

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Epidemiological characterization of asymptomatic carriers of COVID-19 in Colombia

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042122
Article Type:	Original research
Date Submitted by the Author:	27-Jun-2020
Complete List of Authors:	Teheran, Anibal; Red Cross Colombia Camero, Gabriel; Red Cross Colombia Prado de la Guardia, Ronald; Red Cross Colombia Hernandez, Carolina; Universidad del Rosario Herrera, Giovanny; Universidad del Rosario Pombo, Luis; Juan N Corpas School of Medicine Avila, Albert; Universidad de La Sabana Florez, Carolina; instituto nacional de salud colombia Barros, Esther; instituto nacional de salud colombia Perez-Garcia, Luis; Incubadora Venezolana de Ciencia Paniz-Mondolfi, Alberto; Icahn School of Medicine at Mount Sinai Ramirez, Juand; Universidad del Rosario
Keywords:	Epidemiology < TROPICAL MEDICINE, VIROLOGY, INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1
2
3
4
5
6
7
8
o 9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30 27
37
38
39
40
41
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
59
60

	1
1	Epidemiological characterization of asymptomatic carriers of COVID-19 in Colombia
2	Aníbal A. Teherán ^{1,2} , Gabriel Camero ¹ , Ronald Prado de la Guardia ¹ , Carolina Hernández ³ ,
3	Giovanny Herrera ³ , Luis M. Pombo ² , Albert A. Ávila ⁴ , Carolina Flórez ⁵ , Esther C. Barros ⁵ ,
4	Luis A. Perez-Garcia ⁶ , Alberto Paniz-Mondolfi ^{6,7} , Juan David Ramírez ^{3*}
5	¹ Red Cross Section Bogotá – Cundinamarca, Colombia
6	² COMPLEXUS Research group, Fundación Universitaria Juan N. Corpas, Colombia
7	³ Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología,
8	Facultad de Ciencias Naturales, Universidad del Rosario, Colombia.
9	⁴ Grupo de Investigación ANTHUS, Universidad de la Sabana.
10	⁵ Instituto Nacional de Salud, Colombia
11	⁶ Instituto de Investigaciones Biomédicas IDB / Incubadora Venezolana de la Ciencia,
12	Cabudare, Edo. Lara, Venezuela.
13	⁷ Ichan School of Medicine at Mount Sinai, NY, USA.
14	*Corresponding author: juand.ramirez@urosario.edu.co
15	ABSTRACT (187 words)
16	Introduction: Asymptomatic carriers (AC) of the new Severe Acute Respiratory Syndrome
17	Coronavirus 2 (SARS-CoV-2) represent an important source of spread for Coronavirus
18	Disease 2019 (COVID-19). Early diagnosis of these cases is a powerful tool to control the

19 pandemic. Our objective was to characterize patients with AC status and identify associated

20 sociodemographic factors.

Methods: Using a cross-sectional design and the national database of daily occurrence of COVID-19, we characterized both socially and demographically all ACs. Additional Correspondence Analysis and Logistic Regression Model were performed to identify characteristics associated with AC state (OR, 95% CI). Results: 2338 ACs (11.8%; 95% CI, 11.3-12.2%) were identified, mainly in epidemiological week 18 [EW] (3.98; 3.24-4.90). Age \leq 39 years (1.56; 1.42-1.72). Male sex (1.39; 1.26-1.53), cases imported from Argentina, Spain, Peru, Brazil, Costa Rica or Mexico (3.37; 1.47-7.71) and autochthonous cases (4.35; 2.12-8.93) increased the risk of identifying AC. We also identified groups of departments with moderate (3.68; 3.13-4.33) and strong (8.31; 6.10-7.46) association with AC. Conclusion: Sociodemographic characteristics strongly associated with AC were identified, which may explain its epidemiological relevance and usefulness to optimize mass screening strategies and prevent person-to-person transmission. Key words: COVID-19; Asymptomatic; Carrier States; Risk factors, Novel Coronavirus. Article summary' section consisting of the heading: 'Strengths and limitations of this study', and containing up to five bullet points that relate specifically to the study reported. This should be placed after the abstract. **Article summary** Asymptomatic carriers (AC) represent a silent source of spread for Coronavirus Disease 2019 (COVID-19). ACs have been included in epidemiological predictive models to estimate the second and third pandemic wave of COVID-19.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1		3
2		
3 4	43	• Epidemiological reports of ACs are frequently biased given the inclusion of pre-
5 6 7	44	symptomatic patients or the merge of ACs with patients with non-critical symptoms.
7 8 9	45	• Massive screening could improve current understanding of AC phenotype and thus
10 11	46	provide useful information for predictive mathematical models.
12 13	47	• Recognizing the silent movement of COVID-19 through ACs could result in more
14 15 16	48	effective public health strategies of containment and prevention.
17 18 19 20	49	
21 22	50	
23 24 25	51	
26 27 28	52	
29 30 31	53	
32 33 34	54	
35 36 37	55	
38 39 40	56	
40 41 42 43	57	
44 45 46	58	
47 48	59	
49 50 51 52	60	
53 54 55 56	61	
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TEXT (2481 words)

63 INTRODUCTION

In March 2nd, 2020, Colombia reported the first case of Coronavirus Disease 2019 (COVID-19), and as of May 23rd, more than 20,000 cases have been confirmed nationwide ¹. Asymptomatic carriers (AC) may be associated with the accelerated growth of cases in the initial phases of the pandemic, inadvertently spreading the infection to close contacts. In this case, transmission can only be limited until a diagnosis of SARS-CoV-2 infection is rendered after (i) isolation due to symptom onset, (ii) contact tracing or (iii) identification during massive screening strategies ^{2,3}.

AC and pre-symptomatic cases are epidemiologically relevant since they represent a silent source of spread in various public settings (e.g. public transportation, emergency rooms, supermarkets, shelters) ⁴⁻⁶. The proportion of ACs has been estimated at 15-25%, but seroprevalence studies have reported values of up to 43.2% (95% CI, 32.2-54.7%). Nonetheless, many pre-symptomatic patients are wrongfully classified as ACs during the incubation phase; to later become pauci-symptomatic or develop respiratory manifestations ranging from pneumonia to respiratory failure, or exhibit any other clinical symptoms within the COVID-19 spectrum 4-8.

Epidemiological predictive models have been developed and updated to incorporate silent
mobility through AC phenotype in anticipation for the second and third epidemic waves of
COVID-19. Such is the case for the SEIR model (Susceptible, Exposed, Infected and
Recovered), recently updated to SEAIR (Susceptible, Exposed, Asymptomatic, Infected and
Recovered) ⁹. In China, estimates indicate that 60-65% of ACs remained undetected.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Therefore, under the SEIR model and applying machine-learning-based transmission simulators (MLSim), including the number of undetected AC within its parameters and assuming 15 close contacts per day, estimates suggest that as of April 15th, 2020, the United States---the country contributing the majority of cases imported to Colombia---, could have presented 277,641-to-495,128 latent cases of COVID-19, potentially increasing the spread of the virus ¹⁰.

The assessment of ACs and the identification of sociodemographic characteristics associated with this subpopulation could be useful to estimate sample calculations in massive screening studies, as well as adjust control and mitigation measures---especially the intensity of isolation. Therefore, the objective of our study was to characterize ACs demographically and socially, as well as to identify individual characteristics in interaction models associated with elien ACs.

METHODOLOGY

Design and data selection.

We performed a cross-sectional study with information from the National Institute of Health (INS) database on COVID-19 cases updated until May 23, 2020. By INS protocol, suspected AC cases remained in guarantine for 7 days while monitoring the appearance of symptoms on a daily basis; on the eighth day, a nasal swab sample was collected to identify or rule out AC state. Records without health status information (symptomatic, asymptomatic) were excluded. The database is public, with de-identified patient data and IRB approval was thus exempt.

Patient and Public Involvement (PPI) statement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

Database and variables.

We used variables such as date of diagnosis, age, sex, country of origin, department, case type (imported, related), care setting (home, nursing home, hospital, intensive care unit) and outcome (recovered, convalescent, deceased). The date of diagnosis was adjusted into epidemiological weeks (EW), which were later grouped according to the pattern of AC occurrence (Figure S1) in EW 10-15, 16-17, 18, 19-21; additionally, the variable AC [yes, 4.6 no] was established.

Statistical analysis

Data are presented in medians or proportions estimated with 95% CI due to the lack of massive screening for COVID-19 in certain areas of the country. The geographical origin and destination of imported cases was represented with a Sankey Plot (SankeyMATIC (BETA). Cumulative trends and case charts were created with the number of daily cases by Epid weeks (RStudio Version 1.2.5042). In addition, a heatmap analysis was included to depict a dynamic representation of daily cases by Department from March 6th through May 23rd, 2020 (Orange Data Mining & Fruitful Fun, Version 3.25). The proportion of asymptomatic and symptomatic patients and the median age were compared with the Z and U Mann Whitney tests respectively (significant p-value <0.05, two tails) [Addinsoft. 2020.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com].
Age was dichotomized between 0-39 and ≥40 years due to its association with asymptomatic
and symptomatic states respectively (preliminary exploratory analysis not shown).

Countries of origin and departments associated with ACs were identified with a Correspondence Analysis (CA). Additionally, with contribution coordinates of the columns (CCC-CA), groups with a variable level of association with ACs were created [Addinsoft. 2020. XLSTAT analysis solution. York, statistical and data New USA. https://www.xlstat.com].

To estimate the association between sociodemographic characteristics with CA (OR 95%),
two Logistic Regression Models (LRM) were performed, the first to establish the main
effects and the second a step-backward interaction model of the second level (p- value in
<0.05; p-value out:> 0.1), which used the lowest Akaike criteria to select the best model
(JASP Team (2020). JASP (Version 0.12.2))

RESULTS

142 General characteristics

We identified 2,388 ACs (11.8%; 11.3-12.2%) out of 20,177 cases reported in the database.
Four cases were excluded due to lack of health status information. The occurrence of AC
state in relation to symptomatic presented a slow growth phase between EW 10-15, moderate
growth between EW 16-17, and a peak at EW 18, followed by a decrease between EW 1921 (Figure 1A, 1B, S1). Daily cases ranged from 1 to 203 per day, and EWs 18 and 19
registered the highest number of cases per day: 172 and 203, respectively.

Page 9 of 31

BMJ Open

Additionally, we report department clusters with a high occurrence of daily COVID-19 cases,
which follow different dynamic patterns for ACs and symptomatic patients (Figure 1C-1D).
Meta reported the largest number of daily ACs (n: 151), with peak occurrences between April
23rd and May 10th; followed by Amazonas, Bogotá, and Caribbean departments with peak
reports between May 11th and 12th,

More than half of the imported ACs came from Europe, specifically Spain, followed by North and South America. Those that arrived from Spain and USA were distributed mainly in Bogotá, Valle del Cauca and other departments of the Caribbean region. Amazonas department only received imported ACs from South American countries. The origin and distribution of imported symptomatic patients was more diverse; however, most cases originated from Spain, USA, Ecuador, Mexico, Brazil, or Panama, and were mainly distributed across Bogotá, Antioquia, and Valle del Cauca (Figure 2).

About half of the ACs were located in Meta and Bogotá, and a tenth in the Amazon (Table 1, Table S1). Median age was 32 years old, lower than the symptomatic patients. Most of them were males (Table 1). The domicile was the main place of care (85.7%; 84.3-87.1%) and 13.9% had recovered (95%, CI, 12.5-15.3%). Four of the admitted cases had fatal outcomes, two from the general wards and two from the Intensive Care Units (ICU). Possibly these last 8 cases were treated for symptoms unrelated to COVID-19, or were diagnosed postmortem.

168 Factors associated with AC condition.

Using the CCC-CA, a group of six countries and three groups of departments were associated
with AC state (Figure 3). To execute LRMs, the variables "age group 0-39 years" and "male

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

sex" were transformed into dummi [0/1]. With a preliminary LRM, a higher β coefficient was estimated in relation to cases imported from countries associated with AC, therefore, the variable "geographical origin" was created, composed of the categories "imported from countries associated with symptomatic" [Imported CAS - referent], "imported from countries associated with asymptomatic" [Imported CA-AC] and "related cases". Additionally, a variable was created for the departments grouped with the CA [departments with low association - referent] and for the EW (EW 10-15 - referent). The first LRM (main effects) identified a significant association of all index sociodemographic categories with AC state (Table S2). The second model explores the following interactions: 1. Geographical origin and grouped departments, 2. Geographical origin and EW, 3. Age group (0-39 years) and gender, 4. Grouped departments and gender; and, 5. Age (0-39 years) and EW. We identified that the variables gender (males) and EW showed interaction with the grouped departments (Table 2).

Variables "0-39 years", "departments with strong association", "imported CA-AC" and "related cases" were found to increase the risk of identifying AC state. It was also determined that the risk increased with the interaction between men in the departments with a strong and moderate association. In isolation (without interaction), between EWs 19-21, the risk of identifying AC decreased, as did EWs 16-17 in departments with a strong association. However, the risk increased from EW 18 to EWs 19-21 when interacting, both with moderate and strong association departments (Table 2).

DISCUSSION

We found that, in an isolated fashion, age < 40 years old, imported cases from a group of 6countries, autochthonous cases and the occurrence in groupings of departments were

BMJ Open

associated with AC state. Additionally, the risk of being a male AC was only identified in
departments with moderate or strong risk, and the risk was variable in the groupings of
departments throughout specific epidemiological periods.

Additionally, our results show that the proportion of ACs in Colombia lays between 11-12% (Table 1), a lower estimate than previously described in other case series or mass screening studies with reported proportions between 5-80% ¹¹⁻¹⁴. Given the inclusion of presymptomatic patients or the unification of AC with non-critical symptoms in some reports, we cannot rule out that a non-differential classification bias influenced these estimates. An adapted definition for AC in Colombia may address this limitation.

Figure 1 shows that the majority of imported cases to Colombia came from Spain and USA, where AC rates have been estimated at 2.5% and 25%, respectively ^{14,15}. Although imported cases carry a distinctive genetic load that, population-wise, could manifest itself as a particular phenotype ¹⁶, currently there are no reports of genetic variants associated with AC in general or for any of the four AC subtypes described in the literature ¹⁷. Subsequent research should be conducted on the possible association between ACs and phylogenetic variants (or other variables) to support the differential risk identified in imported cases from different regions of the world.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

We identified that imported cases from a group of 6 countries were strongly associated with AC (Figure 2, Table S1, Table 2), and although no interaction was established between the country of import and the destination department (data not shown), we observed that departments strongly associated with AC had less diversity of import origin. Such is the case of Meta and Amazonas, which exclusively imported cases from USA and Brazil/Peru, respectively (Figure 2).

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Among the demographic characteristics, the association between AC state and patients under 40 years of age stands out. Possible explanations for this observation include: (i) the lower presence of co-morbid conditions and baseline health issues within this age group and (ii) the higher risk of exposure through work activities which are greater in this age group ¹⁸. However, clinical or social environment could also explain this finding, as a study in skilled nursing facility residents showed a high proportion of AC in those over 70 years of age. however this was a premature finding since most patients were later reclassified as presymptomatic or pauci-symptomatic¹¹.

We identified a higher frequency of men infected with COVID-19 consistent with reports from other countries around the world, except in Spain and Switzerland, where women ranked first ¹⁹. Frequent occupations performed by men, as well as certain immunological and genetically susceptible backgrounds have been associated with this finding ^{19,20}. In particular, the risk of being an AC was higher in men, and increased in geographic areas associated with AC. This interaction is not uncommon given that professions regularly carried out by men, including those such as taxi driving, private security or prison guarding, among other work settings, can be distributed asymmetrically within countries, a pattern that would explain our findings ²⁰.

The phases on the occurrence of cases throughout EWs and the interaction with groupings within departments associated with AC has been previously described in Chongqing, China, where researchers identified significant changes in the frequency of cases after implementation of geographic isolation measures. In Wuhan, a study showed that one group of ACs was linked to imported cases while others were linked mostly to autochthonous cases from geographically isolated areas of Wuhan ²¹. We identified that in addition to being

BMJ Open

associated with a travel history to foreign countries, ACs were also associated with cases that
appear spontaneously (related), occurring differentially as measures of geographic and social
isolation were applied.

The lack of mass screening for COVID-19 in Colombia is the main limitation of our study since the actual AC ratio and the distribution of specific characteristics may differ from those estimated in this report. On the other hand, although a cross-sectional design is not ideal to identify risk factors, to the best of our knowledge this is the first study aimed at identifying factors associated with AC state with population data unbiased by the inclusion of presymptomatic cases.

The COVID-19 pandemic has had serious socioeconomic implications, including a collapse of healthcare systems, bankruptcy of companies as well as increasing trends in unemployment and crime rates ^{22–25}. This has forced countries with limited resources---such as Colombia---to perform massive screenings in order to prematurely lift quarantine and isolation measures despite the latent risk of successive outbreaks caused by a potential silent spread of COVID-19 through cases in the pre-symptomatic phase or AC state ^{26,27}.

ACs transmit COVID-19 more efficiently than symptomatic patients for up to 21 days after the presumed date of infection ^{28,29}. This led to their inclusion in mathematical models intended to estimate the probability or expected number of person-to-person infections on repatriation trips from Wuhan, China ^{7,30}. Since then, ACs have become the target of mass screening in Asian and European countries effectively reducing economical losses due to unnecessary hospital care, controlling the spread in public or in-hospital settings, and allowing the execution of safe plans of social and work re-integration after quarantine and isolation ^{26,31-35}.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

 To date, testing of asymptomatic individuals rests at the discretion of physicians when justified on a case-by-case basis. On the other hand, the utility of SARS-CoV-2 testing for broad screening of asymptomatic individuals remains to be determined given the limited sensitivity data available for most commercially available test kits ³⁶.

