BMJ Open

Exercise training modalities for heart transplant recipients: a systematic review and network meta-analysis protocol

Juliana Beust de Lima 1,2,3, Douglas dos Santos Soares 1,3, Filipe Ferrari 1,2,3, Nelson Carvas Junior 4, Gabriel Carvalho 2, Santiago Alonso Tobar Leitão 1,3, Lívia Adams Goldraich 3,5, Nadine Clausell 1,3,5,6, Ricardo Stein 1,2,3,8

ABSTRACT

Introduction Heart transplantation is the gold standard treatment for selected patients with end-stage heart failure. Although this procedure can improve quality and prolong life expectancy, several of these patients persist with decreased exercise tolerance. Evidence suggests that exercise training can bring multifactorial benefits to heart transplant (HTx) recipients. However, it is unclear that exercise modality should be preferred. Therefore, the aim of this systematic review and network meta-analysis is to compare the efficacy and safety of different training modalities in HTx recipients.

Methods and analysis We will perform a comprehensive literature search in PubMed/MEDLINE, Embase, The Cochrane Library, CINAHL, Scopus, SportDiscus, Web of Science Core Collection and PEDro from inception until November 2020. Two registries (ClinicalTrials.gov and REBEC) will also be searched for potential results in unpublished studies. There will be no restriction on language, date of publication, publication status or sample size. We will include randomised controlled trials enrolling adult HTx recipients with the presence of at least one exercise training group, which might be compared with another training modality and/or a non-exercise control group for a minimum of 4 weeks of intervention. The primary outcomes will be peak oxygen consumption and occurrence of adverse events. As secondary outcomes, the interaction between pulmonary ventilation, pulmonary perfusion and cardiac output, oxygen uptake efficiency slope, heart rate response, oxygen pulse, peak blood pressure and peak subjective perception of effort. In addition, we will evaluate the 6 min walking distance, health-related quality of life, endothelial function, muscle strength, body fat percentage and lean mass. Risk of bias will be assessed using the Cochrane RoB V.2.0 tool, and we plan to use the Confidence in Network Meta-Analysis tool to assess confidence in the results. All materials (raw data, processed data, statistical code and outputs) will be shared in a public repository.

Ethics and dissemination Given the nature of this study, no ethical approval will be required. We believe that the findings of this study may show which is the most efficacious and safe physical training modality for HTx recipients. The completed systematic review and network meta-analysis will be submitted to a peer-reviewed journal.

PROSPERO registration number CRD42020191192.

Strengths and limitations of this study

- This protocol was guided by Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols statement, registered in the PROSPERO database, and Open Science Framework platform.
- We will perform a comprehensive literature review with no restrictions on language, publication date, publication status or sample size.
- The study will be guided by the Cochrane Handbook for Systematic Reviews of Interventions, V.6.1, in order to enhance the quality of the study.
- A potential limitation, inherent in the methodology of this study, is that indirect comparisons provide observational evidence across randomised trials and may suffer from the potential biases of observational studies such as confounding bias.

INTRODUCTION

Heart transplantation (HTx) is the treatment of choice for selected patients with end-stage heart failure, representing the pinnacle of available therapy. Although transplantation improves quality of life and increases life expectancy, HTx recipients frequently experience impaired functional capacity, in addition to other complications inherent to the use of immunosuppressants. Reduced exercise tolerance, measured by peak oxygen consumption (peak VO₂), occurs secondary to damage to both the central (cardiac and pulmonary) and peripheral (vascular and skeletal muscle) components.

In this sense, concomitantly with prevention of HTx-related complications and
control of cardiac risk factors, a structured exercise-based rehabilitation programme is recommended and may be an adequate strategy to assist in secondary prevention in these patients.6 Evidence suggests a multifactorial beneficial effect of exercise training (ET) in HTx recipients.6 Small randomised controlled trials have shown that rehabilitation improves autonomic control (both cardiac and peripheral), muscle strength and body composition, while for endothelial function, synthesis of a small body of evidence shows high heterogeneity and the effect remains unclear.12 Additionally, in a Cochrane systematic review and meta-analysis, ET was efficacious for increasing peak VO2.13 However, considering the broader spectrum of exercise interventions, it is unknown whether any modality is superior in terms of efficacy or potential for harm. In addition, synthesising the effect of ET on other clinically relevant outcomes will assist in understanding the therapeutic potential of ET in secondary prevention in this population.

