |
| Phase resolution                                 | 100 %                 | J                                    |
|                                                  |                       |                                      |
| Physia - PACE                                    |                       | 1                                    |
| Physio - PACE                                    | Off                   |                                      |
| Physio - PACE<br>Resp. control<br>Concatenations | Off<br>1              |                                      |
| Resp. control<br>Concatenations                  |                       |                                      |
| Resp. control                                    |                       | ]                                    |

#### Inline - Common

| Measurements         | 1   |  |
|----------------------|-----|--|
| StdDev               | Off |  |
| Save original images | On  |  |

#### Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

#### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

#### Sequence - Part 1

| Introduction        | On        |
|---------------------|-----------|
| Dimension           | 3D        |
| Elliptical scanning | Off       |
| Reordering          | Linear    |
| Flow comp.          | No        |
| Echo spacing        | 4.4 ms    |
| Adiabatic-mode      | Off       |
| Bandwidth           | 592 Hz/Px |

#### Sequence - Part 2

| Echo train duration | 1034 ms  |
|---------------------|----------|
| RF pulse type       | Low SAR  |
| Gradient mode       | Whisper  |
| Excitation          | Non-sel. |
| Flip angle mode     | T2 var   |
| Turbo factor        | 282      |
|                     |          |

### Sequence - Assistant

| Allowed | delay | 30 s |
|---------|-------|------|
|         |       |      |

For peer review only - http://bmjopen.9mj.com/site/about/guidelines.xhtml

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\DTI\_Neonate\_v6b\_dummy TA: 0:28 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 4 Rel. SNR: 1.00 : epse

## **Properties**

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Slice group        | 1                                |
|--------------------|----------------------------------|
| Slices             | 58                               |
| Dist. factor       | 0 %                              |
| Position           | R1.2 P39.7 H47.8 mm              |
| Orientation        | Transversal                      |
| Phase enc. dir.    | R >> L                           |
| AutoAlign          |                                  |
| Phase oversampling | 0 %                              |
| FoV read           | 256 mm                           |
| FoV phase          | 100.0 %                          |
| Slice thickness    | 2.0 mm                           |
| TR                 | 3500 ms                          |
| TE                 | 78.0 ms                          |
| Concatenations     | 1                                |
| Filter             | Raw filter, Prescan<br>Normalize |
| Coil elements      | PeH;PeN                          |

#### **Contrast - Common**

| TR                          | 3500 ms  |
|-----------------------------|----------|
| TE                          | 78.0 ms  |
| MTC                         | Off      |
| Magn. preparation           | None     |
| Fat suppr.<br>Fat sat. mode | Fat sat. |
| Fat sat. mode               | Strong   |

#### **Contrast - Dynamic**

| Averaging mode  | Long term |
|-----------------|-----------|
| Reconstruction  | Magnitude |
| Measurements    | 1         |
| Delay in TR     | 0 ms      |
| Multiple series | Off       |

#### **Resolution - Common**

| 00.0 %<br>.0 mm<br>28<br>00 % |
|-------------------------------|
| 28                            |
|                               |
| 20.9/                         |
| JU 70                         |
| /8                            |
| ff                            |
|                               |

| Resolution - iPAT                                |              |
|--------------------------------------------------|--------------|
| Accel. mode                                      | Slice accel. |
| Accel. mode<br>Accel. factor PE<br>Ref. lines PE | 2            |
| Ref. lines PE                                    | 40           |

#### **Resolution - iPAT**

| Accel. factor slice | 2            |
|---------------------|--------------|
| Reference scan mode | EPI/separate |

#### **Resolution - Filter Image**

| Distortion Corr.    | Off |  |
|---------------------|-----|--|
| Prescan Normalize   | On  |  |
| Dynamic Field Corr. | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 58                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P39.7 H47.8 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | R >> L              |
| FoV read         | 256 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 2.0 mm              |
| TR               | 3500 ms             |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 1                   |

#### Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
| Position            | R1.2 P39.7 H47.8 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | R >> L              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P39.7 H47.8    |
| R                   | 1.2 mm              |
| Р                   | 39.7 mm             |
| н                   | 47.8 mm             |
| Initial Rotation    | 90.00 deg           |
| Initial Orientation | Transversal         |

#### **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Special sat.  | None     |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| Positioning mode | FIX       |
|------------------|-----------|
| Table position   | Н         |
| Table position   | 0 mm      |
| MSMA             | S - C - T |
| Sagittal         | R >> L    |

## SIEMENS MAGNETOM Prisma

| 1        |                          |                     |
|----------|--------------------------|---------------------|
| 2        | System - Miscellaneous   |                     |
| 3        | Coronal                  | A >> P              |
| 4        | Transversal              | F >> H              |
| 5        | Coil Combine Mode        | Adaptive Combine    |
| 6        | Matrix Optimization      | Performance         |
| 7        | AutoAlign                |                     |
| 8        | Coil Select Mode         | On - AutoCoilSelect |
| 9        | System - Adjustments     |                     |
| 10       | B0 Shim mode             | Standard            |
| 11       | B1 Shim mode             | TrueForm            |
| 12       | Adjust with body coil    | Off                 |
| 13       | Confirm freq. adjustment | Off                 |
| 14       | Assume Dominant Fat      | Off                 |
| 15       | Assume Silicone          | Off                 |
| 16       | Adjustment Tolerance     | Auto                |
| 17       | Custom Adiust Maluma     |                     |
| 18       | System - Adjust Volume   |                     |
| 19       | Position                 | R1.2 P39.7 H47.8 mm |
| 20       | Orientation              | Transversal         |
| 21       | Rotation<br>R >> L       | 90.00 deg<br>256 mm |
| 22       | R >> L<br>A >> P         | 256 mm              |
| 23       | F >> H                   | 116 mm              |
| 24       | Reset                    | Off                 |
| 25       |                          |                     |
| 26       | System - pTx Volumes     |                     |
| 27       | B1 Shim mode             | TrueForm            |
| 28       | Excitation               | Standard            |
| 29       |                          |                     |
| 30       | System - Tx/Rx           |                     |
| 31       | Frequency 1H             | 123.244318 MHz      |
| 32<br>33 | Correction factor        | 1                   |
| 33<br>34 | Gain                     | High<br>1.000       |
| 35       | Img. Scale Cor.<br>Reset | Off                 |
| 36       | ? Ref. amplitude 1H      | 0.000 V             |
| 30<br>37 |                          |                     |
| 38       | Physio - Signal1         |                     |
| 39       | 1st Signal/Mode          | None                |
| 40       | TR                       | 3500 ms             |
| 41       | Concatenations           | 1                   |
| 42       | Physic DACE              |                     |
| 43       | Physio - PACE            |                     |
| 44       | Resp. control            | Off                 |
| 45       | Concatenations           | 1                   |
| 46       | Diff - Neuro             |                     |
| 47       | Diffusion mode           | Free                |
| 48       | Diff. directions         | 71                  |
| 49       | Diffusion Scheme         | Monopolar           |
| 50       | Diff. weightings         | 1                   |
| 51       | b-value                  | 0 s/mm²             |
| 52       | b-value                  | 3                   |
| 53       | Diff. weighted images    | On                  |
| 54       | Trace weighted images    | Off                 |
| 55       | ADC maps                 | Off                 |
| 56       | FA maps                  | Off<br>Off          |
| 57       | Mosaic                   | Off<br>Off          |
| 58       | Tensor<br>Noise level    | Off<br>40           |
| 59       |                          | -U                  |

## **Diff - Body**

Diffusion mode

## **Diff - Body**

| Diff. directions      | 71        |
|-----------------------|-----------|
| Diffusion Scheme      | Monopolar |
| Diff. weightings      | 1         |
| b-value               | 0 s/mm²   |
| b-value               | 3         |
| Diff. weighted images | On        |
| Trace weighted images | Off       |
| ADC maps              | Off       |
| Exponential ADC Maps  | Off       |
| FA maps               | Off       |
| Invert Gray Scale     | Off       |
| Calculated Image      | Off       |
| b-Value >=            | 0 s/mm²   |
| Noise level           | 40        |

#### **Diff - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

#### Sequence - Part 1

| Introduction      | Off         |
|-------------------|-------------|
| Optimization      | None        |
| Multi-slice mode  | Interleaved |
| Free echo spacing | Off         |
| Echo spacing      | 0.78 ms     |
| Bandwidth         | 1446 Hz/Px  |

#### Sequence - Part 2

| EPI factor    | 128      |
|---------------|----------|
| RF pulse type | Low SAR  |
| Gradient mode | Normal   |
| Excitation    | Standard |
|               |          |

#### Sequence - pTX Pulses



Free

#### SIEMENS MAGNETOM Prisma

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\DTI\_Neonate\_v6b\_rev TA: 0:28 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 4 Rel. SNR: 1.00 : epse

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Noutine            |                     |
|--------------------|---------------------|
| Slice group        | 1                   |
| Slices             | 58                  |
| Dist. factor       | 0 %                 |
| Position           | R1.2 P39.7 H47.8 mm |
| Orientation        | Transversal         |
| Phase enc. dir.    | R >> L              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| FoV read           | 256 mm              |
| FoV phase          | 100.0 %             |
| Slice thickness    | 2.0 mm              |
| TR                 | 3500 ms             |
| TE                 | 78.0 ms             |
| Concatenations     | 1                   |
| Filter             | Raw filter, Prescan |
|                    | Normalize           |
| Coil elements      | PeH;PeN             |

#### **Contrast - Common**

| TR                          | 3500 ms  |
|-----------------------------|----------|
| TE                          | 78.0 ms  |
| MTC                         | Off      |
| Magn. preparation           | None     |
| Fat suppr.<br>Fat sat. mode | Fat sat. |
| Fat sat. mode               | Strong   |

## **Contrast - Dynamic**

| Averaging mode  | Long term |
|-----------------|-----------|
| Reconstruction  | Magnitude |
| Measurements    | 1         |
| Delay in TR     | 0 ms      |
| Multiple series | Off       |

## **Resolution - Common**

| Accel mode            | Slice eccel |
|-----------------------|-------------|
| Resolution - iPAT     |             |
| Interpolation         | Off         |
| Phase partial Fourier | 7/8         |
| Phase resolution      | 100 %       |
| Base resolution       | 128         |
| Slice thickness       | 2.0 mm      |
| FoV phase             | 100.0 %     |
| FoV read              | 256 mm      |

| Accel. mode      | Slice accel. |
|------------------|--------------|
| Accel. factor PE | 2            |
| Ref. lines PE    | 40           |

## **Resolution - iPAT**

| Accel. factor slice | 2            |
|---------------------|--------------|
| Reference scan mode | EPI/separate |

#### **Resolution - Filter Image**

| Distortion Corr.    | Off |  |
|---------------------|-----|--|
| Prescan Normalize   | On  |  |
| Dynamic Field Corr. | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter C        | Dn  |
|---------------------|-----|
| Elliptical filter C | Off |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 58                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P39.7 H47.8 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | R >> L              |
| FoV read         | 256 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 2.0 mm              |
| TR               | 3500 ms             |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 1                   |

## Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
| Position            | R1.2 P39.7 H47.8 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | R >> L              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P39.7 H47.8    |
| R                   | 1.2 mm              |
| Р                   | 39.7 mm             |
| н                   | 47.8 mm             |
| Initial Rotation    | 90.00 deg           |
| Initial Orientation | Transversal         |

## **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Special sat.  | None     |

## **Geometry - Navigator**

## **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| •                |           |
|------------------|-----------|
| Positioning mode | FIX       |
| Table position   | Н         |
| Table position   | 0 mm      |
| MSMA             | S - C - T |
| Sagittal         | R >> L    |
|                  |           |

# SIEMENS MAGNETOM Prisma

| I        |                          |                     |
|----------|--------------------------|---------------------|
| <u>2</u> | System - Miscellaneous   |                     |
| 3        | Coronal                  | A >> P              |
| 1        | Transversal              | F >> H              |
| 5        | Coil Combine Mode        | Adaptive Combine    |
| 5        | Matrix Optimization      | Performance         |
| ,        | AutoAlign                |                     |
|          | Coil Select Mode         | On - AutoCoilSelect |
|          | System - Adjustments     |                     |
| )        | B0 Shim mode             | Standard            |
| 1        | B1 Shim mode             | TrueForm            |
| 2        | Adjust with body coil    | Off                 |
|          | Confirm freq. adjustment | Off                 |
| Ļ        | Assume Dominant Fat      | Off                 |
| 5        | Assume Silicone          | Off                 |
|          | Adjustment Tolerance     | Auto                |
| ,        | Adjustment Tolerance     | Adio                |
| 3        | System - Adjust Volume   |                     |
| )        | Position                 | R1.2 P39.7 H47.8 mm |
| )        | Orientation              | Transversal         |
|          | Rotation                 | 90.00 deg           |
| 2        | R >> L                   | 256 mm              |
| -<br>3   | A >> P                   | 256 mm              |
| ,<br>    | F >> H                   | 116 mm              |
|          | Reset                    | Off                 |
| 5        |                          |                     |
| 5        | System - pTx Volumes     |                     |
| 7        | B1 Shim mode             | TrueForm            |
| 3        | Excitation               | Standard            |
| )        |                          |                     |
| )        | System - Tx/Rx           |                     |
|          | Frequency 1H             | 123.244318 MHz      |
|          | Correction factor        | 1                   |
|          | Gain                     | High                |
| ŀ        | Img. Scale Cor.          | 1.000               |
| 5        | Reset                    | Off                 |
|          | ? Ref. amplitude 1H      | 0.000 V             |
| ,        | Physio - Signal1         |                     |
|          | 1 st Signal/Mode         | None                |
| )        | TR                       | 3500 ms             |
| )        | Concatenations           | 1                   |
|          | Concatenations           | 1                   |
|          | Physio - PACE            |                     |
| ,        | Resp. control            | Off                 |
|          | Concatenations           | 1                   |
| 5        |                          |                     |
| 7        | Diff - Neuro             |                     |
| 3        | Diffusion mode           | MDDW                |
| )        | Diff. directions         | 6                   |
|          | Diffusion Scheme         | Monopolar           |
| )        | Diff. weightings         | 1                   |
|          | b-value                  | 0 s/mm²             |
|          | b-value                  | 3                   |
|          | Diff. weighted images    | On                  |
| ł        | Trace weighted images    | Off                 |
|          | ADC maps                 | Off                 |
| ,<br>,   | FA maps                  | Off                 |
|          | Mosaic                   | Off                 |
| 7        | Tensor                   | Off                 |
| 8        | Naina laval              | 10                  |

# Diff - Body

Noise level

Diffusion mode

# Diff - Body

| Diff. directions      | 6         |
|-----------------------|-----------|
| Diffusion Scheme      | Monopolar |
| Diff. weightings      | 1         |
| b-value               | 0 s/mm²   |
| b-value               | 3         |
| Diff. weighted images | On        |
| Trace weighted images | Off       |
| ADC maps              | Off       |
| Exponential ADC Maps  | Off       |
| FA maps               | Off       |
| Invert Gray Scale     | Off       |
| Calculated Image      | Off       |
| b-Value >=            | 0 s/mm²   |
| Noise level           | 40        |

## **Diff - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

## Sequence - Part 1

| Introduction      | Off         |
|-------------------|-------------|
| Optimization      | None        |
| Multi-slice mode  | Interleaved |
| Free echo spacing | Off         |
| Echo spacing      | 0.78 ms     |
| Bandwidth         | 1446 Hz/Px  |

## Sequence - Part 2

| RF pulse type Low SAR<br>Gradient mode Normal<br>Excitation Standard | EPI factor    | 128      |
|----------------------------------------------------------------------|---------------|----------|
|                                                                      |               | Low SAR  |
| Excitation Standard                                                  | Gradient mode | Normal   |
| Citation                                                             | Excitation    | Standard |

## Sequence - pTX Pulses



MDDW

#### SIEMENS MAGNETOM Prisma

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\DTI\_Neonate\_v6b\_pt1 TA: 4:29 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 4 Rel. SNR: 1.00 : epse

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

## Routine

| Slice group        | 1                                |
|--------------------|----------------------------------|
| Slices             | 58                               |
| Dist. factor       | 0 %                              |
| Position           | R1.2 P39.7 H47.8 mm              |
| Orientation        | Transversal                      |
| Phase enc. dir.    | L >> R                           |
| AutoAlign          |                                  |
| Phase oversampling | 0 %                              |
| FoV read           | 256 mm                           |
| FoV phase          | 100.0 %                          |
| Slice thickness    | 2.0 mm                           |
| TR                 | 3500 ms                          |
| TE                 | 78.0 ms                          |
| Averages           | 1                                |
| Concatenations     | 1                                |
| Filter             | Raw filter, Prescan<br>Normalize |
| Coil elements      | PeH;PeN                          |

## **Contrast - Common**

| TR                | 3500 ms  |
|-------------------|----------|
| TE<br>MTC         | 78.0 ms  |
| MTC               | Off      |
| Magn. preparation | None     |
| Fat suppr.        | Fat sat. |
| Fat sat. mode     | Strong   |

## **Contrast - Dynamic**

| -               |           |
|-----------------|-----------|
| Averages        | 1         |
| Averaging mode  | Long term |
| Reconstruction  | Magnitude |
| Measurements    | 1         |
| Delay in TR     | 0 ms      |
| Multiple series | Off       |
|                 |           |

## **Resolution - Common**

| FoV read<br>FoV phase | 256 mm<br>100.0 % |
|-----------------------|-------------------|
| Slice thickness       | 2.0 mm            |
| Base resolution       | 128               |
| Phase resolution      | 100 %             |
| Phase partial Fourier | 7/8               |
| Interpolation         | Off               |

# **Resolution - iPAT**

| Accel. factor PE    | 2            |
|---------------------|--------------|
| Ref. lines PE       | 40           |
| Accel. factor slice | 2            |
| Reference scan mode | EPI/separate |

## **Resolution - Filter Image**

| Distortion Corr.    | Off |  |
|---------------------|-----|--|
| Prescan Normalize   | On  |  |
| Dynamic Field Corr. | Off |  |

## **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

## **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 58                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P39.7 H47.8 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | L >> R              |
| FoV read         | 256 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 2.0 mm              |
| TR               | 3500 ms             |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 1                   |
|                  |                     |

# Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
| Position            | R1.2 P39.7 H47.8 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | L >> R              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P39.7 H47.8    |
| R                   | 1.2 mm              |
| Р                   | 39.7 mm             |
| н                   | 47.8 mm             |
| Initial Rotation    | -90.00 deg          |
| Initial Orientation | Transversal         |

## **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Special sat.  | None     |

## Geometry - Navigator

## **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

## System - Miscellaneous

| Positioning mode | FIX  |  |
|------------------|------|--|
| Table position   | Н    |  |
| Table position   | 0 mm |  |

# For peer review only - http://bmjopen1.5mj.com/site/about/guidelines.xhtml

# SIEMENS MAGNETOM Prisma

| 1       |                          |                                         |
|---------|--------------------------|-----------------------------------------|
| 2       | System - Miscellaneous   |                                         |
| 3       | MSMA                     | S - C - T                               |
| 4       | Sagittal                 | R >> L                                  |
| 5       | Coronal                  | A >> P                                  |
| 6       | Transversal              | F >> H                                  |
| 7       | Coil Combine Mode        | Adaptive Combine                        |
| 8       | Matrix Optimization      | Performance                             |
| 9       | AutoAlign                |                                         |
| 9<br>10 | Coil Select Mode         | On - AutoCoilSelect                     |
| 10      | Sustam Adjustments       |                                         |
| 12      | System - Adjustments     |                                         |
| 12      | B0 Shim mode             | Standard                                |
| 13      | B1 Shim mode             | TrueForm                                |
| • •     | Adjust with body coil    | Off                                     |
| 15      | Confirm freq. adjustment | Off                                     |
| 16      | Assume Dominant Fat      | Off                                     |
| 17      | Assume Silicone          | Off                                     |
| 18      | Adjustment Tolerance     | Auto                                    |
| 19      | System Adjust Volume     |                                         |
| 20      | System - Adjust Volume   |                                         |
| 21      | Position                 | R1.2 P39.7 H47.8 mm                     |
| 22      | Orientation              | Transversal                             |
| 23      | Rotation                 | -90.00 deg                              |
| 24      | R >> L                   | 256 mm                                  |
| 25      | A >> P                   | 256 mm                                  |
| 26      | F >> H                   | 116 mm                                  |
| 27      | Reset                    | Off                                     |
| 27      | System - nTx Volumos     |                                         |
| 20      | System - pTx Volumes     |                                         |
|         | B1 Shim mode             | TrueForm                                |
| 30      | Excitation               | Standard                                |
| 31      | Suctom Tx/Px             |                                         |
| 32      | System - Tx/Rx           |                                         |
| 33      | Frequency 1H             | 123.244318 MHz                          |
| 34      | Correction factor        | 1                                       |
| 35      | Gain                     | High                                    |
| 36      | Img. Scale Cor.          | 1.000                                   |
| 37      | Reset                    | Off                                     |
| 38      | ? Ref. amplitude 1H      | 0.000 V                                 |
| 39      | Physio - Signal1         |                                         |
| 40      |                          |                                         |
| 41      | 1st Signal/Mode          | None                                    |
| 42      | TR                       | 3500 ms                                 |
| 43      | Concatenations           | 1                                       |
| 44      | Physio - PACE            |                                         |
| 45      | -                        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
| 46      | Resp. control            | Off                                     |
| 47      | Concatenations           | 1                                       |
| 48      | Diff - Neuro             |                                         |
| 49      |                          |                                         |
|         | Diffusion mode           | Free                                    |
| 50      | Diff. directions         | 71                                      |
| 51      | Diffusion Scheme         | Monopolar                               |
| 52      | Diff. weightings         | 2<br>0. a/mm <sup>2</sup>               |
| 53      | b-value 1                | 0 s/mm <sup>2</sup>                     |
| 54      | b-value 2                | 750 s/mm <sup>2</sup>                   |
| 55      | b-value 1                | 1                                       |
| 56      | b-value 2                | 1<br>On                                 |
| 57      | Diff. weighted images    | On<br>Off                               |
| 58      | Trace weighted images    | Off<br>Off                              |
| 59      | ADC maps<br>FA maps      | Off                                     |
| 60      | FA maps<br>Mosaic        | Off<br>On                               |
|         | Tanaar                   | On<br>Off                               |

Tensor

## Diff - Neuro

| Diff - Neuro          |                       |  |
|-----------------------|-----------------------|--|
| Noise level           | 40                    |  |
| Diff - Body           |                       |  |
| Diffusion mode        | Free                  |  |
| Diff. directions      | 71                    |  |
| Diffusion Scheme      | Monopolar             |  |
| Diff. weightings      | 2                     |  |
| b-value 1             | 0 s/mm²               |  |
| b-value 2             | 750 s/mm <sup>2</sup> |  |
| b-value 1             | 1                     |  |
| b-value 2             | 1                     |  |
| Diff. weighted images | On                    |  |
| Trace weighted images | Off                   |  |
| ADC maps              | Off                   |  |
| Exponential ADC Maps  | Off                   |  |
| FA maps               | Off                   |  |
| Invert Gray Scale     | Off                   |  |
| Calculated Image      | Off                   |  |
| b-Value >=            | 0 s/mm <sup>2</sup>   |  |
| Noise level           | 40                    |  |

## **Diff - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

## Sequence - Part 1

| Introduction      | Off         |
|-------------------|-------------|
| Optimization      | None        |
| Multi-slice mode  | Interleaved |
| Free echo spacing | Off         |
| Echo spacing      | 0.78 ms     |
| Bandwidth         | 1446 Hz/Px  |

## Sequence - Part 2

| EPI factor    | 128      |
|---------------|----------|
| RF pulse type | Low SAR  |
| Gradient mode | Normal   |
| Excitation    | Standard |

## Sequence - pTX Pulses



Off

#### SIEMENS MAGNETOM Prisma

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\DTI\_Neonate\_v6b\_pt2 TA: 5:01 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 4 Rel. SNR: 1.00 : epse

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| · · · · · · · · · · · · · · · · · · · |                                  |
|---------------------------------------|----------------------------------|
| Slice group                           | 1                                |
| Slices                                | 58                               |
| Dist. factor                          | 0 %                              |
| Position                              | R1.2 P39.7 H47.8 mm              |
| Orientation                           | Transversal                      |
| Phase enc. dir.                       | L >> R                           |
| AutoAlign                             |                                  |
| Phase oversampling                    | 0 %                              |
| FoV read                              | 256 mm                           |
| FoV phase                             | 100.0 %                          |
| Slice thickness                       | 2.0 mm                           |
| TR                                    | 3500 ms                          |
| TE                                    | 78.0 ms                          |
| Averages                              | 1                                |
| Concatenations                        | 1                                |
| Filter                                | Raw filter, Prescan<br>Normalize |
| Coil elements                         | PeH;PeN                          |

#### **Contrast - Common**

| TR                          | 3500 ms  |  |
|-----------------------------|----------|--|
| TE<br>MTC                   | 78.0 ms  |  |
| MTC                         | Off      |  |
| Magn. preparation           | None     |  |
| Fat suppr.<br>Fat sat. mode | Fat sat. |  |
| Fat sat. mode               | Strong   |  |

#### **Contrast - Dynamic**

| _ | -               |           |
|---|-----------------|-----------|
| ſ | Averages        | 1         |
|   | Averaging mode  | Long term |
|   | Reconstruction  | Magnitude |
|   | Measurements    | 1         |
|   | Delay in TR     | 0 ms      |
|   | Multiple series | Off       |

#### **Resolution - Common**

| FoV read              | 256 mm  |
|-----------------------|---------|
| FoV phase             | 100.0 % |
| Slice thickness       | 2.0 mm  |
| Base resolution       | 128     |
| Phase resolution      | 100 %   |
| Phase partial Fourier | 7/8     |
| Interpolation         | Off     |

#### **Resolution - iPAT**

| Accel. factor PE    | 2            |
|---------------------|--------------|
| Ref. lines PE       | 40           |
| Accel. factor slice | 2            |
| Reference scan mode | EPI/separate |

#### **Resolution - Filter Image**

| Distortion Corr.    | Off |
|---------------------|-----|
| Prescan Normalize   | On  |
| Dynamic Field Corr. | Off |

#### **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 58                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P39.7 H47.8 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | L >> R              |
| FoV read         | 256 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 2.0 mm              |
| TR               | 3500 ms             |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 1                   |
|                  |                     |

## Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
|                     | 1                   |
| Position            | R1.2 P39.7 H47.8 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | L >> R              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P39.7 H47.8    |
| R                   | 1.2 mm              |
| Р                   | 39.7 mm             |
| н                   | 47.8 mm             |
| Initial Rotation    | -90.00 deg          |
| Initial Orientation | Transversal         |

#### **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Special sat.  | None     |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| Positioning mode | FIX  |
|------------------|------|
| Table position   | Н    |
| Table position   | 0 mm |

# SIEMENS MAGNETOM Prisma

| 1  |                          |                          |
|----|--------------------------|--------------------------|
| 2  | System - Miscellaneous   |                          |
| 3  | MSMA                     | S - C - T                |
| 4  | Sagittal                 | R >> L                   |
| 5  | Coronal                  | A >> P                   |
| 6  | Transversal              | F >> H                   |
| 7  | Coil Combine Mode        | Adaptive Combine         |
| 8  | Matrix Optimization      | Performance              |
| 9  | AutoAlign                |                          |
| 10 | Coil Select Mode         | On - AutoCoilSelect      |
| 11 | System - Adjustments     |                          |
| 12 | System - Adjustments     |                          |
| 13 | B0 Shim mode             | Standard                 |
| 14 | B1 Shim mode             | TrueForm                 |
| 15 | Adjust with body coil    | Off                      |
|    | Confirm freq. adjustment | Off                      |
| 16 | Assume Dominant Fat      | Off                      |
| 17 | Assume Silicone          | Off                      |
| 18 | Adjustment Tolerance     | Auto                     |
| 19 | System - Adjust Volume   |                          |
| 20 |                          |                          |
| 21 | Position                 | R1.2 P39.7 H47.8 mm      |
| 22 | Orientation              | Transversal              |
| 23 | Rotation                 | -90.00 deg               |
| 24 | R >> L                   | 256 mm                   |
| 25 | A >> P                   | 256 mm                   |
| 26 | F>>H                     | 116 mm                   |
| 27 | Reset                    | Off                      |
| 28 | System - pTx Volumes     |                          |
| 29 |                          |                          |
| 30 | B1 Shim mode             | TrueForm                 |
| 31 | Excitation               | Standard                 |
| 32 | System - Tx/Rx           |                          |
|    |                          |                          |
| 33 | Frequency 1H             | 123.244318 MHz           |
| 34 | Correction factor        | 1                        |
| 35 | Gain                     | High                     |
| 36 | Img. Scale Cor.<br>Reset | 1.000<br>Off             |
| 37 |                          | 0.000 V                  |
| 38 | ? Ref. amplitude 1H      | 0.000 V                  |
| 39 | Physio - Signal1         |                          |
| 40 | 1st Signal/Mode          | None                     |
| 41 | TR                       | 3500 ms                  |
| 42 | Concatenations           | 1                        |
| 43 | Concatenations           | 1                        |
| 44 | Physio - PACE            |                          |
| 45 | Resp. control            | Off                      |
| 46 | Concatenations           | 1                        |
| 47 | Concatchations           | 1                        |
| 48 | Diff - Neuro             |                          |
| 49 | Diffusion mode           | Free                     |
| 50 | Diff. directions         | 80                       |
| 50 | Diffusion Scheme         | Monopolar                |
|    | Diff. weightings         | 2                        |
| 52 | b-value 1                | 2<br>0 s/mm <sup>2</sup> |
| 53 | b-value 2                | 2500 s/mm <sup>2</sup>   |
| 54 | b-value 2                | 1                        |
| 55 | b-value 2                | 1                        |
| 56 | Diff. weighted images    | On                       |
| 57 | Trace weighted images    | Off                      |
| 58 | ADC maps                 | Off                      |
| 59 | FA maps                  | Off                      |
| 60 | Mosaic                   | On                       |
|    | Tensor                   | Off                      |

## Diff - Neuro

| Diff - Neuro          |                        |  |
|-----------------------|------------------------|--|
| Noise level           | 40                     |  |
| Diff - Body           |                        |  |
| Diffusion mode        | Free                   |  |
| Diff. directions      | 80                     |  |
| Diffusion Scheme      | Monopolar              |  |
| Diff. weightings      | 2                      |  |
| b-value 1             | 0 s/mm <sup>2</sup>    |  |
| b-value 2             | 2500 s/mm <sup>2</sup> |  |
| b-value 1             | 1                      |  |
| b-value 2             | 1                      |  |
| Diff. weighted images | On                     |  |
| Trace weighted images | Off                    |  |
| ADC maps              | Off                    |  |
| Exponential ADC Maps  | Off                    |  |
| FA maps               | Off                    |  |
| Invert Gray Scale     | Off                    |  |
| Calculated Image      | Off                    |  |
| _                     |                        |  |

## **Diff - Composing**

b-Value >=

Noise level

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

0 s/mm<sup>2</sup>

40

## Sequence - Part 1

| Introduction      | Off         |
|-------------------|-------------|
| Optimization      | None        |
| Multi-slice mode  | Interleaved |
| Free echo spacing | Off         |
| Echo spacing      | 0.78 ms     |
| Bandwidth         | 1446 Hz/Px  |

## Sequence - Part 2

| EPI factor    | 128      |
|---------------|----------|
| RF pulse type | Low SAR  |
| Gradient mode | Normal   |
| Excitation    | Standard |

## Sequence - pTX Pulses



Off

Tensor

#### SIEMENS MAGNETOM Prisma

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\MPRAGE-v4

TA: 3:09 PM: FIX Voxel size: 1.0×1.0×1.0 mmPAT: 2 Rel. SNR: 1.00 : tfl

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | On                 |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              | 1                   |
| Dist. factor       | 50 %                |
| Position           | R1.1 P38.9 F20.7 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 20 %                |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 160                 |
| FoV read           | 160 mm              |
| FoV phase          | 100.0 %             |
| Slice thickness    | 1.00 mm             |
| TR                 | 1970.0 ms           |
| TE                 | 4.69 ms             |
| Averages           | 1                   |
| Concatenations     | 1                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN;SP1         |

#### **Contrast - Common**

| TR      |             | 1970.0 ms   |
|---------|-------------|-------------|
| TE      |             | 4.69 ms     |
| Magn.   | preparation | Non-sel. IR |
| ΤI      |             | 1100 ms     |
| Flip ar | ngle        | 9 deg       |
| Fat su  | ppr.        | None        |
| Water   | suppr.      | None        |

#### **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Long term        |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |
|                 |                  |

#### **Resolution - Common**

| FoV read              | 160 mm  |
|-----------------------|---------|
| FoV phase             | 100.0 % |
| Slice thickness       | 1.00 mm |
| Base resolution       | 160     |
| Phase resolution      | 100 %   |
| Slice resolution      | 100 %   |
| Phase partial Fourier | 7/8     |
| Slice partial Fourier | Off     |
| Interpolation         | Off     |

#### **Resolution - iPAT**

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 2          |
| Ref. lines PE       | 24         |
| Accel. factor 3D    | 1          |
| Reference scan mode | Integrated |

## **Resolution - Filter Image**

| Image Filter      | Off |  |
|-------------------|-----|--|
| Distortion Corr.  | Off |  |
| Prescan Normalize | On  |  |
| Unfiltered images | Off |  |
| Normalize         | Off |  |
| B1 filter         | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| _                  |                     |
|--------------------|---------------------|
| Slab group         | 1                   |
| Slabs              | 1                   |
| Dist. factor       | 50 %                |
| Position           | R1.1 P38.9 F20.7 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 160                 |
| FoV read           | 160 mm              |
| FoV phase          | 100.0 %             |
| Slice thickness    | 1.00 mm             |
| TR                 | 1970.0 ms           |
| Multi-slice mode   | Single shot         |
| Series             | Interleaved         |
| Concatenations     | 1                   |
|                    |                     |

#### **Geometry - AutoAlign**

| Slab group          | 1                   |
|---------------------|---------------------|
| Position            | R1.1 P38.9 F20.7 mm |
| Orientation         | Sagittal            |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R1.1 P38.9 F20.7    |
| R                   | 1.1 mm              |
| Р                   | 38.9 mm             |
| F                   | 20.7 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| •                |      |
|------------------|------|
| Positioning mode | FIX  |
| Table position   | Н    |
| Table position   | 0 mm |

# BMJ Open

## SIEMENS MAGNETOM Prisma

| 1        |                                         |                      |
|----------|-----------------------------------------|----------------------|
| 2        | System - Miscellaneous                  | Inl                  |
| 3        | MSMA                                    | S - C - T Sa         |
| 4        | Sagittal                                | R >> L               |
| 5        | Coronal                                 | A >> P Inl           |
| 6        | Transversal                             | F>>H                 |
| 7        | Coil Combine Mode                       | Adaptive Combine MI  |
| 8        | Save uncombined                         | Off MI               |
| 9        | Matrix Optimization<br>Coil Focus       |                      |
| 10       | AutoAlign                               | Flat Sa              |
| 11       | Coil Select Mode                        | On - AutoCoilSelect  |
| 12       |                                         | Inl                  |
| 13       | System - Adjustments                    | Di                   |
| 14       | B0 Shim mode                            | Standard             |
| 15       | B1 Shim mode                            | TrueForm In          |
| 16       | Adjust with body coil                   | Off Sa               |
| 17       | Confirm freq. adjustment                | Off Ma               |
| 18       | Assume Dominant Fat                     | Off Fli              |
| 19       | Assume Silicone<br>Adjustment Tolerance | Off Me               |
| 20       | Adjustment Tolerance                    |                      |
| 21       | System - Adjust Volume                  | TE                   |
| 22<br>23 | Position                                | R1.1 P38.9 F20.7 mm  |
| 23<br>24 | Orientation                             | Sagittal             |
| 24<br>25 | Rotation                                | 0.00 deg             |
| 25<br>26 | A >> P                                  | 160 mm               |
| 20<br>27 | F >> H                                  | 160 mm Re            |
| 27<br>28 | R >> L                                  | 160 mm As            |
| 28<br>29 | Reset                                   | Off Flo              |
| 30       | System - pTx Volumes                    | Mu                   |
| 30       | B1 Shim mode                            | TrueForm             |
| 32       | Excitation                              | TrueForm<br>Non-sel. |
| 33       | Exolution                               | Se                   |
| 34       | System - Tx/Rx                          | RE                   |
| 35       | Frequency 1H                            | 123.244318 MHz Gr    |
| 36       | Correction factor                       | 1 Ex                 |
| 37       | Gain                                    | Low                  |
| 38       | Img. Scale Cor.                         | 4.000 Inc            |
| 39       | Reset                                   | Off Tu               |
| 40       | ? Ref. amplitude 1H                     | 0.000 V              |
| 41       | Physio - Signal1                        | Se                   |
| 42       | 1st Signal/Mode                         | None                 |
| 43       | TR                                      | 1970.0 ms            |
| 44       | Concatenations                          | 1                    |
| 45       |                                         |                      |
| 46       | Physio - Cardiac                        |                      |
| 47       | Magn. preparation                       | Non-sel. IR          |
| 48       |                                         | 1100 ms              |
| 49       | Fat suppr.                              | None                 |
| 50       | Dark blood                              | Off                  |
| 51       | FoV read                                | 160 mm               |
| 52       | FoV phase<br>Phase resolution           | 100.0 %<br>100 %     |
| 53       |                                         | 100 /0               |
| 54       | Physio - PACE                           |                      |
| 55       | Resp. control                           | Off                  |
| 56       | Concatenations                          | 1                    |
| 57       | , <sup>_</sup>                          |                      |
| 58<br>50 | Inline - Common                         |                      |
| 59<br>60 | Subtract                                | Off                  |
| 60       | Measurements                            | 1                    |
|          | StdDev                                  | Off                  |
|          |                                         |                      |

## line - Common

|  | Save original images | On |
|--|----------------------|----|
|--|----------------------|----|

#### line - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

## line - Composing

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

## line - Maplt

| Save original images | On        |
|----------------------|-----------|
| MapIt                | None      |
| Flip angle           | 9 deg     |
| Measurements         | 1         |
| TR                   | 1970.0 ms |
| TE                   | 4.69 ms   |

## equence - Part 1

| Introduction        | On          |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | Off         |
| Reordering          | Linear      |
| Asymmetric echo     | Off         |
| Flow comp.          | No          |
| Multi-slice mode    | Single shot |
| Echo spacing        | 10.8 ms     |
| Bandwidth           | 140 Hz/Px   |

## equence - Part 2

| RF pulse type           | Normal   |
|-------------------------|----------|
| Gradient mode           | Whisper  |
| Excitation              | Non-sel. |
| RF spoiling             | On       |
| Incr. Gradient spoiling | Off      |
| Turbo factor            | 160      |

Off

## equence - Assistant

lode



#### SIEMENS MAGNETOM Prisma

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\SWI\_v2

TA: 2:23 PM: FIX Voxel size: 0.8×0.8×3.0 mmPAT: 3 Rel. SNR: 1.00 : qswi\_r

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Roatino            |                   |
|--------------------|-------------------|
| Slab group         | 1                 |
| Slabs              | 1                 |
| Dist. factor       | 20 %              |
| Position           | L0.0 A2.3 H2.2 mm |
| Orientation        | Transversal       |
| Phase enc. dir.    | R >> L            |
| AutoAlign          |                   |
| Phase oversampling | 0 %               |
| Slice oversampling | 20.0 %            |
| Slices per slab    | 40                |
| FoV read           | 240 mm            |
| FoV phase          | 84.4 %            |
| Slice thickness    | 3.00 mm           |
| TR                 | 28.0 ms           |
| TE                 | 20.00 ms          |
| Averages           | 1                 |
| Concatenations     | 1                 |
| Filter             | Prescan Normalize |
| Coil elements      | HEA;HEP           |

#### **Contrast - Common**

| TR                         | 28.0 ms  |
|----------------------------|----------|
| TE                         | 20.00 ms |
| MTC                        | Off      |
| Magn. preparation          | None     |
| Flip angle                 | 9 deg    |
| Fat suppr.                 | None     |
| Fat suppr.<br>Water suppr. | None     |
| SWI                        | On       |

#### **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magn./Phase      |
| Measurements    | 1                |
| Multiple series | Each measurement |

#### **Resolution - Common**

| FoV read              | 240 mm  |
|-----------------------|---------|
| FoV phase             | 84.4 %  |
| Slice thickness       | 3.00 mm |
| Base resolution       | 320     |
| Phase resolution      | 100 %   |
| Slice resolution      | 100 %   |
| Phase partial Fourier | Off     |
| Slice partial Fourier | Off     |
|                       |         |

## **Resolution - Common**

| Interpolation |     |  |
|---------------|-----|--|
| Interpolation | Off |  |

## Resolution - iPAT

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 3          |
| Ref. lines PE       | 24         |
| Accel. factor 3D    | 1          |
| Reference scan mode | Integrated |

#### **Resolution - Filter Image**

| Image Filter      | Off |  |
|-------------------|-----|--|
| Distortion Corr.  | Off |  |
| Prescan Normalize | On  |  |
| Unfiltered images | Off |  |
| Normalize         | Off |  |
| B1 filter         | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### Geometry - Common

| Slab group         | 1                 |
|--------------------|-------------------|
| Slabs              | 1                 |
| Dist. factor       | 20 %              |
| Position           | L0.0 A2.3 H2.2 mm |
| Orientation        | Transversal       |
| Phase enc. dir.    | R >> L            |
| Slice oversampling | 20.0 %            |
| Slices per slab    | 40                |
| FoV read           | 240 mm            |
| FoV phase          | 84.4 %            |
| Slice thickness    | 3.00 mm           |
| TR                 | 28.0 ms           |
| Multi-slice mode   | Interleaved       |
| Series             | Interleaved       |
| Concatenations     | 1                 |