CONCLUSION

Together, our findings demonstrate sociodemographic trends strongly associated with COVID-19 AC state in Colombia at a departmental and national level. We believe that the implementation of massive screening campaigns to detect AC and pre-symptomatic patients is paramount to further characterize this phenomenon and adequately guide public health measures of containment and prevention. Additional molecular analysis of viral and host genotypic characteristics should be conducted to determine possible associations with AC N.C. state.

Authors contributorship statement

AT, APM and JDR designed the study. AT, GC, RPG, CH, GH, LMP, LAP and AA conducted the statistical and descriptive analyses. CF, ECB provided the data for the analysis. AT, APM, LAP and JDR drafted the manuscript. All authors approved the final version of the manuscript.

- Funding: This research received no external funding.
- **Data sharing statement:** No additional data available
- Conflicts of Interest: The authors declare no conflict of interest.

Correspondence: Juan David Ramírez; Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Colombia; Telephone; juand.ramirez@urosario.edu.co

Figure Legends

Figure 1. Daily accumulation and distribution of ACs by epidemiological week in

Colombia. A. The v-axis represents the number of cumulative ACs transformed into a base 10 logarithm. The number of cumulative cases per day is located in points that increase in color intensity according to the occurrence of cases. **B.** The v-axis represents the number of daily ACs transformed into a base 10 logarithm. The number of daily cases per day is located in boxplots. C. Heatmap showcasing the number of ACs (top) and B. symptomatic patients (bottom) diagnosed in every Colombian department until May 23rd, 2020.

Figure 2. Origin and destination of imported asymptomatic and symptomatic cases. The left and right figures, respectively, represent the country of origin and destination department of ACs and symptomatic patients. The thickness of the link tapes corresponds to the number of reported cases.

Figure 3. Groups of countries and departments associated with AC state. The left figure shows the group of countries associated with asymptomatic carrier (AC) state identified with positive values of the CCC-CA. The right figure shows departments grouped according to three intervals of CCC-CA: low association (CCC-CA: negative values), moderate association (CCC-CA:> 0 - <0.05), and strong association (CCC-CA: ≥0.5).

1		15				
2 3 4	305					
5 6 7 8 9 10 11 12 13 14 15	306	References.				
	307	1.	Coronavirus en Colombia.			
	308		https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx. Accessed May 10, 2020.			
	309	2.	Rudan I. A cascade of causes that led to the COVID-19 tragedy in Italy and in other			
16 17	310		European Union co1. Rudan I. A cascade of causes that led to the COVID-19			
18 19 20	311		tragedy in Italy and in other European Union countries. J Glob Health. 2020;			
21 22	312		10(1):10335. untries. J Glob Health. 2020;10(1):10335. doi:10.7189/jogh-10-010335			
23 24 25	313	3.	Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to			
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	314		be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753-			
	315		1766. doi:10.7150/ijbs.45134			
	316	4.	Tindale L, Coombe M, Stockdale JE, et al. Transmission interval estimates suggest			
	317		pre-symptomatic spread of COVID-19. medRxiv. January			
	318		2020:2020.03.03.20029983. doi:10.1101/2020.03.03.20029983			
	319	5.	Zhang W. Estimating the presymptomatic transmission of COVID19 using			
41 42	320		incubation period and serial interval data. medRxiv. January			
43 44 45	321		2020:2020.04.02.20051318. doi:10.1101/2020.04.02.20051318			
46 47 48	322	6.	Rahimi F, Talebi Bezmin Abadi A. Challenges of managing the asymptomatic			
49 50	323		carriers of SARS-CoV-2. Travel Med Infect Dis. April 2020:101677.			
50 51 52 53 54 55 56 57	324		doi:10.1016/j.tmaid.2020.101677			
	325	7.	Teherán AA, Camero G, Prado R, et al. Presumptive asymptomatic COVID-19			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

_			
1		16	
2 3 4 5 6	326		carriers' estimation and expected person-to-person spreading among repatriated
	327		passengers returning from China. Travel Med Infect Dis. April 2020:101688.
7 8	328		doi:10.1016/j.tmaid.2020.101688
9 10 11	329	8.	Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of COVID-19 outbreak in
12 13 14	330		the municipality of Vo, Italy. medRxiv. January 2020:2020.04.17.20053157.
15 16 17	331		doi:10.1101/2020.04.17.20053157
17 18 19	332	9.	Oliveira G. Refined compartmental models, asymptomatic carriers and COVID-19.
20 21 22	333		medRxiv. January 2020:2020.04.14.20065128. doi:10.1101/2020.04.14.20065128
23 24	334	10.	Yu Y, Liu Y-R, Luo F-M, et al. COVID-19 Asymptomatic Infection Estimation.
25 26 27	335		medRxiv. January 2020:2020.04.19.20068072. doi:10.1101/2020.04.19.20068072
28 29	336	11.	Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 infections
30 31 32	337		and transmission in a skilled nursing facility. N Engl J Med. 2020.
33 34	338		doi:10.1056/NEJMoa2008457
35 36 37	339	12.	Wong J, Abdul Aziz ABZ, Chaw L, et al. High proportion of asymptomatic and
38 39	340		presymptomatic COVID-19 infections in travelers and returning residents to Brunei.
40 41 42	341		<i>J Travel Med</i> . 2020. doi:10.1093/jtm/taaa066
43 44 45	342	13.	Hijnen D, Marzano AV, Eyerich K, et al. SARS-CoV-2 Transmission from
46 47	343		Presymptomatic Meeting Attendee, Germany. Emerg Infect Dis. 2020.
48 49	344		doi:10.3201/eid2608.201235
50 51 52	345	14.	COVID-19: What proportion are asymptomatic? - CEBM.
53 54	346		https://www.cebm.net/covid-19/covid-19-what-proportion-are-asymptomatic/.
55 56 57	347		Accessed June 16, 2020.
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			BMJ Open	Page 18 of 31
1		17		BMJ
2 3 4	348	15.	Ministerio de Sanidad C. Estudio Nacional de sero-Epidemiología de la Infección	Open:
5 6	349		por SARS-CoV-2 en España (ENE-Covid). Informe PRELIMINAR tras la primera	first puk
7 8 9	350		ronda (13/05/2020). Gob España. 2020;(May 13).	olished a
10 11	351	16.	Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-	as 10.11
12 13 14	352		CoV-2 genomes. Proc Natl Acad Sci USA. 2020. doi:10.1073/pnas.2004999117	36/bmj
15 16	353	17.	Zhou X, Li Y, Li T, Zhang W. Follow-up of asymptomatic patients with SARS-	open-20
17 18 19	354		CoV-2 infection. Clin Microbiol Infect. 2020. doi:10.1016/j.cmi.2020.03.024	20-042
20 21 22	355	18.	Yang R, Gui X, Xiong Y. Comparison of Clinical Characteristics of Patients with	122 on 7
22 23 24	356		Asymptomatic vs Symptomatic Coronavirus Disease 2019 in Wuhan, China. JAMA	' Decen
25 26 27	357		Netw open. 2020. doi:10.1001/jamanetworkopen.2020.10182	nber 202
28 29	358	19.	Márquez EJ, Trowbridge J, Kuchel GA, Banchereau J, Ucar D. The lethal sex gap:	20. Dowi
30 31 32	359		COVID-19. Immun Ageing. 2020;17(1):13. doi:10.1186/s12979-020-00183-z	nloaded
33 34	360	20.	Koh D. Occupational risks for COVID-19 infection. Occup Med (Chic Ill).	from ht
35 36 37	361		2020;70(1):3-5. doi:10.1093/occmed/kqaa036	tp://bmj
38 39 40	362	21.	Tao Y, Cheng P, Chen W, et al. High Incidence of Asymptomatic SARS-CoV-2	open.br
41 42	363		Infection, Chongqing, China. SSRN Electron J. 2020. doi:10.2139/ssrn.3559583	ij.com/ (
43 44 45	364	22.	Nussbaumer-Streit B, Mayr V, Dobrescu Ai, et al. Quarantine alone or in	on April
46 47	365		combination with other public health measures to control COVID-19: a rapid review.	17, 202
48 49 50	366		Cochrane Database Syst Rev. 2020;(4). doi:10.1002/14651858.CD013574	4 by gu
51 52	367	23.	Nicola M, Alsafi Z, Sohrabi C, et al. The socio-economic implications of the	est. Prot
53 54 55	368		coronavirus pandemic (COVID-19): A review. Int J Surg. 2020;78:185-193.	BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.
56 57				у соругі
58 59			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml	ght.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

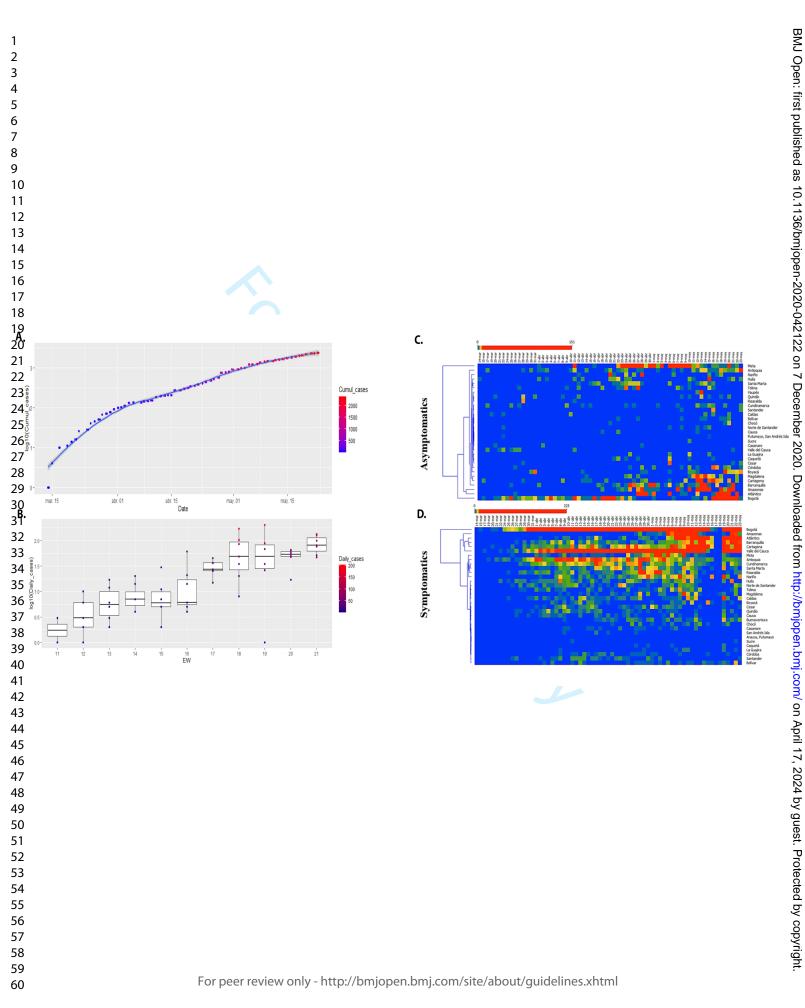
		18	
1 2			
3 4 5	369		doi:https://doi.org/10.1016/j.ijsu.2020.04.018
6 7	370	24.	Kalleberg AL, Wachter TM von. The U.S. Labor Market During and After the Great
8 9	371		Recession: Continuities and Transformations. RSF Russell Sage Found J Soc Sci.
10 11 12	372		2017;3(3):1-19. doi:10.7758/rsf.2017.3.3.01
13 14 15	373	25.	Sutherland M, McKenney M, Elkbuli A. Gun violence during COVID-19 pandemic:
16 17	374		Paradoxical trends in New York City, Chicago, Los Angeles and Baltimore. Am J
18 19 20	375		Emerg Med. 2020. doi:10.1016/j.ajem.2020.05.006
21 22	376	26.	Gilbert M, Dewatripont M, Muraille E, Platteau JP, Goldman M. Preparing for a
23 24 25	377		responsible lockdown exit strategy. Nat Med. 2020. doi:10.1038/s41591-020-0871-y
26 27	378	27.	World Health Organisation. Considerations in adjusting public health and social
28 29 30	379		measures in the context of COVID-19. World Heal Organ. 2020;(April):1-7.
30 31 32	380		https://www.who.int/publications-detail/risk
33 34 35	381	28.	Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2.
36 37 38	382		Science (80-). 2020. doi:10.1126/science.abc6197
39 40	383	29.	Huff H V, Singh A. Asymptomatic transmission during the COVID-19 pandemic
41 42	384		and implications for public health strategies. Clin Infect Dis. May 2020.
43 44 45	385		doi:10.1093/cid/ciaa654
46 47 48	386	30.	Gostic K, Gomez ACR, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated
49 50	387		effectiveness of symptom and risk screening to prevent the spread of COVID-19.
51 52	388		Franco E, Ferguson NM, McCaw JM, eds. Elife. 2020;9:e55570.
53 54 55 56 57 58	389		doi:10.7554/eLife.55570
59			

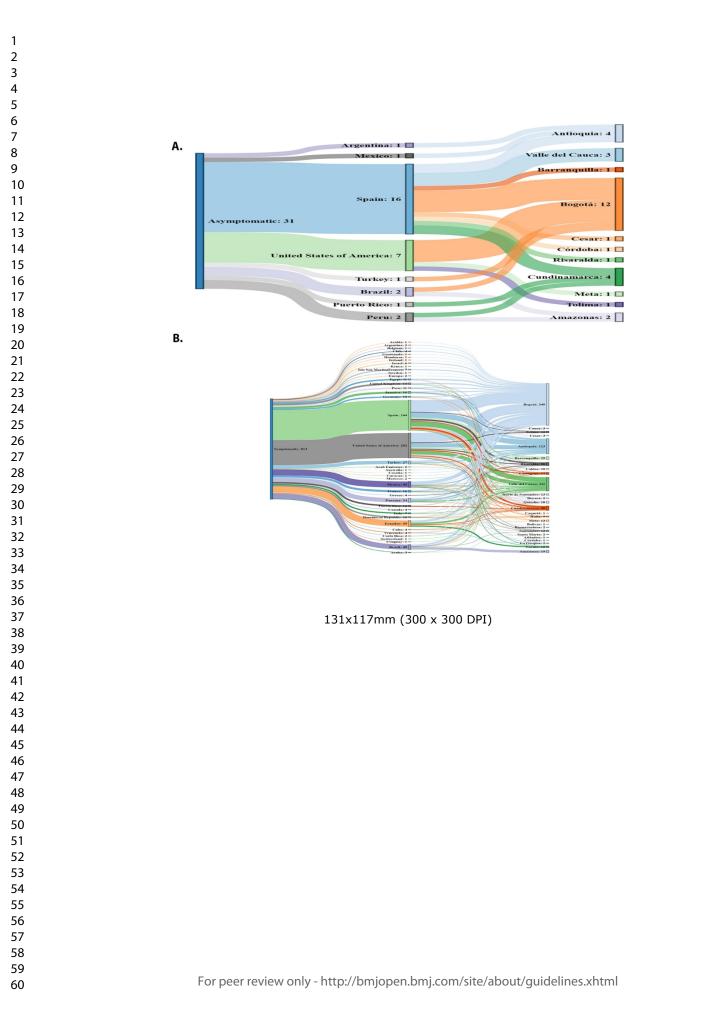
Page 20 of 31

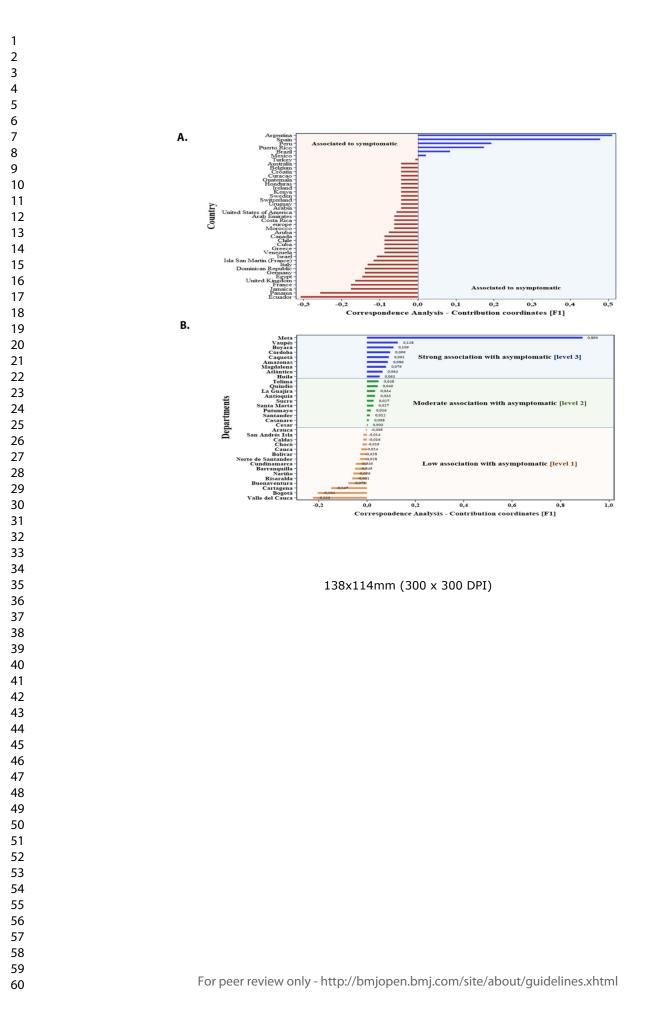
BMJ Open

1		19	
2 3	390	31.	Peto J, Alwan NA, Godfrey KM, et al. Universal weekly testing as the UK COVID-
4 5 6	391		19 lockdown exit strategy. Lancet. 2020. doi:10.1016/S0140-6736(20)30936-3
7 8 9	392	32.	Mallapaty S. Will antibody tests for the coronavirus really change everything?
10 11	393		Nature. 2020. doi:10.1038/d41586-020-01115-z
12 13 14	394	33.	The race against COVID-19. Nat Nanotechnol. 2020. doi:10.1038/s41565-020-0680-
15 16 17	395		у
18 19	396	34.	Mark K, Steel K, Stevenson J, et al. Coronavirus disease (COVID-19) community
20 21 22	397		testing team in Scotland: A 14-day review, 6 to 20 February 2020. Eurosurveillance.
23 24 25	398		2020. doi:10.2807/1560-7917.ES.2020.25.12.2000217
26 27	399	35.	Rosenthal PJ. The importance of diagnostic testing during a viral pandemic: Early
28 29 30	400		lessons from novel coronavirus disease (CoVID-19). Am J Trop Med Hyg. 2020.
31 32	401		doi:10.4269/AJTMH.20-0216
33 34 35	402	36.	Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2
36 37	403		Infection — Challenges and Implications. N Engl J Med. 2020.
38 39 40	404		doi:10.1056/nejmp2015897
41 42 43	405		
44 45	406		
46 47 48	407		
49 50	408		
51 52 53			
54 55	409		
56 57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		20				
1 ว						
2 3 4 5 6	410					
7	411					
8 9 10	412					
11 12 13	413					
14 15 16	414					
17 18 19 20	415					
20 21 22 23	416					