Different ET modalities have been studied in patients after HTx, such as endurance training (moderate-intensity continuous and high-intensity interval training),14–15 resistance training11 16 and the combination of both.17 18 Indeed, combined ET is the most recommended modality for cardiovascular rehabilitation, despite the lack of robust evidence of its superiority over other modalities in this specific population.8 9 In addition, there is little information about the characteristics of ET (eg, frequency, intensity, volume and type) as well as differences in adaptation depending on whether training is begun early or late after surgery. Even less is known about the true effect of ET on other relevant parameters beyond peak VO2 in the HTx scenario.

In patients with heart failure, some variables measured by cardiopulmonary exercise testing (CPET), such as peak VO2, the ratio of minute ventilation (VE) to carbon dioxide production (VE/VCO2 slope)19 20 and heart rate (HR) recovery after ET21 were identified as important prognostic markers. However, in HTx, the evidence base is much less clear. In a retrospective study, peak VO2 and self-reported functional capacity were found to be strong predictors of survival in HTx recipients.22 In turn, muscle strength and body fat seem to influence exercise capacity.23 Interestingly, while the main limiting symptom for ET before HTx was dyspnoea, after the procedure, patients reported interruption of exercise due to leg fatigue and muscle exhaustion.4 In addition, another important factor is the chronotropic response to ET24 due to the involvement of a denervated heart in increasing HR, contributing to the reduction of exercise tolerance and influencing adaptations to ET.25 26

In this systematic review and network meta-analysis, we will compare the safety and efficacy of different modalities of ET based on peak VO2 improvement. Furthermore, we will quantify the effect of ET on important outcomes that have not yet been scrutinised, while exploring factors that may influence physiological adaptations to ET.

Objectives
Primary objectives
► To compare the efficacy of different ET modalities (moderate-intensity continuous training, high-intensity interval training, resistance training and combined aerobic plus resistance training considering both centre-based and home-based ET) in improving peak VO2 in HTx recipients;
► To compare rates of adverse events, such as vertigo, dizziness, musculoskeletal complaints, syncope, hypotension, elevated blood pressure or cardiovascular events (angina, arrhythmias, myocardial infarction, stroke and death), during and after sessions of different ET modalities.

Secondary objectives
► To compare quantitatively, through meta-analysis (ET vs usual care) and, if possible, through network meta-analysis, the efficacy of moderate-intensity continuous training, high-intensity interval training, resistance training and combined training (centre-based and home-based ET) in regards to the following variables: VE/VCO2 slope, oxygen uptake efficiency slope (OUES), HR (rest, peak and recovery), peak oxygen pulse (VO2/HR), peak systolic and diastolic blood pressure, Borg Rating of Perceived Exertion scale, 6 min walk test distance, health-related quality of life, endothelial function, muscle strength and fat and lean mass percentage.
► To compare quantitatively, through meta-analysis (ET vs usual care), the efficacy and safety of ET in the following subgroups: patients after recent (<6 months) versus late HTx and those receiving centre-based versus home-based ET as well as at different follow-up periods.

METHODS
This protocol was guided by the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement27 (see checklist in online supplemental material 1) and the PRISMA-P 2015 Explanation and Elaboration Document.28 The same documents, as well as the PRISMA Extension for Network Meta-Analysis of Health Care Interventions,29 will be used to prepare the final report. In addition, the study will be conducted according to the Cochrane Handbook for Systematic Reviews of Interventions V.6.1.30 This systematic review and network meta-analysis were registered in the International Prospective Register of Systematic Reviews. All study materials will be shared publicly through the Open Science Framework tool, available at: https://osf.io/3rwxb/.

Eligibility criteria
This systematic review will be based on population, intervention, comparator, outcome and setting criteria.

Participants
(a) HTx recipients aged ≥18 years, regardless of sex and race, (b) patients receiving immunosuppressive therapy...
according to the transplant centre protocol, who did not experience severe complications or high-grade rejection on cardiac biopsies during the ET period. Studies enrolling heterotopic transplant recipients or multiorgan transplant recipients will be excluded.

Interventions
We will consider ET as a single strategy or as a component of a comprehensive cardiac rehabilitation programme (after hospital discharge), considering a minimum intervention period of 4 weeks. Centre-based and home-based interventions will also be considered for the following modalities: moderate-intensity continuous training, high-intensity interval training, resistance training and combined training (aerobic plus resistance).

Comparators
For network meta-analysis, by the very nature of this study, we will compare the eligible interventions among themselves. For the parallel meta-analysis, we will compare the interventions with their respective control groups (non-ET or usual care).

Outcomes
Primary outcomes
Peak VO₂ measured through CPET in L/min and mL/kg/min, whenever available. Rate of adverse events through the absolute and relative frequency of occurrences described in the safety outcomes.