## Geometry - AutoAlign

| Slab group          | 1                 |
|---------------------|-------------------|
| Position            | L0.0 A2.3 H2.2 mm |
| Orientation         | Transversal       |
| Phase enc. dir.     | R >> L            |
| AutoAlign           |                   |
| Initial Position    | L0.0 A2.3 H2.2    |
| L                   | 0.0 mm            |
| A                   | 2.3 mm            |
| н                   | 2.2 mm            |
| Initial Rotation    | 89.61 deg         |
| Initial Orientation | Transversal       |

## **Geometry - Saturation**

| Saturation mode | Standard |
|-----------------|----------|
| Fat suppr.      | None     |
| Water suppr.    | None     |
| Special sat.    | None     |

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off |
|-------------------|-----|
| Table position    | Н   |

## **BMJ** Open

# SIEMENS MAGNETOM Prisma

| <b>Geometry - Tim Planning S</b>     | Suite               |
|--------------------------------------|---------------------|
| Table position                       | 0 mm                |
| Inline Composing                     | Off                 |
|                                      |                     |
| System - Miscellaneous               |                     |
| Positioning mode                     | FIX                 |
| Table position                       | Н                   |
| Table position                       | 0 mm                |
| MSMA                                 | S - C - T           |
| Sagittal                             | R >> L              |
| Coronal                              | A >> P              |
| Transversal                          | F >> H              |
| Coil Combine Mode                    | Adaptive Combine    |
| Save uncombined                      | Off                 |
| Matrix Optimization                  | Off                 |
| AutoAlign                            |                     |
| Coil Select Mode                     | On - AutoCoilSelect |
|                                      |                     |
| System - Adjustments                 |                     |
| B0 Shim mode                         | Standard            |
| B1 Shim mode                         | TrueForm            |
| Adjust with body coil                | Off                 |
| Confirm freq. adjustment             | Off                 |
| Assume Dominant Fat                  | Off                 |
| Assume Silicone                      | Off                 |
| Adjustment Tolerance                 | Auto                |
|                                      |                     |
| System - Adjust Volume               |                     |
| Position                             | L0.0 A2.3 H2.2 mm   |
| Orientation                          | Transversal         |
| Rotation                             | 89.61 deg           |
| R >> L                               | 203 mm              |
| A >> P                               | 240 mm              |
| F >> H                               | 120 mm              |
| Reset                                | Off                 |
| Neset                                |                     |
| System - pTx Volumes                 |                     |
| B1 Shim mode                         | TrueForm            |
|                                      | Slab-sel.           |
| Excitation                           | Slab-sei.           |
| System - Tx/Rx                       |                     |
|                                      | 100 044048 MIL-     |
| Frequency 1H<br>Correction factor    | 123.244318 MHz<br>1 |
|                                      | -                   |
| Gain                                 | Low                 |
| Img. Scale Cor.                      | 1.000               |
| Reset                                | Off                 |
| ? Ref. amplitude 1H                  | 0.000 V             |
| Physic - Signal                      |                     |
| Physio - Signal1                     |                     |
| 1st Signal/Mode                      | None                |
| TR                                   | 28.0 ms             |
| Concatenations                       | 1                   |
| Segments                             | 1                   |
|                                      |                     |
| Physio - Cardiac                     |                     |
| Tagging                              | None                |
|                                      | None                |
| Magn. preparation                    |                     |
| Magn. preparation<br>Fat suppr.      | None                |
|                                      | None<br>Off         |
| Fat suppr.                           |                     |
| Fat suppr.<br>Dark blood<br>FoV read | Off                 |
| Fat suppr.<br>Dark blood             | Off<br>240 mm       |

## **Physio - PACE**

| ,              |     |
|----------------|-----|
| Resp. control  | Off |
| Concatenations | 1   |
|                |     |

## Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Liver registration   | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag              | Off |
|----------------------|-----|
| MIP-Cor              | Off |
| MIP-Tra              | Off |
| MIP-Time             | Off |
| Save original images | On  |

## Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

## **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

## Inline - Maplt

| Save original images | On       |
|----------------------|----------|
| MapIt                | None     |
| Flip angle           | 9 deg    |
| Measurements         | 1        |
| Contrasts            | 1        |
| TR                   | 28.0 ms  |
| TE                   | 20.00 ms |

## Sequence - Part 1

| Introduction        | On          |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | Off         |
| Phase stabilisation | Off         |
| Asymmetric echo     | Off         |
| Contrasts           | 1           |
| Flow comp.          | Yes         |
| Multi-slice mode    | Interleaved |
| Bandwidth           | 120 Hz/Px   |

#### Sequence - Part 2

| Segments                 | 1         |
|--------------------------|-----------|
| Acoustic noise reduction | Active    |
| RF pulse type            | Fast      |
| Gradient mode            | Whisper   |
| Excitation               | Slab-sel. |
| RF spoiling              | On        |

## Sequence - Assistant

| Mode          | Off  |
|---------------|------|
| Allowed delay | 30 s |

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\t2\_blade\_dark-fluid\_tra\_v3 TA: 3:22 PM: REF Voxel size: 0.9×0.9×3.0 mmPAT: 2 Rel. SNR: 1.00 : qtirB\_rr

## **Properties**

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | On                 |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

## Routine

| Routine            |                   |
|--------------------|-------------------|
| Slice group        | 1                 |
| Slices             | 40                |
| Dist. factor       | 0 %               |
| Position           | Isocenter         |
| Orientation        | Transversal       |
| Phase enc. dir.    | R >> L            |
| AutoAlign          |                   |
| Phase oversampling | 0.0 %             |
| FoV read           | 240 mm            |
| FoV phase          | 100.0 %           |
| Slice thickness    | 3.0 mm            |
| TR                 | 10000.0 ms        |
| TE                 | 130 ms            |
| Averages           | 1                 |
| Concatenations     | 2                 |
| Filter             | Prescan Normalize |
| Coil elements      | HEA;HEP           |

## **Contrast - Common**

| TR                       | 10000.0 ms    |
|--------------------------|---------------|
| TE                       | 130 ms        |
| TD                       | 0.0 ms        |
| MTC                      | Off           |
| Magn. preparation        | Slice-sel. IR |
| ТІ                       | 2606 ms       |
| Flip angle               | 130 deg       |
| Fat suppr.               | Fat sat.      |
| Fat sat. mode            | Strong        |
| Water suppr.             | None          |
| Restore magn.            | Off           |
| Freeze suppressed tissue | On            |

# **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

# **Resolution - Common**

| FoV read        | 240 mm  |
|-----------------|---------|
| FoV phase       | 100.0 % |
| Slice thickness | 3.0 mm  |
| Base resolution | 256     |
| BLADE coverage  | 100.0 % |
| Trajectory      | BLADE   |

# **Resolution - Common**

| Interpolation | Off |
|---------------|-----|
|               |     |

# **Resolution - iPAT**

| RAPPA     |
|-----------|
|           |
|           |
| itegrated |
| ľ         |

## **Resolution - Filter Image**

| Image Filter      | Off |  |
|-------------------|-----|--|
| Distortion Corr.  | Off |  |
| Prescan Normalize | On  |  |
| Unfiltered images | Off |  |
| Normalize         | Off |  |
| B1 filter         | Off |  |

## **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

## **Geometry - Common**

| Slice group      | 1           |
|------------------|-------------|
| Slices           | 40          |
| Dist. factor     | 0 %         |
| Position         | Isocenter   |
| Orientation      | Transversal |
| Phase enc. dir.  | R >> L      |
| FoV read         | 240 mm      |
| FoV phase        | 100.0 %     |
| Slice thickness  | 3.0 mm      |
| TR               | 10000.0 ms  |
| Multi-slice mode | Interleaved |
| Series           | Interleaved |
| Concatenations   | 2           |

## **Geometry - AutoAlign**

| Slice group         | 1           |
|---------------------|-------------|
| Position            | Isocenter   |
| Orientation         | Transversal |
| Phase enc. dir.     | R >> L      |
| AutoAlign           |             |
| Initial Position    | Isocenter   |
| L                   | 0.0 mm      |
| Р                   | 0.0 mm      |
| н                   | 0.0 mm      |
| Initial Rotation    | 90.00 deg   |
| Initial Orientation | Transversal |

## **Geometry - Saturation**

| Fat suppr.    | Fat sat.   |
|---------------|------------|
| Fat sat. mode | Strong     |
| Water suppr.  | None       |
| Restore magn. | Off        |
| Special sat.  | Parallel F |
| Gap           | 10 mm      |
| Thickness     | 70 mm      |

#### **Geometry - Navigator**

#### **BMJ** Open

#### SIEMENS MAGNETOM Prisma

| 1        |                                        | 4                   |
|----------|----------------------------------------|---------------------|
| 2        | Geometry - Tim Planning Sui            |                     |
| 3        | Set-n-Go Protocol                      | Off                 |
| 4        | Table position                         | Н                   |
| 5        | Table position                         | 0 mm                |
| 6        | Inline Composing                       | Off                 |
| 7        | System - Miscellaneous                 |                     |
| 8        | Positioning mode                       | REF                 |
| 9        | Table position                         | H                   |
| 10       | Table position                         | 0 mm                |
| 11       | MSMA                                   | S - C - T           |
| 12       | Sagittal                               | R >> L              |
| 13       | Coronal                                | A >> P              |
| 14       | Transversal                            | F >> H              |
| 15       | Coil Combine Mode                      | Adaptive Combine    |
| 16       | Save uncombined                        | Off                 |
| 17       | Matrix Optimization                    | Off                 |
| 18       | AutoAlign                              |                     |
| 19       | Coil Select Mode                       | On - AutoCoilSelect |
| 20       | System - Adjustments                   |                     |
| 21       | System - Adjustments                   |                     |
| 22       | B0 Shim mode                           | Standard            |
| 23       | B1 Shim mode                           | TrueForm            |
| 24       | Adjust with body coil                  | Off<br>Off          |
| 25       | Confirm freq. adjustment               | Off<br>Off          |
| 26       | Assume Dominant Fat<br>Assume Silicone | Off<br>Off          |
| 27       | Adjustment Tolerance                   | Auto                |
| 28       |                                        | 71010               |
| 29       | System - Adjust Volume                 |                     |
| 30       | Position                               | Isocenter           |
| 31       | Orientation                            | Transversal         |
| 32       | Rotation                               | 90.00 deg           |
| 33       | R >> L                                 | 240 mm              |
| 34       | A >> P                                 | 240 mm              |
| 35       | F >> H                                 | 120 mm              |
| 36       | Reset                                  | Off                 |
| 37       |                                        |                     |
| 38       | System - pTx Volumes                   |                     |
| 39       | B1 Shim mode                           | TrueForm            |
| 40       | System - Tx/Rx                         |                     |
| 41       | •                                      |                     |
| 42       | Frequency 1H                           | 123.244318 MHz      |
| 43       | Correction factor                      | 1<br>1 (internet)   |
| 44       | Gain<br>Img. Scale Cor.                | High<br>1.000       |
| 45       | Reset                                  | Off                 |
| 46       | ? Ref. amplitude 1H                    | 0.000 V             |
| 47       |                                        | 0.000 V             |
| 48       | Physio - Signal1                       |                     |
| 49       | 1st Signal/Mode                        | None                |
| 50       | TR                                     | 10000.0 ms          |
| 51       | Concatenations                         | 2                   |
| 52       |                                        |                     |
| 53       | Physio - Cardiac                       |                     |
| 54       | Magn. preparation                      | Slice-sel. IR       |
| 55       | ТІ                                     | 2606 ms             |
| 56       | Fat suppr.                             | Fat sat.            |
| 50<br>57 | Dark blood                             | Off                 |
| 58       | FoV read                               | 240 mm              |
| 58<br>59 | FoV phase                              | 100.0 %             |
| 60       | BLADE coverage<br>Trajectory           | 100.0 %<br>BLADE    |
|          | Пајескогу                              |                     |
|          |                                        |                     |

## **Physio - PACE** D,

|                | Resp. control | Off |
|----------------|---------------|-----|
| Concatenations |               | 2   |
|                |               |     |

## Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Save original images | On  |

## Inline - MIP

| MIP-Sag<br>MIP-Cor   | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

# Inline - Composing

|                  | -   |
|------------------|-----|
| Inline Composing | Off |
| Distortion Corr. | Off |
|                  |     |

## Sequence - Part 1

| Introduction        | On          |
|---------------------|-------------|
| Dimension           | 2D          |
| Compensate T2 decay | Off         |
| Contrasts           | 1           |
| Flow comp.          | Read        |
| Multi-slice mode    | Interleaved |
| Free echo spacing   | Off         |
| Echo spacing        | 8.64 ms     |
| Bandwidth           | 362 Hz/Px   |

## Sequence - Part 2

| -                        |              |
|--------------------------|--------------|
| Define                   | Turbo factor |
| Echo trains per slice    | 9            |
| Phase correction         | Automatic    |
| Acoustic noise reduction | Active       |
| RF pulse type            | Low SAR      |
| Gradient mode            | Normal       |
| Hyperecho                | Off          |
| WARP                     | Off          |
| Motion correction        | On           |
| Red. EC sensitivity      | Off          |
| Turbo factor             | 28           |

# Sequence - Assistant

| -              |                |
|----------------|----------------|
| Mode           | Min flip angle |
| Min flip angle | 130 deg        |
| Allowed delay  | 30 s           |

| 1        |                                                                              |
|----------|------------------------------------------------------------------------------|
| 1<br>2   |                                                                              |
| 3        | # Authors represent m (Michael Thringlater) manually adited                  |
| 4        | <pre># Author: qspace2siemens.m (Michael Thrippleton), manually edited</pre> |
| 5        | into 2 parts                                                                 |
| 6        | <pre># Source file: ./vector_tables/neonate/04-shells-3-6-64-64.txt</pre>    |
| 7        | # b-value at UI: 750                                                         |
| 8        | <pre># non-zero b-values: 750</pre>                                          |
| 9        | <pre># number of non-zero shells: 1</pre>                                    |
| 10       | <pre># number of directions per non-zero shell: 64</pre>                     |
| 11       | <pre># number of b=0 volumes: 7</pre>                                        |
| 12       | <pre># total number of directions including b0: 71</pre>                     |
| 13       | [directions=71]                                                              |
| 14       | normalization = none                                                         |
| 15       | coordinatesystem = xyz                                                       |
| 16       | comment=bUI: 750, b: 750, Nb0: 7                                             |
| 17       | vector[0] = ( 0.000000, 0.000000, 0.000000 )                                 |
| 18       | vector[1] = ( -0.538981, 0.033731, -0.091439 )                               |
| 19       | vector[2] = ( -0.000440, 0.429608, 0.339760 )                                |
| 20       | vector[3] = ( -0.147395, -0.494556, -0.183546 )                              |
| 21       | vector[4] = ( 0.239035, -0.347062, 0.349872 )                                |
| 22       | vector[5] = ( -0.016278, -0.195328, 0.511451 )                               |
| 23<br>24 | vector[6] = ( -0.061295, -0.451376, 0.304143 )                               |
| 25       | vector[7] = ( 0.025626, -0.008709, -0.547053 )                               |
| 26       | vector[8] = ( -0.231133, -0.471788, 0.154896 )                               |
| 27       | vector[9] = ( -0.397538, -0.105537, -0.361699 )                              |
| 28       | vector[10] = ( 0.447399, -0.280126, -0.146162 )                              |
| 29       | vector[11] = ( 0.000000, 0.000000, 0.000000 )                                |
| 30       | vector[12] = ( -0.347344, -0.305418, 0.293379 )                              |
| 31       | vector[13] = ( 0.195148, -0.224679, 0.459823 )                               |
| 32       | vector[14] = ( 0.219722, 0.401006, -0.301523 )                               |
| 33       | vector[15] = ( 0.496386, 0.051099, 0.225809 )                                |
| 34       | vector[16] = ( -0.490022, 0.181524, -0.164098 )                              |
| 35       | vector[17] = ( 0.415886, 0.250359, 0.253691 )                                |
| 36       | vector[18] = ( 0.293795, 0.319409, 0.334159 )                                |
| 37       | vector[19] = ( 0.446457, -0.091032, 0.303955 )                               |
| 38       | vector[20] = ( 0.218923, -0.268898, -0.423989 )                              |
| 39       | vector[21] = ( -0.245685, -0.236576, 0.428568 )                              |
| 40<br>41 | vector[22] = ( 0.000000, 0.000000, 0.000000 )                                |
| 41       | vector[23] = ( 0.023434, -0.514342, -0.186823 )                              |
| 43       | vector[24] = ( 0.210090, -0.495890, -0.099773 )                              |
| 44       | vector[25] = ( 0.127918, 0.282591, 0.451419 )                                |
| 45       | vector[26] = ( -0.497742, -0.190842, -0.125826 )                             |
| 46       | vector[27] = ( -0.352216, -0.116300, 0.403012 )                              |
| 47       | vector[28] = ( -0.439047, 0.004691, 0.327438 )                               |
| 48       | vector[29] = ( 0.143700, -0.138995, -0.509932 )                              |
| 49       | vector[30] = (-0.483604, 0.256940, -0.010438)                                |
| 50       | vector[31] = (0.536886, 0.108072, -0.008594)                                 |
| 51       | vector[32] = ( -0.113008, -0.337640, 0.416207 )                              |
| 52       | vector[33] = ( 0.000000, 0.000000, 0.000000 )                                |
| 53       | vector[34] = (0.346021, -0.402459, -0.135263)                                |
| 54       | vector[35] = ( -0.172278, 0.446108, 0.267035 )                               |
| 55       | vector[36] = (-0.309270, 0.076830, -0.445476)                                |
| 56       | vector[37] = ( 0.274066, -0.423055, 0.214272 )                               |
| 57       | vector[38] = ( 0.052227, -0.321802, 0.440132 )                               |
| 58<br>59 | vector[39] = (0.075465, 0.519169, -0.157382)                                 |
| 60       | vector[40] = ( 0.152874, 0.405328, 0.335170 )                                |
| 00       |                                                                              |

| 2        |                                                  |
|----------|--------------------------------------------------|
| 3        | vector[41] = ( 0.109576, 0.536320, 0.018825 )    |
| 4        | vector[42] = ( -0.045652, 0.300780, 0.455464 )   |
| 5        | vector[43] = (0.000000, 0.000000, 0.0000000)     |
| 6        | vector[44] = (-0.533887, 0.114345, 0.043471)     |
| 7        | vector[45] = (-0.097529, 0.434255, -0.319235)    |
| 8        | vector[46] = (0.391774, -0.236122, -0.301263)    |
| 9        | vector[47] = (0.399513, -0.317429, 0.199068)     |
| 10       | vector[48] = (0.200167, 0.067226, 0.505385)      |
| 11       |                                                  |
| 12       | vector $[49] = (0.385668, -0.387145, 0.037137)$  |
| 13       | vector $[50] = (0.059543, 0.145424, 0.524697)$   |
| 14       | vector $[51] = (-0.445546, -0.189946, 0.255752)$ |
| 15       | vector[52] = ( 0.263180, -0.007998, -0.480284 )  |
| 16       | vector[53] = ( -0.375132, -0.375662, 0.134735 )  |
| 17       | vector[54] = ( 0.000000, 0.000000, 0.000000 )    |
| 18       | vector[55] = (-0.100958, 0.513042, -0.163080 )   |
| 19       | vector[56] = ( 0.266095, 0.478340, 0.019604 )    |
| 20       | vector[57] = ( 0.480516, -0.133538, -0.226434 )  |
| 21       | vector[58] = ( 0.253431, -0.482875, 0.051025 )   |
| 22       | vector[59] = ( 0.361384, -0.227994, 0.342667 )   |
| 23       | vector[60] = ( -0.479164, -0.248769, 0.092279 )  |
| 24       | vector[61] = (-0.422438, -0.343026, -0.062282)   |
| 25       | vector[62] = ( 0.525823, 0.037772, -0.148605 )   |
| 26       | vector[63] = (0.112166, -0.092301, 0.528109)     |
| 27       | vector[64] = (0.050487, -0.545354, 0.006363)     |
| 28       | vector[65] = (0.000000, 0.000000, 0.000000)      |
| 29       | vector[66] = (-0.290577, 0.355116, 0.299095)     |
| 30       | vector[67] = (-0.303506, -0.415037, -0.188755)   |
| 31       | vector[68] = (-0.340501, 0.129187, 0.409109)     |
| 32<br>33 | vector[69] = (-0.275521, -0.188617, -0.434179)   |
| 33<br>34 | vector[70] = (0.148849, 0.097956, -0.517928)     |
| 35       | Vector[70] = (0.140049, 0.097950, -0.517920)     |
| 36       |                                                  |
| 37       |                                                  |
| 38       |                                                  |
| 50       |                                                  |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1        |                                                                              |
|----------|------------------------------------------------------------------------------|
| 2<br>3   |                                                                              |
| 4        | <pre># Author: qspace2siemens.m (Michael Thrippleton), manually edited</pre> |
| 5        | into 2 parts                                                                 |
| 6        | <pre># Source file: ./vector_tables/neonate/04-shells-3-6-64-64.txt</pre>    |
| 7        | # b-value at UI: 2500                                                        |
| 8        | # non-zero b-values: 200 500 2500                                            |
| 9        | <pre># number of non-zero shells: 2</pre>                                    |
| 10       | <pre># number of directions per non-zero shell: 3 6 64</pre>                 |
| 11       | # number of b=0 volumes: 7                                                   |
| 12       | <pre># total number of directions including b0: 151</pre>                    |
| 13       | [directions=80]                                                              |
| 14       | normalization = none                                                         |
| 15       | coordinatesystem = xyz                                                       |
| 16       | comment=bUI: 2500, b: 200 500 2500, Nb0: 7                                   |
| 17       | vector[0] = ( 0.000000, 0.000000, 0.000000 )                                 |
| 18       | vector[1] = ( 0.252007, 0.053675, -0.116668 )                                |
| 19       | vector[2] = ( 0.118341, -0.013011, 0.256566 )                                |
| 20       | vector[3] = ( 0.047528, -0.276133, -0.038625 )                               |
| 21       | vector[4] = (-0.303298, -0.002700, -0.328638)                                |
| 22       | vector[5] = ( -0.128927, -0.159163, 0.397549 )                               |
| 23       | vector[6] = ( 0.288240, 0.341931, 0.000938 )                                 |
| 24       | vector[7] = ( -0.166829, 0.397185, -0.120052 )                               |
| 25       | vector[8] = ( -0.069301, 0.303423, 0.321142 )                                |
| 26       | vector[9] = (0.425645, -0.074339, -0.115324)                                 |
| 27       | vector[10] = ( 0.391424, -0.221918, 0.893051 )                               |
| 28       | vector[11] = ( 0.458593, -0.241695, -0.855147 )                              |
| 29       | vector[12] = ( 0.354539, 0.919288, 0.170913 )                                |
| 30<br>31 | vector[13] = (0.495263, -0.780339, -0.381819)                                |
| 32       | vector[14] = (-0.574230, 0.458191, 0.678470)                                 |
| 33       | vector[15] = (0.000000, 0.000000, 0.000000)                                  |
| 34       | vector[16] = (-0.188453, -0.033220, -0.981520)                               |
| 35       | vector[17] = (0.594951, -0.772279, 0.222754)                                 |
| 36       | vector[18] = (0.076963, -0.202692, -0.976213)                                |
| 37       | vector[19] = (-0.354234, 0.663631, 0.658872)                                 |
| 38       | vector[20] = ( -0.245839, 0.923577, 0.294225 )                               |
| 39       | vector[21] = (-0.646526, -0.378550, -0.662347)                               |
| 40       | vector[22] = ( 0.782685, 0.616196, -0.087788 )                               |
| 41       | vector[23] = ( -0.102171, -0.675368, -0.730369 )                             |
| 42       | vector[24] = ( -0.593833, 0.627627, -0.503435 )                              |
| 43       | vector[25] = (-0.289839, 0.954652, -0.068065)                                |
| 44       | vector[26] = ( 0.000000, 0.000000, 0.0000000 )                               |
| 45       | vector[27] = (0.932852, 0.268018, -0.240735)                                 |
| 46       | vector[28] = ( -0.292661, 0.011816, 0.956143 )                               |
| 47       | vector[29] = (-0.125932, -0.877649, -0.462465)                               |
| 48<br>49 | vector[30] = ( 0.287138, 0.947828, -0.138468 )                               |
| 49<br>50 | vector[31] = ( -0.400507, -0.785392, -0.471967 )                             |
| 51       | vector[32] = ( 0.046561, 0.178494, -0.982839 )                               |
| 52       | vector[33] = (0.774106, -0.243372, -0.584405)                                |
| 53       | vector[34] = ( -0.709331, 0.570685, 0.413724 )                               |
| 54       | vector[35] = ( 0.258673, -0.649858, 0.714684 )                               |
| 55       | vector[36] = (0.000000, 0.000000, 0.000000)                                  |
| 56       | vector[37] = (0.812504, 0.520520, 0.262482)                                  |
| 57       | vector[38] = (-0.551995, -0.116325, -0.825694)                               |
| 58       | vector[39] = (-0.680119, 0.223136, -0.698319)                                |
| 59       | vector[40] = (-0.848362, -0.280672, -0.448893)                               |
| 60       | Vector [+0] = ( 010+0302; 01200072; 014+0033 /                               |
|          |                                                                              |

| 1        |                                                                                              |
|----------|----------------------------------------------------------------------------------------------|
| 2        |                                                                                              |
| 3        | $v_{0} = v_{0} = (0.460227 - 0.220447 - 0.957271)$                                           |
| 4        | vector[41] = (-0.460227, -0.230447, 0.857371)                                                |
| 5        | vector[42] = (0.639224, 0.615748, 0.460703)                                                  |
| 6        | vector[43] = (0.953358, -0.285443, 0.098132)                                                 |
| 7        | vector $[44] = (-0.501430, 0.459528, -0.733077)$                                             |
| 8        | vector[45] = (0.922461, 0.385130, 0.027209)                                                  |
| 9        | vector[46] = (-0.815410, 0.546002, -0.192323)                                                |
| 10       | vector[47] = (0.000000, 0.000000, 0.000000)                                                  |
| 11       | vector[48] = ( -0.924442, 0.129694, -0.358591 )                                              |
| 12       | vector[49] = ( 0.549990, 0.820347, -0.156657 )                                               |
| 13       | vector[50] = (0.774802, 0.509647, -0.374089)                                                 |
| 14       | vector[51] = ( 0.907672, -0.355700, -0.222731 )                                              |
| 15       | vector[52] = ( 0.051712, 0.985317, 0.162714 )                                                |
| 16       | vector[53] = ( -0.970546, -0.135098, -0.199471 )                                             |
| 17       | vector[54] = ( -0.621107, -0.417526, 0.663249 )                                              |
| 18       | vector[55] = ( -0.776136, 0.621968, 0.103774 )                                               |
| 19       | vector[56] = ( 0.551897, -0.830144, -0.079188 )                                              |
| 20       | vector[57] = ( 0.555009, 0.711394, -0.431142 )                                               |
| 21       | vector[58] = ( 0.000000, 0.000000, 0.000000 )                                                |
| 22       | vector[59] = ( -0.239295, 0.451777, 0.859439 )                                               |
| 23       | vector[60] = ( -0.325801, -0.314211, -0.891698 )                                             |
| 24       | vector[61] = ( 0.649939, -0.012663, -0.759881 )                                              |
| 25       | vector[62] = ( -0.042327, 0.894181, -0.445699 )                                              |
| 26       | vector[63] = ( -0.159022, 0.408833, -0.898648 )                                              |
| 27       | vector[64] = ( 0.388219, 0.606776, -0.693620 )                                               |
| 28<br>29 | vector[65] = ( -0.329997, 0.825600, -0.457697 )                                              |
| 30       | vector[66] = (0.060764, 0.443276, 0.894323)                                                  |
| 31       | vector[67] = ( -0.794452, 0.390958, -0.464756 )                                              |
| 32       | vector[68] = (-0.392295, -0.567128, -0.724204)                                               |
| 33       | vector[69] = (0.000000, 0.000000, 0.000000)                                                  |
| 34       | vector[70] = ( 0.272234, 0.851327, -0.448477 )                                               |
| 35       | vector[71] = (0.785891, 0.193927, -0.587169)                                                 |
| 36       | vector[72] = (-0.145787, 0.828569, 0.540573)                                                 |
| 37       | vector[73] = ( 0.616784, 0.765973, 0.181281 )                                                |
| 38       | vector[74] = (-0.808755, -0.029868, -0.587387)                                               |
| 39       | vector[75] = (0.997247, -0.010658, -0.073384)                                                |
| 40       | vector[76] = (-0.152743, -0.477444, 0.865284)                                                |
| 41       | vector[77] = (-0.040188, -0.715882, 0.697064)                                                |
| 42       | vector[77] = (-0.907740, 0.040990, 0.417525)                                                 |
| 43       | vector[78] = (-0.907740, 0.040990, 0.417525)<br>vector[79] = (0.008357, -0.985450, 0.169758) |
| 44       | Vector[/3] - ( 0.00055/, -0.305450, 0.109/58 )                                               |
| 45       |                                                                                              |
| 45       |                                                                                              |

¢

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723 - MT\_test\MTSatOn\_neonate\_v2 TA: 2:58 PM: REF Voxel size: 2.0×2.0×2.0 mmPAT: 3 Rel. SNR: 1.00 : qfl

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| (outino            |                     |
|--------------------|---------------------|
| Slab group         | 1                   |
| Slabs              |                     |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 75.0 ms             |
| TE 1               | 1.54 ms             |
| TE 2               | 4.55 ms             |
| TE 3               | 8.56 ms             |
| Averages           | 1                   |
| Concatenations     | 1                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN             |

#### **Contrast - Common**

| TR                | 75.0 ms |
|-------------------|---------|
| TE 1              | 1.54 ms |
| TE 2              | 4.55 ms |
| TE 3              | 8.56 ms |
| MTC               | On      |
| Magn. preparation | None    |
| Flip angle        | 5 deg   |
| Fat suppr.        | None    |
| Water suppr.      | None    |
| SWI               | Off     |
|                   |         |

## **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

#### **Resolution - Common**

| FoV read        | 128 mm  |
|-----------------|---------|
| FoV phase       | 121.9 % |
| Slice thickness | 2.00 mm |
| Base resolution | 64      |

## **Resolution - Common**

| Phase resolution      | 100 % |  |
|-----------------------|-------|--|
| Slice resolution      | 100 % |  |
| Phase partial Fourier | 6/8   |  |
| Slice partial Fourier | Off   |  |
| Interpolation         | Off   |  |

## **Resolution - iPAT**

| PAT mode            | GRAPPA     |  |
|---------------------|------------|--|
| Accel. factor PE    | 3          |  |
| Ref. lines PE       | 24         |  |
| Accel. factor 3D    | 1          |  |
| Reference scan mode | Integrated |  |

## **Resolution - Filter Image**

| Image Filter      | Off |
|-------------------|-----|
| Distortion Corr.  | Off |
| Prescan Normalize | On  |
| Unfiltered images | Off |
| Normalize         | Off |
| B1 filter         | Off |

## **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 75.0 ms             |
| Multi-slice mode   | Interleaved         |
| Series             | Interleaved         |
| Concatenations     | 1                   |

## **Geometry - AutoAlign**

| Slab group          | 1                   |
|---------------------|---------------------|
| Position            | R6.7 P19.4 H34.5 mm |
| Orientation         | Sagittal            |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R6.7 P19.4 H34.5    |
| R                   | 6.7 mm              |
| Р                   | 19.4 mm             |
| н                   | 34.5 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |
|                     |                     |

#### **Geometry - Saturation**

| Saturation mode | Standard |
|-----------------|----------|
| Fat suppr.      | None     |
| Water suppr.    | None     |
| Special sat.    | None     |

## BMJ Open

## SIEMENS MAGNETOM Prisma

| 1        | Coometry Tim Dianning Su                          | ita                  |
|----------|---------------------------------------------------|----------------------|
| 2        | Geometry - Tim Planning Su                        |                      |
| 3        | Set-n-Go Protocol                                 | Off                  |
| 4        | Table position                                    | H                    |
| 5        | Table position                                    | 0 mm                 |
| 6        | Inline Composing                                  | Off                  |
| 7        | System - Miscellaneous                            |                      |
| 8        | Positioning mode                                  | REF                  |
| 9        | Table position                                    | Н                    |
| 10       | Table position                                    | 0 mm                 |
| 11       | MSMA                                              | S - C - T            |
| 12       | Sagittal                                          | R >> L               |
| 13       | Coronal                                           | A >> P               |
| 14       | Transversal                                       | F >> H               |
| 15       | Coil Combine Mode                                 | Sum of Squares       |
| 16       | Save uncombined                                   | Off                  |
| 17       | Matrix Optimization                               | Off                  |
| 18       | AutoAlign                                         |                      |
| 19       | Coil Select Mode                                  | Off - AutoCoilSelect |
| 20       | System - Adjustments                              |                      |
| 21       |                                                   | Turneturn            |
| 22       | B0 Shim mode                                      | Tune up              |
| 23       | B1 Shim mode                                      | TrueForm<br>Off      |
| 24       | Adjust with body coil<br>Confirm freq. adjustment | Off                  |
| 25       | Assume Dominant Fat                               | Off                  |
| 26       | Assume Silicone                                   | Off                  |
| 27       | Adjustment Tolerance                              | Auto                 |
| 28       |                                                   |                      |
| 29       | System - Adjust Volume                            |                      |
| 30       | Position                                          | Isocenter            |
| 31       | Orientation                                       | Transversal          |
| 32       | Rotation                                          | 0.00 deg             |
| 33       | A >> P                                            | 263 mm               |
| 34       | R >> L                                            | 350 mm               |
| 35       | F >> H                                            | 350 mm               |
| 36       | Reset                                             | Off                  |
| 37       | Swatam nTv Valumaa                                |                      |
| 38       | System - pTx Volumes                              |                      |
| 39       | B1 Shim mode                                      | TrueForm             |
| 40       | Excitation                                        | Non-sel.             |
| 41       | System - Tx/Rx                                    |                      |
| 42       |                                                   | 400 044400 MUL       |
| 43       | Frequency 1H<br>Correction factor                 | 123.244480 MHz<br>1  |
| 44       | Gain                                              | Low                  |
| 45       | Img. Scale Cor.                                   | 3.000                |
| 46       | Reset                                             | Off                  |
| 47       | ? Ref. amplitude 1H                               | 0.000 V              |
| 48       |                                                   |                      |
| 49       | Physio - Signal1                                  |                      |
| 50       | 1st Signal/Mode                                   | None                 |
| 51       | TR                                                | 75.0 ms              |
| 52       | Concatenations                                    | 1                    |
| 53       | Segments                                          | 1                    |
| 55<br>54 |                                                   |                      |
| 55       | Physio - Cardiac                                  |                      |
| 55<br>56 | Tagging                                           | None                 |
| 50<br>57 | Magn. preparation                                 | None                 |
|          | Fat suppr.                                        | None                 |
| 58       | Dark blood                                        | Off                  |
| 59<br>60 | FoV read                                          | 128 mm               |
| 60       | FoV phase                                         | 121.9 %              |
|          | Phase resolution                                  | 100 %                |
|          |                                                   |                      |

## **Physio - PACE**

| <b>J</b> = -   |     |  |
|----------------|-----|--|
| Resp. control  | Off |  |
| Concatenations | 1   |  |

#### Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Liver registration   | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag<br>MIP-Cor   | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

## Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

## **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

## Inline - Maplt

| Save original images | On      |  |
|----------------------|---------|--|
| MapIt                | None    |  |
| Flip angle           | 5 deg   |  |
| Measurements         | 1       |  |
| Contrasts            | 3       |  |
| TR                   | 75.0 ms |  |
| TE 1                 | 1.54 ms |  |
| TE 2                 | 4.55 ms |  |
| TE 3                 | 8.56 ms |  |

## Sequence - Part 1

| Introduction        | Off         |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | On          |
| Phase stabilisation | Off         |
| Asymmetric echo     | Off         |
| Contrasts           | 3           |
| Flow comp. 1        | No          |
| Readout mode        | Bipolar     |
| Multi-slice mode    | Interleaved |
| Bandwidth 1         | 580 Hz/Px   |
| Bandwidth 2         | 580 Hz/Px   |
| Bandwidth 3         | 580 Hz/Px   |

## Sequence - Part 2

| Segments                 | 1        |
|--------------------------|----------|
| Acoustic noise reduction | Active   |
| RF pulse type            | Low SAR  |
| Gradient mode            | Normal   |
| Excitation               | Non-sel. |
| RF spoiling              | On       |

#### SIEMENS MAGNETOM Prisma

| Sequence - Assistant |      |  |
|----------------------|------|--|
| Mode                 | Off  |  |
| Allowed delay        | 30 s |  |

to peet teries only

## BMJ Open SIEMENIS MACHETOM Driama

#### 

|                                   | SIEMENS MA                | GNETOM Prisma               |                    |
|-----------------------------------|---------------------------|-----------------------------|--------------------|
| \\Study Protocols\BR/             | AIN\Neonates\Theirw       | orld - E161723 - MT_test\MT | SatOff_neonate_v2  |
| TA: 2:58 PM                       | /I: FIX Voxel size: 2.0×2 | 2.0×2.0 mmPAT: 3 Rel. SNR:  | 1.00 : qfl         |
| Properties                        |                           | <b>Resolution - Common</b>  |                    |
| Prio recon                        | Off                       | Phase resolution            | 100 %              |
| Load images to viewer             | On                        | Slice resolution            | 100 %              |
| Inline movie                      | Off                       | Phase partial Fourier       | 6/8                |
| Auto store images                 | On                        | Slice partial Fourier       | Off                |
| Load images to stamp segments     | Off                       | Interpolation               | Off                |
| Load images to graphic segments   | Off                       |                             |                    |
| Auto open inline display          | Off                       | Resolution - iPAT           |                    |
| Auto close inline display         | Off                       | PAT mode                    | GRAPPA             |
| Start measurement without further | On                        | Accel, factor PE            | 3                  |
| preparation                       |                           | Ref. lines PE               | 24                 |
| Wait for user to start            | Off                       | Accel, factor 3D            | 1                  |
| Start measurements                | Single measurement        | Reference scan mode         | Integrated         |
|                                   |                           | Telefence scan mode         | Integrated         |
| Routine                           |                           | Resolution - Filter Imag    | e                  |
| Slab group                        | 1                         | Image Filter                | Off                |
| Slabs                             | 1                         | Distortion Corr.            | Off                |
| Dist. factor                      | 20 %                      | Prescan Normalize           | On                 |
| Position                          | R6.7 P19.4 H34.5 mm       | Unfiltered images           | Off                |
| Orientation                       | Sagittal                  | Normalize                   | Off                |
| Phase enc. dir.                   | A >> P                    | B1 filter                   | Off                |
| AutoAlign                         | -                         |                             |                    |
| Phase oversampling                | 0 %                       | Resolution - Filter Rawo    | lata               |
| Slice oversampling                | 0.0 %                     | Raw filter                  | Off                |
| Slices per slab                   | 72                        | Elliptical filter           | Off                |
| FoV read                          | 128 mm                    |                             |                    |
| FoV phase                         | 121.9 %                   | Geometry - Common           |                    |
| Slice thickness                   | 2.00 mm                   |                             |                    |
| TR                                | 75.0 ms                   | Slab group                  | 1                  |
| TE 1                              | 1.54 ms                   | Slabs                       | 1                  |
| TE 2                              | 4.55 ms                   | Dist. factor                | 20 %               |
| TE 3                              | 8.56 ms                   | Position                    | R6.7 P19.4 H34.5 n |
| Averages                          | 1                         | Orientation                 | Sagittal           |
| Concatenations                    | 1                         | Phase enc. dir.             | A >> P             |
| Filter                            | Prescan Normalize         | Slice oversampling          | 0.0 %              |
| Coil elements                     | PeH;PeN                   | Slices per slab             | 72                 |
| <b>b</b>                          |                           | FoV read                    | 128 mm             |
| Contrast - Common                 |                           | FoV phase                   | 121.9 %            |
| TR                                | 75.0 ms                   | Slice thickness             | 2.00 mm            |
| TE 1                              | 1.54 ms                   | TR                          | 75.0 ms            |
| TE 2                              | 4.55 ms                   | Multi-slice mode            | Interleaved        |
| TE 3                              | 8.56 ms                   | Series                      | Interleaved        |
| MTC                               | Off                       | Concatenations              | 1                  |
| Magn. preparation                 | None                      |                             |                    |
| Flip angle                        | 5 deg                     | Geometry - AutoAlign        |                    |
| Fat suppr.                        | None                      | Slab group                  | 1                  |
| Pai suppr.<br>Water suppr         | None                      | Position                    | R6.7 P19.4 H34.5 n |

| Contrast - | Dynamic |
|------------|---------|
|------------|---------|

Water suppr.