417 Table 1. Sociodemographic characteristics of the asymptomatic and symptomatic patients


	Asymptomatic	Symptomatic		
Variables	Asymptomatic	Symptomatic	p-value	
	n: 2388	n: 17785		
Age, years	32 (24-44)	37 (26-53)	< 0.001	
0-39	1603 (67.1)	9655 (54.2)	< 0.001	
≥40	785 (32.8)	8130 (45.7)	< 0.001	
Sex				
Male	1208 (75.2)	6220 (53.7)	<0.001	
Female	399 (24.8)	5359 (46.3)	< 0.001	
Geographical source				
Related	2357 (98.7)	16972 (95.4)	< 0.001	
Imported	31 (1.30)	813 (4.57)	< 0.001	
Departments†				
Meta	749 (31.3)	219 (1.23)	< 0.001	


		21			
1 2					
3		Bogotá	437 (18.3)	65.4 (36.8)	< 0.001
4		Dogota	457 (10.5)	05.4 (50.0)	<0.001
5		Amazonas	238 (9.97)	1150 (6.47)	< 0.001
6 7					
8		Atlántico	203 (8.50)	1068 (6.01)	< 0.001
9					
10		Barranquilla	117 (4.90)	1216 (6.84)	< 0.001
11 12		.			
13		Imported cases			
14		Snoin	16 (51 6)	244 (30.0)	0.011
15 16		Spain	16 (51.6)	244 (30.0)	0.011
17		USA	7 (22.5)	202 (24.8)	0.774
18			(22.5)	202 (21.0)	0.771
19		Brazil	2 (6.45)	40 (4.92)	0.700
20 21					
22		Mexico	2 (6.45)	49 (6.03)	0.922
23				- />	
24		Argentina	1 (3.23)	3 (0.37)	0.023
25 26		Decem	1 (2.22)	11 (1 25)	0.207
27		Peru	1 (3.23)	11 (1.35)	0.387
28		Puerto Rico	1 (3.23)	12 (1.48)	0.437
29		i uci to Kico	1 (3.23)	12 (1.40)	0.437
30 31		Turkey	1 (3.23)	• 27 (3.32)	0.977
32			1 (0.20)		0.0777
33	418	†: cases that appeared sp	ontaneously in	Colombia, ††: to	p 5 of the
34 25			-	6	-
35 36	419	departments with the high	est frequency o	f AC.	
37					
38	420	Table 2. Factors associated with asy	mptomatic carr	ier (AC) state in C	olombia
39 40	-		I		
40 41			1	Intonation	
42		Variable		Interaction model	
43		y ai iabit	В	ORc (95%, CI)	p-value
44 45					r
46		Intercept	-4.531	-	<0.001
47		A = -			
48 40		Age			
49 50		>40 years	Ref.	-	_
51					
52		0-39 years	0.451 1	.569 (1.422-1.732)	<0.001
53		c			
54 55		Sex			
56					
F7					

	Female	Ref.	-	-
	Male	-0.019	0.981 (0.850-1.132)	0.791
	Department			
	Low association [1]	Ref.	-	-
	Moderate association [2]	0.210	1.234 (0.799-1.908)	0.344
	Strong association [3]	1.130	3.095 (1.860-5.149)	<0.001
	Geographical source			
	Imported CAS†	Ref.	-	-
	Imported CA-AC††	1.225	3.405 (1.491-7.775)	<0.004
	Related cases † † †	1.351	4.861 (1.885-7.910)	<0.001
	EW			
	10-15 [1]	Ref.	-	
	16-17 [2]	0.657	1.410 (1.155-1.721)	<0.001
	18 [4]	0.418	1.519 (1.087-2.122)	<0.014
	19-21 [3]	-0.074	0.929 (0.758-1.138)	0.477
	Department [2] + Male	0.363	1.438 (1.035-1.998)	0.030
	Department [3] + Male	0.757	2.132 (1.723-2.638)	<0.001
	EW [2] + Department [3]	-1.052	0.349 (0.198-0.616)	<0.001
	EW [3] + Department [2]	1.474	4.368 (2.780-6.862)	<0.001
	EW [4] + Department [2]	1.219	3.385 (1.631-7.023)	0.001
	EW [4] + Department [3]	1.414	4.673 (2.273-7.447)	<0.001
21	†: CAS countries associated	d with sy	mptomatic patients, †	†: CA-A0
22	countries associated with	h asymp	otomatic carriers (A	AC), †††
23	spontaneous cases, EW: ep	idemiolo	gical weeks.	
24				

4	23 25	
5 4 6	26	
7 4. 8	27	
8 9 4 10	28	
11	••	
12 4. 13	29	
14 15		
16 17		
18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

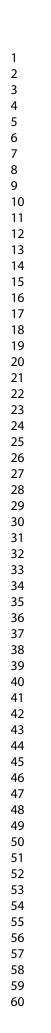
BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

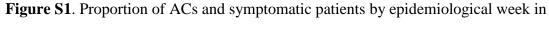
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
49 50
50
51
52
53
54
55
56
57
58
59
60

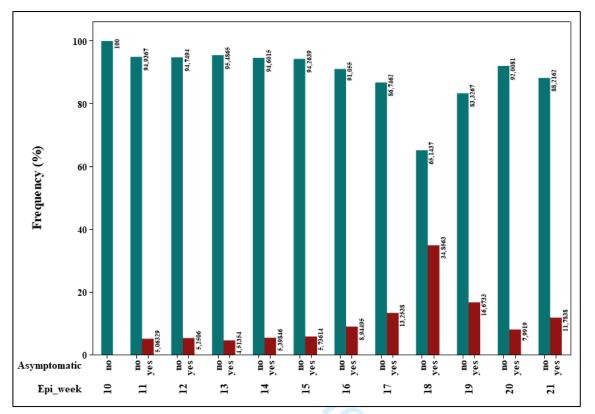
60

1

Department	Count	Proportion
Meta	749	31,37
Bogotá	437	18,3
Amazonas	238	9,97
Atlántico	203	8,5
Barranquilla	117	4,9
Antioquia	100	4,19
Cartagena	76	3,18
Magdalena	52	2,18
Boyacá	48	2,01
Huila	46	1,93
Nariño	44	1,84
Santa Marta	42	1,76
Tolima	37	1,55
Córdoba	31	1,3
Cundinamarca	28	1,17
Quindío	20	0,84
Valle del Cauca	14	0,59
Caquetá	12	0,5
Caldas	/11	0,46
Cesar	11	0,46
La Guajira	11	0,46
Vaupés	11	0,46
Bolívar	9	0,38
Santander	9	0,38
Norte	de 7	0,29
Risaralda	7	0,29
Chocó	6	0,25
Casanare	4	0,17
Cauca	4	0,17
Sucre	2	0,08
Putumayo	1	0,04
San Andrés Isla	1	0,04


The total number of ACs was used as the denominator to determine proportions.


Variable		Main effects			
Variable	В	ORa (95%, CI)	p-value		
Intercept	-5.061	-	<0.001		
Age,					
≥40 years old	Ref.	_	_		
	Ren				
0-39 years old	0.449	1.566 (1.421-1.726)	<0.001		
Sex					
SUA					
Female	Ref.	-	-		
Male	0.322	1.393 (1.264-1.537)	<0.001		
wiate	0.322	1.393 (1.204-1.337)	<0.001		
Department					
Low risk	Ref.	-	-		
Moderate risk	1.304	3.372 (3.134-4.330)	<0.001		
Strong risk	1.909	8.310 (6.101-7.464)	<0.001		
Geographical origi	n				
Geographical origi	11				
Imported CAS [†]	Ref.		-		
Imported CA-	1.216	3.372 (1.474-7.716)	< 0.004		
AC††	1.210	5.572 (1.474-7.710)			
Related cases †††	1.472	4.356 (2.123-8.939)	<0.001		
EW					
10-15	Ref.	-			
16.18	0.244	1 410 (1 155 1 501)	-0.001		
16-17	0.344	1.410 (1.155-1.721)	<0.001		
18	1.383	3.987 (3.243-4.902)	<0.001		


1				
2				
3	19-21	0.264	1.302(1.095-1.548)	<0.001
4 5				
6	†: CAS countries associated to	symptomatic p	atients, [†] [†] : CA-AC con	untries associated to
7				
8	ACs, †††: spontaneous cases,	EW: epidemio	logical week.	
9				
10				
11				
12 13				
13				
15				
16				
17				
18				
19				
20 21				
22				
23				
24				
25				
26				
27 28				
29				
30				
31				
32				
33 34				
35				
36				
37				
38				
39 40				
41				
42				
43				
44				
45 46				
40 47				
48				
49				
50				
51				
52 53				
54				
55				
56				
57				
58 59				
60	For peer review only	- http://bmjopen.	bmj.com/site/about/guide	lines.xhtml

1	
1 2 3 4 5 6 7 8 9 10	
4	
6	
/ 8	
9 10	
11 12	
13 14	
15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Colombia.

The number of reported ACs in Colombia by epidemiological week (EW) included: EW-11: 4/79, EW-12: 22/419, EW-13: 45/997, EW-14: 63/1167, EW-15: 60/1046, EW-16: 117/1308, EW-17: 211/1592, EW-18: 473/1357, EW-19: 421/2525, EW-20: 355/4442, EW-21: 617/5236.

BMJ Open

Epidemiological characterization of asymptomatic carriers of COVID-19 in Colombia: A cross-sectional study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042122.R1
Article Type:	Original research
Date Submitted by the Author:	24-Sep-2020
Complete List of Authors:	Teherán, Aníbal; Red Cross Colombia Camero, Gabriel; Red Cross Colombia Prado de la Guardia, Ronald; Red Cross Colombia Hernandez, Carolina; Universidad del Rosario Herrera, Giovanny; Universidad del Rosario Pombo, Luis; Juan N Corpas School of Medicine Avila, Albert; Universidad de La Sabana Florez, Carolina; instituto nacional de salud colombia Barros, Esther; instituto nacional de salud colombia Perez-Garcia, Luis; Universidad del Rosario Paniz-Mondolfi, Alberto; Icahn School of Medicine at Mount Sinai Ramirez, Juan; Universidad del Rosario
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	Epidemiology < TROPICAL MEDICINE, VIROLOGY, INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1	
2	
3	
2 3 4	
5	
6	
5 6 7	
8	
8 9	
10	
11	
12	
13	
14	
15	
16	
16 17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20 21 22 23 24 25 26 27 28 29	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

	1
1	Epidemiological characterization of asymptomatic carriers of COVID-19 in Colombia:
2	A cross-sectional study.
3	Aníbal A. Teherán ^{1,2} , Gabriel Camero ^{1,3} , Ronald Prado de la Guardia ¹ , Carolina Hernández ⁴ ,
4	Giovanny Herrera ⁴ , Luis M. Pombo ² , Albert A. Ávila ⁵ , Carolina Flórez ⁶ , Esther C. Barros ⁶ ,
5	Luis A. Perez-Garcia ⁴ , Alberto Paniz-Mondolfi ^{7,8} , Juan David Ramírez ^{4*}
6	¹ Red Cross Section Bogotá – Cundinamarca, Colombia
7	² COMPLEXUS Research group, Fundación Universitaria Juan N. Corpas, Colombia
8	³ Field Epidemiology Training Program, Red Cross Section Bogotá-Cundinamarca,
9	Colombia
10	⁴ Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología,
11	Facultad de Ciencias Naturales, Universidad del Rosario, Colombia.
12	⁵ Grupo de Investigación ANTHUS, Universidad de la Sabana.
13	⁶ Instituto Nacional de Salud, Colombia
14	⁷ Instituto de Investigaciones Biomédicas IDB / Incubadora Venezolana de la Ciencia,
15	Cabudare, Edo. Lara, Venezuela.
16	⁸ Icahn School of Medicine at Mount Sinai, NY, USA.
17	*Corresponding author: juand.ramirez@urosario.edu.co
18	
19	
20	

BMJ Open

ABSTRACT (187 words)

Introduction: Asymptomatic carriers (AC) of the new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) represent an important source of spread for Coronavirus Disease 2019 (COVID-19). Early diagnosis of these cases is a powerful tool to control the pandemic. Our objective was to characterize patients with AC status and identify associated sociodemographic factors.

Methods: Using a cross-sectional design and the national database of daily occurrence of COVID-19, we characterized both socially and demographically all ACs. Additional Correspondence Analysis and Logistic Regression Model were performed to identify characteristics associated with AC state (OR, 95% CI).

Results: 76.162 ACs (12.1%; 95%CI, 12.0-12.2%) were identified, mainly before epidemiological week 35 [EW]. Age ≤ 26 years (1.18;1.09-1.28), male sex (1.51;1.40-1.62), cases imported from Venezuela, Argentina, Brazil, Germany, Puerto Rico, Spain, United States of America or Mexico (12.6;3.03-52.5) and autochthonous cases (22.6;5.62-91.4) increased the risk of identifying ACs. We also identified groups of departments with moderate (1.23;1.13-1.34) and strong (19.8;18.6-21.0) association with ACs.

Conclusion: Sociodemographic characteristics strongly associated with AC were identified, which may explain its epidemiological relevance and usefulness to optimize mass screening strategies and prevent person-to-person transmission.

Key words: COVID-19; Asymptomatic; Carrier States; Risk factors, Novel Coronavirus.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

	3
43	Strengths and limitations:
44	• Cross-sectional studies are useful to identify possible variables associated with ACs.
45	• Weekly surveillance of potential cases reduced selection and classification bias of
46	ACs.
47	• The large number of COVID-19 ACs included in this study allowed to draw precise
48	estimates.
49	• The ongoing epidemic phase of COVID-19 in Colombia decreases the uncertainty of
50	invisible subgroup occurrences.
51	• Estimates and characteristics associated with ACs may improve epidemiological
52	surveillance in other countries.
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

TEXT (2481 words)

INTRODUCTION

In March 2nd, 2020, Colombia reported the first case of Coronavirus Disease 2019 (COVID-19), and as of September 22nd, more than 700,000 cases have been confirmed nationwide ¹. Asymptomatic carriers (AC) may be associated with the accelerated growth of cases in the initial phases of the pandemic, inadvertently spreading the infection to close contacts. In this case, transmission can only be limited until a diagnosis of SARS-CoV-2 infection is rendered after (i) isolation due to symptom onset, (ii) contact tracing or (iii) identification during massive screening strategies ^{2,3}.

AC and pre-symptomatic cases are epidemiologically relevant since they represent a silent source of spread in various public settings (e.g. public transportation, emergency rooms, supermarkets, shelters) ⁴⁻⁶. The proportion of ACs has been estimated at 15-25%, but seroprevalence studies have reported values of up to 43.2% (95% CI, 32.2-54.7%). Nonetheless, many pre-symptomatic patients are wrongfully classified as ACs during the incubation phase; to later become pauci-symptomatic or develop respiratory manifestations ranging from pneumonia to respiratory failure, or exhibit any other clinical symptoms within the COVID-19 spectrum 4-8.

Epidemiological predictive models have been developed and updated to incorporate silent mobility through AC phenotype in anticipation for the second and third epidemic waves of COVID-19. Such is the case for the SEIR model (Susceptible, Exposed, Infected and Recovered), recently updated to SEAIR (Susceptible, Exposed, Asymptomatic, Infected and Recovered) ⁹. In China, estimates indicate that 60-65% of ACs remained undetected.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Therefore, under the SEIR model and applying machine-learning-based transmission simulators (MLSim), including the number of undetected AC within its parameters and assuming 15 close contacts per day, estimates suggest that as of April 15th, 2020, the United States---the country contributing the majority of cases imported to Colombia---, could have presented 277,641-to-495,128 latent cases of COVID-19, potentially increasing the spread of the virus ¹⁰.

The assessment of ACs and the identification of sociodemographic characteristics associated with this subpopulation could be useful to estimate sample calculations in massive screening studies, as well as adjust control and mitigation measures---especially the intensity of isolation. Therefore, the objective of our study was to characterize ACs demographically and socially, as well as to identify individual characteristics in interaction models associated with elien ACs.

METHODOLOGY

Design and data selection.

We performed a cross-sectional study with information from the National Institute of Health COVID-19 updated (INS) database cases until August 31. on (https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx). Bv INS protocol. suspected AC cases remained in quarantine for 7 days while monitoring the appearance of symptoms on a daily basis; on the eighth day, a nasal swab sample was collected to identify or rule out AC state. Records without health status information (symptomatic, asymptomatic) were excluded. The database is public, with de-identified patient data and IRB approval was thus exempt.

Patient and Public Involvement (PPI) statement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

Database and variables.

We used variables such as date of diagnosis, age, sex, country of origin, department, case type (imported, related), care setting (home, nursing home, hospital, intensive care unit) and outcome (recovered, convalescent, deceased). The date of diagnosis was adjusted into epidemiological weeks (EW), which were later grouped according to the pattern of AC occurrence (Figure S1) in EW 10-34, \geq 35; additionally, the variable AC [yes, no] was 4.0 established.