Secondary outcomes
Other CPET variables: VO₂/HR in mL/beat and both slopes, VE/VCO₂ slope and OUES as absolute measures. HR (rest, peak and recovery) in beats/min, peak systolic and diastolic blood pressure in mm Hg and Borg Rating of Perceived Exertion score. Other secondary outcomes: 6-min walk distance (in metres), health-related quality of life using validated instruments (eg, the 36-Item Short-Form Health Survey and WHO Quality of Life questionnaire) and endothelial function by absolute (mm) and relative (%) flow-mediated dilation. Upper and lower extremity maximal strength in kilograms assessed using one-repetition maximum (1RM) testing or another equivalent method (eg, isokinetic evaluation (Nm), sit-to-stand movements in 1 min and hand grip strength test). Relative (%) and absolute (kg) fat mass and lean mass, preferably measured through dual-energy X-ray absorptiometry or bioelectrical impedance analysis.

Safety outcomes
Whenever data are available in the randomised controlled trial, we will quantitatively analyse the occurrence of adverse events—such as vertigo, dizziness, musculoskeletal complaints, syncope, hypotension, elevated blood pressure or cardiovascular events (angina, arrhythmias, myocardial infarction, stroke and death)—during and after exercise sessions.

Study designs
Only randomised controlled trials (parallel-group, crossover or cluster design) will be included. Crossover trials will be considered in their full form only if there is a washout period of at least 4 weeks. No restrictions will be imposed on language or date of publication.

Information sources and search
Electronic search strategies
For a comprehensive survey of the literature, the following databases from inception to November 2020 will be searched: PubMed/MEDLINE, Cochrane Library, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus, SportDISCUS, Web of Science Core Collection and Physiotherapy Evidence Database (PEDro). Two registries (Clinical-Trials.gov and REBEC) will also be searched for potential results in unpublished studies. We will also review the grey literature, which includes repositories of dissertations and theses, conference publications and preprint repositories and databases. Authors will be contacted if further data are required. A hand search of the reference lists of included studies will be also conducted.

Search strategy
The main electronic search strategy was designed for PubMed/MEDLINE and will be adapted as appropriate for each of the other databases. Queries will be developed using Medical Subject Headings (MeSH) terms and their synonyms and Boolean operators (where possible) to improve searches. Keywords and MeSH terms include: ‘heart transplantation’, ‘exercise’, ‘resistance training’, ‘physical endurance’ and ‘circuit-based exercise’. Comprehensive search strategies for all the databases that will be consulted are included in the online supplemental material 2.

Study records
Data managements and selection process
Data extraction will be based on the following steps: (1) In Clarivate Analytics Endnote X9 (2018) reference management software, the reviewer (FF) will set up a library to gather all studies retrieved from the aforementioned databases, (2) all duplicates will be excluded, (3) the titles and abstracts will be evaluated by two independent reviewers (FF and JBdL) for classification as potentially eligible or non-eligible. Divergences will be solved by consensus between reviewers, and, if necessary, a third opinion (RS) will be requested, (4) studies classified as potentially eligible will be read in full and discrepancies will be solved by the same previous method, (5) the studies excluded in the previous stage will be compiled in an Excel worksheet, followed by their respective reasons for exclusion (no design of interest, no population of interest, no intervention of interest, no endpoints of interest or other). The results of the selection process will be presented in a flow diagram, as shown in the online supplemental material 3.
Data collection process and data items
Data will be extracted by two independent reviewers (FF and JBdL). Disagreements will be solved by consensus, and, if necessary, a third opinion (RS) will be requested. The reviewers will not be blinded to the authors’ names, institutions or periodicals. The following information will be extracted:

- Study characteristics: first author, journal’s name, year of publication, conflict of interest, publication type, study design (parallel, crossover or cluster randomised controlled trial), washout period (weeks), study period (weeks), country, language of the publication and number of patients randomised;
- Patient baseline characteristics: age, weight, height, body mass index, sex, time since transplantation, immunosuppressant therapy, comorbidities, aetiology and duration of heart failure, surgical technique, previous exercise-based rehabilitation (phase 1) and presence of possible additional interventions to training; in addition, outcome assessment methods; equipment used (cycle ergometer or treadmill) and peak respiratory exchange ratio, when CPET is performed;
- Interventions and comparators: training modality, material resources, intended target zone and form of intensity control, session volume, weekly frequency and follow-up period; supervisory level information, if centre-based or home-based ET.
- Results: number of participants in each group, preintervention and postintervention values, deltas, standard deviations or other measures of dispersion and p values.

Geometry of the network
The forest.netmeta function of the netmeta package will be used to build and present the geometry of different interventions. In the graph, nodes will be used to represent the intervention and edges to show comparisons between interventions. Besides qualitative descriptions and graphs, we will provide quantitative metrics assessing features of network geometry, such as diversity, co-occurrence and homophily.