SWI

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

None

Off

#### **Resolution - Common**

| FoV read        | 128 mm  |
|-----------------|---------|
| FoV phase       | 121.9 % |
| Slice thickness | 2.00 mm |
| Base resolution | 64      |
| •               |         |

| Phase resolution      | 100 % |  |
|-----------------------|-------|--|
| Slice resolution      | 100 % |  |
| Phase partial Fourier | 6/8   |  |
| Slice partial Fourier | Off   |  |
| Interpolation         | Off   |  |

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 3          |
| Ref. lines PE       | 24         |
| Accel. factor 3D    | 1          |
| Reference scan mode | Integrated |

| Image Filter      | Off |
|-------------------|-----|
| Distortion Corr.  | Off |
| Prescan Normalize | On  |
| Unfiltered images | Off |
| Normalize         | Off |
| B1 filter         | Off |

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 75.0 ms             |
| Multi-slice mode   | Interleaved         |
| Series             | Interleaved         |
| Concatenations     | 1                   |
|                    |                     |

| Slab group          | 1                   |
|---------------------|---------------------|
| Position            | R6.7 P19.4 H34.5 mm |
| Orientation         | Sagittal            |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R6.7 P19.4 H34.5    |
| R                   | 6.7 mm              |
| Р                   | 19.4 mm             |
| н                   | 34.5 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |
|                     |                     |

## **Geometry - Saturation**

| Saturation mode | Standard |
|-----------------|----------|
| Fat suppr.      | None     |
| Water suppr.    | None     |
| Special sat.    | None     |

## SIEMENS MAGNETOM Prisma

| Set-n-Go Protocol        | Off                  |
|--------------------------|----------------------|
| Table position           | Н                    |
| Table position           | 0 mm                 |
| Inline Composing         | Off                  |
| System - Miscellaneous   |                      |
| Positioning mode         | FIX                  |
| Table position           | Н                    |
| Table position           | 0 mm                 |
| MSMA                     | S - C - T            |
| Sagittal                 | R >> L               |
| Coronal                  | A >> P               |
| Transversal              | F >> H               |
| Coil Combine Mode        | Sum of Squares       |
| Save uncombined          | Off                  |
| Matrix Optimization      | Off                  |
| AutoAlign                | <u> </u>             |
| Coil Select Mode         | Off - AutoCoilSelect |
| System - Adjustments     |                      |
| B0 Shim mode             | Tune up              |
| B1 Shim mode             | TrueForm             |
| Adjust with body coil    | Off                  |
| Confirm freq. adjustment | Off                  |
| Assume Dominant Fat      | Off                  |
| Assume Silicone          | Off                  |
| Adjustment Tolerance     | Auto                 |
| System - Adjust Volume   |                      |
| Position                 | Isocenter            |
| Orientation              | Transversal          |
| Rotation                 | 0.00 deg             |
| A >> P                   | 263 mm               |
| R >> L                   | 350 mm               |
| F >> H                   | 350 mm               |
| Reset                    | Off                  |
| System - pTx Volumes     |                      |
| B1 Shim mode             | TrueForm             |
| Excitation               | Non-sel.             |
| System - Tx/Rx           |                      |
| Frequency 1H             | 123.244480 MHz       |
| Correction factor        | 1                    |
| Gain                     | Low                  |
| Img. Scale Cor.          | 3.000                |
| Reset                    | Off                  |
| ? Ref. amplitude 1H      | 0.000 V              |
| Physio - Signal1         |                      |
| 1st Signal/Mode          | None                 |
| TR                       | 75.0 ms              |
| Concatenations           | 1                    |
| Segments                 | 1                    |
| Physio - Cardiac         |                      |
| Tagging                  | None                 |
| Magn. preparation        | None                 |
| Fat suppr.               | None                 |
| Dark blood               | Off                  |
|                          | 100                  |
| FoV read                 | 128 mm               |
| FoV read<br>FoV phase    | 128 mm<br>121.9 %    |

#### Physio - PACE

| •              |     |   |
|----------------|-----|---|
| Resp. control  | Off |   |
| Concatenations | 1   |   |
|                |     | - |

## Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Liver registration   | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

## Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

## **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

## Inline - Maplt

| Save original images | On      |
|----------------------|---------|
| MapIt                | None    |
| Flip angle           | 5 deg   |
| Measurements         | 1       |
| Contrasts            | 3       |
| TR                   | 75.0 ms |
| TE 1                 | 1.54 ms |
| TE 2                 | 4.55 ms |
| TE 3                 | 8.56 ms |

## Sequence - Part 1

| Introduction        | Off         |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | On          |
| Phase stabilisation | Off         |
| Asymmetric echo     | Off         |
| Contrasts           | 3           |
| Flow comp. 1        | No          |
| Readout mode        | Bipolar     |
| Multi-slice mode    | Interleaved |
| Bandwidth 1         | 580 Hz/Px   |
| Bandwidth 2         | 580 Hz/Px   |
| Bandwidth 3         | 580 Hz/Px   |

#### Sequence - Part 2

| Segments                 | 1        |
|--------------------------|----------|
| Acoustic noise reduction | Active   |
| RF pulse type            | Low SAR  |
| Gradient mode            | Normal   |
| Excitation               | Non-sel. |
| RF spoiling              | On       |

## SIEMENS MAGNETOM Prisma

| ode       | Off  |
|-----------|------|
| ved delay | 30 s |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |

## \\Study Protocols\BRAIN\Neonates\Theirworld - E161723 - MT\_test\MTSatT1\_neonate\_v2 TA: 0:36 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 3 Rel. SNR: 1.00 : qfl

## Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
|                                               |                    |
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | On                 |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |
|                                               |                    |

#### Routine

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 15.0 ms             |
| TE 1               | 1.54 ms             |
| TE 2               | 4.55 ms             |
| TE 3               | 8.56 ms             |
| Averages           | 1                   |
| Concatenations     | 1                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN             |

#### **Contrast - Common**

| TR                | 15.0 ms |
|-------------------|---------|
| TE 1              | 1.54 ms |
| TE 2              | 4.55 ms |
| TE 3              | 8.56 ms |
| MTC               | Off     |
| Magn. preparation | None    |
| Flip angle        | 14 deg  |
| Fat suppr.        | None    |
| Water suppr.      | None    |
| SWI               | Off     |
|                   |         |

## **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

#### **Resolution - Common**

| FoV read        | 128 mm  |
|-----------------|---------|
| FoV phase       | 121.9 % |
| Slice thickness | 2.00 mm |
| Base resolution | 64      |

## **Resolution - Common**

| Phase resolution      | 100 % |  |
|-----------------------|-------|--|
| Slice resolution      | 100 % |  |
| Phase partial Fourier | 6/8   |  |
| Slice partial Fourier | Off   |  |
| Interpolation         | Off   |  |

#### **Resolution - iPAT**

| PAT mode            | GRAPPA     |  |
|---------------------|------------|--|
| Accel. factor PE    | 3          |  |
| Ref. lines PE       | 24         |  |
| Accel. factor 3D    | 1          |  |
| Reference scan mode | Integrated |  |

## **Resolution - Filter Image**

| Image Filter      | Off |
|-------------------|-----|
| Distortion Corr.  | Off |
| Prescan Normalize | On  |
| Unfiltered images | Off |
| Normalize         | Off |
| B1 filter         | Off |

## **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 15.0 ms             |
| Multi-slice mode   | Interleaved         |
| Series             | Interleaved         |
| Concatenations     | 1                   |

## **Geometry - AutoAlign**

| Slab group          | 1                   |
|---------------------|---------------------|
| Position            | R6.7 P19.4 H34.5 mm |
| Orientation         | Sagittal            |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R6.7 P19.4 H34.5    |
| R                   | 6.7 mm              |
| Р                   | 19.4 mm             |
| н                   | 34.5 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |
|                     |                     |

#### **Geometry - Saturation**

| Saturation mode | Standard |
|-----------------|----------|
| Fat suppr.      | None     |
| Water suppr.    | None     |
| Special sat.    | None     |

## BMJ Open

## SIEMENS MAGNETOM Prisma

| 1        |                               | · · ·                    |
|----------|-------------------------------|--------------------------|
| 2        | Geometry - Tim Planning Su    | ite                      |
| 3        | Set-n-Go Protocol             | Off                      |
| 4        | Table position                | Н                        |
| 5        | Table position                | 0 mm                     |
| 6        | Inline Composing              | Off                      |
| 7        | System - Miscellaneous        |                          |
| 8        | Positioning mode              | FIX                      |
| 9        | Table position                | Н                        |
| 10       | Table position                | 0 mm                     |
| 11       | MSMA                          | S - C - T                |
| 12       | Sagittal                      | R >> L                   |
| 13       | Coronal                       | A >> P                   |
| 14       | Transversal                   | F >> H                   |
| 15       | Coil Combine Mode             | Sum of Squares           |
| 16       | Save uncombined               | Off                      |
| 17       | Matrix Optimization           | Off                      |
| 18       | AutoAlign<br>Coil Select Mode | <br>Off - AutoCoilSelect |
| 19       |                               | OII - Autocoliselect     |
| 20       | System - Adjustments          |                          |
| 21       | B0 Shim mode                  | Tune up                  |
| 22       | B1 Shim mode                  | TrueForm                 |
| 23       | Adjust with body coil         | Off                      |
| 24       | Confirm freq. adjustment      | Off                      |
| 25       | Assume Dominant Fat           | Off                      |
| 26       | Assume Silicone               | Off                      |
| 27       | Adjustment Tolerance          | Auto                     |
| 28       |                               |                          |
| 29       | System - Adjust Volume        |                          |
| 30       | Position                      | Isocenter                |
| 31       | Orientation                   | Transversal              |
| 32       | Rotation                      | 0.00 deg                 |
| 33       | A >> P<br>R >> I              | 263 mm<br>350 mm         |
| 34       | F >> H                        | 350 mm                   |
| 35       | Reset                         | Off                      |
| 36       | 10001                         |                          |
| 37       | System - pTx Volumes          |                          |
| 38       | B1 Shim mode                  | TrueForm                 |
| 39       | Excitation                    | Non-sel.                 |
| 40<br>41 |                               |                          |
| 41       | System - Tx/Rx                |                          |
| 42       | Frequency 1H                  | 123.244480 MHz           |
| 43<br>44 | Correction factor             | 1                        |
| 44       | Gain                          | Low                      |
| 45       | lmg. Scale Cor.<br>Reset      | 3.000<br>Off             |
| 40<br>47 | ? Ref. amplitude 1H           | 0.000 V                  |
| 47       |                               | 0.000 V                  |
| 48<br>49 | Physio - Signal1              |                          |
| 49<br>50 | 1st Signal/Mode               | None                     |
| 50       | TR                            | 15.0 ms                  |
| 52       | Concatenations                | 1                        |
| 53       | Segments                      | 1                        |
| 54       | Diversity Occurit             |                          |
| 55       | Physio - Cardiac              |                          |
| 56       | Tagging                       | None                     |
| 50<br>57 | Magn. preparation             | None                     |
| 58       | Fat suppr.                    | None                     |
| 58<br>59 | Dark blood                    | Off                      |
| 60       | FoV read                      | 128 mm<br>121.9 %        |
|          | FoV phase<br>Phase resolution | 121.9 %                  |
|          |                               | 100 /0                   |

# **Physio - PACE**

| Resp. control  | Off |
|----------------|-----|
| Concatenations | 1   |

## Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Liver registration   | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Sag<br>MIP-Cor   | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

## Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

## **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

## Inline - Maplt

| Save original images | On      |
|----------------------|---------|
| MapIt                | None    |
| Flip angle           | 14 deg  |
| Measurements         | 1       |
| Contrasts            | 3       |
| TR                   | 15.0 ms |
| TE 1                 | 1.54 ms |
| TE 2                 | 4.55 ms |
| TE 3                 | 8.56 ms |

## Sequence - Part 1

| Introduction        | Off         |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | On          |
| Phase stabilisation | Off         |
| Asymmetric echo     | Off         |
| Contrasts           | 3           |
| Flow comp. 1        | No          |
| Readout mode        | Bipolar     |
| Multi-slice mode    | Interleaved |
| Bandwidth 1         | 580 Hz/Px   |
| Bandwidth 2         | 580 Hz/Px   |
| Bandwidth 3         | 580 Hz/Px   |

## Sequence - Part 2

| Segments                 | 1        |
|--------------------------|----------|
| Acoustic noise reduction | Active   |
| RF pulse type            | Low SAR  |
| Gradient mode            | Normal   |
| Excitation               | Non-sel. |
| RF spoiling              | On       |

#### SIEMENS MAGNETOM Prisma

| Sequence - Assistant |      |  |
|----------------------|------|--|
| Mode                 | Off  |  |
| Allowed delay        | 30 s |  |

for peer teries only

For peer review only - http://bmjopen59mj.com/site/about/guidelines.xhtml

## Impact of preterm birth on brain development and longterm outcome: protocol for a cohort study in Scotland

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2019-035854.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Article Type:                        | Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Date Submitted by the Author:        | 16-Jan-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Complete List of Authors:            | Boardman, James; The University of Edinburgh, MRC Centre for<br>Reproductive Health; The University of Edinburgh, Centre for Clinical<br>Brain Sciences<br>Hall, Jill; The University of Edinburgh, MRC Centre for Reproductive<br>Health<br>Thrippleton, Michael; The University of Edinburgh, Edinburgh Imaging<br>Reynolds, Rebecca; The University of Edinburgh, Centre for<br>Cardiovascular Science<br>Bogaert, Debby; The University of Edinburgh, Centre for Inflammation<br>Research<br>Davidson, Donald ; The University of Edinburgh, Centre for Inflammation<br>Research<br>Schwarze, Jurgen; The University of Edinburgh, Centre for Inflammation<br>Research<br>Drake, Amanda; The University of Edinburgh, Centre for Cardiovascular<br>Sciences<br>Chandran, Siddharthan ; The University of Edinburgh, Centre for Clinical<br>Brain Sciences<br>Bastin, Mark; The University of Edinburgh, Centre for Clinical Brain<br>Sciences<br>Fletcher-Watson, Sue; The University of Edinburgh, Centre for Clinical<br>Brain Sciences |
| <b>Primary Subject<br/>Heading</b> : | Paediatrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Secondary Subject Heading:           | Reproductive medicine, Radiology and imaging, Obstetrics and gynaecology, Neurology, Intensive care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keywords:                            | Neonatal intensive & critical care < INTENSIVE & CRITICAL CARE,<br>Paediatric neurology < NEUROLOGY, Maternal medicine < OBSTETRICS,<br>Developmental neurology & neurodisability < PAEDIATRICS, Child &<br>adolescent psychiatry < PSYCHIATRY, Magnetic resonance imaging <<br>RADIOLOGY & IMAGING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                | SCHOLARONE <sup>™</sup><br>Manuscripts                                    |
|----------------------------------------------------------|---------------------------------------------------------------------------|
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18       |                                                                           |
| 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 |                                                                           |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37       |                                                                           |
| 38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47 |                                                                           |
| 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56 |                                                                           |
| 57<br>58<br>59<br>60                                     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml |



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

RELEX ONL

**BMJ** Open

Impact of preterm birth on brain development and long-term outcome: protocol for a cohort study in Scotland

James P Boardman<sup>1,2</sup>, Jill Hall<sup>1</sup>, Michael J Thrippleton<sup>3</sup>, Rebecca M Reynolds<sup>4</sup>, Debby Bogaert<sup>5</sup>, Donald J. Davidson<sup>5</sup>, Jürgen Schwarze<sup>5</sup>, Amanda J Drake<sup>4</sup>, Siddharthan Chandran<sup>2</sup>, Mark E Bastin<sup>2</sup>, Sue Fletcher-Watson<sup>2</sup>

<sup>1</sup> Medical Research Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

<sup>2</sup> Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK

<sup>3</sup> Edinburgh Imaging, University of Edinburgh, UK

<sup>4</sup>Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK

. I Rese <sup>5</sup> University of Edinburgh Centre for Inflammation Research, Edinburgh, UK

Corresponding author:

Professor James Peter Boardman

W1.26 Queen's Medical Research Institute,

47 Little France Crescent,

Edinburgh EH16 4TJ,

United Kingdom.

T: +44 131 242 2567

E: james.boardman@ed.ac.uk

Word count (excl title page, abstract, references, figures and tables): 3,538

#### Abstract

Introduction. Preterm birth is closely associated with altered brain development and is a leading cause of neurodevelopmental, cognitive and behavioural impairment across the life course. We aim to investigate neuroanatomic variation and adverse outcomes associated with preterm birth by studying a cohort of preterm infants and controls born at term, using brain magnetic resonance imaging (MRI) linked to biosamples and clinical, environmental and neuropsychological data.

Methods and Analysis. Theirworld Edinburgh Birth Cohort is a prospective longitudinal cohort study at the University of Edinburgh. We plan to recruit 300 infants born at <33 weeks gestational age (GA) and 100 healthy control infants born after 37 weeks GA. Multiple domains are assessed: maternal and infant clinical and demographic information; placental histology; immunoregulatory and trophic proteins in umbilical cord and neonatal blood; brain macro- and microstructure from structural and diffusion MRI; DNA methylation; hypothalamic-pituitary-adrenal axis (HPAA) activity; social cognition, attention and processing speed from eye-tracking during infancy and childhood; neurodevelopment; gut and respiratory microbiota; susceptibility to viral infections; and participant experience. Main analyses include creation of novel methods for extracting information from neonatal structural and diffusion MRI, regression analyses of predictors of brain maldevelopment and neurocognitive outcome associated with preterm birth, and determination of the quantitative predictive performance of MRI and other early life factors for childhood outcome.

Ethics and Dissemination. Ethical approval has been obtained from the National Research Ethics Service, South East Scotland Research Ethics Committee and NHS Lothian Research and Development. Results are disseminated through open access journals, scientific meetings, social media, newsletters, a study website (www.tebc.ed.ac.uk), and we engage with the University of Edinburgh public relations and media office to ensure maximum publicity and benefit.

# Strengths and limitations of this study

- Three hundred preterm infants and a comparator group of 100 term controls are studied longitudinally from before birth to school age.
- Phenotypic information includes data from brain MRI, biosamples, participant • report, direct observation and clinical data from maternal and infant medical records.
- We collected data about a range of theoretically informed variables to understand the impact of preterm birth on everyday lives of families.
- • A data access and collaboration policy sets out the terms and conditions on which deidentified data are available to the research community.
- Participants are recruited from a single centre.

#### INTRODUCTION

Preterm delivery is estimated to affect 10.6% of all live births around the world, which equates to 14.84 million births per annum<sup>1</sup>. In resource rich settings advances in perinatal care and service delivery have led to improved survival over the past two decades: around 30% of infants born at 22 weeks who are offered stabilisation at birth will survive, and this number increases to around 80% for births at 26 weeks<sup>2-5</sup>. However, early exposure to extrauterine life can impact brain development, and is closely associated with long term intellectual disability, cerebral palsy, autism spectrum disorder, attention deficit hyperactivity disorder, psychiatric disease, and problems with language, behaviour, and socioemotional function (for review <sup>6</sup>). There are no treatments that reduce risk of impairment, which extends across the life course and carries considerable personal cost to affected individuals, and high health and education costs to society<sup>7</sup>.

Little is known about the ontogenesis of neurocognitive and psychiatric problems associated with preterm birth, or the biological, environmental and social risk factors associated with susceptibility and resilience. Much information about the cerebral effects of preterm birth comes from historic cohorts that do not reflect modern perinatal care practices; studies have been cross-sectional with outcomes assessed in very early childhood before important cognitive and social functions emerge; conventional diagnostic tools for assessing neurodevelopment are imprecise; and cohorts linked to imaging and biological metadata are few so mechanisms are poorly understood. There is an unmet need to study a contemporary cohort of preterm infants that is comprehensively characterised from genes to anatomy to function, integrated with information about the social graph.

Our aims are: first, to build a longitudinal cohort of preterm infants and term controls that is phenotyped with brain imaging and biological information to investigate causal pathways to, and consequences of, atypical brain development and injury; second, to develop novel computational algorithms for mapping brain growth and connectivity in early life; third, to identify new and multi-factorial methods for early detection of children at risk of long-term impairment; and fourth, to identify early life biological and environmental risk and resilience factors that affect the developing brain and so pave the way for new therapeutic strategies.

## **METHODS AND ANALYSIS**

## Study design

Single-centre prospective longitudinal cohort study.

#### **Study setting**

The Theirworld Edinburgh Birth Cohort ("TEBC") study is conducted at the University of Edinburgh and the Simpson Centre for Reproductive Health (SCRH) which is located at the Royal Infirmary of Edinburgh, NHS Lothian, UK. The SCRH provides maternity and newborn services for residents of the City of Edinburgh and the Lothians. It receives 7,000 deliveries per annum and is the regional centre for all neonatal intensive care in South East Scotland. Approximately 100 infants with birthweight <1500g receive intensive care at SCRH per annum.

Participant recruitment, initial assessment and data collection points 1-3 (Table 1) take place in the SCRH or the Edinburgh Imaging Facility, Royal Infirmary of Edinburgh. Follow-up assessments take place in a dedicated child development laboratory at the University of Edinburgh, through online and in-person completion of questionnaires, and in Neonatal Outpatient clinics at the SCRH (timepoints 4-7, Table1). Recruitment began in November 2016 and is planned to complete in 2021.

#### **Study participants**

#### Inclusion criteria

Cases: 300 preterm infants born at <33 weeks gestational age (GA)\*.

Controls: 100 term infants born at >37 weeks GA\*.

\*GA is estimated based on first trimester ultrasound.

Cases are included if a mother booked her pregnancy and delivered at SCRH (the study centre), or if a mother booked her pregnancy at a hospital outside the study centre but was transferred to it with her baby *in utero* due to planned or expected birth <33 weeks. Preterm infants who are transferred to SCRH *ex utero* for intensive care are not included.

#### **Exclusion criteria**

- Infants with congenital anomalies: structural or functional anomalies (e.g. metabolic disorders) that occur during intrauterine life and can be identified prenatally, at birth or later in life (World Health Organisation definition).
- 2. Infants with a contraindication to MRI at 3 Tesla.

## Sample selection and recruitment

#### Sample size

A key aim of the study is to investigate causes and consequences of preterm brain injury / atypical development by analysing data about brain macro- and microstructure from structural and quantitative MRI with biological, environmental and neuropsychological outcome data. In the absence of established methodology for power calculations using quantitative MRI techniques, the sample size is based on: exemplars of indicative sensitivity and power from computational modelling and previous data; and realistic assessment of recruitment, successful image acquisition of 85%, and follow-up. Studies indicate it is possible to detect group-wise differences in brain anatomy associated with specific exposures by applying computational techniques to MRI data from relatively small group sizes in univariate models: for example Tract-based Spatial Statistics (TBSS) and Network-based Statistics (NBS) are sensitive to generalised changes microstructure and connectivity with 20-60 infants per group<sup>8-14</sup>, and morphometric methods detect anatomic variation with similar group sizes, depending on the image feature of interest<sup>15 16</sup>. However, a key strength of the study is that larger samples (n=300-400) are required to construct multivariate models (needed to investigate multiple exposures that influence brain development), to combine information from different MRI modalities using data-driven methods, to investigate associations between image phenotypes and behavioural outcomes which often require larger study populations<sup>17 18</sup>, and to develop analytic methods that support causal inference. Another aim is the development of novel computational methods for mapping growth and connectivity in development. While certain technical developments such as image segmentation and methods for studying crossing fibres are achievable with sample sizes of <100<sup>19-22</sup>, larger sample sizes are needed to address other challenges. For example, larger atlases of the developing brain than are currently available are required to understand population diversity, and machine learning methods are being used to develop image biomarkers, and to improve the interoperability of multi-site acquisitions, which will enable researchers to increase study power, carry out essential replication studies, and investigate risk and resilience in brain development conferred by the genome<sup>23-25</sup>. We expect to address some of these issues with the planned sample of 400, and to make material contribution to wider data-sharing initiatives subject to the study's Data Access and Collaboration policy.

## Identifying participants

Cases: Infants born to women who present to the SCRH with threatened preterm labour and for whom delivery is planned or expected at less than 32 completed weeks GA.

Controls: Infants born to women who attend the SCRH and deliver at >36 weeks GA.

The protocol reported here was partially developed through a separate, pilot 'phase 1' cohort of 150 cases and 40 controls. This phase 1 pilot included neonatal MRI and infant-eyetracking, and a subset of this group are now participating in the 5-year assessment as described here (time point 7, table 1).

#### Screening for eligibility

The research nurse / clinical research fellow identifies potential participants using maternity TRAK, which is a system used by maternity services throughout NHS Lothian to record information about pregnancies and maternal care, and the neonatal electronic patient record. The clinical team provides an introductory leaflet about TEBC to eligible parents, and then informs the research team of parents who wish to discuss the study in greater detail. Those parents meet with a member of the research team and are provided with the Participant Information Sheet.

Participants from phase 1 studies being recalled for time point 7 (at 5 years) are contacted by the research team using contact details provided previously. Study information (introductory letter, patient information sheet, reply slip and prepaid envelope) is sent by post and followed up with a telephone call to answer any questions and review willingness to participate.

#### **Consenting participants**

Informed written consent is sought in two stages: first, consent for perinatal and neonatal sampling and assessment at initial enrolment to the study; second, consent for assessments post-discharge to 5 years is taken at time point 3 (see Table 1 below).

For phase 1 participants being recalled, consent is taken at the recall appointment, following circulation and discussion of the content by post and phone, as described above.

Informed consent may only be taken by a member of the research team with training in International Council for Harmonisation-Good Clinical Practice (ICH-GCP) and procedures for research involving children and young people.

#### Co-enrolment

The SCRH is an academic perinatal medicine centre that hosts observational research studies, and it is a recruiting centre for randomised controlled trials of therapies designed to improve the outcome of preterm infants and their mothers. Parents / carers of TEBC participants are encouraged to consider entry into such studies if eligible. Co-enrolment is informed by 'Guidelines for Co-enrolment' produced by the Academic and Clinical Central Office for Research and Development (ACCORD), which is a partnership between the University of Edinburgh and NHS Lothian Health Board. Co-enrolment will be recorded.

#### **Cohort retention**

Participants and their families are kept up to date with research progress through Newsletters, Twitter, Facebook and a website (www.tebc.ed.ac.uk). Birthday cards are sent to participants and we hold an annual event for research updates and public outreach.

#### Withdrawal of study participants

The decision to withdraw from the study is either at parental / carer request, or at the request of the attending consultant physician or the PI for clinical reasons.

#### **Outcomes and data analysis**

Table 1 summarises the assessment schedule, data collection methods, sample type / domain, and the test or task. Data from cases and controls are collected using the same data collection instruments.

Page 11 of 59

|               |           |                                 |                                        | BMJ Open <u>B</u>                                                                                                                                          |  |
|---------------|-----------|---------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               |           |                                 |                                        | BMJ Open<br>Test / task                                                                                                                                    |  |
| Time<br>point | Age       | Data collection method          | Sample type / domain of<br>measurement |                                                                                                                                                            |  |
| 1             | Antenatal | Records & interview             | Socio-economic status                  | Maternal & paternal education, Scottish Index of Multigele Deprivation derived from home post                                                              |  |
| -             |           |                                 | Medical / demographic                  | Family and medical history and exposures                                                                                                                   |  |
|               |           | Descude ausstication 2          | Medical                                | History and exposures     S       Anthropometry     G                                                                                                      |  |
| 2             | Birth     | Records, questionnaire & tissue | Placenta                               | Structured histopathology rating and storage                                                                                                               |  |
|               |           |                                 | Cord blood                             | Structured histopathology rating and storage       N         Panel of immunoregulatory and trophic proteins       N         Gene expression array*       N |  |
|               |           | Tissue: blood                   | Blood spot                             | Gene expression array*     Panel of immunoregulatory and trophic proteins       Gene expression array*     Sector                                          |  |
|               |           | Tissue: saliva                  | Epigenetics                            | DNA methylation                                                                                                                                            |  |
|               |           | Tienue, need such               | Nasal lining fluid                     | Antimicrobial peptides including cathelicidin levels*                                                                                                      |  |
|               |           | Tissue: nasal swab              | DNA/RNA                                | Respiratory microbiota*     5       Gut microbiota*     3                                                                                                  |  |
|               |           | Stool                           | DNA/RNA                                | Gut microbiota*                                                                                                                                            |  |
|               |           |                                 | Medical                                | Anthropometry                                                                                                                                              |  |
| 3             | Neonatal  | Direct observation              | ROP assessment                         | Grade retinopathy                                                                                                                                          |  |
| -             |           |                                 | Parent IQ                              | National Adult Reading Test                                                                                                                                |  |
|               |           | MRI                             | Brain structure and<br>connectivity    | Structural and diffusion 3T MRI                                                                                                                            |  |
|               |           |                                 | Medical / demographic                  | Breast-feeding and updated perinatal medical history                                                                                                       |  |
|               |           |                                 |                                        | Edinburgh Post-natal Depression Scale                                                                                                                      |  |
|               |           | Questionnaire                   |                                        | Parenting Daily Hassles                                                                                                                                    |  |
|               |           |                                 |                                        | World Health Organisation – Quality Of Life                                                                                                                |  |
|               |           |                                 |                                        | Adult Temperament Questionnaire                                                                                                                            |  |
|               |           | Questionnaire, by post or       | Demographics                           | Updated Socio-economic status, maternal education, Beastfeeding / nutrition, activities                                                                    |  |
|               | 4.5       | online or phone                 | Infant temperament                     | Infant Behaviour Questionnaire, Revised, short form &                                                                                                      |  |
| 4             | months    | interview                       | Parent wellbeing                       | Edinburgh Post-natal Depression Scale                                                                                                                      |  |
|               |           |                                 | Tissue: nasal swab                     | DNA/RNA                                                                                                                                                    |  |
|               |           | 115566. 110501 59900            | Epigenetics                            | Respiratory microbiota*     or       DNAm     op                                                                                                           |  |
|               |           | Tissue: saliva                  | HPA axis                               | Cortisol: Waking, 30 minutes after waking, before bed                                                                                                      |  |
|               | 9 months  |                                 | Nasal lining fluid                     | Antimicrobial peptides including cathelicidin levels*                                                                                                      |  |
| 5             |           | Tissue: nasal swab              | DNA/RNA                                | Respiratory microbiota* $\overline{\sigma}$                                                                                                                |  |
|               |           | Eye-tracking                    | Social development                     | Free scanning: neutral faces                                                                                                                               |  |
|               |           |                                 |                                        | Free scanning: "pop-out" task, looking to faces and disgractors                                                                                            |  |
|               |           |                                 |                                        | Free scanning: "social preferential looking" to social ar                                                                                                  |  |
|               | I         |                                 |                                        |                                                                                                                                                            |  |

|         |                         |                              | BMJ Open                                                                                                                                                         |
|---------|-------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                         |                              | BMJ Open Jopen 2019                                                                                                                                              |
|         |                         |                              | ြ<br>Free scanning: "dancing ladies" social and non-social vueeos                                                                                                |
|         |                         | <b>.</b>                     | Switching and disengagement: "gap-overlap" task, fixation to central and peripheral cues                                                                         |
|         |                         | Attention                    | Sustained attention: "follow the bird" task, following noving target                                                                                             |
|         |                         | Processing speed             | Free scanning: odd-one-out visual search task (simple Letters version)                                                                                           |
|         |                         |                              | Free-scanning: word-picture matching task                                                                                                                        |
|         |                         | Visual acuity                | Keeler card assessment                                                                                                                                           |
|         | Direct observation      | Social development           | Still Face procedure (sub-set with computational motor assessment)                                                                                               |
|         |                         |                              | Parent-child play, for later behavioural coding: (sub-set with computational motor assessment)                                                                   |
|         |                         | Infant temperament           | Infant Behaviour Questionnaire, Revised, short form                                                                                                              |
|         | Questionnaire           |                              | Sleep & Settle Questionnaire         Q           MacArthur Communicative Development Inventory (wards and gestures)         Inventory (wards and gestures)       |
|         | Questionnaire           | Language<br>Parent wellbeing | World Health Organisation – Quality Of Life                                                                                                                      |
|         |                         | Feedback                     | Feedback form, monitoring satisfaction with research <b>B</b> oject                                                                                              |
|         | Direct observation      | Anthropometry                | Growth 5                                                                                                                                                         |
|         |                         | Demographics                 | Family circumstances update form including breastfeeding, socio-economic status (home postcoc                                                                    |
|         | Parent interview        | Developmental level          | Vineland Adaptive Behaviour Scales: comprehensive interview form                                                                                                 |
|         | Diverse a base mustices | Ophthalmology                | Refraction                                                                                                                                                       |
|         | Direct observation      | Anthropometry                | Growth 3                                                                                                                                                         |
|         | Tissue: nasal swab      | Nasal lining fluid           | Antimicrobial peptides including cathelicidin levels*                                                                                                            |
|         |                         | DNA/RNA                      | Respiratory microbiota*                                                                                                                                          |
|         |                         | Social development           | Free scanning: neutral faces                                                                                                                                     |
|         |                         |                              | Free scanning: "pop-out" task, looking to faces and distractors                                                                                                  |
|         |                         |                              | Free scanning: "social preferential looking" to social and non-social images                                                                                     |
|         | Eye-tracking            |                              | Free scanning: "dancing ladies" social and non-social vigeos                                                                                                     |
|         |                         | Attention                    | Switching and disengagement: "gap-overlap" task, fixation to central and peripheral cues<br>Sustained attention: "follow the bird" task, following moving target |
|         |                         |                              |                                                                                                                                                                  |
| 2 years |                         | Processing speed             | Free-scanning: word-nicture matching task                                                                                                                        |
| z yeurs |                         | Social development           | Parent-child play, for later behavioural coding                                                                                                                  |
|         | Direct observation      | Executive function           | Following Instructions task                                                                                                                                      |
|         |                         | Bayley-III                   | General developmental level*                                                                                                                                     |
|         |                         | Temperament                  | Early Childhood Behaviour Questionnaire, Revised, short form                                                                                                     |
|         |                         |                              | Child Sleep Habits Questionnaire                                                                                                                                 |
|         |                         | Language                     | MacArthur Communicative Development Inventory (words and sentences)                                                                                              |
|         | Questionnaire           | Social development           | Quantitative Checklist for Autism in Toddlers                                                                                                                    |
|         | Questionnaire           |                              | Behaviour Rating Inventory for Executive Function, Preschool (BRIEF-P)                                                                                           |
|         |                         | Executive function           | Early Executive Function Questionnaire                                                                                                                           |
|         |                         | Developmental level          | Vineland Adaptive Behaviour Scales: comprehensive participation form                                                                                             |
|         | 1                       | 1                            |                                                                                                                                                                  |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### BMJ Open

|   |         | 7                  | Parent wellbeing    | BMJ Open<br>BMJ Open<br>World Health Organisation – Quality Of Life                         |
|---|---------|--------------------|---------------------|---------------------------------------------------------------------------------------------|
|   |         |                    | Feedback            | Feedback form, monitoring satisfaction with research Project                                |
|   |         | Parent interview   | Demographics        | Family circumstances update form including breastfeeding, socio-economic status (home postc |
|   |         |                    | Epigenetics         | DNA methylation 4                                                                           |
|   |         | Tissue: saliva     | HPA axis            | Cortisol                                                                                    |
|   |         | Tissue: nasal swab | DNA/RNA             | Respiratory microbiota*                                                                     |
|   |         |                    | Anthropometry       |                                                                                             |
|   |         |                    | Blood pressure      | Growth N<br>Hypertension N                                                                  |
|   |         |                    | Ophthalmology       | Befraction and acuity                                                                       |
|   |         | Direct observation | Social development  | Parent-child play, for later behavioural coding 2                                           |
|   |         |                    | Executive function  | Following Instructions task                                                                 |
|   |         |                    | Developmental level | Mullen Scales of Early Learning                                                             |
|   |         |                    |                     | Free scanning: neutral faces                                                                |
|   |         |                    | Social development  | Free scanning: "pop-out" task, looking to faces and distractors                             |
|   |         |                    |                     | Free scanning: "social preferential looking" to social and non-social images                |
| - | 5 years | Eye-tracking       |                     | Free scanning: "dancing ladies" social and non-social veeos                                 |
| 7 |         |                    | Attention           | Switching and disengagement: "gap-overlap" task, fixation to central and peripheral cues    |
|   |         |                    |                     | Sustained attention: "follow the bird" task, following reving target                        |
|   |         |                    | Processing speed    | Free scanning: odd-one-out visual search task (complex objects version)                     |
|   |         | Questionnaire      | Temperament         | Strengths and Difficulties Questionnaire (both teacher and parent report versions)          |
|   |         |                    | Language            | Children's Communication Checklist                                                          |
|   |         |                    | Social development  | Social Communication Questionnaire: Current                                                 |
|   |         |                    | Executive function  | DUPaul ADHD rating scale                                                                    |
|   |         |                    |                     | Behaviour Rating Inventory for Executive Function -Pre-school (BRIEF-P)                     |
|   |         |                    | Visual perception   | Cerebral Visual Impairment Inventory                                                        |
|   |         |                    | Parent wellbeing    | World Health Organisation – Quality Of Life                                                 |
|   |         |                    | Feedback            | Feedback form monitoring satisfaction with research project                                 |
|   |         |                    | Developmental level | Vineland Adaptive Behaviour Scales: domain-level parent rating form                         |
|   |         | Parent interview   | Demographics        | Family circumstances update form including socio-eco mic status (home postcode)             |

#### Maternal and infant clinical and demographic information

Data are abstracted from the mothers' and infants' electronic medical records onto a standardised data collection sheet. A structured maternal interview is used to collect additional information that may not be recorded in routinely collected data, for example detailed family history about neurodevelopmental and mental health problems, and over-the-counter prescription and recreational drugs taken during pregnancy. For deaths the cause and post-mortem findings will be recorded.

#### Placentas

 After delivery, placentae from all preterm infants are formalin fixed and stored at 4°C before sampling. The placentae are sampled according to a standardized protocol; distal and proximal sections of cord (the proximal section being taken at 1.5 cm from above the fetal surface), a roll of extraplacental membranes starting at the point of rupture and 4 full thickness sections from each quadrant. All are stained with Haematoxylin and Eosin and reported using a standardised, structured approach that describes any pathological features present, including but not limited to, fetal thrombotic vasculopathy, villitis, chorioamnionitis, funisitis and features of uteroplacental ischaemia<sup>12 26</sup>.

#### Immunoregulatory and trophic proteins

Analysis of a panel of immunoregulatory and trophic proteins (IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-12, IL-17, TNF-a, MIP-1b, BDNF, GM-CSF, IL-10, IL-18, IFN-g, TNF-b, MCP-1, MIP-1a, C3, C5a, C9, MMP-9, RANTES and CRP) is undertaken on umbilical cord and neonatal blood samples. These proteins are selected to offer information with respect to the pro- and antiinflammatory innate response as well as the adaptive immune response. Blood is collected using Schleicher and Schuell 903 filter paper (6 x 3.2mm spots per subject) and analysed using a multiplex immunoassay (Meso Scale Discovery) at Statens Serum Institute, Copenhagen. We use the approach described by Skogstrand et al<sup>27</sup> to analyse differences in concentration between cases and controls.

#### Structural and diffusion magnetic resonance imaging

A Siemens MAGNETOM Prisma 3T MRI clinical scanner (Siemens Healthcare, Erlangen, Germany) and 16-channel phased-array paediatric head receive coil is used to acquire: 3D T1weighted MPRAGE (T1w) structural volume scan (acquired voxel size = 1 mm isotropic) with TI 1100 ms, TE 4.69 ms and TR 1970 ms; a 3D T2-weighted SPACE (T2w) structural scan (voxel size = 1mm isotropic) with TE 409 ms and TR 3200 ms; and a multi-shell axial dMRI scan (16 ×

#### **BMJ** Open

b = 0 s/mm<sup>2</sup>, 3 × b = 200 s/mm<sup>2</sup>, 6 × b = 500 s/mm<sup>2</sup>, 64 × b = 750 s/mm<sup>2</sup>, 64 × b = 2500 s/mm<sup>2</sup>) with optimal angular coverage<sup>28</sup> (see Supplementary material 1-3). If the infant stays settled axial 3D susceptibility weighted imaging (SWI; TR = 28 ms, TE = 20 ms, 0.75 x 0.75 x 3 mm acquired resolution) and axial 2D fluid-attenuated inversion-recovery BLADE imaging (FLAIR; TR = 10000 ms, TE = 130 ms, TI = 2606 ms, 0.94 x 0.94 x 3 mm acquired resolution) are acquired. In a subgroup of participants magnetisation transfer saturation imaging is acquired for evaluation of tissue myelin content, consisting of three sagittal 3D multi-echo spoiled gradient echo scans (TE = {1.54 ms, 4.55 ms, 8.56 ms}, 2-mm isotropic acquired resolution): magnetisation-transfer and proton-density weighted (TR = 75 ms, FA = 5°), and T1-weighted (TR = 15 ms, FA = 14°) acquisitions, supplementary material 4. Tissue heating and acoustic noise exposure are limited throughout the examination through the use of active noise cancellation and by setting the gradient slew rate and other pulse sequence parameters appropriately. Participants are scanned in normal mode with respect to both tissue heating and peripheral nerve stimulation.

Conventional images are reported by a paediatric radiologist using a structured system <sup>29, 30</sup>. We use image data to generate novel processing techniques optimised for neonatal data<sup>11 19-21 31</sup>, and we will use these and other publicly available pipelines for processing neonatal data<sup>13 32 33</sup> to derive image features for analyses with collateral data relating to exposures and outcomes. These include but are not limited to tract-based, morphometric and structural connectivity analyses <sup>10-12 34-38</sup>.

#### DNA storage

DNA is extracted form saliva, stored and catalogued at the Edinburgh Clinical Research Facility, ready for downstream analyses.

#### DNA methylation

Saliva is sampled using the DNA OG-575 kit (DNAGenotek, Ottawa, ON, Canada). DNA extraction is performed using published methods<sup>36</sup> and DNAm analyses are carried out at the Genetics Core of the Edinburgh Clinical Research Facility (Edinburgh, UK), using Illumina Infinium MethylationEPIC (San Diego, CA, USA), with interrogation of the arrays against ~850k methylation sites. We will investigate perinatal influences on DNAm using principal component analysis, mediation, and correlation analyses.

#### Hypothalamic-pituitary-adrenal axis (HPAA)

Salivary cortisol is used as a marker of HPAA activity. Saliva is collected in Sarstedt tubes at specified times at 9 months and 5 years. Timed saliva samples are also collected during the 9 months appointment before and after a behavioural paradigm (Still Face) which is known to elicit a biological stress response (one sample pretest and two samples post test to capture reaction and recovery). Samples are stored at -20C and analysed in batches at each time point. Anthropometric data are recorded at 9 months, 2 years and 5 years, and blood pressure is measured at 5 years.