Statistical analysis

Data are presented in medians or proportions estimated with 95% CI due to the lack of massive screening for COVID-19 in certain areas of the country; additionally, we estimated AC rates per 100.000 population by departments using Colombian demographic estimates for 2020 from the National Administrative Department of Statistics (DANE). The geographical origin and destination of imported cases was represented with a Sankey Plot (SankeyMATIC (BETA). Cumulative trends and case charts were created with the number of daily cases by Epid weeks (RStudio Version 1.2.5042). In addition, a heatmap analysis was included to depict a dynamic representation of daily cases by Department from March 6th through August 31rd, 2020 (Orange Data Mining & Fruitful Fun, Version 3.25). The

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

proportion of asymptomatic and symptomatic patients and the median age were compared with the Z and U Mann Whitney tests respectively (significant p-value <0.05, two tails) [Addinsoft. 2020. XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com]. Age was dichotomized between 0-26 and >27 years due to its association with asymptomatic and symptomatic states respectively (preliminary exploratory analysis not shown). Countries of origin and departments associated with ACs were identified, respectively, with a Correspondence Analysis (CA) and Factorial analysis of mixed data using PCAmix. Raw data were used for CA while symptomatic and AC rates per 100.000 population were used for PCAmix. Additionally, with principal coordinates (PC) obtained with both CA (PC-CA) and PCAmix (PC-PCAmix), groups with a variable level of association with ACs were created. [Addinsoft. 2020. XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com].

To estimate the association between sociodemographic characteristics with ACs (OR 95%), two Logistic Regression Models (LRM) were performed, the first to establish the main effects and the second a step-backward interaction model of the second level (p- value in <0.05; p-value out:> 0.1), which used the lowest Akaike criteria to select the best model (JASP Team (2020). JASP (Version 0.12.2))

RESULTS

> **General characteristics**

We identified 76.162 ACs (12.1%; 12.0-12.2%) out of 626.887 cases reported in the database. Four cases were excluded due to lack of health status information. The occurrence Page 9 of 30

BMJ Open

of AC state in relation to symptomatic presented a continuous growth phase between EW 10-17, and a peak at EW 18, followed by a newly increase between EW 19-34, and a steady state after EW 34 (Figure 1A, 1B, S1). Daily cases ranged from 1 to 4386 per day, and EW 34 registered the highest number of cases per day: 4141 and 4386. Additionally, we report department clusters with a high occurrence of daily COVID-19 cases, which follow different dynamic patterns for ACs and symptomatic patients (Figure 1C-1D). Throughout April, AC reports in Meta and Amazonas peaked; in May they peaked in Cartagena, Antioquia and Bogota, with Bogota's peak lasting until August 31st; in June-July, AC cases peaked in Atlantico, Barranquilla and Cordoba; and in August, they peaked in Santander and Cundinamarca. Overall, the frequency of ACs in Colombia has followed a dichotomic trend as shown in the lateral cluster of figure 1c: AC occurrences are distributed between the highly frequent profile in Bogota during most of the epidemic and the intermittent peak occurrences of the rest of Colombian departments. More than half of the imported ACs came from Europe, specifically Spain, followed by North and South America. Those that arrived from Spain and USA were distributed mainly in Bogotá, Cundinamarca, Antioquia, and Valle del Cauca. Amazonas department only received imported ACs from South American countries. The origin and distribution of imported symptomatic patients was more diverse; however, most cases originated from Spain, USA, Ecuador, Mexico, Brazil, or Panama, and were mainly distributed across Bogotá, Antioquia, and Valle del Cauca (Figure 2).

More than 90% of ACs were located in Bogotá, Atlantico and Meta; However, Bogota, Amazonas and Putumayo reported the highest AC rates per 100.000 population (Table 1,

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Table S1). Median age was 37 years old, lower than the symptomatic patients. Most of them were males (Table 1). By August 31st, most ACs were classified as recovered (85.8%; 85.6-86.1%) or in domiciliary isolation (13.6%; 13.4-13.8%), and 356 patients (0.46%; 0.42-052%) were diagnosed during their stay in ICUs (80 patients), general hospitalization services (185 patients) or in post-mortem phase (91 deceased). These 356 cases may have been treated for symptoms unrelated to COVID-19 or perhaps RT-PCR results arrived late. with some arriving even after the patient had already passed away.

Factors associated with AC condition.

Using the PC-CA and PC-PCAmix, a group of six countries and three groups of departments were associated with AC state (Figure 3). To execute LRMs, the variables "age group 0-26 years" and "male sex" were transformed into dummi [0/1]. With a preliminary LRM, a higher β coefficient was estimated in relation to cases imported from countries associated with ACs. therefore, the variable "geographical origin" was created, composed of the categories "imported from countries associated with symptomatic" [Imported CAS - referent], "imported from countries associated with ACs" [Imported CA-ACs] and "related cases". Additionally, a variable was created for the departments grouped with the PCAmix [departments with low association - referent] and for the EW (EW 10-34 - referent). The first LRM (main effects) identified a significant association of all index sociodemographic categories with ACs state (Table S2). The second model explores the following interactions: 1. Geographical origin and grouped departments, 2. Geographical origin and EW, 3. Age group (0-26 years) and gender, 4. Grouped departments and gender; and, 5. Age (0-26 years) and EW. We identified interactions between the variables "gender" (males), "age" (0-26

years), and "EW" and the grouped departments; and between the variables "gender" (males)
and "age" (0-26 years) (Table 2).

Variables "age" (0-26 years), "gender" (male), "departments with moderate or strong association", "imported CA-ACs" and "related cases" were found to increase the risk of identifying ACs state. It was also determined that the risk increased for males (0-26 years), especially for those located in departments with a strong or moderate association since EW 35. However it should be noted that the risk of identifying ACs has decreased since EW 35 when only taking isolated estimates into account (Table 2).

203 DISCUSSION

We found that, in an isolated fashion, age <27 years old, imported cases from a group of 6 countries, autochthonous cases and the occurrence in groupings of departments were associated with AC state. Additionally, the risk of being a male AC was only identified in departments with moderate or strong risk, and the risk was variable in the groupings of departments throughout specific epidemiological periods.

Additionally, our results show that the proportion of ACs in Colombia lays between 12-12.2% (Table 1), a lower estimate than previously described in other case series or mass screening studies with reported proportions between 5-80% ¹¹⁻¹⁴. Given the inclusion of presymptomatic patients or the unification of AC with non-critical symptoms in some reports, we cannot rule out that a non-differential classification bias influenced these estimates. An adapted definition for AC in Colombia may address this limitation.

Figure 1 shows that the majority of imported cases to Colombia came from Spain and USA,

216 where AC rates have been estimated at 2.5% and 25%, respectively 14,15 . Although imported

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

cases carry a distinctive genetic load that, population-wise, could manifest itself as a particular phenotype ¹⁶, currently there are no reports of genetic variants associated with AC in general or for any of the four AC subtypes described in the literature ¹⁷. Subsequent research should be conducted on the possible association between ACs and phylogenetic variants (or other variables) to support the differential risk identified in imported cases from different regions of the world.

We identified that imported cases from a group of 6 countries were strongly associated with AC (Figure 2, Table S1, Table 2), and although no interaction was established between the country of import and the destination department (data not shown), we observed that departments strongly associated with AC had less diversity of import origin. Such is the case of Meta and Amazonas, which exclusively imported cases from USA and Brazil/Peru, respectively (Figure 2).

Among the demographic characteristics, the association between AC state and patients under 27 years of age stands out. Possible explanations for this observation include: (i) the lower presence of co-morbid conditions and baseline health issues within this age group and (ii) the higher risk of exposure through work activities which are greater in this age group ¹⁸. However, clinical or social environment could also explain this finding, as a study in skilled nursing facility residents showed a high proportion of AC in those over 70 years of age, however this was a premature finding since most patients were later reclassified as pre-symptomatic or pauci-symptomatic¹¹.

We identified a higher frequency of men infected with COVID-19 consistent with reports
from other countries around the world, except in Spain and Switzerland, where women
ranked first ¹⁹. Frequent occupations performed by men, as well as certain immunological

BMJ Open

and genetically susceptible backgrounds have been associated with this finding ^{19,20}. In
particular, the risk of being an AC was higher in men, and increased in geographic areas
associated with AC. This interaction is not uncommon given that professions regularly
carried out by men, including those such as taxi driving, private security or prison guarding,
among other work settings, can be distributed asymmetrically within countries, a pattern that
would explain our findings ²⁰.

The phases on the occurrence of cases throughout EWs and the interaction with groupings within departments associated with AC has been previously described in Chongqing, China, where researchers identified significant changes in the frequency of cases after implementation of geographic isolation measures. The dynamic changes in the detection and distribution of ACs throughout EWs could be explained by the surveillance strategy executed in Colombia kwon as "PRASS" (in Spanish, tests, surveillance, and sustainable selective isolations); this can be particularly observed from EW 30 onwards (figure S1)²¹. In Wuhan, a study showed that one group of ACs was linked to imported cases while others were linked mostly to autochthonous cases from geographically isolated areas of Wuhan²². We identified that in addition to being associated with a travel history to foreign countries, ACs were also associated with cases that appear spontaneously (related), occurring differentially as measures of geographic and social isolation were applied.

The lack of mass screening for COVID-19 in Colombia is the main limitation of our study since the actual AC ratio and the distribution of specific characteristics may differ from those estimated in this report. On the other hand, although a cross-sectional design is not ideal to identify risk factors, to the best of our knowledge this is the first study aimed at identifying

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

factors associated with AC state with population data unbiased by the inclusion of presymptomatic cases 23 .

The COVID-19 pandemic has had serious socioeconomic implications, including a collapse of healthcare systems, bankruptcy of companies as well as increasing trends in unemployment and crime rates ^{24–27}. This has forced countries with limited resources---such as Colombia---to perform massive screenings in order to prematurely lift quarantine and isolation measures despite the latent risk of successive outbreaks caused by a potential silent spread of COVID-19 through cases in the pre-symptomatic phase or AC state ^{28,29}.

ACs transmit COVID-19 more efficiently than symptomatic patients for up to 21 days after the presumed date of infection ^{30,31}. This led to their inclusion in mathematical models intended to estimate the probability or expected number of person-to-person infections on repatriation trips from Wuhan, China ^{7,32}. Since then, ACs have become the target of mass screening in Asian and European countries effectively reducing economical losses due to unnecessary hospital care, controlling the spread in public or in-hospital settings, and allowing the execution of safe plans of social and work re-integration after quarantine and isolation ^{28,33–37}.

To date, testing of asymptomatic individuals' rests at the discretion of physicians when justified on a case-by-case basis. On the other hand, the utility of SARS-CoV-2 testing for broad screening of asymptomatic individuals remains to be determined given the limited sensitivity data available for most commercially available test kits ³⁸.

282 CONCLUSION

Together, our findings demonstrate sociodemographic trends strongly associated with COVID-19 AC state in Colombia at a departmental and national level. We believe that the implementation of massive screening campaigns to detect AC and pre-symptomatic patients is paramount to further characterize this phenomenon and adequately guide public health measures of containment and prevention. Additional molecular analysis of viral and host genotypic characteristics should be conducted to determine possible associations with AC state.

290 Authors contributorship statement

AT, APM and JDR designed the study. AT, GC, RPG, CH, GH, LMP, LAP and AA
conducted the statistical and descriptive analyses. CF, ECB provided the data for the analysis.
AT, APM, LAP and JDR drafted the manuscript. All authors approved the final version of
the manuscript.

Funding: This research received no external funding.

Data sharing statement: Data is freely available from the National Institute of Health (INS)
database on COVID-19 cases updated until August 31, 2020
(https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx).

Conflicts of Interest: The authors declare no conflict of interest.

300 Correspondence: Juan David Ramírez; Grupo de Investigaciones Microbiológicas-UR
301 (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del
302 Rosario, Colombia; Telephone +573124141511; juand.ramirez@urosario.edu.co

Figure Legends

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Colombia. A. The y-axis represents the number of cumulative ACs transformed into a base

10 logarithm. The number of cumulative cases per day is located in points that increase in

Figure 1. Daily accumulation and distribution of ACs by epidemiological week in

3 4	304
5	305
7 8	306
9 10	
11	307
12 13	308
14 15	309
16 17	310
18 19	
20 21	311
22 23	312
24 25	313
26 27	314
28 29	
30 31	315
32 33	316
34 35	317
36 37	318
38 39	319
40 41	
42	320
43 44	321
45 46	
47 48	322
49 50	323
51 52	324
53 54	
55 56	325
57 58	
59 60	

306	To logarithm. The number of cumulative cases per day is located in points that increase in
307	color intensity according to the occurrence of cases. B. The y-axis represents the number of
308	daily ACs transformed into a base 10 logarithm. The number of daily cases per day is
309	located in boxplots. C. Heatmap showcasing the number of ACs (top) and B. symptomatic
310	patients (bottom) diagnosed in every Colombian department until August 31st, 2020.
311	Figure 2. Origin and destination of imported asymptomatic and symptomatic cases.
312	The left and right figures, respectively, represent the country of origin and destination
313	department of ACs and symptomatic patients. The thickness of the link tapes corresponds
314	to the number of reported cases.
315	Figure 3. Groups of countries and departments associated with AC state. The left
316	figure shows the group of countries associated with asymptomatic carrier (AC) state
317	identified with positive values of the CCC-CA. The right figure shows departments
318	grouped according to three intervals of CCC-CA: low association (CCC-CA: negative
319	values), moderate association (CCC-CA:> 0 - <0.05), and strong association (CCC-CA:
320	≥0.5).
321	Supplementary materialTable S1. AC state frequency in Colombia by department
322	Table S2. Factors associated with AC state in Colombia
323	Figure S1. The stacked bar figure represents on the y-axis the epidemiological weeks (EW)
324	and on the x-axis the proportion of symptomatic (green section of the bar) and the proportion
325	of asymptomatic (purple section of the bar), as well as the result of a Chi square independence

BMJ Open

Variables	Asymptomatic	Symptomatic	p-valu
	n: 76162	n: 550725	F
Age, years	35 (25-49)	37 (27-52)	< 0.001
0-26	21310 (27.9)	129529 (23.5)	< 0.001
≥27	54852 (72.0)	421196 (76.4)	< 0.001
Sex			
Male	38836 (50.9)	283068 (51.4)	0.035
Female	37326 (49.0)	267657 (48.6)	0.035
Geographical source			
Related†	76108 (99.9)	549789 (99.8)	< 0.001
Imported	54 (0.07)	936 (0.170)	< 0.001
Departments ††			
Bogotá	68143 (89.4)	148258 (26.9)	< 0.001
Atlántico	1455 (1.91)	26059 (4.73)	<0.001
Meta	836 (1.10)	8532 (1.55)	< 0.001
Barranquilla	737 (0.97)	34262 (6.22)	< 0.001
Cundinamarca	690 (0.91)	23222 (4.22)	< 0.001
Imported cases†††	53	905	958
Spain	19 (35.8)	246 (27.2)	0.170

test that shows statistical association between the EW variables and health status (symptomatic/asymptomatic carrier).

0.565
0.007
0.994
0.002
0.156
0.916
0.669
0.734
0.732
0.645
NA
5 of the
mber of
as the
ombia
k
p-value
<0.001
<0.001
_
<0.001
<0.001
)

59

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

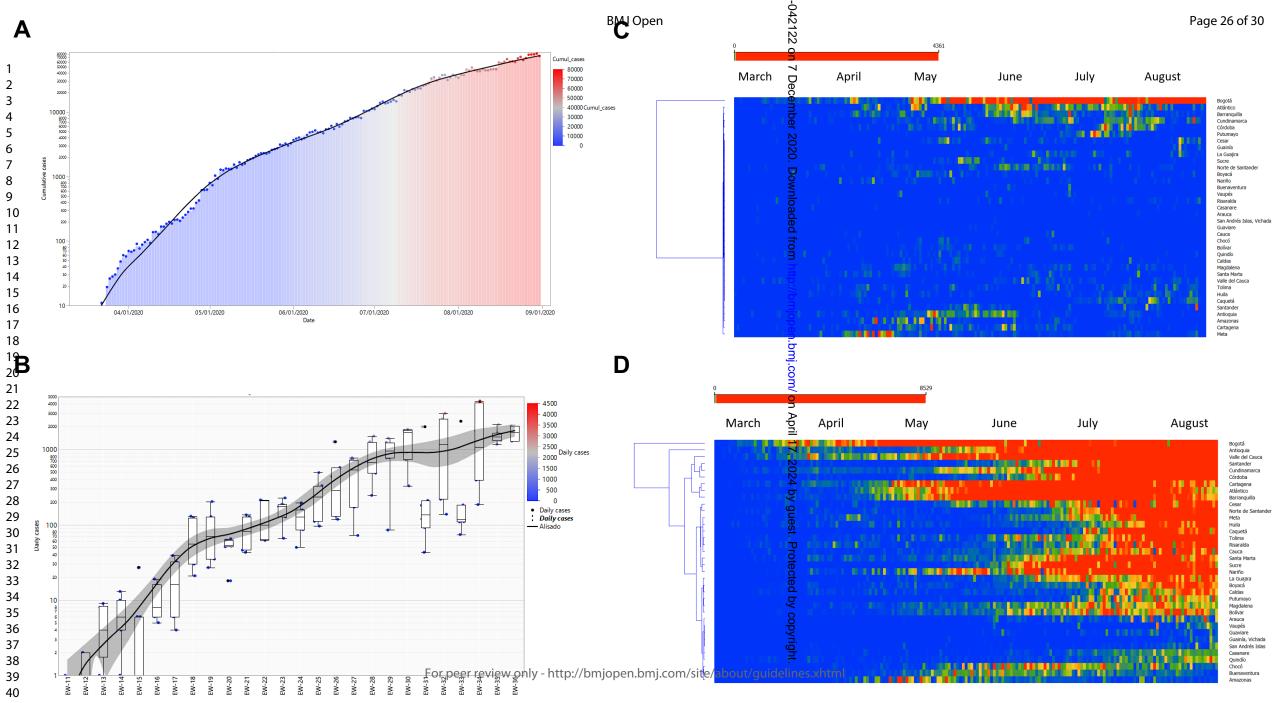
BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

