

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan: A nationwide population-based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037484
Article Type:	Original research
Date Submitted by the Author:	04-Feb-2020
Complete List of Authors:	Wang, Yung-Chih; National Defense Medical Center, Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine Shih, Shu-Man Chen, Yung-Tai; Taipei City Hospital Heping Fuyou Branch, Department of Medicine Hsiung, Chao Agnes; National Health Research Institutes Kuo, Shu-Chen; National Health Research Institutes,
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, MICROBIOLOGY, INFECTIOUS DISEASES, HEALTH ECONOMICS, INTENSIVE & CRITICAL CARE
Keywords:	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Article category: Original research

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
29	
30	
31 32	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2	
3	Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections
4	in Taiwan: A nationwide population-based retrospective cohort study
5	Yung-Chih Wang, MD, PhD ¹ ; Shu-Man Shih ² ; Yung-Tai Chen, MD ^{3,4} ; Chao A. Hsiung,
6	PhD ² ; Shu-Chen Kuo, MD, PhD ^{5*}
7	
8	¹ Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine,
9	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
10	² Institute of Population Health Sciences, National Health Research Institutes, Miaoli County,
11	Taiwan
12	³ Divisions of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
13	⁴ Department of Medicine, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
14	⁵ National Institute of Infectious Diseases and Vaccinology, National Health Research
15	Institutes, Miaoli County, Taiwan
16	
17	Correspondence to:
18	Shu-Chen Kuo. MD, PhD
19	National Institute of Infectious Diseases and Vaccinology, National Health Research

2		
3		
4 5	20	Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
6		
7	21	Dhome: + 996.27.206.166
8	21	Phone: +886 37 206 166
9		
10	22	Fax: +886 37 586457
11	22	1 u.x. + 000 57 500+57
12		
13	23	E-mail: ludwigvantw@gmail.com
14		
15		
16 17	24	
17 18		
19	25	
20	25	
21		
22	26	
23	20	
24		
25	27	Running title: Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan
26		
27 20		
28 29	28	
30		
31	29	
32	29	
33		Word count:
34	30	
35		
36		
37	31	Word count:
38 39		
40	32	Abstract: 268 words
41	52	Abstract: 200 words
42		
43	33	Text: 2572 words
44		
45		
46		
47 48		
40 49		
50		
51		
52		
53		
54		
55 56		
56 57		
57 58		
58 59		
60		

1	
2	
3	
4	
5	
6	
7	
, 8	
o 9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55 54	
54 55	
56	
57	
58	
59	
60	

35	ABSTRACT
36	Objectives: To estimate the clinical and economic impact of intensive care unit-acquired
37	bloodstream infections in Taiwan.
38	Design: Retrospective cohort study.
39	Setting: Nationwide Taiwanese population in the National Health Insurance Research
40	Database and the Taiwan Nosocomial Infections Surveillance (2007-2015) dataset.
41	Participants: The first episodes of intensive care unit-acquired bloodstream infections in
42	patients \geq 20 years of age in the datasets. Propensity score-matching (1:2) of demographic
43	data, comorbidities, and disease severity was performed to select a comparison cohort from a
44	pool of intensive care unit patients without intensive care unit-acquired infections from the
45	same datasets.
46	Primary and secondary outcome measures: The 14-day mortality rate, length of
47	hospitalization, and healthcare cost.
48	Results: After matching, the in-hospital mortality of 14,369 patients with intensive care
49	unit-acquired bloodstream infections was 44.38%, compared to 33.50% for 28,738 intensive
50	care unit patients without bloodstream infections. The 14-day mortality rate was also higher
51	in the bloodstream infections cohort (4,367, 30.39% vs. 6,860 deaths, 23.87%, respectively; p
52	< 0.001). Furthermore, the patients with intensive care unit-acquired bloodstream infections
53	had a prolonged length of hospitalization after their index date (18 [IQR 7-39] vs. 10 days

1	
2	
3	
4	
4 5 6 7	
5	
0	
/	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
17	
18	
19	
20 21 22 23	
21	
22	
23	
14	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

54	[IQR 4–21], respectively; $p < 0.001$) and a higher healthcare cost (16,086 [IQR 9,706–26,131]
55	vs. 10,731 US dollars [IQR 6,375–16,910], respectively; $p < 0.001$). The excessive hospital
56	stay and healthcare cost per case were 12.77 days and 7,646 US dollars, respectively. Similar
57	results were observed in subgroup analyses of various World Health Organization's priority
58	pathogens and Candida spp.
59	Conclusions: Intensive care unit-acquired bloodstream infections in critically ill patients
60	were associated with increased mortality, longer hospital stays, and higher healthcare costs.
61	
62	
63	Keywords: bloodstream infection; healthcare costs; hospital stay; intensive care unit;
64	mortality.
64	mortality.
64	
64	
64	mortality.
64	
64	
64	

66 STRENGTHS AND LIMITATIONS OF THIS STUDY

- 1. A large number of patients obtained from Nationwide Taiwanese population from two
- 68 datasets in Taiwan were included.
- 69 2. Propensity score-matching was performed to select a comparison cohort.
- 70 3. The 14-day mortality rate, length of hospitalization, and healthcare cost were analyzed.
- 4. Subgroup analyses of several drug-resistant pathogens were conducted.
- 72 5. The retrospective design may include some unmeasurable bias.

1 2 3	
4 5 6	
7 8 9 10	
11 12 13	
14 15 16 17	
18 19 20	
21 22 23 24	
25 26 27	
28 29 30 31	
32 33 34	
35 36 37 38	
39 40 41	
42 43 44 45	
46 47 48	
49 50 51 52	
53 54 55	
56 57 58 59	
60	

73 BACKGROUND

	74	Critically ill patients in intensive care units (ICUs) are vulnerable to various infections,
) <u>2</u>	75	and these can lead to increased morbidity, mortality, and healthcare costs. Bloodstream
3 1 5	76	infections (BSIs) are one of the most common infections acquired by ICU patients. It was
5 7 3	77	reported that BSIs affected approximately 7 % of patients admitted to ICUs.[1] Previous
))	78	studies have shown that ICU-acquired BSIs resulted in attributable mortality of 24.8%,[2]
<u>2</u> 3 1	79	extended hospital stays by 13.5 days[3] and the cost of treatment was approximately 12,321
5 7	80	US dollars per case. Moreover, despite advances in medical care and the development of new
}))	81	therapies, the outcome of BSIs in critically ill patients is adversely affected by a greater
2 3	82	number of vulnerable hosts and the emergence of drug-resistant pathogens.
1 5 5	83	Discrepancies regarding the impact of pathogens on mortality have been reported.
7 3 9	84	However, worse clinical outcome and higher economic burden have been reported for
) <u>2</u>	85	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving
3 1 5	86	third-generation cephalosporin-resistant Enterobacteriaceae have been shown to significantly
5 7 3	87	increase mortality risk compared to BSIs involving susceptible strains.[4] Moreover,
))	88	candidemia has been associated with a 4-fold increase in mortality, while Staphylococcus
<u>2</u> 3 1	89	aureus BSIs doubled the risk of mortality.[1] Meanwhile, the clinical impact of Enterococci
5 5 7	90	remains a controversial topic.[5-7] Therefore, it is important not only to describe the clinical
3	91	and economic impact of infections, but also to decipher the impact of individual pathogens.

1	
2	
3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
20 21 22	
22	
73	
24	
25	
26	
27	
28	
29	-
30	
31	
32	-
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55 54	
54 55	
55 56	
50 57	
57 58	
58 59	
29	

92	Due to the limited number of cases and the complex clinical characteristics of critically ill
93	patients, previous studies have reported either clinical or economic outcomes, have focused
94	on several species of pathogens, or have assessed only a limited number of pathogens. In the
95	present study, a health insurance database and a nationwide surveillance system for
96	healthcare-associated infections were used to estimate the clinical and economic
97	consequences of ICU-acquired BSIs caused by different pathogens in a large number of
98	patients in Taiwan. In addition, the impact of individual pathogens, especially
99	antibiotic-resistant bacteria on the World Health Organization (WHO) priority list,[8] were
100	investigated.
101	
	investigated.

1 2		
3 4 5	102	METHODS
6 7 8	103	Data sources
9 10 11	104	Two datasets, the National Health Insurance Research Database (NHIRD) and the
12 13 14	105	Taiwan Nosocomial Infection Surveillance (TNIS) dataset, were used in this study.
15 16 17	106	Demographic data, diagnoses (according to the International Classification of Diseases, 9th
18 19 20	107	Revision, Clinical Modification [ICD-9-CM]), procedures, and medications for patients
21 22 23	108	enrolled in Taiwan's national insurance system have been collected in the NHIRD since
24 25 26	109	1995.[9] In 2007, the TNIS was launched by the Taiwan Centers for Disease Control to
27 28 29	110	evaluate the epidemiologic trend of healthcare-associated infections in the ICUs in Taiwan.
30 31 32	111	The latter is a web-based surveillance system which collects clinical information of patients
33 34 35	112	with healthcare-associated infections from the ICUs of participating hospitals. This
36 37 38	113	information includes demographic data, infection foci, causative pathogens, and antimicrobial
39 40 41	114	susceptibility results.
42 43 44	115	Both datasets were deposited in a database maintained by the Health and Welfare Data
45 46 47	116	Science Center, Ministry of Health and Welfare. Individual personal identification numbers
48 49 50	117	were encrypted so that data from the NHIRD and TNIS datasets could be interlinked. The
51 52 53	118	institutional review board of the National Health Research Institutes approved this study
54 55 56	119	(EC1051207-R4).
57 58 59	120	
60		8

Page 10 of 52

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
44 45 46 47 48 49	

121	Study population, data collection, and propensity-score matching
122	This retrospective cohort study enrolled adult patients who underwent ICU
123	hospitalization between 2007 and 2015 in Taiwan. From the entries in the TNIS database, we
124	identified all of the patients whose first episode of an ICU-acquired BSI occurred during the
125	study period. Since coagulase-negative Staphylococci are often associated with contamination,
126	these cases were not included in our analysis. We included species that constituted > 1 % of
127	known bloodstream pathogens (Supplementary Table 1), which constituted 79.4% of all
128	ICU-acquired BSI episodes. The index date for each case was defined as the date on which a
129	positive blood culture result was obtained.
130	For comparison, we identified ICU patients who did not have ICU-acquired infections
131	registered in TNIS database. In addition, patients with a discharge diagnosis of sepsis
132	(ICD-9-CM: 038.X, 995.91), severe sepsis (ICD-9-CM: 995.92), or septic shock (ICD-9-CM:
133	785.52) were also excluded. The pool of comparison patients was created for selection of
134	those with the same admission date as any patient with ICU-acquired BSI. Because the
135	comparison patients did not have index date of acquisition of infection, they were assigned "-
136	pseudo-index dates" during hospitalization, which was selected from the index date of
137	patients with the same day of hospitalization in the BSI group. We used 1:2 greedy
138	matching[10] within a caliper width equal to 0.2 of the standard deviation of the logit of the
139	propensity score. Propensity scores were then calculated for the likelihood of ICU-acquired

BMJ Open

2 3		
4 5 6	140	BSIs by using baseline covariates and multivariate logistic regression analysis
7 8 9	141	(Supplementary Table 2). Patient data from January 2005 were used to ensure that individuals
10 11 12	142	were followed for at least two years prior to their selection for this study in order to confirm
13 14 15	143	comorbidities[11] and for matching purposes.
16 17 18	144	
19 20 21	145	Outcome measurements
22 23 24	146	Clinical outcomes included in-hospital mortality rate and 14-day mortality rate after the
25 26 27	147	index date/pseudo-index date. Economic outcomes included hospitalization length after the
28 29 30	148	index date/pseudo-index date and cost of overall hospitalization. Hospitalization length was
31 32 33	149	defined as the duration of hospital stay after the index date/pseudo-index date. The overall
34 35 36	150	cost of hospitalization was calculated. The costs were standardized and presented in values
37 38 39	151	from 2017.
40 41 42	152	Subgroup analysis
43 44 45	153	Subgroup analysis
46 47 48	154	To evaluate the clinical and economic impact of ICU-acquired BSIs caused by different
49 50 51	155	pathogens, we performed analyses on patients infected with single pathogen. For example,
52 53 54	156	the impact of WHO priority bacteria and Candida were examined separately, as was the
55 56 57	157	impact of drug resistance in these bacteria. We included patients whose first episode of an
58 59 60	158	ICU-acquired BSI were caused by bacteria on the WHO priority list or Candida. Therefore,
		10

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
15	
16	
16 17	
18	
19	
20	
21	
21 22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
53 54	
54 55	
56 57	
57 58	
58 59	
60	

159	the clinical and economic outcomes of patients with Acinetobacter baumannii, Pseudomonas
160	aeruginosa, common Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae,
161	Enterobacter species, and Serratia marcescens), S. aureus, Enterococcus species, Candida
162	albicans, and non-albicans Candida (Candida tropicalis, Candida parapsilosis, and Candida
163	glabrata) were determined.
164	The definition of multiple drug resistance (MDR) of WHO priority bacteria according to
165	the European Centre for Disease Prevention and Control (ECDC) was modified[12]
166	(Supplementary Table 3). In this study, non-susceptibility to at least one agent in at least
167	three antimicrobial categories in Gram-negative bacteria was defined as MDR. Oxacillin- and
168	vancomycin-non-susceptible S. aureus and vancomycin-non-susceptible Enterococcus
169	species were considered MDR Gram-positive bacteria.
170	
171	Sensitivity analysis
172	To avoid competing risk between mortality and length of hospitalization/healthcare cost,
173	we included patients who survived to discharge. For these patients, length of hospitalization
174	after the index date/pseudo-index date and hospitalization costs were determined.
175	
176	Statistical analysis
177	Descriptive statistics were used to examine baseline demographic and clinical

Page 13 of 52

BMJ Open

178	characteristics of the ICU patients included in this study. To account for potential
179	confounding biases among the study cohort, propensity score matching analysis was
180	performed. Propensity scores were calculated with multivariate logistic regression.
181	Standardized differences between the two groups with differences less than 0.1 were
182	confirmed in order to assess baseline characteristics. The Mann-Whitney U test was used to
183	evaluate economic outcomes and the Chi-squared test was used to evaluate mortality rate.
184	Conditional logistic regression was used to calculate odds ratios (ORs) to evaluate risk of
185	mortality in patients with BSI and the comparison cohort, while a generalized linear model
186	was used to calculate β values to estimate excess costs and length of hospitalization.
187	Variables with a <i>p</i> -value < 0.05 were eligible for inclusion in the model. <i>P</i> -values less than
188	0.05 were considered statistically significant. All analyses were performed by using SAS
189	statistical software (version 9.4, SAS Institute Inc., Cary, NC, USA).
190	
	179 180 181 182 183 184 185 186 187 188 189

RESULTS

191	KESUE15
192	Among 38,659 episodes of ICU-acquired BSIs registered in TNIS during the 9-year
193	study period, 28,495 patients were identified to have their first episode of a BSI. The NHIRD
194	included 1,638,796 patients who underwent ICU hospitalization (Figure 1). After excluding
195	patients whose data could not be interlinked with NHIRD or who did not have target
196	pathogens, 14,369 patients with ICU-acquired BSIs were successfully matched to 28,738
197	ICU patients without ICU-acquired infections (1:2). The demographic and clinical
198	characteristics of the patients with BSI and comparison cohort are presented in Table 1. The
199	groups had standardized differences that were < 10% for all of the continuous and
200	dichotomous categorical variables which were examined.
201	Table 2 lists the clinical and economic outcomes of the ICU patients with BSIs and the
202	comparison cohort. The ICU patients with BSIs suffered a higher in-hospital mortality rate
203	(44.38% vs. 33.50%, respectively; $p < 0.001$) and a higher 14-day mortality rate (30.39% vs.
204	23.87%, respectively; $p < 0.001$). Logistic regression analyses showed that the OR of
205	in-hospital mortality for the ICU patients with BSIs was 1.66 (95% confidence interval [CI],
206	1.59–1.73; <i>p</i> < 0.001), and it was 1.41 (95% CI, 1.34–1.47; <i>p</i> < 0.001) for 14-day mortality.
207	These significant associations were also observed in the subgroup analyses performed (Table
208	3).
209	The ICU patients with BSIs had a longer length of hospitalization after the index date

1
2
3
4
5
6
7
8
9
) 10
11
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
<u> </u>

	210	(18 vs. 10 days, respectively; $p < 0.001$). Moreover, on average, their hospital stay was
	211	extended by 12.77 days (95% CI, 12.02–13.52; $p < 0.001$). The subgroup analyses performed
)	212	(Table 4) showed that all of the causative pathogens shared a similar trend. Compared with
<u>2</u> 3 1	213	the patients without ICU-acquired infections, the duration of hospitalization after the index
5 5 7	214	date for those with BSIs caused by MDR bacteria, WHO priority bacteria, or Candida spp.
3))	215	was longer. In addition, hospitalization costs of the ICU patients with BSIs were higher
<u>2</u> 3	216	(16,086 vs. 10,731, respectively; $p < 0.001$) (Table 2), with the excess cost being 7,646 US
+ 5 5	217	dollars per patient (95% CI, 7,356–7,935; $p < 0.001$). Table 4 presents the higher costs
7 3 9	218	associated with each of the various causative pathogen.
) <u>)</u>	219	For the ICU patients with BSIs who survived to discharge, their length of hospitalization
3 1 5	220	and healthcare costs were increased by 19.38 days and 8,829 US dollars, respectively,
5 7 8	221	(Supplementary Table 4) compared to the survivors without ICU-acquired infections.
) 		
<u>/</u> } }		
5 7		
>))		
2 2 3		
5		
3		

DISCUSSION

6 7 8 9	223	This study demonstrated that ICU patients with BSIs in Taiwan had significantly worse
9 10 11 12	224	clinical outcomes and higher economic burden than ICU patients without ICU-acquired
12 13 14 15	225	infections from the same population. For example, the patients with BSI exhibited 1.66-fold
16 17 18	226	and 1.41-fold increases in in-hospital and 14-day mortality rates. Per case, the patients with
19 20 21	227	BSI had an excess hospital stay of 12.77 days and cost of 7,646 US dollars. Furthermore, a
22 23 24	228	similar clinical and economic impact was observed among all of the causative pathogens
25 26 27	229	examined.
28 29 30	230	BSIs have been associated with higher mortality and morbidity, contingent on the
31 32 33	231	causative pathogen involved.[1,3,13-16] For example, worse clinical outcomes have been
34 35 36	232	reported for patients with BSIs caused by A. baumannii, [16,17] P. aeruginosa, [15,16] S.
37 38 39	233	aureus,[1,4,15,16] Enterobacteriaceae,[4,16] and Candida spp.[1,16,18] In contrast,
40 41 42	234	controversial results have been obtained regarding the mortality of patients affected by
43 44 45	235	enterococcal bacteremia. While some authors have argued that <i>Enterococcus</i> spp. represents
46 47 48	236	a low virulence pathogen[1] and is not associated with increased mortality unless in the
49 50 51	237	presence of endocarditis,[19] other authors have reported contrasting results.[5,6,16,18] In
52 53 54	238	the present study, significantly higher mortality was observed for patients with enterococcal
55 56 57	239	bacteremia, and this may be due to vulnerability of the hosts examined, increased resistance,
58 59 60	240	and a larger study population.

Page 17 of 52

BMJ Open

The high healthcare burden of BSIs reported in previous literature[3,13,20] and in the present study underscores the importance of preventing ICU-acquired BSIs by infection control measurements. Furthermore, the results of these studies help to assess cost effectiveness of infection control measurements in the process of policy-making. For example, patients with ICU-acquired BSIs during the 9-year period cost Taiwan an estimated 298 million US dollars and 495,222 days (supplementary Table 5). A policy that reduced the rate of infection by 10%[21] would translate into a savings of 30 million US dollars and 4,952 patient-days saved. Drug resistance has been found to be correlated with higher medical costs due to the need for second-line antimicrobials for treatment, as well as additional diagnostic and treatment tools.[22, 23] In the present study, the costs for MDR bacteria included extra 85 million US dollars and 140,923 days over nine years (Supplementary Table 5). However, cost differences between susceptible and resistant strains were not determined in the present study. Drug-susceptible strains were not included as controls due to differences in testing methods, drugs, and breakpoints for these strains which could lead to mis-assignments of drug-resistant pathogens as susceptible pathogens. Candidemia poses a great threat to ICU patients due to its excessive medical burdens, [16,18,20] and C. albicans is the most common pathogen. However, in some countries, the prevalence of non-albicans Candida exceeds that of C. albicans.[24] For those

1 2 3
4 5 6 7
8 9 10 11
12 13 14
15 16 17 18
19 20 21 22
23 24 25 26
27 28 29 30
31 32 33
34 35 36 37
38 39 40 41
42 43 44 45
46 47 48 49
50 51 52
54 55 56
57 58 59 60

260	infected with non-albicans Candida, higher rates of mortality, [24,25] longer hospitalization
261	stays, and increased hospital costs have been described;[25-27] although other studies have
262	reported contradicting findings.[28,29] These discrepancies may be due to host factors and
263	differences in the virulence and resistance patterns[24] of non-albicans Candida. In the
264	present study, the crude 14-day and in-hospital mortality rates of 958 patients infected with
265	C. albicans were 38.10% and 56.16%, respectively. In comparison, among 704 patients
266	infected with non-albicans Candida, these rates were 34.94% and 52.98%, respectively.
267	While the hospital costs and length of stay were higher in the non-albicans Candida group
268	compared to the <i>C. albicans</i> group, the 95% CI overlapped for the two groups (Table 4).
269	These data suggested that the clinical and economic outcomes of these two groups did not
270	greatly differ. However, the present study was not designed to specifically compare the
271	outcomes of those infected with C. albicans versus non-albicans Candida. Therefore,
272	additional studies with a larger number of patients, adjustment for host factors, and
273	consideration of antifungal drugs, incubation time, and treatment duration are needed to
274	clarify the impact of each Candida species.
275	The large number of patients examined in this study and the use of propensity score
276	matching represent two major strengths of the present study. These aspects also allowed the
277	impact of each pathogen group to be discerned. However, there were also several limitations

associated with the present study which merit discussion. First, the exact cost after the index 278

Page 19 of 52

BMJ Open

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	

60

279	date could not be retrieved from the NHIRD. Therefore, the high total cost shown in this
280	study may be due to costs incurred prior to the onset of a BSI. It is possible that matching of
281	the duration before the index date and comorbidity may have reduced overestimations of
282	healthcare costs due to time-dependent bias.[30] Second, confounding factors associated with
283	clinical impact, such as APACHE II or Pitt Bacteremia scores, were not included in this
284	study. Instead, other clinical risk factors (Charlson Comorbidity Index score, number of
285	organ failures, use of inotropic agents, and receipt of invasive procedures) were incorporated
286	in our model. Third, our study is inherently limited by its retrospective design, which
287	includes a dependence on the accuracy of the ICD codes used and unmeasurable bias.[31,32]
288	In addition, the prolonged hospitalization may have been due to a change in patient
289	management in response to a BSI, rather than increased morbidity due to a BSI.[15]
290	
291	CONCLUSIONS
292	ICU-acquired BSIs have a negative clinical and economic impact on affected patients
293	regardless of the causative pathogens involved. Awareness of these negative affects is
294	important for promoting infection control measurements and for policy-making.
295	

1 2		
3 4 5	296	LIST OF ABBREVIATIONS
6 7 8	297	BSI = bloodstream infection;
9 10 11	298	CI = confidence interval;
12 13 14	299	ECDC = European Centre for Disease Prevention and Control;
15 16 17	300	ICD-9-CM = international classification of diseases, 9th revision, clinical modification;
18 19 20	301	ICU = intensive care unit;
21 22 23 24	302	IQR = interquartile range;
24 25 26 27	303	MDR = multiple drug resistance;
27 28 29 30	304	NHIRD = National Health Insurance Research Database;
31 32 33	305	OR = odds ratio;
34 35 36	306	TNIS = Taiwan Nosocomial Infection Surveillance;
37 38 39	307	WHO = World Health Organization;
40 41 42	308	
43 44 45		
46 47		
48 49		
50 51		
52		
53 54		
55		
56 57		
58 59		
60		

1 2		
3 4 5	309	DECLARATIONS
6 7 8	310	Ethics approval and consent to participate
9 10 11	311	The institutional review board of the National Health Research Institutes approved this study
12 13 14	312	(EC1051207-R4).
15 16 17	313	
18 19 20	314	Consent for publication
21 22 23	315	Not applicable.
24 25 26	316	
27 28 29	317	Availability of data and materials
30 31 32 33 34 35 36	318	The data that support the findings of this study are available from Ministry of Health and
	319	Welfare, Taiwan but restrictions apply to the availability of these data, which were used
37 38	320	under license for the current study, and so are not publicly available. Data are however
39 40 41	321	available from the authors upon reasonable request and with permission of Ministry of Health
42 43 44	322	and Welfare, Taiwan.
45 46 47	323	
48 49 50	324	Competing interests
51 52 53	325	The authors declare that they have no competing interests.
54 55 56	326	
57 58 59	327	Funding
60		20

1 2	
2 3 4 5	328
6 7 8	329
9 10 11	330
12 13 14	331
15 16 17	332
18 19 20	333
21 22 23	334
24 25 26	335
27 28 29	336
30 31 32	337
33 34 35	338
36 37 38	339
39 40 41	340
42 43 44	341
45 46 47	342
48 49 50	343
51 52 53	344
54 55 56	345
57 58 59	346
60	

328	This work was supported by a grant from the National Health Research Institutes [Grant no.
329	108-0324-01-19-06] and Tri-Service General Hospital [TSGH-C107-099 and
330	TSGH-E-109237]. The sponsors had no role in the study design; collection, analysis, or
331	interpretation of data; writing of the report; or the decision to submit the article for
332	publication.
333	
334	Author contributions
335	Conceptualization: CAH, SCK
336	Data curation: YTC, CAH, SCK
337	Formal analysis: SMS, YTC
338	Funding acquisition: YCW, SCK
339	Investigation: YCW, SCK
340	Methodology: YTC, CAH, SCK
341	Project administration: YCW, CAH, SCK
342	Resources: YTC, CAH, SCK
343	Software: SMS, YTC
344	Supervision: SMS, YTC
345	Validation: CAH, SCK

Visualization: YCW, SMS

1 2 3		
3 4 5 6	347	Writing—original draft: YCW, SMS, SCK
7 8	348	Writing—review & editing: YCW, CAH, SCK
9 10 11	349	All authors approved the final version of the manuscript.
12 13 14	350	
15 16 17	351	Acknowledgements
18 19 20	352	Not applicable.
21 22 23	353	Not applicable.
24 25 26		
27 28 29		
30 31 32		
33 34 35		
36 37 38		
39 40 41		
42 43 44		
45 46 47		
48 49 50		
51 52 53		
54 55 56		
57 58 59		
60		

2	
3 4 5	3!
6 7 8	3
9 10 11	3
12 13 14	3
15 16 17	3!
18 19 20	3(
21 22 23	3(
24 25 26	30
27 28 29	30
30 31 32	3(
33 34 35	30
36 37 38	30
39 40 41	3(
42 43 44	30
45 46 47	3
48 49 50	3
50 51 52 53	3
53 54 55	3.