#### Eye-tracking

We record eye-movements in response to visual stimuli at 9 months, 2 years and 5 years using a Tobii© x60 eye-tracker and bespoke analysis software (Matlab). Images are presented on a display monitor with a resolution of 1,440 × 900 pixels. The Tobii© ×60 system tracks both eyes to a rated accuracy of 0.3 degrees at a rate of 60 Hz. We analyse looking patterns, including time to first fixate and looking time at areas of interest, in tasks designed to enable inference about social development, attention, and processing speed<sup>35 39</sup>.

#### Standardised assessments

Standardised assessments of neurodevelopment by direct observation at appropriate time points are: Bayley-III scales; Mullen Scales of Early Learning (MSEL); parental IQ (National Adult Reading Test). We selected the MSEL for assessing cognitive ability at 5 years because: it has separate verbal and nonverbal standardised scores so is useful for assessing cognitive abilities in children with social communication and language difficulties; internal consistency reliability and test/retest reliability for the 5 component scales is high; and the early learning composite (and its components) correlate with other psychometric tests used in this age group. We will use validated questionnaires to assess: infant/parent temperament; parent/family characteristics (postnatal depression, stress, quality of life, socioeconomic status); infant / child sleep habits; language development; social development; executive functions; cerebral visual impairment; medical diagnoses; and behavioural outcomes (parent and teacher ratings). We also record parent-child interaction for subsequent analysis via video coding of complex behaviours in a naturalistic context.

#### Susceptibility to viral infection

We collect unstimulated nasal secretion samples (nasosorption samples) using methods described by Thwaites et al<sup>40</sup>. This collection is brief, minimally invasive and a minimally

#### **BMJ** Open

distressing process. Nasosorption Nasal lining fluid is collected using Nasosorption Fxi synthetic absorption matrix strips inserted into the anterior part of the inferior turbinate of the nasal cavity. After 30 seconds of absorption, the strip is removed, capped, maintained at 4°C for up to 4 hours and then frozen at -80°C. From these nasal fluid samples we will assess the levels of antimicrobial peptides, including cathelicidin, and inflammatory cytokines, by ELISA or luminex assay. Collection of these at birth (term equivalent age), 9 months and 2 years will enable us to characterise birth levels, levels at timepoints significant for respiratory syncytial virus (RSV) infection/disease and at a later time point.

#### Respiratory and gut microbiota

We collect faecal and nasopharyngeal swabs (paediatric Copan e-swab with flocked nylon fiber tip) as has been described in the WHO-guideline for respiratory sampling of bacterial pathogens<sup>41</sup>. Fecal material and e-swabs (in RNA protect), are frozen at -80°C until further analyses. DNA and RNA will be extracted<sup>42</sup> and metagenomics analyses will be executed by 16S-based sequencing according to previously described methods<sup>43</sup>. We will study temporal relationships between preterm birth and early life characteristics, consecutive microbiota development, inflammation and methylation findings, and respiratory and neurocognitive developmental outcomes.

#### **Computational Motor Assessment**

Light-weight, wearable, wireless motion sensors are deployed to record the movement of a sub-set of infants at 9 months during the Still-Face paradigm and Parent-Child interaction. Data are anonymised before being securely transferred to the University of Strathclyde for analysis. These data will be analysed to test for differences in motor function between at-risk and low-risk infants, and will employ machine learning algorithms to detect patterns predictive of developmental outcome at 2 and 5 years, and their potential for clinical stratification across the neurodevelopmental disorders and psychometric profiles (IQ, adaptive function, language). Further, motor data at 9 months can be correlated against neuroanatomical features measured by MRI scan at birth and developmental scales at 9 months.

#### Patient and Public Involvement

We seek feedback from parents / carers to monitor satisfaction with research participation at 9 months, 2 years and 5 years, and we have a public facing website that describes results from the study.

#### **ETHICS AND DISSEMINATION**

#### Safety assessment

 There are no safety issues associated with collection of: placental tissue, umbilical cord / neonatal blood, saliva, faeces or hair. There are no safety issues in the conduct of planned neuropsychological assessments.

MRI does not involve ionizing radiation and there are no known risks from MRI provided standard safety measures for 3T scanning are in place. Infants are fed and wrapped and allowed to sleep naturally in the scanner. Pulse oximetry, electrocardiography and temperature are monitored. Flexible earplugs and neonatal earmuffs (MiniMuffs, Natus) are used for acoustic protection. All scans are supervised by a doctor or nurse trained in neonatal resuscitation. The scan is interrupted if there are any abnormalities in monitoring or if the baby wakes.

It is possible that incidental findings may be found on MRI or from questionnaires, for example intracranial structural anomalies or postnatal depression, respectively. In these circumstances, the findings are discussed with the participant's parent, and referral to the appropriate NHS service is made.

#### **Ethical approvals**

The study has been approved by the National Research Ethics Service (South East Scotland Research Ethics Committee), NRES numbers 11/55/0061 and 13/SS/0143 (Phase 1) and NRES number 16/SS/0154 (Phase 2); and by NHS Lothian Research & Development (2016/0255).

#### Governance

The study is run by a management group that includes the principal investigator, a minimum of two co-investigators, the study coordinator and administrative and financial officers. A delegation log details the responsibilities of each member of staff working on the study. A scientific advisory board oversees the conduct and progress of the study. The study is co-sponsored by the University of Edinburgh & NHS Lothian Academic and Clinical Central Office for Research and Development (ACCORD).

#### **Publication and data statement**

The principles set down by the International Committee of Medical Journal Editors for authorship and non-author contributors are followed for publications and presentations resulting from the study. A Data Access and Collaboration Policy sets out the terms and

conditions on which deidentified TEBC data, stimuli and tasks are accessible to the research community following reasonable request (www.tebc.ed.ac.uk).

#### Author contributions

JPB designed the study with input from all the authors. JPB, JH, MJT, RMR, SC, JS, DB, DJD, AJD, MEB and SF-W contributed to the establishment and refinement of study procedures and critically revised the manuscript. All authors approved the final version of the manuscript.

#### **Competing interests**

None declared.

#### Acknowledgements

The authors would like to thank participating families, and NHS colleagues at the Simpson Centre for Reproductive Health who support this study. We would like to thank Mrs Bavanthe Navarathne, a parent representative on the scientific advisory board, and other past and present members of the scientific advisory board (Frances Cowan, Chiara Nosarti, David Porteous, Hugh Rabagliati, Joanna Wardlaw, Heather Whalley). We are grateful to the following collaborators, colleagues and students who support the study: Gayle Barclay, Justyna Binkowska, Gillian Black, Manuel Blesa, Nis Borbye-Lorenzen, Geoff Carlson, Yu Wei Chua, Simon Cox, Hilary Cruikshank, Bethan Dean, Jonathan Delafield-Butt, Fiona Denison, Margaret Evans, Paola Galdi, Peter Ghazal, Lorna Ginnell, Charlotte Jardine, Gillian Lamb, Victoria Ledsham, Riccardo Marioni, Andrew McIntosh, Barbara Nugent, Lee Murphy, Sinéad O'Carroll, Alan Quigley, Alan Mulvihill, Magda Rudnicka, Scott Semple, Kristin Skögstrand, Sarah Stock, David Stoye, Gemma Sullivan, Kadi Vaher, colleagues at the Genetics Core of the Edinburgh Clinical Research Facility, and radiographers at the Edinburgh Imaging Facility Royal Infirmary of Edinburgh.

#### **Funding statement**

The TEBC study is funded by the charity Theirworld (www.theirworld.org) and is carried out in the University of Edinburgh MRC Centre for Reproductive Health (MRC G1002033). Susceptibility to viral infection studies are supported by grants from Action Medical Research (GN2703) and Chief Scientist Office (TCS/18/02). Respiratory microbiota studies are supported by grants from the Chief Scientist Office (SCAF/16/03), and DNA methylation and gut microbiota studies are supported by the Wellcome Trust (203769/Z/16/A and 220043/Z/19/Z). The MRI facility is funded by Wellcome Trust 104916/Z/14/Z, Dunhill Trust

R380R/1114, Edinburgh and Lothians Health Foundation 2012/17, Muir Maxwell Research

Fund, and Edinburgh Imaging, University of Edinburgh. MJT was supported by NHS Lothian

Research and Development Office, and RMR and AJD receive support from the British Heart

<text>

Foundation (RE/18/5/34216).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

# REFERENCES

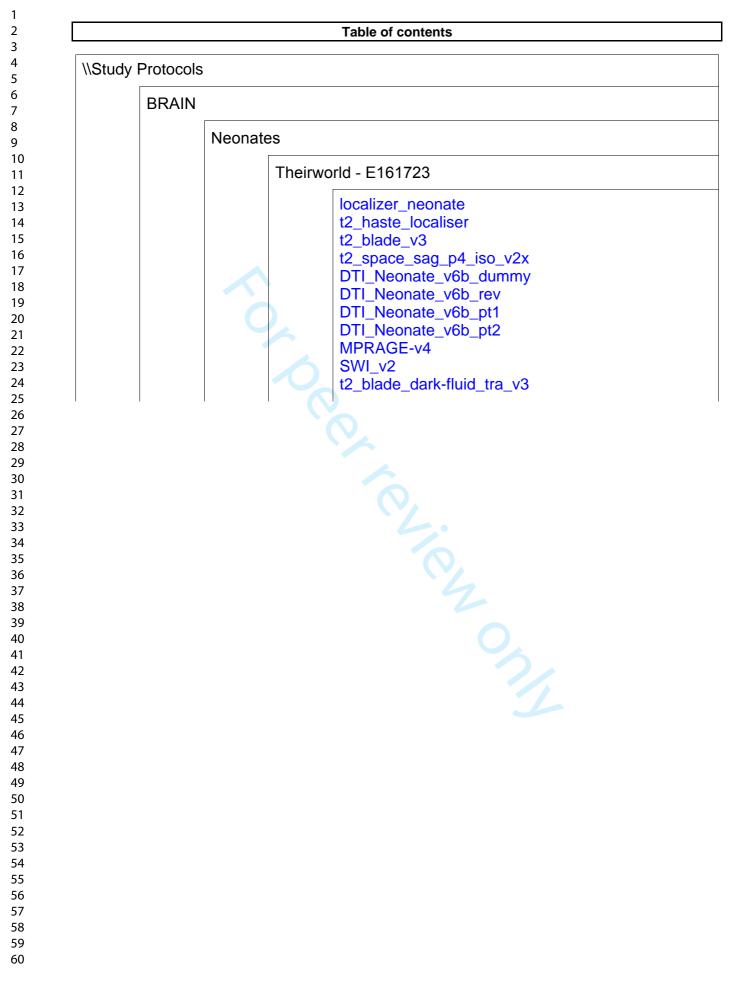
- Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. *Lancet Glob Health* 2019;7(1):e37-e46. doi: 10.1016/s2214-109x(18)30451-0 [published Online First: 2018/11/06]
- Mehler K, Oberthuer A, Keller T, et al. Survival Among Infants Born at 22 or 23 Weeks' Gestation Following Active Prenatal and Postnatal Care. JAMA Pediatr 2016;170(7):671-7. doi: 10.1001/jamapediatrics.2016.0207 [published Online First: 2016/05/24]
- 3. Patel RM, Rysavy MA, Bell EF, et al. Survival of Infants Born at Periviable Gestational Ages. *Clin Perinatol* 2017;44(2):287-303. doi: 10.1016/j.clp.2017.01.009 [published Online First: 2017/05/10]
- Norman M, Hallberg B, Abrahamsson T, et al. Association Between Year of Birth and 1-Year Survival Among Extremely Preterm Infants in Sweden During 2004-2007 and 2014-2016. Jama 2019;321(12):1188-99. doi: 10.1001/jama.2019.2021 [published Online First: 2019/03/27]
- Myrhaug HT, Brurberg KG, Hov L, et al. Survival and Impairment of Extremely Premature Infants: A Meta-analysis. *Pediatrics* 2019;143(2) doi: 10.1542/peds.2018-0933 [published Online First: 2019/02/02]
- Johnson S, Marlow N. Early and long-term outcome of infants born extremely preterm. Arch Dis Child 2017;102(1):97-102. doi: 10.1136/archdischild-2015-309581 [published Online First: 2016/08/12]
- 7. Mangham LJ, Petrou S, Doyle LW, et al. The cost of preterm birth throughout childhood in England and Wales. *Pediatrics* 2009;123(2):e312-e27.
- 8. Porter EJ, Counsell SJ, Edwards AD, et al. Tract-based spatial statistics of magnetic resonance images to assess disease and treatment effects in perinatal asphyxial encephalopathy. *PediatrRes* 2010;68(3):205-09.
- 9. Ball G, Boardman JP, Arichi T, et al. Testing the sensitivity of tract-based spatial statistics to simulated treatment effects in preterm neonates. *PLoSOne* 2013;8(7):e67706.
- Monnelly VJ, Anblagan D, Quigley A, et al. Prenatal methadone exposure is associated with altered neonatal brain development. *Neuroimage Clin* 2018;18:9-14. doi: 10.1016/j.nicl.2017.12.033 [published Online First: 2018/01/13]
- 11. Blesa M, Sullivan G, Anblagan D, et al. Early breast milk exposure modifies brain connectivity in preterm infants. *Neuroimage* 2019;184:431-39. doi: 10.1016/j.neuroimage.2018.09.045 [published Online First: 2018/09/22]
- 12. Anblagan D, Pataky R, Evans MJ, et al. Association between preterm brain injury and exposure to chorioamnionitis during fetal life. *Sci Rep* 2016;6:37932. doi: 10.1038/srep37932 [published Online First: 2016/12/03]
- 13. Ball G, Counsell SJ, Anjari M, et al. An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. *Neuroimage* 2010;53(1):94-102.
- 14. Jakab A, Ruegger C, Bucher HU, et al. Network based statistics reveals trophic and neuroprotective effect of early high dose erythropoetin on brain connectivity in very preterm infants. *NeuroImage Clinical* 2019;22:101806. doi:
  - 10.1016/j.nicl.2019.101806 [published Online First: 2019/04/18]
- 15. Boardman JP, Counsell SJ, Rueckert D, et al. Early growth in brain volume is preserved in the majority of preterm infants. *AnnNeurol* 2007;62(2):185-92.

16. Inder TE, Warfield SK, Wang H, et al. Abnormal cerebral structure is present at term in premature infants. *Pediatrics* 2005;115(2):286-94.

- Boardman JP, Counsell SJ. Invited Review: Factors associated with atypical brain development in preterm infants: insights from magnetic resonance imaging. *Neuropathol Appl Neurobiol* 2019 doi: 10.1111/nan.12589 [published Online First: 2019/11/21]
- Ball G, Aljabar P, Nongena P, et al. Multimodal image analysis of clinical influences on preterm brain development. *Ann Neurol* 2017;82(2):233-46. doi: 10.1002/ana.24995 [published Online First: 2017/07/19]
- Serag A, Wilkinson AG, Telford EJ, et al. SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests. *Front Neuroinform* 2017;11:2. doi: 10.3389/fninf.2017.00002 [published Online First: 2017/02/07]
- 20. Blesa M, Serag A, Wilkinson AG, et al. Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood. *Front Neurosci* 2016;10:220. doi: 10.3389/fnins.2016.00220 [published Online First: 2016/06/01]
- 21. Serag A, Blesa M, Moore EJ, et al. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods. *Sci Rep* 2016;6:23470. doi: 10.1038/srep23470 [published Online First: 2016/03/25]
- 22. Pecheva D, Tournier JD, Pietsch M, et al. Fixel-based analysis of the preterm brain: Disentangling bundle-specific white matter microstructural and macrostructural changes in relation to clinical risk factors. *NeuroImage Clinical* 2019;23:101820. doi: 10.1016/j.nicl.2019.101820 [published Online First: 2019/04/17]
- 23. Dickie DA, Shenkin SD, Anblagan D, et al. Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging. *Frontiers in neuroinformatics* 2017;11:1. doi: 10.3389/fninf.2017.00001 [published Online First: 2017/02/06]
- 24. Job DE, Dickie DA, Rodriguez D, et al. A brain imaging repository of normal structural MRI across the life course: Brain Images of Normal Subjects (BRAINS). *Neuroimage* 2016 doi: 10.1016/j.neuroimage.2016.01.027 [published Online First: 2016/01/23]
- 25. Shenkin SD, Pernet C, Nichols TE, et al. Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group. *NeuroImage* 2017;153:399-409. doi: 10.1016/j.neuroimage.2017.02.030 [published Online First: 2017/02/25]
- 26. Redline RW, Faye-Petersen O, Heller D, et al. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. *Pediatr Dev Pathol* 2003;6(5):435-48. doi: 10.1007/s10024-003-7070-y [published Online First: 2004/01/08]
- 27. Skogstrand K, Thorsen P, Norgaard-Pedersen B, et al. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology. *Clin Chem* 2005;51(10):1854-66. doi: 10.1373/clinchem.2005.052241 [published Online First: 2005/08/06]
- 28. Caruyer E, Lenglet C, Sapiro G, et al. Design of multishell sampling schemes with uniform coverage in diffusion MRI. *Magn Reson Med* 2013;69(6):1534-40. doi: 10.1002/mrm.24736 [published Online First: 2013/04/30]
- 29. Woodward LJ, Anderson PJ, Austin NC, et al. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. *NEnglJ Med* 2006;355(7):685-94.

| 2<br>3<br>4<br>5<br>6                  | 30 |
|----------------------------------------|----|
| 7<br>8<br>9<br>10                      | 31 |
| 11<br>12                               | 32 |
| 13<br>14<br>15                         | 33 |
| 16<br>17<br>18<br>19<br>20<br>21       | 34 |
| 22<br>23<br>24                         | 35 |
| 25<br>26<br>27<br>28<br>29<br>30       | 36 |
| 31<br>32<br>33<br>34<br>35             | 37 |
| 36<br>37<br>38<br>39                   | 38 |
| 40<br>41<br>42<br>43<br>44             | 39 |
| 45<br>46<br>47                         | 40 |
| 48<br>49<br>50<br>51<br>52<br>53<br>54 | 41 |
| 55<br>56<br>57<br>58<br>59<br>60       | 42 |
|                                        |    |

| 30. Leuchter RH, Gui L, Poncet A, et al. Association between early administration of high- |    |
|--------------------------------------------------------------------------------------------|----|
| dose erythropoietin in preterm infants and brain MRI abnormality at term-                  |    |
| equivalent age. <i>Jama</i> 2014;312(8):817-24. doi: 10.1001/jama.2014.9645 [publishe      | ed |
| Online First: 2014/08/27]                                                                  |    |


- 31. Anblagan D, Bastin ME, Sparrow S, et al. Tract shape modeling detects changes associated with preterm birth and neuroprotective treatment effects. *NeuroImage: Clinical* 2015;8:51-58. doi: doi:10.1016/j.nicl.2015.03.021
- 32. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. *Neuroimage* 2006;31(4):1487-505.
- Makropoulos A, Robinson EC, Schuh A, et al. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. *Neuroimage* 2018;173:88-112. doi: 10.1016/j.neuroimage.2018.01.054 [published Online First: 2018/02/08]
- 34. Boardman JP, Walley A, Ball G, et al. Common genetic variants and risk of brain injury after preterm birth. *Pediatrics* 2014;133(6):e1655-63. doi: 10.1542/peds.2013-3011 [published Online First: 2014/05/14]
- 35. Telford EJ, Fletcher-Watson S, Gillespie-Smith K, et al. Preterm birth is associated with atypical social orienting in infancy detected using eye tracking. J Child Psychol Psychiatry 2016;57(7):861-8. doi: 10.1111/jcpp.12546 [published Online First: 2016/03/05]
- 36. Sparrow S, Manning JR, Cartier J, et al. Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural function. *Transl Psychiatry* 2016;6:e716. doi: 10.1038/tp.2015.210 [published Online First: 2016/01/20]
- 37. Krishnan ML, Van Steenwinckel J, Schang AL, et al. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. *Nat Commun* 2017;8(1):428. doi: 10.1038/s41467-017-00422-w [published Online First: 2017/09/07]
- 38. Telford EJ, Cox SR, Fletcher-Watson S, et al. A latent measure explains substantial variance in white matter microstructure across the newborn human brain. *Brain Struct Funct* 2017;222(9):4023-33. doi: 10.1007/s00429-017-1455-6 [published Online First: 2017/06/08]
- 39. Gillespie-Smith K, Boardman JP, Murray IC, et al. Multiple Measures of Fixation on Social Content in Infancy: Evidence for a Single Social Cognitive Construct? *Infancy* 2016;21(2):241-57. doi: 10.1111/infa.12103 [published Online First: 2016/03/08]
- 40. Thwaites RS, Jarvis HC, Singh N, et al. Absorption of Nasal and Bronchial Fluids: Precision Sampling of the Human Respiratory Mucosa and Laboratory Processing of Samples. *Journal of visualized experiments : JoVE* 2018(131) doi: 10.3791/56413 [published Online First: 2018/02/15]
- 41. Satzke C, Turner P, Virolainen-Julkunen A, et al. Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. *Vaccine* 2013;32(1):165-79. doi: 10.1016/j.vaccine.2013.08.062 [published Online First: 2013/12/18]
- 42. de Steenhuijsen Piters WA, Heinonen S, Hasrat R, et al. Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection. *American journal of respiratory and critical care medicine*

2016;194(9):1104-15. doi: 10.1164/rccm.201602-0220OC [published Online First: 2016/11/01]

43. Bosch A, de Steenhuijsen Piters WAA, van Houten MA, et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. *American journal of respiratory and critical care medicine* 2017;196(12):1582-90. doi: 10.1164/rccm.201703-0554OC [published Online First: 2017/07/01]

for occreations with

# SIEMENS MAGNETOM Prisma



#### SIEMENS MAGNETOM Prisma

#### \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\localizer\_neonate TA: 0:12 PM: REF Voxel size: 0.5×0.5×7.0 mmPAT: Off Rel. SNR: 1.00 : fl **Contrast - Dynamic** On Multiple series Each measurement On **Resolution - Common** Off On FoV read 250 mm Load images to stamp segments On FoV phase 100.0 % Load images to graphic segments On Slice thickness 7.0 mm Off 256 Base resolution Off Phase resolution 91 % Start measurement without further Off Phase partial Fourier Off Interpolation On Off Single measurement **Resolution - iPAT** PAT mode None 1 1 20 % L0.0 P47.8 F62.3 mm Sagittal A >> P 2 1 20 % L0.0 P47.8 F62.3 mm Transversal A >> P 3 1 20 % L0.0 P47.8 F62.3 mm Coronal R >> L

#### Filter Prescan Normalize, Elliptical filter Coil elements PeH;PeN **Contrast - Common** TR 7.5 ms TF 3 69 ms

|                    | 5.03 115 |
|--------------------|----------|
| TD                 | 0 ms     |
| MTC                | Off      |
| Magn. preparation  | None     |
| Flip angle         | 20 deg   |
| Fat suppr.         | None     |
| Water suppr.       | None     |
| SWI                | Off      |
| Contrast - Dynamic |          |
| Averages           | 2        |
|                    |          |

0%

250 mm

100.0 %

7.0 mm

7.5 ms

2

3

3.69 ms

Short term

Magnitude

1

| PAT mode                   | None                |
|----------------------------|---------------------|
| Resolution - Filter Image  |                     |
| Image Filter               | Off                 |
| Distortion Corr.           | Off                 |
| Prescan Normalize          | On                  |
| Unfiltered images          | Off                 |
| Normalize                  | Off                 |
| B1 filter                  | Off                 |
| Resolution - Filter Rawdat | a                   |
| Raw filter                 | Off                 |
| Elliptical filter          | On                  |
| Geometry - Common          |                     |
| Slice group                | 1                   |
| Slices                     | 1                   |
| Dist. factor               | 20 %                |
| Position                   | L0.0 P47.8 F62.3 mm |
| Orientation                | Sagittal            |
| Phase enc. dir.            | A >> P              |
| Slice group                | 2                   |
| Slices                     | 1                   |
| Dist. factor               | 20 %                |
| Position                   | L0.0 P47.8 F62.3 mm |
| Orientation                | Transversal         |
| Phase enc. dir.            | A >> P              |
| Slice group                | 3                   |
| Slices                     | 1                   |
| Dist. factor               | 20 %                |
| Position                   | L0.0 P47.8 F62.3 mm |
| Orientation                | Coronal             |
| Phase enc. dir.            | R >> L              |
| FoV read                   | 250 mm              |
| FoV phase                  | 100.0 %             |
| Slice thickness            | 7.0 mm              |
| TR                         | 7.5 ms              |
| Multi-slice mode           | Sequential          |
| Series                     | Interleaved         |
| Concatenations             | 3                   |
| Geometry - AutoAlign       |                     |
| Slice group                | 1                   |
| Position                   | L0.0 P47.8 F62.3 mm |
|                            |                     |

**Properties** 

Load images to viewer

Auto open inline display

Auto close inline display

Wait for user to start

Start measurements

Auto store images

Prio recon

Inline movie

preparation

Routine

Slice group

Slices

Dist. factor

Orientation

Dist. factor

Orientation

Dist. factor

Orientation

Phase enc. dir.

Phase oversampling

Position

AutoAlign

FoV read

Averages

TR

ΤE

FoV phase

Slice thickness

Concatenations

Averaging mode

Reconstruction

Measurements

Phase enc. dir.

Position

Slice group

Slices

Phase enc. dir.

Position

Slice group

Slices

# **BMJ** Open

# SIEMENS MAGNETOM Prisma

| Orientation                                                                                              | Transversal                                              |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Phase enc. dir.                                                                                          | A >> P                                                   |
| Slice group                                                                                              | 3                                                        |
| Position                                                                                                 | L0.0 P47.8 F62.3                                         |
| Orientation                                                                                              | Coronal                                                  |
| Phase enc. dir.                                                                                          | R >> L                                                   |
| AutoAlign                                                                                                |                                                          |
| Initial Position                                                                                         | L0.0 P47.8 F62.3                                         |
| L                                                                                                        | 0.0 mm                                                   |
| P                                                                                                        | 47.8 mm                                                  |
| F                                                                                                        | 62.3 mm                                                  |
| Initial Rotation                                                                                         | 0.00 deg                                                 |
| Initial Orientation                                                                                      | Sagittal                                                 |
| Geometry - Saturation                                                                                    |                                                          |
| Saturation mode                                                                                          | Standard                                                 |
| Fat suppr.                                                                                               | None                                                     |
| Water suppr.                                                                                             | None                                                     |
| Special sat.                                                                                             | None                                                     |
| Geometry - Tim Planni                                                                                    | ng Suite                                                 |
| Set-n-Go Protocol                                                                                        | Off                                                      |
| Table position                                                                                           | H                                                        |
| Table position                                                                                           | 0 mm                                                     |
| Inline Composing                                                                                         | Off                                                      |
| System - Miscellaneou                                                                                    | is K                                                     |
| Positioning mode                                                                                         | REF                                                      |
| Table position                                                                                           | H                                                        |
| Table position                                                                                           | 0 mm                                                     |
| MSMA                                                                                                     | S - C - T                                                |
| Sagittal                                                                                                 | R >> L                                                   |
| Coronal                                                                                                  | A >> P                                                   |
| Transversal                                                                                              | F >> H                                                   |
| Coil Combine Mode                                                                                        | Adaptive Combine                                         |
| Save uncombined                                                                                          | Off                                                      |
|                                                                                                          | Off                                                      |
| Matrix Optimization                                                                                      | -                                                        |
| AutoAlign                                                                                                | <br>Defeult                                              |
| Coil Select Mode                                                                                         | Default                                                  |
| System - Adjustments                                                                                     |                                                          |
| B0 Shim mode                                                                                             | Tune up                                                  |
| B1 Shim mode                                                                                             | TrueForm                                                 |
| Adjust with body coil                                                                                    | Off                                                      |
| Confirm freq. adjustment                                                                                 | Off                                                      |
| Assume Dominant Fat                                                                                      | Off                                                      |
|                                                                                                          | Off                                                      |
| Assume Silicone                                                                                          | Auto                                                     |
| Assume Silicone<br>Adjustment Tolerance                                                                  |                                                          |
| Adjustment Tolerance                                                                                     | ne                                                       |
| Adjustment Tolerance<br>System - Adjust Volun<br>Position                                                | lsocenter                                                |
| Adjustment Tolerance<br><b>System - Adjust Volun</b><br>Position<br>Orientation                          |                                                          |
| Adjustment Tolerance<br>System - Adjust Volun<br>Position                                                | Isocenter                                                |
| Adjustment Tolerance<br><b>System - Adjust Volun</b><br>Position<br>Orientation                          | lsocenter<br>Transversal                                 |
| Adjustment Tolerance<br><b>System - Adjust Volun</b><br>Position<br>Orientation<br>Rotation              | lsocenter<br>Transversal<br>0.00 deg                     |
| Adjustment Tolerance<br>System - Adjust Volun<br>Position<br>Orientation<br>Rotation<br>A >> P           | Isocenter<br>Transversal<br>0.00 deg<br>263 mm           |
| Adjustment Tolerance<br>System - Adjust Volun<br>Position<br>Orientation<br>Rotation<br>A >> P<br>R >> L | Isocenter<br>Transversal<br>0.00 deg<br>263 mm<br>350 mm |

# System - pix volumes

| B1 Shim mode | TrueForm   |
|--------------|------------|
| Excitation   | Slice-sel. |
|              |            |

# System - Tx/Rx

| - /                               |                |
|-----------------------------------|----------------|
| Frequency 1H                      | 123.244318 MHz |
| Frequency 1H<br>Correction factor | 1              |
| Gain                              | High           |
| Img. Scale Cor.                   | 1.000          |
| Reset                             | Off            |
| ? Ref. amplitude 1H               | 0.000 V        |

# Physio - Signal1

| 1st Signal/Mode | None   |  |
|-----------------|--------|--|
| TR              | 7.5 ms |  |
| Concatenations  | 3      |  |
| Segments        | 1      |  |

# **Physio - Cardiac**

| Tagging           | None    |  |
|-------------------|---------|--|
| Magn. preparation | None    |  |
| Fat suppr.        | None    |  |
| Dark blood        | Off     |  |
| FoV read          | 250 mm  |  |
| FoV phase         | 100.0 % |  |
| Phase resolution  | 91 %    |  |

# Physio - PACE

| Resp. control  | Off |
|----------------|-----|
| Concatenations | 3   |

# Inline - Common

| Subtract             | Off |  |
|----------------------|-----|--|
| Measurements         | 1   |  |
| StdDev               | Off |  |
| Liver registration   | Off |  |
| Save original images | On  |  |

# Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Sag<br>MIP-Cor   | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |
|                      |     |  |

# Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

# **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

# Inline - Maplt

| Save original images | On      |
|----------------------|---------|
| MapIt                | None    |
| Flip angle           | 20 deg  |
| Measurements         | 1       |
| Contrasts            | 1       |
| TR                   | 7.5 ms  |
| TE                   | 3.69 ms |

# Sequence - Part 1

Introduction

# BMJ Open SIEMENS MAGNETOM Prisma

| 1        |                                |              |  |
|----------|--------------------------------|--------------|--|
| 2        | Sequence - Part 1              |              |  |
| 3        | Dimension                      | 2D           |  |
| 4        | Phase stabilisation            | Off          |  |
| 5        | Asymmetric echo<br>Contrasts   | Allowed<br>1 |  |
| 6        | Flow comp.                     | No           |  |
| 7        | Multi-slice mode               | Sequential   |  |
| 8        | Bandwidth                      | 320 Hz/Px    |  |
| 9<br>10  |                                |              |  |
| 10       | Sequence - Part 2              |              |  |
| 12       | Segments                       | 1            |  |
| 13       | Acoustic noise reduction       | None         |  |
| 14       | RF pulse type<br>Gradient mode | Fast<br>Fast |  |
| 15       | Excitation                     | Slice-sel.   |  |
| 16       | RF spoiling                    | On<br>On     |  |
| 17       |                                | -            |  |
| 18       | Sequence - Assistant           |              |  |
| 19       | Mode                           | Off          |  |
| 20       | Allowed delay                  | 0 s          |  |
| 21       |                                | Off<br>0 s   |  |
| 22       |                                |              |  |
| 23       |                                |              |  |
| 24       |                                |              |  |
| 25       |                                |              |  |
| 26       |                                |              |  |
| 27       |                                |              |  |
| 28       |                                |              |  |
| 29       |                                |              |  |
| 30<br>31 |                                |              |  |
| 32       |                                |              |  |
| 33       |                                |              |  |
| 34       |                                |              |  |
| 35       |                                |              |  |
| 36       |                                |              |  |
| 37       |                                |              |  |
| 38       |                                |              |  |
| 39       |                                |              |  |
| 40       |                                |              |  |
| 41       |                                |              |  |
| 42       |                                |              |  |
| 43       |                                |              |  |
| 44       |                                |              |  |
| 45       |                                |              |  |
| 46       |                                |              |  |
| 47<br>49 |                                |              |  |
| 48<br>49 |                                |              |  |
| 49<br>50 |                                |              |  |
| 50<br>51 |                                |              |  |
| 52       |                                |              |  |
| 53       |                                |              |  |
| 54       |                                |              |  |
| 55       |                                |              |  |
| 56       |                                |              |  |
| 57       |                                |              |  |
| 58       |                                |              |  |
| 59       |                                |              |  |
| 60       |                                |              |  |
|          |                                |              |  |
|          |                                |              |  |

# BMJ Open

#### SIEMENS MAGNETOM Prisma

| -                                                                     |                    | Theirworld - E161723\t2_ha      | _                 |
|-----------------------------------------------------------------------|--------------------|---------------------------------|-------------------|
| TA: 6.0 s PM: REF Voxel size: 0.7×0.7×4.0 mmPAT: 2 Rel. SNR: 1.00 : h |                    |                                 |                   |
| Properties                                                            |                    | <b>Resolution - Common</b>      |                   |
| Prio recon                                                            | Off                | FoV read                        | 220 mm            |
| Load images to viewer                                                 | On                 | FoV phase                       | 100.0 %           |
| Inline movie                                                          | Off                | Slice thickness                 | 4.0 mm            |
| Auto store images                                                     | On                 | Base resolution                 | 320               |
| Load images to stamp segments                                         | On                 | Phase resolution                | 80 %              |
| Load images to graphic segments                                       | On                 | Phase partial Fourier           | 4/8               |
| Auto open inline display                                              | Off                | Interpolation                   | Off               |
| Auto close inline display                                             | Off                | morpolation                     |                   |
| Start measurement without further                                     | Off                | <b>Resolution - iPAT</b>        |                   |
| preparation                                                           |                    | PAT mode                        | GRAPPA            |
| Wait for user to start                                                | Off                | Accel, factor PE                | 2                 |
| Start measurements                                                    | Single measurement | Ref. lines PE                   | 24                |
|                                                                       |                    | Reference scan mode             | Integrated        |
| Routine                                                               |                    | Reference scan mode             | integrated        |
| Slice group                                                           | 1                  | <b>Resolution - Filter Imag</b> | е                 |
| Slices                                                                | 1                  | Image Filter                    | Off               |
| Dist. factor                                                          | 30 %               | Distortion Corr.                | Off               |
| Position                                                              | Isocenter          | Prescan Normalize               | On                |
| Orientation                                                           | Sagittal           | Unfiltered images               | Off               |
| Phase enc. dir.                                                       | A >> P             | Normalize                       | Off               |
| Slice group                                                           | 2                  | B1 filter                       | Off               |
| Slices                                                                | 1                  | DTIME                           |                   |
| Dist. factor                                                          | 30 %               | <b>Resolution - Filter Raw</b>  | lata              |
| Position                                                              | L0.0 P0.0 H5.2 mm  |                                 |                   |
| Orientation                                                           | Transversal        | Raw filter                      | Off               |
| Phase enc. dir.                                                       | R >> L             | Elliptical filter               | On                |
| Slice group                                                           | 3                  |                                 |                   |
| Slices                                                                | 1                  | Geometry - Common               |                   |
|                                                                       |                    | Slice group                     | 1                 |
| Dist. factor                                                          | 30 %               | Slices                          | 1                 |
| Position                                                              | L0.0 P0.0 H10.4 mm | Dist. factor                    | 30 %              |
| Orientation                                                           | Coronal            | Position                        | Isocenter         |
| Phase enc. dir.                                                       | R >> L             |                                 |                   |
| AutoAlign                                                             |                    | Orientation                     | Sagittal          |
| Phase oversampling                                                    | 0 %                | Phase enc. dir.                 | A >> P            |
| FoV read                                                              | 220 mm             | Slice group                     | 2                 |
| FoV phase                                                             | 100.0 %            | Slices                          | 1                 |
| Slice thickness                                                       | 4.0 mm             | Dist. factor                    | 30 %              |
| TR                                                                    | 1500.0 ms          | Position                        | L0.0 P0.0 H5.2 mr |
| TE                                                                    | 94 ms              | Orientation                     | Transversal       |
|                                                                       |                    | Phase enc. dir.                 | R >> L            |
| Averages                                                              | 1                  | Slice group                     | 3                 |
| Concatenations                                                        | 1                  | Slices                          | 1                 |
| Filter                                                                | Prescan Normalize, |                                 |                   |
| <b>0</b>                                                              | Elliptical filter  | Dist. factor                    | 30 %              |
| Coil elements                                                         | HE1-4              | Position                        | L0.0 P0.0 H10.4 m |
| • • • •                                                               |                    | Orientation                     | Coronal           |
| Contrast - Common                                                     |                    | Phase enc. dir.                 | R >> L            |
| TR                                                                    | 1500.0 ms          | FoV read                        | 220 mm            |
| TE                                                                    | 94 ms              | FoV phase                       | 100.0 %           |
| MTC                                                                   | Off                | Slice thickness                 | 4.0 mm            |
| Magn. preparation                                                     | None               | TR                              | 1500.0 ms         |
|                                                                       |                    | Multi-slice mode                | Single shot       |
| Flip angle                                                            | 150 deg            | Series                          | Interleaved       |
| Fat suppr.                                                            | None               | Concatenations                  | 1                 |
| Water suppr.                                                          | None               | Concatenations                  | I                 |
| Restore magn.                                                         | Off                | Geometry - AutoAlign            |                   |
| Contrast - Dynamic                                                    |                    | Slice group                     | 1                 |
| -                                                                     | 4                  | Position                        | Isocenter         |
| Averages                                                              | 1                  | Orientation                     | Sagittal          |
| Averaging mode                                                        | Long term          |                                 | 5                 |
| Reconstruction                                                        | Magnitude          | Phase enc. dir.                 | A >> P            |
| Measurements                                                          | 1                  | Slice group                     | 2                 |
| Multiple series                                                       | Each measurement   | Position                        | L0.0 P0.0 H5.2 mr |

For peer review only - http://bmjopen5bmj.com/site/about/guidelines.xhtml

### SIEMENS MAGNETOM Prisma

| Orientation                                 | Transversal       |
|---------------------------------------------|-------------------|
| Phase enc. dir.                             | R >> L            |
| Slice group                                 | 3                 |
| Position                                    | L0.0 P0.0 H10.4 m |
| Orientation                                 | Coronal           |
| Phase enc. dir.                             | R >> L            |
| AutoAlign                                   |                   |
| Initial Position                            | Isocenter         |
| L                                           | 0.0 mm            |
| P                                           | 0.0 mm            |
| H                                           | 0.0 mm            |
| Initial Rotation                            | 0.00 deg          |
| Initial Orientation                         | Sagittal          |
| Geometry - Saturation<br>Fat suppr.         | None              |
| Water suppr.                                | None              |
| Restore magn.                               | Off               |
| Special sat.                                | None              |
| Geometry - Navigator                        | ~                 |
|                                             |                   |
| Geometry - Tim Plannin<br>Set-n-Go Protocol | Off               |
| Table position                              | Н                 |
| Table position                              | 0 mm              |
| Inline Composing                            | Off               |
| System - Miscellaneous                      |                   |
| Positioning mode                            | REF               |
| Table position                              | H                 |
| Table position                              | 0 mm              |
| MSMA                                        | S - C - T         |
| Sagittal                                    | R >> L            |
| Coronal                                     | A >> P            |
| Transversal                                 | F >> H            |
| Coil Combine Mode                           | Adaptive Combine  |
| Save uncombined                             | Off               |
| Matrix Optimization                         | Off               |
| AutoAlign                                   |                   |
| Coil Select Mode                            | On - AutoCoilSele |
| System - Adjustments                        |                   |
| B0 Shim mode                                | Tune up           |
| B1 Shim mode                                | TrueForm          |
| Adjust with body coil                       | Off               |
| Confirm freq. adjustment                    | Off               |
| Assume Dominant Fat                         | Off               |
| Assume Silicone                             | Off               |
| Adjustment Tolerance                        | Auto              |
| System - Adjust Volume                      | •                 |
| Position                                    | Isocenter         |
| Orientation                                 | Transversal       |
| Rotation                                    | 0.00 deg          |
|                                             | 263 mm            |
| A >> P                                      | 350 mm            |
| R >> L                                      |                   |
| R >> L<br>F >> H                            | 350 mm            |
| R >> L                                      | 350 mm<br>Off     |
| R >> L<br>F >> H                            |                   |

#### System - Tx/Rx

| -                   |                |
|---------------------|----------------|
| Frequency 1H        | 123.244318 MHz |
| Correction factor   | 1              |
| Gain                | High           |
| Img. Scale Cor.     | 1.000          |
| Reset               | Off            |
| ? Ref. amplitude 1H | 0.000 V        |

#### Physio - Signal1

| 1st Signal/Mode | None      |
|-----------------|-----------|
| TR              | 1500.0 ms |
| Concatenations  | 1         |