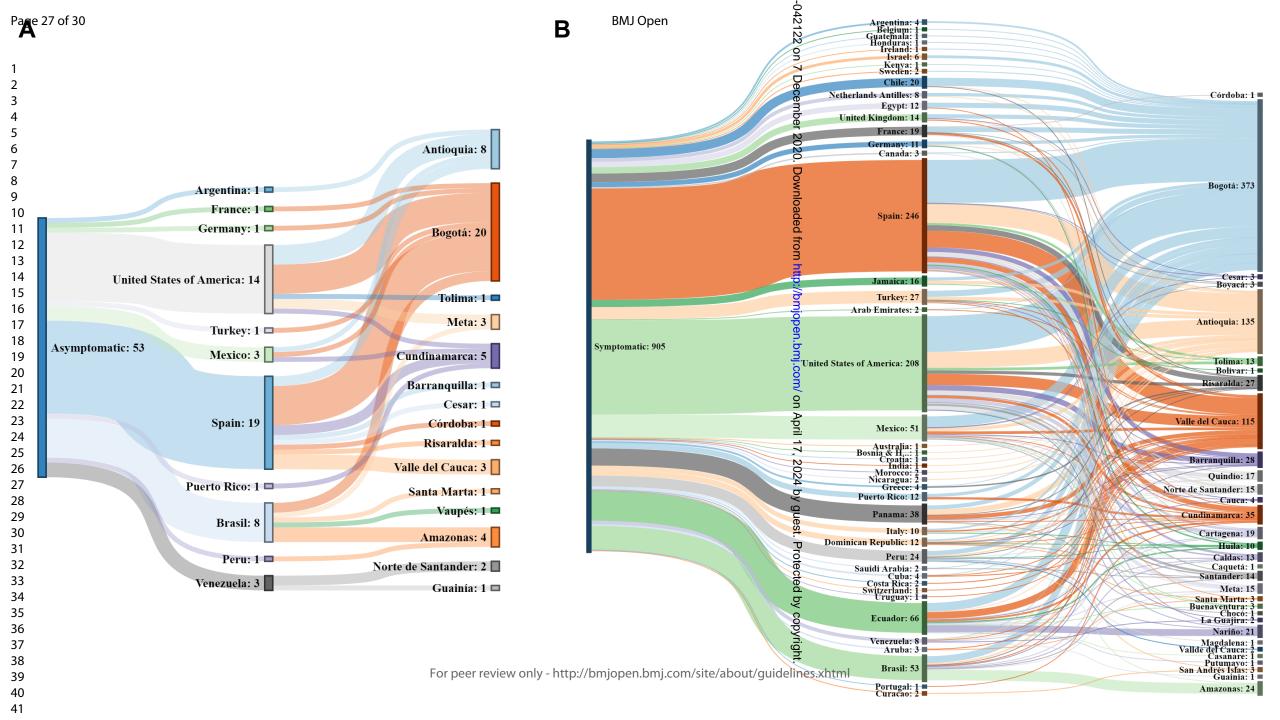
2 3 4		Sex			
5		Female	Ref.	-	-
7 8		Male	0.414	1.513 (1.408-1.625)	< 0.001
9 10		Department			
11 12		Low association [1]	Ref.	-	-
13 14		Moderate association [2]	0.211	1.234 (1.137-1.340)	< 0.001
15 16		Strong association [3]	2.986	19.81 (18.61-21.08)	< 0.001
17 18		Geographical source			
19 20		Imported CAS†	Ref.	-	-
21 22		Imported CA-AC††(1)	2.536	12.62 (3.034-52.54)	< 0.001
23 24		Related cases † † † (2)	3.121	22.67 (5.620-91.47)	< 0.001
25 26		EW			
27 28		10-34	Ref.	_	
29 30		≥35	-1.008	0.365 (0.320-0.415)	< 0.001
31 32 33		0-26 years + Male	0.047	1.048 (1.010-1.089)	0.014
34 35		0-26 years + Department [2]	0.174	1.190 (1.069-1.325)	0.001
36 37		0-26 years + Department [3]	-0.005	0.995 (0.919-1.077)	0.898
38 39		• • • • • •	-0.387	0.679 (0.615-0.749)	
40 41		Department [2] + Male			<0.001
42 43		Department [3] + Male	-0.377	0.686 (0.637-0.737)	<0.001
44 45		EW≥35 + Department [2]	-0.862	0.422 (0.315-0.567)	<0.001
46 47		EW ≥35 + Department [3]	2.217	9.182 (8.045-10.47)	<0.001
48 49					
50 51	335	†: CAS countries associated	with syn	nptomatic patients, ††	: CA-AC
52 53	336	countries associated with	asympt	omatic carriers (AG	C), ††† :
54 55	337	spontaneous cases, EW: epic	lemiologi	cal weeks.	
56 57					
58 59 60		For peer review only - http://bm	ijopen.bmj.	.com/site/about/guideline	es.xhtml

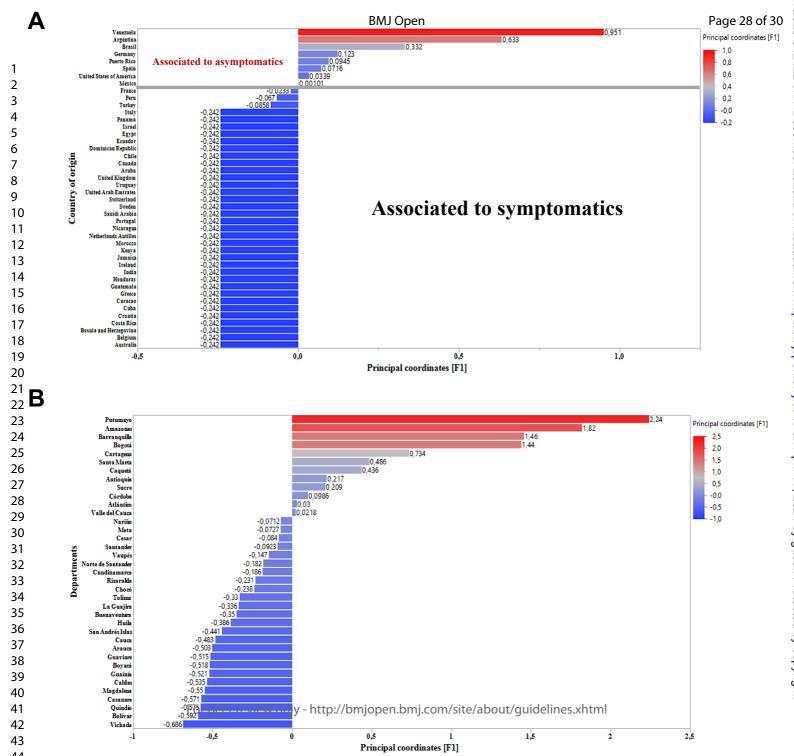
		19	
1 2		15	
2 3	338		
4 5			
6	339		
7			
8 9	340		
10	510		
11 12	341		
13	341		
14 15	342		
16	542		
17 18	343	Dofo	rences.
19	545	Keie	Tences.
20	244	1	Coronavirus on Colombia
21 22	344	1.	Coronavirus en Colombia.
23	345		https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx. Accessed May 10, 2020.
24 25			
26	346	2.	Rudan I. A cascade of causes that led to the COVID-19 tragedy in Italy and in other
27 28			
29	347		European Union co1. Rudan I. A cascade of causes that led to the COVID-19
30 31	348		tragedy in Italy and in other European Union countries. J Glob Health. 2020;
32	510		lagedy in hary and in other European Onion countries. 5 Glob Hearth. 2020,
33 34	349		10(1):10335. untries. J Glob Health. 2020;10(1):10335. doi:10.7189/jogh-10-010335
34 35			
36 27	350	3.	Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to
37 38	251		be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753-
39	351		be learned about the novel coronavirus disease. Int 5 Biol Sci. 2020,10(10).1755-
40 41	352		1766. doi:10.7150/ijbs.45134
42			
43 44	353	4.	Tindale L, Coombe M, Stockdale JE, et al. Transmission interval estimates suggest
45			
46 47	354		pre-symptomatic spread of COVID-19. medRxiv. January
48	355		2020:2020.03.03.20029983. doi:10.1101/2020.03.03.20029983
49 50			
51	356	5.	Zhang W. Estimating the presymptomatic transmission of COVID19 using
52 53			
53 54	357		incubation period and serial interval data. medRxiv. January
55 56	358		2020:2020.04.02.20051318. doi:10.1101/2020.04.02.20051318
56 57	220		2020.2020.07.02.20031310. doi:10.1101/2020.07.02.20031310
58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ruge 21	01 50		bill open
1		20	
2 3 4	359	6.	Rahimi F, Talebi Bezmin Abadi A. Challenges of managing the asymptomatic
5 6	360		carriers of SARS-CoV-2. Travel Med Infect Dis. April 2020:101677.
7 8 9	361		doi:10.1016/j.tmaid.2020.101677
10 11 12	362	7.	Teherán AA, Camero G, Prado R, et al. Presumptive asymptomatic COVID-19
12 13 14	363		carriers' estimation and expected person-to-person spreading among repatriated
15 16	364		passengers returning from China. Travel Med Infect Dis. April 2020:101688.
17 18 19	365		doi:10.1016/j.tmaid.2020.101688
20 21	366	8.	Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of COVID-19 outbreak in
22 23 24	367		the municipality of Vo, Italy. medRxiv. January 2020:2020.04.17.20053157.
25 26 27	368		doi:10.1101/2020.04.17.20053157
27 28 29	369	9.	Oliveira G. Refined compartmental models, asymptomatic carriers and COVID-19.
30 31 32	370		medRxiv. January 2020:2020.04.14.20065128. doi:10.1101/2020.04.14.20065128
33 34	371	10.	Yu Y, Liu Y-R, Luo F-M, et al. COVID-19 Asymptomatic Infection Estimation.
35 36 37	372		medRxiv. January 2020:2020.04.19.20068072. doi:10.1101/2020.04.19.20068072
38 39	373	11.	Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 infections
40 41 42	374		and transmission in a skilled nursing facility. N Engl J Med. 2020.
43 44 45	375		doi:10.1056/NEJMoa2008457
45 46 47	376	12.	Wong J, Abdul Aziz ABZ, Chaw L, et al. High proportion of asymptomatic and
48 49	377		presymptomatic COVID-19 infections in travelers and returning residents to Brunei.
50 51 52	378		J Travel Med. 2020. doi:10.1093/jtm/taaa066
53 54 55	379	13.	Hijnen D, Marzano AV, Eyerich K, et al. SARS-CoV-2 Transmission from
56 57 58	380		Presymptomatic Meeting Attendee, Germany. Emerg Infect Dis. 2020.
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		21	
2 3 4	381		doi:10.3201/eid2608.201235
5 6 7	382	14.	COVID-19: What proportion are asymptomatic? - CEBM.
7 8 9	383		https://www.cebm.net/covid-19/covid-19-what-proportion-are-asymptomatic/.
10 11 12	384		Accessed June 16, 2020.
13 14	385	15.	Ministerio de Sanidad C. Estudio Nacional de sero-Epidemiología de la Infección
15 16 17	386		por SARS-CoV-2 en España (ENE-Covid). Informe PRELIMINAR tras la primera
18 19	387		ronda (13/05/2020). Gob España. 2020;(May 13).
20 21 22	388	16.	Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-
23 24 25	389		CoV-2 genomes. Proc Natl Acad Sci USA. 2020. doi:10.1073/pnas.2004999117
26 27	390	17.	Zhou X, Li Y, Li T, Zhang W. Follow-up of asymptomatic patients with SARS-
28 29 30	391		CoV-2 infection. Clin Microbiol Infect. 2020. doi:10.1016/j.cmi.2020.03.024
31 32 33	392	18.	Yang R, Gui X, Xiong Y. Comparison of Clinical Characteristics of Patients with
34 35	393		Asymptomatic vs Symptomatic Coronavirus Disease 2019 in Wuhan, China. JAMA
36 37 38	394		Netw open. 2020. doi:10.1001/jamanetworkopen.2020.10182
39 40	395	19.	Márquez EJ, Trowbridge J, Kuchel GA, Banchereau J, Ucar D. The lethal sex gap:
41 42 43	396		COVID-19. Immun Ageing. 2020;17(1):13. doi:10.1186/s12979-020-00183-z
44 45	397	20.	Koh D. Occupational risks for COVID-19 infection. Occup Med (Chic Ill).
46 47 48	398		2020;70(1):3-5. doi:10.1093/occmed/kqaa036
49 50 51	399	21.	Instituto Nacional de Salud – Ministerio de Salud y Protección Social. Orientaciones
52 53	400		para la Vigilancia en Salud Pública de la Covid19. ORIENTACIONES PARA LA
54 55 56 57	401		VIGILANCIA EN SALUD PÚBLICA DE LA COVID-19. Colombia: INS –
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


_			
1		22	
2 3 4	402		Minsalud;2020. Documento Técnico Científico.
5 6 7	403	22.	Tao Y, Cheng P, Chen W, et al. High Incidence of Asymptomatic SARS-CoV-2
8 9 10	404		Infection, Chongqing, China. SSRN Electron J. 2020. doi:10.2139/ssrn.3559583
11 12	405	23.	Sahu K, Kumar R. Preventive and treatment strategies of COVID-19: From
13 14	406		community to clinical trials. J Fam Med Prim Care. 2020;9(5):2149-2157.
15 16 17	407		doi:10.4103/jfmpc.jfmpc_728_20
18 19 20	408	24.	Nussbaumer-Streit B, Mayr V, Dobrescu Ai, et al. Quarantine alone or in
21 22	409		combination with other public health measures to control COVID-19: a rapid review.
23 24 25	410		Cochrane Database Syst Rev. 2020;(4). doi:10.1002/14651858.CD013574
26 27	411	25.	Nicola M, Alsafi Z, Sohrabi C, et al. The socio-economic implications of the
28 29 20	412		coronavirus pandemic (COVID-19): A review. Int J Surg. 2020;78:185-193.
30 31 32	413		doi:https://doi.org/10.1016/j.ijsu.2020.04.018
33 34 35	414	26.	Kalleberg AL, Wachter TM von. The U.S. Labor Market During and After the Great
36 37	415		Recession: Continuities and Transformations. RSF Russell Sage Found J Soc Sci.
38 39 40	416		2017;3(3):1-19. doi:10.7758/rsf.2017.3.3.01
41 42	417	27.	Sutherland M, McKenney M, Elkbuli A. Gun violence during COVID-19 pandemic:
43 44 45	418		Paradoxical trends in New York City, Chicago, Los Angeles and Baltimore. Am J
46 47	419		Emerg Med. 2020. doi:10.1016/j.ajem.2020.05.006
48 49 50	420	28.	Gilbert M, Dewatripont M, Muraille E, Platteau JP, Goldman M. Preparing for a
51 52 53	421		responsible lockdown exit strategy. Nat Med. 2020. doi:10.1038/s41591-020-0871-y
54 55 56 57	422	29.	World Health Organisation. Considerations in adjusting public health and social
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


Page 24 of 30


BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1		23	
2 3 4	423		measures in the context of COVID-19. World Heal Organ. 2020;(April):1-7.
5 6	424		https://www.who.int/publications-detail/risk
7 8 9	425	30.	Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2.
10 11 12	426		Science (80-). 2020. doi:10.1126/science.abc6197
13 14	427	31.	Huff H V, Singh A. Asymptomatic transmission during the COVID-19 pandemic
15 16 17	428		and implications for public health strategies. Clin Infect Dis. May 2020.
18 19	429		doi:10.1093/cid/ciaa654
20 21 22	430	32.	Gostic K, Gomez ACR, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated
23 24	431		effectiveness of symptom and risk screening to prevent the spread of COVID-19.
25 26	432		Franco E, Ferguson NM, McCaw JM, eds. Elife. 2020;9:e55570.
27 28 29	433		doi:10.7554/eLife.55570
30 31 32	434	33.	Peto J, Alwan NA, Godfrey KM, et al. Universal weekly testing as the UK COVID-
33 34 35	435		19 lockdown exit strategy. Lancet. 2020. doi:10.1016/S0140-6736(20)30936-3
36 37	436	34.	Mallapaty S. Will antibody tests for the coronavirus really change everything?
38 39 40	437		Nature. 2020. doi:10.1038/d41586-020-01115-z
41 42 43	438	35.	The race against COVID-19. Nat Nanotechnol. 2020. doi:10.1038/s41565-020-0680-
44 45	439		у
46 47 48	440	36.	Mark K, Steel K, Stevenson J, et al. Coronavirus disease (COVID-19) community
49 50	441		testing team in Scotland: A 14-day review, 6 to 20 February 2020. Eurosurveillance.
51 52 53	442		2020. doi:10.2807/1560-7917.ES.2020.25.12.2000217
54 55 56 57	443	37.	Rosenthal PJ. The importance of diagnostic testing during a viral pandemic: Early
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		24	
1 2 2			
3 4	444		lessons from novel coronavirus disease (CoVID-19). Am J Trop Med Hyg. 2020.
5 6	445		doi:10.4269/AJTMH.20-0216
7 8 9	446	38.	Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2
10 11	447		Infection — Challenges and Implications. N Engl J Med. 2020.
12 13 14	448		doi:10.1056/nejmp2015897
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 31 22 23 24 25 26 27 28 20 31 23 34 35 36 37 38 39 40 41 23 44 54 647 48 950 51 253 54 55 657	449		
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Department	Asympt_cases	%	Population	Asympt_rate*	Sympt_rate
Bogotá	68143	89.5	7743955	880,0	1914.5
Atlántico	1455	1.91	2722128	53,5	957.3
Meta	836	1.10	1063454	78,6	802.3
Barranquilla	737	0.97	1243113	59,3	2756.1
Cundinamarca	690	0.91	3242999	21,3	716.1
Antioquia	518	0.68	6677930	7,8	1239.0
Córdoba	468	0.60	1828947	25,6	1072.0
Cartagena	437	0.57	1060577	41,2	1860.5
Amazonas	333	0.44	79020	421,4	2856.2
Putumayo	262	0.34	79020	331,6	3478.9
Norte de Santander	248	0.33	1620318	15,3	727.8
Caquetá	207	0.27	410521	50,4	1474.5
Cesar	195	0.26	1295387	15,1	851.6
Santander	190	0.25	2280908	8,3	847.8
Tolima	153	0.20	1339998	11,4	544.1
Huila	151	0.20	1122622	13,5	470.6
Sucre	151	0.20	949252	15,9	1221.6
La Guajira	140	0.18	965718	14,5	533.0
Boyacá	113	0.15	1242731	9,1	308.5
Magdalena	112	0.15	1427026	7,8	269.8
Valle del Cauca	111	0.15	4532152	2,4	997.9
Santa Marta	94	0.12	538612	17,5	1569.8
Nariño	69	0.09	1627589	4,2	878.5
Bolívar	57	0.07	2180976	2,6	221.9
Caldas	51	0.07	1018453	5,0	291.0
Risaralda	46	0.06	961055	4,8	675.6
Quindío	45	0.05	555401	8,1	236.9
Chocó	39	0.05	544764	7,2	664.9
Guainía	39	0.05	50636	77,0	237.0
Vaupés	27	0.04	44712	60,4	726.9
Buenaventura	20	0.03	440989	4,5	526.1
Cauca	18	0.02	1491937	1,2	360.9
Casanare	7	0.01	435195	1,6	248.9
Arauca	3	< 0.01	294206	1,0	335.8
Guaviare	3	< 0.01	86657	3,5	318.5
San Andrés Islas	2	< 0.01	63692	3,1	411.4
Vichada	2	< 0.01	112958	1,8	103.6

Table S1. AC state frequency in Colombia by department

The total number of Asymptomatic carriers (ACs) was used as the denominator to determine proportions. Asympt_cases: asymptomatic cases, Symptomatic cases: see in supplementary file. *Asympt_rate: (Asympt_cases/population)*100.000 habitants. *Sympt_rate: (Asympt_cases/population)*100.000 habitants.

