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Strengths and limitations of this study

►► The analysis was based on a comprehensive elec-
tronic data set describing the emergency surgical 
services of a tertiary teaching hospital.

►► The data were routinely collected, fully anonymised 
and non-identifiable; however, data errors and miss-
ing data were present.

►► We used well-established network analysis method-
ology as appropriate for a complex system.

►► To our knowledge, this is the first study aiming 
to characterise an inpatient service via network 
analysis.

ABSTRACT
Introduction  Hospitals are complex systems and 
optimising their function is critical to the provision of high 
quality, cost effective healthcare. Metrics of performance 
have to date focused on the performance of individual 
elements rather than the whole system. Manipulation 
of individual elements of a complex system without an 
integrative understanding of its function is undesirable 
and may lead to counterintuitive outcomes and a holistic 
metric of hospital function might help design more efficient 
services.
Objectives  We aimed to use network analysis to 
characterise the structure of the system of perioperative 
care for emergency surgical admissions in our tertiary care 
hospital.
Design  We constructed a weighted directional network 
representation of the emergency surgical services using 
patient location data from electronic health records.
Setting  A single-centre tertiary care hospital in the UK.
Participants  We selected data from the retrospective 
electronic health record data of all unplanned admissions 
with a surgical intervention during their stay during a 3.5-
year period, which resulted in a set of 16 500 individual 
admissions.
Methods  We then constructed and analysed the structure 
of this network using established methods from network 
science such as degree distribution, betweenness 
centrality and small-world characteristics.
Results  The analysis showed the service to be a complex 
system with scale-free, small-world network properties. 
We also identified such potential hubs and bottlenecks in 
the system.
Conclusions  Our holistic, system-wide description of 
a hospital service may provide tools to inform service 
improvement initiatives and gives us insights into the 
architecture of a complex system of care. The implications 
for the structure and resilience of the service is that while 
being robust in general, the system may be vulnerable to 
outages at specific key nodes.

Introduction
Emergency surgical admissions make a signif-
icant contribution to pressures on hospi-
tals and health services in general. This 
constitute an unpredictable high-resource 
patient group as their admissions are often 

characterised by intensive interventions and 
input from multiple teams. Such admissions 
are increasing: in October 2018, overall emer-
gency admissions to hospital increased by 2% 
compared with the previous year.1 Admission 
pressure can only be accommodated if inpa-
tient flow and discharges are as efficient and 
timely as possible and this may have knock-on 
effects all the way back to accident and emer-
gency (A&E) performance.2 Increased emer-
gency demand on a hospital affects elective 
services due to cancelled operations and 
increases in waiting times.2 3

Service improvement projects and metrics 
typically focus either on single-point inter-
ventions, specific periods within the patient 
journey or a designed subset of patients. 
Patient flow through hospitals has been inves-
tigated in various settings,4–6 often in order 
to improve throughput in a specific setting 
such as the ED.7 8 However, hospitals and the 
multiteam services within them are consid-
ered ‘complex systems’.9 Such highly inter-
connected and interdependent systems may 
respond counterintuitively to interventions 
targeting individual modules and a system-
wide, holistic description is lacking.

Network science, where the components 
of a system are represented by nodes and the 
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connections between them by edges, provides a frame-
work to investigate such systems and has been widely 
applied in other disciplines.10–14 High-fidelity patient 
movement data are increasingly available in machine 
readable form making it available for modelling pathways 
in this way.

Recent papers used these methods in the medical 
services field to assess the structure of referral systems,15 
surgical care teams9 and patterns of acute hospital admis-
sions.16 We wanted to assess whether we could apply 
network methodology to patient pathways throughout 
the hospital, specifically emergency surgical admissions 
and to gain insight into the characteristics and vulnera-
bilities in our service. We constructed a network repre-
sentation of the emergency surgical service from patient 
movement data from our comprehensive Electronic 
Hospital Record (EHR). The overall aim was to obtain a 
fuller understanding of the real architecture of the system 
of emergency surgical admissions to allow us to identify 
important hubs and bottlenecks in the service structure.