REFERENCES 55

7 8 9	356	1.	Prowle JR, Echeverri JE, Ligabo EV, et al. Acquired bloodstream infection in the
10 11 12	357		intensive care unit: incidence and attributable mortality. Crit Care 2011; 15: R100.
13 14 15	358	2.	Garrouste-Orgeas M, Timsit JF, Tafflet M, et al. Excess risk of death from intensive
16 17 18	359		care unit-acquired nosocomial bloodstream infections: a re-appraisal. Clin Infect Dis
19 20 21	360		2006; 42 : 1118-26.
22 23 24	361	3.	Laupland KB, Lee H, Gregson DB, Manns BJ. Cost of intensive care unit-acquired
25 26 27	362		bloodstream infections. J Hosp Infect 2006; 63: 124-32.
28 29 30	363	4.	Stewardson AJ, Allignol A, Beyersmann J, et al. The health and economic burden of
31 32 33	364		bloodstream infections caused by antimicrobial-susceptible and non-susceptible
34 35 36	365		Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011:
37 38 39	366		a multicentre retrospective cohort study. <i>Euro Surveill</i> 2016; 21 : pii=30319.
40 41 42	367	5.	Landry SL, Kaiser DL, Wenzel RP. Hospital stay and mortality attributed to
43 44 45	368		nosocomial enterococcal bacteremia: a controlled study. Am J Infect Control 1989;
46 47 48	369		17: 323-9.
49 50 51	370	6.	Ong DS, Bonten MJ, Safdari K, et al. Epidemiology, management, and risk-adjusted
52 53 54	371		mortality of ICU-acquired enterococcal bacteremia. Clin Infect Dis 2015; 61:
55 56 57	372		1413-20.
58 59 60	373	7.	Kramer TS, Remschmidt C, Werner S, et al. The importance of adjusting for

Page 25 of 52

BMJ Open

1 2			
3 4 5 6 7 8	374		Enterococcus species when assessing the burden of vancomycin resistance: a cohort
	375		study including over 1000 cases of enterococcal bloodstream infections. Antimicrob
9 10 11	376		Resist Infect Control 2018; 7: 133.
12 13 14	377	8.	Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of
 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 	378		new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.
	379		Lancet Infect Dis 2018; 18: 318-27.
	380	9.	Wu TY, Majeed A, Kuo KN. An overview of the healthcare system in Taiwan.
	381		London J Prim Care (Abingdon) 2010; 3 : 115-9.
	382	10.	Tu JV, Bowen J, Chiu M, et al. Effectiveness and safety of drug-eluting stents in
	383		Ontario. N Engl J Med 2007; 357 : 1393-402.
	384	11.	Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with
	385		ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45: 613-9.
	386	12.	Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively
42 43 44	387		drug-resistant and pandrug-resistant bacteria: an international expert proposal for
45 46 47	388		interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:
48 49 50 51 52 53 54 55 56	389		268-81.
	390	13.	Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically iII
	391		patients: excess length of stay, extra costs, and attributable mortality. JAMA 1994;
57 58 59	392		271 : 1598-601.
60			

1 2 Page 26 of 52

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	393	14.	Laupland KB, Zygun DA, Davies HD, et al. Population-based assessment of intensive
	394		care unit-acquired bloodstream infections in adults: incidence, risk factors, and
	395		associated mortality rate. Crit Care Med 2002; 30: 2462-7.
	396	15.	Barnett AG, Page K, Campbell M, et al. The increased risks of death and extra lengths
	397		of hospital and ICU stay from hospital-acquired bloodstream infections: a
	398		case-control study. BMJ Open 2013; 3: e003587.
21 22 23	399	16.	Marra AR, Camargo LF, Pignatari AC, et al. Nosocomial bloodstream infections in
24 25 26	400		Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide
27 28 29 30 31 32 33	401		surveillance study. J Clin Microbiol 2011; 49: 1866-71.
	402	17.	Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in
34 35	403		patients with Acinetobacter baumannii infection: systematic review and
36 37 38	404		meta-analysis. Clin Microbiol Infect 2014; 20: 416-23.
39 40 41	405	18.	Schwab F, Geffers C, Behnke M, et al. ICU mortality following ICU-acquired
42 43 44	406		primary bloodstream infections according to the type of pathogen: a prospective
45 46 47 48 49 50 51 52 53 54 55 56	407		cohort study in 937 Germany ICUs (2006-2015). PloS One 2018; 13: e0194210.
	408	19.	Caballero-Granado FJ, Becerril B, Cuberos L, et al. Attributable mortality rate and
	409		duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis
	410		2001; 32 : 587-94.
57 58 59 60	411	20.	Blot SI, Depuydt P, Annemans L, et al. Clinical and economic outcomes in critically

BMJ Open

3 4 5	412		ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis	5
6 7 8	413		2005; 41 : 1591-8.	
9 10 11	414	21.	Tseng SH, Lee CM, Lin TY, et al. Combating antimicrobial resistance: antimicrob	ial
12 13 14	415		stewardship program in Taiwan. J Microbiol Immunol Infect 2012; 45: 79-89.	
15 16 17	416	22.	Howard D, Cordell R, McGowan JE, Jr., et al. Measuring the economic costs of	
18 19 20	417		antimicrobial resistance in hospital settings: summary of the Centers for Disease	
21 22 23	418		Control and Prevention-Emory Workshop. Clin Infect Dis 2001; 33: 1573-8.	
24 25 26	419	23.	Mauldin PD, Salgado CD, Hansen IS, et al. Attributable hospital cost and length of	f
27 28 29	420		stay associated with health care-associated infections caused by antibiotic-resistant	t
30 31 32	421		gram-negative bacteria. Antimicrob Agents Chemother 2010; 54: 109-15.	
33 34 35	422	24.	Horn DL, Neofytos D, Anaissie EJ, et al. Epidemiology and outcomes of candidem	nia
36 37 38	423		in 2019 patients: data from the prospective antifungal therapy alliance registry. Cli	'n
39 40 41	424		Infect Dis 2009; 48 : 1695-703.	
42 43 44	425	25.	Dimopoulos G, Ntziora F, Rachiotis G, et al. Candida albicans versus non-albicans	3
45 46 47	426		intensive care unit-acquired bloodstream infections: differences in risk factors and	
48 49 50	427		outcome. Anesth Analg 2008; 106: 523-9.	
51 52 53	428	26.	Moran C, Grussemeyer CA, Spalding JR, et al. Comparison of costs, length of stay	Ι,
54 55 56	429		and mortality associated with Candida glabrata and Candida albicans bloodstream	
57 58 59	430		infections. Am J Infect Control 2010; 38: 78-80.	
60				26

3 4 5	431	27.	Gong X, Luan T, Wu X, et al. Invasive candidiasis in intensive care units in China:	
6 7 8	432		risk factors and prognoses of Candida albicans and non-albicans Candida infection	s.
9 10 11	433		Am J Infect Control 2016; 44: e59-63.	
12 13 14	434	28.	Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidem	nia
15 16 17	435		in 3648 patients: data from the prospective antifungal therapy (PATH Alliance®)	
18 19 20	436		registry, 2004-2008. Diagn Microbiol Infect Dis 2012; 74: 323-31.	
21 22 23	437	29.	Barchiesi F, Orsetti E, Gesuita R, et al.; Candidemia Study Group. Epidemiology,	
24 25 26	438		clinical characteristics, and outcome of candidemia in a tertiary referral center in It	aly
27 28 29	439		from 2010 to 2014. Infection 2016; 44: 205-13.	
30 31 32	440	30.	Nelson RE, Samore MH, Jones M, et al. Reducing time-dependent bias in estimates	s of
33 34 35	441		the attributable cost of health care-associated Methicillin-resistant Staphylococcus	
36 37 38	442		aureus infections: a comparison of three estimation strategies. Med Care 2015; 53:	
39 40 41	443		827-34.	
42 43 44	444	31.	Kuo SC, Shih SM, Hsieh LY, et al. Antibiotic restriction policy paradoxically	
45 46 47	445		increased private drug consumptions outside Taiwan's National Health Insurance.	J
48 49 50	446		Antimicrob Chemother 2017; 72: 1544-5.	
51 52 53	447	32.	Sarrazin MSV, Rosenthal GE. Finding pure and simple truths with administrative	
54 55 56	448		data. JAMA 2012; 307 : 1433-5.	
57 58 59	449			
60				27

450 Table 1. Characteristics of the intensive care unit patients with bloodstream infections

451 and the matched comparison cohort.

Characteristics	Patients with BSI,	Comparison	Standardized difference	
Characteristics	n (%)	cohort, n (%)		
No. of patients	14,369	28,738		
Males	9,060 (63.05)	18,059 (62.84)	0.004	
Age, years, mean (SD)	65.21 (21.58)	65.41 (20.24)	0.010	
Length of stay before index date/				
pseudo-index date, days, mean				
(SD)	15.81 (12.51)	15.32 (12.21)	0.039	
Monthly income, USD				
Dependent	2,438 (16.97)	4,837 (16.83)	0.004	
< 657.33	4,794 (33.36)	9,601 (33.41)	0.001	
657.33-1504.60	6,370 (44.33)	12,805 (44.56)	0.005	
> 1504.60	753 (5.24)	1,465 (5.10)	0.006	
Urbanization level				
1 (urban)	3,681 (25.62)	7,292 (25.37)	0.006	
2	4,004 (27.87)	8,028 (27.94)	0.002	
3	2,246 (15.63)	4,541 (15.80)	0.005	
4 (rural)	4,427 (30.81)	8,849 (30.79)	0	
Charlson Comorbidity Index				
score, mean (SD)	3.09 (2.80)	3.12 (2.93)	0.013	
0	2,968 (20.66)	6,198 (21.57)	0.022	
1	1,947 (13.55)	3,995 (13.90)	0.010	
2	2,313 (16.10)	4,418 (15.37)	0.020	

	\geq 3	7,141 (49.70)	14,127 (49.16)	0.011
	Comorbidities			
	Diabetes mellitus	4,901 (34.11)	9,848 (34.27)	0.003
	Cerebrovascular disease	3,592 (25.00)	7,192 (25.03)	0.001
	Hypertension	8,156 (56.76)	16,334 (56.84)	0.002
	Myocardial infarction	530 (3.69)	1,110 (3.86)	0.009
	Heart failure	2,574 (17.91)	5,276 (18.36)	0.012
	Peripheral vascular disease	755 (5.25)	1,524 (5.30)	0.002
	Liver disease	2,765 (19.24)	5,573 (19.39)	0.004
	Chronic kidney disease	3,905 (27.18)	8,003 (27.85)	0.015
	Dyslipidemia	2,787 (19.40)	5,558 (19.34)	0.001
	Cancer	2,799 (19.48)	5,689 (19.80)	0.008
	Number of dysfunctional organs,			
	mean (SD)	1.02 (0.81)	1.03 (0.86)	0.014
	0	4,047 (28.16)	8,465 (29.46)	0.029
	1	6,498 (45.22)	12,396 (43.13)	0.042
	2	3,324 (23.13)	6,460 (22.48)	0.016
	\geq 3	500 (3.48)	1,417 (4.93)	0.072
	Use of inotropic agents	11,529 (80.24)	23,153 (80.57)	0.008
	Use of steroid	10 (0.07)	19 (0.07)	0.001
	Use of ventilator (> 3 days)	11,798 (82.11)	23,578 (82.04)	0.002
	Emergent renal replacement			
	therapy	2,680 (18.65)	5,523 (19.22)	0.014
	Propensity score (SD)	0.13 (0.11)	0.13 (0.11)	0.014
452	Abbreviations: $BSI = bloodstream i$	$nfection \cdot SD = stand$	lard deviation	

452 Abbreviations: BSI = bloodstream infection; SD = standard deviation.

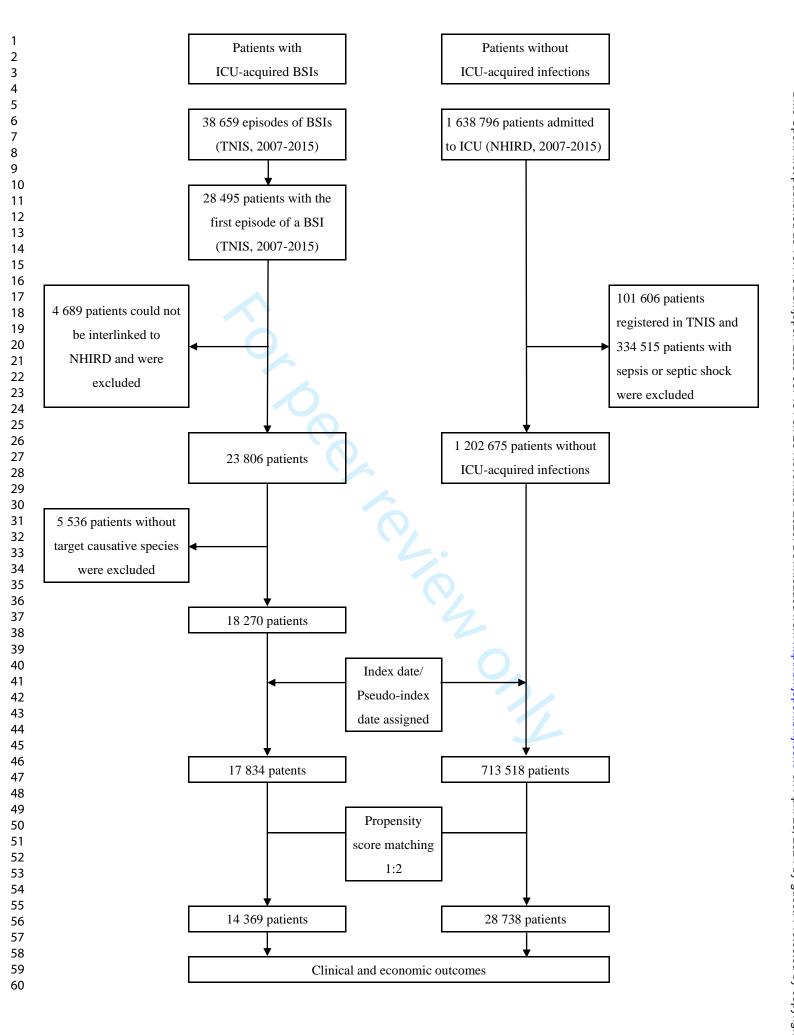
3 4

24

3 1	Fable 2. Clinical and economic outcomes amo		Full cohort		0	Matched cohort	
_		ICU patients Comparison			ICU patients	Comparison	
(Outcomes	with BSI	cohort	<i>P</i> -value	with BSI	cohort	<i>P</i> -value
1	No. of patients	17,834	713,518		14,369	28,738	
(Clinical outcomes				14,369 from http://bmjop 6,377 (444.58)		
	In-hospital mortality, n (%)	8,639 (48.44)	65,282 (9.15)	< 0.0001	6,377 (44. <u>3</u> 8)	9,627 (33.50)	< 0.000
	14-day mortality, n (%)	5,693 (31.92)	54,998 (7.71)	< 0.0001	4,367 (30.39)	6,860 (23.87)	< 0.000
ł	Economic outcomes				on April 23, 200		
	Length of hospitalization after the index	18 (6, 40)	6 (3, 13)	< 0.0001	18 (7, 3%)	10 (4, 21)	< 0.000
	date/pseudo-index date, days, median				g		
	(IQR)				uest. Protected by copyright.		

				BMJ Open		mjopen-20			Page 32 of 52
1 2 3 4		Cost of hospitalization (USD) ^{<i>a</i>} , median	19 457	4 071	< 0.0001	mjopen-2020-037484.gn 16,086n	10,731	< 0.0001	
5		Cost of nospitalization (USD) [*] , incutan	18,457	4,971	< 0.0001	10,080g 8	10,751	< 0.0001	
6 7 8		(IQR)	(10,938, 30,778)	(2,770, 8,598)		(9,706, 26,≹31) (6,375, 16,910)		
9 10 11 12	454	Abbreviations: ICU = intensive care unit; BSI				20. [
13 14	455	^a The costs are standardized and presented as th	ne values in 2017.			Jownli			
15						oadec			
16 17						1 from			
18 19						o http			
20						o://bn			
21 22						njope			
23						en.br			
24 25						nj.cc			
26) m			
27 28						JI A			
28 29						oril 2			
30						3, 20			
31 32						024			
33						by g			
34						uest			
35 36						: Pr			
37						otec			
38						ted I			
39 40						ьу о			
41						opyr		31	
42						.ight			
43 44		For peer	r review only - http://bmj	jopen.bmj.com/site/	'about/guide	lines.xhtml			
45									
10									

	Pathogen groups	Odds ratio (95% Confidence interval)				
	(Number of patients)	In-hospital mortality	14-days mortality			
	MDR Gram-negative bacteria (2,255)	1.97 (1.76, 2.21)	1.65 (1.47, 1.85)			
	MDR Gram-positive bacteria (1,440)	1.90 (1.64, 2.19)	1.32 (1.14, 1.53)			
	Acinetobacter baumannii (1,775)	1.48 (1.30, 1.68)	1.39 (1.21, 1.59)			
	Pseudomonas aeruginosa (861)	1.62 (1.35, 1.95)	1.74 (1.43, 2.11)			
	Enterobacteriaceae ^b (3,581)	1.53 (1.40, 1.68)	1.28 (1.16, 1.41)			
	Staphylococcus aureus (1,733)	1.69 (1.47, 1.94)	1.15 (0.99, 1.33)			
	Enterococcus species ^c (1,287)	1.75 (1.50, 2.04)	1.50 (1.28, 1.76)			
	Candida albicans (958)	2.39 (2.00, 2.85)	1.84 (1.54, 2.20)			
	Non-albicans Candida ^d (704)	1.95 (1.59, 2.38)	1.47 (1.19, 1.81)			
457	57 Abbreviations: MDR = multiple drug resistance.					
458	^a Only patients with bloodstream infections involving a single pathogen were included in t					
459	analysis.					
460	^b Enterobacteriaceae included Escherici	hia coli, Klebsiella pneum	oniaea, Enterobacter			
461	cloacae, Enterobacter aerogenesa, and	l Serratia marcescens.				
462	^c Enterococcus species included Entero	coccus faecium, Enteroco	<i>ccus faecalis,</i> and oth			


1 2		
3 4 5	464	^d Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida
6 7 8	465	glabrata.
9 10 11	466	
12 13 14	467	
$\begin{array}{c} 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 90\\ 41\\ 43\\ 44\\ 56\\ 61\\ 52\\ 53\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$		tor occr textice only

age 35 of 52		BMJ Open	mjopen-20
468	Table 4. Economic outcomes for	the various pathogen groups.	mjopen-2020-037484 on 2
		Beta (95% Co	nfidence interval)
0 1 2 3 4	Pathogen groups	Length of hospitalization after the index date (days)	Cost of hospitalization (USD)
5 6 7	MDR Gram-negative bacteria	10.76 (8.82, 12.70)	7,397 (6,514, 8,279)
	MDR Gram-positive bacteria	13.36 (10.46, 16.25)	5,695 (4,706, 6,504)
	Acinetobacter baumannii	10.14 (8.49, 11.80)	7,331 (6,401, 8,261)
	Pseudomonas aeruginosa	9.68 (7.49, 11.88)	6,187 (5,043, 7,330) 9
	Enterobacteriaceae ^b	14.96 (13.29, 16.63)	7,3 <u>3</u> 2 (6,784, 7,960)
	Staphylococcus aureus	14.96 (12.81, 17.10)	4,827 (4,147, 5,547)
	Enterococcus species ^c	10.57 (7.78, 13.35)	7,354 (6,387, 8,321) P
	Candida albicans	11.01 (8.6, 13.42)	9,1455 (7,929, 10,361)
		For peer review only - http://bmjopen.bmj.com/site/a	about/guidelines.xhtml

			BMJ Open	mjopen.	Page 36 of 52
1				-2020-03	
2 3 4 5		Non-albicans Candida ^d	14.19 (10.31, 18.08)	11,3 4 4 (9,850, 12,838)	
6 7 8	469	Abbreviations: MDR = multiple dru	ig resistance.	S Novemt	
9 10 11	470	^a Only patients with bloodstream inf	ections involving a single pathogen were included in the	nis analysis.	
12 13 14	471	^b Enterobacteriaceae included Esche	richia coli, Klebsiella pneumoniaea, Enterobacter cloa	ucae, Enterobacter $\frac{\nabla}{S}$	tia
15 16 17	472	marcescens.		aded from	
18 19 20	473	^c Enterococcus species included Enter	erococcus faecium, Enterococcus faecalis, and other E	<u> </u>	
21 22 23	474	^d Non-albicans Candida included Ca	andida tropicalis, Candida parapsilosis, and Candida g	zlabrata.	
24 25 26	475			j.com/ o	
27 28 29	476			glabrata.	
30 31 32	477			3, 2024 b	
33 34 35					
36 37 38				Protecte	
39 40				Protected by copyright.	35
41 42 43 44 45			For peer review only - http://bmjopen.bmj.com/site/about	/guidelines.xhtml	

Page	37 of 52	표. BMJ Open 응	
1 2 3		BMJ Open BMJ Open FIGURE LEGENDS Figure 1. Flow diagram of the study design.	
4 5 6	478	FIGURE LEGENDS 9	
7 8 9	479	Figure 1. Flow diagram of the study design.	
10 11 12	480	er 2020. I	
13 14 15	481	2020. Download	
16 17 18	482	Abbreviations: ICU = intensive care unit; BSI = bloodstream infection; TNIS = Taiwan Nosocomial Infection Surveillance; NHIRD = Nation	nal
19 20 21	483	Health Insurance Research Database.	
22 23 24	484	open.bm	
25 26 27	485	Son on	
28 29 30	486	April 23,	
31 32 33	487	2024 by	
34 35 36	488	guest. P	
37 38 39	489	otected t	
40 41			36
42 43 44		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
45 46			

		표· BMJ Open	Page 38 of 52
1 2		2020-037484	
3 4	490	SUPPLEMENTARY FILES:	
5	490	SUFFLEMENTART FILES:	
6 7 8	491	Supplementary Table 1. The number of episodes of intensive care unit-acquired bloodstream infections caused by common pathogens before	
9 10 11	492	enrollment and the number of patients infected after matching.	
12 13 14 15	493	Download	
16 17 18	494	Supplementary Table 2. Propensity score model results of probability of bloodstream infections among intensive care unit patients and matched	
19 20 21	495	comparison cohort.	
22 23 24	496	pen.bmj	
25 26	497	Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and antimicrobial agents used to gefine drug resistance.	
27 28 29 30	498	on April 23,	
31 32 33	499	Supplementary Table 4. The economic outcomes among patients with bloodstream infections and comparison \mathbf{x} cohort who survived to the	
34 35 36	500	discharge.	
37 38		otected t	
39 40 41		Protected by copyright 37	
42 43 44 45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 Supplementary Table 1. The number of episodes of intensive care unit-acquired

2 bloodstream infections caused by common pathogens before enrollment and the

3 number of patients infected after matching.

	No. of BSI episodes	No. of patients after
	before enrollment ^a	matching ^b
Acinetobacter baumannii	5,214	1,775
Staphylococcus aureus	4,382	1,733
Klebsiella pneumoniae	3,965	1,376
Pseudomonas aeruginosa	2,619	861
Candida albicans	2,554	958
Escherichia coli	2,287	850
Enterobacter cloacae	1,982	755
Enterococcus faecium	1,950	653
Stenotrophomonas maltophilia	1,599	465
Enterococcus faecalis	1,427	422
Serratia marcescens	1,239	437
Candida tropicalis	890	332
Burkholderia cepacia	808	252
Other Enterococcus species ^c	688	212
Elizabethkingia meningoseptica	659	177
Chryseobacterium indologenes	553	154
Candida parapsilosis	534	177
Candida glabrata	461	195
Enterobacter aerogenes	419	163

4 Abbreviations: BSI= bloodstream infection.

5 ^aThe number of episodes of bloodstream infections with known pathogens was 38,659.

- 6 Coagulase-negative staphylococci was excluded from analyses due to possibility of
- 7 contamination. One episode may have multiple pathogens. There were 30,697 episodes of
- 8 bloodstream infections caused by the pathogens listed above.
- 9 ^bThe number of patients enrolled case was 14,369 (Table 1) but only patients with
- 10 bloodstream infections caused by a single pathogen was counted here (Table 3 and 4) and it
- 11 was 11,947. There were 2,422 patients with bloodstream infections caused by multiple
- 12 pathogens.
- *•Enterococcus species* other than *Enterococcus faecium* and *Enterococcus faecalis*.

15 Supplementary Table 2. Propensity score model results of probability of bloodstream

16 infections among intensive care unit patients and matched comparison cohort.

Estimate -0.002 0.010	Odds ratios 0.998 1.010	inter Lower 0.997 0.997	val Upper 1.000 1.023	<i>P</i> -value
	0.998	0.997	1.000	
0.010	1.010	0.997	1.023	0 131
0.010	1.010	0.997	1.023	0 131
5				0.101
5				
	1.000			
0.313	1.367	1.251	1.494	< 0.000
0.474	1.606	1.468	1.758	< 0.000
0.450	1.569	1.432	1.718	< 0.000
0.553	1.739	1.579	1.915	< 0.000
0.440	1.552	1.402	1.719	< 0.000
0.335	1.398	1.254	1.558	< 0.000
0.193	1.212	1.082	1.359	0.001
0.144	1.155	1.025	1.301	0.018
	1.000			
0.015	1.015	0.919	1.122	0.768
-0.014	0.986	0.895	1.087	0.782
-0.021	0.979	0.887	1.080	0.670
0.034	1.034	0.936	1.142	0.507
0.083	1.087	0.983	1.202	0.104
	0.474 0.450 0.553 0.440 0.335 0.193 0.144 0.015 -0.014 -0.021 0.034	0.3131.3670.4741.6060.4501.5690.5531.7390.4401.5520.3351.3980.1931.2120.1441.1551.0000.0151.015-0.0140.986-0.0210.9790.0341.034	0.3131.3671.2510.4741.6061.4680.4501.5691.4320.5531.7391.5790.4401.5521.4020.3351.3981.2540.1931.2121.0820.1441.1551.0251.0000.0151.0150.919-0.0140.9860.895-0.0210.9790.8870.0341.0340.936	0.3131.3671.2511.4940.4741.6061.4681.7580.4501.5691.4321.7180.5531.7391.5791.9150.4401.5521.4021.7190.3351.3981.2541.5580.1931.2121.0821.3590.1441.1551.0251.3011.0000.0151.0150.9191.122-0.0140.9860.8951.087-0.0210.9790.8871.0800.0341.0340.9361.142

Page 43 of 52

BMJ Open

2						
2 3 4	Jul	0.054	1.056	0.955	1.167	0.287
5 6	Aug	0.097	1.101	0.997	1.217	0.058
7 8	Sep	0.112	1.118	1.010	1.238	0.032
9 10 11	Oct	-0.012	0.988	0.892	1.094	0.816
12 13	Nov	-0.020	0.981	0.885	1.087	0.708
14 15	Dec	-0.106	0.900	0.812	0.997	0.044
16 17	Male	0.016	1.017	0.973	1.062	0.463
18 19 20	Monthly income, USD					
21 22	Dependent		1.000			
23 24	<657.33	0.026	1.026	0.958	1.100	0.461
25 26 27	657.33-1504.60	-0.013	0.987	0.920	1.059	0.721
28 29	>1504.60	0.089	1.093	0.979	1.220	0.114
30 31	Urbanization level					
32 33 34	1 (urban)		1.000			
35 36	2	-0.016	0.984	0.929	1.042	0.584
37 38	3	-0.042	0.959	0.894	1.028	0.239
39 40 41	4 (rural)	-0.019	0.982	0.927	1.039	0.522
41 42 43	Hospital level					
44 45	Level I (Medical center)		1.000	2		
46 47 48	Level II (Regional					
48 49 50	hospital)	-0.018	0.982	0.931	1.036	0.512
51 52	Level III (Local hospital)	-0.016	0.985	0.836	1.160	0.852
53 54	Charlson Comorbidity Index					
55 56 57	score					
57 58 59	0		1.000			
60						

1	0.107	1.113	1.032	1.201	0.00
2	0.240	1.272	1.176	1.375	< 0.00
≥3	0.293	1.340	1.222	1.469	< 0.00
Comorbidities					
Diabetes mellitus	0.002	1.002	0.951	1.056	0.92
Cerebrovascular disease	-0.029	0.972	0.902	1.046	0.44
Hypertension	-0.001	0.999	0.950	1.049	0.95
Myocardial infarction	0.015	1.015	0.829	1.243	0.88
Heart failure	-0.037	0.964	0.883	1.052	0.40
Peripheral vascular					
disease	-0.018	0.982	0.891	1.082	0.71
Liver disease	-0.043	0.958	0.891	1.030	0.24
Chronic kidney disease	-0.070	0.932	0.862	1.009	0.08
Dyslipidemia	-0.017	0.984	0.919	1.053	0.63
Cancer	-0.122	0.885	0.831	0.943	< 0.00
Number of dysfunctional					
organs					
0		1.000	7		
1	0.136	1.146	0.991	1.324	0.06
2	0.192	1.211	0.921	1.593	0.17
≥ 3	-0.167	0.846	0.555	1.291	0.43
Use of inotropic agents	0.103	1.109	0.883	1.393	0.37
Use of steroid	-0.001	0.999	0.454	2.197	0.99
Use of ventilator (> 3 days)	0.190	1.209	0.851	1.719	0.29
Emergent renal replacement	0.051	1.053	0.915	1.211	0.47

18 Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and

19 antimicrobial agents used to define drug resistance.