Variable	Main effects			
v ariable	β	ORa (95%, CI)	p-valu	
Intercept	-7.360	-	<0.001	
Age,				
>26 years old	Ref.			
20 years old	Kel.	-	-	
0-26 years old	0.205	1.227 (1.205-1.250)	<0.001	
0 20 years old	0.205	1.227 (1.205 1.250)	100002	
Sex				
Female	Ref.	-	-	
Male	0.054	1.055 (1.038-1.073)	<0.001	
Department				
Low risk	Ref.	-	-	
			0.004	
Moderate risk	1.304	3.372 (3.134-4.330)	<0.001	
	1 000	0.010 (6.101.7.464)	0.001	
Strong risk	1.909	8.310 (6.101-7.464)	<0.001	
Coographical origin				
Geographical origin				
Imported CAS [†]	Ref.		_	
Imported CAS	Kel.		-	
Imported CA-AC††	2.541	12.68 (3.049-52.77)	<0.001	
	2.341	12.00 (3.04) 32.77)	101001	
Related cases ^{†††}	3.255	25.90 (6.425-104.4)	<0.001	
	0.200			
EW				
10-34	Ref.	-		
≥35	0.933	2.543 (2.484-2.603)	<0.001	
CAS countries associated to symp				

ACs, *†††***: spontaneous cases**, **EW:** epidemiological week.

BMJ Open

Epidemiological characterization of asymptomatic carriers of COVID-19 in Colombia: A cross-sectional study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042122.R2
Article Type:	Original research
Date Submitted by the Author:	14-Nov-2020
Complete List of Authors:	Teherán, Aníbal; Red Cross Colombia Camero, Gabriel; Red Cross Colombia Prado de la Guardia, Ronald; Red Cross Colombia Hernandez, Carolina; Universidad del Rosario Herrera, Giovanny; Universidad del Rosario Pombo, Luis; Juan N Corpas School of Medicine Avila, Albert; Universidad de La Sabana Florez, Carolina; instituto nacional de salud colombia Barros, Esther; instituto nacional de salud colombia Perez-Garcia, Luis; Universidad del Rosario Paniz-Mondolfi, Alberto; Icahn School of Medicine at Mount Sinai Ramirez, Juan; Universidad del Rosario
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	Epidemiology < TROPICAL MEDICINE, VIROLOGY, INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

	1
1	Epidemiological characterization of asymptomatic carriers of COVID-19 in Colombia:
2	A cross-sectional study.
3	Aníbal A. Teherán ^{1,2} , Gabriel Camero ^{1,3} , Ronald Prado de la Guardia ¹ , Carolina Hernández ⁴ ,
4	Giovanny Herrera ⁴ , Luis M. Pombo ² , Albert A. Ávila ⁵ , Carolina Flórez ⁶ , Esther C. Barros ⁶ ,
5	Luis A. Perez-Garcia ⁴ , Alberto Paniz-Mondolfi ^{7,8} , Juan David Ramírez ^{4*}
6	¹ Red Cross Section Bogotá – Cundinamarca, Colombia
7	² COMPLEXUS Research group, Fundación Universitaria Juan N. Corpas, Colombia
8	³ Field Epidemiology Training Program, Red Cross Section Bogotá-Cundinamarca,
9	Colombia
10	⁴ Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología,
11	Facultad de Ciencias Naturales, Universidad del Rosario, Colombia.
12	⁵ Grupo de Investigación ANTHUS, Universidad de la Sabana.
13	⁶ Instituto Nacional de Salud, Colombia
14	⁷ Instituto de Investigaciones Biomédicas IDB / Incubadora Venezolana de la Ciencia,
15	Cabudare, Edo. Lara, Venezuela.
16	⁸ Icahn School of Medicine at Mount Sinai, NY, USA.
17	*Corresponding author: juand.ramirez@urosario.edu.co
18	
19	
20	

ABSTRACT (187 words)

Introduction: Asymptomatic carriers (AC) of the new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) represent an important source of spread for Coronavirus Disease 2019 (COVID-19). Early diagnosis of these cases is a powerful tool to control the pandemic. Our objective was to characterize patients with AC status and identify associated sociodemographic factors.

Methods: Using a cross-sectional design and the national database of daily occurrence of COVID-19, we characterized both socially and demographically all ACs. Additional Correspondence Analysis and Logistic Regression Model were performed to identify characteristics associated with AC state (OR, 95% CI).

Results: 76.162 ACs (12.1%; 95%CI, 12.0-12.2%) were identified, mainly before epidemiological week 35 [EW]. Age ≤ 26 years (1.18;1.09-1.28), male sex (1.51;1.40-1.62), cases imported from Venezuela, Argentina, Brazil, Germany, Puerto Rico, Spain, United States of America or Mexico (12.6;3.03-52.5) and autochthonous cases (22.6;5.62-91.4) increased the risk of identifying ACs. We also identified groups of departments with moderate (1.23;1.13-1.34) and strong (19.8;18.6-21.0) association with ACs.

Conclusion: Sociodemographic characteristics strongly associated with AC were identified, which may explain its epidemiological relevance and usefulness to optimize mass screening strategies and prevent person-to-person transmission.

Key words: COVID-19; Asymptomatic; Carrier States; Risk factors, Novel Coronavirus.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1	
2	
3 4	
5	
6	
6 7 8	
8 9	
10	
11	
12	
13 14	
15	
16	
12 13 14 15 16 17 18 19	
18 19	
20	
21	
22	
23 24	
21 22 23 24 25	
26	
27	
28 29	
30	
31	
32 33	
34	
35 36	
36	
37 38	
39	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51 52	
52 53	
54	
55	
56 57	
58	
59	
60	

	3
43	Strengths and limitations:
44	• Cross-sectional studies are useful to identify possible variables associated with ACs.
45	• Weekly surveillance of potential cases reduced selection and classification bias of
46	ACs.
47	• The large number of COVID-19 ACs included in this study allowed to draw precise
48	estimates.
49	• The ongoing epidemic phase of COVID-19 in Colombia decreases the uncertainty of
50	invisible subgroup occurrences.
51	• Estimates and characteristics associated with ACs may improve epidemiological
52	surveillance in other countries.
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

TEXT (2481 words)

INTRODUCTION

In March 2nd, 2020, Colombia reported the first case of Coronavirus Disease 2019 (COVID-19), and as of September 22nd, more than 700,000 cases have been confirmed nationwide ¹. Asymptomatic carriers (AC) may be associated with the accelerated growth of cases in the initial phases of the pandemic, inadvertently spreading the infection to close contacts. In this case, transmission can only be limited until a diagnosis of SARS-CoV-2 infection is rendered after (i) isolation due to symptom onset, (ii) contact tracing or (iii) identification during massive screening strategies ^{2,3}.

AC and pre-symptomatic cases are epidemiologically relevant since they represent a silent source of spread in various public settings (e.g. public transportation, emergency rooms, supermarkets, shelters) ⁴⁻⁶. The proportion of ACs has been estimated at 15-25%, but seroprevalence studies have reported values of up to 43.2% (95% CI, 32.2-54.7%). Nonetheless, many pre-symptomatic patients are wrongfully classified as ACs during the incubation phase; to later become pauci-symptomatic or develop respiratory manifestations ranging from pneumonia to respiratory failure, or exhibit any other clinical symptoms within the COVID-19 spectrum 4-8.

Epidemiological predictive models have been developed and updated to incorporate silent mobility through AC phenotype in anticipation for the second and third epidemic waves of COVID-19. Such is the case for the SEIR model (Susceptible, Exposed, Infected and Recovered), recently updated to SEAIR (Susceptible, Exposed, Asymptomatic, Infected and Recovered) ⁹. In China, estimates indicate that 60-65% of ACs remained undetected.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Therefore, under the SEIR model and applying machine-learning-based transmission simulators (MLSim), including the number of undetected AC within its parameters and assuming 15 close contacts per day, estimates suggest that as of April 15th, 2020, the United States---the country contributing the majority of cases imported to Colombia---, could have presented 277,641-to-495,128 latent cases of COVID-19, potentially increasing the spread of the virus ¹⁰.

The assessment of ACs and the identification of sociodemographic characteristics associated with this subpopulation could be useful to estimate sample calculations in massive screening studies, as well as adjust control and mitigation measures---especially the intensity of isolation. Therefore, the objective of our study was to characterize ACs demographically and socially, as well as to identify individual characteristics in interaction models associated with elien ACs.

METHODOLOGY

Design and data selection.

We performed a cross-sectional study with information from the National Institute of Health COVID-19 updated (INS) database cases until August 31. on (https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx). Bv INS protocol. suspected AC cases remained in quarantine for 7 days while monitoring the appearance of symptoms on a daily basis; on the eighth day, a nasal swab sample was collected to identify or rule out AC state. Records without health status information (symptomatic, asymptomatic) were excluded. The database is public, with de-identified patient data and IRB approval was thus exempt.

Patient and Public Involvement (PPI) statement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

Database and variables.

We used variables such as date of diagnosis, age, sex, country of origin, department, case type (imported, related), care setting (home, nursing home, hospital, intensive care unit) and outcome (recovered, convalescent, deceased). The date of diagnosis was adjusted into epidemiological weeks (EW), which were later grouped according to the pattern of AC occurrence (Figure S1) in EW 10-34, \geq 35; additionally, the variable AC [yes, no] was 4.0 established.

Statistical analysis

Data are presented in medians or proportions estimated with 95% CI due to the lack of massive screening for COVID-19 in certain areas of the country; additionally, we estimated AC rates per 100.000 population by departments using Colombian demographic estimates for 2020 from the National Administrative Department of Statistics (DANE). The geographical origin and destination of imported cases was represented with a Sankey Plot (SankeyMATIC (BETA). Cumulative trends and case charts were created with the number of daily cases by Epid weeks (RStudio Version 1.2.5042). In addition, a heatmap analysis was included to depict a dynamic representation of daily cases by Department from March 6th through August 31rd, 2020 (Orange Data Mining & Fruitful Fun, Version 3.25). The

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

proportion of asymptomatic and symptomatic patients and the median age were compared
with the Z and U Mann Whitney tests respectively (significant p-value <0.05, two tails)
[Addinsoft. 2020. XLSTAT statistical and data analysis solution. New York, USA.
https://www.xlstat.com]. Age was dichotomized between 0-26 and ≥27 years due to its
association with asymptomatic and symptomatic states respectively (preliminary exploratory
analysis not shown).

Countries of origin and departments associated with ACs were identified, respectively, with
a Correspondence Analysis (CA) and Factorial analysis of mixed data using PCAmix. Raw
data were used for CA while symptomatic and AC rates per 100.000 population were used
for PCAmix . Additionally, with principal coordinates (PC) obtained with both CA (PC-CA)
and PCAmix (PC-PCAmix), groups with a variable level of association with ACs were
created. [Addinsoft. 2020. XLSTAT statistical and data analysis solution. New York, USA.
https://www.xlstat.com].

To estimate the association between sociodemographic characteristics with ACs (OR 95%), two Logistic Regression Models (LRM) were performed, the first to establish the main effects and the second a step-backward interaction model of the second level (p- value in <0.05; p-value out:> 0.1), which used the lowest Akaike criteria to select the best model (JASP Team (2020). JASP (Version 0.12.2))

RESULTS

148 General characteristics

We identified 76.162 ACs (12.1%; 12.0-12.2%) out of 626.887 cases reported in the
database. Four cases were excluded due to lack of health status information. The occurrence

Page 9 of 32

BMJ Open

of AC state in relation to symptomatic presented a continuous growth phase between EW 10-17, and a peak at EW 18, followed by a newly increase between EW 19-34, and a steady state after EW 34 (Figure 1A, 1B, S1). Daily cases ranged from 1 to 4386 per day, and EW 34 registered the highest number of cases per day: 4141 and 4386. Additionally, we report department clusters with a high occurrence of daily COVID-19 cases, which follow different dynamic patterns for ACs and symptomatic patients (Figure 1C-1D). Throughout April, AC reports in Meta and Amazonas peaked; in May they peaked in Cartagena, Antioquia and Bogota, with Bogota's peak lasting until August 31st; in June-July, AC cases peaked in Atlantico, Barranquilla and Cordoba; and in August, they peaked in Santander and Cundinamarca. Overall, the frequency of ACs in Colombia has followed a dichotomic trend as shown in the lateral cluster of figure 1c: AC occurrences are distributed between the highly frequent profile in Bogota during most of the epidemic and the intermittent peak occurrences of the rest of Colombian departments. More than half of the imported ACs came from Europe, specifically Spain, followed by North and South America. Those that arrived from Spain and USA were distributed mainly in Bogotá, Cundinamarca, Antioquia, and Valle del Cauca. Amazonas department only received imported ACs from South American countries. The origin and distribution of imported symptomatic patients was more diverse; however, most cases originated from Spain, USA,

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

169 Ecuador, Mexico, Brazil, or Panama, and were mainly distributed across Bogotá, Antioquia,

and Valle del Cauca (Figure 2).

More than 90% of ACs were located in Bogotá, Atlantico and Meta; However, Bogota,
Amazonas and Putumayo reported the highest AC rates per 100.000 population (Table 1,

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Table S1). Median age was 37 years old, lower than the symptomatic patients. Most of them were males (Table 1). By August 31st, most ACs were classified as recovered (85.8%: 85.6-86.1%) or in domiciliary isolation (13.6%; 13.4-13.8%), and 356 patients (0.46%; 0.42-052%) were diagnosed during their stay in ICUs (80 patients), general hospitalization services (185 patients) or in post-mortem phase (91 deceased). These 356 cases may have been treated for symptoms unrelated to COVID-19 or perhaps RT-PCR results arrived late. with some arriving even after the patient had already passed away.

Factors associated with AC condition.

Using the PC-CA and PC-PCAmix, a group of six countries and three groups of departments were associated with AC state (Figure 3). To execute LRMs, the variables "age group 0-26 years" and "male sex" were transformed into dummi [0/1]. With a preliminary LRM, a higher β coefficient was estimated in relation to cases imported from countries associated with ACs. therefore, the variable "geographical origin" was created, composed of the categories "imported from countries associated with symptomatic" [Imported CAS - referent], "imported from countries associated with ACs" [Imported CA-ACs] and "related cases". Additionally, a variable was created for the departments grouped with the PCAmix [departments with low association - referent] and for the EW (EW 10-34 - referent). The first LRM (main effects) identified a significant association of all index sociodemographic categories with ACs state (Table S2). The second model explores the following interactions: 1. Geographical origin and grouped departments, 2. Geographical origin and EW, 3. Age group (0-26 years) and gender, 4. Grouped departments and gender; and, 5. Age (0-26 years) and EW. We identified interactions between the variables "gender" (males), "age" (0-26

BMJ Open

years), and "EW" and the grouped departments; and between the variables "gender" (males)
and "age" (0-26 years) (Table 2).

Variables "age" (0-26 years), "gender" (male), "departments with moderate or strong
association", "imported CA-ACs" and "related cases" were found to increase the risk of
identifying ACs state. It was also determined that the risk increased for males (0-26 years),
especially for those located in departments with a strong or moderate association since EW
35. However it should be noted that the risk of identifying ACs has decreased since EW 35
when only taking isolated estimates into account (Table 2).

As this is a cross-sectional study, the STROBE checklist was followed and can be revised inTable S3.

205 DISCUSSION

We found that, in an isolated fashion, age <27 years old, imported cases from a group of 6 countries, autochthonous cases and the occurrence in groupings of departments were associated with AC state. Additionally, the risk of being a male AC was only identified in departments with moderate or strong risk, and the risk was variable in the groupings of departments throughout specific epidemiological periods.

Additionally, our results show that the proportion of ACs in Colombia lays between 12-12.2% (Table 1), a lower estimate than previously described in other case series or mass screening studies with reported proportions between 5-80% ^{11–14}. Given the inclusion of presymptomatic patients or the unification of AC with non-critical symptoms in some reports, we cannot rule out that a non-differential classification bias influenced these estimates. An adapted definition for AC in Colombia may address this limitation.