#### Physio - Cardiac

| Magn. preparation | None    |
|-------------------|---------|
| Fat suppr.        | None    |
| Dark blood        | Off     |
| FoV read          | 220 mm  |
| FoV phase         | 100.0 % |
| Phase resolution  | 80 %    |

#### Physio - PACE

| Resp. control  | Off |  |
|----------------|-----|--|
| Concatenations | 1   |  |

# Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag              | Off |
|----------------------|-----|
| MIP-Cor              | Off |
| MIP-Tra              | Off |
| MIP-Time             | Off |
| Save original images | On  |

#### Inline - Composing

| Inline Composing | Off |
|------------------|-----|
| Distortion Corr. | Off |

# Sequence - Part 1

| Introduction     | On          |
|------------------|-------------|
| Dimension        | 2D          |
| Contrasts        | 1           |
| Flow comp.       | No          |
| Multi-slice mode | Single shot |
| Echo spacing     | 7.22 ms     |
| Bandwidth        | 601 Hz/Px   |

#### Sequence - Part 2

| RF pulse type | Normal  |
|---------------|---------|
| Gradient mode | Whisper |
| Hyperecho     | Off     |
| Turbo factor  | 256     |

#### Sequence - Assistant

| Mode           | Min flip angle |  |
|----------------|----------------|--|
| Min flip angle | 130 deg        |  |
| Allowed delay  | 60 s           |  |

#### BMJ Open

#### SIEMENS MAGNETOM Prisma

# \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\t2\_blade\_v3 TA: 2:29 PM: REF Voxel size: 0.7×0.7×3.0 mmPAT: 2 Rel. SNR: 1.00 : qtseBR\_rr

#### Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | On                 |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |
|                                               |                    |

#### Routine

| Slice group        | 1                   |
|--------------------|---------------------|
| Slices             | 40                  |
| Dist. factor       | 0 %                 |
| Position           | R1.2 P40.0 H50.2 mm |
| Orientation        | Transversal         |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0.0 %               |
| FoV read           | 220 mm              |
| FoV phase          | 100.0 %             |
| Slice thickness    | 3.0 mm              |
| TR                 | 4100.0 ms           |
| TE                 | 207 ms              |
| Averages           | 1                   |
| Concatenations     | 4                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN             |

#### **Contrast - Common**

| TR                | 4100.0 ms |
|-------------------|-----------|
| TE                | 207 ms    |
| TD                | 0.0 ms    |
| MTC               | Off       |
| Magn. preparation | None      |
| Flip angle        | 90 deg    |
| Fat suppr.        | None      |
| Water suppr.      | None      |
| Restore magn.     | On        |

#### **Contrast - Dynamic**

| 1                |
|------------------|
| Short term       |
| Magnitude        |
| 1                |
| Each measurement |
|                  |

#### **Resolution - Common**

| FoV read                    | 220 mm  |
|-----------------------------|---------|
| FoV phase                   | 100.0 % |
| Slice thickness             | 3.0 mm  |
| Base resolution             | 320     |
| BLADE coverage              | 100.0 % |
| Trajectory                  | BLADE   |
| Trajectory<br>Interpolation | Off     |

#### **Resolution - iPAT**

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 2          |
| Ref. lines PE       | 8          |
| Reference scan mode | Integrated |

#### **Resolution - Filter Image**

| Image Filter      | Off |  |
|-------------------|-----|--|
| Distortion Corr.  | Off |  |
| Prescan Normalize | On  |  |
| Unfiltered images | Off |  |
| Normalize         | Off |  |
| B1 filter         | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 40                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P40.0 H50.2 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | A >> P              |
| FoV read         | 220 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 3.0 mm              |
| TR               | 4100.0 ms           |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 4                   |

#### Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
| Position            | R1.2 P40.0 H50.2 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P40.0 H50.2    |
| R                   | 1.2 mm              |
| Р                   | 40.0 mm             |
| н                   | 50.2 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Transversal         |

#### **Geometry - Saturation**

| Fat suppr.    | None |
|---------------|------|
| Water suppr.  | None |
| Restore magn. | On   |
| Special sat.  | None |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

## SIEMENS MAGNETOM Prisma

| Positioning mode                                                                                                                                           | REF                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Table position                                                                                                                                             | H                                                    |
| Table position                                                                                                                                             | 0 mm                                                 |
| MSMA                                                                                                                                                       | S - C - T                                            |
|                                                                                                                                                            |                                                      |
| Sagittal                                                                                                                                                   | R >> L                                               |
| Coronal                                                                                                                                                    | A >> P                                               |
| Transversal                                                                                                                                                | F >> H                                               |
| Coil Combine Mode                                                                                                                                          | Adaptive Combine                                     |
| Save uncombined                                                                                                                                            | Off                                                  |
| Matrix Optimization                                                                                                                                        | Off                                                  |
| AutoAlign                                                                                                                                                  |                                                      |
| Coil Select Mode                                                                                                                                           | On - AutoCoilSele                                    |
| System - Adjustments                                                                                                                                       |                                                      |
| B0 Shim mode                                                                                                                                               | Tune up                                              |
| B1 Shim mode                                                                                                                                               | TrueForm                                             |
| Adjust with body coil                                                                                                                                      | Off                                                  |
| Confirm freq. adjustment                                                                                                                                   | Off                                                  |
| Assume Dominant Fat                                                                                                                                        | Off                                                  |
| Assume Silicone                                                                                                                                            | Off                                                  |
|                                                                                                                                                            | Auto                                                 |
| Adjustment Tolerance                                                                                                                                       | Auto                                                 |
| System - Adjust Volume                                                                                                                                     |                                                      |
| Position                                                                                                                                                   | Isocenter                                            |
| Orientation                                                                                                                                                | Transversal                                          |
| Rotation                                                                                                                                                   | 0.00 deg                                             |
| A >> P                                                                                                                                                     | 263 mm                                               |
| R >> L                                                                                                                                                     | 350 mm                                               |
| F >> H                                                                                                                                                     | 350 mm                                               |
| Reset                                                                                                                                                      | Off                                                  |
| B1 Shim mode                                                                                                                                               | TrueForm                                             |
| System - Tx/Rx                                                                                                                                             |                                                      |
| Frequency 1H                                                                                                                                               | 123.244318 MHz                                       |
| Correction factor                                                                                                                                          | 1                                                    |
| Gain                                                                                                                                                       | High                                                 |
| Img. Scale Cor.                                                                                                                                            | 1.000                                                |
| Reset                                                                                                                                                      | Off                                                  |
| ? Ref. amplitude 1H                                                                                                                                        | 0.000 V                                              |
|                                                                                                                                                            |                                                      |
| Physio - Signal1<br>1st Signal/Mode                                                                                                                        | None                                                 |
| TR                                                                                                                                                         | 4100.0 ms                                            |
|                                                                                                                                                            |                                                      |
| Concatenations                                                                                                                                             | 4                                                    |
| Physio - Cardiac                                                                                                                                           |                                                      |
| -                                                                                                                                                          |                                                      |
| Magn. preparation                                                                                                                                          | None                                                 |
| -                                                                                                                                                          | None<br>None                                         |
| Magn. preparation                                                                                                                                          |                                                      |
| Magn. preparation<br>Fat suppr.                                                                                                                            | None                                                 |
| Magn. preparation<br>Fat suppr.<br>Dark blood<br>FoV read                                                                                                  | None<br>Off<br>220 mm                                |
| Magn. preparation<br>Fat suppr.<br>Dark blood<br>FoV read<br>FoV phase                                                                                     | None<br>Off<br>220 mm<br>100.0 %                     |
| Magn. preparation<br>Fat suppr.<br>Dark blood<br>FoV read                                                                                                  | None<br>Off<br>220 mm                                |
| Magn. preparation<br>Fat suppr.<br>Dark blood<br>FoV read<br>FoV phase<br>BLADE coverage<br>Trajectory                                                     | None<br>Off<br>220 mm<br>100.0 %<br>100.0 %          |
| Magn. preparation<br>Fat suppr.<br>Dark blood<br>FoV read<br>FoV phase<br>BLADE coverage<br>Trajectory<br>Physio - PACE                                    | None<br>Off<br>220 mm<br>100.0 %<br>100.0 %          |
| Magn. preparation<br>Fat suppr.<br>Dark blood<br>FoV read<br>FoV phase<br>BLADE coverage<br>Trajectory                                                     | None<br>Off<br>220 mm<br>100.0 %<br>100.0 %<br>BLADE |
| Magn. preparation<br>Fat suppr.<br>Dark blood<br>FoV read<br>FoV phase<br>BLADE coverage<br>Trajectory<br>Physio - PACE<br>Resp. control<br>Concatenations | None<br>Off<br>220 mm<br>100.0 %<br>100.0 %<br>BLADE |
| Magn. preparation<br>Fat suppr.<br>Dark blood<br>FoV read<br>FoV phase<br>BLADE coverage<br>Trajectory<br>Physio - PACE<br>Resp. control                   | None<br>Off<br>220 mm<br>100.0 %<br>100.0 %<br>BLADE |

Measurements

#### Inline - Common

| StdDev               | Off |  |
|----------------------|-----|--|
| Save original images | On  |  |

#### Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Sag<br>MIP-Cor   | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

#### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

#### Sequence - Part 1

| Introduction        | On          |
|---------------------|-------------|
| Dimension           | 2D          |
| Compensate T2 decay | Off         |
| Contrasts           | 1           |
| Flow comp.          | Read        |
| Multi-slice mode    | Interleaved |
| Free echo spacing   | Off         |
| Echo spacing        | 10.9 ms     |
| Bandwidth           | 363 Hz/Px   |

#### Sequence - Part 2

| Define                   | Turbo factor |
|--------------------------|--------------|
| Echo trains per slice    | 8            |
| Phase correction         | Automatic    |
| Acoustic noise reduction | Active       |
| RF pulse type            | Low SAR      |
| Gradient mode            | Fast         |
| Hyperecho                | On           |
| WARP                     | Off          |
| Motion correction        | On           |
| Red. EC sensitivity      | Off          |
| Turbo factor             | 36           |

# Sequence - Assistant

| Off  |  |
|------|--|
| 30 s |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

# BMJ Open

# SIEMENS MAGNETOM Prisma

#### 

# \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\t2\_space\_sag\_p4\_iso\_v2x TA: 2:13 PM: REF Voxel size: 1.0×1.0×1.0 mmPAT: 4 Rel. SNR: 1.00 : spcR

#### Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              | 1                   |
| Position           | R1.2 P36.9 H0.0 mm  |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 160                 |
| FoV read           | 128 mm              |
| FoV phase          | 150.0 %             |
| Slice thickness    | 1.00 mm             |
| TR                 | 3200 ms             |
| TE                 | 409 ms              |
| Averages           | 1.4                 |
| Concatenations     | 1                   |
| Filter             | Raw filter, Prescan |
|                    | Normalize           |
| Coil elements      | PeH;PeN             |

#### **Contrast - Common**

| TR                | 3200 ms  |
|-------------------|----------|
| TE                | 409 ms   |
| MTC               | Off      |
| Magn. preparation | None     |
| Fat suppr.        | Fat sat. |
| Fat sat. mode     | Strong   |
| Blood suppr.      | Off      |
| Restore magn.     | On       |

#### **Contrast - Dynamic**

| Averages        | 1.4              |
|-----------------|------------------|
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |
|                 |                  |

#### **Resolution - Common**

| FoV read              | 128 mm  |
|-----------------------|---------|
| FoV phase             | 150.0 % |
| Slice thickness       | 1.00 mm |
| Base resolution       | 128     |
| Phase resolution      | 100 %   |
| Slice resolution      | 100 %   |
| Phase partial Fourier | Allowed |
| Slice partial Fourier | Off     |
| Interpolation         | Off     |
|                       |         |

#### **Resolution - iPAT**

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 2          |
| Ref. lines PE       | 24         |
| Accel. factor 3D    | 2          |
| Ref. lines 3D       | 24         |
| Reference scan mode | Integrated |

#### **Resolution - Filter Image**

| Image Filter      | Off |  |
|-------------------|-----|--|
| Distortion Corr.  | Off |  |
| Prescan Normalize | On  |  |
| Unfiltered images | Off |  |
| Normalize         | Off |  |
| B1 filter         | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### Geometry - Common

| Slab group         | 1                  |
|--------------------|--------------------|
| Slabs              | 1                  |
| Position           | R1.2 P36.9 H0.0 mm |
| Orientation        | Sagittal           |
| Phase enc. dir.    | A >> P             |
| Slice oversampling | 0.0 %              |
| Slices per slab    | 160                |
| FoV read           | 128 mm             |
| FoV phase          | 150.0 %            |
| Slice thickness    | 1.00 mm            |
| TR                 | 3200 ms            |
| Series             | Interleaved        |
| Concatenations     | 1                  |
|                    |                    |

#### Geometry - AutoAlign

| Slab group          | 1                  |
|---------------------|--------------------|
| Position            | R1.2 P36.9 H0.0 mm |
| Orientation         | Sagittal           |
| Phase enc. dir.     | A >> P             |
| AutoAlign           |                    |
| Initial Position    | R1.2 P36.9 H0.0    |
| R                   | 1.2 mm             |
| Р                   | 36.9 mm            |
| н                   | 0.0 mm             |
| Initial Rotation    | 0.00 deg           |
| Initial Orientation | Sagittal           |

#### **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Restore magn. | On       |
| Special sat.  | None     |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### **MAGNETOM** Prisma

| SIEMENS                                                                                                  |
|----------------------------------------------------------------------------------------------------------|
| REF                                                                                                      |
| Н                                                                                                        |
| 0 mm                                                                                                     |
| S-C-T                                                                                                    |
| R >> L                                                                                                   |
| A >> P<br>F >> H                                                                                         |
| Adaptive Combine                                                                                         |
| Off                                                                                                      |
| Off                                                                                                      |
|                                                                                                          |
| On - AutoCoilSelect                                                                                      |
|                                                                                                          |
|                                                                                                          |
| Standard                                                                                                 |
| Standard<br>TrueForm                                                                                     |
|                                                                                                          |
| TrueForm<br>Off<br>Off                                                                                   |
| TrueForm<br>Off<br>Off<br>Off                                                                            |
| TrueForm<br>Off<br>Off<br>Off<br>Off                                                                     |
| TrueForm<br>Off<br>Off<br>Off                                                                            |
| TrueForm<br>Off<br>Off<br>Off<br>Off                                                                     |
| TrueForm<br>Off<br>Off<br>Off<br>Off<br>Auto                                                             |
| TrueForm<br>Off<br>Off<br>Off<br>Auto<br>R1.2 P36.9 H0.0 mm                                              |
| TrueForm<br>Off<br>Off<br>Off<br>Auto<br>R1.2 P36.9 H0.0 mm<br>Sagittal                                  |
| TrueForm<br>Off<br>Off<br>Off<br>Auto<br>R1.2 P36.9 H0.0 mm<br>Sagittal<br>90.00 deg                     |
| TrueForm<br>Off<br>Off<br>Off<br>Off<br>Auto<br>R1.2 P36.9 H0.0 mm<br>Sagittal<br>90.00 deg<br>128 mm    |
| TrueForm<br>Off<br>Off<br>Off<br>Auto<br>R1.2 P36.9 H0.0 mm<br>Sagittal<br>90.00 deg<br>128 mm<br>192 mm |
| TrueForm<br>Off<br>Off<br>Off<br>Off<br>Auto<br>R1.2 P36.9 H0.0 mm<br>Sagittal<br>90.00 deg<br>128 mm    |

# System - Adjust Volume

System - Miscellaneous

Positioning mode

Table position

Table position

MSMA

Sagittal

Coronal

Transversal

AutoAlign

Coil Combine Mode

Save uncombined

Matrix Optimization

System - Adjustments

Coil Select Mode

B0 Shim mode

B1 Shim mode

Adjust with body coil

Confirm freq. adjustment

Assume Dominant Fat

Adjustment Tolerance

Assume Silicone

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22 23

24 25 26

32 33

34

35

55 56 57

58

59

60

| Position                   | R1.2 P36.9 H0.0 mm |
|----------------------------|--------------------|
| Orientation                | Sagittal           |
| Rotation                   | 90.00 deg          |
| F >> H                     | 128 mm             |
| F >> H<br>A >> P<br>R >> L | 192 mm             |
| R >> L                     | 160 mm             |
| Reset                      | Off                |

#### System - pTx Volumes

| B1 Shim mode | TrueForm |  |
|--------------|----------|--|
| Excitation   | Non-sel. |  |

#### System - Tx/Rx

| Frequency 1H<br>Correction factor | 123.244318 MHz |
|-----------------------------------|----------------|
| Correction factor                 | 1              |
| Gain                              | High           |
| Img. Scale Cor.                   | 3.000          |
| Reset                             | Off            |
| ? Ref. amplitude 1H               | 0.000 V        |

#### Physio - Signal1

| 1st Signal/Mode | None    |
|-----------------|---------|
| Trigger delay   | 0 ms    |
| TR              | 3200 ms |
| Concatenations  | 1       |

#### **Physio - Cardiac**

| Magn. preparation | None     |  |
|-------------------|----------|--|
| Fat suppr.        | Fat sat. |  |
| Dark blood        | Off      |  |
| FoV read          | 128 mm   |  |
| FoV phase         | 150.0 %  |  |
| Phase resolution  | 100 %    |  |

#### Off Resp. control Concatenations 1

Off

# **Inline - Common**

Subtract

# **Inline - Common**

| Measurements         | 1   |  |
|----------------------|-----|--|
| StdDev               | Off |  |
| Save original images | On  |  |
|                      |     |  |

# Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Sag<br>MIP-Cor   | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

#### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

# Sequence - Part 1

| Introduction        | On        |
|---------------------|-----------|
| Dimension           | 3D        |
| Elliptical scanning | Off       |
| Reordering          | Linear    |
| Flow comp.          | No        |
| Echo spacing        | 4.4 ms    |
| Adiabatic-mode      | Off       |
| Bandwidth           | 592 Hz/Px |

#### Sequence - Part 2

| Echo train duration | 1034 ms  |
|---------------------|----------|
| RF pulse type       | Low SAR  |
| Gradient mode       | Whisper  |
| Excitation          | Non-sel. |
| Flip angle mode     | T2 var   |
| Turbo factor        | 282      |
|                     |          |

# Sequence - Assistant

|  | Allowed delay | 30 s |  |
|--|---------------|------|--|
|--|---------------|------|--|

# BMJ Open

#### SIEMENS MAGNETOM Prisma

#### 

# \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\DTI\_Neonate\_v6b\_dummy TA: 0:28 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 4 Rel. SNR: 1.00 : epse

#### Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Noutine            |                                  |
|--------------------|----------------------------------|
| Slice group        | 1                                |
| Slices             | 58                               |
| Dist. factor       | 0 %                              |
| Position           | R1.2 P39.7 H47.8 mm              |
| Orientation        | Transversal                      |
| Phase enc. dir.    | R >> L                           |
| AutoAlign          |                                  |
| Phase oversampling | 0 %                              |
| FoV read           | 256 mm                           |
| FoV phase          | 100.0 %                          |
| Slice thickness    | 2.0 mm                           |
| TR                 | 3500 ms                          |
| TE                 | 78.0 ms                          |
| Concatenations     | 1                                |
| Filter             | Raw filter, Prescan<br>Normalize |
| Coil elements      | PeH;PeN                          |

#### **Contrast - Common**

| TR                          | 3500 ms  |
|-----------------------------|----------|
| TE                          | 78.0 ms  |
| MTC                         | Off      |
| Magn. preparation           | None     |
| Fat suppr.<br>Fat sat. mode | Fat sat. |
| Fat sat. mode               | Strong   |

#### **Contrast - Dynamic**

| Averaging mode  | Long term |
|-----------------|-----------|
| Reconstruction  | Magnitude |
| Measurements    | 1         |
| Delay in TR     | 0 ms      |
| Multiple series | Off       |

#### **Resolution - Common**

Accel. factor PE

Ref. lines PE

| FoV read              | 256 mm  |  |
|-----------------------|---------|--|
| FoV phase             | 100.0 % |  |
| Slice thickness       | 2.0 mm  |  |
| Base resolution       | 128     |  |
| Phase resolution      | 100 %   |  |
| Phase partial Fourier | 7/8     |  |
| Interpolation         | Off     |  |

#### **Resolution - iPAT**

| Accel. factor slice | 2            |
|---------------------|--------------|
| Reference scan mode | EPI/separate |

#### **Resolution - Filter Image**

| Distortion Corr.    | Off |  |
|---------------------|-----|--|
| Prescan Normalize   | On  |  |
| Dynamic Field Corr. | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 58                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P39.7 H47.8 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | R >> L              |
| FoV read         | 256 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 2.0 mm              |
| TR               | 3500 ms             |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 1                   |

#### Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
| Position            | R1.2 P39.7 H47.8 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | R >> L              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P39.7 H47.8    |
| R                   | 1.2 mm              |
| P                   | 39.7 mm             |
| н                   | 47.8 mm             |
| Initial Rotation    | 90.00 deg           |
| Initial Orientation | Transversal         |

#### **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Special sat.  | None     |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| Positioning mode | FIX       |
|------------------|-----------|
| Table position   | Н         |
| Table position   | 0 mm      |
| MSMA             | S - C - T |
| Sagittal         | R >> L    |

#### SIEMENS MAGNETOM Prisma

#### 

System - Miscellaneous

| Coronal             | A >> P              |
|---------------------|---------------------|
| Transversal         | F >> H              |
| Coil Combine Mode   | Adaptive Combine    |
| Matrix Optimization | Performance         |
| AutoAlign           |                     |
| Coil Select Mode    | On - AutoCoilSelect |

#### System - Adjustments

| Standard |                                      |
|----------|--------------------------------------|
| TrueForm |                                      |
| Off      |                                      |
| Off      |                                      |
| Off      |                                      |
| Off      |                                      |
| Auto     |                                      |
|          | TrueForm<br>Off<br>Off<br>Off<br>Off |

#### System - Adjust Volume

| - ,         |                     |
|-------------|---------------------|
| Position    | R1.2 P39.7 H47.8 mm |
| Orientation | Transversal         |
| Rotation    | 90.00 deg           |
| R >> L      | 256 mm              |
| A >> P      | 256 mm              |
| F >> H      | 116 mm              |
| Reset       | Off                 |

#### System - pTx Volumes

| <i>,</i> ,   |          |  |
|--------------|----------|--|
| B1 Shim mode | TrueForm |  |
| Excitation   | Standard |  |

#### System - Tx/Rx

| -                   |                |
|---------------------|----------------|
| Frequency 1H        | 123.244318 MHz |
| Correction factor   | 1              |
| Gain                | High           |
| Img. Scale Cor.     | 1.000          |
| Reset               | Off            |
| ? Ref. amplitude 1H | 0.000 V        |

#### Physio - Signal1

| 1st Signal/Mode | None    |
|-----------------|---------|
| TR              | 3500 ms |
| Concatenations  | 1       |

#### **Physio - PACE**

| Resp. control  | Off |
|----------------|-----|
| Concatenations | 1   |

#### Diff - Neuro

| Diffusion mode        | Free                |  |
|-----------------------|---------------------|--|
| Diff. directions      | 71                  |  |
| Diffusion Scheme      | Monopolar           |  |
| Diff. weightings      | 1                   |  |
| b-value               | 0 s/mm <sup>2</sup> |  |
| b-value               | 3                   |  |
| Diff. weighted images | On                  |  |
| Trace weighted images | Off                 |  |
| ADC maps              | Off                 |  |
| FA maps               | Off                 |  |
| Mosaic                | Off                 |  |
| Tensor                | Off                 |  |
| Noise level           | 40                  |  |

Free

# Diff - Body

Diffusion mode

#### Diff - Body

| Diff. directions      | 71        |
|-----------------------|-----------|
| Diffusion Scheme      | Monopolar |
| Diff. weightings      | 1         |
| b-value               | 0 s/mm²   |
| b-value               | 3         |
| Diff. weighted images | On        |
| Trace weighted images | Off       |
| ADC maps              | Off       |
| Exponential ADC Maps  | Off       |
| FA maps               | Off       |
| Invert Gray Scale     | Off       |
| Calculated Image      | Off       |
| b-Value >=            | 0 s/mm²   |
| Noise level           | 40        |

# **Diff - Composing**

| Inline Composing | Off |
|------------------|-----|
| Distortion Corr. | Off |

#### Sequence - Part 1

| · · · · · · · · · · · · · · · · · · · |             |
|---------------------------------------|-------------|
| Introduction                          | Off         |
| Optimization                          | None        |
| Multi-slice mode                      | Interleaved |
| Free echo spacing                     | Off         |
| Echo spacing                          | 0.78 ms     |
| Bandwidth                             | 1446 Hz/Px  |

#### Sequence - Part 2

| -             |          |
|---------------|----------|
| EPI factor    | 128      |
| RF pulse type | Low SAR  |
| Gradient mode | Normal   |
| Excitation    | Standard |
|               |          |

#### Sequence - pTX Pulses



For peer review only - http://bmjopen.2mj.com/site/about/guidelines.xhtml

# BMJ Open

#### SIEMENS MAGNETOM Prisma

#### 

# \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\DTI\_Neonate\_v6b\_rev TA: 0:28 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 4 Rel. SNR: 1.00 : epse

#### Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Roatine            |                                  |
|--------------------|----------------------------------|
| Slice group        | 1                                |
| Slices             | 58                               |
| Dist. factor       | 0 %                              |
| Position           | R1.2 P39.7 H47.8 mm              |
| Orientation        | Transversal                      |
| Phase enc. dir.    | R >> L                           |
| AutoAlign          |                                  |
| Phase oversampling | 0 %                              |
| FoV read           | 256 mm                           |
| FoV phase          | 100.0 %                          |
| Slice thickness    | 2.0 mm                           |
| TR                 | 3500 ms                          |
| TE                 | 78.0 ms                          |
| Concatenations     | 1                                |
| Filter             | Raw filter, Prescan<br>Normalize |
| Coil elements      | PeH;PeN                          |

#### **Contrast - Common**

| TR                          | 3500 ms  |
|-----------------------------|----------|
| TE                          | 78.0 ms  |
| MTC                         | Off      |
| Magn. preparation           | None     |
| Fat suppr.<br>Fat sat. mode | Fat sat. |
| Fat sat. mode               | Strong   |

#### **Contrast - Dynamic**

| Averaging mode  | Long term |
|-----------------|-----------|
| Reconstruction  | Magnitude |
| Measurements    | 1         |
| Delay in TR     | 0 ms      |
| Multiple series | Off       |

#### **Resolution - Common**

| 256 mm  |
|---------|
| 100.0 % |
| 2.0 mm  |
| 128     |
| 100 %   |
| 7/8     |
| Off     |
|         |

# Accel. modeSlice accel.Accel. factor PE2Ref. lines PE40

#### **Resolution - iPAT**

| Accel. factor slice | 2            |
|---------------------|--------------|
| Reference scan mode | EPI/separate |

#### **Resolution - Filter Image**

| Distortion Corr.    | Off |  |
|---------------------|-----|--|
| Prescan Normalize   | On  |  |
| Dynamic Field Corr. | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 58                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P39.7 H47.8 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | R >> L              |
| FoV read         | 256 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 2.0 mm              |
| TR               | 3500 ms             |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 1                   |

#### Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
| Position            | R1.2 P39.7 H47.8 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | R >> L              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P39.7 H47.8    |
| R                   | 1.2 mm              |
| P                   | 39.7 mm             |
| н                   | 47.8 mm             |
| Initial Rotation    | 90.00 deg           |
| Initial Orientation | Transversal         |

#### **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Special sat.  | None     |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| P  | ositioning mode | FIX       |
|----|-----------------|-----------|
| Та | able position   | Н         |
| Та | able position   | 0 mm      |
| Μ  | SMA             | S - C - T |
| Sa | agittal         | R >> L    |

#### SIEMENS MAGNETOM Prisma

| Coronal             | A >> P              |
|---------------------|---------------------|
| Transversal         | F >> H              |
| Coil Combine Mode   | Adaptive Combine    |
| Matrix Optimization | Performance         |
| AutoAlign           |                     |
| Coil Select Mode    | On - AutoCoilSelect |

#### System - Adjustments

| B0 Shim mode             | Standard |  |
|--------------------------|----------|--|
| B1 Shim mode             | TrueForm |  |
| Adjust with body coil    | Off      |  |
| Confirm freq. adjustment | Off      |  |
| Assume Dominant Fat      | Off      |  |
| Assume Silicone          | Off      |  |
| Adjustment Tolerance     | Auto     |  |

#### System - Adjust Volume

| Position    | R1.2 P39.7 H47.8 mm |
|-------------|---------------------|
| Orientation | Transversal         |
| Rotation    | 90.00 deg           |
| R >> L      | 256 mm              |
| A >> P      | 256 mm              |
| F >> H      | 116 mm              |
| Reset       | Off                 |

#### System - pTx Volumes

| B1 Shim mode | TrueForm |  |
|--------------|----------|--|
| Excitation   | Standard |  |

#### System - Tx/Rx

| -                                 |                |
|-----------------------------------|----------------|
| Frequency 1H                      | 123.244318 MHz |
| Frequency 1H<br>Correction factor | 1              |
| Gain                              | High           |
| Img. Scale Cor.                   | 1.000          |
| Reset                             | Off            |
| ? Ref. amplitude 1H               | 0.000 V        |

#### Physio - Signal1

| 1st Signal/Mode | None    |
|-----------------|---------|
| TR              | 3500 ms |
| Concatenations  | 1       |

#### **Physio - PACE**

| Resp. control  | Off |
|----------------|-----|
| Concatenations | 1   |

#### Diff - Neuro

| Diffusion mode        | MDDW                |  |
|-----------------------|---------------------|--|
| Diff. directions      | 6                   |  |
| Diffusion Scheme      | Monopolar           |  |
| Diff. weightings      | 1                   |  |
| b-value               | 0 s/mm <sup>2</sup> |  |
| b-value               | 3                   |  |
| Diff. weighted images | On                  |  |
| Trace weighted images | Off                 |  |
| ADC maps              | Off                 |  |
| FA maps               | Off                 |  |
| Mosaic                | Off                 |  |
| Tensor                | Off                 |  |
| Noise level           | 40                  |  |

MDDW

Diffusion mode

#### Diff - Body

| Diff. directions      | 6         |
|-----------------------|-----------|
| Diffusion Scheme      | Monopolar |
| Diff. weightings      | 1         |
| b-value               | 0 s/mm²   |
| b-value               | 3         |
| Diff. weighted images | On        |
| Trace weighted images | Off       |
| ADC maps              | Off       |
| Exponential ADC Maps  | Off       |
| FA maps               | Off       |
| Invert Gray Scale     | Off       |
| Calculated Image      | Off       |
| b-Value >=            | 0 s/mm²   |
| Noise level           | 40        |

# **Diff - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

#### Sequence - Part 1

| Introduction      | Off         |
|-------------------|-------------|
| Optimization      | None        |
| Multi-slice mode  | Interleaved |
| Free echo spacing | Off         |
| Echo spacing      | 0.78 ms     |
| Bandwidth         | 1446 Hz/Px  |

#### Sequence - Part 2

| EPI factor    | 128      |
|---------------|----------|
| RF pulse type | Low SAR  |
| Gradient mode | Normal   |
| Excitation    | Standard |
|               |          |

#### Sequence - pTX Pulses



# BMJ Open

#### SIEMENS MAGNETOM Prisma

#### 

\\Study Protocols\BRAIN\Neonates\Theirworld - E161723\DTI\_Neonate\_v6b\_pt1 TA: 4:29 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 4 Rel. SNR: 1.00 : epse

#### Properties

|                                               | - · · ·            |
|-----------------------------------------------|--------------------|
| Prio recon                                    | Off                |
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Slice group        | 1                                |
|--------------------|----------------------------------|
| Slices             | 58                               |
| Dist. factor       | 0 %                              |
| Position           | R1.2 P39.7 H47.8 mm              |
| Orientation        | Transversal                      |
| Phase enc. dir.    | L >> R                           |
| AutoAlign          |                                  |
| Phase oversampling | 0 %                              |
| FoV read           | 256 mm                           |
| FoV phase          | 100.0 %                          |
| Slice thickness    | 2.0 mm                           |
| TR                 | 3500 ms                          |
| TE                 | 78.0 ms                          |
| Averages           | 1                                |
| Concatenations     | 1                                |
| Filter             | Raw filter, Prescan<br>Normalize |
| Coil elements      | PeH;PeN                          |

#### **Contrast - Common**

| TR                          | 3500 ms  |  |
|-----------------------------|----------|--|
| TE<br>MTC                   | 78.0 ms  |  |
| MTC                         | Off      |  |
| Magn. preparation           | None     |  |
| Fat suppr.<br>Fat sat. mode | Fat sat. |  |
| Fat sat. mode               | Strong   |  |

#### **Contrast - Dynamic**

| Averages        | 1         |
|-----------------|-----------|
| Averaging mode  | Long term |
| Reconstruction  | Magnitude |
| Measurements    | 1         |
| Delay in TR     | 0 ms      |
| Multiple series | Off       |
|                 |           |

#### **Resolution - Common**

| FoV read              | 256 mm  |
|-----------------------|---------|
| FoV phase             | 100.0 % |
| Slice thickness       | 2.0 mm  |
| Base resolution       | 128     |
| Phase resolution      | 100 %   |
| Phase partial Fourier | 7/8     |
| Interpolation         | Off     |

#### **Resolution - iPAT**

| Accel. factor PE    | 2            |
|---------------------|--------------|
| Ref. lines PE       | 40           |
| Accel. factor slice | 2            |
| Reference scan mode | EPI/separate |

#### **Resolution - Filter Image**

| Distortion Corr.    | Off |
|---------------------|-----|
| Prescan Normalize   | On  |
| Dynamic Field Corr. | Off |

#### **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 58                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P39.7 H47.8 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | L >> R              |
| FoV read         | 256 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 2.0 mm              |
| TR               | 3500 ms             |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 1                   |
|                  |                     |

#### Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
|                     | 1                   |
| Position            | R1.2 P39.7 H47.8 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | L >> R              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P39.7 H47.8    |
| R                   | 1.2 mm              |
| Р                   | 39.7 mm             |
| н                   | 47.8 mm             |
| Initial Rotation    | -90.00 deg          |
| Initial Orientation | Transversal         |

#### **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Special sat.  | None     |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| Positioning mode | FIX  |
|------------------|------|
| Table position   | Н    |
| Table position   | 0 mm |

# SIEMENS MAGNETOM Prisma

| 1<br>2<br>3<br>4<br>5            |  |
|----------------------------------|--|
| 6<br>7<br>8<br>9<br>10<br>11     |  |
| 12<br>13<br>14<br>15<br>16       |  |
| 17<br>18<br>19<br>20<br>21<br>22 |  |
| 23<br>24<br>25<br>26<br>27<br>28 |  |
| 29<br>30<br>31<br>32<br>33<br>34 |  |
| 35<br>36<br>37<br>38<br>39<br>40 |  |
| 41<br>42<br>43<br>44<br>45<br>46 |  |
| 47<br>48<br>49<br>50<br>51       |  |
| 52<br>53<br>54<br>55<br>56<br>57 |  |
| 58<br>59<br>60                   |  |

| MSMA                     | S - C - T           |
|--------------------------|---------------------|
| Sagittal                 | R >> L              |
| Coronal                  | A >> P              |
| Transversal              | F >> H              |
| Coil Combine Mode        | Adaptive Combine    |
| Matrix Optimization      | Performance         |
| AutoAlign                |                     |
| Coil Select Mode         | On - AutoCoilSelect |
| System - Adjustments     |                     |
| B0 Shim mode             | Standard            |
| B1 Shim mode             | TrueForm            |
| Adjust with body coil    | Off                 |
| Confirm freq. adjustment | Off                 |
| Assume Dominant Fat      | Off                 |
| Assume Silicone          | Off                 |
| Adjustment Tolerance     | Auto                |
| System - Adjust Volume   |                     |
| Position                 | R1.2 P39.7 H47.8 mm |
| Orientation              | Transversal         |
| Rotation                 | -90.00 deg          |
| R >> L                   | 256 mm              |
| A >> P                   | 256 mm              |
| F >> H                   | 116 mm              |
| Reset                    | Off                 |
| System - pTx Volumes     |                     |
| B1 Shim mode             | TrueForm            |
| Excitation               | Standard            |
| System - Tx/Rx           |                     |
| Frequency 1H             | 123.244318 MHz      |
| Correction factor        | 1                   |
| Gain                     | High                |
| Img. Scale Cor.          | 1.000               |
| Reset                    | Off                 |
| ? Ref. amplitude 1H      | 0.000 V             |
| Physio - Signal1         |                     |
| 1st Signal/Mode          | None                |
| TR                       | 3500 ms             |
|                          |                     |

# Concatenations Physio - PACE

| •              |     |
|----------------|-----|
| Resp. control  | Off |
| Concatenations | 1   |

1

# Diff - Neuro

| Diffusion mode        | Free      |
|-----------------------|-----------|
| Diff. directions      | 71        |
| Diffusion Scheme      | Monopolar |
| Diff. weightings      | 2         |
| b-value 1             | 0 s/mm²   |
| b-value 2             | 750 s/mm² |
| b-value 1             | 1         |
| b-value 2             | 1         |
| Diff. weighted images | On        |
| Trace weighted images | Off       |
| ADC maps              | Off       |
| FA maps               | Off       |
| Mosaic                | On        |
| Tensor                | Off       |
|                       |           |

# Diff - Neuro

| Noise level | 40 |  |
|-------------|----|--|

# Diff - Body

| 9      |
|--------|
|        |
| opolar |
|        |
| mm²    |
| s/mm²  |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
| mm²    |
|        |
|        |

# Diff - Composing

| Distortion Corr Off | Inline Composing | Off |
|---------------------|------------------|-----|
|                     | Distortion Corr. | Off |

## Sequence - Part 1

| Introduction      | Off         |
|-------------------|-------------|
| Optimization      | None        |
| Multi-slice mode  | Interleaved |
| Free echo spacing | Off         |
| Echo spacing      | 0.78 ms     |
| Bandwidth         | 1446 Hz/Px  |
|                   |             |

# Sequence - Part 2

| EPI factor    | 128      |
|---------------|----------|
| RF pulse type | Low SAR  |
| Gradient mode | Normal   |
| Excitation    | Standard |

# Sequence - pTX Pulses



# BMJ Open

# SIEMENS MAGNETOM Prisma

#### 

# \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\DTI\_Neonate\_v6b\_pt2 TA: 5:01 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 4 Rel. SNR: 1.00 : epse

#### Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

#### Routine

| Slice group        | 1                   |
|--------------------|---------------------|
| Slices             | 58                  |
| Dist. factor       | 0 %                 |
| Position           | R1.2 P39.7 H47.8 mm |
| Orientation        | Transversal         |
| Phase enc. dir.    | L >> R              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| FoV read           | 256 mm              |
| FoV phase          | 100.0 %             |
| Slice thickness    | 2.0 mm              |
| TR                 | 3500 ms             |
| TE                 | 78.0 ms             |
| Averages           | 1                   |
| Concatenations     | 1                   |
| Filter             | Raw filter, Prescan |
|                    | Normalize           |
| Coil elements      | PeH;PeN             |

#### **Contrast - Common**

| TR                | 3500 ms  |  |
|-------------------|----------|--|
| TE<br>MTC         | 78.0 ms  |  |
| MTC               | Off      |  |
| Magn. preparation | None     |  |
| Fat suppr.        | Fat sat. |  |
| Fat sat. mode     | Strong   |  |

#### **Contrast - Dynamic**

| Averages        | 1         |
|-----------------|-----------|
| Averaging mode  | Long term |
| Reconstruction  | Magnitude |
| Measurements    | 1         |
| Delay in TR     | 0 ms      |
| Multiple series | Off       |
|                 |           |

#### **Resolution - Common**

| FoV read              | 256 mm  |
|-----------------------|---------|
| FoV phase             | 100.0 % |
| Slice thickness       | 2.0 mm  |
| Base resolution       | 128     |
| Phase resolution      | 100 %   |
| Phase partial Fourier | 7/8     |
| Interpolation         | Off     |

#### **Resolution - iPAT**

| Accel. factor PE    | 2            |
|---------------------|--------------|
| Ref. lines PE       | 40           |
| Accel. factor slice | 2            |
| Reference scan mode | EPI/separate |

#### **Resolution - Filter Image**

| Distortion Corr.    | Off |
|---------------------|-----|
| Prescan Normalize   | On  |
| Dynamic Field Corr. | Off |

#### **Resolution - Filter Rawdata**

| Raw filter        | On  |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1                   |
|------------------|---------------------|
| Slices           | 58                  |
| Dist. factor     | 0 %                 |
| Position         | R1.2 P39.7 H47.8 mm |
| Orientation      | Transversal         |
| Phase enc. dir.  | L >> R              |
| FoV read         | 256 mm              |
| FoV phase        | 100.0 %             |
| Slice thickness  | 2.0 mm              |
| TR               | 3500 ms             |
| Multi-slice mode | Interleaved         |
| Series           | Interleaved         |
| Concatenations   | 1                   |
|                  |                     |

# Geometry - AutoAlign

| Slice group         | 1                   |
|---------------------|---------------------|
|                     | 1                   |
| Position            | R1.2 P39.7 H47.8 mm |
| Orientation         | Transversal         |
| Phase enc. dir.     | L >> R              |
| AutoAlign           |                     |
| Initial Position    | R1.2 P39.7 H47.8    |
| R                   | 1.2 mm              |
| Р                   | 39.7 mm             |
| н                   | 47.8 mm             |
| Initial Rotation    | -90.00 deg          |
| Initial Orientation | Transversal         |