Methods
Data
We used fully anonymised routinely collected location 
data from the EHR data at Cambridge University Hospi-
tals NHS Foundation Trust, a tertiary care hospital. This 
single centre serves as a district general hospital to its 
local population and as a referral centre for specific 
specialties such as major trauma, neurosurgery and 
paediatric surgery. All major surgical specialties except 
for cardiothoracic surgery are represented. We selected 
all unplanned admissions between January 2015 and July 
2018 where the inpatient stay included a surgical proce-
dure. This selection resulted in a data set of more than 
16 500 individual admissions of both adult and paediatric 
patients. Among the adult patients, the most common 
admitting surgical specialties were trauma (23.5%), 
general surgery (13.7%) and neurosurgery with (9.3%). 
In addition to these surgical admitting specialties, a signif-
icant proportion (~21% of patients) were admitted under 
medical specialties but subsequently required a surgical 
procedure during their stay.

Patient movement data including dates and times for 
each inpatient journey were collated from admission 
until discharge. We also included location data from inpa-
tient investigations such as CT scans and inpatient visits 
to other departments. We used locations and transfers to 
develop our network model as each transfer represents a 
use of resources and is thought to be based on a medically 
necessary decision—for example, a transfer to CT scan 
and back to the ward is related to the medical need for 
a scan and uses resources such as porters, ward staff and 
clinical staff to facilitate the event.

All data collected were extracted in a fully deidenti-
fied manner and stored securely. Under UK regulations, 
research ethics approval is not required for the reuse 
of anonymous routinely collected data for research. 

However, our project was approved by local institutional 
review.

Patient and public involvement
No patients were involved in this research, but for any 
improvement activity that results from it PPI would be 
included.

Model
Network terminology and variables
A comprehensive mathematical description of network 
science concepts has been given by Barabási and Posfai10 
and we include a short introduction to the concepts used 
in this paper. Briefly, a system can be represented by a 
network formed of nodes and edges. The nodes represent 
the components of the system and the edges represent 
the interactions or connections between the nodes. These 
edges can be undirected or directed, so that there are two 
different edges one from A to B and one from B to A. 
The number of connections a node has to other nodes is 
called the degree of the node. For directed networks, in-de-
gree and out-degree can also be calculated by counting the 
connections in or out of a node. Additionally, the edge 
can be weighted by the strength of the connection to show 
the traffic between two nodes. The product of weight and 
degree is called the strength of an edge.

From these calculations, the distribution of degrees for 
all nodes can be constructed which contains information 
summarising the underlying fundamental structure of the 
network. If the network has only random connections, 
the degree distribution is a Poisson distribution; however, 
in most real-life networks, the degree distribution can be 
approximated by a log-normal or power-law distribution 
p(k)~k-γ, where p is the probability distribution, k is the 
degree and γ is the exponent of the power-law.

Networks that exhibit a power-law distribution have a lot 
of nodes with a small degree and a long ‘tail’ of the distri-
bution where a few nodes have disproportionately large 
degrees (hubs). These networks are called scale-free17 and 
have a robust architecture as they are resistant to random 
node failure. This is because a randomly selected node 
most likely has a low degree, so that the impact of taking 
it out of the network is minimal. However, the presence 
of hubs makes scale-free networks vulnerable to targeted 
insults where a hub is compromised.9 18

It is then also possible to calculate a number of network 
properties including local and global clustering coeffi-
cients (the extent to which node neighbours are linked), 
betweenness centrality (identifying nodes with many shortest 
paths that are important to the overall functioning of 
the system), flow hierarchy (the extent to which flow is 
directed), reciprocity (the fraction of transfers that exist in 
both directions between two nodes) and assortativity (the 
tendency of nodes to be connected to nodes of similar 
degree in our case).

Furthermore, the combination of clustering coefficient, 
C, and shortest path length, L, can then be used to assess 
the network for small-world characteristics. Small-world 
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Figure 1  Construction of the network. We show three 
illustrative patient pathways and how they are combined to 
construct the network representation using wards as nodes 
and transfers as edges. Several of the analysis parameters in 
the text are also explained, for example the degree of a node.

Figure 2  Non-categorised network of emergency surgical 
admissions. The network of transfers shown grouped by 
clinical categories of care. The nodes are coloured by 
betweenness centrality—higher betweenness centrality is 
shown in deeper colour and sized by overall degree. The 
nodes were arranged to represent a patient journey from 
A&E admission (on the left) to discharge (on the right) and 
the nodes were grouped together to show the different 
types of locations. Some of the important nodes have been 
labelled to show the grouping with the medical wards at the 
bottom left, the surgical wards bottom right, investigations 
at the top, critical care areas and theatres in the middle 
and the paediatric services at the top right. Most nodes 
are left unlabelled for clarity with some indicative labels in 
each group. The ward abbreviations are explained in the 
supplementary table. A&E, accident and emergency.

networks are a type of network with specific properties 
such as high degree of clustering and clique formation, 
short average path between the nodes and an abundance 
of hubs, nodes with many connections.19–21 The measures 

‍
σ =

C
Crandom

L
Lrandom ‍

 and ‍ω = Lrandom
L − C

Clattice ‍ measure how closely 

a network resembles the small world ideal by comparing 
it to random and lattice networks. The short path length 
and high clustering coefficient are thought to facilitate 
easy and efficient flow of information and team-work9 22 
within the system.