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Figure 1 shows that the majority of imported cases to Colombia came from Spain and USA, where AC rates have been estimated at 2.5% and 25%, respectively ^{14,15}. Although imported cases carry a distinctive genetic load that, population-wise, could manifest itself as a particular phenotype ¹⁶, currently there are no reports of genetic variants associated with AC in general or for any of the four AC subtypes described in the literature ¹⁷. Subsequent research should be conducted on the possible association between ACs and phylogenetic variants (or other variables) to support the differential risk identified in imported cases from different regions of the world.

We identified that imported cases from a group of 6 countries were strongly associated with AC (Figure 2, Table S1, Table 2), and although no interaction was established between the country of import and the destination department (data not shown), we observed that departments strongly associated with AC had less diversity of import origin. Such is the case of Meta and Amazonas, which exclusively imported cases from USA and Brazil/Peru, respectively (Figure 2).

Among the demographic characteristics, the association between AC state and patients under 27 years of age stands out. Possible explanations for this observation include: (i) the lower presence of co-morbid conditions and baseline health issues within this age group and (ii) the higher risk of exposure through work activities which are greater in this age group ¹⁸. However, clinical or social environment could also explain this finding, as a study in skilled nursing facility residents showed a high proportion of AC in those over 70 years of age, however this was a premature finding since most patients were later reclassified as pre-symptomatic or pauci-symptomatic¹¹.

BMJ Open

We identified a higher frequency of men infected with COVID-19 consistent with reports from other countries around the world, except in Spain and Switzerland, where women ranked first ¹⁹. Frequent occupations performed by men, as well as certain immunological and genetically susceptible backgrounds have been associated with this finding ^{19,20}. In particular, the risk of being an AC was higher in men, and increased in geographic areas associated with AC. This interaction is not uncommon given that professions regularly carried out by men, including those such as taxi driving, private security or prison guarding, among other work settings, can be distributed asymmetrically within countries, a pattern that would explain our findings ²⁰.

The phases on the occurrence of cases throughout EWs and the interaction with groupings within departments associated with AC has been previously described in Chongqing, China, where researchers identified significant changes in the frequency of cases after implementation of geographic isolation measures. The dynamic changes in the detection and distribution of ACs throughout EWs could be explained by the surveillance strategy executed in Colombia kwon as "PRASS" (in Spanish, tests, surveillance, and sustainable selective isolations); this can be particularly observed from EW 30 onwards (figure S1)²¹. In Wuhan, a study showed that one group of ACs was linked to imported cases while others were linked mostly to autochthonous cases from geographically isolated areas of Wuhan²². We identified that in addition to being associated with a travel history to foreign countries, ACs were also associated with cases that appear spontaneously (related), occurring differentially as measures of geographic and social isolation were applied.

260 The lack of mass screening for COVID-19 in Colombia is the main limitation of our study261 since the actual AC ratio and the distribution of specific characteristics may differ from those

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open

 estimated in this report. On the other hand, although a cross-sectional design is not ideal to identify risk factors, to the best of our knowledge this is the first study aimed at identifying factors associated with AC state with population data unbiased by the inclusion of presymptomatic cases ²³.

The COVID-19 pandemic has had serious socioeconomic implications, including a collapse of healthcare systems, bankruptcy of companies as well as increasing trends in unemployment and crime rates ^{24–27}. This has forced countries with limited resources---such as Colombia---to perform massive screenings in order to prematurely lift quarantine and isolation measures despite the latent risk of successive outbreaks caused by a potential silent spread of COVID-19 through cases in the pre-symptomatic phase or AC state ^{28,29}.

ACs transmit COVID-19 more efficiently than symptomatic patients for up to 21 days after the presumed date of infection ^{30,31}. This led to their inclusion in mathematical models intended to estimate the probability or expected number of person-to-person infections on repatriation trips from Wuhan, China ^{7,32}. Since then, ACs have become the target of mass screening in Asian and European countries effectively reducing economical losses due to unnecessary hospital care, controlling the spread in public or in-hospital settings, and allowing the execution of safe plans of social and work re-integration after quarantine and isolation^{28,33–37}.

To date, testing of asymptomatic individuals' rests at the discretion of physicians when justified on a case-by-case basis. On the other hand, the utility of SARS-CoV-2 testing for broad screening of asymptomatic individuals remains to be determined given the limited sensitivity data available for most commercially available test kits ³⁸.

BMJ Open

284 CONCLUSION

Together, our findings demonstrate sociodemographic trends strongly associated with COVID-19 AC state in Colombia at a departmental and national level. We believe that the implementation of massive screening campaigns to detect AC and pre-symptomatic patients is paramount to further characterize this phenomenon and adequately guide public health measures of containment and prevention. Additional molecular analysis of viral and host genotypic characteristics should be conducted to determine possible associations with AC state.

202 4-

292 Authors contributorship statement

AT, APM and JDR designed the study. AT, GC, RPG, CH, GH, LMP, LAP and AA
conducted the statistical and descriptive analyses. CF, ECB provided the data for the analysis.
AT, APM, LAP and JDR drafted the manuscript. All authors approved the final version of
the manuscript.

297 Funding: This research received no external funding.

Data sharing statement: Data is freely available from the National Institute of Health (INS)
database on COVID-19 cases updated until August 31, 2020
(https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx).

Conflicts of Interest: The authors declare no conflict of interest.

302 Correspondence: Juan David Ramírez; Grupo de Investigaciones Microbiológicas-UR
303 (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del
304 Rosario, Colombia; Telephone +573124141511; juand.ramirez@urosario.edu.co

1		15
2 3 4	305	Figure Legends
5 6 7	306	Figure 1. Daily accumulation and distribution of ACs by epidemiological week in
8 9	307	Colombia. A. The y-axis represents the number of cumulative ACs transformed into a base
10 11	308	10 logarithm. The number of cumulative cases per day is located in points that increase in
12 13 14	309	color intensity according to the occurrence of cases. B. The y-axis represents the number of
14 15 16	310	daily ACs transformed into a base 10 logarithm. The number of daily cases per day is
17 18	311	located in boxplots. C. Heatmap showcasing the number of ACs (top) and B. symptomatic
19 20 21	312	patients (bottom) diagnosed in every Colombian department until August 31st, 2020.
22 23 24	313	Figure 2. Origin and destination of imported asymptomatic and symptomatic cases.
24 25 26	314	The left and right figures, respectively, represent the country of origin and destination
27 28	315	department of ACs and symptomatic patients. The thickness of the link tapes corresponds
29 30 31	316	to the number of reported cases.
32 33 34	317	Figure 3. Groups of countries and departments associated with AC state. The left
35 36	318	figure shows the group of countries associated with asymptomatic carrier (AC) state
37 38	319	identified with positive values of the CCC-CA. The right figure shows departments
39 40	320	grouped according to three intervals of CCC-CA: low association (CCC-CA: negative
41 42 43	321	values), moderate association (CCC-CA:> 0 - <0.05), and strong association (CCC-CA:
44 45	322	≥0.5).
46 47 48	323	Supplementary material
49 50 51	324	Table S1. AC state frequency in Colombia by department
52 53 54	325	Table S2. Factors associated with AC state in Colombia
55 56 57 58	326	Table S3. STROBE checklist for cross-sectional studies
59 60		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S1. The stacked bar figure represents on the y-axis the epidemiological weeks (EW) and on the x-axis the proportion of symptomatic (green section of the bar) and the proportion of asymptomatic (purple section of the bar), as well as the result of a Chi square independence test that shows statistical association between the EW variables and health status (symptomatic/asymptomatic carrier).

Table 1. Sociodemographic characteristics of the asymptomatic and symptomatic patients

Variables	Asymptomatic	Symptomatic	p-value
variables	n: 76162	n: 550725	p value
Age, years	35 (25-49)	37 (27-52)	< 0.001
0-26	21310 (27.9)	129529 (23.5)	< 0.001
≥27	54852 (72.0)	421196 (76.4)	< 0.001
Sex			
Male	38836 (50.9)	283068 (51.4)	0.035
Female	37326 (49.0)	267657 (48.6)	0.035
Geographical source			
Related [†]	76108 (99.9)	549789 (99.8)	< 0.001
Imported	54 (0.07)	936 (0.170)	<0.001
Departments††			
Bogotá	68143 (89.4)	148258 (26.9)	< 0.001
Atlántico	1455 (1.91)	26059 (4.73)	< 0.001
Meta	836 (1.10)	8532 (1.55)	< 0.001
Barranquilla	737 (0.97)	34262 (6.22)	< 0.001

1		17			
2					
3 4		Cundinamarca	690 (0.91)	23222 (4.22)	< 0.001
5 6		Imported cases ^{†††}	53	905	958
7 8 9		Spain	19 (35.8)	246 (27.2)	0.170
9 10 11		USA	14 (26.4)	208 (22.9)	0.565
12 13		Brazil	8 (15.1)	53 (5.86)	0.007
14 15 16		Mexico	3 (5.66)	51 (5.64)	0.994
17 18		Venezuela	3 (5.66)	8 (0.88)	0.002
19 20		Argentina	1 (1.89)	4 (0.44)	0.156
21 22 23		France	1 (1.89)	19 (2.10)	0.916
24 25		Germany	1 (1.89)	11 (1.22)	0.669
26 27		Peru	1 (1.89)	24 (2.65)	0.734
28 29 30		Puerto Rico	1 (1.89)	12 (1.33)	0.732
31 32		Turkey	1 (1.89)	27 (2.98)	0.645
33 34		Unknow	1	31	NA
35 36 37	333	†: cases that appeared s			
38 39	334	departments with the hig			
40 41 42	335	imported asymptomatic			ed as the
43 44	336	denominator to estimate	proportions by cou	ntry of origin.	
45 46	337				
47 48 49	338	Table 2. Factors associated with as	symptomatic carrier	(AC) state in Co	olombia
50 51		Variable	I	nteraction model	
52 53			β	ORc (95%, CI)	p-value
54 55		Intercept	-7.316	-	< 0.001
56 57					
58					
59 60		For peer review only - htt	p://bmjopen.bmj.com	/site/about/quidelir	nes.xhtml

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.014

0.001

0.898

<0.001

< 0.001

<0.001

<0.001

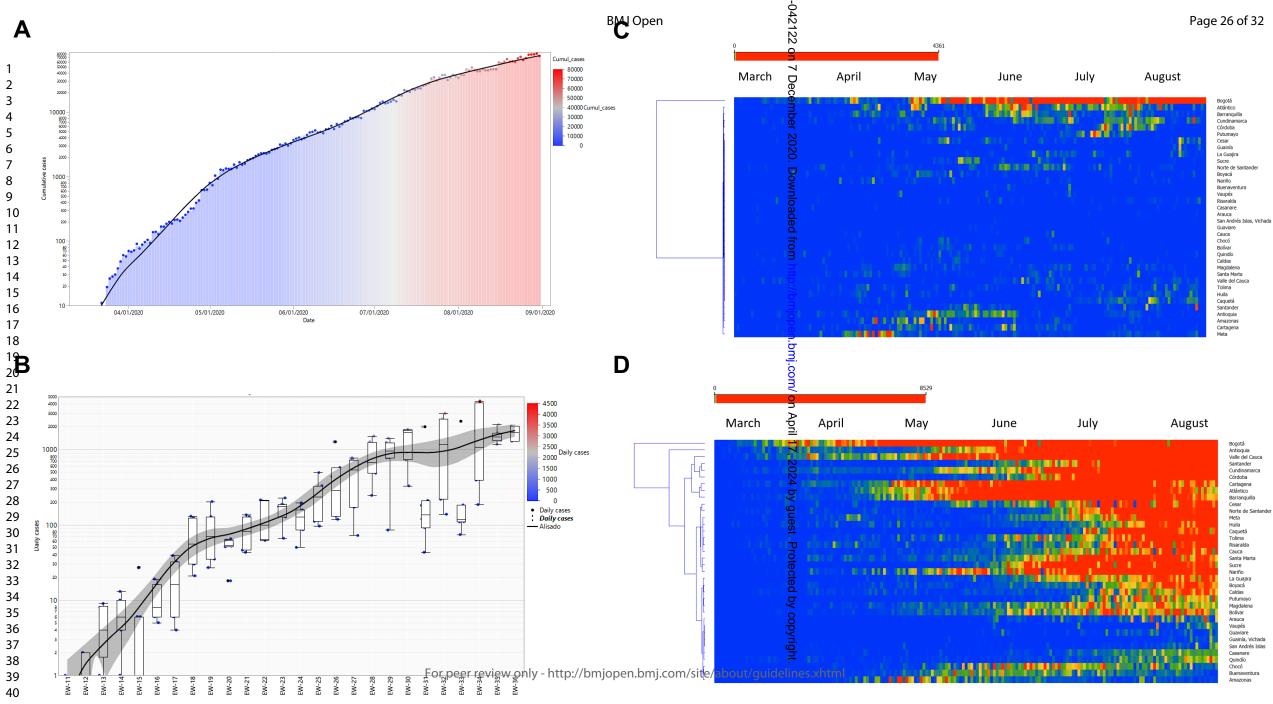
Page 19 of 32			BMJ Open	I	
	18				
1 2					
3		Age			
4					
5		>26 years	Ref.	-	-
6					
7 8		0-26 years	0.172	1.188 (1.096-1.287)	< 0.00
9		S			
10		Sex			
11		Female	Ref.	-	-
12 13					
14		Male	0.414	1.513 (1.408-1.625)	< 0.00
15					
16		Department			
17		Low accodition [1]	Ref.		
18 19		Low association [1]	Kel.	-	-
20		Moderate association [2]	0.211	1.234 (1.137-1.340)	< 0.00
21					
22		Strong association [3]	2.986	19.81 (18.61-21.08)	< 0.00
23					
24 25		Geographical source			
26		Imported CAS†	Ref.		
27			Kei.	-	-
28		Imported CA-AC††(1)	2.536	12.62 (3.034-52.54)	< 0.00
29 30		1		,	
31		Related cases $\dagger \dagger \dagger (2)$	3.121	22.67 (5.620-91.47)	< 0.00
32					
33		EW			
34		10-34	Ref.		
35 36		10-5-	Ku.		
37		≥35	-1.008	0.365 (0.320-0.415)	< 0.00
38					
39		0-26 years + Male	0.047	1.048 (1.010-1.089)	0.014
40 41					
41		0-26 years + Department [2]	0.174	1.190 (1.069-1.325)	0.00
43		0-26 years + Department [3]	-0.005	0.995 (0.919-1.077)	0.89
44		0-20 years + Department [5]	-0.005	0.995 (0.919-1.077)	0.890
45		Department [2] + Male	-0.387	0.679 (0.615-0.749)	<0.00
46 47		¥ 13		,	
48		Department [3] + Male	-0.377	0.686 (0.637-0.737)	<0.00
49					.0.00
50		EW ≥35 + Department [2]	-0.862	0.422 (0.315-0.567)	<0.00
51 52			2 2 1 7	0 100 (0 045 10 47)	<0.00
53		EW ≥35 + Department [3]	2.217	9.182 (8.045-10.47)	~0.00
54					
55					
56 57					
57 58					
59					
60		For peer review only - http://br	njopen.bmj.	com/site/about/guideline	es.xhtml

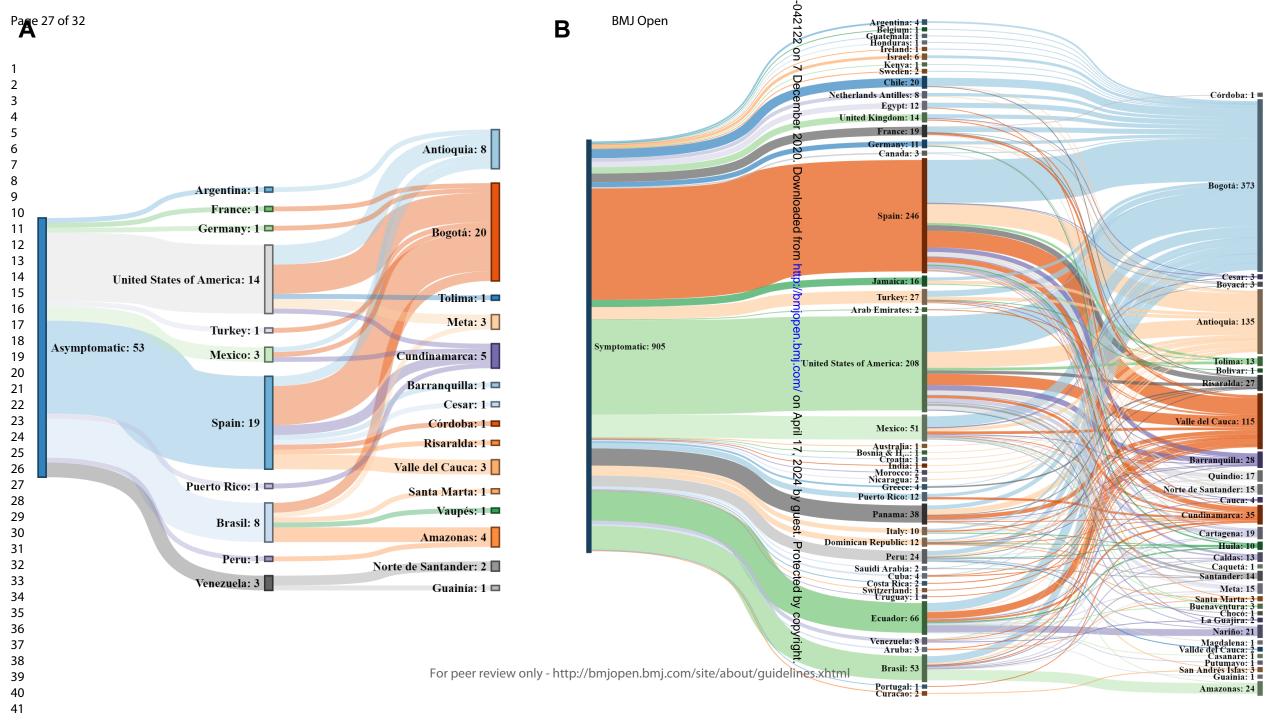
BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