Risk of bias within individual studies
The risk of bias will be assessed using the Cochrane RoB V.2.0 tool. The assessment of the studies will be performed independently by two reviewers (DDSS and SATL); any disagreements will be resolved by consensus or by discussion with a third researcher (JBdL). Evaluation of quality will be divided into five items: (1) bias arising from the randomisation process, (2) bias due to deviations from intended interventions, (3) bias due to missing outcome data, (4) bias in measurement of the outcome, (5) bias in selection of the reported result. Also, the risk of bias will be classified into three categories: (1) low risk of bias, (2) some concerns and (3) high risk of bias.

Publication bias
To investigate the influence of small-study effects, we will use the visual inspection method of funnel plot if at least 10 studies are included in a meta-analysis, followed by Egger’s test.

Data synthesis
Main analyses
We will use difference in means as the principal summary measure of the effect to express comparisons between interventions, associated with the 95% confidence interval as a measure of uncertainty. When the same outcome is presented by different measures, the standardised mean difference will be applied. As a summary measure of dichotomous variables, we will use the risk ratio. If quantitative synthesis is not appropriate, a systematic narrative synthesis will be provided.

For continuous variables, we will extract the mean (or other measure of central tendency) and standard deviation (or other measure of dispersion) of variables at baseline and in the follow-up in each arm of the studies. When available, we plan to obtain the mean change from baseline and SD or other measures of dispersion in each arm of the trials. For dichotomous outcomes, we will collect absolute and relative frequencies in each treatment arm.

Planned methods of analysis
We plan to use the netmeta package V.1.2–1 implemented in R V.3.6.2 software for Mac to perform a network meta-analysis and synthesize direct and indirect evidence of the therapeutic effects of the interventions. Node-splitting method will be used to assess inconsistencies between direct and indirect comparisons when observing a loop connecting three arms. We will present a treatment ranking by p scores based on the point estimates and standard error of the available network.

Additional analyses
We plan to perform analyses to compare quantitatively, through meta-analysis (ET vs usual care), the efficacy and safety of ET in two subgroups: patients after recent (less than 6 months) versus late HTx and centre-based versus home-based ET as well as different follow-up periods. In case of significant heterogeneity or inconsistency, a subgroup analysis will be performed to explore, when possible, the following variables: age, sex and comorbidities. Finally, a sensitivity analysis will be performed for the inclusion of studies with high risk of bias and/or missing data.

Risk of bias across studies
We plan to use the Confidence in Network Meta-Analysis (CINeMA) tool to assess confidence in the results. CINeMA considers six domains—within-study bias, reporting bias, indirectness, imprecision, heterogeneity and incoherence—and assigns judgements at three levels (no concerns, some concerns or major concerns). For each treatment effect, adjudicate levels of confidence corresponding to the usual Grading of Recommendations,
Assessment, Development, and Evaluation assessments of very low, low, moderate, or high will be used.

Patient and public involvement
No patient involved.

Ethics and dissemination
Given the nature of this study, no ethical approval will be required. The completed systematic review and network meta-analysis will be submitted to a peer-reviewed journal.

Author affiliations
1Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Hospital das Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
2Exercise Cardiology Research Group, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
3Interdisciplinary Research Group in Translational Cardiology, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
4Department of Evidence-Based Health, Brazilian Cochrane Center, Universidade Federal de São Paulo, São Paulo, SP, Brazil
5Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital das Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
6Associate Professor, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Twitter Juliana Beust de Lima @beust_lima

Acknowledgements The authors of this protocol thank Bárbara Pilatti Piffer, staff librarian at Universidade Federal do Rio Grande do Sul, for her contributions in design of the search strategies and retrieval of documents.

Contributors
Conception of the study: JBdL, DeSS, FF, SATL, RS. Major drafters of the protocol: JBdL, DeSS, FF, NCJ, RS. Minor drafters of the protocol: SATL, GC provided feedback to the protocol: LAG, NC, RS. Data extraction and synthesis: FF, NCJ, JBdL.

Funding This protocol was partially supported by the Hospital de Clínicas de Porto Alegre Research Incentive Fund (FIFE-HCAP), Porto Alegre, Brazil—project number 2018-0292. JBdL and GC are granted by the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq). DeSS and FF are granted by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This study is conducted by an academic institution and a research group that has no relationship with the pharmaceutical industry.

Competing interests None declared.

Patient consent for publication Not required.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation or adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Author note Statement: The protocol of this network meta-analysis was guided by the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement and the PRISMA-P 2015 Explanation and Elaboration Document. Amendments: This is the first version of the protocol. Any amendments to the protocol will be updated and published on the PROSPERO database (CRD42020191192).