Network construction
We used the timestamps to reconstruct each patient’s 
journey which were in return used to construct the network 
(figure 1). Patient locations were assigned to nodes and 
the patient transfers to edges. The data extraction from 
the EHR, data cleaning and construction of the network 
model was performed using python, networkx,23 igraph24 
and cytoscape.25 Data acquisition and handling was 
approved locally both via the trust quality improvement 
department and the university data request system. No 
further ethical approval was needed as no patients were 
directly contacted.

We constructed both unweighted and weighted 
networks, where the weighting was the frequency of the 
transfer reflecting the traffic between two nodes. Since 
some specific wards could change their designation (eg, 
from one specialty to another) or be repurposed or closed 
without changing the underlying service, we subsequently 
created a ‘categorised’ network by replaced agglomer-
ating physical locations into care categories (eg, ‘acute 
medical ward’).

Analysis
We calculated the network characteristics such as degree 
distribution, strength distribution, flow hierarchy, global 
clustering and small-world properties described in the 
appendix. Similarly, we investigated the properties of 
individual nodes with the measures described above, 
weighted and unweighted degree, clustering coefficients 
and betweenness centrality.

Results
Overall network and degree distribution
The total cleaned data set consisted of more than 16 500 
individual admissions with 230 000 transfers. The ‘non-
categorised’ network of all transfers of patients admitted 
via A&E is shown in figure 2. The wards and services are 
grouped together by type of area to better illustrate the 
variety of services involved in the care of these patients. 
Descriptions of the abbreviations used can be found in 
the online supplementary table. This overall network 
representation of our emergency surgical care network 
shows dense connectivity between the different wards 
and hospital services. Areas that are particularly densely 
connected (eg, theatres or radiology) most often have 
high overall network importance based on betweenness 
centrality. However, there are a few areas (eg, medical 
wards) which are well connected but less structurally 
important.
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Figure 3  Degree distribution. The degree distribution (as 
log–log plot) for our network of wards. The distribution 
shows a power-law behaviour at the right-hand tail of the 
distribution. The power-law fit (obtained with the package 
poweRlaw28) is shown in red with a γ of 6.1.

Figure 4  Categorised network. The network of transfers 
shown grouped by area of care. Here, the nodes are 
categories rather than physical locations and as in figure 2 
coloured by betweenness centrality—higher betweenness 
centrality is shown in deeper colour and sized by overall 
degree. The ward abbreviations are contained in the online 
supplementary table.

Figure 5  Net connectivity of nodes. This shows the 
unweighted difference in in-degree and out-degree, net 
connectivity, versus overall degree k for our system of wards. 
The distribution wards such as A&E are in the lower half of 
the graph (red labels) and the receiving wards in the upper 
(blue labels). Most wards have a balanced traffic. The ward 
abbreviations are explained in the supplementary table. A&E, 
accident and emergency.Figure 3 shows the degree distribution for our network. 

We used the methodology outlined in Clauset et al26 to 
investigate the best fit to the tail of the distribution. The 
power-law fit generated using a bootstrap method27 28 to 
determine the most representative fit to the tail of the 
distribution P(k)=k-γ is superimposed in red. We found 
γ=6.18 (95% CI: 6.14 to 6.26) with a p-value for the null 
hypothesis of 0.46, which means that a power-law is an 
appropriate fit.

The categorised network is shown in figure 4. Some of 
strongest connections are unsurprisingly between emer-
gency department and radiology or CT scan—illustrating 
the need for initial investigations on a patient’s admission 
to hospital. Other strong connections are more surprising. 
The presence of a connection from ED to the general 
medical wards and one from these wards to discharge 
shows that our patient cohort attended the medical wards 
both preoperatively and postoperatively. The between-
ness centrality measure shows the importance of theatres, 

general medical and neurosurgical wards to the overall 
function of the system.