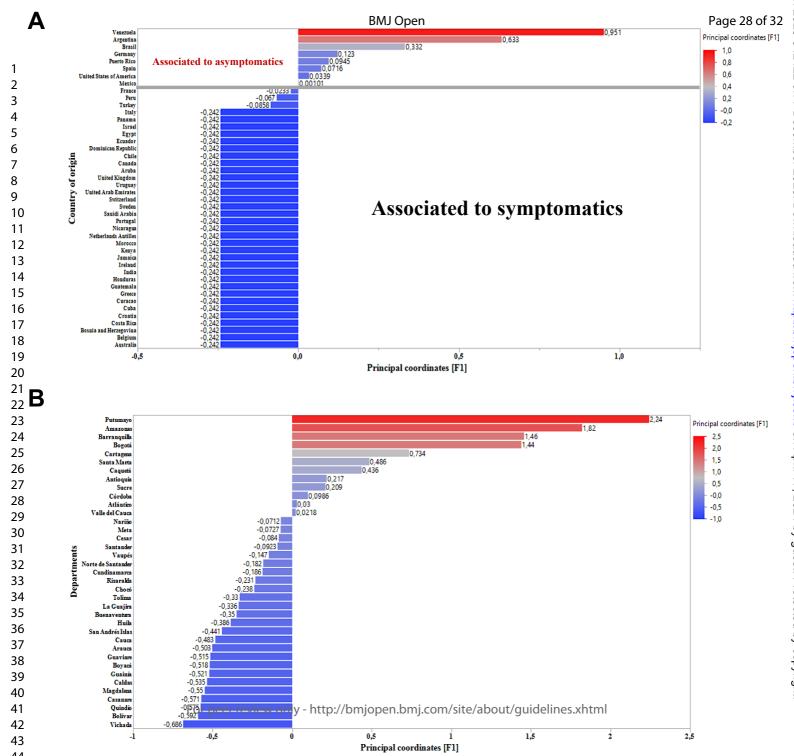
1		19
2 3 4	339	†: CAS countries associated with symptomatic patients, ††: CA-AC
5 6	340	countries associated with asymptomatic carriers (AC), †††:
7 8 9	341	spontaneous cases, EW: epidemiological weeks.
9 10 11 12	342	
13 14 15	343	
16 17 18	344	
19 20 21	345	
21 22 23 24	346	
25 26 27	347	References.
28 29	348	1. Coronavirus en Colombia.
30 31 32	349	https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx. Accessed May 10, 2020.
33 34	350	2. Rudan I. A cascade of causes that led to the COVID-19 tragedy in Italy and in other
35 36 37	351	European Union co1. Rudan I. A cascade of causes that led to the COVID-19
38 39	352	tragedy in Italy and in other European Union countries. J Glob Health. 2020;
40 41 42	353	10(1):10335. untries. J Glob Health. 2020;10(1):10335. doi:10.7189/jogh-10-010335
43 44	354	3. Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to
45 46 47	355	be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753-
48 49	356	1766. doi:10.7150/ijbs.45134
50 51 52	357	4. Tindale L, Coombe M, Stockdale JE, et al. Transmission interval estimates suggest
53 54	358	pre-symptomatic spread of COVID-19. medRxiv. January
55 56 57	359	2020:2020.03.03.20029983. doi:10.1101/2020.03.03.20029983
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		20	
2 3 4	360	5.	Zhang W. Estimating the presymptomatic transmission of COVID19 using
5 6	361		incubation period and serial interval data. medRxiv. January
7 8	362		2020:2020.04.02.20051318. doi:10.1101/2020.04.02.20051318
9 10 11 12	363	6.	Rahimi F, Talebi Bezmin Abadi A. Challenges of managing the asymptomatic
13 14	364		carriers of SARS-CoV-2. Travel Med Infect Dis. April 2020:101677.
15 16 17	365		doi:10.1016/j.tmaid.2020.101677
18 19	366	7.	Teherán AA, Camero G, Prado R, et al. Presumptive asymptomatic COVID-19
20 21	367		carriers' estimation and expected person-to-person spreading among repatriated
22 23	368		passengers returning from China. Travel Med Infect Dis. April 2020:101688.
24 25 26	369		doi:10.1016/j.tmaid.2020.101688
27 28 29	370	8.	Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of COVID-19 outbreak in
30 31	371		the municipality of Vo, Italy. medRxiv. January 2020:2020.04.17.20053157.
32 33 34	372		doi:10.1101/2020.04.17.20053157
35 36	373	9.	Oliveira G. Refined compartmental models, asymptomatic carriers and COVID-19.
37 38 39	374		medRxiv. January 2020:2020.04.14.20065128. doi:10.1101/2020.04.14.20065128
40 41 42	375	10.	Yu Y, Liu Y-R, Luo F-M, et al. COVID-19 Asymptomatic Infection Estimation.
42 43 44	376		medRxiv. January 2020:2020.04.19.20068072. doi:10.1101/2020.04.19.20068072
45 46 47	377	11.	Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 infections
48 49	378		and transmission in a skilled nursing facility. N Engl J Med. 2020.
50 51 52	379		doi:10.1056/NEJMoa2008457
53 54 55	380	12.	Wong J, Abdul Aziz ABZ, Chaw L, et al. High proportion of asymptomatic and
56 57	381		presymptomatic COVID-19 infections in travelers and returning residents to Brunei.
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.


BMJ Open


1		21	
2 3 4	382		J Travel Med. 2020. doi:10.1093/jtm/taaa066
5 6 7	383	13.	Hijnen D, Marzano AV, Eyerich K, et al. SARS-CoV-2 Transmission from
8 9	384		Presymptomatic Meeting Attendee, Germany. Emerg Infect Dis. 2020.
10 11 12	385		doi:10.3201/eid2608.201235
13 14 15	386	14.	COVID-19: What proportion are asymptomatic? - CEBM.
15 16 17	387		https://www.cebm.net/covid-19/covid-19-what-proportion-are-asymptomatic/.
18 19	388		Accessed June 16, 2020.
20 21 22	389	15.	Ministerio de Sanidad C. Estudio Nacional de sero-Epidemiología de la Infección
23 24	390		por SARS-CoV-2 en España (ENE-Covid). Informe PRELIMINAR tras la primera
25 26 27	391		ronda (13/05/2020). Gob España. 2020;(May 13).
28 29 30	392	16.	Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-
31 32	393		CoV-2 genomes. Proc Natl Acad Sci USA. 2020. doi:10.1073/pnas.2004999117
33 34 35	394	17.	Zhou X, Li Y, Li T, Zhang W. Follow-up of asymptomatic patients with SARS-
36 37	395		CoV-2 infection. Clin Microbiol Infect. 2020. doi:10.1016/j.cmi.2020.03.024
38 39 40	396	18.	Yang R, Gui X, Xiong Y. Comparison of Clinical Characteristics of Patients with
41 42	397		Asymptomatic vs Symptomatic Coronavirus Disease 2019 in Wuhan, China. JAMA
43 44 45	398		Netw open. 2020. doi:10.1001/jamanetworkopen.2020.10182
46 47	399	19.	Márquez EJ, Trowbridge J, Kuchel GA, Banchereau J, Ucar D. The lethal sex gap:
48 49 50	400		COVID-19. Immun Ageing. 2020;17(1):13. doi:10.1186/s12979-020-00183-z
51 52 53	401	20.	Koh D. Occupational risks for COVID-19 infection. Occup Med (Chic Ill).
54 55 56	402		2020;70(1):3-5. doi:10.1093/occmed/kqaa036
57 58 59			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml


. «ge _e	0.01		
1		22	
2 3 4	403	21.	Instituto Nacional de Salud – Ministerio de Salud y Protección Social. Orientaciones
4 5 6 7 8 9 10 11	404		para la Vigilancia en Salud Pública de la Covid19. ORIENTACIONES PARA LA
	405		VIGILANCIA EN SALUD PÚBLICA DE LA COVID-19. Colombia: INS –
	406		Minsalud;2020. Documento Técnico Científico.
12 13 14	407	22.	Tao Y, Cheng P, Chen W, et al. High Incidence of Asymptomatic SARS-CoV-2
15 16	408		Infection, Chongqing, China. SSRN Electron J. 2020. doi:10.2139/ssrn.3559583
17 18 19	409	23.	Sahu K, Kumar R. Preventive and treatment strategies of COVID-19: From
20 21	410		community to clinical trials. J Fam Med Prim Care. 2020;9(5):2149-2157.
22 23 24	411		doi:10.4103/jfmpc.jfmpc_728_20
25 26 27	412	24.	Nussbaumer-Streit B, Mayr V, Dobrescu Ai, et al. Quarantine alone or in
27 28 29 30 31 32	413		combination with other public health measures to control COVID-19: a rapid review.
	414		Cochrane Database Syst Rev. 2020;(4). doi:10.1002/14651858.CD013574
33 34	415	25.	Nicola M, Alsafi Z, Sohrabi C, et al. The socio-economic implications of the
35 36 37	416		coronavirus pandemic (COVID-19): A review. Int J Surg. 2020;78:185-193.
38 39	417		doi:https://doi.org/10.1016/j.ijsu.2020.04.018
40 41 42	418	26.	Kalleberg AL, Wachter TM von. The U.S. Labor Market During and After the Great
43 44	419		Recession: Continuities and Transformations. RSF Russell Sage Found J Soc Sci.
45 46 47	420		2017;3(3):1-19. doi:10.7758/rsf.2017.3.3.01
48 49 50 51 52	421	27.	Sutherland M, McKenney M, Elkbuli A. Gun violence during COVID-19 pandemic:
	422		Paradoxical trends in New York City, Chicago, Los Angeles and Baltimore. $Am J$
53 54	423		Emerg Med. 2020. doi:10.1016/j.ajem.2020.05.006
55 56 57 58	424	28.	Gilbert M, Dewatripont M, Muraille E, Platteau JP, Goldman M. Preparing for a
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		23	
2 3 4	425		responsible lockdown exit strategy. Nat Med. 2020. doi:10.1038/s41591-020-0871-y
5 6 7	426	29.	World Health Organisation. Considerations in adjusting public health and social
, 8 9	427		measures in the context of COVID-19. World Heal Organ. 2020;(April):1-7.
10 11 12	428		https://www.who.int/publications-detail/risk
13 14	429	30.	Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2.
15 16 17	430		Science (80-). 2020. doi:10.1126/science.abc6197
18 19 20	431	31.	Huff H V, Singh A. Asymptomatic transmission during the COVID-19 pandemic
21 22	432		and implications for public health strategies. Clin Infect Dis. May 2020.
23 24 25	433		doi:10.1093/cid/ciaa654
26 27	434	32.	Gostic K, Gomez ACR, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated
28 29 30	435		effectiveness of symptom and risk screening to prevent the spread of COVID-19.
31 32	436		Franco E, Ferguson NM, McCaw JM, eds. <i>Elife</i> . 2020;9:e55570.
33 34 35	437		doi:10.7554/eLife.55570
36 37	438	33.	Peto J, Alwan NA, Godfrey KM, et al. Universal weekly testing as the UK COVID-
38 39 40	439		19 lockdown exit strategy. Lancet. 2020. doi:10.1016/S0140-6736(20)30936-3
41 42	440	34.	Mallapaty S. Will antibody tests for the coronavirus really change everything?
43 44 45	441		Nature. 2020. doi:10.1038/d41586-020-01115-z
46 47 48	442	35.	The race against COVID-19. Nat Nanotechnol. 2020. doi:10.1038/s41565-020-0680-
49 50 51	443		у
52 53	444	36.	Mark K, Steel K, Stevenson J, et al. Coronavirus disease (COVID-19) community
54 55 56 57	445		testing team in Scotland: A 14-day review, 6 to 20 February 2020. Eurosurveillance.
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 age 25 01 52		open
1	24	
2 3 446 4		2020. doi:10.2807/1560-7917.ES.2020.25.12.2000217
5 6 447 7	37.	Rosenthal PJ. The importance of diagnostic testing during a viral pandemic: Early
8 448 9		lessons from novel coronavirus disease (CoVID-19). Am J Trop Med Hyg. 2020.
10 11 449 12		doi:10.4269/AJTMH.20-0216
13 14 450 15	38.	Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2
16 451 17		Infection — Challenges and Implications. N Engl J Med. 2020.
18 452 19 20		doi:10.1056/nejmp2015897
21 453 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35		
36 37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53 54		
55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 32

Department	Asympt_cases	%	Population	Asympt_rate*	Sympt_rate
Bogotá	68143	89.5	7743955	880,0	1914.5
Atlántico	1455	1.91	2722128	53,5	957.3
Meta	836	1.10	1063454	78,6	802.3
Barranquilla	737	0.97	1243113	59,3	2756.1
Cundinamarca	690	0.91	3242999	21,3	716.1
Antioquia	518	0.68	6677930	7,8	1239.0
Córdoba	468	0.60	1828947	25,6	1072.0
Cartagena	437	0.57	1060577	41,2	1860.5
Amazonas	333	0.44	79020	421,4	2856.2
Putumayo	262	0.34	79020	331,6	3478.9
Norte de Santander	248	0.33	1620318	15,3	727.8
Caquetá	207	0.27	410521	50,4	1474.5
Cesar	195	0.26	1295387	15,1	851.6
Santander	190	0.25	2280908	8,3	847.8
Tolima	153	0.20	1339998	11,4	544.1
Huila	151	0.20	1122622	13,5	470.6
Sucre	151	0.20	949252	15,9	1221.6
La Guajira	140	0.18	965718	14,5	533.0
Boyacá	113	0.15	1242731	9,1	308.5
Magdalena	112	0.15	1427026	7,8	269.8
Valle del Cauca	111	0.15	4532152	2,4	997.9
Santa Marta	94	0.12	538612	17,5	1569.8
Nariño	69	0.09	1627589	4,2	878.5
Bolívar	57	0.07	2180976	2,6	221.9
Caldas	51	0.07	1018453	5,0	291.0
Risaralda	46	0.06	961055	4,8	675.6
Quindío	45	0.05	555401	8,1	236.9
Chocó	39	0.05	544764	7,2	664.9
Guainía	39	0.05	50636	77,0	237.0
Vaupés	27	0.04	44712	60,4	726.9
Buenaventura	20	0.03	440989	4,5	526.1
Cauca	18	0.02	1491937	1,2	360.9
Casanare	7	0.01	435195	1,6	248.9
Arauca	3	< 0.01	294206	1,0	335.8
Guaviare	3	< 0.01	86657	3,5	318.5
San Andrés Islas	2	< 0.01	63692	3,1	411.4
Vichada	2	< 0.01	112958	1,8	103.6

Table S1. AC state frequency in Colombia by department

The total number of Asymptomatic carriers (ACs) was used as the denominator to determine proportions. Asympt_cases: asymptomatic cases, Symptomatic cases: see in supplementary file. *Asympt_rate: (Asympt_cases/population)*100.000 habitants. *Sympt_rate: (Asympt_cases/population)*100.000 habitants.

60

	Main effects				
Variable	β	ORa (95%, CI)	p-valu		
.			.0.001		
Intercept	-7.360	-	<0.001		
Age,					
>26 years old	Ref.	-	-		
0-26 years old	0.205	1.227 (1.205-1.250)	<0.001		
Sex					
Female	Ref.	-	-		
Male	0.054	1.055 (1.038-1.073)	<0.001		
Department					
Low risk	Ref.	-	-		
Moderate risk	1.304	3.372 (3.134-4.330)	<0.001		
Strong risk	1.909	8.310 (6.101-7.464)	<0.001		
Geographical origin					
Imported CAS†	Ref.		-		
Imported CA-AC††	2.541	12.68 (3.049-52.77)	<0.001		
Related cases ^{†††}	3.255	25.90 (6.425-104.4)	<0.001		
EW					
10-34	Ref.	-			
≥35	0.933	2.543 (2.484-2.603)	<0.001		

Table \$2 E .:+h AC stat • 1. : . . . 1 Ω_{-1}

ACs, *†††***: spontaneous cases**, **EW:** epidemiological week.

omjopen-2020-042122 on 7 December 2020. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Page and relevant text from manuscript	
Title and abstract	1	(Page 1) A cross-sectional study	
		(Page 2) It is reported in the abstract	
Introduction			
Background/rationale	2	(Page 4-5)	
Objectives	3	(Page 5)	
Methods			
Study design	4	(Page 5)	
Setting	5	(Page 5)	
Participants	6	(Page 5-7)Cross-sectional study	
Variables	7	(Page 6)	
Data sources/ measurement	8*	(Page 6-7)	
Bias	9	(Page 7)	
Study size	10	(Page 5)	
Quantitative variables	11	(Page 6)	
Statistical methods	12	(Page 5-7)	
Continued on next page			
		(Page 7) (Page 7) (Page 5) (Page 6) (Page 5-7)	
		1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm	I
		To peer review only - http://binjopen.binj.com/site/about/guidelines.xhtm	1

32			BMJ Open
Results			BMJ Open 2020-042122
Participants	13*	(Page 7-8)	9
Descriptive data	14*	(Page 7-9)	
Outcome data	15*	(Page 7-10)	
Main results	16	(Page 7-10)	December 2020.
Other analyses	17	NA	202
Discussion			
Key results	18	(Page 10-11)	No
Limitations	19	(Page 11-12)	
Interpretation	20	(Page 11-13)	de
Generalisability	21	(Page 13)	from
Other information	on		Downloaded from http://bmjo
Funding	22	(Page 14)	p://b
*Give information	n sepai	rately for cases a	and controls in case-control studies and, if applicable, for exposed and unexposed groups in colour and cross-sectional stu

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strgbe-statement.org.

pril 17, 2024 by guest. Protected by copyright