ORCID IDs
Juliana Beust de Lima http://orcid.org/0000-0002-5408-2457
Douglas dos Santos Soares http://orcid.org/0000-0002-9166-7614
Filipe Ferrari http://orcid.org/0000-0001-6923-8392
Nelson Cavas Junior http://orcid.org/0000-0003-2168-8927
Gabriel Carvalho http://orcid.org/0000-0001-7792-826X
Santos Antonio Tobar Leitão http://orcid.org/0000-0002-4163-7783
Livía Adams Goldraich http://orcid.org/0000-0002-1523-4288
Nadine Clausell http://orcid.org/0000-0003-4207-3609
Ricardo Stein http://orcid.org/0000-0003-2357-5176

REFERENCES

Supplementary material 1. PRISMA-P 2015 CHECKLIST.

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Information reported</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ADMINISTRATIVE INFORMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1a</td>
<td>Identify the report as a protocol of a systematic review</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Identification</td>
<td>1b</td>
<td>If the protocol is for an update of a previous systematic review, identify as such</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration</td>
<td>2</td>
<td>If registered, provide the name of the registry (e.g., PROSPERO), and registration number in the Abstract</td>
<td></td>
<td>2, 5 and 9</td>
</tr>
<tr>
<td>Authors</td>
<td></td>
<td>Contact</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3a</td>
<td>Provide name, institutional affiliation, and e-mail address of all protocol authors; provide physical mailing address of corresponding author</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>Describe contributions of protocol authors and identify the guarantor of the review</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Amendments</td>
<td>4</td>
<td>If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support</td>
<td></td>
<td>Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>Indicate sources of financial or other support for the review</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5b</td>
<td>Provide name for the review funder and/or sponsor</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5c</td>
<td>Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>6</td>
<td>Describe the rationale for the review in the context of what is already known</td>
<td></td>
<td>6-7</td>
</tr>
<tr>
<td>Objectives</td>
<td>7</td>
<td>Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)</td>
<td></td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>METHODS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>8</td>
<td>Specify the study characteristics (e.g., PICO, study design, setting, time frame) and report characteristics (e.g., years considered, language, publication status) to be used as criteria for eligibility for the review</td>
<td></td>
<td>9-11</td>
</tr>
<tr>
<td>Information sources</td>
<td>9</td>
<td>Describe all intended information sources (e.g., electronic databases, contact with study authors, trial registers, or other grey</td>
<td></td>
<td>11-12</td>
</tr>
<tr>
<td>Section/topic</td>
<td>#</td>
<td>Checklist item</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>literature sources) with planned dates of coverage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search strategy</td>
<td>10</td>
<td>Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STUDY RECORDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data management</td>
<td>11a</td>
<td>Describe the mechanism(s) that will be used to manage records and data throughout the review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection process</td>
<td>11b</td>
<td>State the process that will be used for selecting studies (e.g., two independent reviewers) through each phase of the review (i.e., screening, eligibility, and inclusion in meta-analysis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data collection process</td>
<td>11c</td>
<td>Describe planned method of extracting data from reports (e.g., piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data items</td>
<td>12</td>
<td>List and define all variables for which data will be sought (e.g., PICO items, funding sources), any pre-planned data assumptions and simplifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcomes and prioritization</td>
<td>13</td>
<td>List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td>14</td>
<td>Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesis</td>
<td>15a</td>
<td>Describe criteria under which study data will be quantitatively synthesized</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15b</td>
<td>If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data, and methods of combining data from studies, including any planned exploration of consistency (e.g., I², Kendall's tau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15c</td>
<td>Describe any proposed additional analyses (e.g., sensitivity or subgroup analyses, meta-regression)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15d</td>
<td>If quantitative synthesis is not appropriate, describe the type of summary planned</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Information reported</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-bias(es)</td>
<td>16</td>
<td>Specify any planned assessment of meta-bias(es) (e.g., publication bias across studies, selective reporting within studies)</td>
<td>☑️ No</td>
<td>14-16</td>
</tr>
<tr>
<td>Confidence in cumulative evidence</td>
<td>17</td>
<td>Describe how the strength of the body of evidence will be assessed (e.g., GRADE)</td>
<td>☑️ No</td>
<td>16</td>
</tr>
</tbody>
</table>

According to the document sent for review.
Supplementary material 2. Bibliographic databases and search strategies.