#### **Geometry - Saturation**

| Fat suppr.    | Fat sat. |
|---------------|----------|
| Fat sat. mode | Strong   |
| Special sat.  | None     |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| Set-n-Go Protocol | Off  |
|-------------------|------|
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| Positioning mode | FIX  |
|------------------|------|
| Table position   | Н    |
| Table position   | 0 mm |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## SIEMENS MAGNETOM Prisma

| 1<br>2<br>3                |  |
|----------------------------|--|
| 4<br>5<br>6<br>7           |  |
| 8<br>9<br>10               |  |
| 11<br>12<br>13<br>14       |  |
| 15<br>16<br>17<br>18       |  |
| 19<br>20<br>21             |  |
| 22<br>23<br>24<br>25       |  |
| 26<br>27<br>28<br>29<br>30 |  |
| 31<br>32<br>33             |  |
| 34<br>35<br>36<br>37       |  |
| 38<br>39<br>40<br>41       |  |
| 42<br>43<br>44             |  |
| 45<br>46<br>47<br>48       |  |
| 49<br>50<br>51<br>52       |  |
| 53<br>54<br>55<br>56       |  |
| 57<br>58<br>59<br>60       |  |
|                            |  |

#### **System - Miscellaneous** MSMA S-C-T Sagittal R >> L Coronal A >> P Transversal F >> H Coil Combine Mode Adaptive Combine Matrix Optimization Performance AutoAlign On - AutoCoilSelect Coil Select Mode System - Adjustments B0 Shim mode Standard B1 Shim mode TrueForm Adjust with body coil Off Confirm freq. adjustment Off Off Assume Dominant Fat Off Assume Silicone Adjustment Tolerance Auto System - Adjust Volume Position R1.2 P39.7 H47.8 mm Orientation Transversal Rotation -90.00 deg R >> L 256 mm A >> P 256 mm F >> H 116 mm Reset Off System - pTx Volumes B1 Shim mode TrueForm

# B1 Shim mode TrueForm Excitation Standard System - Tx/Rx 123.244318 MHz Frequency 1H 123.244318 MHz Correction factor 1 Gain High Img. Scale Cor. 1.000 Reset Off ? Ref. amplitude 1H 0.000 V

#### Physio - Signal1

| 1: | st Signal/Mode | None    |
|----|----------------|---------|
| Т  | R              | 3500 ms |
| С  | oncatenations  | 1       |

# Physio - PACE

| Resp. control  | Off |  |
|----------------|-----|--|
| Concatenations | 1   |  |

#### Diff - Neuro

| Diffusion mode        | Free                |
|-----------------------|---------------------|
| Diff. directions      | 80                  |
| Diffusion Scheme      | Monopolar           |
| Diff. weightings      | 2                   |
| b-value 1             | 0 s/mm <sup>2</sup> |
| b-value 2             | 2500 s/mm²          |
| b-value 1             | 1                   |
| b-value 2             | 1                   |
| Diff. weighted images | On                  |
| Trace weighted images | Off                 |
| ADC maps              | Off                 |
| FA maps               | Off                 |
| Mosaic                | On                  |
| Tensor                | Off                 |
|                       |                     |

# Diff - Neuro

| Noise level | 40 |  |
|-------------|----|--|
|-------------|----|--|

# Diff - Body

| 2003                  |                        |  |
|-----------------------|------------------------|--|
| Diffusion mode        | Free                   |  |
| Diff. directions      | 80                     |  |
| Diffusion Scheme      | Monopolar              |  |
| Diff. weightings      | 2                      |  |
| b-value 1             | 0 s/mm²                |  |
| b-value 2             | 2500 s/mm <sup>2</sup> |  |
| b-value 1             | 1                      |  |
| b-value 2             | 1                      |  |
| Diff. weighted images | On                     |  |
| Trace weighted images | Off                    |  |
| ADC maps              | Off                    |  |
| Exponential ADC Maps  | Off                    |  |
| FA maps               | Off                    |  |
| Invert Gray Scale     | Off                    |  |
| Calculated Image      | Off                    |  |
| b-Value >=            | 0 s/mm²                |  |
| Noise level           | 40                     |  |
|                       |                        |  |

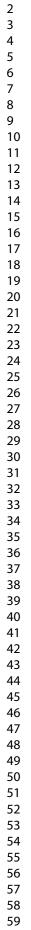
# **Diff - Composing**

| Inline Composing | Off |
|------------------|-----|
| Distortion Corr. | Off |
|                  |     |

# Sequence - Part 1

| Off        |
|------------|
| None       |
| nterleaved |
| Off        |
| 0.78 ms    |
| 1446 Hz/Px |
|            |

#### Sequence - Part 2


| EPI factor    | 128      |
|---------------|----------|
| RF pulse type | Low SAR  |
| Gradient mode | Normal   |
| Excitation    | Standard |

# Sequence - pTX Pulses



# BMJ Open

# SIEMENS MAGNETOM Prisma



60

TA: 3:09 PM: FIX Voxel size: 1.0×1.0×1.0 mmPAT: 2 Rel. SNR: 1.00 : tfl

#### Properties

| Off<br>On<br>Off<br>On<br>On |
|------------------------------|
| Off<br>On                    |
| On                           |
|                              |
| On                           |
| UII                          |
| Off                          |
| Single measurement           |
|                              |

#### Routine

| liteatine          |                     |
|--------------------|---------------------|
| Slab group         | 1                   |
| Slabs              |                     |
| Dist. factor       | 50 %                |
| Position           | R1.1 P38.9 F20.7 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 20 %                |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 160                 |
| FoV read           | 160 mm              |
| FoV phase          | 100.0 %             |
| Slice thickness    | 1.00 mm             |
| TR                 | 1970.0 ms           |
| TE                 | 4.69 ms             |
| Averages           | 1                   |
| Concatenations     | 1                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN;SP1         |

#### **Contrast - Common**

| TR                | 1970.0 ms   |
|-------------------|-------------|
| TE                | 4.69 ms     |
| Magn. preparation | Non-sel. IR |
| ті                | 1100 ms     |
| Flip angle        | 9 deg       |
| Fat suppr.        | None        |
| Water suppr.      | None        |

#### **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Long term        |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |
|                 |                  |

#### **Resolution - Common**

| FoV   | read               | 160 mm  |  |
|-------|--------------------|---------|--|
| FoV   | phase              | 100.0 % |  |
| Slice | e thickness        | 1.00 mm |  |
| Base  | e resolution       | 160     |  |
| Pha   | se resolution      | 100 %   |  |
| Slice | e resolution       | 100 %   |  |
| Pha   | se partial Fourier | 7/8     |  |
| Slice | e partial Fourier  | Off     |  |
| Inter | polation           | Off     |  |

#### **Resolution - iPAT**

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 2          |
| Ref. lines PE       | 24         |
| Accel. factor 3D    | 1          |
| Reference scan mode | Integrated |

#### **Resolution - Filter Image**

| Image Filter      | Off |  |
|-------------------|-----|--|
| Distortion Corr.  | Off |  |
| Prescan Normalize | On  |  |
| Unfiltered images | Off |  |
| Normalize         | Off |  |
| B1 filter         | Off |  |

#### **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| -                  |                     |
|--------------------|---------------------|
| Slab group         | 1                   |
| Slabs              | 1                   |
| Dist. factor       | 50 %                |
| Position           | R1.1 P38.9 F20.7 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 160                 |
| FoV read           | 160 mm              |
| FoV phase          | 100.0 %             |
| Slice thickness    | 1.00 mm             |
| TR                 | 1970.0 ms           |
| Multi-slice mode   | Single shot         |
| Series             | Interleaved         |
| Concatenations     | 1                   |
|                    |                     |

#### **Geometry - AutoAlign**

| Slab group          | 1                   |
|---------------------|---------------------|
| Position            | R1.1 P38.9 F20.7 mm |
| Orientation         | Sagittal            |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R1.1 P38.9 F20.7    |
| R                   | 1.1 mm              |
| Р                   | 38.9 mm             |
| F                   | 20.7 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |

#### **Geometry - Navigator**

#### **Geometry - Tim Planning Suite**

| -                 | -    |
|-------------------|------|
| Set-n-Go Protocol | Off  |
| Table position    | Н    |
| Table position    | 0 mm |
| Inline Composing  | Off  |

#### System - Miscellaneous

| Positioning mode | FIX  |
|------------------|------|
| Table position   | Н    |
| Table position   | 0 mm |

#### SIEMENS MAGNETOM Prisma

| MSMA                                  | S - C - T              |
|---------------------------------------|------------------------|
| Sagittal                              | R >> L                 |
| Coronal                               | A >> P                 |
| Transversal                           | F >> H                 |
| Coil Combine Mode                     | Adaptive Combi         |
| Save uncombined                       | Off                    |
| Matrix Optimization                   | Off                    |
| Coil Focus                            | Flat                   |
| AutoAlign                             |                        |
| Coil Select Mode                      | On - AutoCoilSe        |
|                                       |                        |
| System - Adjustments                  |                        |
| B0 Shim mode                          | Standard               |
| B1 Shim mode                          | TrueForm               |
| Adjust with body coil                 | Off                    |
| Confirm freq. adjustment              | Off                    |
| Assume Dominant Fat                   | Off                    |
| Assume Silicone                       | Off                    |
| Adjustment Tolerance                  | Auto                   |
| System - Adjust Volume                |                        |
| Position                              | D1 1 D28 0 E20         |
|                                       | R1.1 P38.9 F20         |
| Orientation                           | Sagittal               |
| Rotation                              | 0.00 deg               |
| A >> P                                | 160 mm                 |
| F >> H                                | 160 mm                 |
| R >> L                                | 160 mm                 |
| Reset                                 | Off                    |
| System - pTx Volumes                  |                        |
| B1 Shim mode                          | TrueForm               |
| Excitation                            | Non-sel.               |
| System - Tx/Rx                        |                        |
| Frequency 1H                          | 123.244318 MH          |
| Correction factor                     | 1                      |
| Gain                                  | Low                    |
| Img. Scale Cor.                       | 4.000                  |
| Reset                                 | Off                    |
| ? Ref. amplitude 1H                   | 0.000 V                |
| i i i i i i i i i i i i i i i i i i i |                        |
| Physio - Signal1                      |                        |
| 1st Signal/Mode                       | None                   |
| TR                                    | 1970.0 ms              |
| Concatenations                        | 1                      |
| Physic Cardias                        |                        |
| Physio - Cardiac                      |                        |
| Magn. preparation                     | Non-sel. IR            |
| -                                     | Non-sel. IR<br>1100 ms |
| Magn. preparation                     |                        |

Off

160 mm

100.0 %

100 %

Off

Off

Off

| Inline - Common      |
|----------------------|
| Save original images |

| Save original images | On |  |
|----------------------|----|--|
|                      |    |  |

# Inline - MIP

| MIP-Sag<br>MIP-Cor   | Off |
|----------------------|-----|
| MIP-Cor              | Off |
| MIP-Tra              | Off |
| MIP-Time             | Off |
| Save original images | On  |

#### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

#### **Inline - Maplt**

| Save original images | On        |
|----------------------|-----------|
| MapIt                | None      |
| Flip angle           | 9 deg     |
| Measurements         | 1         |
| TR                   | 1970.0 ms |
| TE                   | 4.69 ms   |

#### Sequence - Part 1

| Introduction        | On          |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | Off         |
| Reordering          | Linear      |
| Asymmetric echo     | Off         |
| Flow comp.          | No          |
| Multi-slice mode    | Single shot |
| Echo spacing        | 10.8 ms     |
| Bandwidth           | 140 Hz/Px   |

#### Sequence - Part 2

| RF pulse type           | Normal   |
|-------------------------|----------|
| Gradient mode           | Whisper  |
| Excitation              | Non-sel. |
| RF spoiling             | On       |
| Incr. Gradient spoiling | Off      |
| Turbo factor            | 160      |

Off

#### Sequence - Assistant

Mode



Dark blood

FoV phase

Phase resolution

**Physio - PACE** 

Resp. control

Subtract

StdDev

Concatenations

Measurements

Inline - Common

FoV read

#### SIEMENS MAGNETOM Prisma

|                                   |                         | ates\Theirworld - E161723      | _                |
|-----------------------------------|-------------------------|--------------------------------|------------------|
| TA: 2:23 PM:                      | FIX Voxel size: 0.8×0.8 | ×3.0 mmPAT: 3 Rel. SNR: 1      | 1.00 : qswi_r    |
| Properties                        |                         | <b>Resolution - Common</b>     |                  |
| Prio recon                        | Off                     | Interpolation                  | Off              |
| Load images to viewer             | On                      |                                |                  |
| Inline movie                      | Off                     | <b>Resolution - iPAT</b>       |                  |
| Auto store images                 | On                      | PAT mode                       | GRAPPA           |
| Load images to stamp segments     | Off                     | Accel, factor PE               | 3                |
| Load images to graphic segments   | Off                     | Ref. lines PE                  | 24               |
| Auto open inline display          | Off                     | Accel. factor 3D               | 1                |
| Auto close inline display         | Off                     |                                | Integrated       |
| Start measurement without further | Off                     | Reference scan mode            | Integrated       |
| preparation                       | 011                     | <b>Resolution - Filter Ima</b> | ao               |
| Wait for user to start            | Off                     |                                | -                |
| Start measurements                | Single measurement      | Image Filter                   | Off              |
|                                   |                         | Distortion Corr.               | Off              |
| Routine                           |                         | Prescan Normalize              | On               |
|                                   | 1                       | Unfiltered images              | Off              |
| Slab group                        | 1                       | Normalize                      | Off              |
| Slabs                             | 1                       | B1 filter                      | Off              |
| Dist. factor                      | 20 %                    |                                |                  |
| Position                          | L0.0 A2.3 H2.2 mm       | Resolution - Filter Raw        | vdata            |
| Orientation                       | Transversal             | Raw filter                     | Off              |
| Phase enc. dir.                   | R >> L                  | Elliptical filter              | Off              |
| AutoAlign                         |                         |                                | Oli              |
| Phase oversampling                | 0 %                     | Geometry - Common              |                  |
| Slice oversampling                | 20.0 %                  | -                              |                  |
| Slices per slab                   | 40                      | Slab group                     | 1                |
| FoV read                          | 240 mm                  | Slabs                          | 1                |
| FoV phase                         | 84.4 %                  | Dist. factor                   | 20 %             |
| Slice thickness                   | 3.00 mm                 | Position                       | L0.0 A2.3 H2.2 m |
| ſR                                | 28.0 ms                 | Orientation                    | Transversal      |
| E                                 | 20.00 ms                | Phase enc. dir.                | R >> L           |
| verages                           | 1                       | Slice oversampling             | 20.0 %           |
| oncatenations                     | 1                       | Slices per slab                | 40               |
| Filter                            | Prescan Normalize       | FoV read                       | 240 mm           |
| coil elements                     | HEA;HEP                 | FoV phase                      | 84.4 %           |
| Joir elements                     |                         | Slice thickness                | 3.00 mm          |
| Contrast - Common                 |                         | TR                             | 28.0 ms          |
|                                   |                         | Multi-slice mode               | Interleaved      |
| TR                                | 28.0 ms                 | Series                         | Interleaved      |
| TE                                | 20.00 ms                | Concatenations                 | 1                |
| MTC                               | Off                     | Conductiduono                  | 1                |
| Magn. preparation                 | None                    | Geometry - AutoAlign           |                  |
| Flip angle                        | 9 deg                   |                                |                  |
| Fat suppr.                        | None                    | Slab group                     | 1                |
| Water suppr.                      | None                    | Position                       | L0.0 A2.3 H2.2 m |
| SWI                               | On                      | Orientation                    | Transversal      |
|                                   |                         | Phase enc. dir.                | R >> L           |
| Contrast - Dynamic                |                         | AutoAlign                      |                  |
| Averages                          | 1                       | Initial Position               | L0.0 A2.3 H2.2   |
| Averaging mode                    | Short term              | L                              | 0.0 mm           |
| Reconstruction                    | Magn./Phase             | А                              | 2.3 mm           |
|                                   | 1                       | н                              | 2.2 mm           |
| Multiple agrice                   | I<br>Foob measurement   | Initial Rotation               | 89.61 deg        |
| Multiple series                   | Each measurement        | Initial Orientation            | Transversal      |
| Resolution - Common               |                         | Geometry - Saturation          |                  |
| FoV read                          | 240 mm                  |                                |                  |
| FoV phase                         | 84.4 %                  | Saturation mode                | Standard         |
| Slice thickness                   | 3.00 mm                 | Fat suppr.                     | None             |
| Base resolution                   | 320                     | Water suppr.                   | None             |
| Phase resolution                  | 320<br>100 %            | Special sat.                   | None             |
|                                   |                         |                                |                  |
| Slice resolution                  | 100 %                   | Geometry - Tim Planni          | ng Suite         |
| Phase partial Fourier             | Off                     | Set-n-Go Protocol              | Off              |
| Slice partial Fourier             | Off                     |                                | UII              |

#### SIEMENS MAGNETOM Prisma

| Table position                                                                                                                      | 0 mm                           |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Inline Composing                                                                                                                    | Off                            |
| System - Miscellaneous                                                                                                              |                                |
| Positioning mode                                                                                                                    | FIX                            |
| Table position                                                                                                                      | Н                              |
| Table position                                                                                                                      | 0 mm                           |
| MSMA                                                                                                                                | S - C - T                      |
| Sagittal                                                                                                                            | R >> L                         |
| Coronal                                                                                                                             | A >> P                         |
| Transversal                                                                                                                         | F >> H                         |
| Coil Combine Mode                                                                                                                   | Adaptive Combine               |
| Save uncombined                                                                                                                     | Off                            |
| Matrix Optimization                                                                                                                 | Off                            |
|                                                                                                                                     |                                |
| AutoAlign<br>Coil Select Mode                                                                                                       | <br>On - AutoCoilSelect        |
|                                                                                                                                     | OII - AdioColiSelect           |
| System - Adjustments                                                                                                                | Clondard                       |
| B0 Shim mode                                                                                                                        | Standard                       |
| B1 Shim mode                                                                                                                        | TrueForm                       |
| Adjust with body coil                                                                                                               | Off<br>Off                     |
| Confirm freq. adjustment                                                                                                            | Off<br>Off                     |
| Assume Dominant Fat                                                                                                                 | Off                            |
| Assume Silicone                                                                                                                     | Off                            |
| Adjustment Tolerance                                                                                                                | Auto                           |
| System - Adjust Volume                                                                                                              |                                |
| Position                                                                                                                            | L0.0 A2.3 H2.2 mm              |
| Orientation                                                                                                                         | Transversal                    |
| Rotation                                                                                                                            | 89.61 deg                      |
| R >> L                                                                                                                              | 203 mm                         |
| A >> P                                                                                                                              | 240 mm                         |
| F >> H                                                                                                                              | 120 mm                         |
| Reset                                                                                                                               | Off                            |
| System - pTx Volumes                                                                                                                |                                |
| B1 Shim mode                                                                                                                        | TrueForm                       |
| Excitation                                                                                                                          | Slab-sel.                      |
| System - Tx/Rx                                                                                                                      |                                |
| Frequency 1H                                                                                                                        | 123.244318 MHz                 |
| Correction factor                                                                                                                   | 1                              |
| Gain                                                                                                                                | Low                            |
| Img. Scale Cor.                                                                                                                     | 1.000                          |
| Reset                                                                                                                               | Off                            |
| ? Ref. amplitude 1H                                                                                                                 | 0.000 V                        |
|                                                                                                                                     |                                |
| Physio - Signal1                                                                                                                    | None                           |
| 1st Signal/Mode                                                                                                                     |                                |
| 1st Signal/Mode<br>TR                                                                                                               | 28.0 ms                        |
| 1st Signal/Mode                                                                                                                     | 28.0 ms<br>1                   |
| 1st Signal/Mode<br>TR                                                                                                               |                                |
| 1st Signal/Mode<br>TR<br>Concatenations<br>Segments                                                                                 | 1                              |
| TR<br>Concatenations<br>Segments<br>Physio - Cardiac                                                                                | 1                              |
| 1st Signal/Mode<br>TR<br>Concatenations<br>Segments<br>Physio - Cardiac<br>Tagging                                                  | 1<br>1                         |
| 1st Signal/Mode<br>TR<br>Concatenations<br>Segments<br>Physio - Cardiac<br>Tagging<br>Magn. preparation                             | 1<br>1<br>None                 |
| 1st Signal/Mode<br>TR<br>Concatenations<br>Segments<br>Physio - Cardiac<br>Tagging                                                  | 1<br>1<br>None<br>None         |
| 1st Signal/Mode<br>TR<br>Concatenations<br>Segments<br>Physio - Cardiac<br>Tagging<br>Magn. preparation<br>Fat suppr.<br>Dark blood | 1<br>1<br>None<br>None<br>Off  |
| 1st Signal/Mode<br>TR<br>Concatenations<br>Segments<br>Physio - Cardiac<br>Tagging<br>Magn. preparation<br>Fat suppr.               | 1<br>1<br>None<br>None<br>None |

#### Physio - PACE

| <b>J</b> = -   |     |
|----------------|-----|
| Resp. control  | Off |
| Concatenations | 1   |
|                |     |

# Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Liver registration   | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag              | Off |
|----------------------|-----|
| MIP-Cor              | Off |
| MIP-Tra              | Off |
| MIP-Time             | Off |
| Save original images | On  |

#### Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

#### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

#### Inline - Maplt

| Save original images | On       |
|----------------------|----------|
| MapIt                | None     |
| Flip angle           | 9 deg    |
| Measurements         | 1        |
| Contrasts            | 1        |
| TR                   | 28.0 ms  |
| TE                   | 20.00 ms |

#### Sequence - Part 1

| Introduction        | On          |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | Off         |
| Phase stabilisation | Off         |
| Asymmetric echo     | Off         |
| Contrasts           | 1           |
| Flow comp.          | Yes         |
| Multi-slice mode    | Interleaved |
| Bandwidth           | 120 Hz/Px   |

#### Sequence - Part 2

| Segments                 | 1         |
|--------------------------|-----------|
| Acoustic noise reduction | Active    |
| RF pulse type            | Fast      |
| Gradient mode            | Whisper   |
| Excitation               | Slab-sel. |
| RF spoiling              | On        |

#### Sequence - Assistant

| Mode          | Off  |
|---------------|------|
| Allowed delay | 30 s |

# BMJ Open

# SIEMENS MAGNETOM Prisma

#### 

# \\Study Protocols\BRAIN\Neonates\Theirworld - E161723\t2\_blade\_dark-fluid\_tra\_v3 TA: 3:22 PM: REF Voxel size: 0.9×0.9×3.0 mmPAT: 2 Rel. SNR: 1.00 : qtirB\_rr

# Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
|                                               |                    |
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | On                 |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | Off                |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |
|                                               |                    |

#### Routine

| Slice group        | 1                 |
|--------------------|-------------------|
| Slices             | 40                |
| Dist. factor       | 0 %               |
| Position           | Isocenter         |
| Orientation        | Transversal       |
| Phase enc. dir.    | R >> L            |
| AutoAlign          |                   |
| Phase oversampling | 0.0 %             |
| FoV read           | 240 mm            |
| FoV phase          | 100.0 %           |
| Slice thickness    | 3.0 mm            |
| TR                 | 10000.0 ms        |
| TE                 | 130 ms            |
| Averages           | 1                 |
| Concatenations     | 2                 |
| Filter             | Prescan Normalize |
| Coil elements      | HEA;HEP           |

#### **Contrast - Common**

| TR                       | 10000.0 ms    |
|--------------------------|---------------|
| TE                       | 130 ms        |
| TD                       | 0.0 ms        |
| MTC                      | Off           |
| Magn. preparation        | Slice-sel. IR |
| ті                       | 2606 ms       |
| Flip angle               | 130 deg       |
| Fat suppr.               | Fat sat.      |
| Fat sat. mode            | Strong        |
| Water suppr.             | None          |
| Restore magn.            | Off           |
| Freeze suppressed tissue | On            |

#### **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

#### **Resolution - Common**

| ) mm  |
|-------|
| 0.0 % |
| mm    |
| 3     |
| 0.0 % |
| ADE   |
|       |

# **Resolution - Common**

| Interpolation | Off |  |
|---------------|-----|--|
|               |     |  |

# **Resolution - iPAT**

| PAT mode            | GRAPPA     |
|---------------------|------------|
| Accel. factor PE    | 2          |
| Ref. lines PE       | 8          |
| Reference scan mode | Integrated |

#### **Resolution - Filter Image**

| Image Filter      | Off |
|-------------------|-----|
| Distortion Corr.  | Off |
| Prescan Normalize | On  |
| Unfiltered images | Off |
| Normalize         | Off |
| B1 filter         | Off |

#### **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

#### **Geometry - Common**

| Slice group      | 1           |
|------------------|-------------|
| Slices           | 40          |
| Dist. factor     | 0 %         |
| Position         | Isocenter   |
| Orientation      | Transversal |
| Phase enc. dir.  | R >> L      |
| FoV read         | 240 mm      |
| FoV phase        | 100.0 %     |
| Slice thickness  | 3.0 mm      |
| TR               | 10000.0 ms  |
| Multi-slice mode | Interleaved |
| Series           | Interleaved |
| Concatenations   | 2           |

# Geometry - AutoAlign

| Slice group         | 1           |
|---------------------|-------------|
| Position            | Isocenter   |
| Orientation         | Transversal |
| Phase enc. dir.     | R >> L      |
| AutoAlign           |             |
| Initial Position    | Isocenter   |
| L                   | 0.0 mm      |
| Р                   | 0.0 mm      |
| н                   | 0.0 mm      |
| Initial Rotation    | 90.00 deg   |
| Initial Orientation | Transversal |

#### **Geometry - Saturation**

| Fat suppr.    | Fat sat.   |
|---------------|------------|
| Fat sat. mode | Strong     |
| Water suppr.  | None       |
| Restore magn. | Off        |
| Special sat.  | Parallel F |
| Gap           | 10 mm      |
| Thickness     | 70 mm      |

#### **Geometry - Navigator**

### SIEMENS MAGNETOM Prisma

| Off                                                        |
|------------------------------------------------------------|
| Н                                                          |
| 0 mm                                                       |
| Off                                                        |
|                                                            |
| REF                                                        |
| Н                                                          |
| 0 mm                                                       |
| S - C - T                                                  |
| R >> L                                                     |
| A >> P                                                     |
| F>>H                                                       |
| Adaptive Combine<br>Off                                    |
| Off                                                        |
| Oli                                                        |
| On - AutoCoilSelect                                        |
|                                                            |
| Standard                                                   |
| TrueForm                                                   |
| Off                                                        |
| Off                                                        |
| Off                                                        |
| Off                                                        |
| Auto                                                       |
|                                                            |
| Isocenter                                                  |
| Transversal                                                |
| 90.00 deg                                                  |
| 240 mm                                                     |
| 240 mm                                                     |
| 120 mm                                                     |
| Off                                                        |
|                                                            |
| TrueForm                                                   |
|                                                            |
| 123.244318 MHz                                             |
| 1                                                          |
| High                                                       |
| 1.000                                                      |
| Off<br>0.000 V                                             |
|                                                            |
| None                                                       |
|                                                            |
| 10000 0 ms                                                 |
| 10000.0 ms<br>2                                            |
|                                                            |
|                                                            |
| 2                                                          |
| 2<br>Slice-sel. IR                                         |
| 2<br>Slice-sel. IR<br>2606 ms<br>Fat sat.<br>Off           |
| 2<br>Slice-sel. IR<br>2606 ms<br>Fat sat.<br>Off<br>240 mm |
| 2<br>Slice-sel. IR<br>2606 ms<br>Fat sat.<br>Off           |
|                                                            |

#### **Physio - PACE**

| Resp. control  | Off |
|----------------|-----|
| Concatenations | 2   |
|                |     |

### Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Save original images | On  |

### Inline - MIP

| MIP-Sag<br>MIP-Cor   | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

### **Inline - Composing**

|                  | -   |
|------------------|-----|
| Inline Composing | Off |
| Distortion Corr. | Off |

### Sequence - Part 1

| Introduction        | On          |
|---------------------|-------------|
| Dimension           | 2D          |
| Compensate T2 decay | Off         |
| Contrasts           | 1           |
| Flow comp.          | Read        |
| Multi-slice mode    | Interleaved |
| Free echo spacing   | Off         |
| Echo spacing        | 8.64 ms     |
| Bandwidth           | 362 Hz/Px   |

### Sequence - Part 2

| Define                   | Turbo factor |
|--------------------------|--------------|
| Echo trains per slice    | 9            |
| Phase correction         | Automatic    |
| Acoustic noise reduction | Active       |
| RF pulse type            | Low SAR      |
| Gradient mode            | Normal       |
| Hyperecho                | Off          |
| WARP                     | Off          |
| Motion correction        | On           |
| Red. EC sensitivity      | Off          |
| Turbo factor             | 28           |

### Sequence - Assistant

| Mode           | Min flip angle |
|----------------|----------------|
| Min flip angle | 130 deg        |
| Allowed delay  | 30 s           |