We found both our non-categorised and categorised 
networks had high reciprocity (with r~0.9 and r~0:8, 
respectively). This means that most paths exist in both 
directions and that transfers from one area to another are 
usually countered by transfers in the opposite direction—
not necessarily the same patient. This balance reflects the 
operational need to fill all beds and spaces to allow for 
the high demand within the service.

Degree analysis
The in-degree and out-degree balance is shown in 
figure 5 for the non-categorised network. Most wards fall 
on or near the zero-line showing that they receive from 
and send patients to a similar number of places; however, 
a few areas are so-called distributors (in red) or receivers 
(in blue). The clinical decision unit, a short stay medical 
ward that receives patients shortly after admission is a 
‘distributor’ as it sends patients to a large variety of loca-
tions. The appearance of the neurosurgical theatres as 
a ‘receiver’ outlier was unexpected. It can be explained 
by the specialist nature of the neurosurgery service, 
which means that the patients tend to be transferred to 
a limited set of wards for postoperative care but due to 
bed-pressures, they may be cared for preoperatively in a 
range of settings.

Weights
The relationship between the node strength s (weighted 
degree) and degree in figure 6. Part A of the figure shows 
the strength versus degrees k for the categorised network. 
The labelled nodes are selected either due to significantly 
higher traffic, represented by strength s, than expected 
by their connectivity (degree) or significantly lower.
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Figure 7  Assortativity. The weighted nearest neighbour 
degree knn versus degree k for the non-categorised network. 
It shows the dissociative behaviour of the network where 
higher degree nodes are connected to lower degree nodes. 
The best linear fit is overlaid in red.

Figure 8  Betweenness centrality. The distribution of 
betweenness centrality versus unweighted degree. The 
relation is fit by a quadratic equation of the degree—as 
is commonly seen for randomised networks. The ward 
abbreviations are explained in the online supplementary 
table.

Figure 6  Relation between traffic and connectivity. The 
figure explores the strength (weighted degree) versus 
degrees for the categorised system of wards. (A) The overall 
distribution of strength versus degree, where the labelled 
nodes are outliers with respect to their degree–strength 
relation, either significantly higher traffic than expected 
by their connectivity or significantly lower. The graph also 
shows in red the relation between strength and degree if the 
weights were uncorrelated. (B) The inlay shows the log–log 
distribution of strength versus degree with the uncorrelated 
distribution (red) and the power-law fit (purple dashed) 
showing that the strength grows faster than the degree. The 
ward abbreviations are explained in the online supplementary 
table.

In the absence of correlation between weight and 
degree, the strength of a node should be proportional 
to its degree29 s~k (shown by the red line in figure  6), 
but the data are not well fitted by this distribution, espe-
cially at lower degrees. The inlay figure B shows the log–
log distribution of strength versus degree again with the 
uncorrelated line in red and additionally the power-law 
fit (purple dashed line) for s~kβ. The power-law is a much 
better fit with β=2.1 showing that the strength of the 
nodes grows significantly faster than the degree and that 
higher connectivity wards experience disproportionately 
more traffic.

Assortativity
Assortativity a, which measures how similar the neigh-
bours of a node are with respect to degree, falls between 
−1 and 1. We found our system to be dissortative with 
assortativity coefficients of a=−0.20 and a=−0.12 for non-
categorised and categorised networks, respectively. The 
dissortative effect is also seen in figure  7 which shows 
the average degree of the nearest neighbours, knn, versus 
degree with the best linear fit overlaid in red. This means 
that on average, high-degree nodes are connected to 
nodes with lower degree and not on average to other 
highly connected nodes, thus exposing the network to 
a higher risk of disconnection should one of the highly 
connected nodes fail.30

Betweenness centrality
Figure  8 shows a strong correlation of betweenness 
centrality with degree. The correlation is shown as a 

quadratic fit, a feature commonly present in scale-free 
networks where larger degree nodes have a dispropor-
tionately larger betweenness centrality.31 Similar to above, 
outliers from this correlation are labelled in red or blue 
in figure 8 with the group of nodes in red signifying areas 
that have higher than expected betweenness centrality 
and are therefore deemed to be essential to the func-
tioning of the system.