**PubMed/MEDLINE**

```
(((heart transplantation[MeSH] OR heart transplant*[tw] OR cardiac transplant*[tw]
OR heart recipient*[tw] OR heart transplant*[tw] OR new heart*[tw] OR heart
grafting*[tw] OR cardiac grafting*[tw] OR cardiac allograft*[tw] OR cardiac graft*[tw]
OR heart graft*[tw]))) AND ((exercise[MeSH] OR exercise*[tw] OR physical
training*[tw] OR physical exercise*[tw] OR high-intensity interval training*[tw] OR
high intensity interval training*[tw] OR high-intensity intermittent exercise*[tw] OR
high-intensity exercise*[tw] OR sprint interval training*[tw] OR resistance
training[MeSH] OR strength training*[tw] OR aerobic exercise*[tw] OR aerobic
training*[tw] OR physical endurance[MeSH] OR resistance exercise*[tw] OR exercise
therapy[MeSH] OR exercise therap*[tw] OR combined training*[tw] OR concurrent
based exercise*[tw] OR circuit training*[tw] OR combined exercise*[tw] OR exercise-based rehabilitation*[tw] OR training based
rehabilitation*[tw] OR isometric exercise*[tw] OR home-based exercise*[tw] OR
home-based training*[tw] OR rehabilitation exercise*[tw] OR weight training*[tw] OR
weight exercise*[tw] OR weight lifting*[tw] OR weightlifting exercise*[tw] OR
weightlifting exercises*[tw]) AND (("randomized controlled trial"[pt] OR "controlled
clinical trial"[pt] OR "clinical trial"[pt] OR "random allocation"[mh] OR "double-blind
method"[mh] OR "clinical trial"[pt] OR "clinical trial"[tw]) OR ((singl*[tw] OR
doubl*[tw] OR trebl*[tw] OR tripl*[tw]) AND (mask*[tw] OR blind*[tw])) OR ("latin
square"[tw]) OR placebos[mh] OR placebo*[tw] OR random*[tw] OR research
design[mh:noexp] OR follow-up studies[mh] OR prospective studies[mh] OR cross-
over studies[mh] OR control*[tw] OR prospectiv*[tw] OR volunteer*[tw]))
```

**Cochrane**

1. MeSH descriptor: [Heart Transplantation] explode all trees
2. "heart transplantation" OR "cardiac transplant" OR "heart recipient" OR "heart
transplant" OR "new heart" OR "cardiac graft" OR "cardiac allograft
recipients" OR "heart graft"
3. #1 or #2
4. MeSH descriptor: [Exercise] explode all trees
5. MeSH descriptor: [Exercise Therapy] explode all trees
6. MeSH descriptor: [Physical Fitness] explode all trees
7. MeSH descriptor: [High-Intensity Interval Training] explode all trees
8. MeSH descriptor: [Resistance Training] explode all trees
9. MeSH descriptor: [Physical Endurance] explode all trees
10. MeSH descriptor: [Circuit-Based Exercise] explode all trees
11. exercise OR "physical training" OR "physical exercise" OR "high-intensity
interval training" OR "high intensity interval training" OR "high-intensity
training"
intermittent exercise*" OR "high-intensity exercise*" OR "sprint interval training*"
OR "strength training" OR "aerobic exercise*" OR "Aerobic training" OR "resistance
exercise*" OR "exercise therapy*" OR "combined training" OR "concurrent training"
OR "concurrent exercise*" OR "circuit based exercise*" OR "circuit training" OR
"combined training" OR "combined exercise*" OR "exercise-based rehabilitation" OR
"training based rehabilitation" OR "isometric exercise*" OR "home-based exercise*"
OR "home-based training" OR "rehabilitation exercise*" OR "weight training" OR
"weight exercise*" OR "weight lifting*" OR "weightlifting exercise*
#12 #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11
#13 #3 and #12 in Trials