| <pre># Author: qspace2siemens.m (Michael Thrippleton), manually edited<br/>into 2 parts<br/># Source file: ,/vector_tables/neonate/04-shells-3-6-64-64.txt<br/># b-value at UI: 750<br/># number of non-zero shells: 1<br/># number of directions per non-zero shell: 64<br/># number of directions per non-zero shell: 64<br/># number of directions including b0: 71<br/>[directions=71]<br/>normalization = none<br/>coordinatesystem = xyz<br/>comment=bull: 750, b750, ND0: 7<br/>vector[0] = (0.000000, 0.000000, 0.000000)<br/>vector[1] = (-0.53981, 0.03371, -0.091439)<br/>vector[2] = (-0.000440, 0.429608, 0.339760)<br/>vector[2] = (-0.016278, -0.195328, 0.511451)<br/>vector[5] = (-0.016278, -0.195328, 0.511451)<br/>vector[6] = (-0.016278, -0.195328, 0.511451)<br/>vector[7] = (0.025626, -0.195328, 0.511451)<br/>vector[9] = (-0.337338, -0.105537, -0.361699)<br/>vector[1] = (0.025626, 0.000790, -0.547053)<br/>vector[1] = (0.025626, 0.008709, -0.547053)<br/>vector[1] = (0.025638, -0.195328, -0.146162)<br/>vector[1] = (0.493022, 0.016162, 0.33970)<br/>vector[1] = (0.493022, 0.016162, 0.33973)<br/>vector[1] = (0.496386, 0.05539, 0.25369)<br/>vector[1] = (0.496386, 0.050199, 0.225809)<br/>vector[1] = (0.496386, 0.050199, 0.225809)<br/>vector[1] = (0.496386, 0.05199, 0.225809)<br/>vector[1] = (0.219722, 0.0181524, -0.164088)<br/>vector[1] = (0.219722, 0.0181524, -0.164088)<br/>vector[1] = (0.219722, 0.0181524, -0.164089)<br/>vector[1] = (0.219722, 0.0181524, -0.164089)<br/>vector[1] = (0.496386, 0.05199, 0.225809)<br/>vector[1] = (0.219722, 0.0181524, -0.164089)<br/>vector[2] = (0.000000, 0.000000, 0.000000)<br/>vector[2] = (0.219722, 0.0181524, -0.164089)<br/>vector[2] = (0.219090, -0.495800, -0.29379)<br/>vector[2] = (0.219090, -0.495800, -0.29379)<br/>vector[2] = (0.219090, -0.495800, -0.29379)<br/>vector[2] = (0.217278, 0.4461081, 0.22738)<br/>vector[2] = (0.217278, 0.4461081, 0.22738)<br/>vector[3] = (0.072278, 0.4461081, 0.22738)<br/>vector[3] = (0.072278, 0.4461081, 0.22738</pre>                                | 1  |                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------|
| <pre># Author: gspace2siemens.m (Michael Thrippleton), manually edited<br/>into 2 parts<br/># Source file: ./vector_tables/neonate/04-shells-3-6-64-64.txt<br/># b-value at UI: 750<br/># non-zero b-values: 750<br/># number of non-zero shells: 1<br/># number of directions per non-zero shell: 64<br/># number of directions per non-zero shell: 64<br/># number of directions per non-zero<br/>shell: 64<br/># normalization = none<br/>coordinatesystem = xyz<br/>comment=bUI: 750, b: 750, Nb0: 7<br/># vector[1] = ( -0.538981, 0.033731, -0.091439)<br/># vector[2] = ( -0.012789, -0.195328, 0.51451)<br/># vector[2] = ( -0.012789, -0.195328, 0.51451)<br/># vector[3] = ( -0.12789, -0.195328, 0.51451)<br/># vector[6] = ( -0.42739, -0.280126, -0.340143)<br/># vector[6] = ( -0.437344, -0.195328, 0.51496)<br/># vector[1] = ( 0.039738, -0.105537, -0.361089)<br/># vector[1] = ( 0.195148, -0.224679, 0.459823)<br/># vector[1] = ( 0.195148, -0.224679, 0.459823)<br/># vector[1] = ( 0.195148, -0.224679, 0.459823)<br/># vector[1] = ( 0.239722, 0.401066, -0.301523)<br/># vector[1] = ( 0.249622, 0.181524, -0.164098)<br/># vector[1] = ( 0.249635, -0.236576, 0.225899)<br/># vector[2] = ( 0.218923, -0.268989, -0.23989)<br/># vector[2] = ( 0.143700, -0.138955, -0.218826)<br/># vector[2] = ( 0.143700, -0.138955, -0.218826)<br/># vector[2]</pre> | 1  |                                                           |
| <pre>into 2 parts into 2 parts is Source file: ./vector_tables/neonate/04-shells-3-6-64-64.txt # b-value at UI: 750 into 2 parts into 2</pre>                                                                                                                                                                                                                                |    | # Authors represent (Michael Thrippleter) repuelly edited |
| <pre>     Source file: ./vector_tables/neonate/04-shells-3-6-64-64.txt     # Source file: ./vector_tables/neonate/04-shells-3-6-64-64.txt     # bronzero b-values: 750     # number of honzero shells: 1     # number of directions per nonzero shell: 64     # nonzerost     # total number of directions including b0: 71     [directions=71]     normalization = none     coordinatesystem = xyz     cooment=bUI: 750, b: 750, Nb0: 7     vector[2] = (-0.38981, 0.033731, -0.091439)     vector[2] = (-0.31233, 0.037462, 0.349872)     vector[3] = (-0.12728, -0.159328, 0.511451)     vector[6] = (-0.061295, -0.451376, 0.304143)     vector[6] = (-0.231133, -0.471788, 0.154096)     vector[8] = (-0.231133, -0.471788, 0.154096)     vector[10] = (0.447399, -0.280126, -0.146162)     vector[10] = (-0.437344, -0.208126, -0.146162)     vector[10] = (0.493344, -0.208126, -0.146162)     vector[11] = (0.95148, -0.224679, 0.459823)     vector[13] = (0.496386, 0.051099, 0.225809)     vector[13] = (0.496386, 0.051099, 0.225809)     vector[13] = (0.23972, 0.410406, -0.303513, 0.29379)     vector[13] = (0.24665, -0.236576, 0.423689)     vector[13] = (0.23939, -0.268598, -0.236599, 0.253691)     vector[23] = (-0.337648, -0.514342, -0.164098)     vector[23] = (0.214923, -0.268088, -0.423809)     vector[23] = (0.23434, -0.514342, -0.186823)     vector[23] = (0.23434, -0.514342, -0.186823)     vector[23] = (0.239745, 0.236579, 0.423569)     vector[23] = (0.239745, 0.236579, 0.423569)     vector[23] = (0.23434, -0.514342, -0.186823)     vector[23] = (0.23434, -0.514342, -0.186823)     vector[23] = (0.436645, -0.609132,</pre>                                                                                                                                                                                                                                |    |                                                           |
| <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                           |
| <pre>7 # Dovalue at U1 / 30<br/>8 # non-zero b-values: 750<br/>8 # number of bora-zero shells: 1<br/>9 # number of directions per non-zero shell: 64<br/>1 # normalization = none<br/>1 coordinatesystem = xyz<br/>6 comment=bUI: 750, b: 750, Nb0: 7<br/>17 vector[0] = ( 0.000000, 0.000000, 0.000000 )<br/>18 vector[1] = ( -0.538981, 0.033731, -0.091439 )<br/>19 vector[2] = ( -0.000440, 0.429608, 0.339760 )<br/>19 vector[3] = ( -0.14795, -0.494556, -0.183546 )<br/>10 vector[3] = ( -0.14795, -0.494556, -0.183546 )<br/>10 vector[3] = ( -0.016278, -0.195328, 0.511451 )<br/>10 vector[6] = ( -0.061295, -0.451376, 0.304143 )<br/>10 vector[6] = ( -0.061295, -0.451376, 0.304143 )<br/>10 vector[9] = ( -0.397538, -0.105537, -0.316199 )<br/>10 vector[1] = ( 0.025626, -0.008709, -0.547053 )<br/>10 vector[1] = ( 0.000000, 0.000000, 0.000000 )<br/>10 vector[1] = ( 0.000000, 0.000000, 0.000000 )<br/>10 vector[1] = ( 0.447399, -0.280126, -0.16162 )<br/>10 vector[1] = ( 0.447399, -0.280126, -0.16162 )<br/>10 vector[1] = ( 0.497544, -0.22679, 0.459823 )<br/>11 vector[1] = ( 0.49722, 0.401066, -0.301523 )<br/>12 vector[1] = ( 0.496386, 0.050199, 0.225809 )<br/>13 vector[1] = ( 0.496386, 0.050199, 0.225809 )<br/>14 vector[16] = ( -0.49022, 0.181524, -0.164098 )<br/>15 vector[16] = ( -0.492032, -0.268986, -0.423989 )<br/>16 vector[16] = ( -0.245685, -0.236576, 0.428568 )<br/>17 vector[16] = ( 0.245685, -0.236576, 0.428568 )<br/>18 vector[21] = ( -0.245685, -0.236576, 0.428568 )<br/>19 vector[22] = ( 0.143700, -0.138957, -0.59932 )<br/>19 vector[23] = ( 0.024004, -0.408691, 0.327438 )<br/>10 vector[23] = ( 0.024004, -0.408691, 0.327438 )<br/>10 vector[24] = ( 0.436644, -0.2352591, 0.437181 )<br/>10 vector[31] = ( 0.356866, 0.108072, -0.</pre>                                                    |    |                                                           |
| <pre># number of non-zero shells: 1 # number of number of obless: 7 # number of be0 volumes: 7 # total number of directions including b0: 71 [directions=71] normalization = none comment=bUI: 750, b: 750, Nb0: 7 vector[0] = ( 0.000000, 0.000000 ) vector[2] = ( -0.038981, 0.033731, -0.091439 ) vector[2] = ( -0.000440, 0.429608, 0.339760 ) vector[2] = ( -0.000440, 0.429608, 0.339760 ) vector[2] = ( -0.016278, -0.494556, -0.183546 ) vector[3] = ( -0.147395, -0.494556, -0.183546 ) vector[3] = ( -0.016278, -0.451376, 0.349872 ) vector[5] = ( -0.061295, -0.451376, 0.349872 ) vector[6] = ( 0.060295, -0.451376, 0.304143 ) vector[7] = ( 0.025626, -0.008709, -0.547053 ) vector[7] = ( 0.025626, -0.008709, -0.547053 ) vector[8] = ( -0.231133, -0.471788, 0.154896 ) vector[1] = ( 0.000000, 0.000000 , 0.000000 ) vector[1] = ( 0.000000, 0.000000 , 0.000000 ) vector[14] = ( 0.219722, 0.401006, -0.301523 ) vector[14] = ( 0.219723, -0.280895, 0.423989 ) vector[14] = ( 0.219723, -0.280895, -0.423979 ) vector[14] = ( 0.219723, -0.280895, -0.423989 ) vector[14] = ( 0.2193955, -0.315424, -0.18524, -0.18523 ) vector[14] = ( 0.218932, -0.268895, -0.423958 ) vector[2] = ( -0.32316, -0.101032, 0.334159 ) vector[2] = ( 0.023344, -0.236586, 0.428588 ) vector[2] = ( 0.023434, -0.236896, -0.423588 ) vector[2] = ( 0.439474, -0.138989, -0.423999 ) vector[2] = ( 0.439474, -0.138989, -0.432586 ) vector[2] = ( 0.439474, -0.138989, -0.435786 ) vector[2] = ( 0.439047, -0.138089, -0.493789 ) vector[2] = ( 0.439047, -0.138989, -0.435786 ) vector[2] = ( 0.439047, -0.138989, -0.435786 ) vector[2] = ( 0.438686, 0.108072, -0.018533 ) vector[2] = ( 0.439047, 0.404618, 0.267033 ) vector[3</pre>                                                                                                                                                                                                                                |    |                                                           |
| <pre> # number of directions per non-zero shell: 64 # number of b=0 volumes: 7 # total number of directions including b0: 71 [directions=71] normalization = none Coordinatesystem = xyz Comment=bUI: 750, b: 750, Nb0: 7 vector[0] = (0.000000, 0.000000, 0.000000) vector[2] = (-0.000400, 0.29608, 0.339760) vector[3] = (-0.147395, -0.494556, -0.183546) vector[3] = (-0.016278, -0.195328, 0.511451) vector[5] = (-0.016278, -0.195328, 0.511451) vector[6] = (-0.061295, -0.451376, 0.304143) vector[7] = (0.052626, -0.008709, -0.451376, 0.304143) vector[6] = (-0.061295, -0.451376, 0.304143) vector[8] = (-0.231133, -0.471788, 0.154896) vector[8] = (-0.231133, -0.471788, 0.154896) vector[10] = (0.447399, -0.280126, -0.146162) vector[11] = (0.000000, 0.000000, 0.000000) vector[12] = (-0.397538, -0.185577, -0.361699) vector[13] = (0.195148, -0.224679, 0.459823) vector[13] = (0.195148, -0.226079, 0.25809) vector[13] = (0.195380, 0.051099, 0.25809) vector[13] = (0.496380, 0.051299, 0.25809) vector[14] = (0.219722, 0.401006, -0.301523) vector[15] = (0.496380, 0.051299, 0.25809) vector[13] = (0.195148, -0.226898, -0.423989) vector[20] = (0.218923, -0.268898, -0.423989) vector[21] = (-0.490822, 0.181524, -0.164082) vector[23] = (0.023434, -0.514342, -0.186823) vector[23] = (0.023434, -0.514342, -0.126826) vector[23] = (0.023434, -0.514342, -0.126826)) vector[23] = (0.023434, -0.514342, -0.126826) vector[23] = (0.023434, -0.514342, -0.126826) vector[23] = (0.023434, -0.514342, -0.126826)) vector[23] = (0.023434, -0.514342, -0.126826)) vector[23] = (0.023434, -0.514342, -0.126826)) vect</pre>                                                                                                                                                                                                                                | 8  |                                                           |
| <pre># number of b=0 volumes: 7 # total number of directions including b0: 71 [directions=71] idirections=71] idirections=71]</pre>                                                                                                                                                                                                                                 | 9  |                                                           |
| <pre># total number of directions including b0: 71 [directions=71] normalization = none coordinatesystem = xyz comment=bUIT 750, bb: 750, Nb0: 7 vector[0] = ( 0.000000, 0.000000, 0.000000) vector[2] = ( -0.000440, 0.429608, 0.339760 ) vector[3] = ( -0.147395, -0.494556, -0.183546 ) vector[3] = ( -0.016278, -0.195328, 0.511451 ) vector[4] = ( 0.239035, -0.347062, 0.349872 ) vector[5] = ( -0.016278, -0.195328, 0.511451 ) vector[7] = ( 0.025626, -0.082709, -0.364143 ) vector[7] = ( 0.025626, -0.082709, -0.364143 ) vector[8] = ( -0.397538, -0.195328, 0.511451 ) vector[8] = ( -0.397538, -0.195378, -0.15659 ) vector[10] = ( 0.447399, -0.280126, -0.146162 ) vector[10] = ( 0.447399, -0.280126, -0.146162 ) vector[10] = ( 0.447399, -0.280126, -0.146162 ) vector[12] = ( -0.347344, -0.385418, 0.293379 ) vector[13] = ( 0.195148, -0.224679, 0.459823 ) vector[13] = ( 0.496386, 0.051099, 0.225809 ) vector[13] = ( 0.496386, 0.0551099, 0.225809 ) vector[14] = ( 0.219722, 0.401006, -0.301523 ) vector[15] = ( -0.446457, -0.091032, 0.339355 ) vector[17] = ( 0.415886, 0.256359, -0.423898 ) vector[21] = ( -0.245685, -0.236576, 0.428568 ) vector[22] = ( -0.249795, 0.319409, 0.334159 ) vector[23] = ( 0.023434, -0.514342, -0.186823 ) vector[23] = ( 0.023434, -0.514342, -0.186823 ) vector[23] = ( 0.023434, -0.513432, -0.186823 ) vector[23] = ( 0.023434, -0.513432, -0.186823 ) vector[23] = ( 0.439047, 0.004691, 0.327438 ) vector[23] = ( 0.439047, 0.004691, 0.327438 ) vector[23] = ( 0.439047, 0.004691, 0.327438 ) vector[33] = ( 0.439047, 0.004691, 0.327438 ) vector[33] = ( 0.439364, -0.5134342, -0.186823 ) vector[33] = ( 0.439364, -0.5134342, -0.186823 ) vector[33] = ( 0.439047, 0.004691, 0.327438 ) vector[33] = ( 0.439047, 0.004691, 0.327438 ) vector[33] = ( 0.000000, 0.000000 ) vector[33] = ( 0.439047, 0.004691, 0.327438 ) vector[33] = ( 0.000000, 0.000000 ) vector[33] = ( 0.744665, -0.423659, -0.013505 ) vector[33] = ( 0.744666, -0.423659, 0.24597 ) vector[33] = ( 0.744666, -0.423659, 0.24597 ) vector[33] = ( 0.744666, -0.423659, 0.2145</pre>                                                                                                                                                                                                                                | 10 |                                                           |
| 13       [direction=71]         14       normalization = none         15       coordinatesystem = xyz         16       comment=bUI: 750, b: 750, Nb0: 7         17       vector[1] = (-0.538981, 0.033731, -0.091439)         19       vector[2] = (-0.000440, 0.429608, 0.339760)         10       vector[3] = (-0.147395, -0.494556, -0.183546)         11       vector[3] = (-0.147395, -0.494556, -0.183546)         12       vector[6] = (-0.061295, -0.451376, 0.304143)         12       vector[6] = (-0.061295, -0.451376, 0.304143)         12       vector[8] = (-0.231133, -0.471788, 0.154896)         12       vector[9] = (-0.397538, -0.105537, -0.361699)         12       vector[10] = (0.447399, -0.224679, 0.459823)         13       vector[11] = (0.000000, 0.000000, 0.000000)         14       vector[12] = (-0.347344, -0.305418, 0.293379)         15       vector[13] = (0.490202, 0.181524, -0.164098)         16       vector[14] = (0.219722, 0.401006, -0.301523)         17       vector[16] = (-0.449394, 0.256359, 0.253691)         18       vector[16] = (-0.49022, 0.181524, -0.164098)         19       vector[13] = (0.415886, 0.250359, 0.253691)         19       vector[20] = (0.218923, -0.268989, -0.423989)         19       vector[21] = (-0.245685, -0.236576, 0.428568)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 |                                                           |
| Image: normalization = none           Image: normalization = normalization = normalization           Image: normalization <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | · · · · · · · · · · · · · · · · · · ·                     |
| Coordinatesystem = xyz           Comment=bUI: 750, b:00           Vector[0] = (0.000000, 0.000000, 0.000000)           Vector[1] = (-0.530981, 0.033731, -0.091439)           Vector[3] = (-0.147395, -0.494556, -0.183546)           Vector[3] = (-0.147395, -0.494556, -0.183546)           Vector[6] = (-0.16278, -0.195328, 0.511451)           Vector[6] = (-0.061295, -0.451376, 0.304143)           Vector[6] = (-0.397538, -0.470762, 0.347053)           Vector[9] = (-0.33133, -0.471788, 0.154896)           Vector[1] = (0.000000, 0.000000, 0.000000)           Vector[1] = (0.000000, 0.0000000, 0.000000)           Vector[1] = (-0.347344, -0.385418, 0.233379)           Vector[1] = (0.195148, -0.224679, 0.459823)           Vector[1] = (0.496386, 0.051099, 0.225809)           Vector[1] = (0.446357, -0.091032, 0.303955)           Vector[1] = (0.446457, -0.091032, 0.3334159)           Vector[1] = (0.219722, 0.401006, 0.000000)           Vector[1] = (0.446457, -0.091032, 0.339355)           Vector[1] = (0.446457, -0.091032, 0.339355)           Vector[2] = (0.210932, -0.25809, 0.25808]           Vector[2] = (0.127918, 0.32591, 0.451419)           Vector[2] = (0.218923, -0.268938, -0.423980)           Vector[2] = (0.127918, 0.252591, 0.451419)           Vector[2] = (0.127918, 0.325591, 0.451419)           Vector[2] = (0.138504, 0.256930, 0.40699773)      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                           |
| 16       comment=bUI: 750, b: 750, Nb0: 7         17       vector[0] = (0.00000, 0.000000, 0.000000)         18       vector[1] = (-0.538981, 0.033731, -0.091439)         19       vector[2] = (-0.000440, 0.429608, 0.339760)         20       vector[3] = (-0.147395, -0.494556, -0.183546)         21       vector[4] = (0.239035, -0.347662, 0.349872)         22       vector[5] = (-0.016278, -0.195328, 0.511451)         23       vector[7] = (0.025626, -0.008709, -0.547053)         24       vector[8] = (-0.31733, -0.471788, 0.154896)         25       vector[9] = (-0.397538, -0.105537, -0.361699)         26       vector[10] = (0.447399, -0.280126, -0.146162)         27       vector[10] = (0.447399, -0.280126, -0.416162)         28       vector[11] = (-0.347344, -0.395418, 0.023379)         30       vector[12] = (-0.447392, 0.401006, -0.301523)         31       vector[13] = (0.446386, 0.651099, 0.225809)         32       vector[14] = (0.219722, 0.401006, -0.301523)         33       vector[16] = (-0.490022, 0.181524, -0.164098)         34       vector[16] = (-0.490022, 0.31459, 0.33159)         35       vector[18] = (0.219725, 0.319409, 0.33159)         36       vector[18] = (0.219727, -0.1080842, -0.128268)         40       vector[21] = (-0.490022, 0.181524, -0.164088)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                                                           |
| 17 $vector[0] = (0.000000, 0.000000, 0.000000)$ 18 $vector[1] = (-0.538981, 0.033731, -0.091439)$ 19 $vector[2] = (-0.000440, 0.429608, 0.339760)$ 20 $vector[3] = (-0.147395, -0.494556, -0.183546)$ 21 $vector[3] = (-0.016278, -0.195328, 0.511451)$ 22 $vector[6] = (-0.016278, -0.195328, 0.511451)$ 23 $vector[6] = (-0.016278, -0.195328, 0.511451)$ 24 $vector[6] = (-0.051295, -0.451376, 0.304143)$ 25 $vector[8] = (-0.25133, -0.471788, 0.154896)$ 26 $vector[9] = (-0.397538, -0.105537, -0.361699)$ 27 $vector[10] = (0.447399, -0.280126, -0.146162)$ 29 $vector[11] = (0.000000, 0.000000, 0.000000)$ 30 $vector[12] = (-0.347344, -0.305418, 0.293379)$ 31 $vector[13] = (0.195148, -0.224679, 0.459823)$ 32 $vector[14] = (0.219722, 0.401006, -0.301523)$ 33 $vector[15] = (0.446386, 0.051099, 0.225809)$ 34 $vector[17] = (0.445886, 0.250359, 0.253691)$ 35 $vector[17] = (0.445685, -0.236576, 0.428568)$ 36 $vector[20] = (0.218923, -0.26898, -0.423989)$ 37 $vector[21] = (-0.245685, -0.236576, 0.428568)$ 40 $vector[22] = (0.00000, 0.000000, 0.000000)$ 41 $vector[23] = (0.218923, -0.168989, -0.423989)$ 42 $vector[24] = (0.218923, -0.256980, -0.423989)$ 43 $vector[23] = (0.023434, -0.513424, -0.156823)$ 44 $vector[24] = (0.218923, -0.256980, -0.423989)$ 45 $vector[26] = (-0.4397742, -0.190842, -0.125826)$ 46 $vector[27] = (-0.552216, -0.116300, 0.403012)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                           |
| 18 $vector[1] = (-0.5389i], 0.0337i], -0.091439 )19vector[2] = (-0.000440, 0.429608, 0.339760 )20vector[3] = (-0.147395, -0.494556, -0.183546 )21vector[4] = (0.239035, -0.347062, 0.349872 )22vector[5] = (-0.016278, -0.195328, 0.511451 )23vector[6] = (-0.061295, -0.451376, 0.304143 )24vector[7] = (0.025626, -0.008709, -0.547053 )25vector[9] = (-0.337538, -0.147587, -0.361699 )26vector[10] = (0.447399, -0.280126, -0.146162 )29vector[11] = (0.09000, 0.000000, 0.000000 )30vector[12] = (-0.347344, -0.305418, 0.293379 )31vector[13] = (0.195148, -0.224679, 0.459823 )32vector[14] = (0.219722, 0.401006, -0.301523 )33vector[15] = (0.496386, 0.051099, 0.225809 )34vector[16] = (-0.490022, 0.181524, -0.164098 )35vector[18] = (0.233795, 0.319409, 0.334159 )36vector[18] = (0.219722, -0.268898, -0.423989 )37vector[12] = (-0.245685, -0.236576, 0.428568 )40vector[21] = (-0.245685, -0.236576, 0.428568 )41vector[22] = (0.00000, -0.000000, 0.000000 )42vector[23] = (0.023434, -0.5134342, -0.186823 )43vector[24] = (0.127918, 0.232591, 0.453149 )44vector[25] = (0.127918, 0.232591, -0.436823 )45vector[26] = (-0.439747, -0.108424, -0.125826 )46vector[26] = (-0.439747, -0.108424, -0.125826 )47vector[26] = (-0.439747, 0.004691, 0.327438 )48vector[28] = (-0.133044, -0.256940, -0.010438 )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                                                           |
| 19       vector[2] = ( -0.000440, 0.429608, 0.339760 )         20       vector[3] = ( -0.147395, -0.494556, -0.183546 )         21       vector[5] = ( -0.016278, -0.195328, 0.511451 )         22       vector[6] = ( -0.061295, -0.451376, 0.304143 )         24       vector[7] = ( 0.025626, -0.008709, -0.547053 )         25       vector[8] = ( -0.231133, -0.471788, 0.154896 )         26       vector[10] = ( 0.447399, -0.280126, -0.146162 )         29       vector[11] = ( 0.400000, 0.000000, 0.000000 )         30       vector[12] = ( -0.347344, -0.305418, 0.293379 )         31       vector[13] = ( 0.195148, -0.224679, 0.459823 )         32       vector[14] = ( 0.219722, 0.401006, -0.301523 )         33       vector[15] = ( 0.49636, 0.051099, 0.225809 )         34       vector[16] = ( 0.219722, 0.401006, -0.301523 )         35       vector[16] = ( 0.219722, 0.401006, -0.301523 )         36       vector[16] = ( 0.495367, -0.091032, 0.33955 )         37       vector[18] = ( 0.22375, 0.319409, 0.334159 )         38       vector[20] = ( 0.218923, -0.268988, -0.423989 )         39       vector[21] = ( -0.439047, -0.09060, 0.000000 )         40       vector[22] = ( 0.023434, -0.514342, -0.126826 )         41       vector[23] = ( 0.023434, -0.514342, -0.125826 )         42       vector[23] = ( 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                           |
| <pre>vector[3] = ( -0.147395, -0.494556, -0.183546 )<br/>vector[4] = ( 0.239035, -0.347062, 0.349872 )<br/>vector[6] = ( -0.0661295, -0.451376, 0.304143 )<br/>vector[6] = ( -0.061295, -0.451376, 0.304143 )<br/>vector[7] = ( 0.025626, -0.008709, -0.547053 )<br/>vector[8] = ( -0.231133, -0.471788, 0.154896 )<br/>vector[9] = ( -0.397538, -0.105537, -0.361699 )<br/>vector[10] = ( 0.447399, -0.280126, -0.146162 )<br/>vector[11] = ( 0.000000, 0.000000, 0.000000 )<br/>vector[12] = ( -0.347344, -0.305418, 0.293379 )<br/>vector[13] = ( 0.195148, -0.224679, 0.459823 )<br/>vector[14] = ( 0.219722, 0.401006, -0.301523 )<br/>vector[15] = ( 0.496386, 0.051099, 0.225809 )<br/>vector[16] = ( -0.490022, 0.181524, -0.164098 )<br/>vector[16] = ( -0.490022, 0.181524, -0.164098 )<br/>vector[17] = ( 0.446457, -0.091032, 0.303955 )<br/>vector[18] = ( 0.223379, -0.268898, -0.423989 )<br/>vector[20] = ( 0.218923, -0.268898, -0.423989 )<br/>vector[21] = ( 0.24565, -0.25756, 0.424568 )<br/>vector[22] = ( 0.000000, -0.495809, -0.099773 )<br/>vector[23] = ( 0.223434, -0.514342, -0.186823 )<br/>vector[24] = ( 0.210090, -0.495809, -0.099773 )<br/>vector[25] = ( 0.127918, 0.282591, 0.451419 )<br/>vector[26] = ( -0.439647, 0.004691, 0.327438 )<br/>vector[27] = ( -0.439647, 0.004691, 0.327438 )<br/>vector[28] = ( -0.439647, 0.004691, 0.327438 )<br/>vector[28] = ( -0.439647, 0.004691, 0.327438 )<br/>vector[29] = ( 0.113700, -0.138995, -0.509932 )<br/>vector[31] = ( 0.36686, 0.108072, -0.008594 )<br/>vector[31] = ( 0.36686, 0.108072, -0.008594 )<br/>vector[31] = ( 0.36021, -0.433649, 0.451627 )<br/>vector[32] = ( -0.172278, 0.446108, 0.267035 )<br/>vector[33] = ( 0.030270, 0.076300, -0.445476 )<br/>vector[33] = ( 0.074066, -0.423055, -0.1325263 )<br/>vector[34] = ( 0.074656, -0.432055, -0.1325263 )<br/>vector[35] = ( -0.172278, 0.446108, 0.267035 )<br/>vector[33] = ( 0.07247, 0.076300, -0.445476 )<br/>vector[33] = ( 0.074656, -0.432055, -0.132263 )<br/>vector[33] = ( 0.074656, -0.423055, -0.132263 )<br/>vector[33] = ( 0.07427, 0.076830, -0.445476 )<br/>vector[33] = ( 0.07427, 0.076830, -0.445476 )<br/>vector[33] = ( 0.075465, 0.519169, -0.157382 )<br/>vector[40] = ( 0.075465, 0.519169, -0.157382 )<br/>vector[40] =</pre>                                                     |    |                                                           |
| <pre>vector[4] = ( 0.239035, -0.347062, 0.349372 ) vector[5] = ( -0.016278, -0.195328, 0.511451 ) vector[7] = ( 0.025626, -0.008709, -0.547053 ) vector[8] = ( -0.3373313, -0.471788, 0.154896 ) vector[9] = ( -0.397538, -0.105537, -0.361699 ) vector[10] = ( 0.447399, -0.280126, -0.146162 ) vector[11] = ( 0.000000, 0.000000, 0.000000 ) vector[12] = ( -0.347344, -0.305418, 0.29379 ) vector[13] = ( 0.195148, -0.224679, 0.459823 ) vector[14] = ( 0.219722, 0.401006, -0.301523 ) vector[15] = ( 0.496386, 0.051099, 0.225809 ) vector[16] = ( -0.490022, 0.181524, -0.164098 ) vector[17] = ( 0.44657, -0.091032, 0.303955 ) vector[19] = ( 0.245685, -0.236576, 0.423569 ] vector[20] = ( 0.218923, -0.268988, -0.423989 ) vector[21] = ( -0.245685, -0.236576, 0.428568 ) vector[22] = ( 0.020000, 0.000000, 0.000000 ) vector[23] = ( 0.224334, -0.514342, -0.168623 ) vector[24] = ( 0.210909, -0.495809, -0.099773 ) vector[25] = ( 0.127918, 0.22591, 0.451419 ) vector[26] = ( -0.439047, 0.004691, 0.327438 ) vector[28] = ( -0.439047, 0.004691, 0.327438 ) vector[29] = ( 0.143700, -0.138995, -0.509932 ) vector[23] = ( 0.030004, 0.256909, -0.009594 ) vector[23] = ( 0.030047, 0.004691, 0.327438 ) vector[23] = ( 0.330467, 0.030651, 0.425866 ) vector[23] = ( 0.370486, 0.256919, 0.327438 ) vector[23] = ( 0.143700, -0.138995, -0.50932 ) vector[33] = ( 0.300000, 0.000000, 0.000000 ) vector[33] = ( 0.33047, 0.004691, 0.327438 ) vector[33] = ( 0.330270, 0.030655, 0.125866 ) vector[33] = ( 0.330270, 0.030655, 0.103637 ) vector[33] = ( 0.330270, 0.0306591, 0.327438 ) vector[33] = ( 0.030270, 0.0306305, 0.000000 ) vector[33] = ( 0.330270, 0.0306305, 0.000000 ) vector[33] = ( 0.330271, 0.0306591, 0.327438 ) vector[33] = ( 0.330270, 0.076830, -0.445476 ) vector[33] = ( 0.074066, -0.423595, 0.214272 ) vector[33] = ( 0.075465, 0.519169, -0.157382 ) vector[33] = ( 0.075465, 0.519169, -0.157382 ) vector[34] = ( 0.0552277,</pre>                                                                                                                                                                                                                                 |    |                                                           |
| <pre>vector[5] = ( -0.016278, -0.195328, 0.551451 ) vector[6] = ( -0.061295, -0.451376, 0.304143 ) vector[8] = ( -0.231133, -0.471788, 0.154896 ) vector[8] = ( -0.331738, -0.105537, -0.361699 ) vector[9] = ( -0.397538, -0.105537, -0.361699 ) vector[10] = ( 0.447399, -0.280126, -0.146162 ) vector[11] = ( 0.000000, 0.000000, 0.000000 ) vector[12] = ( -0.347344, -0.305418, 0.293379 ) vector[13] = ( 0.195148, -0.224679, 0.459823 ) vector[14] = ( 0.21972, 0.40106, -0.301523 ) vector[15] = ( 0.496386, 0.051099, 0.225809 ) vector[16] = ( -0.490022, 0.181524, -0.164098 ) vector[17] = ( 0.415886, 0.250359, 0.253691 ) vector[18] = ( 0.293795, 0.319409, 0.334159 ) vector[18] = ( 0.219725, 0.26898, -0.423989 ) vector[20] = ( 0.218923, -0.26898, -0.423989 ) vector[21] = ( -0.445685, -0.236576, 0.428568 ) vector[22] = ( 0.000000, 0.000000, 0.000000 ) vector[22] = ( 0.000000, 0.000000, 0.000000 ) vector[23] = ( 0.218923, -0.286989, -0.423989 ) vector[24] = ( 0.219718, 0.282591, 0.451419 ) vector[25] = ( 0.127918, 0.282591, 0.451419 ) vector[26] = ( -0.497742, -0.198842, -0.128826 ) vector[27] = ( -0.439047, 0.004691, 0.327438 ) vector[28] = ( -0.439047, 0.004691, 0.327438 ) vector[29] = ( 0.113008, -0.337640, 0.416207 ) vector[31] = ( 0.368664, 0.256940, -0.018438 ) vector[31] = ( 0.376864, 0.256940, -0.138262 ) vector[31] = ( 0.300270, 0.076830, -0.425735 ) vector[33] = ( 0.000000, 0.000000, 0.000000 ) vector[34] = ( 0.346021, -0.423655, 0.214272 ) vector[34] = ( 0.07465, 0.519169, -0.133263 ) vector[34] = ( 0.075465, 0.519169, -0.157322 ) vector[34] = ( 0.075465, 0.519169, -0.15732 ) vector[34] = ( 0.075465, 0.519169,</pre>                                                                                                                                                                                                                                |    |                                                           |
| <pre>vector[3] = ( -0.0612676, -0.151376, 0.304143 ) vector[7] = ( 0.025626, -0.008709, -0.547053 ) vector[8] = ( -0.231133, -0.471788, 0.154396 ) vector[9] = ( -0.397538, -0.105537, -0.361699 ) vector[10] = ( 0.447399, -0.280126, -0.146162 ) vector[11] = ( 0.000000, 0.000000, 0.000000 ) vector[12] = ( -0.347344, -0.305418, 0.293379 ) vector[13] = ( 0.195148, -0.224679, 0.459823 ) vector[14] = ( 0.219722, 0.401006, -0.301523 ) vector[15] = ( 0.496386, 0.051099, 0.225809 ) vector[16] = ( -0.490022, 0.181524, -0.164098 ) vector[17] = ( 0.415886, 0.250359, 0.253691 ) vector[18] = ( 0.293795, 0.319409, 0.334159 ) vector[19] = ( 0.446457, -0.091032, 0.33955 ) vector[19] = ( 0.446457, -0.091032, 0.33955 ) vector[20] = ( 0.218023, -0.268898, -0.423989 ) vector[21] = ( -0.245685, -0.236576, 0.428568 ) vector[22] = ( 0.000000, 0.000000, 0.000000 ) vector[23] = ( 0.210090, -0.495890, -0.099773 ) vector[24] = ( 0.210090, -0.495890, -0.125826 ) vector[25] = ( -0.43947, 0.034691, 0.327438 ) vector[26] = ( -0.439047, 0.0380452, -0.125826 ) vector[30] = ( 0.536886, 0.108072, -0.008594 ) vector[31] = ( 0.536886, 0.108072, -0.008594 ) vector[31] = ( 0.346021, -0.337640, 0.416207 ) vector[31] = ( 0.302270, 0.07633, -0.415476 ) vector[33] = ( 0.07466, -0.337640, 0.445476 ) vector[34] = ( 0.27278, 0.446108, 0.267935 ) vector[35] = ( -0.77278, 0.446108, 0.26793 ) vector[36] = ( -0.72278, 0.451849, -0.15826 ) vector[36] = ( -0.72278, 0.451849, -0.135263 ) vector[36] = ( -0.72278, 0.445189, 0.416207 ) vector[36] = ( -0.72278, 0.445189, 0.267935 ) vector[36] = ( -0.77278, 0.446108, 0.267935 ) vector[36] = ( -0.77278, 0.446108, 0.267935 ) vector[37] = ( 0.075465, 0.519169, -0.135263 ) vector[38] = ( 0.075465, 0.519169, -0.135263 ) vector[39] = ( 0.075465, 0.519169, -0.157382 ) vector[39] = ( 0.075465, 0.519169, -0.157382 ) vector[39] = ( 0.075465, 0.519169, -0.157382 ) vector[40] = ( 0.075465, 0.519169, -0.157382 ) vector[40] = ( 0.05545, 0.519169, -0.157382 ) vector[40] = ( 0.05545, 0.519169, -0.157382 ) vector[40] = ( 0.05545, 0.5191</pre>                                                                                                                                                                                                                                |    |                                                           |
| <pre>24 vector[7] = ( 0.025626, -0.008709, -0.547053 ) 25 vector[8] = ( -0.231133, -0.471788, 0.154896 ) 27 vector[9] = ( -0.397538, -0.105537, -0.361699 ) 28 vector[11] = ( 0.000000, 0.000000, 0.000000 ) 30 vector[12] = ( -0.347344, -0.305418, 0.293379 ) 31 vector[13] = ( 0.195148, -0.224679, 0.459823 ) 32 vector[14] = ( 0.219722, 0.401006, -0.301523 ) 33 vector[15] = ( 0.496386, 0.051099, 0.225809 ) 34 vector[16] = ( -0.490022, 0.181524, -0.164098 ) 35 vector[17] = ( 0.415886, 0.250359, 0.253691 ) 36 vector[18] = ( 0.293795, 0.319409, 0.334159 ) 37 vector[18] = ( 0.218923, -0.268898, -0.423989 ) 38 vector[20] = ( 0.42685, -0.236576, 0.428568 ) 40 vector[21] = ( -0.245685, -0.236576, 0.428568 ) 41 vector[22] = ( 0.000000, 0.000000, 0.000000 ) 41 vector[23] = ( 0.213434, -0.514342, -0.186823 ) 42 vector[24] = ( 0.210090, -0.495890, -0.099773 ) 43 vector[26] = ( -0.439047, 0.04691, 0.327438 ) 44 vector[27] = ( -0.439047, 0.004691, 0.327438 ) 45 vector[28] = ( -0.439047, 0.004691, 0.327438 ) 46 vector[29] = ( 0.113700, -0.138095, -0.50932 ) 47 vector[23] = ( 0.013004, -0.036576, 0.416207 ) 48 vector[23] = ( 0.0130947, 0.004691, 0.327438 ) 49 vector[23] = ( -0.439047, 0.004691, 0.327438 ) 40 vector[23] = ( -0.439047, 0.004691, 0.327438 ) 41 vector[23] = ( -0.113008, -0.337640, 0.416207 ) 42 vector[33] = ( 0.036040, 0.250940, -0.135263 ) 43 vector[33] = ( 0.034024, -0.53040, 0.403012 ) 44 vector[33] = ( 0.034024, -0.337640, 0.416207 ) 45 vector[33] = ( -0.17278, 0.446108, 0.267035 ) 54 vector[33] = ( -0.17278, 0.476108, 0.267035 ) 55 vector[33] = ( 0.02727, -0.321802, 0.440132 ) 56 vector[33] = ( 0.0277, -0.321802, 0.440132 ) 57 vector[33] = ( 0.027466, -0.423055, 0.214272 ) 58 vector[33] = ( 0.052227, -0.321802, 0.440132 ) 59 vector[40] = ( 0.05227, -0.321802, 0.445132 ) 50 vector[33] = ( 0.075465, 0.519169, -0.15732 ) 59 vector[30] = ( 0.075465, 0.519169, -0.15732 ) 50 vector[30] = ( 0.075465, 0.519169, -0.157382 ) 59 vector[40] = ( 0.05227, -0.321802, 0.440132 ) 50 vector[30] = ( 0.075465, 0.519169, -0.157382 )</pre>                                                                                                                                                                                                                                 |    |                                                           |
| <pre>vector[8] = ( -0.231133, -0.471788, 0.154896 )<br/>vector[9] = ( -0.397538, -0.105537, -0.361699 )<br/>vector[10] = ( 0.447399, -0.280126, -0.146162 )<br/>vector[11] = ( 0.00000, 0.000000, 0.000000 )<br/>vector[12] = ( -0.347344, -0.305418, 0.293379 )<br/>vector[13] = ( 0.195148, -0.224679, 0.459823 )<br/>vector[14] = ( 0.219722, 0.401066, -0.301523 )<br/>vector[15] = ( 0.496386, 0.051099, 0.225809 )<br/>vector[16] = ( -0.490022, 0.181524, -0.164098 )<br/>vector[17] = ( 0.446886, 0.250359, 0.253691 )<br/>vector[18] = ( 0.293795, 0.319409, 0.334159 )<br/>vector[19] = ( 0.446457, -0.091032, 0.303955 )<br/>vector[20] = ( 0.218923, -0.268898, -0.423969 )<br/>vector[21] = ( -0.245685, -0.236576, 0.428568 )<br/>vector[22] = ( 0.000000, 0.000000, 0.000000 )<br/>vector[23] = ( 0.023434, -0.514342, -0.186823 )<br/>vector[24] = ( 0.212090, -0.495890, -0.099773 )<br/>vector[25] = ( 0.127918, 0.325511, 0.451419 )<br/>vector[25] = ( 0.127918, 0.325591, 0.438626 )<br/>vector[27] = ( -0.439047, 0.004691, 0.327438 )<br/>vector[28] = ( -0.439047, 0.038955, -0.50932 )<br/>vector[29] = ( 0.143700, -0.138995, -0.50932 )<br/>vector[30] = ( -0.43864, 0.256940, -0.010438 )<br/>vector[31] = ( 0.536886, 0.108072, -0.086594 )<br/>vector[31] = ( 0.346021, -0.432591, 0.416207 )<br/>vector[31] = ( 0.13008, -0.337640, 0.416207 )<br/>vector[33] = ( 0.000000, 0.000000 )<br/>vector[33] = ( 0.000000, 0.000000 )<br/>vector[34] = ( 0.1340027, -0.086594 )<br/>vector[35] = ( -0.172278, 0.446108, 0.267035 )<br/>vector[36] = ( -0.052277, -0.321802, 0.440132 )<br/>vector[37] = ( 0.052277, -0.321802, 0.440132 )<br/>vector[39] = ( 0.057277, -0.321802, 0.440132 )<br/>vector[30] = ( 0.057277, -0.321802, 0.440132 )<br/>vector[30] = ( 0.057277, 0.321802, 0.440132 )<br/>vector[30] = ( 0.057277, 0.321802, 0.440132 )<br/>vector[30] = ( 0.057277, 0.321802, 0.440132 )<br/>vector[30] = ( 0.057247, 0.452385, 0.335170 )</pre>                                                                                                                                                                                                                      | 24 |                                                           |
| <pre>vector[9] = ( -0.397538, -0.105537, -0.361699 ) vector[10] = ( 0.447399, -0.280126, -0.146162 ) vector[11] = ( 0.00000, 0.00000, 0.000000 ) vector[12] = ( -0.347344, -0.305418, 0.293379 ) vector[13] = ( 0.195148, -0.224679, 0.459823 ) vector[14] = ( 0.219722, 0.401006, -0.301523 ) vector[15] = ( 0.496386, 0.051099, 0.225809 ) vector[16] = ( -0.490022, 0.181524, -0.164098 ) vector[18] = ( 0.293795, 0.319409, 0.334159 ) vector[19] = ( 0.446457, -0.091032, 0.303955 ) vector[20] = ( 0.218923, -0.268898, -0.423989 ) vector[21] = ( -0.245685, -0.236576, 0.428568 ) vector[22] = ( 0.00000, 0.000000, 0.000000 ) vector[23] = ( 0.023434, -0.514342, -0.186823 ) vector[24] = ( 0.210990, -0.495890, -0.099773 ) vector[25] = ( 0.127918, 0.282591, 0.451419 ) vector[26] = ( -0.439047, 0.004691, 0.327438 ) vector[28] = ( -0.438047, 0.268498, -0.010438 ) vector[31] = ( 0.536846, 0.256340, -0.610438 ) vector[32] = ( 0.000000, 0.004691, 0.327438 ) vector[33] = ( 0.036047, 0.04591, 0.327648 ) vector[33] = ( 0.036047, 0.04591, 0.327648 ) vector[33] = ( 0.352804, 0.256940, -0.610438 ) vector[33] = ( 0.039047, 0.004691, 0.327648 ) vector[33] = ( 0.032700, 0.076830, -0.445476 ) vector[33] = ( 0.02000, 0.000000, 0.000000 ) vector[34] = ( 0.352870, 0.42599, -0.335263 ) vector[34] = ( 0.32748, 0.446108, 0.267035 ) vector[34] = ( 0.02770, 0.076830, -0.445476 ) vector[33] = ( 0.05227, -0.321802, 0.446132 ) vector[34] = ( 0.05227, -0.321802, 0.440132 ) ve</pre>                                                                                                                                                                                                                                | 25 |                                                           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                           |
| 31vector [13] = ( 0.195148, -0.224679, 0.459823 )32vector [14] = ( 0.219722, 0.401006, -0.301523 )33vector [15] = ( 0.496386, 0.051099, 0.225809 )34vector [16] = ( -0.490022, 0.181524, -0.164098 )35vector [17] = ( 0.415886, 0.250359, 0.253691 )36vector [18] = ( 0.293795, 0.319409, 0.334159 )37vector [19] = ( 0.446457, -0.091032, 0.303955 )38vector [20] = ( 0.218923, -0.268898, -0.423989 )39vector [21] = ( -0.45685, -0.236576, 0.428568 )40vector [22] = ( 0.000000, 0.000000, 0.000000 )41vector [23] = ( 0.023434, -0.514342, -0.186823 )42vector [24] = ( 0.210090, -0.495890, -0.099773 )43vector [25] = ( 0.127918, 0.282591, 0.451419 )44vector [26] = ( -0.439047, -0.190842, -0.125826 )45vector [27] = ( -0.352216, -0.116300, 0.403012 )47vector [28] = ( -0.439047, 0.004691, 0.327438 )48vector [30] = ( 0.536886, 0.108072, -0.008594 )50vector [31] = ( 0.536886, 0.108072, -0.008594 )51vector [33] = ( 0.000000, 0.000000, 0.400000 )53vector [33] = ( 0.000000, 0.000000, 0.400000 )54vector [33] = ( 0.000000, 0.000000, 0.000000 )55vector [35] = ( -0.172278, 0.446108, 0.267035 )54vector [35] = ( -0.309270, 0.076830, -0.445476 )55vector [36] = ( -0.309270, 0.076830, -0.445476 )56vector [37] = ( 0.274066, -0.423055, 0.214272 )58vector [38] = ( 0.05227, -0.321802, 0.440132 )58vector [38] = ( 0.05227, -0.321802, 0.4401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | · ·                                                       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                           |
| 34vector [16] = ( -0.490022, 0.181524, -0.164098 )35vector [17] = ( 0.415886, 0.250359, 0.253691 )36vector [18] = ( 0.293795, 0.319409, 0.334159 )37vector [19] = ( 0.446457, -0.091032, 0.303955 )38vector [20] = ( 0.218923, -0.26898, -0.423989 )39vector [21] = ( -0.245685, -0.236576, 0.428568 )40vector [22] = ( 0.000000, 0.000000, 0.000000 )41vector [23] = ( 0.223434, -0.514342, -0.186823 )42vector [24] = ( 0.210090, -0.495890, -0.099773 )43vector [26] = ( -0.497742, -0.190842, -0.125826 )44vector [26] = ( -0.497742, -0.190842, -0.125826 )45vector [27] = ( -0.352216, -0.116300, 0.403012 )46vector [28] = ( -0.439047, 0.004691, 0.327438 )47vector [28] = ( -0.483604, 0.256940, -0.010438 )48vector [30] = ( -0.413008, -0.37640, 0.416207 )49vector [31] = ( 0.536886, 0.108072, -0.108594 )50vector [33] = ( 0.000000, 0.000000, 0.000000 )51vector [33] = ( 0.000000, 0.000000, 0.000000 )52vector [33] = ( -0.172278, 0.446108, 0.267035 )54vector [36] = ( -0.39270, 0.076830, -0.445476 )55vector [37] = ( 0.274066, -0.423055, 0.214272 )56vector [38] = ( 0.05227, -0.321802, 0.446132 )58vector [39] = ( 0.075465, 0.519169, -0.157382 )59vector [40] = ( 0.152874, 0.405328, 0.335170 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 |                                                           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 | vector[17] = ( 0.415886, 0.250359, 0.253691 )             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 | vector[18] = ( 0.293795, 0.319409, 0.334159 )             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                           |
| $\begin{array}{cccc} & \text{vector}[21] = (-0.24303, -0.24303, 0.0420300) \\ & \text{vector}[22] = (0.00000, 0.000000, 0.000000) \\ & \text{vector}[23] = (0.023434, -0.514342, -0.186823) \\ & \text{vector}[24] = (0.210090, -0.495890, -0.099773) \\ & \text{vector}[25] = (0.127918, 0.282591, 0.451419) \\ & \text{vector}[26] = (-0.497742, -0.190842, -0.125826) \\ & \text{vector}[26] = (-0.497742, -0.190842, -0.125826) \\ & \text{vector}[27] = (-0.352216, -0.116300, 0.403012) \\ & \text{vector}[28] = (-0.439047, 0.004691, 0.327438) \\ & \text{vector}[29] = (0.143700, -0.138995, -0.509932) \\ & \text{vector}[30] = (-0.483604, 0.256940, -0.010438) \\ & \text{vector}[30] = (-0.483604, 0.256940, -0.010438) \\ & \text{vector}[31] = (0.536886, 0.108072, -0.008594) \\ & \text{vector}[32] = (-0.113008, -0.337640, 0.416207) \\ & \text{vector}[33] = (0.000000, 0.000000, 0.000000) \\ & \text{vector}[34] = (0.346021, -0.402459, -0.135263) \\ & \text{vector}[35] = (-0.172278, 0.446108, 0.267035) \\ & \text{vector}[36] = (-0.309270, 0.076830, -0.445476) \\ & \text{vector}[38] = (0.052227, -0.321802, 0.440132) \\ & \text{vector}[39] = (0.075465, 0.519169, -0.157382) \\ & \text{vector}[40] = (0.152874, 0.405328, 0.335170) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                           |
| $\begin{array}{rcl} & \mbox{vector} [22] = ( 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.00000, 0.00000, 0.00000, 0.000$                                                                                                                                                                                                                          |    | · · ·                                                     |
| $\begin{array}{ccccc} & \text{vector}[23] = (& 0.023434, & -0.314342, & -0.160623) \\ & \text{vector}[24] = (& 0.210090, & -0.495890, & -0.099773) \\ & \text{vector}[25] = (& 0.127918, & 0.282591, & 0.451419) \\ & \text{vector}[26] = (& -0.497742, & -0.190842, & -0.125826) \\ & \text{vector}[27] = (& -0.352216, & -0.116300, & 0.403012) \\ & \text{vector}[28] = (& -0.439047, & 0.004691, & 0.327438) \\ & \text{vector}[29] = (& 0.143700, & -0.138995, & -0.509932) \\ & \text{vector}[30] = (& -0.483604, & 0.256940, & -0.010438) \\ & \text{vector}[31] = (& 0.536886, & 0.108072, & -0.008594) \\ & \text{vector}[31] = (& 0.536886, & 0.108072, & -0.008594) \\ & \text{vector}[32] = (& -0.113008, & -0.337640, & 0.416207) \\ & \text{vector}[33] = (& 0.000000, & 0.000000) \\ & \text{vector}[34] = (& 0.346021, & -0.402459, & -0.135263) \\ & \text{vector}[35] = (& -0.172278, & 0.446108, & 0.267035) \\ & \text{vector}[36] = (& -0.309270, & 0.076830, & -0.445476) \\ & \text{vector}[37] = (& 0.274066, & -0.423055, & 0.214272) \\ & \text{vector}[38] = (& 0.075465, & 0.519169, & -0.157382) \\ & \text{vector}[40] = (& 0.152874, & 0.405328, & 0.335170) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                           |
| 43 $vector[24] = (0.210090, -0.495890, -0.099773)$ 44 $vector[25] = (0.127918, 0.282591, 0.451419)$ 45 $vector[26] = (-0.497742, -0.190842, -0.125826)$ 46 $vector[27] = (-0.352216, -0.116300, 0.403012)$ 47 $vector[28] = (-0.439047, 0.004691, 0.327438)$ 48 $vector[29] = (0.143700, -0.138995, -0.509932)$ 49 $vector[30] = (-0.483604, 0.256940, -0.010438)$ 50 $vector[31] = (0.536886, 0.108072, -0.008594)$ 51 $vector[32] = (-0.113008, -0.337640, 0.416207)$ 52 $vector[33] = (0.000000, 0.000000, 0.000000)$ 53 $vector[34] = (0.346021, -0.402459, -0.135263)$ 54 $vector[35] = (-0.172278, 0.446108, 0.267035)$ 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                           |
| 44 $vector[25] = (0.127918, 0.282591, 0.451419)$ 45 $vector[26] = (-0.497742, -0.190842, -0.125826)$ 46 $vector[27] = (-0.352216, -0.116300, 0.403012)$ 47 $vector[28] = (-0.439047, 0.004691, 0.327438)$ 48 $vector[29] = (0.143700, -0.138995, -0.509932)$ 49 $vector[30] = (-0.483604, 0.256940, -0.010438)$ 50 $vector[31] = (0.536886, 0.108072, -0.008594)$ 51 $vector[32] = (-0.113008, -0.337640, 0.416207)$ 52 $vector[33] = (0.000000, 0.000000, 0.000000)$ 53 $vector[34] = (0.346021, -0.402459, -0.135263)$ 54 $vector[35] = (-0.172278, 0.446108, 0.267035)$ 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                           |
| 45vector $[27] = (-0.352216, -0.116300, 0.403012)$ 47vector $[28] = (-0.439047, 0.004691, 0.327438)$ 48vector $[29] = (0.143700, -0.138995, -0.509932)$ 49vector $[30] = (-0.483604, 0.256940, -0.010438)$ 50vector $[31] = (0.536886, 0.108072, -0.008594)$ 51vector $[32] = (-0.113008, -0.337640, 0.416207)$ 52vector $[33] = (0.000000, 0.000000, 0.000000)$ 53vector $[34] = (0.346021, -0.402459, -0.135263)$ 54vector $[35] = (-0.172278, 0.446108, 0.267035)$ 55vector $[36] = (-0.309270, 0.076830, -0.445476)$ 56vector $[37] = (0.274066, -0.423055, 0.214272)$ 57vector $[38] = (0.052227, -0.321802, 0.440132)$ 58vector $[39] = (0.075465, 0.519169, -0.157382)$ 59vector $[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                           |
| 46 $vector[27] = (-0.352216, -0.116300, 0.403012)$ 47 $vector[28] = (-0.439047, 0.004691, 0.327438)$ 48 $vector[29] = (0.143700, -0.138995, -0.509932)$ 49 $vector[30] = (-0.483604, 0.256940, -0.010438)$ 50 $vector[31] = (0.536886, 0.108072, -0.008594)$ 51 $vector[32] = (-0.113008, -0.337640, 0.416207)$ 52 $vector[33] = (0.000000, 0.000000, 0.000000)$ 53 $vector[34] = (0.346021, -0.402459, -0.135263)$ 54 $vector[35] = (-0.172278, 0.446108, 0.267035)$ 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                           |
| 48 $vector[29] = (0.143700, -0.138995, -0.509932)$ $49$ $vector[30] = (-0.483604, 0.256940, -0.010438)$ $50$ $vector[31] = (0.536886, 0.108072, -0.008594)$ $51$ $vector[32] = (-0.113008, -0.337640, 0.416207)$ $52$ $vector[33] = (0.000000, 0.000000, 0.000000)$ $53$ $vector[34] = (0.346021, -0.402459, -0.135263)$ $54$ $vector[35] = (-0.172278, 0.446108, 0.267035)$ $55$ $vector[36] = (-0.309270, 0.076830, -0.445476)$ $56$ $vector[37] = (0.274066, -0.423055, 0.214272)$ $57$ $vector[38] = (0.052227, -0.321802, 0.440132)$ $vector[39] = (0.075465, 0.519169, -0.157382)$ $9$ $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 |                                                           |
| 49 $vector[30] = (-0.483604, 0.256940, -0.010438)$ 50 $vector[31] = (0.536886, 0.108072, -0.008594)$ 51 $vector[32] = (-0.113008, -0.337640, 0.416207)$ 52 $vector[33] = (0.000000, 0.000000, 0.000000)$ 53 $vector[34] = (0.346021, -0.402459, -0.135263)$ 54 $vector[35] = (-0.172278, 0.446108, 0.267035)$ 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47 |                                                           |
| 50 $vector[31] = (0.536886, 0.108072, -0.008594)$ 51 $vector[32] = (-0.113008, -0.337640, 0.416207)$ 52 $vector[33] = (0.000000, 0.000000, 0.000000)$ 53 $vector[34] = (0.346021, -0.402459, -0.135263)$ 54 $vector[35] = (-0.172278, 0.446108, 0.267035)$ 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 | · · ·                                                     |
| 51 $vector[32] = (-0.113008, -0.337640, 0.416207)$<br>52 $vector[33] = (0.000000, 0.000000, 0.000000)$<br>53 $vector[34] = (0.346021, -0.402459, -0.135263)$<br>54 $vector[35] = (-0.172278, 0.446108, 0.267035)$<br>55 $vector[36] = (-0.309270, 0.076830, -0.445476)$<br>56 $vector[37] = (0.274066, -0.423055, 0.214272)$<br>57 $vector[38] = (0.052227, -0.321802, 0.440132)$<br>58 $vector[39] = (0.075465, 0.519169, -0.157382)$<br>59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                           |
| 52 $vector[33] = (0.000000, 0.000000, 0.000000)$ 53 $vector[34] = (0.346021, -0.402459, -0.135263)$ 54 $vector[35] = (-0.172278, 0.446108, 0.267035)$ 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                           |
| 53 $vector[34] = (0.346021, -0.402459, -0.135263)$ 54 $vector[35] = (-0.172278, 0.446108, 0.267035)$ 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                                                           |
| 54 $vector[35] = (-0.172278, 0.446108, 0.267035)$ 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                           |
| 55 $vector[36] = (-0.309270, 0.076830, -0.445476)$ 56 $vector[37] = (0.274066, -0.423055, 0.214272)$ 57 $vector[38] = (0.052227, -0.321802, 0.440132)$ 58 $vector[39] = (0.075465, 0.519169, -0.157382)$ 59 $vector[40] = (0.152874, 0.405328, 0.335170)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | · · ·                                                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | • •                                                       |
| $\begin{array}{l} 58 \\ 59 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                           |
| $^{59}$ vector[40] = ( 0.152874, 0.405328, 0.335170 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                           |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 |                                                           |