Pathogens	Antimicrobial categories	Antimicrobial agents
		Gentamicin
		Tobramycin
	Aminoglycosides	Amikacin
		Netilmicin
		Imipenem
	Carbapenems	Meropenem
		Doripenem
Acinetobacter		Ciprofloxacin
<i>baumannii</i> ^a	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β -lactamase inhibitors	Ticarcillin-clavulanic aci
	Ċ,	Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime
		Ceftriaxone
		Gentamicin
		Tobramycin
Pseudomonas	Aminoglycosides	Amikacin
aeruginosaª		Netilmicin
	Calenary	Imipenem
	Carbapenems	Meropenem

		Doripenem		
	Elucrominalonea	Ciprofloxacin		
	Fluoroquinolones	Levofloxacin		
	Antipseudomonal penicillins +	Piperacillin-tazobactam		
	β-lactamase inhibitors	Ticarcillin-clavulanic aci		
		Cefepime		
	Antipseudomonal cephalosporins	Cefpirome		
		Ceftazidime		
	6	Gentamicin		
	Aminoglygogidas	Tobramycin		
	Aminoglycosides	Amikacin		
		Netilmicin		
Frederick redering on a		Imipenem		
Enterobacteriaceae ^a	Carbapenems	Meropenem		
(Escherichia coli,		Doripenem		
Klebsiella pneumoniae, Enterobacter cloacae		Ertapenem		
Enterobacter	Elucroquinclones	Ciprofloxacin		
aerogenes, or Serratia	Fluoroquinolones	Levofloxacin		
marcescens)	Antipseudomonal penicillins +	Piperacillin-tazobactam		
mar ceseens j	β-lactamase inhibitors	Ticarcillin-clavulanic aci		
		Cefotaxime		
	Extended-spectrum cephalosporins	Cefepime		
	Extended-spectrum ceptialosporiiis	Cefpirome		
		Ceftazidime		

			Ceftriaxone
	Staphylococcus	Glycopeptides	Vancomycin
	aureus ^b	β-lactamase-resistant penicillins	Oxacillin
	Enterococcus faecium,		
	Enterococcus faecalis,	Characteristic	
	or other Enterococcus	Glycopeptides	Vancomycin
	species ^b		
20	^a Drug resistance was d	efined as being non-susceptible to \geq	a 1 agent in \geq 3 antimicrobial
21	categories.		
22	^b Drug resistance was d	efined as being non-susceptible to \geq	1 agent.

Page 49 of 52				mjopen-200
1 2 3 4 5	23 24	Supplementary Table 4. The economic outcomes among patients wi the discharge. ^a	th bloodstream infections and com	on
6 7	25	···· ·································		26 Nc
7 8 9	26	Clinical outcomes	beta (95% Confidence interval) ^b	P-value
10	27	Length of hospitalization after the index date/pseudo-index date, days	19.38 (18.57, 20.2)	<u>e</u> 20<0.0001
11 12 13 14	28 29	Cost of hospitalization, USD	8,829 (8,428, 9,231)	Q<0.0001
15 16	30	^a A total of 7,992 of patients with intensive care uit-acquired bloodstream	n infections and 19,111 comparators	gurvived to the discharge.
 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 	31	^b Adjusted imbalanced variables in Table 1.	n infections and 19,111 comparators	rom http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.
42 43 44		For peer review only - http://bmjoper	n.bmj.com/site/about/guidelines.xhtml	nht.

3 4

24

		on 26
Pathogen groups	9-year excessive hospita	lization or healthcare cost
(Numbers of patients) ^a	Length of hospitalization after the index date (days) ^b	کو Cost ognospitalization (USD) ^{b, c} کو
All pathogens (38,659)	495,222	<u>a</u> 297,515,798
MDR Gram-negative bacteria (6,825)	87,428	ق 52,524,518
MDR Gram-positive bacteria (4,176)	53,495	
Acinetobacter baumannii (5,214)	66,791	40,126,423
Pseudomonas aeruginosa (2,619)	33,549	32,138,078 40,126,423 20,155,562 73,003,307 33,723,434
Enterobacteriaceae ^d (9,486)	121,516	9 9 73,003,307
Staphylococcus aureus (4,382)	56,133	33,723,434
Enterococcus species ^e (4,045)	51,816	
Candida albicans (2,554)	32,717	2023 31,129,916 19,655,329 14,406,725 Ted by copyright
Non-albicans Candida ^f (1,872)	23,980	אַ ד 14,406,725

Page 51 of 52		BMJ Open BMJ Open 2020-03
1		
2 3 4 5 6 7 8 9 10 11 12 13 14 15	36	^a The number of all episodes of intensive care unit-acquired bloodstream infections caused by designated path $\frac{34}{100}$ gens during 2007-2015. The
	37	incluson and exclusion criteira in the method section were not applied in this Table (see Figure 1).
	38	^b The 9-year excessive hospitalization was calculated by multiplying the number of episodes during 9-year ingected by the designated pathogen(s)
	39	and the average excessive hospitalization per case with the designated pathogen(s). The average excessive hospitalization per case was
	40	difference of average hospitalization duration between the case with the designated pathogen(s) and their matched comparison. The average
	41	hospitalization duration in bloodstream infection group was the sum of total hospitalization duration divided $\frac{1}{8}$ y the number of case and so was
16 17 18	42	that in matched control group.
19 20	43	Ave _{Hospitalization} per case= [(sum of hospitalization length)/the number of patients].
21 22	44	Excessive Ave _{Hospitalization} per person= (Ave _{Hospitalization} in bloodstream infection group) - (Ave _{Hospitalization} in consequence).
23 24 25	45	Total excessive hospitalization length over 9 years = (excessive Ave _{Hospitalization} per person) \times (total number of episodes over 9 years)
25 26 27 28 29 30 31 32 33 34	46	The 9-year excessive healthcare cost was calculated similarly.
	47	^c The costs are standardized and presented the values in 2017.
	48	^d Enterobacteriaceae included Escherichia coli, Klebsiella pneumoniaea, Enterobacter cloacae, Enterobacter Raerogenesa, and Serratia
	49	marcescens.
35 36	50	eEnterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species
37 38 20	51	^e Enterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species ^f Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida glabrata.
39 40 41		8 9 9 12
42		
43 44 45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Open	Pag
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cottort studies</i>	
Section/Topic	Item #	Recommendation 26	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	#1
		금 (b) Provide in the abstract an informative and balanced summary of what was done and what was ຜິund	#3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	#6-7
Objectives	3	State specific objectives, including any prespecified hypotheses	#6-7
Methods			
Study design	4	Present key elements of study design early in the paper	#8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	#8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	#9
		(b) For matched studies, give matching criteria and number of exposed and unexposed	#9
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	#10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	#9-10
Bias	9	Describe any efforts to address potential sources of bias	#9-10
Study size	10	Explain how the study size was arrived at	#8-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	#9-10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	#11-12
		(<i>a</i>) Describe all statistical methods, including those used to control for confounding	#10-11
			#8-10
		(c) Explain how missing data were addressedOriginal(d) If applicable, explain how loss to follow-up was addressedOriginal	#8-10
		(e) Describe any sensitivity analyses	#11
Results			

 mjopen-2020-

Å

copyright.

		<u></u>	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine of individuals at each stage of study—eg numbers potentially eligible, examine of the stage of study and the study and th	#13
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#13
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	#13-14
		confounders B	
		(b) Indicate number of participants with missing data for each variable of interest	#13-14
		(c) Summarise follow-up time (eg, average and total amount)	#13-14
Outcome data	15*	Report numbers of outcome events or summary measures over time	#13-14
Main results		(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence	#13-14
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	#13-14
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	#13-14
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	#13-14
Discussion			
Key results	18	Summarise key results with reference to study objectives	#15
Limitations		n.b	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	#17-18
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	#17-18
Other information		April	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	#20-21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in the function of the studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine@rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan: A nationwide population-based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037484.R1
Article Type:	Original research
Date Submitted by the Author:	22-Sep-2020
Complete List of Authors:	Wang, Yung-Chih; National Defense Medical Center, Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine Shih, Shu-Man; National Health Research Institutes, Institute of Population Health Sciences Chen, Yung-Tai; Taipei City Hospital Heping Fuyou Branch, Department of Medicine Hsiung, Chao Agnes; National Health Research Institutes, Institute of Population Health Sciences Kuo, Shu-Chen; National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Infectious diseases, Intensive care
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, MICROBIOLOGY, INFECTIOUS DISEASES, HEALTH ECONOMICS, INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

Article category: Original research

1	
2	
3	
4	
5	
6	
7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
20	
∠ I วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54 55	
55 56	
57	
58	
59	
60	

1

2	
3	Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections
4	in Taiwan: A nationwide population-based retrospective cohort study
5	Yung-Chih Wang, MD, PhD ¹ ; Shu-Man Shih ² ; Yung-Tai Chen, MD ^{3,4} ; Chao A. Hsiung,
6	PhD ² ; Shu-Chen Kuo, MD, PhD ^{5*}
7	
8	¹ Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine,
9	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
10	² Institute of Population Health Sciences, National Health Research Institutes, Miaoli County,
11	Taiwan
12	³ Divisions of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
13	⁴ Department of Medicine, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
14	⁵ National Institute of Infectious Diseases and Vaccinology, National Health Research
15	Institutes, Miaoli County, Taiwan
16	
17	Correspondence to:
18	Shu-Chen Kuo. MD, PhD
19	National Institute of Infectious Diseases and Vaccinology, National Health Research

· · · ·
ctions in Taiwan

2
3
1
4
5
6
7
8
9
10
11
12
12
12 13 14 15 16
14
15
16
17
18
18
19 20
20
21
22
22
23
24
25
26
27
28
29
30
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
56
57
57
58
59
60

35	ABSTRACT
36	Objectives: To estimate the clinical and economic impact of intensive care unit-acquired
37	bloodstream infections in Taiwan.
38	Design: Retrospective cohort study.
39	Setting: Nationwide Taiwanese population in the National Health Insurance Research
40	Database and the Taiwan Nosocomial Infections Surveillance (2007-2015) dataset.
41	Participants: The first episodes of intensive care unit-acquired bloodstream infections in
42	patients \geq 20 years of age in the datasets. Propensity score-matching (1:2) of demographic
43	data, comorbidities, and disease severity was performed to select a comparison cohort from a
44	pool of intensive care unit patients without intensive care unit-acquired infections from the
45	same datasets.
46	Primary and secondary outcome measures: The 14-day mortality rate, length of
47	hospitalization, and healthcare cost.
48	Results: After matching, the in-hospital mortality of 14,234 patients with intensive care
49	unit-acquired bloodstream infections was 44.23%, compared to 33.48% for 28,468 intensive
50	care unit patients without bloodstream infections. The 14-day mortality rate was also higher
51	in the bloodstream infections cohort (4,323, 30.37% vs. 6,766 deaths, 23.77%, respectively; p
52	< 0.001). Furthermore, the patients with intensive care unit-acquired bloodstream infections
53	had a prolonged length of hospitalization after their index date (18 days[IQR 7-39] vs. 10

1 2	
3	
4 5	5
6 7	
7 8	5
9	
10	5
11 12	
13	5
14 15	
16	5
17	Ū
18 19	5
20	J
21 22	~
23	6
24 25	_
25 26	6
27	
28 29	6
30	
31 32	6
33	
34	6
35 36	
37	
38 39	
40	
41	
42 43	
44	
45 46	
40 47	
48	
49 50	
51	
52 53	
54	
55	
56 57	
58	
59	

54	days [IQR 4–21], respectively; $p < 0.001$) and a higher healthcare cost (16,038 US dollars
55	[IQR 9,667–25,946] vs. 10,372 US dollars [IQR 6,289–16,932], respectively; p < 0.001). The
56	excessive hospital stay and healthcare cost per case were 12.69 days and 7,669 US dollars,
57	respectively. Similar results were observed in subgroup analyses of various World Health
58	Organization's priority pathogens and Candida spp.
59	Conclusions: Intensive care unit-acquired bloodstream infections in critically ill patients
60	were associated with increased mortality, longer hospital stays, and higher healthcare costs.
61	
62	
63	Keywords: bloodstream infection; healthcare costs; hospital stay; intensive care unit;
64	mortality.

66 STRENGTHS AND LIMITATIONS OF THIS STUDY

- 1. A large number of patients obtained from Nationwide Taiwanese population from two
- 68 datasets in Taiwan were included.
- 69 2. Propensity score-matching was performed to select a comparison cohort.
- 3. The 14-day and 28-day mortality rate, length of hospitalization, and healthcare cost were
- 71 analyzed.
 - 72 4. Subgroup analyses of several drug-resistant pathogens were conducted.
 - 73 5. The retrospective design may include some unmeasurable bias.

2	
3	
4	
5	
6 7	
7 8	
9	
10	
11	
12	
13	
14	
16	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
18	
19	
19 20 21 22 23	
22	
23	
24	
25	
26	
22 23 24 25 26 27 28	
29	
29 30	
~ 4	
 31 32 33 34 35 36 37 38 	
33 34	
35	
36	
37	
38 39	
39 40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57 58	
58 59	
60	

74 BACKGROUND

75	Critically ill patients in intensive care units (ICUs) are vulnerable to various infections,
76	and these can lead to increased morbidity, mortality, and healthcare costs. Bloodstream
77	infections (BSIs) are one of the most common infections acquired by ICU patients. It was
78	reported that BSIs affected approximately 7 % of patients admitted to ICUs.[1] Previous
79	studies have shown that ICU-acquired BSIs resulted in attributable mortality of 24.8%,[2]
80	extended hospital stays by 13.5 days[3] and the cost of treatment was approximately 12,321
81	US dollars per case. Moreover, despite advances in medical care and the development of new
82	therapies, the outcome of BSIs in critically ill patients is adversely affected by a greater
83	number of vulnerable hosts and the emergence of drug-resistant pathogens.
84	Discrepancies regarding the impact of pathogens on mortality have been reported.
85	However, worse clinical outcome and higher economic burden have been reported for
86	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving
87	third-generation cephalosporin-resistant Enterobacteriaceae have been shown to significantly
88	increase mortality risk compared to BSIs involving susceptible strains.[4] Moreover,
89	candidemia has been associated with a 4-fold increase in mortality, while Staphylococcus
90	aureus BSIs doubled the risk of mortality.[1] Meanwhile, the clinical impact of Enterococci
91	remains a controversial topic.[5-7] Therefore, it is important not only to describe the clinical
92	and economic impact of infections, but also to decipher the impact of individual pathogens.

1
ว
2
2
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
21
∠ I วว
2 3 4 5 6 7 8 9 10 11 13 14 15 17 18 20 21 22 24 25 267 28 30 312 33 34 35
23
24
25
26
27
28
29
30
21
21
32
33
31 32 33 34 35 36 37
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
74
55
56
57
58

93	Due to the limited number of cases and the complex clinical characteristics of critically ill				
94	patients, previous studies have reported either clinical or economic outcomes, have focused				
95	on several species of pathogens, or have assessed only a limited number of pathogens. In the				
96	present study, a health insurance database and a nationwide surveillance system for				
97	healthcare-associated infections were used to estimate the clinical and economic				
98	consequences of ICU-acquired BSIs caused by different pathogens in a large number of				
99	patients in Taiwan. In addition, the impact of individual pathogens, especially				
100	antibiotic-resistant bacteria on the World Health Organization (WHO) priority list,[8] were				
101	investigated.				
	investigated.				

1 2		
3 4 5	102	METHODS
6 7 8	103	Data sources
9 10 11	104	Two datasets, the National Health Insurance Research Database (NHIRD) and the
12 13 14	105	Taiwan Nosocomial Infection Surveillance (TNIS) dataset, were used in this study.
15 16 17	106	Demographic data, diagnoses (according to the International Classification of Diseases, 9th
18 19 20	107	Revision, Clinical Modification [ICD-9-CM]), procedures, and medications for patients
21 22 23	108	enrolled in Taiwan's national insurance system have been collected in the NHIRD since
24 25 26	109	1995.[9] In 2007, the TNIS was launched by the Taiwan Centers for Disease Control to
27 28 29	110	evaluate the epidemiologic trend of healthcare-associated infections in the ICUs in Taiwan.
30 31 32	111	The latter is a web-based surveillance system which collects clinical information of patients
33 34 35	112	with healthcare-associated infections from the ICUs of participating hospitals. This
36 37 38	113	information includes demographic data, infection foci, causative pathogens, and antimicrobial
39 40 41	114	susceptibility results. Participation in TNIS is essential for the hospital accreditation in
42 43 44	115	Taiwan.
45 46 47	116	Both datasets were deposited in a database maintained by the Health and Welfare Data
48 49 50	117	Science Center, Ministry of Health and Welfare. Individual personal identification numbers
51 52 53	118	were encrypted so that data from the NHIRD and TNIS datasets could be interlinked. The
54 55 56	119	institutional review board of the National Health Research Institutes approved this study
57 58 59 60	120	(EC1051207-R4).

1 2		
3 4 5	121	
6 7 8 9 10 11 12 13 14 15 16 17	122	Study population, data collection, and propensity-score matching
	123	This retrospective cohort study enrolled adult patients who underwent ICU
	124	hospitalization between 2007 and 2015 in Taiwan. From the entries in the TNIS database, we
	125	identified all of the patients whose first episode of an ICU-acquired BSI occurred during the
18 19 20	126	study period. Coagulase-negative Staphylococci are often been identified in the ICUs but a
21 22 23	127	certain proportion is associated with contamination; therefore, these cases were not included
24 25 26	128	in our analysis. We included species that constituted > 1 % of known bloodstream pathogens
27 28 29 30 31 32	129	(Supplementary Table 1), which constituted 79.4% of all ICU-acquired BSI episodes. The
	130	index date for each case was defined as the date on which a positive blood culture result was
33 34 35	131	obtained. The encrypted personal identification numbers of included patients were interlinked
36 37 38	132	with NHIRD to retrieve their demographic data, comorbidities, procedures, and medications.
39 40 41	133	For comparison, we identified ICU patients who did not have ICU-acquired infections
42 43 44	134	registered in TNIS database. In addition, patients with a discharge diagnosis of sepsis
45 46 47 48 49 50 51 52 53	135	(ICD-9-CM: 038.X, 995.91), severe sepsis (ICD-9-CM: 995.92), or septic shock (ICD-9-CM:
	136	785.52) in the comparison cohort, but not in the BSI group, were also excluded. The pool of
	137	comparison patients was created for selection of those with the same admission date as any
54 55 56	138	patient with ICU-acquired BSI. Because the comparison patients did not have index date of
57 58 59 60	139	acquisition of infection, they were assigned "pseudo-index dates" during hospitalization,

Page 11 of 54

-	140	which was selected from the index date of patients with the same day of hospitalization in the
) , }	141	BSI group. Baseline variables and those associated with ICU-acquired BSIs were first
0	142	selected. Propensity scores were then calculated for the likelihood of ICU-acquired BSIs by
2 3 4	143	multivariate logistic regression analysis. Variables were removed from the multivariable
5 6 7	144	model in a stepwise fashion. We used 1:2 greedy matching[10] within a caliper width equal
8 9 0	145	to 0.1 of the standard deviation of the logit of the propensity score. Propensity scores were
2 2 3 4	146	then calculated for the likelihood of ICU-acquired BSIs by using baseline covariates and
25 26 27	147	multivariate logistic regression analysis (Supplementary Table 2). Patient data from January
.7 8 9	148	2005 were used to ensure that individuals were followed for at least two years prior to their
1 2 3	149	selection for this study in order to confirm comorbidities[11] and for matching purposes.
4 5 6	150	
7 8	151	Patient and Public Involvement
9 0 1	152	Patients and the public were not directly involved in the planning of this study.
2 3 4	153	
-5 -6 -7	154	Outcome measurements
8 9 0	155	Clinical outcomes included in-hospital, 14-day, and 28-day mortality rate after the index
1 2 3	156	date/pseudo-index date. Economic outcomes included hospitalization length after the index
4 5 6	157	date/pseudo-index date and cost of overall hospitalization. Hospitalization length was defined
7 8 9 0	158	as the duration of hospital stay after the index date/pseudo-index date. The overall cost of
		10

1 2		
3 4 5	159	hospitalization was calculated. The costs were standardized and presented in values from
6 7 8	160	2017.
9 10 11 12	161	
12 13 14 15	162	Subgroup analysis
16 17 18	163	To evaluate the clinical and economic impact of ICU-acquired BSIs caused by different
19 20 21	164	pathogens, we performed analyses on patients infected with single pathogen. For example,
22 23	165	the impact of WHO priority bacteria and Candida were examined separately, as was the
24 25 26	166	impact of drug resistance in these bacteria. We included patients whose first episode of an
27 28 29	167	ICU-acquired BSI were caused by bacteria on the WHO priority list or <i>Candida</i> . Therefore,
30 31 32	168	the clinical and economic outcomes of patients with Acinetobacter baumannii, Pseudomonas
33 34 35	169	aeruginosa, common Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae,
36 37 38	170	Enterobacter species, and Serratia marcescens), S. aureus, Enterococcus species, Candida
39 40 41	171	albicans, and non-albicans Candida (Candida tropicalis, Candida parapsilosis, and Candida
42 43 44	172	glabrata) were determined.
45 46 47	173	The definition of multiple drug resistance (MDR) of WHO priority bacteria according to
48 49 50	174	the European Centre for Disease Prevention and Control (ECDC) was modified[12]
51 52 53	175	(Supplementary Table 3). In this study, non-susceptibility to at least one agent in at least
54 55 56	176	three antimicrobial categories in Gram-negative bacteria was defined as MDR. Oxacillin- and
57 58 59 60	177	vancomycin-non-susceptible S. aureus and vancomycin-non-susceptible Enterococcus

1 2 3		
4 5 6	178	species were considered MDR Gram-positive bacteria.
6 7 8 9	179	
10 11	180	Sensitivity analysis
12 13 14	181	To avoid competing risk between mortality and length of hospitalization/healthcare cost,
15 16 17	182	we included patients who survived to discharge. For these patients, length of hospitalization
18 19 20	183	after the index date/pseudo-index date and hospitalization costs were determined.
21 22 23	184	
24 25 26	185	Statistical analysis
27 28 29	186	Descriptive statistics were used to examine baseline demographic and clinical
30 31 32	187	characteristics of the ICU patients included in this study. To account for potential
33 34 35	188	confounding biases among the study cohort, propensity score matching analysis was
36 37 38	189	performed. Propensity scores were calculated with multivariate logistic regression.
39 40 41	190	Standardized differences between the two groups with differences less than 0.1 were
42 43 44	191	confirmed in order to assess baseline characteristics. The Mann-Whitney U test was used to
45 46 47	192	evaluate economic outcomes and the Chi-squared test was used to evaluate mortality rate.
48 49 50	193	Conditional logistic regression was used to calculate odds ratios (ORs) to evaluate risk of
51 52 53	194	mortality in patients with BSI and the comparison cohort, while a generalized linear model
54 55 56	195	was used to calculate β values to estimate excess costs and length of hospitalization.
57 58 59 60	196	Variables with a <i>p</i> -value < 0.05 were eligible for inclusion in the model. <i>P</i> -values less than
		12

1 2		
3 4 5	197	0.05 were considered statistically significant. All analyses were performed by using SAS
6 7 8	198	statistical software (version 9.4, SAS Institute Inc., Cary, NC, USA).
8 9		
10 11	199	
12		
13		
14 15		
16		
17 18		
19		
20 21		
22		
23 24		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
40 47		
48 49		
50		
51 52		
53		
54 55		
55 56		
57		
58 59		
60		

RESULTS

1 2	
3 4 5	200
6 7 8	201
9 10 11	202
12 13 14	203
15 16 17	204
18 19 20	205
21 22 23	206
24 25 26	207
27 28 29	208
30 31 32	209
33 34 35	210
36 37 38	211
39 40 41	212
42 43 44	213
45 46 47	214
48 49 50	215
51 52 53	216
54 55 56	217
57 58 59 60	218