Scopus

#1 TITLE-ABS-KEY("heart transplantation*" OR "cardiac transplant*" OR "heart
recipient*" OR "heart transplant*" OR "new heart" OR "cardiac graft*" OR "cardiac
allograft recipients" OR "heart graft")
#2 TITLE-ABS-KEY(exercise* OR "physical training" OR "physical exercise*" OR
"high-intensity interval training*" OR "high intensity interval training*" OR "high-
intensity intermittent exercise*" OR "high-intensity exercise" OR "sprint interval
training*" OR "strength training" OR "aerobic exercise*" OR "Aerobic training" OR
"resistance exercise*" OR "exercise therapy*" OR "combined training" OR "concurrent
training" OR "concurrent exercise*" OR "circuit based exercise*" OR "circuit training"
OR "combined training" OR "combined exercise*" OR "exercise-based rehabilitation"
OR "training based rehabilitation" OR "isometric exercise*" OR "home-based
exercise*" OR "home-based training" OR "rehabilitation exercise*" OR "weight training"
OR "weight exercise*" OR "weight lifting*" OR "weightlifting exercise*"
#3 ( INDEXTERMS ( "clinical trials" OR "clinical trials as a topic" OR "randomized
controlled trial" OR "Randomized Controlled Trials as Topic" OR "controlled clinical
trial" OR "Controlled Clinical Trials" OR "random allocation" OR "Double-Blind
Method" OR "Single-Blind Method" OR "Cross-Over Studies" OR "Placebos" OR
"multicenter study" OR "double blind procedure" OR "single blind procedure"
OR "crossover procedure" OR "clinical trial" OR "controlled study" OR "randomization"
OR "placebo")( )) OR ( TITLE-ABS-KEY ( ( "clinical trials" OR "clinical trials as a
topic" OR "randomized controlled trial" OR "Randomized Controlled Trials as Topic"
OR "controlled clinical trial" OR "Controlled Clinical Trials as Topic" OR "random
allocation" OR "randomly allocated" OR "allocated randomly" OR "Double-Blind
Method" OR "Single-Blind Method" OR "Cross-Over Studies" OR "Placebos" OR
"cross-over trial" OR "single blind" OR "double blind" OR "factorial design" OR
"factorial trial" ) )) OR ( TITLE-ABS ( clinical trial* OR trial* OR rct* OR random*
OR blind*))

SPORTDiscus

(DE "HEART transplantation" OR "heart transplant*" OR "cardiac transplant*" OR
"heart recipient*" OR "cardiac allograft") AND (DE "EXERCISE" OR DE
"RESISTANCE training" OR DE "PHYSICAL fitness" OR DE "EXERCISE therapy"
OR "physical training" OR "physical exercise*" OR "high-intensity interval training*"

2
OR "high intensity interval training**" OR "high-intensity intermittent exercise**" OR "high-intensity exercise**" OR "sprint interval training**" OR "strength training**" OR "aerobic exercise**" OR "Aerobic training" OR "resistance exercise**" OR "exercise therapy**" OR "combined training" OR "concurrent training" OR "concurrent exercise**" OR "circuit based exercise**" OR "circuit training" OR "combined training" OR "combined exercise**" OR "exercise-based rehabilitation" OR "training based rehabilitation" OR "isometric exercise**" OR "home-based exercise**" OR "home-based training" OR "rehabilitation exercise**" OR "weight training**" OR "weight exercise**" OR "weight lifting**" OR "weightlifting exercise**")

CINAHL

(MH "heart transplantation" OR OR "heart transplantation*" OR "cardiac transplant**" OR "heart recipient*" OR "heart transplant**" OR "new heart" OR "cardiac graft**" OR "cardiac allograft recipients" OR "heart graft*") AND (MH "Exercise" OR MH "Resistance Training" OR MH "Therapeutic Exercise" OR OR exercise* OR "physical training" OR "physical exercise**" OR "high-intensity interval training**" OR "high intensity interval training**" OR "high-intensity intermittent exercise**" OR "high-intensity exercise**" OR "sprint interval training**" OR "strength training**" OR "aerobic exercise**" OR "Aerobic training" OR "resistance exercise**" OR "exercise therapy**" OR "combined training" OR "concurrent training" OR "concurrent exercise**" OR "circuit based exercise**" OR "circuit training" OR "combined training" OR "combined exercise**" OR "exercise-based rehabilitation" OR "training based rehabilitation" OR "isometric exercise**" OR "home-based exercise**" OR "home-based training" OR "rehabilitation exercise**" OR "weight training**" OR "weight exercise**" OR "weight lifting**" OR "weightlifting exercise**")

Web of Science

ALL="("heart transplant**" OR "cardiac transplant**" OR "heart recipient**" OR "new heart" OR "cardiac graft**" OR "cardiac allograft recipients" OR "heart graft") AND ALL=(exercise* OR "physical training" OR "physical exercise**" OR "high-intensity interval training**" OR "high intensity interval training**" OR "high-intensity intermittent exercise**" OR "high-intensity exercise**" OR "sprint interval training**" OR "strength training**" OR "aerobic exercise**" OR "Aerobic training" OR "resistance exercise**" OR "exercise therapy**" OR "combined training" OR "concurrent training" OR "concurrent exercise**" OR "circuit based exercise**" OR "circuit training" OR "combined training" OR "combined exercise**" OR "exercise-based rehabilitation" OR "training based rehabilitation" OR "isometric exercise**" OR "home-based exercise**" OR "home-based training" OR "rehabilitation exercise**" OR "weight training**" OR "weight exercise**" OR "weight lifting**" OR "weightlifting exercise**") AND (TS=clinical trial* OR TS=clinical trial* OR TS=clinical trial* OR TS=clinical trial* OR TS=random* OR TS=placebo* OR TS=(single blind*) OR TS=(double blind*))