| 1        |                                                                                                          |
|----------|----------------------------------------------------------------------------------------------------------|
| 2        |                                                                                                          |
| 3        | vector[41] = ( 0.109576, 0.536320, 0.018825 )                                                            |
| 4        | vector[42] = (-0.045652, 0.300780, 0.455464)                                                             |
| 5        | vector[43] = (0.000000, 0.000000, 0.000000)                                                              |
| 6        | vector[44] = ( -0.533887, 0.114345, 0.043471 )                                                           |
| 7        | vector[45] = ( -0.097529, 0.434255, -0.319235 )                                                          |
| 8        | vector[46] = ( 0.391774, -0.236122, -0.301263 )                                                          |
| 9        | vector[47] = (0.399513, -0.317429, 0.199068)                                                             |
| 10       | vector[48] = (0.200167, 0.067226, 0.505385)                                                              |
| 11       | vector[49] = (0.385668, -0.387145, 0.037137)                                                             |
| 12<br>13 | vector[50] = (0.059543, 0.145424, 0.524697)                                                              |
| 13       | vector[51] = (-0.445546, -0.189946, 0.255752)                                                            |
| 15       | vector[52] = (0.263180, -0.007998, -0.480284)                                                            |
| 16       | vector $[53] = (-0.375132, -0.375662, 0.134735)$                                                         |
| 17       | vector[54] = (0.000000, 0.000000, 0.000000)                                                              |
| 18       | vector $[55] = (-0.100958, 0.513042, -0.163080)$                                                         |
| 19       | vector[56] = ( 0.266095, 0.478340, 0.019604 )                                                            |
| 20       | vector[57] = (0.480516, -0.133538, -0.226434)                                                            |
| 21       | vector[58] = (0.253431, -0.482875, 0.051025)                                                             |
| 22       | vector[59] = (0.361384, -0.227994, 0.342667)                                                             |
| 23       | vector[60] = (-0.479164, -0.248769, 0.092279)                                                            |
| 24       | vector $[61] = (-0.422438, -0.343026, -0.062282)$                                                        |
| 25       |                                                                                                          |
| 26       | vector[62] = (0.525823, 0.037772, -0.148605)                                                             |
| 27       | <pre>vector[63] = ( 0.112166, -0.092301, 0.528109 ) vector[64] = ( 0.050487, -0.545354, 0.006363 )</pre> |
| 28       | vector[65] = (0.000000, 0.000000, 0.000000)                                                              |
| 29       | vector[66] = (-0.290577, 0.355116, 0.299095)                                                             |
| 30       | vector[67] = (-0.303506, -0.415037, -0.188755)                                                           |
| 31       | vector[68] = (-0.340501, 0.129187, 0.409109)                                                             |
| 32       | vector[69] = (-0.275521, -0.188617, -0.434179)                                                           |
| 33       | vector[70] = (0.148849, 0.097956, -0.517928)                                                             |
| 34       | Vector[70] = (0.148849, 0.097950, -0.517928)                                                             |
| 35<br>36 |                                                                                                          |
| 30<br>37 |                                                                                                          |
| 38       |                                                                                                          |
| 39       |                                                                                                          |
| 40       |                                                                                                          |
| 41       |                                                                                                          |
| 42       |                                                                                                          |
| 43       |                                                                                                          |
| 44       |                                                                                                          |
| 45       |                                                                                                          |
| 46       |                                                                                                          |
| 47       |                                                                                                          |
| 40       |                                                                                                          |

| 1        |                                                                                                    |
|----------|----------------------------------------------------------------------------------------------------|
| 2        |                                                                                                    |
| 3        | <pre># Author: qspace2siemens.m (Michael Thrippleton), manually edited</pre>                       |
| 4        | into 2 parts                                                                                       |
| 5        | <pre># Source file: ./vector_tables/neonate/04-shells-3-6-64-64.txt</pre>                          |
| 6        | # b-value at UI: 2500                                                                              |
| 7        | # non-zero b-values: 200 500 2500                                                                  |
| 8        | # number of non-zero shells: 2                                                                     |
| 9        | <pre># number of directions per non-zero shell: 3 6 64</pre>                                       |
| 10<br>11 | # number of b=0 volumes: 7                                                                         |
| 12       | <pre># total number of directions including b0: 151</pre>                                          |
| 13       | [directions=80]                                                                                    |
| 14       | normalization = none                                                                               |
| 15       | coordinatesystem = xyz                                                                             |
| 16       | comment=bUI: 2500, b: 200 500 2500, Nb0: 7                                                         |
| 17       | vector[0] = ( 0.000000, 0.000000, 0.000000 )                                                       |
| 18       | vector[1] = ( 0.252007, 0.053675, -0.116668 )                                                      |
| 19       | vector[2] = ( 0.118341, -0.013011, 0.256566 )                                                      |
| 20       | vector[3] = ( 0.047528, -0.276133, -0.038625 )                                                     |
| 21       | vector[4] = ( -0.303298, -0.002700, -0.328638 )                                                    |
| 22       | vector[5] = ( -0.128927, -0.159163, 0.397549 )                                                     |
| 23<br>24 | vector[6] = ( 0.288240, 0.341931, 0.000938 )                                                       |
| 25       | vector[7] = (-0.166829, 0.397185, -0.120052)                                                       |
| 26       | vector[8] = ( -0.069301, 0.303423, 0.321142 )                                                      |
| 27       | vector[9] = ( 0.425645, -0.074339, -0.115324 )                                                     |
| 28       | vector[10] = (0.391424, -0.221918, 0.893051)                                                       |
| 29       | vector[11] = (0.458593, -0.241695, -0.855147)                                                      |
| 30       | vector[12] = ( 0.354539, 0.919288, 0.170913 )                                                      |
| 31       | vector[13] = (0.495263, -0.780339, -0.381819)                                                      |
| 32       | vector[14] = (-0.574230, 0.458191, 0.678470)                                                       |
| 33       | vector[15] = (0.000000, 0.000000, 0.000000)                                                        |
| 34<br>35 | vector[16] = ( -0.188453, -0.033220, -0.981520 )<br>vector[17] = ( 0.594951, -0.772279, 0.222754 ) |
| 36       | vector[18] = (0.076963, -0.202692, -0.976213)                                                      |
| 37       | vector[19] = (-0.354234, 0.663631, 0.658872)                                                       |
| 38       | vector[20] = (-0.245839, 0.923577, 0.294225)                                                       |
| 39       | vector[21] = (-0.646526, -0.378550, -0.662347)                                                     |
| 40       | vector[22] = ( 0.782685, 0.616196, -0.087788 )                                                     |
| 41       | vector[23] = ( -0.102171, -0.675368, -0.730369 )                                                   |
| 42       | vector[24] = ( -0.593833, 0.627627, -0.503435 )                                                    |
| 43       | vector[25] = ( -0.289839, 0.954652, -0.068065 )                                                    |
| 44<br>45 | vector[26] = ( 0.000000, 0.000000, 0.000000 )                                                      |
| 46       | vector[27] = ( 0.932852, 0.268018, -0.240735 )                                                     |
| 47       | vector[28] = ( -0.292661, 0.011816, 0.956143 )                                                     |
| 48       | vector[29] = ( -0.125932, -0.877649, -0.462465 )                                                   |
| 49       | vector[30] = ( 0.287138, 0.947828, -0.138468 )                                                     |
| 50       | vector[31] = ( -0.400507, -0.785392, -0.471967 )                                                   |
| 51       | vector[32] = ( 0.046561, 0.178494, -0.982839 )                                                     |
| 52       | vector[33] = ( 0.774106, -0.243372, -0.584405 )                                                    |
| 53       | vector[34] = ( -0.709331, 0.570685, 0.413724 )                                                     |
| 54       | vector[35] = ( 0.258673, -0.649858, 0.714684 )                                                     |
| 55       | vector[36] = ( 0.000000, 0.000000, 0.000000 )                                                      |
| 56       | vector[37] = ( 0.812504, 0.520520, 0.262482 )                                                      |
| 57       | vector[38] = ( -0.551995, -0.116325, -0.825694 )                                                   |
| 58<br>59 | vector[39] = (-0.680119, 0.223136, -0.698319)                                                      |
| 60       | vector[40] = ( -0.848362, -0.280672, -0.448893 )                                                   |
|          |                                                                                                    |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| I  |                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                            |
| 3  | vector[41] = ( -0.460227, -0.230447, 0.857371 )                                                            |
| 4  | vector[42] = (0.639224, 0.615748, 0.460703)                                                                |
| 5  | vector $[43] = (0.953358, -0.285443, 0.098132)$                                                            |
| 6  | vector $[44] = (-0.501430, 0.459528, -0.733077)$                                                           |
| 7  |                                                                                                            |
| 8  | vector[45] = (0.922461, 0.385130, 0.027209)                                                                |
| 9  | vector[46] = (-0.815410, 0.546002, -0.192323)                                                              |
| 10 | vector[47] = ( 0.000000, 0.000000, 0.000000 )                                                              |
| 11 | vector[48] = (-0.924442, 0.129694, -0.358591)                                                              |
| 12 | vector[49] = ( 0.549990, 0.820347, -0.156657 )                                                             |
| 13 | vector[50] = ( 0.774802, 0.509647, -0.374089 )                                                             |
| 14 | vector[51] = ( 0.907672, -0.355700, -0.222731 )                                                            |
| 15 | vector[52] = ( 0.051712, 0.985317, 0.162714 )                                                              |
| 16 | vector[53] = ( -0.970546, -0.135098, -0.199471 )                                                           |
| 17 | vector[54] = ( -0.621107, -0.417526, 0.663249 )                                                            |
| 18 | vector[55] = ( -0.776136, 0.621968, 0.103774 )                                                             |
| 19 | vector[56] = ( 0.551897, -0.830144, -0.079188 )                                                            |
| 20 | vector[57] = ( 0.555009, 0.711394, -0.431142 )                                                             |
| 21 | vector[58] = (0.000000, 0.000000, 0.000000)                                                                |
| 22 | vector[59] = (-0.239295, 0.451777, 0.859439)                                                               |
| 23 | vector $[60] = (-0.325801, -0.314211, -0.891698)$                                                          |
| 24 | vector[61] = (0.649939, -0.012663, -0.759881)                                                              |
| 25 |                                                                                                            |
| 26 | <pre>vector[62] = ( -0.042327, 0.894181, -0.445699 ) vector[63] = ( -0.159022, 0.408833, -0.898648 )</pre> |
| 27 |                                                                                                            |
| 28 | vector[64] = (0.388219, 0.606776, -0.693620)                                                               |
| 29 | vector $[65] = (-0.329997, 0.825600, -0.457697)$                                                           |
| 30 | vector[66] = (0.060764, 0.443276, 0.894323)                                                                |
| 31 | vector[67] = (-0.794452, 0.390958, -0.464756)                                                              |
| 32 | vector[68] = (-0.392295, -0.567128, -0.724204)                                                             |
| 33 | vector[69] = (0.000000, 0.000000, 0.000000)                                                                |
| 34 | vector[70] = ( 0.272234, 0.851327, -0.448477 )                                                             |
| 35 | vector[71] = ( 0.785891, 0.193927, -0.587169 )                                                             |
| 36 | vector[72] = ( -0.145787, 0.828569, 0.540573 )                                                             |
| 37 | vector[73] = ( 0.616784, 0.765973, 0.181281 )                                                              |
| 38 | vector[74] = ( -0.808755, -0.029868, -0.587387 )                                                           |
| 39 | vector[75] = ( 0.997247, -0.010658, -0.073384 )                                                            |
| 40 | vector[76] = ( -0.152743, -0.477444, 0.865284 )                                                            |
| 41 | vector[77] = ( -0.040188, -0.715882, 0.697064 )                                                            |
| 42 | vector[78] = ( -0.907740, 0.040990, 0.417525 )                                                             |
| 43 | vector[79] = ( 0.008357, -0.985450, 0.169758 )                                                             |
| 44 |                                                                                                            |
| 45 |                                                                                                            |
|    |                                                                                                            |

### BMJ Open SIEMENS MAGNETOM Prisma

#### 

| \\Study Protocols\BRA             | AIN\Neonates\Theirwo    | orld - E161723 - MT_test\M | TSatOn_ne    |
|-----------------------------------|-------------------------|----------------------------|--------------|
| TA: 2:58 PM                       | : REF Voxel size: 2.0×2 | 2.0×2.0 mmPAT: 3 Rel. SNR  | : 1.00 : qfl |
| Properties                        |                         | <b>Resolution - Common</b> |              |
| Prio recon                        | Off                     | Phase resolution           | 100          |
| Load images to viewer             | On                      | Slice resolution           | 100          |
| Inline movie                      | Off                     | Phase partial Fourier      | 6/8          |
| Auto store images                 | On                      | Slice partial Fourier      | Off          |
| Load images to stamp segments     | Off                     | Interpolation              | Off          |
| Load images to graphic segments   | Off                     |                            |              |
| Auto open inline display          | Off                     | Resolution - iPAT          |              |
| Auto close inline display         | Off                     | PAT mode                   | GRA          |
| Start measurement without further | Off                     | Accel. factor PE           | 3            |
| preparation                       |                         | Ref. lines PE              | 24           |
| Wait for user to start            | Off                     | Accel. factor 3D           | 1            |
| Start measurements                | Single measurement      | Reference scan mode        | Integ        |

#### Routine

| toutino            |                     |
|--------------------|---------------------|
| Slab group         | 1                   |
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 75.0 ms             |
| TE 1               | 1.54 ms             |
| TE 2               | 4.55 ms             |
| TE 3               | 8.56 ms             |
| Averages           | 1                   |
| Concatenations     | 1                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN             |

### **Contrast - Common**

| TR                | 75.0 ms |
|-------------------|---------|
| TE 1              | 1.54 ms |
| TE 2              | 4.55 ms |
| TE 3              | 8.56 ms |
| MTC               | On      |
| Magn. preparation | None    |
| Flip angle        | 5 deg   |
| Fat suppr.        | None    |
| Water suppr.      | None    |
| SWI               | Off     |
|                   |         |

### **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

### **Resolution - Common**

| FoV read        | 128 mm  |  |
|-----------------|---------|--|
| FoV phase       | 121.9 % |  |
| Slice thickness | 2.00 mm |  |
| Base resolution | 64      |  |

### - Common

| Phase resolution      | 100 % |  |
|-----------------------|-------|--|
| Slice resolution      | 100 % |  |
| Phase partial Fourier | 6/8   |  |
| Slice partial Fourier | Off   |  |
| Interpolation         | Off   |  |

MT\_test\MTSatOn\_neonate\_v2

### - iPAT

| PAT mode            | GRAPPA     |  |
|---------------------|------------|--|
| Accel. factor PE    | 3          |  |
| Ref. lines PE       | 24         |  |
| Accel. factor 3D    | 1          |  |
| Reference scan mode | Integrated |  |

### **Resolution - Filter Image**

| Image Filter      | Off |
|-------------------|-----|
| Distortion Corr.  | Off |
| Prescan Normalize | On  |
| Unfiltered images | Off |
| Normalize         | Off |
| B1 filter         | Off |

### **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

### **Geometry - Common**

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 75.0 ms             |
| Multi-slice mode   | Interleaved         |
| Series             | Interleaved         |
| Concatenations     | 1                   |

### **Geometry - AutoAlign**

| Slab group          | 1                   |
|---------------------|---------------------|
| Position            | R6.7 P19.4 H34.5 mm |
| Orientation         | Sagittal            |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R6.7 P19.4 H34.5    |
| R                   | 6.7 mm              |
| Р                   | 19.4 mm             |
| н                   | 34.5 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |
|                     |                     |

### **Geometry - Saturation**

| Saturation mode | Standard |
|-----------------|----------|
| Fat suppr.      | None     |
| Water suppr.    | None     |
| Special sat.    | None     |

### SIEMENS MAGNETOM Prisma

| Set-n-Go Protocol        | Off                  |
|--------------------------|----------------------|
| Table position           | Н                    |
| Table position 0 mm      |                      |
| Inline Composing         | Off                  |
| System - Miscellaneous   |                      |
| Positioning mode         | REF                  |
| Table position           | Н                    |
| Table position           | 0 mm                 |
| MSMA                     | S - C - T            |
| Sagittal                 | R >> L               |
| Coronal                  | A >> P               |
| Transversal              | F >> H               |
| Coil Combine Mode        | Sum of Squares       |
| Save uncombined          | Off                  |
| Matrix Optimization      | Off                  |
| AutoAlign                |                      |
| Coil Select Mode         | Off - AutoCoilSelect |
| System - Adjustments     |                      |
| B0 Shim mode             | Tune up              |
| B1 Shim mode             | TrueForm             |
| Adjust with body coil    | Off                  |
| Confirm freq. adjustment | Off                  |
| Assume Dominant Fat      | Off                  |
| Assume Silicone          | Off                  |
| Adjustment Tolerance     | Auto                 |
| System - Adjust Volume   |                      |
| Position                 | Isocenter            |
| Orientation              | Transversal          |
| Rotation                 | 0.00 deg             |
| A >> P                   | 263 mm               |
| R >> L                   | 350 mm               |
| F >> H                   | 350 mm               |
| Reset                    | Off                  |
| System - pTx Volumes     |                      |
| B1 Shim mode             | TrueForm             |
| Excitation               | Non-sel.             |
| System - Tx/Rx           |                      |
| Frequency 1H             | 123.244480 MHz       |
| Correction factor        | 1                    |
| Gain                     | Low                  |
| Img. Scale Cor.          | 3.000                |
| Reset                    | Off                  |
| ? Ref. amplitude 1H      | 0.000 V              |
| Physio - Signal1         |                      |
| 1st Signal/Mode          | None                 |
| TR                       | 75.0 ms              |
| Concatenations           | 1                    |
| Segments                 | 1                    |
| Physio - Cardiac         |                      |
| Tagging                  | None                 |
| Magn. preparation        | None                 |
| Fat suppr.               | None                 |
| i al suppi.              |                      |
| Dark blood               | Off                  |
|                          | Off<br>128 mm        |
| Dark blood               |                      |

### Physio - PACE

| Resp. control  | Off |
|----------------|-----|
| Concatenations | 1   |
|                |     |

### Inline - Common

| Subtract             | Off |  |
|----------------------|-----|--|
| Measurements         | 1   |  |
| StdDev               | Off |  |
| Liver registration   | Off |  |
| Save original images | On  |  |

#### Inline - MIP

| MIP-Sag<br>MIP-Cor   | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

### Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

### Inline - Maplt

| Save original images | On      |
|----------------------|---------|
| MapIt                | None    |
| Flip angle           | 5 deg   |
| Measurements         | 1       |
| Contrasts            | 3       |
| TR                   | 75.0 ms |
| TE 1                 | 1.54 ms |
| TE 2                 | 4.55 ms |
| TE 3                 | 8.56 ms |

### Sequence - Part 1

| Introduction        | Off         |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | On          |
| Phase stabilisation | Off         |
| Asymmetric echo     | Off         |
| Contrasts           | 3           |
| Flow comp. 1        | No          |
| Readout mode        | Bipolar     |
| Multi-slice mode    | Interleaved |
| Bandwidth 1         | 580 Hz/Px   |
| Bandwidth 2         | 580 Hz/Px   |
| Bandwidth 3         | 580 Hz/Px   |

### Sequence - Part 2

| Segments                 | 1        |
|--------------------------|----------|
| Acoustic noise reduction | Active   |
| RF pulse type            | Low SAR  |
| Gradient mode            | Normal   |
| Excitation               | Non-sel. |
| RF spoiling              | On       |

### SIEMENS MAGNETOM Prisma

| lode      | Off  |  |
|-----------|------|--|
| ved delay | 30 s |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |
|           |      |  |

# \\Study Protocols\BRAIN\Neonates\Theirworld - E161723 - MT\_test\MTSatOff\_neonate\_v2

## TA: 2:58 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 3 Rel. SNR: 1.00 : qfl

### Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | On                 |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |

### Routine

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              |                     |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 75.0 ms             |
| TE 1               | 1.54 ms             |
| TE 2               | 4.55 ms             |
| TE 3               | 8.56 ms             |
| Averages           | 1                   |
| Concatenations     | 1                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN             |

### Contrast - Common

| TR                | 75.0 ms |
|-------------------|---------|
| TE 1              | 1.54 ms |
| TE 2              | 4.55 ms |
| TE 3              | 8.56 ms |
| MTC               | Off     |
| Magn. preparation | None    |
| Flip angle        | 5 deg   |
| Fat suppr.        | None    |
| Water suppr.      | None    |
| SWI               | Off     |
|                   |         |

### Contrast - Dynamic

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

### **Resolution - Common**

| FoV read        | 128 mm  |
|-----------------|---------|
| FoV phase       | 121.9 % |
| Slice thickness | 2.00 mm |
| Base resolution | 64      |
| Base resolution | 64      |

### **Resolution - Common**

| Phase resolution      | 100 % |  |
|-----------------------|-------|--|
| Slice resolution      | 100 % |  |
| Phase partial Fourier | 6/8   |  |
| Slice partial Fourier | Off   |  |
| Interpolation         | Off   |  |

### **Resolution - iPAT**

| PAT mode            | GRAPPA     |  |
|---------------------|------------|--|
| Accel. factor PE    | 3          |  |
| Ref. lines PE       | 24         |  |
| Accel. factor 3D    | 1          |  |
| Reference scan mode | Integrated |  |

### **Resolution - Filter Image**

| Image Filter      | Off |
|-------------------|-----|
| Distortion Corr.  | Off |
| Prescan Normalize | On  |
| Unfiltered images | Off |
| Normalize         | Off |
| B1 filter         | Off |

## Resolution - Filter Rawdata

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

### Geometry - Common

| ,                  |                     |
|--------------------|---------------------|
| Slab group         | 1                   |
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 75.0 ms             |
| Multi-slice mode   | Interleaved         |
| Series             | Interleaved         |
| Concatenations     | 1                   |
|                    |                     |

### Geometry - AutoAlign

| <u> </u>            |                     |
|---------------------|---------------------|
| Slab group          | 1                   |
| Position            | R6.7 P19.4 H34.5 mm |
| Orientation         | Sagittal            |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R6.7 P19.4 H34.5    |
| R                   | 6.7 mm              |
| Р                   | 19.4 mm             |
| н                   | 34.5 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |
|                     |                     |

### Geometry - Saturation

| Saturation mode | Standard |
|-----------------|----------|
| Fat suppr.      | None     |
| Water suppr.    | None     |
| Special sat.    | None     |

### BMJ Open

### SIEMENS MAGNETOM Prisma

| 1        |                            | .,                   |
|----------|----------------------------|----------------------|
| 2        | Geometry - Tim Planning Su | ite                  |
| 3        | Set-n-Go Protocol          | Off                  |
| 4        | Table position             | Н                    |
| 5        | Table position             | 0 mm                 |
| 6        | Inline Composing           | Off                  |
| 7        | System - Miscellaneous     |                      |
| 8        |                            |                      |
| 9        | Positioning mode           | FIX                  |
| 10       | Table position             | H                    |
| 11       | Table position<br>MSMA     | 0 mm<br>S - C - T    |
| 12       | Sagittal                   | R>>L                 |
| 13       | Coronal                    | A >> P               |
| 14       | Transversal                | F >> H               |
| 15       | Coil Combine Mode          | Sum of Squares       |
| 16       | Save uncombined            | Off                  |
| 17       | Matrix Optimization        | Off                  |
| 18       | AutoAlign                  |                      |
| 10       | Coil Select Mode           | Off - AutoCoilSelect |
| 20       |                            |                      |
| 20       | System - Adjustments       |                      |
| 22       | B0 Shim mode               | Tune up              |
| 22       | B1 Shim mode               | TrueForm             |
| 23<br>24 | Adjust with body coil      | Off                  |
|          | Confirm freq. adjustment   | Off                  |
| 25       | Assume Dominant Fat        | Off                  |
| 26       | Assume Silicone            | Off                  |
| 27       | Adjustment Tolerance       | Auto                 |
| 28       |                            |                      |
| 29       | System - Adjust Volume     |                      |
| 30       | Position                   | Isocenter            |
| 31       | Orientation                | Transversal          |
| 32       | Rotation                   | 0.00 deg             |
| 33       | A >> P                     | 263 mm               |
| 34       | R >> L                     | 350 mm               |
| 35       | F >> H                     | 350 mm               |
| 36       | Reset                      | Off                  |
| 37       | System - pTx Volumes       |                      |
| 38       | B1 Shim mode               | TrueForm             |
| 39       | Excitation                 | Non-sel.             |
| 40       | Excitation                 | Non-sei.             |
| 41       | System - Tx/Rx             |                      |
| 42       | Frequency 1H               | 123.244480 MHz       |
| 43       | Correction factor          | 1                    |
| 44       | Gain                       | Low                  |
| 45       | Img. Scale Cor.            | 3.000                |
| 46       | Reset                      | Off                  |
| 47       | ? Ref. amplitude 1H        | 0.000 V              |
| 48       | · · · ·                    |                      |
| 49       | Physio - Signal1           |                      |
| 50       | 1st Signal/Mode            | None                 |
| 51       | TR                         | 75.0 ms              |
| 52       | Concatenations             | 1                    |
| 53       | Segments                   | 1                    |
| 54       |                            |                      |
| 55       | Physio - Cardiac           |                      |
| 55<br>56 | Tagging                    | None                 |
| 50<br>57 | Magn. preparation          | None                 |
|          | Fat suppr.                 | None                 |
| 58       | Dark blood                 | Off                  |
| 59       | FoV read                   | 128 mm               |
| 60       | FoV phase                  | 121.9 %              |
|          | Phase resolution           | 100 %                |
|          |                            |                      |

### **Physio - PACE**

| <b>1 1 1</b>   |     |  |
|----------------|-----|--|
| Resp. control  | Off |  |
| Concatenations | 1   |  |

### Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Liver registration   | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

### Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

### Inline - Maplt

| Save original images | On      |  |
|----------------------|---------|--|
| MapIt                | None    |  |
| Flip angle           | 5 deg   |  |
| Measurements         | 1       |  |
| Contrasts            | 3       |  |
| TR                   | 75.0 ms |  |
| TE 1                 | 1.54 ms |  |
| TE 2                 | 4.55 ms |  |
| TE 3                 | 8.56 ms |  |

### Sequence - Part 1

| Introduction        | Off         |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | On          |
| Phase stabilisation | Off         |
| Asymmetric echo     | Off         |
| Contrasts           | 3           |
| Flow comp. 1        | No          |
| Readout mode        | Bipolar     |
| Multi-slice mode    | Interleaved |
| Bandwidth 1         | 580 Hz/Px   |
| Bandwidth 2         | 580 Hz/Px   |
| Bandwidth 3         | 580 Hz/Px   |

### Sequence - Part 2

| Segments                 | 1        |
|--------------------------|----------|
| Acoustic noise reduction | Active   |
| RF pulse type            | Low SAR  |
| Gradient mode            | Normal   |
| Excitation               | Non-sel. |
| RF spoiling              | On       |

#### SIEMENS MAGNETOM Prisma

| Sequence - Assistant |      |  |
|----------------------|------|--|
| Mode                 | Off  |  |
| Allowed delay        | 30 s |  |

for peer teries only

# BMJ Open

### SIEMENS MAGNETOM Prisma

### \\Study Protocols\BRAIN\Neonates\Theirworld - E161723 - MT\_test\MTSatT1\_neonate\_v2

TA: 0:36 PM: FIX Voxel size: 2.0×2.0×2.0 mmPAT: 3 Rel. SNR: 1.00 : qfl

### Properties

| Prio recon                                    | Off                |
|-----------------------------------------------|--------------------|
| Load images to viewer                         | On                 |
| Inline movie                                  | Off                |
| Auto store images                             | On                 |
| Load images to stamp segments                 | Off                |
| Load images to graphic segments               | Off                |
| Auto open inline display                      | Off                |
| Auto close inline display                     | Off                |
| Start measurement without further preparation | On                 |
| Wait for user to start                        | Off                |
| Start measurements                            | Single measurement |
|                                               |                    |

#### Routine

| loutino            |                     |
|--------------------|---------------------|
| Slab group         | 1                   |
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| AutoAlign          |                     |
| Phase oversampling | 0 %                 |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 15.0 ms             |
| TE 1               | 1.54 ms             |
| TE 2               | 4.55 ms             |
| TE 3               | 8.56 ms             |
| Averages           | 1                   |
| Concatenations     | 1                   |
| Filter             | Prescan Normalize   |
| Coil elements      | PeH;PeN             |

### **Contrast - Common**

| TR                | 15.0 ms |  |
|-------------------|---------|--|
| TE 1              | 1.54 ms |  |
| TE 2              | 4.55 ms |  |
| TE 3              | 8.56 ms |  |
| MTC               | Off     |  |
| Magn. preparation | None    |  |
| Flip angle        | 14 deg  |  |
| Fat suppr.        | None    |  |
| Water suppr.      | None    |  |
| SWI               | Off     |  |
|                   |         |  |

### **Contrast - Dynamic**

| Averages        | 1                |
|-----------------|------------------|
| Averaging mode  | Short term       |
| Reconstruction  | Magnitude        |
| Measurements    | 1                |
| Multiple series | Each measurement |

### **Resolution - Common**

| FoV read        | 128 mm  |
|-----------------|---------|
| FoV phase       | 121.9 % |
| Slice thickness | 2.00 mm |
| Base resolution | 64      |

### **Resolution - Common**

| Phase resolution      | 100 % |  |
|-----------------------|-------|--|
| Slice resolution      | 100 % |  |
| Phase partial Fourier | 6/8   |  |
| Slice partial Fourier | Off   |  |
| Interpolation         | Off   |  |

### **Resolution - iPAT**

| PAT mode            | GRAPPA     |  |
|---------------------|------------|--|
| Accel. factor PE    | 3          |  |
| Ref. lines PE       | 24         |  |
| Accel. factor 3D    | 1          |  |
| Reference scan mode | Integrated |  |

### **Resolution - Filter Image**

| Image Filter      | Off |
|-------------------|-----|
| Distortion Corr.  | Off |
| Prescan Normalize | On  |
| Unfiltered images | Off |
| Normalize         | Off |
| B1 filter         | Off |

### **Resolution - Filter Rawdata**

| Raw filter        | Off |  |
|-------------------|-----|--|
| Elliptical filter | Off |  |

### **Geometry - Common**

| Slab group         | 1                   |
|--------------------|---------------------|
| Slabs              | 1                   |
| Dist. factor       | 20 %                |
| Position           | R6.7 P19.4 H34.5 mm |
| Orientation        | Sagittal            |
| Phase enc. dir.    | A >> P              |
| Slice oversampling | 0.0 %               |
| Slices per slab    | 72                  |
| FoV read           | 128 mm              |
| FoV phase          | 121.9 %             |
| Slice thickness    | 2.00 mm             |
| TR                 | 15.0 ms             |
| Multi-slice mode   | Interleaved         |
| Series             | Interleaved         |
| Concatenations     | 1                   |

### **Geometry - AutoAlign**

| Slab group          | 1                   |
|---------------------|---------------------|
| Position            | R6.7 P19.4 H34.5 mm |
| Orientation         | Sagittal            |
| Phase enc. dir.     | A >> P              |
| AutoAlign           |                     |
| Initial Position    | R6.7 P19.4 H34.5    |
| R                   | 6.7 mm              |
| Р                   | 19.4 mm             |
| н                   | 34.5 mm             |
| Initial Rotation    | 0.00 deg            |
| Initial Orientation | Sagittal            |

### **Geometry - Saturation**

| Saturation mode | Standard |
|-----------------|----------|
| Fat suppr.      | None     |
| Water suppr.    | None     |
| Special sat.    | None     |

### SIEMENS MAGNETOM Prisma

| Set-n-Go Protocol        | Off                  |
|--------------------------|----------------------|
| Table position           | Н                    |
| Table position           | 0 mm                 |
| Inline Composing         | Off                  |
| System - Miscellaneous   |                      |
| Positioning mode         | FIX                  |
| Table position           | Н                    |
| Table position           | 0 mm                 |
| MSMA                     | S - C - T            |
| Sagittal                 | R >> L               |
| Coronal                  | A >> P               |
| Transversal              | F >> H               |
| Coil Combine Mode        | Sum of Squares       |
| Save uncombined          | Off                  |
| Matrix Optimization      | Off                  |
| AutoAlign                | <u> </u>             |
| Coil Select Mode         | Off - AutoCoilSelect |
| System - Adjustments     |                      |
| B0 Shim mode             | Tune up              |
| B1 Shim mode             | TrueForm             |
| Adjust with body coil    | Off                  |
| Confirm freq. adjustment | Off                  |
| Assume Dominant Fat      | Off                  |
| Assume Silicone          | Off                  |
| Adjustment Tolerance     | Auto                 |
| System - Adjust Volume   |                      |
| Position                 | Isocenter            |
| Orientation              | Transversal          |
| Rotation                 | 0.00 deg             |
| A >> P                   | 263 mm               |
| R >> L                   | 350 mm               |
| F >> H                   | 350 mm               |
| Reset                    | Off                  |
| System - pTx Volumes     |                      |
| B1 Shim mode             | TrueForm             |
| Excitation               | Non-sel.             |
| System - Tx/Rx           |                      |
| Frequency 1H             | 123.244480 MHz       |
| Correction factor        | 1                    |
| Gain                     | Low                  |
| Img. Scale Cor.          | 3.000                |
| Reset                    | Off                  |
| ? Ref. amplitude 1H      | 0.000 V              |
| Physio - Signal1         |                      |
| 1st Signal/Mode          | None                 |
| TR                       | 15.0 ms              |
| Concatenations           | 1                    |
| Segments                 | 1                    |
| Physio - Cardiac         |                      |
| Tagging                  | None                 |
| Magn. preparation        | None                 |
| Fat suppr.               | None                 |
| Dark blood               | Off                  |
|                          | 128 mm               |
| FoV read                 |                      |
| FoV read<br>FoV phase    | 121.9 %              |

### Physio - PACE

| •              |     |
|----------------|-----|
| Resp. control  | Off |
| Concatenations | 1   |
|                |     |

### Inline - Common

| Subtract             | Off |
|----------------------|-----|
| Measurements         | 1   |
| StdDev               | Off |
| Liver registration   | Off |
| Save original images | On  |

#### Inline - MIP

| MIP-Sag              | Off |  |
|----------------------|-----|--|
| MIP-Cor              | Off |  |
| MIP-Tra              | Off |  |
| MIP-Time             | Off |  |
| Save original images | On  |  |

### Inline - Soft Tissue

| Wash - In    | Off |
|--------------|-----|
| Wash - Out   | Off |
| TTP          | Off |
| PEI          | Off |
| MIP - time   | Off |
| Measurements | 1   |

### **Inline - Composing**

| Inline Composing | Off |  |
|------------------|-----|--|
| Distortion Corr. | Off |  |

### Inline - Maplt

| Save original images | On      |  |
|----------------------|---------|--|
| MapIt                | None    |  |
| Flip angle           | 14 deg  |  |
| Measurements         | 1       |  |
| Contrasts            | 3       |  |
| TR                   | 15.0 ms |  |
| TE 1                 | 1.54 ms |  |
| TE 2                 | 4.55 ms |  |
| TE 3                 | 8.56 ms |  |

### Sequence - Part 1

| Introduction        | Off         |
|---------------------|-------------|
| Dimension           | 3D          |
| Elliptical scanning | On          |
| Phase stabilisation | Off         |
| Asymmetric echo     | Off         |
| Contrasts           | 3           |
| Flow comp. 1        | No          |
| Readout mode        | Bipolar     |
| Multi-slice mode    | Interleaved |
| Bandwidth 1         | 580 Hz/Px   |
| Bandwidth 2         | 580 Hz/Px   |
| Bandwidth 3         | 580 Hz/Px   |

### Sequence - Part 2

| Segments                 | 1        |
|--------------------------|----------|
| Acoustic noise reduction | Active   |
| RF pulse type            | Low SAR  |
| Gradient mode            | Normal   |
| Excitation               | Non-sel. |
| RF spoiling              | On       |

### SIEMENS MAGNETOM Prisma

| wed delay 30 s |
|----------------|
|                |
|                |