200	KESUE15
201	Among 38,659 episodes of ICU-acquired BSIs registered in TNIS during the 9-year
202	study period, 28,495 patients were identified to have their first episode of a BSI. The NHIRD
203	included 1,638,796 patients who underwent ICU hospitalization (Figure 1). After excluding
204	patients whose data could not be interlinked with NHIRD or who did not have target
205	pathogens, 14,234 patients with ICU-acquired BSIs were successfully matched to 28,468
206	ICU patients without ICU-acquired infections (1:2). The demographic and clinical
207	characteristics of the patients with BSI and comparison cohort are presented in Table 1. The
208	groups had standardized differences that were < 10% for all of the continuous and
209	dichotomous categorical variables which were examined.
210	Table 2 lists the clinical and economic outcomes of the ICU patients with BSIs and the
211	comparison cohort. The ICU patients with BSIs suffered a higher in-hospital mortality rate
212	
	(44.23% vs. 33.48%, respectively; $p < 0.001$), a higher 14-day mortality rate (30.37% vs.
213	(44.23% vs. 33.48%, respectively; $p < 0.001$), a higher 14-day mortality rate (30.37% vs. 23.77%, respectively; $p < 0.001$), and a higher 28-day mortality (39.48% vs. 32.28%,
213 214	
	23.77%, respectively; $p < 0.001$), and a higher 28-day mortality (39.48% vs. 32.28%,
214	23.77%, respectively; $p < 0.001$), and a higher 28-day mortality (39.48% <i>vs.</i> 32.28%, respectively; $p < 0.001$). Logistic regression analyses showed that the OR of in-hospital
214 215	23.77%, respectively; $p < 0.001$), and a higher 28-day mortality (39.48% vs. 32.28%, respectively; $p < 0.001$). Logistic regression analyses showed that the OR of in-hospital mortality for the ICU patients with BSIs was 1.67 (95% confidence interval [CI], 1.59–1.75;
214 215 216	23.77%, respectively; $p < 0.001$), and a higher 28-day mortality (39.48% vs. 32.28%, respectively; $p < 0.001$). Logistic regression analyses showed that the OR of in-hospital mortality for the ICU patients with BSIs was 1.67 (95% confidence interval [CI], 1.59–1.75; p < 0.001), and it was 1.42 (95% CI, 1.35–1.49; $p < 0.001$) for for 14-day mortality and 1.41

	219	The ICU patients with BSIs had a longer length of hospitalization after the index date
	220	(18 vs. 10 days, respectively; $p < 0.001$). Moreover, on average, their hospital stay was
0 1 2 3 4	221	extended by 12.69 days (95% CI, 11.92–13.47; $p < 0.001$). The subgroup analyses performed
	222	(Table 4) showed that all of the causative pathogens shared a similar trend. Compared with
5 5 7	223	the patients without ICU-acquired infections, the duration of hospitalization after the index
5 9 0	224	date for those with BSIs caused by MDR bacteria, WHO priority bacteria, or Candida spp.
1 2 3	225	was longer. In addition, hospitalization costs of the ICU patients with BSIs were higher
4 5 5	226	(16,038 vs. 10,372, respectively; $p < 0.001$) (Table 2), with the excess cost being 7,669 US
/ 8 9	227	dollars per patient (95% CI, 7,380–7,958; $p < 0.001$). Table 4 presents the higher costs
) 1 2	228	associated with each of the various causative pathogen.
3 4 5	229	For the ICU patients with BSIs who survived to discharge, their length of hospitalization
5 7 8	230	and healthcare costs were increased by 19.59 days and 8,871 US dollars, respectively,
9 0 1	231	(Supplementary Table 4) compared to the survivors without ICU-acquired infections.
2 3 4		
5 5 7		
8 9		
) 1		
2 3 4		
+ 5 4		
7 8		
-		

DISCUSSION

BMJ Open

1 2	
3 4 5	232
6 7 8 9	233
9 10 11 12	234
12 13 14 15	235
16 17 18	236
19 20 21	237
22 23 24	238
25 26 27	239
27 28 29 30	240
31 32 33	241
34 35 36	242
37 38 39	243
40 41 42	244
42 43 44 45	245
45 46 47 48	246
49 50 51	247
52 53 54	248
54 55 56 57	249
57 58 59 60	250

233	This study demonstrated that ICU patients with BSIs in Taiwan had significantly worse
234	clinical outcomes and higher economic burden than ICU patients without ICU-acquired
235	infections from the same population. For example, the patients with BSI exhibited 1.67-,
236	1.42-, and 1.41-fold increases in in-hospital, 14-day, and 28-day mortality rates, respectively.
237	Per case, the patients with BSI had an excess hospital stay of 12.69 days and cost of 7,669 US
238	dollars. Furthermore, a similar clinical and economic impact was observed among all of the
239	causative pathogens examined.
240	BSIs have been associated with higher mortality and morbidity, contingent on the
241	causative pathogen involved.[1,3,13-16] For example, worse clinical outcomes have been
242	reported for patients with BSIs caused by A. baumannii, [16,17] P. aeruginosa, [15,16] S.
243	aureus,[1,4,15,16] Enterobacteriaceae,[4,16] and Candida spp.[1,16,18] In contrast,
244	controversial results have been obtained regarding the mortality of patients affected by
245	enterococcal bacteremia. While some authors have argued that Enterococcus spp. represents
246	a low virulence pathogen[1] and is not associated with increased mortality unless in the
247	presence of endocarditis,[19] other authors have reported contrasting results.[5,6,16,18] In
248	the present study, significantly higher mortality was observed for patients with enterococcal
249	bacteremia, and this may be due to vulnerability of the hosts examined, increased resistance,
250	and a larger study population.

Page 18 of 54

BMJ Open

251	The high healthcare burden of BSIs reported in previous literature[3,13,20] and in the
252	present study underscores the importance of preventing ICU-acquired BSIs by infection
253	control measurements. Furthermore, the results of these studies help to assess cost
254	effectiveness of infection control measurements in the process of policy-making. For example,
255	patients with ICU-acquired BSIs during the 9-year period cost Taiwan an estimated 297
256	million US dollars and 492,129 days (supplementary Table 5). A policy that reduced the rate
257	of infection by 10%[21] would translate into a savings of 30 million US dollars and 49,213
258	patient-days saved.
259	Drug resistance has been found to be correlated with higher medical costs due to the
260	need for second-line antimicrobials for treatment, as well as additional diagnostic and
261	treatment tools.[22, 23] In the present study, the costs for MDR bacteria included extra 84
262	million US dollars and 140,043 days over nine years (Supplementary Table 5). However, cost
263	differences between susceptible and resistant strains were not determined in the present study.
264	Drug-susceptible strains were not included as controls due to differences in testing methods,
265	drugs, and breakpoints for these strains which could lead to mis-assignments of drug-resistant
266	pathogens as susceptible pathogens.
267	Candidemia poses a great threat to ICU patients due to its excessive medical
268	burdens,[16,18,20] and C. albicans is the most common pathogen. However, in some
269	countries, the prevalence of non-albicans Candida exceeds that of C. albicans.[24] For those

	270	infected with non-albicans Candida, higher rates of mortality, [24,25] longer hospitalization
	271	stays, and increased hospital costs have been described;[25-27] although other studies have
)	272	reported contradicting findings.[28,29] These discrepancies may be due to host factors and
-	273	differences in the virulence and resistance patterns[24] of non-albicans Candida. In the
	274	present study, the crude 14-day and in-hospital mortality rates of 951 patients infected with <i>C</i> .
;))	275	albicans were 37.96% and 55.94%, respectively. In comparison, among 703 patients infected
	276	with non-albicans Candida, these rates were 34.99% and 53.06%, respectively. While the
-	277	hospital costs and length of stay were higher in the non-albicans Candida group compared to
, ;)	278	the C. albicans group, the 95% CI overlapped for the two groups (Table 4). These data
	279	suggested that the clinical and economic outcomes of these two groups did not greatly differ.
-	280	However, the present study was not designed to specifically compare the outcomes of those
	281	infected with C. albicans versus non-albicans Candida. Therefore, additional studies with a
)	282	larger number of patients, adjustment for host factors, and consideration of antifungal drugs,
	283	incubation time, and treatment duration are needed to clarify the impact of each Candida
	284	species.
;)	285	The large number of patients examined in this study and the use of propensity score
	286	matching represent two major strengths of the present study. These aspects also allowed the
	287	impact of each pathogen group to be discerned. However, there were also several limitations
, ;)	288	associated with the present study which merit discussion. First, the exact cost after the index

Page 20 of 54

1 2
3 4
5 6
7 8
9 10
11
12 13 14
15
16 17 18
19
20 21
22 23
24 25
26 27
28 29
30
31 32 33
34 35
36 37
38 39
40 41
41 42 43
43 44 45
45 46 47
48
49 50
51 52
53 54
55 56
57 58
59 60

289	date could not be retrieved from the NHIRD. Therefore, the high total cost shown in this
290	study may be due to costs incurred prior to the onset of a BSI. It is possible that matching of
291	the duration before the index date and comorbidity may have reduced overestimations of
292	healthcare costs due to time-dependent bias.[30] Second, confounding factors associated with
293	clinical impact, such as APACHE II or Pitt Bacteremia scores, were not included in this study.
294	Instead, other clinical risk factors (Charlson Comorbidity Index score, number of organ
295	failures, use of inotropic agents, and receipt of invasive procedures) were incorporated in our
296	model. Third, our study is inherently limited by its retrospective design, which includes a
297	dependence on the accuracy of the ICD codes used and unmeasurable bias.[31,32] Fourth, the
298	prolonged hospitalization may have been due to a change in patient management in response
299	to a BSI, rather than increased morbidity due to a BSI.[15] In addition, the number of
300	participating hospitals varied during study period and therefore was considered in propensity
301	score matching. Finally, the collection of personal identification numbers is not mandatory in
302	TNIS, which resulted in failure of interlink (missing data). Their impact on the outcome was
303	unknown.
304	
305	CONCLUSIONS
306	ICU-acquired BSIs have a negative clinical and economic impact on affected patients
307	regardless of the causative pathogens involved. Awareness of these negative affects is

8 important for promoting infection control measurements and for policy-making.
8 important for promoting infection control measurements and for policy-making.

1 2		
3 4 5	310	LIST OF ABBREVIATIONS
6 7 8	311	BSI = bloodstream infection;
9 10 11	312	CI = confidence interval;
12 13 14	313	ECDC = European Centre for Disease Prevention and Control;
15 16 17	314	ICD-9-CM = international classification of diseases, 9th revision, clinical modification;
18 19 20	315	ICU = intensive care unit;
21 22 23	316	IQR = interquartile range;
24 25 26	317	MDR = multiple drug resistance;
27 28 29	318	NHIRD = National Health Insurance Research Database;
30 31 32	319	OR = odds ratio;
33 34 35	320	TNIS = Taiwan Nosocomial Infection Surveillance;
36 37 38	321	WHO = World Health Organization;
39 40 41	322	
42 43 44		
45 46 47		
48 49 50		
50 51 52		
53 54		
55		
56 57		
58 59		
60		

1 2		
3 4 5	323	DECLARATIONS
6 7 8	324	Ethics approval and consent to participate
9 10 11	325	The institutional review board of the National Health Research Institutes approved this study
12 13 14	326	(EC1051207-R4).
15 16 17	327	
18 19 20	328	Consent for publication
21 22 23	329	Not applicable.
24 25 26	330	
27 28 29	331	Availability of data and materials
30 31 32	332	The data that support the findings of this study are available from Ministry of Health and
33 34 35	333	Welfare, Taiwan but restrictions apply to the availability of these data, which were used
36 37 38	334	under license for the current study, and so are not publicly available. Data are however
39 40 41	335	available from the authors upon reasonable request and with permission of Ministry of Health
42 43 44	336	and Welfare, Taiwan.
45 46 47	337	
48 49 50	338	Competing interests
51 52 53	339	The authors declare that they have no competing interests.
54 55 56	340	
57 58 59	341	Funding
60		22

1	
2 3	
3 4	342
5	542
6	
7 8	343
o 9	
10	344
11	511
12	
13 14	345
15	
16	346
17	0.0
18 19	
20	347
21	
22	348
23	0.0
24 25	
26	349
27	
28	350
29	
30 31	254
32	351
33	
34	352
35 36	
30 37	353
38	222
39	
40	354
41 42	
43	355
44	555
45	
46 47	356
48	
49	357
50	
51 52	
52 53	358
54	
55	359
56	
57 58	200
59	360
60	

342	This work was supported by a grant from the National Health Research Institutes [Grant no.
343	108-0324-01-19-06] and Tri-Service General Hospital [TSGH-C107-099 and
344	TSGH-E-109237]. The sponsors had no role in the study design; collection, analysis, or
345	interpretation of data; writing of the report; or the decision to submit the article for
346	publication.
347	
348	Author contributions
349	Conceptualization: CAH, SCK
350	Data curation: YTC, CAH, SCK
351	Formal analysis: SMS, YTC
352	Funding acquisition: YCW, SCK
353	Investigation: YCW, SCK
354	Methodology: YTC, CAH, SCK
355	Project administration: YCW, CAH, SCK
356	Resources: YTC, CAH, SCK
357	Software: SMS, YTC
358	Supervision: SMS, YTC
359	Validation: CAH, SCK

Visualization: YCW, SMS

1 2		
2 3 4 5 6	361	Writing—original draft: YCW, SMS, SCK
7 8	362	Writing—review & editing: YCW, CAH, SCK
9 10 11	363	All authors approved the final version of the manuscript.
12 13 14	364	
15 16 17	365	Acknowledgements
18 19 20	366	Not applicable.
21 22 23	367	Not applicable.
24 25 26		
27 28 29		
30 31 32		
33 34 35		
36 37 38		
39 40 41		
42 43 44		
45 46 47		
48 49 50		
51 52 53		
54 55 56		
57 58 59		
60		

1	
~	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
25	
26	
20	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
22	
36	
33 34 35 36 37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	

369 REFERENCES

7 8 9	370	1.	Prowle JR, Echeverri JE, Ligabo EV, et al. Acquired bloodstream infection in the
10 11 12	371		intensive care unit: incidence and attributable mortality. Crit Care 2011; 15: R100.
13 14 15	372	2.	Garrouste-Orgeas M, Timsit JF, Tafflet M, et al. Excess risk of death from intensive
16 17 18	373		care unit-acquired nosocomial bloodstream infections: a re-appraisal. Clin Infect Dis
19 20 21	374		2006; 42 : 1118-26.
22 23 24	375	3.	Laupland KB, Lee H, Gregson DB, Manns BJ. Cost of intensive care unit-acquired
25 26 27	376		bloodstream infections. J Hosp Infect 2006; 63: 124-32.
28 29 30	377	4.	Stewardson AJ, Allignol A, Beyersmann J, et al. The health and economic burden of
31 32 33	378		bloodstream infections caused by antimicrobial-susceptible and non-susceptible
34 35 36	379		Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011:
37 38 39	380		a multicentre retrospective cohort study. <i>Euro Surveill</i> 2016; 21 : pii=30319.
40 41 42	381	5.	Landry SL, Kaiser DL, Wenzel RP. Hospital stay and mortality attributed to
43 44 45	382		nosocomial enterococcal bacteremia: a controlled study. Am J Infect Control 1989;
46 47 48	383		17: 323-9.
49 50 51	384	6.	Ong DS, Bonten MJ, Safdari K, et al. Epidemiology, management, and risk-adjusted
52 53 54	385		mortality of ICU-acquired enterococcal bacteremia. Clin Infect Dis 2015; 61:
55 56 57	386		1413-20.
58 59 60	387	7.	Kramer TS, Remschmidt C, Werner S, et al. The importance of adjusting for

Page 27 of 54

BMJ Open

1 2			
3 4 5	388		Enterococcus species when assessing the burden of vancomycin resistance: a cohort
6 7 8	389		study including over 1000 cases of enterococcal bloodstream infections. Antimicrob
9 10 11	390		Resist Infect Control 2018; 7: 133.
12 13 14	391	8.	Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of
15 16 17	392		new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.
18 19 20	393		Lancet Infect Dis 2018; 18: 318-27.
21 22 23	394	9.	Wu TY, Majeed A, Kuo KN. An overview of the healthcare system in Taiwan.
24 25 26	395		London J Prim Care (Abingdon) 2010; 3 : 115-9.
27 28 29	396	10.	Tu JV, Bowen J, Chiu M, et al. Effectiveness and safety of drug-eluting stents in
30 31 32	397		Ontario. <i>N Engl J Med</i> 2007; 357 : 1393-402.
33 34 35	398	11.	Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with
36 37 38	399		ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45: 613-9.
39 40 41	400	12.	Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively
42 43 44	401		drug-resistant and pandrug-resistant bacteria: an international expert proposal for
45 46 47	402		interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:
48 49 50	403		268-81.
51 52 53	404	13.	Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically iII
54 55 56	405		patients: excess length of stay, extra costs, and attributable mortality. JAMA 1994;
57 58 59	406		271 : 1598-601.
60			

1

Page 28 of 54

2 3			
4 5 6	407	14.	Laupland KB, Zygun DA, Davies HD, et al. Population-based assessment of intensive
7 8	408		care unit-acquired bloodstream infections in adults: incidence, risk factors, and
9 10 11	409		associated mortality rate. Crit Care Med 2002; 30: 2462-7.
12 13 14	410	15.	Barnett AG, Page K, Campbell M, et al. The increased risks of death and extra lengths
15 16 17	411		of hospital and ICU stay from hospital-acquired bloodstream infections: a
18 19 20	412		case-control study. BMJ Open 2013; 3: e003587.
21 22 23	413	16.	Marra AR, Camargo LF, Pignatari AC, et al. Nosocomial bloodstream infections in
24 25 26	414		Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide
27 28 29	415		surveillance study. J Clin Microbiol 2011; 49: 1866-71.
30 31 32	416	17.	Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in
33 34 35	417		patients with Acinetobacter baumannii infection: systematic review and
36 37 38	418		meta-analysis. Clin Microbiol Infect 2014; 20: 416-23.
39 40 41	419	18.	Schwab F, Geffers C, Behnke M, et al. ICU mortality following ICU-acquired
42 43 44	420		primary bloodstream infections according to the type of pathogen: a prospective
45 46 47	421		cohort study in 937 Germany ICUs (2006-2015). <i>PloS One</i> 2018; 13 : e0194210.
48 49 50	422	19.	Caballero-Granado FJ, Becerril B, Cuberos L, et al. Attributable mortality rate and
51 52 53	423		duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis
54 55 56	424		2001; 32 : 587-94.
57 58 59 60	425	20.	Blot SI, Depuydt P, Annemans L, et al. Clinical and economic outcomes in critically

BMJ Open

3 4 5	426		ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis
6 7 8	427		2005; 41 : 1591-8.
9 10 11	428	21.	Tseng SH, Lee CM, Lin TY, et al. Combating antimicrobial resistance: antimicrobial
12 13 14	429		stewardship program in Taiwan. J Microbiol Immunol Infect 2012; 45: 79-89.
15 16 17	430	22.	Howard D, Cordell R, McGowan JE, Jr., et al. Measuring the economic costs of
18 19 20	431		antimicrobial resistance in hospital settings: summary of the Centers for Disease
21 22 23 24	432		Control and Prevention-Emory Workshop. Clin Infect Dis 2001; 33: 1573-8.
24 25 26 27	433	23.	Mauldin PD, Salgado CD, Hansen IS, et al. Attributable hospital cost and length of
27 28 29 30	434		stay associated with health care-associated infections caused by antibiotic-resistant
31 32	435		gram-negative bacteria. Antimicrob Agents Chemother 2010; 54: 109-15.
33 34 35	436	24.	Horn DL, Neofytos D, Anaissie EJ, et al. Epidemiology and outcomes of candidemia
36 37 38	437		in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin
39 40 41	438		Infect Dis 2009; 48 : 1695-703.
42 43 44	439	25.	Dimopoulos G, Ntziora F, Rachiotis G, et al. Candida albicans versus non-albicans
45 46 47	440		intensive care unit-acquired bloodstream infections: differences in risk factors and
48 49 50	441		outcome. Anesth Analg 2008; 106: 523-9.
51 52 53	442	26.	Moran C, Grussemeyer CA, Spalding JR, et al. Comparison of costs, length of stay,
54 55 56	443		and mortality associated with Candida glabrata and Candida albicans bloodstream
57 58 59	444		infections. Am J Infect Control 2010; 38: 78-80.
60			

3 4 5	445	27.	Gong X, Luan T, Wu X, et al. Invasive candidiasis in intensive care units in China:	:
6 7 8	446		risk factors and prognoses of Candida albicans and non-albicans Candida infection	s.
9 10 11	447		Am J Infect Control 2016; 44: e59-63.	
12 13 14	448	28.	Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidem	nia
15 16 17	449		in 3648 patients: data from the prospective antifungal therapy (PATH Alliance®)	
18 19 20	450		registry, 2004-2008. Diagn Microbiol Infect Dis 2012; 74: 323-31.	
21 22 23	451	29.	Barchiesi F, Orsetti E, Gesuita R, et al.; Candidemia Study Group. Epidemiology,	
24 25 26	452		clinical characteristics, and outcome of candidemia in a tertiary referral center in It	aly
27 28 29	453		from 2010 to 2014. Infection 2016; 44: 205-13.	
30 31 32	454	30.	Nelson RE, Samore MH, Jones M, et al. Reducing time-dependent bias in estimate	s of
33 34 35	455		the attributable cost of health care-associated Methicillin-resistant Staphylococcus	
36 37 38	456		aureus infections: a comparison of three estimation strategies. Med Care 2015; 53:	
39 40 41	457		827-34.	
42 43 44	458	31.	Kuo SC, Shih SM, Hsieh LY, et al. Antibiotic restriction policy paradoxically	
45 46 47	459		increased private drug consumptions outside Taiwan's National Health Insurance.	J
48 49 50	460		Antimicrob Chemother 2017; 72: 1544-5.	
51 52 53	461	32.	Sarrazin MSV, Rosenthal GE. Finding pure and simple truths with administrative	
54 55 56	462		data. JAMA 2012; 307 : 1433-5.	
57 58 59	463			
60				29

BMJ Open

Table 1. Characteristics of the intensive care unit patients with bloodstream infections and the matched comparison cohort.

Characteristics	Patients with BSI,	Comparison	Standardized
	n (%)	cohort, n (%)	difference
No. of patients	14,234	28,468	
Year of Index Date			
2007	1,244 (8.74%)	3,474 (12.2%)	0.113
2008	1,608 (11.3%)	3,101 (10.89%)	0.013
2009	1,714 (12.04%)	2,923 (10.27%)	0.056
2010	1,745 (12.26%)	3,119 (10.96%)	0.041
2011	1,947 (13.68%)	3,107 (10.91%)	0.084
2012	1,727 (12.13%)	3,119 (10.96%)	0.037
2013	1,496 (10.51%)	2,985 (10.49%)	0.001
2014	1,371 (9.63%)	3,226 (11.33%)	0.056
2015	1,382 (9.71%)	3,414 (11.99%)	0.073
Season of In-date			
Mar-May	3,564 (25.04%)	7,207 (25.32%)	0.006
Jun-Aug	3,577 (25.13%)	7,224 (25.38%)	0.006
Sep-Nov	3,519 (24.72%)	6,964 (24.46%)	0.006
Dec-Feb	3,574 (25.11%)	7,073 (24.85%)	0.006
Males	8,971 (63.03%)	17,861 (62.74%)	0.006
Age, years, mean (SD)	65.12 (21.62)	65.08 (20.60)	0.002
Length of stay before index date/			
pseudo-index date, days, mean	15.69 (12.14)	15.29 (11.96)	0.033
(SD)			

Dependent	2,416 (16.97%)	4,813 (16.91%)	(
< 657.33	4,740 (33.3%)	9,575 (33.63%)	(
657.33-1504.60	6,324 (44.43%)	12,563 (44.13%)	
> 1504.60	740 (5.2%)	1,484 (5.21%)	
Urbanization level			
1 (urban)	3,639 (25.57%)	7,293 (25.62%)	
2	3,968 (27.88%)	7,920 (27.82%)	
3	2,227 (15.65%)	4,432 (15.57%)	
4 (rural)	4,389 (30.83%)	8,802 (30.92%)	
Hospital level			
Medical center	7,168 (50.36%)	14,393 (50.56%)	
Regional hospital	6,125 (43.03%)	12,242 (43%)	
Local hospital	940 (6.6%)	1,833 (6.44%)	
Charlson Comorbidity Index	3.085 (2.80)	3.105 (2.95)	
score, mean (SD)	5.005 (2.00)	3.103 (2.55)	
0	2,950 (20.73%)	6,411 (22.52%)	
1	1,930 (13.56%)	3,928 (13.8%)	
2	2,283 (16.04%)	4,251 (14.93%)	
\geq 3	7,071 (49.68%)	13,878 (48.75%)	
Comorbidities			
Diabetes mellitus	4,840 (34%)	9,642 (33.87%)	
Cerebrovascular disease	3,552 (24.95%)	7,048 (24.76%)	
Hypertension	525 (3.69%)	1,124 (3.95%)	
Myocardial infarction	2,532 (17.79%)	5,173 (18.17%)	

Heart failure	742 (5.21%)	1,509 (5.3%)	0.004
Peripheral vascular disease	2,740 (19.25%)	5,393 (18.94%)	0.008
Liver disease	3,864 (27.15%)	7,982 (28.04%)	0.02
Chronic kidney disease	2,766 (19.43%)	5,683 (19.96%)	0.013
Dyslipidemia	2,753 (19.34%)	5,635 (19.79%)	0.011
Cancer	4,840 (34%)	9,642 (33.87%)	0.003
Number of dysfunctional organs, mean (SD)	1.015 (0.809)	1.02 (0.855)	0.005
0	4,035 (28.35%)	8,549 (30.03%)	0.037
1	6,445 (45.28%)	12,293 (43.18%)	0.042
2	3,273 (22.99%)	6,243 (21.93%)	0.026
≥3	481 (3.38%)	1,383 (4.86%)	0.074
Use of inotropic agents	11,398 (80.08%)	22,858 (80.29%)	0.005
Use of steroid	9 (0.06%)	20 (0.07%)	0.003
Use of ventilator	12,493 (87.77%)	25,075 (88.08%)	0.01
Use of ventilator (> 3 days)	11,668 (81.97%)	23,458 (82.4%)	0.011
Emergent renal replacement	2615 (18.37%)	5,370 (18.86%)	0.013
therapy Propensity score (SD)	0.128 (0.109)	0.127 (0.109)	0.004

Abbreviations: BSI = bloodstream infection; SD = standard deviation.