We can see that a similar set of nodes is highlighted 
by the strength–degree relationship (figure  6) and the 
betweenness centrality one (figure 8), which is a common 
occurrence in networks with high reciprocity.32 These 
nodes are well connected, central and experience high 
traffic. Specifically, the examples of radiology (XR), 
theatres, neurocritical care (NCCU), general medical 
and neurosurgical wards show that these ward areas have 
a disproportionately higher betweenness compared with 
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Table 1  Hubs and bottlenecks. The hubs and bottlenecks 
in our system of emergency surgical admissions selected by 
degree and betweenness centrality

Hub bottleneck Hub non-bottleneck
Non-hub 
bottleneck

Surgical specialty 
wards

Acute medical wards Neurocritical 
care

Neurosurgical 
wards

High-dependency 
unit

Radiology

General medical 
wards

Clinics/referral 
appointments

 �

Theatres  �   �

their connectivity. They are therefore more important to 
the overall structure of the network than their connec-
tivity may suggest. On the other hand, the surgical 
specialty and acute medical wards have a lower between-
ness compared with their connectivity.

We designated the areas with degree in the top 20% 
of degrees as hubs and the wards with betweenness 
centrality within the top 20% of betweenness centrality as 
bottlenecks.33 This resulted in a set of wards that are both 
hubs and bottlenecks (hub-bottleneck)—general medical 
wards, operating theatres, neurosurgical wards—a set that 
are hubs but not bottlenecks (hub non-bottleneck)—
acute medical wards, clinics, specialty surgical wards and 
high dependency unit (HDU)—and non-hub bottle-
necks—radiology and NCCU (see table 1).

Scale-free and small world networks
Apart from analysing the properties of individual 
nodes, we used the above calculations to classify our 
network as a whole. We used the established parameters 
σ and ω as described by Telesford et al21 and Humphries 
and Gurney.20 These two parameters indicate whether 
a network can be considered to have small-world 
properties compared with a randomly wired one with 
similar properties and size. We found that both the 
original non-categorised network and the categorised 
network show clear small-world properties. The catego-
rised network had an σ of 0.99, where the range of σ is 
from 0 to 1 with values close to 1 representing a small-
world network. Also, the value of ω was 0.0053. Here, 
the range is from −1 to 1 with the values near 0 repre-
senting small-world networks, close to −1 representing 
lattice networks and values close to 1 are purely random 
networks. The non-categorised network similarly had 
σ=0.99 and ω=0.0022, again reflecting its structure as a 
small-world network.

However due to the high γ, representing a more rapid 
drop of nodes with high degrees than other real-world 
networks,12 which tend to have γ between 2 and 4, there is 
a case to be made that this reflects an exponential trunca-
tion to a power law.34 Our system therefore falls into the 
small-world, scale-free category.

Discussion
We demonstrated that our system is a complex and 
densely connected network. This has important conse-
quences as the connections are crucial to behaviour and 
therefore resilience. Our values for σ and ω as well as 
the value of γ>3 (although this is larger than typical for 
other real-world networks12) place our system into the 
category of small-world networks.17 These are resilient to 
shocks, retaining this property even when under attack.35 
However, we also found a dissortative structure; common 
in technological networks,36 implying the presence of 
a node hierarchy where non-hubs are preferentially 
connected to hubs.37 Such structures are highly reliant 
on their hubs12 making these points of vulnerability. The 
implication for our system is that the removal of a hub 
from the network would have a significant impact on the 
workings of the system and is not easily replaced with 
existing connections.

It is possible to identify hubs and thus potential bottle-
necks of our system (table  1), which is useful in deter-
mining where to increase capacity in order to keep the 
system running smoothly. Combining this information 
with the areas that have exceptional traffic identified 
vulnerable areas such as surgical specialty wards, theatres, 
neurosurgical and general medical wards and radiology. 
Failure of an area may be due to closure through infec-
tious outbreak, blockage due to high acuity patients 
or overload of the area. If these events occur in one of 
these important nodes, the impact on the greater system 
may be severe and cause problems in unexpected and 
seemingly unconnected areas. To illustrate, even a small 
reduction in capacity of radiology, the whole system can 
experience a significant slowing of the service. Another 
example is that an infectious outbreak in the general 
medical wards could lead to significant slowing of the 
emergency surgical service. With the connection to the 
elective surgical service via competition for surgical beds 
such an event may additionally directly influence the 
ability of the overall surgical service to function.