Embase

('heart transplantation'/exp OR 'cardiac transplantation' OR 'heart allograft' OR 'heart allotransplantation' OR 'heart heterograft' OR 'heart heterotransplantation' OR 'heart homograft' OR 'heart homotransplantation' OR 'heart orthotopic transplantation' OR
'heart tissue transplantation' OR 'heart transplantation' OR 'heart ventricle transplantation' OR 'human heart transplantation' OR 'transplantation, heart' OR 'heart graft/exp OR 'cardiac graft' OR 'cardiac transplant' OR 'heart graft' OR 'heart graft survival' OR 'heart transplant' OR 'transplant, heart') AND ('aerobic exercise/exp OR 'aerobic dance' OR 'aerobic' OR 'aerobics' OR 'aerobics exercise' OR 'dancing, aerobic' OR 'exercise, aerobic' OR 'low impact aerobic exercise' OR 'low impact aerobics' OR 'step aerobics' OR 'exercise/exp OR 'biometric exercise' OR 'effort' OR 'exercise' OR 'exercise capacity' OR 'exercise performance' OR 'exercise training' OR 'exertion' OR 'fitness training' OR 'physical conditioning, human' OR 'physical effort' OR 'physical exercise' OR 'physical exertion' OR 'restraint, physical' OR 'resistance training/exp OR 'resistance exercise' OR 'resistance exercise training' OR 'resistance training' OR 'strength training' OR 'weight bearing exercise' OR 'kinesiotherapy/exp OR 'sktm (specialized kinesitherapeutic methodology)' OR 'corrective exercise' OR 'exercise movement techniques' OR 'exercise therapy' OR 'exercise treatment' OR 'kinesiotherapeutic intervention' OR 'kinesiotherapeutic method' OR 'kinesiotherapeutic procedure' OR 'kinesiotherapeutic technique' OR 'kinesiotherapeutic treatment' OR 'kinesiotherapy' OR 'kinesiotherapeutic exercises' OR 'kinesiotherapeutic intervention' OR 'kinesiotherapeutic method' OR 'kinesiotherapeutic methodology' OR 'kinesiotherapeutic procedure' OR 'kinesiotherapeutic technique' OR 'kinesiotherapeutic treatment' OR 'kinesiotherapy' OR 'specialised kinesitherapeutic methodology' OR 'specialized kinesitherapeutic methodology' OR 'therapeutic exercise' OR 'therapy, exercise' OR 'treatment, exercise') AND ('clinical trial/de OR 'randomized controlled trial/de OR 'randomization/de OR 'single blind procedure/de OR 'double blind procedure/de OR 'crossover procedure/de OR 'placebo/de OR 'prospective study/de OR ('randomized ed controlled' NEXT/1 trial*) OR rct OR 'randomly allocated' OR 'allocated randomly' OR 'random allocation' OR (allocated NEAR/2 random) OR (single NEXT/1 blind*) OR (double NEXT/1 blind*) OR ((treble OR triple) NEAR/1 blind*) OR placebo*)

<table>
<thead>
<tr>
<th>Pedro</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Heart transplant”</td>
</tr>
</tbody>
</table>

**ClinicalTrials.gov – grey literature**

Condition or disease: heart transplant  
Study type: interventional studies (clinical trials)  
Study results: all studies  
Status: active, not recruiting, terminated, completed, unknown status  
Age group: adult and older adult  
Sex: all  
Intervention/treatment: exercise

**REBEC – grey literature**
Trials containing the terms: “heart transplant” and exercise  
Study type: Interventional  
Inclusion gender: both  
Recruitment situation: recruitment completed, premature termination and complete data analysis  
Minimum age for inclusion: 18 years  

<table>
<thead>
<tr>
<th>OpenGrey – grey literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>“heart transplant” and exercise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Google Scholar – grey literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>“heart transplant” and exercise</td>
</tr>
<tr>
<td>We will review the first 300 search results.</td>
</tr>
</tbody>
</table>
Supplementary material 3. PRISMA 2009 FLOW DIAGRAM.

Records identified through database searching (n = )

Additional records identified through other sources (n = )

Records after duplicates removed (n = )

Records screened (n = )

Records excluded (n = )

Full-text articles assessed for eligibility (n = )

Full-text articles excluded, with reasons
  Not design of interest (n = )
  Not outcome of interest (n = )
  Not intervention of interest (n = )
  Not population of interest (n = )
  Others (n = )

Studies included in qualitative synthesis (n = )
  Publications (n = )

Studies included in quantitative synthesis (meta-analysis) (n = )


For more information, visit www.prisma-statement.org.