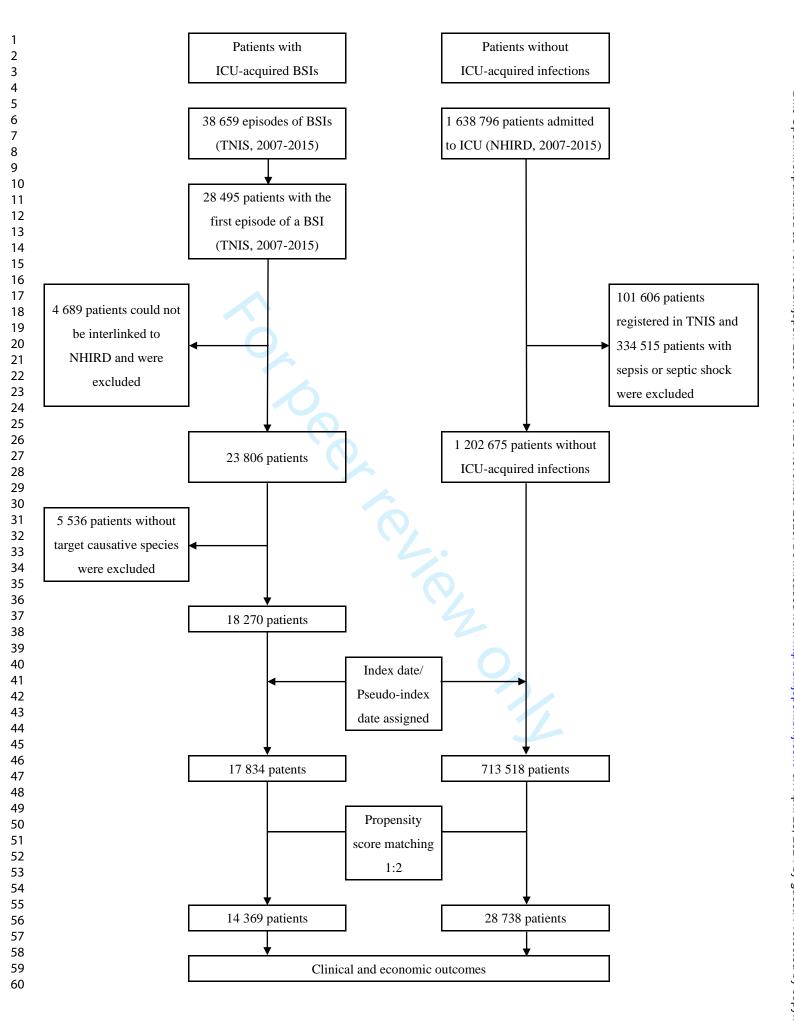
24

		Full cohort		6 Novemb	Matched cohort	
Outcomes	ICU patients	Comparison	<i>P</i> -value	ICU patients	Comparison	P-va
	with BSI	cohort		with B s	cohort	
No. of patients	17,834	713,518		14,234	28,468	
Clinical outcomes				http://bmjc		
In-hospital mortality, n (%)	8,639 (48.44)	65,282 (9.15)	< 0.0001	Ť	9,532 (33.48%)	< 0.0
14-day mortality, n (%)	5,693 (31.92)	54,998 (7.71)	< 0.0001	4,323 (30.3) g	6,766 (23.77%)	< 0.0
28-day mortality, n (%)	7,469 (42.01)	73,552 (10.31)	< 0.0001	5,619 (39.∰%) ඎ	9,189 (32.28%)	<0.00
Economic outcomes				, 2024 by guest		
Length of hospitalization after the index	18 (6, 40)	6 (3, 13)	< 0.0001	v gues		< 0.0

Page 35 of 5	54			BMJ Open		mjopen		
1						-2020-03		
2 3 4 5	(IQR)					mjopen-2020-037484 on 26 November 16,038		
6 7 8	Cost of hospitaliza	ation (USD) ^{<i>a</i>} , median	18,457	4,971	< 0.0001	16,038	10,372	< 0.0001
9 10 11	(IQR)		(10,938, 30,778)	(2,770, 8,598)		(9,667, 25,946)	(6,289, 16,932)	
12 13 468 14	Abbreviations: ICU =	= intensive care unit; BSI =	= bloodstream infecti	on; IQR= interqu	artile range	Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.		
15 16 469 17	^{<i>a</i>} The costs are standa	rdized and presented as th				ded fror		
18 19						n http:/		
20 21						//bmjo		
22 23						pen.b		
24						omj.o		
25 26						om/ c		
27 28						on Ap		
29						ril 23		
30 31						, 202		
32						24 by		
33 34						/ gue		
35						est.		
36						Prot		
37						ecte		
38 39						d be		
40						ý cc		
41						оруг		34
42						ight.		
43 44		For peer	review only - http://bmj	open.bmj.com/site/	about/guidel	ines.xhtml		
45								
46								

		Odds ratio	nterval)	
	Pathogen groups (Number of patients)	In-hospital mortality	14-days mortality	28-days mortality
	MDR Gram-negative bacteria (2,232)	2.12 (1.89, 2.38)	1.77 (1.57, 1.99)	1.79 (1.6, 2)
	MDR Gram-positive bacteria (1,429)	1.84 (1.59, 2.12)	1.52 (1.31, 1.76)	1.5 (1.3, 1.72)
	Acinetobacter baumannii (1,761)	1.67 (1.47, 1.91)	1.45 (1.26, 1.66)	1.45 (1.27, 1.66
	Pseudomonas aeruginosa (853)	1.69 (1.41, 2.03)	1.73 (1.42, 2.1)	1.47 (1.23, 1.7
	Enterobacteriaceae ^{b} (3,548)	1.59 (1.45, 1.75)	1.28 (1.16, 1.41)	1.31 (1.19, 1.4)
	Staphylococcus aureus (1,721)	1.63 (1.42, 1.87)	1.24 (1.07, 1.44)	1.31 (1.15, 1.5
	Enterococcus species ^c (1,277)	1.87 (1.6, 2.18)	1.69 (1.44, 1.99)	1.6 (1.37, 1.85
	Candida albicans (951)	2.04 (1.71, 2.43)	1.61 (1.35, 1.91)	1.68 (1.42, 1.98
	Non-albicans Candida ^d (703)	1.97 (1.61, 2.41)	1.58 (1.29, 1.95)	1.61 (1.32, 1.9
471	Abbreviations: MDR = multiple drug	resistance.		
472	^a Only patients with bloodstream infect	tions involving a single	pathogen were inclue	ded in this
473	analysis.			
474	^b Enterobacteriaceae included Escheric	hia coli, Klebsiella pne	umoniae, Enterobact	er cloacae,
475	Enterobacter aerogenesa, and Serration	a marcescens.		
476	^c Enterococcus species included Entero	ococcus faecium, Entero	ococcus faecalis, and	other

1 2		
3 4 5	477	Enterococcus species.
6 7 8	478	^d Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida
9 10 11	479	glabrata.
12 13 14	480	
$\begin{array}{c} 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 33\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 9\\ 60\\ \end{array}$	481	


3 4

		20-0374
able 4. Economic outcomes for the	e various pathogen groups.	mjopen-2020-037484 on 26
	Excess costs or length of hospital	lization (95% Confidence interval)
athogen groups	Length of hospitalization	Cost of bospitalization (USD)
	after the index date (days)	Cost of hospitalization (USD)
IDR Gram-negative bacteria	10.41 (8.55, 12.27)	7,5 6 3 (6,725, 8,401)
IDR Gram-positive bacteria	13.82 (11.38, 16.27)	6,342 (5,500, 7,184)
cinetobacter baumannii	9.4 (7.65, 11.14)	6,7 2 7 (5,823, 7,632)
Pseudomonas aeruginosa	10.01 (7.83, 12.19)	6,7 1 (5,609, 7,913)
enterobacteriaceae ^b	15.05 (13.33, 16.76)	7,444 (6,881, 8,007) [×] [×] [×]
taphylococcus aureus	14.72 (12.63, 16.81)	5,221 (4,528, 5,894) ष्ट्
Interococcus species ^c	10.66 (7.85, 13.48)	7,239 (6,305, 8,132)
Candida albicans	11.37 (8.82, 13.92)	8,6888 (7,512, 9,864)
		by copyright

Page	39 of 54		BMJ Open		
1 2 3					
4 5		Non-albicans Candida ^d	15.13 (11.77, 18.49)		\$6 (10,025, 12,927)
6 7 8 9	483	Abbreviations: MDR = multiple d	rug resistance.		
10 11	484	^a Only patients with bloodstream in	nfections involving a single pathogen were included	in this analysis.	
12 13 14	485	^b Enterobacteriaceae included Esch	eerichia coli, Klebsiella pneumoniae, Enterobacter c	cloacae, Enterobacter å	grogenes, and Serratia marcescens.
15 16 17	486	^c Enterococcus species included Er	nterococcus faecium, Enterococcus faecalis, and oth	ter Enterococcus specie	
18 19 20	487	^d Non-albicans Candida included (Candida tropicalis, Candida parapsilosis, and Cand	lida glabrata.	
21 22 23	488				
24 25 26	489			lida glabrata.	
27 28 29	490				5 >
30 31 32					
33 34 35				y gucor	
36 37					
38 39 40					5 5 7
41 42					38
43 44			For peer review only - http://bmjopen.bmj.com/site/a	about/guidelines.xhtml	÷
45 46					

			BMJ Open	mjopen-	Page 40 of 54
1				·2020-037484	
2 3				03748	
4 5	491	FIGURE LEGENDS		4 on 26	
6 7 8	492	Figure 1. Flow diagram of the study design.		5 Novemb	
9 10 11	493			ver 2020.	
12 13 14 15	494			Downloac	
16 17 18	495	Abbreviations: ICU = intensive care unit; BSI = bloodstream		e	
19 20 21	496	Health Insurance Research Database.		http://bmjo	
22 23 24	497			pen.bmj.	
25 26 27	498				
28 29 30	499			bmj.com/ on April 23, 2024	
31 32 33	500			2024 by g	
34 35 36	501			by guest. Pro	
37 38 39	502			tected by	
40 41 42				Protected by copyright.	
43 44 45 46		For peer review only - htt	p://bmjopen.bmj.com/site/about/guidelines.xhtml		

Page	e 41 of 54	BMJ Open <u>B</u>	
1 2		n-2020-037484	
3 4 5	503	SUPPLEMENTARY FILES:	
6 7 8	504	Supplementary Table 1. The number of episodes of intensive care unit-acquired bloodstream infections caused by common pathogens before	
9 10 11	505	enrollment and the number of patients infected after matching.	
12 13 14	506	Supplementary Table 2. Propensity score model results of probability of bloodstream infections among intensive care unit patients and matched	
15 16 17	507	comparison cohort.	
18 19 20	508	Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and antimicrobial agents used to get fine drug resistance.	
21 22 23	509	Supplementary Table 4. The economic outcomes among patients with bloodstream infections and comparison cohort who survived to the	
24 25 26	510	discharge.	
27 28 29 30 31 32 33 34 35	511	Supplementary Table 5. Estimated 9-year excessive hospitalization or healthcare cost in all patients with block stream infections.	
36 37 38 39		Jest. Protected by copyright.	
40 41 42 43		y copyright.	0
43 44 45 46		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

- Supplementary Table 1. The number of episodes of intensive care unit-acquired
- bloodstream infections caused by common pathogens before enrollment and the number
 - of patients infected after matching.

	No. of BSI episodes	No. of patients after
	before enrollment ^a	matching ^b
Acinetobacter baumannii	5,214	1,761
Staphylococcus aureus	4,382	1,721
Klebsiella pneumoniae	3,965	1,357
Pseudomonas aeruginosa	2,619	853
Candida albicans	2,554	951
Escherichia coli	2,287	843
Enterobacter cloacae	1,982	746
Enterococcus faecium	1,950	647
Stenotrophomonas maltophilia	1,599	454
Enterococcus faecalis	1,427	419
Serratia marcescens	1,239	439
Candida tropicalis	890	329
Burkholderia cepacia	808	251
Other Enterococcus species ^c	688	211
Elizabethkingia meningoseptica	659	173
Chryseobacterium indologenes	553	152
Candida parapsilosis	534	177
Candida glabrata	461	197
Enterobacter aerogenes	419	163

Abbreviations: BSI= bloodstream infection.

^aThe number of episodes of bloodstream infections with known pathogens was 38,659.

Coagulase-negative staphylococci was excluded from analyses due to possibility of

- contamination. One episode may have multiple pathogens. There were 30,697 episodes of
- bloodstream infections caused by the pathogens listed above.
- ^bThe number of patients enrolled case was 14,234 (Table 1) but only patients with
- bloodstream infections caused by a single pathogen was counted here (Table 3 and 4) and it
- was 11,844. There were 2,390 patients with bloodstream infections caused by multiple
- pathogens.
 - ^cEnterococcus species other than Enterococcus faecium and Enterococcus faecalis. to occur terren only

15 Supplementary Table 2. Propensity score model results of probability of bloodstream

16 infections among intensive care unit patients and matched comparison cohort.

Estimate	Odds ratios	inte	rval	<i>P</i> -valu
	ratios			1 valu
		Lower	Upper	_
-0.0014	0.9986	0.9974	0.9998	0.0251
0.0070	1 00 60	0.0000	1.0010	0.40.4
0.0063	1.0063	0.9909	1.0219	0.4243
5	1.000			
0.2803	1.3235	1.2105	1.4470	< 0.000
0.4057	1.5003	1.3709	1.6419	<0.000
0.3662	1.4423	1.3146	1.5824	<0.000
0.4363	1.5470	1.4019	1.7072	<0.000
0.3246	1.3835	1.2457	1.5364	<0.000
0.2361	1.2663	1.1312	1.4174	<0.000
0.0780	1.0811	0.9590	1.2188	0.202
0.0354	1.0360	0.9128	1.1759	0.583
	1.000			
0.0198	1.0200	0.9534	1.0912	0.565
0.0404	1.0412	0.9787	1.1077	0.200
0.0401	1.0409	0.9816	1.1038	0.180
0.0111	1.0112	0.9662	1.0583	0.632
	0.4057 0.3662 0.4363 0.3246 0.2361 0.0780 0.0354 0.0198 0.0404 0.0401	1.000 0.2803 1.3235 0.4057 1.5003 0.3662 1.4423 0.4363 1.5470 0.3246 1.3835 0.2361 1.2663 0.0780 1.0811 0.0354 1.0360 1.000 0.0198 1.0200 0.0404 1.0412 0.0401 1.0409	- 1.000 $ 0.2803$ 1.3235 1.2105 0.4057 1.5003 1.3709 0.3662 1.4423 1.3146 0.4363 1.5470 1.4019 0.3246 1.3835 1.2457 0.2361 1.2663 1.1312 0.0780 1.0811 0.9590 0.0354 1.0360 0.9128 $ 1.000$ $ 0.0198$ 1.0200 0.9534 0.0404 1.0412 0.9787 0.0401 1.0409 0.9816	1.000 0.2803 1.3235 1.2105 1.4470 0.4057 1.5003 1.3709 1.6419 0.3662 1.4423 1.3146 1.5824 0.4363 1.5470 1.4019 1.7072 0.3246 1.3835 1.2457 1.5364 0.2361 1.2663 1.1312 1.4174 0.0780 1.0811 0.9590 1.2188 0.0354 1.0360 0.9128 1.1759 1.000 0.0198 1.0200 0.9534 1.0912 0.0404 1.0412 0.9787 1.1077 0.0401 1.0409 0.9816 1.1038

Dependent		1.000			
<657.33	0.0518	1.0532	0.9824	1.1291	0.1444
657.33–1504.60	0.0699	1.0724	0.9985	1.1518	0.0550
>1504.60	0.0984	1.1034	0.9871	1.2334	0.0835
Urbanization level					
1 (urban)		1.000			
2	0.0093	1.0094	0.9516	1.0706	0.7560
3	-0.0006	0.9994	0.9293	1.0748	0.9872
4 (rural)	-0.0163	0.9838	0.9291	1.0417	0.5753
Hospital level					
Level I (Medical center)		1.000			
Level II (Regional	-0.0068	0.9932	0.9364	1.0534	0.8200
hospital)	0.0000		0.7504	1.0554	0.0200
Level III (Local hospital)	-0.0439	0.9570	0.7894	1.1603	0.6548
Charlson Comorbidity Index					
score					
0		1.000	Ð,		
1	0.1421	1.1527	1.0681	1.2439	0.0003
2	0.2932	1.3407	1.2390	1.4508	< 0.0001
≥3	0.3456	1.4129	1.2880	1.5498	< 0.0001
Comorbidities					
Diabetes mellitus	0.0050	1.0051	0.9521	1.0610	0.8553
Cerebrovascular disease	-0.0419	0.9589	0.8833	1.0410	0.3166
Myocardial infarction	-0.0702	0.9322	0.7377	1.1779	0.5564
Heart failure	-0.0607	0.9411	0.8525	1.0389	0.2292

Page 47 of 54			BMJ Open			
1 2						
2 3 4 5	Peripheral vascular	-0.0299	0.9706	0.8779	1.0731	0.5601
6 7	disease					
8 9	Liver disease	-0.0437	0.9572	0.8832	1.0375	0.2877
10 11	Chronic kidney disease	-0.1133	0.8929	0.8179	0.9748	0.0114
12 13	Dyslipidemia	-0.0425	0.9584	0.8916	1.0302	0.2490
14 15	Cancer	-0.1626	0.8499	0.7934	0.9105	< 0.0001
16 17 18	Number of dysfunctional					
18 19 20	organs					
21 22	0		1.000			
23 24 25	1	0.1450	1.1561	0.9750	1.3707	0.0951
25 26 27	2	0.2044	1.2268	0.8853	1.6999	0.2195
28 29	\geq 3	-0.2233	0.7999	0.4839	1.3222	0.3839
30 31	Use of inotropic agents	0.0551	1.0567	0.7982	1.3989	0.7001
32 33 34	Use of steroid	-0.0091	0.9909	0.4451	2.2061	0.9822
35 36	Use of ventilator	-0.0226	0.9776	0.8350	1.1446	0.7786
37 38	Use of ventilator (>3 days)	0.0279	1.0283	0.6260	1.6891	0.9122
39 40 41	Emergent renal replacement	0.0024	1.0024	0.8515	1.1801	0.9770
42 43	therapy	0.0024	1.0024	0.8515	1.1801	0.9770
44 45 17						<u> </u>
46 47 48						
48 49 50						
50 51 52						
53 54						
55 56						
57 58 59						
60						5
						5

18 Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and

19 antimicrobial agents used to define drug resistance.

Pathogens	Antimicrobial categories	Antimicrobial agents
		Gentamicin
		Tobramycin
	Aminoglycosides	Amikacin
		Netilmicin
		Imipenem
	Carbapenems	Meropenem
		Doripenem
Acinetobacter		Ciprofloxacin
<i>baumannii</i> ^a	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β-lactamase inhibitors	Ticarcillin-clavulanic aci
	C.	Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime
		Ceftriaxone
		Gentamicin
	A · 1 · 1	Tobramycin
Pseudomonas	Aminoglycosides	Amikacin
aeruginosa ^a		Netilmicin
		Imipenem
	Carbapenems	Meropenem

		Doripenem
		Ciprofloxacin
	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β-lactamase inhibitors	Ticarcillin-clavulanic ac
		Cefepime
	Antipseudomonal cephalosporins	Cefpirome
		Ceftazidime
	~	Gentamicin
	Aminoglycosides	Tobramycin
	Ammogrycosides	Amikacin
		Netilmicin
		Imipenem
Enterobacteriaceae ^a	Culture	Meropenem
(Escherichia coli,	Carbapenems	Doripenem
Klebsiella pneumoniae,		Ertapenem
Enterobacter cloacae		Ciprofloxacin
Enterobacter	Fluoroquinolones	Levofloxacin
aerogenes, or Serratia	Antipseudomonal penicillins +	Piperacillin-tazobactam
marcescens)	β-lactamase inhibitors	Ticarcillin-clavulanic ac
		Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime

			Ceftriaxone
	Staphylococcus aureus	Glycopeptides	Vancomycin
	Staphylococcus aureus	β-lactamase-resistant penicillins	Oxacillin
	Enterococcus faecium,		
	Enterococcus faecalis,	Glycopeptides	Vancomycin
	or other Enterococcus	Orycopeptides	vancomycm
	species ^b		
20	^a Drug resistance was de	efined as being non-susceptible to ≥ 1	agent in ≥ 3 antimicrobial
21	categories.		
22	^b Drug resistance was d	efined as being non-susceptible to ≥ 1	agent.

ge 51 of 54	BMJ (Open	mjopen-2020-03
23 24	Supplementary Table 4. The economic outcomes among patients with the discharge. ^a	n bloodstream infections and com	Parison cohort who survived to
	Clinical outcomes	Excess costs or length of hospitalization	25 26 P-value 27 20
		(95% Confidence interval) ^b	<u>v</u> 28
	Length of hospitalization after the index date/pseudo-index date, days	19.59 (18.67, 20.51)	$\frac{1}{10} < 0.0001$
	Cost of hospitalization, USD	8,871 (8,475, 9,268)	0.0001 29 < 0.00030
		110.00	
32	^a A total of 7,939 of patients with intensive care uit-acquired bloodstream		
33 34	^b Adjusted imbalanced variables in Table 1.	infections and 18,936 comparators	bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright
			on April 23, 2024
			by Yd
			uest.
			Prot
			ectec
			l by c
			соруг
			ight.
	For peer review only - http://bmjopen.	.bmj.com/site/about/guidelines.xhtml	

		on 26
Pathogen groups	9-year excessive hospita	alization or healthcare cost
(Numbers of patients) ^a	Length of hospitalization after the index date (days) ^b	Cost ochospitalization (USD) ^{b, c}
All pathogens (38,659)	492,129	
MDR Gram-negative bacteria (6,825)	86,882	قِ 52,363,448
MDR Gram-positive bacteria (4,176)	53,160	32,039,525
Acinetobacter baumannii (5,214)	66,374	40,003,372
Pseudomonas aeruginosa (2,619)	33,340	296,603,446 52,363,448 32,039,525 40,003,372 20,093,754 72,779,438 33,620,019 31,034,454 19,595,054 14,362,546
Enterobacteriaceae ^d (9,486)	120,757	9 9 72,779,438
Staphylococcus aureus (4,382)	55,783	33,620,019
Enterococcus species ^e (4,045)	51,493	β δ 31,034,454
Candida albicans (2,554)	32,512	يو 19,595,054
Non-albicans Candida ^f (1,872)	23,831	ية ح 14,362,546

3 4

Page 53 of 54		프 BMJ Open
1		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	38	^a The number of all episodes of intensive care unit-acquired bloodstream infections caused by designated pathogens during 2007-2015. The
	39	incluson and exclusion criteira in the method section were not applied in this Table (see Figure 1).
	40	^b The 9-year excessive hospitalization was calculated by multiplying the number of episodes during 9-year in $\frac{8}{5}$ cted by the designated pathogen(s)
	41	and the average excessive hospitalization per case with the designated pathogen(s). The average excessive hospitalization per case was
	42	difference of average hospitalization duration between the case with the designated pathogen(s) and their matched comparison. The average
	43	hospitalization duration in bloodstream infection group was the sum of total hospitalization duration divided $\frac{1}{8}$ when umber of case and so was
	44	that in matched control group.
	45	Ave _{Hospitalization} per case= [(sum of hospitalization length)/the number of patients].
	46	Excessive Ave _{Hospitalization} per person= (Ave _{Hospitalization} in bloodstream infection group) - (Ave _{Hospitalization} in consparison group).
	47	Total excessive hospitalization length over 9 years = (excessive Ave _{Hospitalization} per person) × (total number of episodes over 9 years)
	48	The 9-year excessive healthcare cost was calculated similarly.
	49	^c The costs are standardized and presented the values in 2017.
	50	^d Enterobacteriaceae included Escherichia coli, Klebsiella pneumoniaea, Enterobacter cloacae, Enterobacter arguerogenesa, and Serratia
	51	marcescens.
	52	eEnterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species
37 38	53	^e Enterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species ^f Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida glabrata. 11
39 40 41		8 9 9 11
42 43		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
44 45		r or peer review only - http://binjopen.binj.com/site/about/guidelines.xittini

		BMJ Open 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명	Pag
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>conjunct studies</i>	
Section/Topic	ltem #	Recommendation $\frac{84}{9}$	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	#1
		ੱ (b) Provide in the abstract an informative and balanced summary of what was done and what was 엾und	#3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	#6-7
Objectives	3	State specific objectives, including any prespecified hypotheses	#6-7
Methods			
Study design	4	Present key elements of study design early in the paper	#8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	#8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	#9
		(b) For matched studies, give matching criteria and number of exposed and unexposed	#9
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	#10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	#9-10
Bias	9	Describe any efforts to address potential sources of bias	#9-10
Study size	10	Explain how the study size was arrived at	#8-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which group on the second s	#9-10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	#11-12
		(b) Describe any methods used to examine subgroups and interactions	#10-11
			#8-10
		(c) Explain how missing data were addressedO(d) If applicable, explain how loss to follow-up was addressedOExplain how loss to follow-up was addressedO	#8-10
		(e) Describe any sensitivity analyses	#11
Results			

 mjopen-2020-

Å

copyright.

		<u></u>	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine of individuals at each stage of study—eg numbers potentially eligible, examine of the stage of study and the study and th	#13
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#13
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	#13-14
		confounders B	
		(b) Indicate number of participants with missing data for each variable of interest	#13-14
		(c) Summarise follow-up time (eg, average and total amount)	#13-14
Outcome data	15*	Report numbers of outcome events or summary measures over time	#13-14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence	#13-14
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	#13-14
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	#13-14
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	#13-14
Discussion			
Key results	18	Summarise key results with reference to study objectives	#15
Limitations		n.b	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of area lyses, results from	
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	#17-18
Other information		April	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	#20-21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in the function of the studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine@rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan: A nationwide population-based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037484.R2
Article Type:	Original research
Date Submitted by the Author:	17-Oct-2020
Complete List of Authors:	Wang, Yung-Chih; National Defense Medical Center, Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine Shih, Shu-Man; National Health Research Institutes, Institute of Population Health Sciences Chen, Yung-Tai; Taipei City Hospital Heping Fuyou Branch, Department of Medicine Hsiung, Chao Agnes; National Health Research Institutes, Institute of Population Health Sciences Kuo, Shu-Chen; National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Infectious diseases, Intensive care
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, MICROBIOLOGY, INFECTIOUS DISEASES, HEALTH ECONOMICS, INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

Article category: Original research

1	
2	
3	
4	
5	
6	
7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
20	
∠ I วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54 55	
55 56	
57	
58	
59	
60	

1

2	
3	Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections
4	in Taiwan: A nationwide population-based retrospective cohort study
5	Yung-Chih Wang, MD, PhD ¹ ; Shu-Man Shih ² ; Yung-Tai Chen, MD ^{3,4} ; Chao A. Hsiung,
6	PhD ² ; Shu-Chen Kuo, MD, PhD ^{5*}
7	
8	¹ Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine,
9	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
10	² Institute of Population Health Sciences, National Health Research Institutes, Miaoli County,
11	Taiwan
12	³ Divisions of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
13	⁴ Department of Medicine, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
14	⁵ National Institute of Infectious Diseases and Vaccinology, National Health Research
15	Institutes, Miaoli County, Taiwan
16	
17	Correspondence to:
18	Shu-Chen Kuo. MD, PhD
19	National Institute of Infectious Diseases and Vaccinology, National Health Research

2		
3 4	20	
5	20	Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
6		
7	21	Phone: +886 37 206 166
8 9		
9 10	22	Fax: +886 37 586457
11	22	$rax. \pm 000.37.300437$
12		
13 14	23	E-mail: ludwigvantw@gmail.com
14		
16	24	
17	- ·	
18 19		
20	25	
21		
22	26	
23		
24 25	27	Durning titles Import of Intensive Const Unit A against Disadstream Infections in Taiwan
26	27	Running title: Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan
27		
28	28	
29 30		
31	29	
32	25	
33		Word count:
34 35	30	
36		
37	31	Word count:
38		
39 40	32	
41	32	Abstract: 269 words
42		
43 44	33	Text: 2692 words
44 45		
46		
47		
48 49		
49 50		
51		
52		
53 54		
54 55		
56		
57		
58 59		
60		

2
3
1
4 5 6
5
6
7
8
0
9
10
11
12
12
1.3
14
15
16
17
18
10
19
20
21
22
22
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
24
25
26
27
28
20
29
30
31
32 33 34 35
22
27
34
35
36
36 37 38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55
54
55
56
57
58
50
59
60

35	ABSTRACT
36	Objectives: To estimate the clinical and economic impact of intensive care unit-acquired
37	bloodstream infections in Taiwan.
38	Design: Retrospective cohort study.
39	Setting: Nationwide Taiwanese population in the National Health Insurance Research
40	Database and the Taiwan Nosocomial Infections Surveillance (2007-2015) dataset.
41	Participants: The first episodes of intensive care unit-acquired bloodstream infections in
42	patients \geq 20 years of age in the datasets. Propensity score-matching (1:2) of demographic
43	data, comorbidities, and disease severity was performed to select a comparison cohort from a
44	pool of intensive care unit patients without intensive care unit-acquired infections from the
45	same datasets.
46	Primary and secondary outcome measures: The mortality rate, length of hospitalization,
47	and healthcare cost.
48	Results: After matching, the in-hospital mortality of 14,234 patients with intensive care
49	unit-acquired bloodstream infections was 44.23%, compared to 33.48% for 28,468 intensive
50	care unit patients without bloodstream infections. The 14-day mortality rate was also higher
51	in the bloodstream infections cohort (4,323, 30.37% vs. 6,766 deaths, 23.77%, respectively; p
52	< 0.001). Furthermore, the patients with intensive care unit-acquired bloodstream infections
53	had a prolonged length of hospitalization after their index date (18 days[IQR 7-39] vs. 10

1 2	
3	
4 5	5
6 7	
7 8	5
9	
10	5
11 12	
13	5
14 15	
16	5
17	Ū
18 19	5
20	J
21 22	~
23	6
24 25	_
25 26	6
27	
28 29	6
30	
31 32	6
33	
34	6
35 36	
37	
38 39	
40	
41	
42 43	
44	
45 46	
40 47	
48	
49 50	
51	
52 53	
54	
55	
56 57	
58	
59	

54	days [IQR 4–21], respectively; $p < 0.001$) and a higher healthcare cost (16,038 US dollars
55	[IQR 9,667–25,946] vs. 10,372 US dollars [IQR 6,289–16,932], respectively; p < 0.001). The
56	excessive hospital stay and healthcare cost per case were 12.69 days and 7,669 US dollars,
57	respectively. Similar results were observed in subgroup analyses of various World Health
58	Organization's priority pathogens and Candida spp.
59	Conclusions: Intensive care unit-acquired bloodstream infections in critically ill patients
60	were associated with increased mortality, longer hospital stays, and higher healthcare costs.
61	
62	
63	Keywords: bloodstream infection; healthcare costs; hospital stay; intensive care unit;
64	mortality.