Many hospitals analyse patient transfers and flow 
between wards with traditional methods; however, our 
approach of using network analysis allows us to look 
at individual areas while taking the whole system into 
account. The hub bottlenecks are not simply the nodes 
with the most traffic but are areas essential to the smooth 
function of the system. The identification of these areas 
cannot be gained by traditional patient movement counts, 
but network analysis can provide these additional insights.

The analysis of the traffic between nodes related to 
connectivity identified areas in the hospital with higher 
than expected traffic (eg, orthopaedic and surgical 
specialty wards and NCCU). This technique may help 
focus future improvement measures to reduce any delays 
or improve capacity. The fact that in the whole system well-
connected wards have disproportionately more traffic is a 
reflection of the nature of medical services where there is 
high throughput through certain nodes that are heavily 
used by different groups and therefore constitute the 
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base of clinical activity, whereas some subspecialty nodes 
are only accessed from a small group of nodes for very 
specific patients.

In the graphical representation figure 4, we observed 
the expected importance of the particular nodes such as 
radiology, the theatre complex and surgical wards and 
particularly neurosurgery (relatively self-contained in our 
hospital). Unexpectedly, the medical wards, including 
elderly care also contributed significantly to the func-
tionality of the system. In our setting, this may be due 
to a variety of situations. These patients either reflect 
the frequent use of medical areas for surgical overflow, 
incorrect admission triage, the development of surgical 
problems during the stay or most likely represent a combi-
nation of these. Only the first two possibilities are poten-
tial problems for patient care, the third reflects admission 
to an appropriate location. Investigations into the reasons 
for the use of medical wards in the management of emer-
gency surgical patients is warranted and will be explored 
in further work.

In figure 6, nodes with high strength ‍s >>
−
wk‍ (where s 

is the strength, ‍
−
w‍ is the average weight and k is the degree) 

such as theatres or surgical specialty wards represent 
areas that have high traffic but relatively limited connec-
tivity in contrast to such as IR and rehab which have low 
traffic compared with their connectivity. This is of interest 
as it implies that any impediment of traffic through these 
high traffic areas will have a strong influence on the other 
areas associated with them. Their influence on the system 
is therefore more relevant to individual patients’ path-
ways rather than overall behaviour.

Our network representation was developed using retro-
spective electronic patient records specifically location 
data which will always contain noise. It is not clear that 
the overall network structure would be preserved under 
severe shock conditions (eg, a major incident might 
severely reduce theatre capacity, an area of vulnerability 
from our findings). Under such extreme circumstances, 
the overall configuration of the hospital may transiently 
be different from what we found under business-as-usual 
conditions. However, these are rare, and more relevant 
shocks would be expected to be captured in our model.

Our model is an aggregate of data over the whole time 
period and does not describe the dynamic behaviour 
of the system, for example under conditions of hospital 
strain. It is possible however to construct time-series of 
networks9 and it may be that such an approach could 
demonstrate the actual response of the system to external 
perturbation. Such an approach might also be a useful 
framework for forecasting critical bed status.

While this project only considered a single trust and 
the subsystem of emergency surgical care within it, the 
project showed the feasibility and potential uses of this 
type of analysis. We expect that our specific network is 
unique to our system, commonly seen in settings where 
network analysis is used, but that the methodology can be 
transferred to a more general setting including the anal-
ysis of regional referral systems.

Our work constitutes a methodology study to assess 
feasibility of the network approach to understanding 
the complex system of healthcare provision and hope-
fully will provide a basis for use in improvement projects. 
It is beyond the scope of this paper to address specific 
improvement projects but hopefully this will a be a future 
use for this type of analysis.

Despite all these limitations, our data appear to show a 
full picture of the system and give us initial insights in how 
we can use this approach to inform decisions on service 
improvement and planning. It would be interesting to 
compare the configuration of our institution with others 
so better understand how different hospital configura-
tions might influence potential system resilience.

Conclusions
We were able to use electronic healthcare records to 
create a system representation of our service and demon-
strated that emergency surgical services are complex 
systems with scale-free, dissortative small-world network 
properties. Such networks are robust overall but may 
be vulnerable to attack at critical hubs. We were able to 
identify system bottlenecks, and this may form the basis to 
inform service improvement initiatives in a more holistic 
way. This analysis allowed us to show that new insights into 
the structure and vulnerabilities of a system of care can be 
gained by combining network analysis and electronic care 
records. In the future, we hope to use this work to support 
specific improvement projects and extend the project by 
considering seasonal effects and use the model to better 
understand the systems behaviour under strain.
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