66 STRENGTHS AND LIMITATIONS OF THIS STUDY

1. A large number of patients obtained from Nationwide Taiwanese population from two

68 datasets in Taiwan were included.

69 2. Propensity score-matching was performed to select a comparison cohort.

70 3. The mortality rate, length of hospitalization, and healthcare cost were analyzed.

4. Subgroup analyses of several drug-resistant pathogens were conducted.

72 5. The retrospective design may include some unmeasurable bias.

1 2 3	
4 5 6	
7 8 9 10	
11 12 13	
14 15 16 17	
18 19 20	
21 22 23 24	
25 26 27	
28 29 30 31	
32 33 34	
35 36 37 38	
39 40 41	
42 43 44 45	
46 47 48	
49 50 51 52	
53 54 55	
56 57 58 59	
60	

73 BACKGROUND

74	Critically ill patients in intensive care units (ICUs) are vulnerable to various infections,
75	and these can lead to increased morbidity, mortality, and healthcare costs. Bloodstream
76	infections (BSIs) are one of the most common infections acquired by ICU patients. It was
77	reported that BSIs affected approximately 7 % of patients admitted to ICUs.[1] Previous
78	studies have shown that ICU-acquired BSIs resulted in attributable mortality of 24.8%,[2]
79	extended hospital stays by 13.5 days[3] and the cost of treatment was approximately 12,321
80	US dollars per case. Moreover, despite advances in medical care and the development of new
81	therapies, the outcome of BSIs in critically ill patients is adversely affected by a greater
82	number of vulnerable hosts and the emergence of drug-resistant pathogens.
83	Discrepancies regarding the impact of pathogens on mortality have been reported.
84	However, worse clinical outcome and higher economic burden have been reported for
85	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving
86	third-generation cephalosporin-resistant Enterobacteriaceae have been shown to significantly
87	increase mortality risk compared to BSIs involving susceptible strains.[4] Moreover,
88	candidemia has been associated with a 4-fold increase in mortality, while Staphylococcus
89	aureus BSIs doubled the risk of mortality.[1] Meanwhile, the clinical impact of Enterococci
90	remains a controversial topic.[5-7] Therefore, it is important not only to describe the clinical
91	and economic impact of infections, but also to decipher the impact of individual pathogens.

Due to the limited number of cases and the complex clinical characteristics of critically ill

patients, previous studies have reported either clinical or economic outcomes, have focused

on several species of pathogens, or have assessed only a limited number of pathogens. In the

present study, a health insurance database and a nationwide surveillance system for

healthcare-associated infections were used to estimate the clinical and economic

patients in Taiwan. In addition, the impact of individual pathogens, especially

consequences of ICU-acquired BSIs caused by different pathogens in a large number of

antibiotic-resistant bacteria on the World Health Organization (WHO) priority list,[8] were

י ר
2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
20
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24
24
25
26
27
23 24 25 26 27 28 29
20
29 30
30
31
32 33
33
34
35
36
34 35 36 37 38
20
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
55 56
50
57
58

59 60 92

93

94

95

96

97

98

99

100	investigated.	

1 2		
3 4 5	101	METHODS
6 7 8	102	Data sources
9 10 11	103	Two datasets, the National Health Insurance Research Database (NHIRD) and the
12 13 14	104	Taiwan Nosocomial Infection Surveillance (TNIS) dataset, were used in this study.
15 16 17	105	Demographic data, diagnoses (according to the International Classification of Diseases, 9th
18 19 20	106	Revision, Clinical Modification [ICD-9-CM]), procedures, and medications for patients
21 22 23	107	enrolled in Taiwan's national insurance system have been collected in the NHIRD since
24 25 26 27 28 29 30 31 32	108	1995.[9] In 2007, the TNIS was launched by the Taiwan Centers for Disease Control to
	109	evaluate the epidemiologic trend of healthcare-associated infections in the ICUs in Taiwan.
	110	The latter is a web-based surveillance system which collects clinical information of patients
33 34 35	111	with healthcare-associated infections from the ICUs of participating hospitals. This
36 37 38	112	information includes demographic data, infection foci, causative pathogens, and antimicrobial
39 40 41 42 43 44 45 46 47	113	susceptibility results. Participation in TNIS is essential for the hospital accreditation in
	114	Taiwan.
	115	Both datasets were deposited in a database maintained by the Health and Welfare Data
48 49	116	Science Center, Ministry of Health and Welfare. Individual personal identification numbers
50 51 52 53	117	were encrypted so that data from the NHIRD and TNIS datasets could be interlinked. The
54 55 56	118	institutional review board of the National Health Research Institutes approved this study
57 58 59	119	(EC1051207-R4).
60		

2		
3 4 5	120	
$\begin{array}{c} 6\\7\\8\\9\\10\\11\\2\\3\\14\\15\\16\\17\\18\\19\\20\\21\\22\\3\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\45\\36\\37\\38\\9\\40\\1\\42\\43\\44\\56\\47\\48\\9\\50\end{array}$	121	Study population, data collection, and propensity-score matching
	122	This retrospective cohort study enrolled adult patients who underwent ICU
	123	hospitalization between 2007 and 2015 in Taiwan. From the entries in the TNIS database, we
	124	identified all of the patients whose first episode of an ICU-acquired BSI occurred during the
	125	study period. Coagulase-negative Staphylococci are often identified in the ICUs but a certain
	126	proportion is associated with contamination; therefore, these cases were not included in our
	127	analysis. We included species that constituted > 1 % of known bloodstream pathogens
	128	(Supplementary Table 1), which constituted 79.4% of all ICU-acquired BSI episodes. The
	129	index date for each case was defined as the date on which a positive blood culture result was
	130	obtained. The encrypted personal identification numbers of included patients were interlinked
	131	with NHIRD to retrieve their demographic data, comorbidities, procedures, and medications.
	132	For comparison, we identified ICU patients who did not have ICU-acquired infections
	133	registered in TNIS database. In addition, patients with a discharge diagnosis of sepsis
	134	(ICD-9-CM: 038.X, 995.91), severe sepsis (ICD-9-CM: 995.92), or septic shock (ICD-9-CM:
	135	785.52) in the comparison cohort, but not in the BSI group, were also excluded. The pool of
51 52 53	136	comparison patients was created for selection of those with the same admission date as any
54 55 56	137	patient with ICU-acquired BSI. Because the comparison patients did not have index date of
57 58 59 60	138	acquisition of infection, they were assigned "pseudo-index dates" during hospitalization,

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14 15	
15 16	
16 17	
18	
10	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 34	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
55 56	
50 57	
58	
59	
60	

	139	which was selected from the index date of patients with the same day of hospitalization i				
	140	BSI group. Baseline variables and those associated with ICU-acquired BSIs were first				
0 1	141	selected. Propensity scores were then calculated for the likelihood of ICU-acquired BSIs by				
2 3 4 5 6 7	142	multivariate logistic regression analysis. Variables were removed from the multivariable				
	143	model in a stepwise fashion. We used 1:2 greedy matching [10] within a caliper width equal				
8 9 0	144	to 0.1 of the standard deviation of the logit of the propensity score (Supplementary Table 2).				
1 2 3	145	Patient data from January 2005 were used to ensure that individuals were followed for at least				
4 5 6 7	146	two years prior to their selection for this study in order to confirm comorbidities[11] and for				
8 9	147	matching purposes.				
0 1 2 3	148					
3 4 5 6	149	Patient and Public Involvement				
7 8	150	Patients and the public were not directly involved in the planning of this study.				
9 0 1	151					
2 3 4	152	Outcome measurements				
2 3 4 5 6 7 8 9 0	153	Clinical outcomes included in-hospital, 14-day, and 28-day mortality rate after the index				
8 9 0	154	date/pseudo-index date. Economic outcomes included hospitalization length after the index				
1 2 3	155	date/pseudo-index date and cost of overall hospitalization. Hospitalization length was defined				
2 3 4 5 6 7	156	as the duration of hospital stay after the index date/pseudo-index date. The overall cost of				
7 8 9 0	157	hospitalization was calculated. The costs were standardized and presented in values from				
-						

2		
3 4 5	158	2017.
6 7 8	159	
9 10 11	160	Subgroup analysis
12 13 14	161	To evaluate the clinical and economic impact of ICU-acquired BSIs caused by different
15 16 17	162	pathogens, we performed analyses on patients infected with single pathogen. For example,
18 19 20	163	the impact of WHO priority bacteria and Candida were examined separately, as was the
21 22 23	164	impact of drug resistance in these bacteria. We included patients whose first episode of an
24 25 26	165	ICU-acquired BSI were caused by bacteria on the WHO priority list or Candida. Therefore,
27 28 29 30 31 32	166	the clinical and economic outcomes of patients with Acinetobacter baumannii, Pseudomonas
	167	aeruginosa, common Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae,
33 34 35	168	Enterobacter species, and Serratia marcescens), S. aureus, Enterococcus species, Candida
36 37 38	169	albicans, and non-albicans Candida (Candida tropicalis, Candida parapsilosis, and Candida
39 40 41	170	glabrata) were determined.
42 43 44	171	The definition of multiple drug resistance (MDR) of WHO priority bacteria according to
45 46 47	172	the European Centre for Disease Prevention and Control (ECDC) was modified[12]
48 49 50 51 52 53	173	(Supplementary Table 3). In this study, non-susceptibility to at least one agent in at least
	174	three antimicrobial categories in Gram-negative bacteria was defined as MDR. Oxacillin- and
54 55 56	175	vancomycin-non-susceptible S. aureus and vancomycin-non-susceptible Enterococcus
57 58 59	176	species were considered MDR Gram-positive bacteria.
60		11

1 2			
3 4 5	177		
6 7 8	178	Sensitivity analysis	
9 10 11	179	To avoid competing risk between mortality and length of hospitalization/healthcare co	st,
12 13 14 15 16 17	180	we included patients who survived to discharge. For these patients, length of hospitalization	1
	181	after the index date/pseudo-index date and hospitalization costs were determined.	
18 19 20	182		
21 22 23	183	Statistical analysis	
24 25 26 27 28 29	184	Descriptive statistics were used to examine baseline demographic and clinical	
	185	characteristics of the ICU patients included in this study. To account for potential	
30 31 32	186	confounding biases among the study cohort, propensity score matching analysis was	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	187	performed. Propensity scores were calculated with multivariate logistic regression.	
	188	Standardized differences between the two groups with differences less than 0.1 were	
	189	confirmed in order to assess baseline characteristics. The Mann-Whitney U test was used to)
	190	evaluate economic outcomes and the Chi-squared test was used to evaluate mortality rate.	
	191	Conditional logistic regression was used to calculate odds ratios (ORs) to evaluate risk of	
	192	mortality in patients with BSI and the comparison cohort, while a generalized linear model	
51 52 53	193	was used to calculate β values to estimate excess costs and length of hospitalization.	
54 55 56	194	Variables with a <i>p</i> -value < 0.05 were eligible for inclusion in the model. <i>P</i> -values less than	
57 58 59 60	195	0.05 were considered statistically significant. All analyses were performed by using SAS	12

2 3		
4 5	196	statistical software (version 9.4, SAS Institute Inc., Cary, NC, USA).
6 7 8 9 10 11 23 14 15 16 7 18 19 21 22 32 42 52 67 8 9 30 31 23 34 35 36 7 8 9 0 12 23 24 25 26 7 8 9 30 31 23 34 35 36 7 8 9 0 11 23 44 5 5 6 7 8 9 0 11 22 34 25 26 7 8 9 30 31 23 34 35 36 7 8 9 0 11 22 34 25 26 7 8 9 30 31 23 34 35 36 7 8 9 0 11 22 34 25 26 7 8 9 30 31 23 34 35 36 7 8 9 0 11 22 34 25 26 7 8 9 30 31 23 34 35 36 7 8 9 0 11 22 34 25 26 7 8 9 30 31 23 34 35 36 7 8 9 0 11 22 34 25 26 7 8 9 30 31 23 34 35 36 7 8 9 0 11 22 34 25 26 7 8 9 30 31 23 34 35 36 7 8 9 0 11 22 34 25 25 26 7 8 9 0 31 22 3 3 4 5 36 7 8 9 0 12 33 44 5 36 7 8 9 0 12 33 44 5 56 7 8 9 0 12 53 44 55 56 7 8 9 0 12 53 8 9 0 12 53 8 9 0 12 53 8 9 0 12 53 8 9 0 12 53 8 9 0 12 53 8 9 0 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	197	

1 2	
3 4 5	198
6 7 8	199
9 10 11	200
12 13 14	201
15 16 17	202
18 19 20	203
21 22 23	204
24 25 26	205
27 28 29	206
30 31 32	207
33 34 35	208
36 37 38	209
39 40 41	210
42 43 44	211
45 46 47	212
48 49 50	213
51 52 53	214
54 55 56	215
57 58 59 60	216

198	RESULTS
199	Among 38,659 episodes of ICU-acquired BSIs registered in TNIS during the 9-year
200	study period, 28,495 patients were identified to have their first episode of a BSI. The NHIRD
201	included 1,638,796 patients who underwent ICU hospitalization (Figure 1). After excluding
202	patients whose data could not be interlinked with NHIRD or who did not have target
203	pathogens, 14,234 patients with ICU-acquired BSIs were successfully matched to 28,468
204	ICU patients without ICU-acquired infections (1:2). The demographic and clinical
205	characteristics of the patients with BSI and comparison cohort are presented in Table 1. The
206	groups had standardized differences that were < 10% for all of the continuous and
207	dichotomous categorical variables which were examined.
208	Table 2 lists the clinical and economic outcomes of the ICU patients with BSIs and the
209	comparison cohort. The ICU patients with BSIs suffered a higher in-hospital mortality rate
210	(44.23% vs. 33.48%, respectively; $p < 0.001$), a higher 14-day mortality rate (30.37% vs.
211	23.77%, respectively; $p < 0.001$), and a higher 28-day mortality (39.48% vs. 32.28%,
212	respectively; $p < 0.001$). Logistic regression analyses showed that the OR of in-hospital
213	mortality for the ICU patients with BSIs was 1.67 (95% confidence interval [CI], 1.59-1.75;
214	p < 0.001), and it was 1.42 (95% CI, 1.35–1.49; $p < 0.001$) for 14-day mortality and 1.41
215	(95% CI, 1.34–1.47; $p < 0.001$) for 28-day mortality. These significant associations were also
216	observed in the subgroup analyses performed (Table 3).

¢

	217	The ICU patients with BSIs had a longer length of hospitalization after the index date
	218	(18 vs. 10 days, respectively; $p < 0.001$). Moreover, on average, their hospital stay was
) 1	219	extended by 12.69 days (95% CI, 11.92–13.47; $p < 0.001$). The subgroup analyses performed
2 3 4	220	(Table 4) showed that all of the causative pathogens shared a similar trend. Compared with
5 5 7	221	the patients without ICU-acquired infections, the duration of hospitalization after the index
8 9 0	222	date for those with BSIs caused by MDR bacteria, WHO priority bacteria, or Candida spp.
1 2 3	223	was longer. In addition, hospitalization costs of the ICU patients with BSIs were higher
4 5 5	224	(16,038 vs. 10,372, respectively; $p < 0.001$) (Table 2), with the excess cost being 7,669 US
7 8 9	225	dollars per patient (95% CI, 7,380–7,958; $p < 0.001$). Table 4 presents the higher costs
D 1 2 3	226	associated with each of the various causative pathogen.
4 5	227	For the ICU patients with BSIs who survived to discharge, their length of hospitalization
5 7 8	228	and healthcare costs were increased by 19.59 days and 8,871 US dollars, respectively,
9 0 1	229	(Supplementary Table 4) compared to the survivors without ICU-acquired infections.
2 3 4		
5 5 7		
8 9		
1 2		
3 4		
5 5		
7 8		

1 2	
3 4 5	230
6 7 8	231
9 10 11	232
12 13 14	233
15 16 17	234
18 19 20	235
21 22 23	236
24 25 26	237
27 28 29	238
30 31 32	239
33 34 35	240
36 37 38	241
39 40 41	242
42 43 44	243
45 46 47	244
48 49 50	245
51 52 53	246
54 55 56	247
57 58 59 60	248

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
To peer review only integry only open.only.com/site/ubout/guidelines.xitim	

and a larger study population.

230	DISCUSSION
231	This study demonstrated that ICU patients with BSIs in Taiwan had significantly worse
232	clinical outcomes and higher economic burden than ICU patients without ICU-acquired
233	infections from the same population. For example, the patients with BSI exhibited 1.67-,
234	1.42-, and 1.41-fold increases in in-hospital, 14-day, and 28-day mortality rates, respectively.
235	Per case, the patients with BSI had an excess hospital stay of 12.69 days and cost of 7,669 US
236	dollars. Furthermore, a similar clinical and economic impact was observed among all of the
237	causative pathogens examined.
238	BSIs have been associated with higher mortality and morbidity, contingent on the
239	causative pathogen involved.[1,3,13-16] For example, worse clinical outcomes have been
240	reported for patients with BSIs caused by A. baumannii, [16,17] P. aeruginosa, [15,16] S.
241	aureus,[1,4,15,16] Enterobacteriaceae,[4,16] and Candida spp.[1,16,18] In contrast,
242	controversial results have been obtained regarding the mortality of patients affected by
243	enterococcal bacteremia. While some authors have argued that Enterococcus spp. represents
244	a low virulence pathogen[1] and is not associated with increased mortality unless in the
245	presence of endocarditis,[19] other authors have reported contrasting results.[5,6,16,18] In
246	the present study, significantly higher mortality was observed for patients with enterococcal
247	bacteremia, and this may be due to vulnerability of the hosts examined, increased resistance,

16

¢

Page 18 of 54

BMJ Open

249	The high healthcare burden of BSIs reported in previous literature[3,13,20] and in the
250	present study underscores the importance of preventing ICU-acquired BSIs by infection
251	control measurements. Furthermore, the results of these studies help to assess cost
252	effectiveness of infection control measurements in the process of policy-making. For example,
253	patients with ICU-acquired BSIs during the 9-year period cost Taiwan an estimated 297
254	million US dollars and 492,129 days (supplementary Table 5). A policy that reduced the rate
255	of infection by 10%[21] would translate into a savings of 30 million US dollars and 49,213
256	patient-days saved.
257	Drug resistance has been found to be correlated with higher medical costs due to the
258	need for second-line antimicrobials for treatment, as well as additional diagnostic and
259	treatment tools.[22, 23] In the present study, the costs for MDR bacteria included extra 84
260	million US dollars and 140,043 days over nine years (Supplementary Table 5). However, cost
261	differences between susceptible and resistant strains were not determined in the present study.
262	Drug-susceptible strains were not included as controls due to differences in testing methods,
263	drugs, and breakpoints for these strains which could lead to mis-assignments of drug-resistant
264	pathogens as susceptible pathogens.
265	Candidemia poses a great threat to ICU patients due to its excessive medical
266	burdens,[16,18,20] and C. albicans is the most common pathogen. However, in some
267	countries, the prevalence of non-albicans Candida exceeds that of C. albicans.[24] For those

	268	infected with non-albicans Candida, higher rates of mortality, [24,25] longer hospitalization
	269	stays, and increased hospital costs have been described;[25-27] although other studies have
0 1	270	reported contradicting findings.[28,29] These discrepancies may be due to host factors and
2 3 4	271	differences in the virulence and resistance patterns[24] of non-albicans Candida. In the
5 6 7	272	present study, the crude 14-day and in-hospital mortality rates of 951 patients infected with <i>C</i> .
8 9 0	273	albicans were 37.96% and 55.94%, respectively. In comparison, among 703 patients infected
1 2 3	274	with non-albicans Candida, these rates were 34.99% and 53.06%, respectively. While the
4 5 6	275	hospital costs and length of stay were higher in the non-albicans Candida group compared to
7 8 9	276	the C. albicans group, the 95% CI overlapped for the two groups (Table 4). These data
0 1 2	277	suggested that the clinical and economic outcomes of these two groups did not greatly differ.
3 4 5	278	However, the present study was not designed to specifically compare the outcomes of those
6 7 8	279	infected with C. albicans versus non-albicans Candida. Therefore, additional studies with a
9 0 1	280	larger number of patients, adjustment for host factors, and consideration of antifungal drugs,
2	281	incubation time, and treatment duration are needed to clarify the impact of each Candida
3 4 5 6 7	282	species.
8 9 0	283	The large number of patients examined in this study and the use of propensity score
1 2	284	matching represent two major strengths of the present study. These aspects also allowed the
3 4 5 6	285	impact of each pathogen group to be discerned. However, there were also several limitations
7 8	286	associated with the present study which merit discussion. First, the exact cost after the index
9 0		

Page 20 of 54

1 2 3 4 5	
6 7 8 9 10	
11 12 13 14 15	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	
22	
23 24 25 26 27 28 29 30	
31 32 33 34 35 36	
37 38 39 40	
41 42 43 44 45	
46 47 48 49 50	
51 52 53 54 55	
56 57 58 59 60	

287	date could not be retrieved from the NHIRD. Therefore, the high total cost shown in this
288	study may be due to costs incurred prior to the onset of a BSI. It is possible that matching of
289	the duration before the index date and comorbidity may have reduced overestimations of
290	healthcare costs due to time-dependent bias.[30] Second, confounding factors associated with
291	clinical impact, such as APACHE II or Pitt Bacteremia scores, were not included in this study.
292	Instead, other clinical risk factors (Charlson Comorbidity Index score, number of organ
293	failures, use of inotropic agents, and receipt of invasive procedures) were incorporated in our
294	model. Third, our study is inherently limited by its retrospective design, which includes a
295	dependence on the accuracy of the ICD codes used and unmeasurable bias.[31,32] Fourth, the
296	prolonged hospitalization may have been due to a change in patient management in response
297	to a BSI, rather than increased morbidity due to a BSI.[15] In addition, the number of
298	participating hospitals varied during study period and therefore was considered in propensity
299	score matching. Finally, the collection of personal identification numbers is not mandatory in
300	TNIS, which resulted in failure of interlink (missing data). In 2007-2015 TNIS dataset,
301	27,603 of 132,118 (20.9%) patients lacked personal identification numbers, compared to
302	4689 of 28495 (16.5%) patients with ICU-acquired BSI in this study. Patients without
303	personal identification numbers were excluded from the analyses and therefore no further
304	methods were applied to account for excluded data. However, their impact on the outcome
305	was unknown.

1 2		
2 3 4	306	
5 6	306	
7 8	307	CONCLUSIONS
9 10 11 12	308	ICU-acquired BSIs have a negative clinical and economic impact on affected patients
13 14	309	regardless of the causative pathogens involved. Awareness of these negative affects is
15 16 17	310	important for promoting infection control measurements and for policy-making.
18 19 20 21 22 32 42 52 67 28 93 31 32 33 43 53 67 38 940 41 23 44 54 47 48 950 51 52 53 45 56 57 58 960	311	

1 2		
3 4 5	312	LIST OF ABBREVIATIONS
6 7 8	313	BSI = bloodstream infection;
9 10 11	314	CI = confidence interval;
12 13 14	315	ECDC = European Centre for Disease Prevention and Control;
15 16 17	316	ICD-9-CM = international classification of diseases, 9th revision, clinical modification;
18 19 20	317	ICU = intensive care unit;
21 22 23	318	IQR = interquartile range;
24 25 26	319	MDR = multiple drug resistance;
27 28 29	320	NHIRD = National Health Insurance Research Database;
30 31 32	321	OR = odds ratio;
33 34 35	322	TNIS = Taiwan Nosocomial Infection Surveillance;
36 37 38	323	WHO = World Health Organization;
39 40 41	324	
42 43 44		
45 46 47		
48 49 50		
50 51 52		
52 53 54		
55		
56 57		
58 59		
60		

1 2		
3 4 5	325	DECLARATIONS
6 7 8	326	Ethics approval and consent to participate
9 10 11	327	The institutional review board of the National Health Research Institutes approved this study
12 13 14	328	(EC1051207-R4).
15 16 17	329	
18 19 20	330	Consent for publication
21 22 23	331	Not applicable.
24 25 26	332	
27 28 29	333	Availability of data and materials
30 31 32	334	The data that support the findings of this study are available from Ministry of Health and
33 34 35	335	Welfare, Taiwan but restrictions apply to the availability of these data, which were used
36 37 38	336	under license for the current study, and so are not publicly available. Data are however
39 40 41	337	available from the authors upon reasonable request and with permission of Ministry of Health
42 43 44	338	and Welfare, Taiwan.
45 46 47	339	
48 49 50	340	Competing interests
51 52 53	341	The authors declare that they have no competing interests.
54 55 56	342	
57 58 59	343	Funding
60		22

1 2	
3 4 5	344
6 7 8	345
9 10 11	346
12 13 14 15	347
16 17 18	348
19 20 21	349
22 23	350
24 25 26 27	351
27 28 29 30	352
30 31 32 33	353
34 35 36	354
37 38 39	355
40 41 42	356
42 43 44 45	357
43 46 47 48	358
40 49 50 51	359
51 52 53 54	360
54 55 56 57	361
57 58 59 60	362

344	This work was supported by grants from the National Health Research Institutes [Grant no.
345	108-0324-01-19-06] and Tri-Service General Hospital [TSGH-C107-099 and
346	TSGH-E-109237]. The sponsors had no role in the study design; collection, analysis, or
347	interpretation of data; writing of the report; or the decision to submit the article for
348	publication.
349	
350	Author contributions
351	Conceptualization: CAH, SCK
352	Data curation: YTC, CAH, SCK
353	Formal analysis: SMS, YTC
354	Funding acquisition: YCW, SCK
355	Investigation: YCW, SCK
356	Methodology: YTC, CAH, SCK
357	Project administration: YCW, CAH, SCK
358	Resources: YTC, CAH, SCK
359	Software: SMS, YTC
360	Supervision: SMS, YTC
361	Validation: CAH, SCK

Visualization: YCW, SMS

1 2 3		
3 4 5 6	363	Writing—original draft: YCW, SMS, SCK
7 8	364	Writing—review & editing: YCW, CAH, SCK
9 10 11	365	All authors approved the final version of the manuscript.
12 13 14	366	
15 16 17	367	Acknowledgements
18 19 20	368	Not applicable.
21 22 23	369	Not applicable.
24 25 26		
27 28 29		
30 31 32		
33 34 35 36		
37 38 39		
40 41 42		
43 44 45		
46 47 48		
49 50 51		
52 53 54		
55 56 57		
58 59 60		
00		

3 4 5	~ ~ ~
4 5 6 7 8 9 10	
9 10 11	
 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	
15 16 17	
19 20	
21 22 23	~
24 25 26	
27 28 29	
30 31 32	
33 34 35	
36 37 38	
39 40 41	
42 43 44	
45 46 47	
48 49 50	
51 52 53	
54 55 56 57	

REFERENCES

7 8 9	372	1.	Prowle JR, Echeverri JE, Ligabo EV, et al. Acquired bloodstream infection in the
9 10 11 12	373		intensive care unit: incidence and attributable mortality. Crit Care 2011; 15: R100.
13 14 15	374	2.	Garrouste-Orgeas M, Timsit JF, Tafflet M, et al. Excess risk of death from intensive
16 17 18	375		care unit-acquired nosocomial bloodstream infections: a re-appraisal. Clin Infect Dis
19 20 21	376		2006; 42 : 1118-26.
22 23 24	377	3.	Laupland KB, Lee H, Gregson DB, Manns BJ. Cost of intensive care unit-acquired
25 26 27	378		bloodstream infections. J Hosp Infect 2006; 63: 124-32.
28 29 30	379	4.	Stewardson AJ, Allignol A, Beyersmann J, et al. The health and economic burden of
31 32 33	380		bloodstream infections caused by antimicrobial-susceptible and non-susceptible
34 35 36	381		Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011:
37 38 39	382		a multicentre retrospective cohort study. <i>Euro Surveill</i> 2016; 21 : pii=30319.
40 41 42	383	5.	Landry SL, Kaiser DL, Wenzel RP. Hospital stay and mortality attributed to
43 44 45	384		nosocomial enterococcal bacteremia: a controlled study. Am J Infect Control 1989;
46 47 48	385		17: 323-9.
49 50 51	386	6.	Ong DS, Bonten MJ, Safdari K, et al. Epidemiology, management, and risk-adjusted
52 53 54	387		mortality of ICU-acquired enterococcal bacteremia. Clin Infect Dis 2015; 61:
55 56 57	388		1413-20.
58 59 60	389	7.	Kramer TS, Remschmidt C, Werner S, et al. The importance of adjusting for

Page 27 of 54

1

2			
3 4 5 6	390		Enterococcus species when assessing the burden of vancomycin resistance: a cohort
7 8 9	391		study including over 1000 cases of enterococcal bloodstream infections. Antimicrob
9 10 11 12	392		Resist Infect Control 2018; 7: 133.
13 14	393	8.	Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of
15 16 17	394		new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.
18 19 20	395		Lancet Infect Dis 2018; 18: 318-27.
21 22 23	396	9.	Wu TY, Majeed A, Kuo KN. An overview of the healthcare system in Taiwan.
24 25 26	397		London J Prim Care (Abingdon) 2010; 3 : 115-9.
27 28 29	398	10.	Tu JV, Bowen J, Chiu M, et al. Effectiveness and safety of drug-eluting stents in
30 31 32	399		Ontario. <i>N Engl J Med</i> 2007; 357 : 1393-402.
33 34 35	400	11.	Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with
36 37 38	401		ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45: 613-9.
39 40 41	402	12.	Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively
42 43 44	403		drug-resistant and pandrug-resistant bacteria: an international expert proposal for
45 46 47	404		interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:
48 49 50	405		268-81.
51 52 53	406	13.	Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically iII
54 55 56	407		patients: excess length of stay, extra costs, and attributable mortality. JAMA 1994;
57 58 59	408		271 : 1598-601.
60			

1

Page 28 of 54

2 3			
4 5 6	409	14.	Laupland KB, Zygun DA, Davies HD, et al. Population-based assessment of intensive
7 8	410		care unit-acquired bloodstream infections in adults: incidence, risk factors, and
9 10 11	411		associated mortality rate. Crit Care Med 2002; 30: 2462-7.
12 13 14 15	412	15.	Barnett AG, Page K, Campbell M, et al. The increased risks of death and extra lengths
16 17	413		of hospital and ICU stay from hospital-acquired bloodstream infections: a
18 19 20	414		case-control study. BMJ Open 2013; 3: e003587.
21 22 23	415	16.	Marra AR, Camargo LF, Pignatari AC, et al. Nosocomial bloodstream infections in
24 25 26	416		Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide
27 28 29	417		surveillance study. J Clin Microbiol 2011; 49: 1866-71.
30 31 32	418	17.	Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in
33 34 35	419		patients with Acinetobacter baumannii infection: systematic review and
36 37 38	420		meta-analysis. Clin Microbiol Infect 2014; 20: 416-23.
39 40 41	421	18.	Schwab F, Geffers C, Behnke M, et al. ICU mortality following ICU-acquired
42 43 44	422		primary bloodstream infections according to the type of pathogen: a prospective
45 46 47	423		cohort study in 937 Germany ICUs (2006-2015). PloS One 2018; 13: e0194210.
48 49 50	424	19.	Caballero-Granado FJ, Becerril B, Cuberos L, et al. Attributable mortality rate and
51 52 53	425		duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis
54 55 56	426		2001; 32 : 587-94.
57 58 59	427	20.	Blot SI, Depuydt P, Annemans L, et al. Clinical and economic outcomes in critically
60			27

3 4 5	428		ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis
6 7 8	429		2005; 41 : 1591-8.
9 10 11	430	21.	Tseng SH, Lee CM, Lin TY, et al. Combating antimicrobial resistance: antimicrobial
12 13 14	431		stewardship program in Taiwan. J Microbiol Immunol Infect 2012; 45: 79-89.
15 16 17	432	22.	Howard D, Cordell R, McGowan JE, Jr., et al. Measuring the economic costs of
18 19 20	433		antimicrobial resistance in hospital settings: summary of the Centers for Disease
21 22 23	434		Control and Prevention-Emory Workshop. Clin Infect Dis 2001; 33: 1573-8.
24 25 26	435	23.	Mauldin PD, Salgado CD, Hansen IS, et al. Attributable hospital cost and length of
27 28 29	436		stay associated with health care-associated infections caused by antibiotic-resistant
30 31 32	437		gram-negative bacteria. Antimicrob Agents Chemother 2010; 54: 109-15.
33 34 35	438	24.	Horn DL, Neofytos D, Anaissie EJ, et al. Epidemiology and outcomes of candidemia
36 37 38	439		in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin
39 40 41	440		Infect Dis 2009; 48 : 1695-703.
42 43 44	441	25.	Dimopoulos G, Ntziora F, Rachiotis G, et al. Candida albicans versus non-albicans
45 46 47	442		intensive care unit-acquired bloodstream infections: differences in risk factors and
48 49 50	443		outcome. Anesth Analg 2008; 106: 523-9.
51 52 53	444	26.	Moran C, Grussemeyer CA, Spalding JR, et al. Comparison of costs, length of stay,
54 55 56	445		and mortality associated with Candida glabrata and Candida albicans bloodstream
57 58 59	446		infections. Am J Infect Control 2010; 38: 78-80.
60			

3 4 5	447	27.	Gong X, Luan T, Wu X, et al. Invasive candidiasis in intensive care units in China:
6 7 8	448		risk factors and prognoses of Candida albicans and non-albicans Candida infections.
9 10 11	449		Am J Infect Control 2016; 44: e59-63.
12 13 14	450	28.	Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidemia
15 16 17	451		in 3648 patients: data from the prospective antifungal therapy (PATH Alliance®)
18 19 20	452		registry, 2004-2008. Diagn Microbiol Infect Dis 2012; 74: 323-31.
21 22 23	453	29.	Barchiesi F, Orsetti E, Gesuita R, et al.; Candidemia Study Group. Epidemiology,
24 25 26	454		clinical characteristics, and outcome of candidemia in a tertiary referral center in Italy
27 28 29	455		from 2010 to 2014. Infection 2016; 44: 205-13.
30 31 32	456	30.	Nelson RE, Samore MH, Jones M, et al. Reducing time-dependent bias in estimates of
33 34 35	457		the attributable cost of health care-associated Methicillin-resistant Staphylococcus
36 37 38	458		aureus infections: a comparison of three estimation strategies. Med Care 2015; 53:
39 40 41	459		827-34.
42 43 44	460	31.	Kuo SC, Shih SM, Hsieh LY, et al. Antibiotic restriction policy paradoxically
45 46 47	461		increased private drug consumptions outside Taiwan's National Health Insurance. J
48 49 50	462		Antimicrob Chemother 2017; 72: 1544-5.
51 52 53	463	32.	Sarrazin MSV, Rosenthal GE. Finding pure and simple truths with administrative
54 55 56	464		data. JAMA 2012; 307 : 1433-5.
57 58 59 60	465		

BMJ Open

466 Table 1. Characteristics of the intensive care unit patients with bloodstream infections

467 and the matched comparison cohort.

Characteristics	Patients with BSI,	Comparison	Standardized
Characteristics	n (%)	cohort, n (%)	difference
No. of patients	14,234	28,468	
Year of Index Date			
2007	1,244 (8.74%)	3,474 (12.2%)	0.113
2008	1,608 (11.3%)	3,101 (10.89%)	0.013
2009	1,714 (12.04%)	2,923 (10.27%)	0.056
2010	1,745 (12.26%)	3,119 (10.96%)	0.041
2011	1,947 (13.68%)	3,107 (10.91%)	0.084
2012	1,727 (12.13%)	3,119 (10.96%)	0.037
2013	1,496 (10.51%)	2,985 (10.49%)	0.001
2014	1,371 (9.63%)	3,226 (11.33%)	0.056
2015	1,382 (9.71%)	3,414 (11.99%)	0.073
Season of In-date			
Mar-May	3,564 (25.04%)	7,207 (25.32%)	0.006
Jun-Aug	3,577 (25.13%)	7,224 (25.38%)	0.006
Sep-Nov	3,519 (24.72%)	6,964 (24.46%)	0.006
Dec-Feb	3,574 (25.11%)	7,073 (24.85%)	0.006
Males	8,971 (63.03%)	17,861 (62.74%)	0.006
Age, years, mean (SD)	65.12 (21.62)	65.08 (20.60)	0.002
Length of stay before index date/			
pseudo-index date, days, mean	15.69 (12.14)	15.29 (11.96)	0.033
(SD)			

Dependent	2,416 (16.97%)	4,813 (16.91%)	(
< 657.33	4,740 (33.3%)	9,575 (33.63%)	
657.33-1504.60	6,324 (44.43%)	12,563 (44.13%)	
> 1504.60	740 (5.2%)	1,484 (5.21%)	(
Urbanization level			
1 (urban)	3,639 (25.57%)	7,293 (25.62%)	(
2	3,968 (27.88%)	7,920 (27.82%)	(
3	2,227 (15.65%)	4,432 (15.57%)	(
4 (rural)	4,389 (30.83%)	8,802 (30.92%)	(
Hospital level			
Medical center	7,168 (50.36%)	14,393 (50.56%)	(
Regional hospital	6,125 (43.03%)	12,242 (43%)	(
Local hospital	940 (6.6%)	1,833 (6.44%)	(
Charlson Comorbidity Index	3.085 (2.80)	3.105 (2.95)	(
score, mean (SD)	5.085 (2.80)	3.103 (2.93)	(
0	2,950 (20.73%)	6,411 (22.52%)	(
1	1,930 (13.56%)	3,928 (13.8%)	(
2	2,283 (16.04%)	4,251 (14.93%)	(
\geq 3	7,071 (49.68%)	13,878 (48.75%)	(
Comorbidities			
Diabetes mellitus	4,840 (34%)	9,642 (33.87%)	(
Cerebrovascular disease	3,552 (24.95%)	7,048 (24.76%)	(
Myocardial infarction	525 (3.69%)	1,124 (3.95%)	(
Heart failure	2,532 (17.79%)	5,173 (18.17%)	

2				
3 4	Peripheral vascular disease	742 (5.21%)	1,509 (5.3%)	0.004
4 5	i emplicial vascular disease	742 (3.2170)	1,507 (5.570)	0.004
6	Liver disease	2,740 (19.25%)	5,393 (18.94%)	0.008
7		_,, (1)		0.000
8	Chronic kidney disease	3,864 (27.15%)	7,982 (28.04%)	0.02
9 10	, s	, , , ,	, , , ,	
10	Dyslipidemia	2,766 (19.43%)	5,683 (19.96%)	0.013
12				
13	Cancer	2,753 (19.34%)	5,635 (19.79%)	0.011
14				
15	Number of dysfunctional organs,			
16		1.015 (0.809)	1.02 (0.855)	0.005
17 18	mean (SD)			
18 19				
20	0	4,035 (28.35%)	8,549 (30.03%)	0.037
21				
22	1	6,445 (45.28%)	12,293 (43.18%)	0.042
23				
24	2	3,273 (22.99%)	6,243 (21.93%)	0.026
25				
26 27	\geq 3	481 (3.38%)	1,383 (4.86%)	0.074
27				
29	Use of inotropic agents	11,398 (80.08%)	22,858 (80.29%)	0.005
30				
31	Use of steroid	9 (0.06%)	20 (0.07%)	0.003
32				
33	Use of ventilator	12,493 (87.77%)	25,075 (88.08%)	0.01
34	Use of ventilator	12,493 (87.7770)	23,073 (88.0870)	0.01
35				
36 37	Use of ventilator (>3 days)	11,668 (81.97%)	23,458 (82.4%)	0.011
38				
39	Emergent renal replacement			
40		2615 (18.37%)	5,370 (18.86%)	0.013
41	therapy			
42				
43	Propensity score (SD)	0.128 (0.109)	0.127 (0.109)	0.004
44 45				
/15				

Abbreviations: BSI = bloodstream infection; SD = standard deviation.

24

		Full cohort		Novem	Matched cohort	
Outcomes	ICU patients	Comparison	<i>P</i> -value	ICU patients	Comparison	P-val
	with BSI	cohort	1 value	with B SI	cohort	1 (4)
No. of patients	17,834	713,518		14,234	28,468	
Clinical outcomes				ı http://bmjo		
In-hospital mortality, n (%)	8,639 (48.44)	65,282 (9.15)	< 0.0001	ō	9,532 (33.48%)	< 0.0
14-day mortality, n (%)	5,693 (31.92)	54,998 (7.71)	< 0.0001	4,323 (30.37%)	6,766 (23.77%)	< 0.00
28-day mortality, n (%)	7,469 (42.01)	73,552 (10.31)	< 0.0001	5,619 (39.48%)	9,189 (32.28%)	<0.00
Economic outcomes				2024		
Length of hospitalization after the index	18 (6, 40)	6 (3, 13)	< 0.0001	by guest.		< 0.00

Page 35 of	f 54				BMJ Open		mjopen		
1							-2020-03		
2 3 4 5		(IQR)					mjopen-2020-037484 on 26 November 16,038		
6 7 8		Cost of hospitalization	on (USD) ^{<i>a</i>} , median	18,457	4,971	< 0.0001	16,038	10,372	< 0.0001
9 10 11	_	(IQR)		(10,938, 30,778)	(2,770, 8,598)		(9,667, 25, 9 46)	(6,289, 16,932)	
12 13 470 14)	Abbreviations: ICU = i	intensive care unit; BSI =	bloodstream infecti	on; IQR= interqu	artile range	Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.		
15 16 471 17	1 '	⁷ The costs are standard	ized and presented as the				ded fror		
18 19							n http:		
20 21							//bmj		
22							open.		
23 24							.bmj.		
25 26							com/		
27							on P		
28 29							April 2		
30							<u>23</u> , 2		
31 32							024		
33							by g		
34							uest		
35 36							r P		
37							otec		
38							cted		
39							l by		
40							cop		34
41 42							yric		5-
42			-				jht.		
44			For peer	review only - http://bmj	open.bmj.com/site/	about/guidel	ines.xhtml		
45									
46									

28-days mortality

1.79 (1.6, 2)

1.5 (1.3, 1.72)

1.45 (1.27, 1.66)

1.47 (1.23, 1.77)

1.31 (1.19, 1.43)

1.31 (1.15, 1.51)

1.6 (1.37, 1.85)

1.68 (1.42, 1.98)

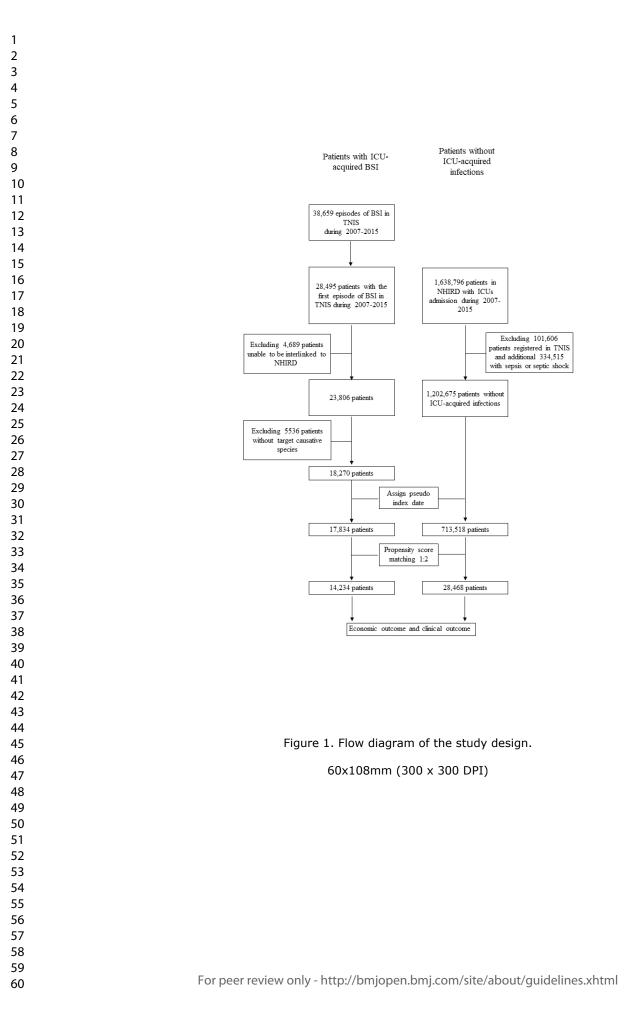
1.61 (1.32, 1.95)

		Odds ratio (95% Confidence interval)						
	Pathogen groups (Number of patients)	In-hospital mortality	14-days mortality	28-days mor				
	MDR Gram-negative bacteria (2,232)	2.12 (1.89, 2.38)	1.77 (1.57, 1.99)	1.79 (1.6,				
	MDR Gram-positive bacteria (1,429)	1.84 (1.59, 2.12)	1.52 (1.31, 1.76)	1.5 (1.3, 1				
	Acinetobacter baumannii (1,761)	1.67 (1.47, 1.91)	1.45 (1.26, 1.66)	1.45 (1.27,				
	Pseudomonas aeruginosa (853)	1.69 (1.41, 2.03)	1.73 (1.42, 2.1)	1.47 (1.23,				
	Enterobacteriaceae ^{b} (3,548)	1.59 (1.45, 1.75)	1.28 (1.16, 1.41)	1.31 (1.19,				
	Staphylococcus aureus (1,721)	1.63 (1.42, 1.87)	1.24 (1.07, 1.44)	1.31 (1.15,				
	Enterococcus species ^c (1,277)	1.87 (1.6, 2.18)	1.69 (1.44, 1.99)	1.6 (1.37, 1				
	Candida albicans (951)	2.04 (1.71, 2.43)	1.61 (1.35, 1.91)	1.68 (1.42,				
	Non-albicans Candida ^d (703)	1.97 (1.61, 2.41)	1.58 (1.29, 1.95)	1.61 (1.32,				
473	Abbreviations: MDR = multiple drug resistance.							
474	^a Only patients with bloodstream infections involving a single pathogen were included in this							
475	analysis.							
476	^b Enterobacteriaceae included <i>Escherichia coli</i> , <i>Klebsiella pneumoniae</i> , <i>Enterobacter cloa</i>							
477	Enterobacter aerogenesa, and Serratia	marcescens.						
478	^c Enterococcus species included Entero	coccus faecium, Ent	terococcus faecalis, ai	nd other				

479	Enterococcus species.
480	^d Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida
481	glabrata.
482	
483	
	480 481 482

3 4

		184 84
able 4. Economic outcomes for t		mjopen-2020-037484 on 26
	Excess costs or length of hospital	ization (95% Confidence interval)
athogen groups	Length of hospitalization	Cost of bospitalization (USD)
	after the index date (days)	Cost of bospitalization (USD)
IDR Gram-negative bacteria	10.41 (8.55, 12.27)	7,553 (6,725, 8,401)
IDR Gram-positive bacteria	13.82 (11.38, 16.27)	6,342 (5,500, 7,184)
cinetobacter baumannii	9.4 (7.65, 11.14)	6,727 (5,823, 7,632)
seudomonas aeruginosa	10.01 (7.83, 12.19)	6,7×1 (5,609, 7,913)
nterobacteriaceae ^b	15.05 (13.33, 16.76)	7,44 (6,881, 8,007)
taphylococcus aureus	14.72 (12.63, 16.81)	5,221 (4,528, 5,894)
nterococcus species ^c	10.66 (7.85, 13.48)	ق 2 7,2 4 9 (6,305, 8,132)
andida albicans	11.37 (8.82, 13.92)	8,688 (7,512, 9,864)


Page	39 of 54		BMJ Open	mjopen	
1 2 3				n-zuzu-u3/48	
4 5		Non-albicans Candida ^d	15.13 (11.77, 18.49)	11,42	6 (10,025, 12,927)
6 7 8 9	485	Abbreviations: MDR = multiple of	drug resistance.		
10 11 12	486	^a Only patients with bloodstream	infections involving a single pathogen were included i	in this analysis.	
13 14 15	487	^b Enterobacteriaceae included Esc	herichia coli, Klebsiella pneumoniae, Enterobacter cl	loacae, Enterobacter d	erogenes, and Serratia marcescens.
16 17 18	488	^c Enterococcus species included E	Enterococcus faecium, Enterococcus faecalis, and othe	er Enterococcus species	
19 20	489	^d Non-albicans Candida included	Candida tropicalis, Candida parapsilosis, and Candid	da glabrata.	
21 22 23	490				
24 25 26	491				
27 28 29	492			ida glabrata.	
30 31 32					
33 34 35					
36 37				Jest. Protected by copyright	
38 39					
40 41 42				copyriq	38
42 43 44			For peer review only - http://bmjopen.bmj.com/site/ab	bout/guidelines.xhtml	
45 46					

		BMJ Open	mjopen-	Page 40 of 54
1			-2020-037484	
2 3			03748	
4 5	493	FIGURE LEGENDS	4 on 26	
6 7 8	494	Figure 1. Flow diagram of the study design.	6 Novemb	
9 10 11 12	495		er 2020. I	
13 14 15	496		Download	
16 17 18	497	Abbreviations: ICU = intensive care unit; BSI = bloodstream infection; TNIS = '	Taiwan Nosocomial Infections Surve	eillance; NHIRD = National
19 20 21	498	Health Insurance Research Database.	ittp://bmjc	
22 23 24	499		ppen.bmj	
25 26 27	500		com/ on	
28 29 30	501		bmj.com/ on April 23, 2024	
31 32 33	502		2024 by g	
34 35 36	503		by guest. Pr	
37 38 39	504		otected by	
40 41 42			Protected by copyright	39
43 44 45		For peer review only - http://bmjopen.bmj.com	ן i/site/about/guidelines.xhtml	
46				

Page	e 41 of 54	BMJ Open	
1 2		n-2020-037484	
3 4 5	505	SUPPLEMENTARY FILES:	
6 7 8	506	Supplementary Table 1. The number of episodes of intensive care unit-acquired bloodstream infections caused by common pathogens before	
9 10 11	507	enrollment and the number of patients infected after matching.	
12 13 14	508	Supplementary Table 2. Propensity score model results of probability of bloodstream infections among intens are unit patients and matched	1
15 16 17	509	comparison cohort.	
18 19 20	510	Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and antimicrobial agents used to get fine drug resistance.	
21 22 23	511	Supplementary Table 4. The economic outcomes among patients with bloodstream infections and comparison cohort who survived to the	
24 25 26	512	discharge.	
27 28 29 30 31 32 33 34 35	513	Supplementary Table 5. Estimated 9-year excessive hospitalization or healthcare cost in all patients with block stream infections.	
36 37 38 39		Jest. Protected by copyright.	
40 41 42 43		copyright.	40
44 45 46		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 42 of 54

BMJ Open

- Supplementary Table 1. The number of episodes of intensive care unit-acquired
- bloodstream infections caused by common pathogens before enrollment and the number
 - of patients infected after matching.

	No. of BSI episodes	No. of patients after
	before enrollment ^a	matching ^b
Acinetobacter baumannii	5,214	1,761
Staphylococcus aureus	4,382	1,721
Klebsiella pneumoniae	3,965	1,357
Pseudomonas aeruginosa	2,619	853
Candida albicans	2,554	951
Escherichia coli	2,287	843
Enterobacter cloacae	1,982	746
Enterococcus faecium	1,950	647
Stenotrophomonas maltophilia	1,599	454
Enterococcus faecalis	1,427	419
Serratia marcescens	1,239	439
Candida tropicalis	890	329
Burkholderia cepacia	808	251
Other Enterococcus species ^c	688	211
Elizabethkingia meningoseptica	659	173
Chryseobacterium indologenes	553	152
Candida parapsilosis	534	177
Candida glabrata	461	197
Enterobacter aerogenes	419	163

Abbreviations: BSI= bloodstream infection.

^aThe number of episodes of bloodstream infections with known pathogens was 38,659.

Coagulase-negative staphylococci was excluded from analyses due to possibility of

- contamination. One episode may have multiple pathogens. There were 30,697 episodes of
- bloodstream infections caused by the pathogens listed above.
- ^bThe number of patients enrolled case was 14,234 (Table 1) but only patients with
- bloodstream infections caused by a single pathogen was counted here (Table 3 and 4) and it
- was 11,844. There were 2,390 patients with bloodstream infections caused by multiple
- pathogens.
 - ^cEnterococcus species other than Enterococcus faecium and Enterococcus faecalis. to occur terren only

15 Supplementary Table 2. Propensity score model results of probability of bloodstream

16 infections among intensive care unit patients and matched comparison cohort.

Estimate	Odds ratios	inte	rval	<i>P</i> -valu
	ratios		interval	
		Lower	Upper	_
-0.0014	0.9986	0.9974	0.9998	0.0251
0.0070	1 00 60	0.0000	1 0010	0.40.4
0.0063	1.0063	0.9909	1.0219	0.4243
5	1.000			
0.2803	1.3235	1.2105	1.4470	< 0.000
0.4057	1.5003	1.3709	1.6419	<0.000
0.3662	1.4423	1.3146	1.5824	<0.000
0.4363	1.5470	1.4019	1.7072	<0.000
0.3246	1.3835	1.2457	1.5364	<0.000
0.2361	1.2663	1.1312	1.4174	<0.000
0.0780	1.0811	0.9590	1.2188	0.202
0.0354	1.0360	0.9128	1.1759	0.583
	1.000			
0.0198	1.0200	0.9534	1.0912	0.565
0.0404	1.0412	0.9787	1.1077	0.200
0.0401	1.0409	0.9816	1.1038	0.180
0.0111	1.0112	0.9662	1.0583	0.632
	0.4057 0.3662 0.4363 0.3246 0.2361 0.0780 0.0354 0.0198 0.0404 0.0401	1.000 0.2803 1.3235 0.4057 1.5003 0.3662 1.4423 0.4363 1.5470 0.3246 1.3835 0.2361 1.2663 0.0780 1.0811 0.0354 1.0360 1.000 0.0198 1.0200 0.0404 1.0412 0.0401 1.0409	- 1.000 $ 0.2803$ 1.3235 1.2105 0.4057 1.5003 1.3709 0.3662 1.4423 1.3146 0.4363 1.5470 1.4019 0.3246 1.3835 1.2457 0.2361 1.2663 1.1312 0.0780 1.0811 0.9590 0.0354 1.0360 0.9128 $ 1.000$ $ 0.0198$ 1.0200 0.9534 0.0404 1.0412 0.9787 0.0401 1.0409 0.9816	1.000 0.2803 1.3235 1.2105 1.4470 0.4057 1.5003 1.3709 1.6419 0.3662 1.4423 1.3146 1.5824 0.4363 1.5470 1.4019 1.7072 0.3246 1.3835 1.2457 1.5364 0.2361 1.2663 1.1312 1.4174 0.0780 1.0811 0.9590 1.2188 0.0354 1.0360 0.9128 1.1759 1.000 0.0198 1.0200 0.9534 1.0912 0.0404 1.0412 0.9787 1.1077 0.0401 1.0409 0.9816 1.1038

Dependent		1.000			
<657.33	0.0518	1.0532	0.9824	1.1291	0.1444
657.33–1504.60	0.0699	1.0724	0.9985	1.1518	0.0550
>1504.60	0.0984	1.1034	0.9871	1.2334	0.0835
Urbanization level					
1 (urban)		1.000			
2	0.0093	1.0094	0.9516	1.0706	0.7560
3	-0.0006	0.9994	0.9293	1.0748	0.9872
4 (rural)	-0.0163	0.9838	0.9291	1.0417	0.5753
Hospital level					
Level I (Medical center)		1.000			
Level II (Regional	-0.0068	0.9932	0.9364	1.0534	0.8200
hospital)	0.0000		0.7504	1.0554	0.0200
Level III (Local hospital)	-0.0439	0.9570	0.7894	1.1603	0.6548
Charlson Comorbidity Index					
score					
0		1.000	Ð,		
1	0.1421	1.1527	1.0681	1.2439	0.0003
2	0.2932	1.3407	1.2390	1.4508	< 0.0001
≥3	0.3456	1.4129	1.2880	1.5498	< 0.0001
Comorbidities					
Diabetes mellitus	0.0050	1.0051	0.9521	1.0610	0.8553
Cerebrovascular disease	-0.0419	0.9589	0.8833	1.0410	0.3166
Myocardial infarction	-0.0702	0.9322	0.7377	1.1779	0.5564
Heart failure	-0.0607	0.9411	0.8525	1.0389	0.2292

Page 47 of 54			BMJ Open			
1 2						
2 3 4 5	Peripheral vascular	-0.0299	0.9706	0.8779	1.0731	0.5601
6 7	disease					
8 9	Liver disease	-0.0437	0.9572	0.8832	1.0375	0.2877
10 11	Chronic kidney disease	-0.1133	0.8929	0.8179	0.9748	0.0114
12 13	Dyslipidemia	-0.0425	0.9584	0.8916	1.0302	0.2490
14 15	Cancer	-0.1626	0.8499	0.7934	0.9105	< 0.0001
16 17 18	Number of dysfunctional					
18 19 20	organs					
21 22	0		1.000			
23 24 25	1	0.1450	1.1561	0.9750	1.3707	0.0951
25 26 27	2	0.2044	1.2268	0.8853	1.6999	0.2195
28 29	\geq 3	-0.2233	0.7999	0.4839	1.3222	0.3839
30 31	Use of inotropic agents	0.0551	1.0567	0.7982	1.3989	0.7001
32 33 34	Use of steroid	-0.0091	0.9909	0.4451	2.2061	0.9822
35 36	Use of ventilator	-0.0226	0.9776	0.8350	1.1446	0.7786
37 38	Use of ventilator (>3 days)	0.0279	1.0283	0.6260	1.6891	0.9122
39 40 41	Emergent renal replacement	0.0024	1.0024	0.8515	1.1801	0.9770
42 43	therapy	0.0024	1.0024	0.8515	1.1801	0.9770
44 45 17						<u> </u>
46 47 48						
48 49 50						
50 51 52						
53 54						
55 56						
57 58 59						
60						5
						5

18 Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and

19 antimicrobial agents used to define drug resistance.

Pathogens	Antimicrobial categories	Antimicrobial agents
		Gentamicin
		Tobramycin
	Aminoglycosides	Amikacin
		Netilmicin
		Imipenem
	Carbapenems	Meropenem
		Doripenem
Acinetobacter		Ciprofloxacin
<i>baumannii</i> ^a	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β-lactamase inhibitors	Ticarcillin-clavulanic aci
	C.	Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime
		Ceftriaxone
		Gentamicin
	A · 1 · 1	Tobramycin
Pseudomonas	Aminoglycosides	Amikacin
aeruginosa ^a		Netilmicin
		Imipenem
	Carbapenems	Meropenem

		Doripenem
		Ciprofloxacin
	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β-lactamase inhibitors	Ticarcillin-clavulanic ac
		Cefepime
	Antipseudomonal cephalosporins	Cefpirome
		Ceftazidime
	~	Gentamicin
	Aminochuppidas	Tobramycin
	Aminoglycosides	Amikacin
		Netilmicin
		Imipenem
Enterobacteriaceae ^a	Culture	Meropenem
(Escherichia coli,	Carbapenems	Doripenem
Klebsiella pneumoniae,		Ertapenem
Enterobacter cloacae		Ciprofloxacin
Enterobacter	Fluoroquinolones	Levofloxacin
aerogenes, or Serratia	Antipseudomonal penicillins +	Piperacillin-tazobactam
marcescens)	β-lactamase inhibitors	Ticarcillin-clavulanic ac
		Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime

			Ceftriaxone
	Staphylococcus aureus	Glycopeptides	Vancomycin
	Staphylococcus aureus	β-lactamase-resistant penicillins	Oxacillin
	Enterococcus faecium,		
	Enterococcus faecalis,	Glycopeptides	Vancomycin
	or other Enterococcus	Grycopeptides	vancomycm
	species ^b		
20	^a Drug resistance was de	efined as being non-susceptible to ≥ 1	agent in ≥ 3 antimicrobial
21	categories.		
22	^b Drug resistance was d	efined as being non-susceptible to ≥ 1	agent.

ge 51 of 54	BMJ (Open	mjopen-2020-03
23 24	Supplementary Table 4. The economic outcomes among patients with the discharge. ^a	n bloodstream infections and com	Parison cohort who survived to
	Clinical outcomes	Excess costs or length of hospitalization	25 26 P-value 27 20
		(95% Confidence interval) ^b	<u>v</u> 28
	Length of hospitalization after the index date/pseudo-index date, days	19.59 (18.67, 20.51)	$\frac{1}{10} < 0.0001$
	Cost of hospitalization, USD	8,871 (8,475, 9,268)	0.0001 29 < 0.00030
		110.00	
32	^a A total of 7,939 of patients with intensive care uit-acquired bloodstream		
33 34	^b Adjusted imbalanced variables in Table 1.	infections and 18,936 comparators	bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright
			on April 23, 2024
			by Yd
			uest.
			Prot
			ectec
			l by c
			соруг
			ight.
	For peer review only - http://bmjopen.	.bmj.com/site/about/guidelines.xhtml	

		on 26
Pathogen groups	9-year excessive hospita	alization or healthcare cost
(Numbers of patients) ^a	Length of hospitalization after the index date (days) ^b	Cost oghospitalization (USD) ^{b, c}
All pathogens (38,659)	492,129	
MDR Gram-negative bacteria (6,825)	86,882	ه 52,363,448
MDR Gram-positive bacteria (4,176)	53,160	32,039,525
Acinetobacter baumannii (5,214)	66,374	40,003,372
Pseudomonas aeruginosa (2,619)	33,340	20,093,754
Enterobacteriaceae ^d (9,486)	120,757	296,603,446 52,363,448 32,039,525 40,003,372 20,093,754 72,779,438 72,779,438 33,620,019 31,034,454 19,595,054 14,362,546
Staphylococcus aureus (4,382)	55,783	A 33,620,019
Enterococcus species ^e (4,045)	51,493	31,034,454
Candida albicans (2,554)	32,512	ي بو 19,595,054
Non-albicans Candida ^f (1,872)	23,831	ية P 14,362,546

3 4

Page 5	53 of 54	프 BMJ Open
1		
2 3 4	38	^a The number of all episodes of intensive care unit-acquired bloodstream infections caused by designated pathogens during 2007-2015. The
5 6	39	incluson and exclusion criteira in the method section were not applied in this Table (see Figure 1).
7 8 9	40	^b The 9-year excessive hospitalization was calculated by multiplying the number of episodes during 9-year in $\frac{8}{5}$ cted by the designated pathogen(s)
10 11	41	and the average excessive hospitalization per case with the designated pathogen(s). The average excessive hospitalization per case was
12 13	42	difference of average hospitalization duration between the case with the designated pathogen(s) and their matched comparison. The average
14 15 16	43	hospitalization duration in bloodstream infection group was the sum of total hospitalization duration divided $\frac{1}{8}$ when umber of case and so was
17 18	44	that in matched control group.
19 20	45	Ave _{Hospitalization} per case= [(sum of hospitalization length)/the number of patients].
21 22	46	Excessive Ave _{Hospitalization} per person= (Ave _{Hospitalization} in bloodstream infection group) - (Ave _{Hospitalization} in consparison group).
23 24 25	47	Total excessive hospitalization length over 9 years = (excessive Ave _{Hospitalization} per person) × (total number of episodes over 9 years)
26 27	48	The 9-year excessive healthcare cost was calculated similarly.
28 29	49	^c The costs are standardized and presented the values in 2017.
30 31 32	50	^d Enterobacteriaceae included Escherichia coli, Klebsiella pneumoniaea, Enterobacter cloacae, Enterobacter arguerogenesa, and Serratia
33 34	51	marcescens.
35 36	52	eEnterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species
37 38 30	53	^e Enterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species ^f Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida glabrata. 11
39 40 41		8 9 9 11
42 43		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
44 45		r or peer review only - http://binjopen.binj.com/site/about/guidelines.xittini

Objectives 3 State specific objectives, including any prespecified hypotheses #6-7 Methods #8 Study design 4 Present key elements of study design early in the paper #8 Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, for the w-up, and data collection #8 Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable #10 Data sources/ measurement 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe #9-10 Bias 9 Describe any efforts to address potential sources of bias #9-10	Section/Topic	ltem #	Recommendation 69	Reported on page #
Introduction Result Result Result Result Background/rationale 2 Explain the scientific background and rationale for the investigation being reported #6-7 Objectives 3 State specific objectives, including any prespecified hypotheses #6-7 Methods 9 Persent key elements of study design early in the paper #8 Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection #8 Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Ge diagnostic criteria, if applicable #10 Data sources/ 8* For each variable of interest, give sources of bata and details of methods of assessment (measurement). Describe any efforts to address potential sources of bias #9-10 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how the study size was arrived at #8-9 Quantitative variables 12 (a) Describe all s	Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	#1 and #3
background/rationale 2 Explain the scientific background and rational of the investigation being reported #6-7 Objectives 3 State specific objectives, including any prespecified hypotheses #6-7 Methods 5 Pescribe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data #8 Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data #9 Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe gethods of follow-up #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give eligipostic criteria, if applicable #10 Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement) #9-10 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why why #9-10 Statistical methods (a) Describe any methods used to examine subgroups and interactions #9-12 (b) Describe any methods used to examine subgroup			(b) Provide in the abstract an informative and balanced summary of what was done and what was	#3
background/rationale 2 Explain the scientific background and rational of the investigation being reported #6-7 Objectives 3 State specific objectives, including any prespecified hypotheses #6-7 Methods 5 Pescribe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data #8 Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data #9 Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe gethods of follow-up #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give eligipostic criteria, if applicable #10 Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement) #9-10 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why why #9-10 Statistical methods (a) Describe any methods used to examine subgroups and interactions #9-12 (b) Describe any methods used to examine subgroup	Introduction			
Methods #8 Study design 4 Present key elements of study design early in the paper #8 Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection #8 Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if #10 Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe #9-10 Bias 9 Describe any efforts to address potential sources of bias #9-10 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which group ings were chosen and why #9-12 (b) Describe any methods, including those used to control for confounding #9-12 #9-12 (c) I seplicable, explain how loss to follow-up was addressed #19 Why #11	Background/rationale	2		#6-7
Study design 4 Present key elements of study design early in the paper #8 Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, for the w-up, and data collection #8 Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable #10 Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement) 9 9 Bias 9 Describe any efforts to address potential sources of bias #9-10 #9-10 Study size 10 Explain how quantitative variables were handled in the analyses. If applicable, describe which grouppings were chosen and why #9-10 Statistical methods 1 (a) Describe any enthods, including those used to control for confounding #9-12 (b) Describe any methods used to examine subgroups and interactions 1 #9-12 (c) Applicable 10 Explain how the study size was addressed 1 (c) Describe any entrods used to examine subgroups and interactions 1 #9-12	Objectives	3	State specific objectives, including any prespecified hypotheses	#6-7
Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, for the setting, locations, and relevant dates, including periods of recruitment, exposure, for the setting, locations, and relevant dates, including periods of recruitment, exposure, for the setting, locations, and relevant dates, including periods of recruitment, exposure, for the setting, locations, and relevant dates, including periods of recruitment, exposure, for the setting, locations, and relevant dates, including periods of recruitment, exposure, for the setting, locations, and relevant dates, including periods of selection of participants. Describe gethods of follow-up #8 Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe gethods of follow-up #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable #10 Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe #9-10 Bias 9 Describe any efforts to address potential sources of bias #8-9 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which group ings were chosen and why #9-12 (b) Describe any methods used to examine subgro	Methods		oad	
Image: collection Collection Collection Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable #10 Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe methods if there is more than one group #9-10 Bias 9 Describe any efforts to address potential sources of bias #8-9 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which group ings were chosen and why #9-12 Statistical methods 12 (a) Describe any methods used to examine subgroups and interactions #9-12 (b) Describe any methods used to examine subgroups and interactions methods methods methods (c) Explain how missing data were addressed 6 methods methods methods (c) Explain how missing data were addressed 6 methods methods methods (d)	Study design	4	Present key elements of study design early in the paper	#8
(b) For matched studies, give matching criteria and number of exposed and unexposed #9 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable #10 Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe #9-10 Bias 9 Describe any efforts to address potential sources of bias #9-10 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why #9-10 Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding #9-12 (b) Describe any methods used to examine subgroups and interactions P #9-12 (c) Explain how missing data were addressed #19 10 (d) If applicable, explain how loss to follow-up was addressed W19 W12	Setting	5		#8
Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable #10 Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe #9-10 Bias 9 Describe any efforts to address potential sources of bias #9-10 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which group ings were chosen and why #9-10 Statistical methods 12 (a) Describe any methods, including those used to control for confounding #9-12 (b) Describe any methods used to examine subgroups and interactions P #9-12 (d) If applicable, explain how loss to follow-up was addressed Important interactions Important interactions Important interactions (d) If applicable, explain how loss to follow-up was addressed Important interactions Important interactions Important interactions (d) If applicable, explain how loss to follow-up was addressed Important interactions Important interactions Important interactions (e) Describe any sensitivity analyses Important interactions	Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe gethods of follow-up	#9
Image: constraint of the second sec			(b) For matched studies, give matching criteria and number of exposed and unexposed	#9
measurement Image: comparability of assessment methods if there is more than one group Image: comparability of assessment methods if there is more than one group Image: comparability of assessment methods if there is more than one group Image: comparability of assessment methods if there is more than one group Image: comparability of assessment methods if there is more than one group Image: comparability of assessment methods is potential sources of bias #9-10 Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which group ings were chosen and why #9-10 Statistical methods 12 (a) Describe and statistical methods, including those used to control for confounding #9-12 (b) Describe any methods used to examine subgroups and interactions 19 #9-12 (c) Explain how missing data were addressed 19 10 (d) If applicable, explain how loss to follow-up was addressed 10 Not applicable (e) Describe any sensitivity analyses 12 12	Variables	7		#10
Study size 10 Explain how the study size was arrived at #8-9 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why #9-10 Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding #9-12 (b) Describe any methods used to examine subgroups and interactions 19-12 #9-12 (c) Explain how missing data were addressed 11 #19 (d) If applicable, explain how loss to follow-up was addressed 11 Not applicable (e) Describe any sensitivity analyses 11 11 11	-	8*		#9-10
Study size 10 Explain now the study size was arrived at #8-9 Quantitative variables 11 Explain now quantitative variables were handled in the analyses. If applicable, describe which growphings were chosen and why #9-10 Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding #9-12 (b) Describe any methods used to examine subgroups and interactions #9-12 #9-12 (c) Explain how missing data were addressed #19 #19 (d) If applicable, explain how loss to follow-up was addressed #12	Bias	9		#9-10
whythe second secon	Study size	10	Explain how the study size was arrived at	#8-9
(b) Describe any methods used to examine subgroups and interactions #9-12 (c) Explain how missing data were addressed #19 (d) If applicable, explain how loss to follow-up was addressed #12 (e) Describe any sensitivity analyses \$2	Quantitative variables	11		#9-10
(b) Describe any methods used to examine subgroups and interactions #9-12 (c) Explain how missing data were addressed #19 (d) If applicable, explain how loss to follow-up was addressed #12 (e) Describe any sensitivity analyses \$2	Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	#9-12
(e) Describe any sensitivity analyses \checkmark #12			(b) Describe any methods used to examine subgroups and interactions	#9-12
(e) Describe any sensitivity analyses \checkmark #12			(c) Explain how missing data were addressed	#19
				Not applicable
				#12

mjopen-2020-0

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 mjopen-2020

copyright.

D	10*		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	#14
	_	eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#14
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	#14
		confounders B	
		(b) Indicate number of participants with missing data for each variable of interest Σ	#19
		(c) Summarise follow-up time (eg, average and total amount)	#14-15
Outcome data	15*	Report numbers of outcome events or summary measures over time	#14-15
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	#14-15
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	#14-15
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	#14-15
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 👼	#15
Discussion			
Key results	18	Summarise key results with reference to study objectives	#16
Limitations		n.b	#18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	#16-19
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	#16-19
Other information		April	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	#22-23
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in the function of the studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine@rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.second.

BMJ Open

Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan: A nationwide population-based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037484.R3
Article Type:	Original research
Date Submitted by the Author:	22-Oct-2020
Complete List of Authors:	Wang, Yung-Chih; National Defense Medical Center, Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine Shih, Shu-Man; National Health Research Institutes, Institute of Population Health Sciences Chen, Yung-Tai; Taipei City Hospital Heping Fuyou Branch, Department of Medicine Hsiung, Chao Agnes; National Health Research Institutes, Institute of Population Health Sciences Kuo, Shu-Chen; National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Infectious diseases, Intensive care
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, MICROBIOLOGY, INFECTIOUS DISEASES, HEALTH ECONOMICS, INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

Article category: Original research

1	
2	
3	
4	
5	
6	
7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
20	
∠ I วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54 55	
55 56	
57	
58	
59	
60	

1

2	
3	Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections
4	in Taiwan: A nationwide population-based retrospective cohort study
5	Yung-Chih Wang, MD, PhD ¹ ; Shu-Man Shih ² ; Yung-Tai Chen, MD ^{3,4} ; Chao A. Hsiung,
6	PhD ² ; Shu-Chen Kuo, MD, PhD ^{5*}
7	
8	¹ Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine,
9	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
10	² Institute of Population Health Sciences, National Health Research Institutes, Miaoli County,
11	Taiwan
12	³ Divisions of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
13	⁴ Department of Medicine, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
14	⁵ National Institute of Infectious Diseases and Vaccinology, National Health Research
15	Institutes, Miaoli County, Taiwan
16	
17	Correspondence to:
18	Shu-Chen Kuo. MD, PhD
19	National Institute of Infectious Diseases and Vaccinology, National Health Research

2		
3 4	•	
5	20	Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
6		
7	21	Phone: +886 37 206 166
8 9		
9 10	22	Fax: +886 37 586457
11	22	rax. + 880 57 580457
12		
13	23	E-mail: ludwigvantw@gmail.com
14 15		
16	24	
17	27	
18 10		
19 20	25	
21		
22	26	
23		
24 25		
26	27	Running title: Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan
27		
28	28	
29 30		
30 31	29	
32	29	
33		Word count:
34 35	30	
36		
37	31	Word count:
38		
39 40	22	
41	32	Abstract: 270 words
42		
43	33	Text: 2680 words
44 45		
46		
47		
48		
49 50		
50		
52		
53		
54 55		
56		
57		
58		
59 60		

2
3
1
4
5
6
7
8
9
10
11
12
12
12 13 14 15 16
14
15
16
17
18
18
19 20
20
21
22
22
23
24
25
26
27
28
29
30
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
56
57
57
58
59
60

35	ABSTRACT
36	Objectives: To estimate the clinical and economic impact of intensive care unit-acquired
37	bloodstream infections in Taiwan.
38	Design: Retrospective cohort study.
39	Setting: Nationwide Taiwanese population in the National Health Insurance Research
40	Database and the Taiwan Nosocomial Infections Surveillance (2007-2015) dataset.
41	Participants: The first episodes of intensive care unit-acquired bloodstream infections in
42	patients \geq 20 years of age in the datasets. Propensity score-matching (1:2) of demographic
43	data, comorbidities, and disease severity was performed to select a comparison cohort from a
44	pool of intensive care unit patients without intensive care unit-acquired infections from the
45	same datasets.
46	Primary and secondary outcome measures: The 14-day mortality rate, length of
47	hospitalization, and healthcare cost.
48	Results: After matching, the in-hospital mortality of 14,234 patients with intensive care
49	unit-acquired bloodstream infections was 44.23%, compared to 33.48% for 28,468 intensive
50	care unit patients without bloodstream infections. The 14-day mortality rate was also higher
51	in the bloodstream infections cohort (4,323, 30.37% vs. 6,766 deaths, 23.77%, respectively; p
52	< 0.001). Furthermore, the patients with intensive care unit-acquired bloodstream infections
53	had a prolonged length of hospitalization after their index date (18 days[IQR 7-39] vs. 10

1 2	
3	
4 5	5
6 7	
7 8	5
9	
10	5
11 12	
13	5
14 15	
16	5
17	Ū
18 19	5
20	J
21 22	~
23	6
24 25	_
25 26	6
27	
28 29	6
30	
31 32	6
33	
34	6
35 36	
37	
38 39	
40	
41	
42 43	
44	
45 46	
40 47	
48	
49 50	
51	
52 53	
54	
55	
56 57	
58	
59	

54	days [IQR 4–21], respectively; $p < 0.001$) and a higher healthcare cost (16,038 US dollars
55	[IQR 9,667–25,946] vs. 10,372 US dollars [IQR 6,289–16,932], respectively; p < 0.001). The
56	excessive hospital stay and healthcare cost per case were 12.69 days and 7,669 US dollars,
57	respectively. Similar results were observed in subgroup analyses of various World Health
58	Organization's priority pathogens and Candida spp.
59	Conclusions: Intensive care unit-acquired bloodstream infections in critically ill patients
60	were associated with increased mortality, longer hospital stays, and higher healthcare costs.
61	
62	
63	Keywords: bloodstream infection; healthcare costs; hospital stay; intensive care unit;
64	mortality.

66 STRENGTHS AND LIMITATIONS OF THIS STUDY

- 1. A large number of patients obtained from Nationwide Taiwanese population from two
- 68 datasets in Taiwan were included.
- 69 2. Propensity score-matching was performed to select a comparison cohort.
- 3. The 14-day and 28-day mortality rate, length of hospitalization, and healthcare cost were
- 71 analyzed.
 - 72 4. Subgroup analyses of several drug-resistant pathogens were conducted.
 - 73 5. The retrospective design may include some unmeasurable bias.

2	
3	
4	
5	
6 7	
7 8	
9	
10	
11	
12	
13	
14	
16	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
18	
19	
19 20 21 22 23	
22	
23	
24	
25	
26	
22 23 24 25 26 27 28	
29	
29 30	
~ 4	
 31 32 33 34 35 36 37 38 	
33 34	
35	
36	
37	
38 39	
39 40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57 58	
58 59	
60	

74 BACKGROUND

75	Critically ill patients in intensive care units (ICUs) are vulnerable to various infections,
76	and these can lead to increased morbidity, mortality, and healthcare costs. Bloodstream
77	infections (BSIs) are one of the most common infections acquired by ICU patients. It was
78	reported that BSIs affected approximately 7 % of patients admitted to ICUs.[1] Previous
79	studies have shown that ICU-acquired BSIs resulted in attributable mortality of 24.8%,[2]
80	extended hospital stays by 13.5 days[3] and the cost of treatment was approximately 12,321
81	US dollars per case. Moreover, despite advances in medical care and the development of new
82	therapies, the outcome of BSIs in critically ill patients is adversely affected by a greater
83	number of vulnerable hosts and the emergence of drug-resistant pathogens.
84	Discrepancies regarding the impact of pathogens on mortality have been reported.
85	However, worse clinical outcome and higher economic burden have been reported for
86	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving
87	third-generation cephalosporin-resistant Enterobacteriaceae have been shown to significantly
88	increase mortality risk compared to BSIs involving susceptible strains.[4] Moreover,
89	candidemia has been associated with a 4-fold increase in mortality, while Staphylococcus
90	aureus BSIs doubled the risk of mortality.[1] Meanwhile, the clinical impact of Enterococci
91	remains a controversial topic.[5-7] Therefore, it is important not only to describe the clinical
92	and economic impact of infections, but also to decipher the impact of individual pathogens.

1
ว
2
2
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
21
∠ I วว
2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 20 21 22 24 25 267 289 31 323 34 35 34 35 34 35 34 35 35 34 35
23
24
25
26
27
28
29
30
21
21
32
33
31 32 33 34 35 36 37
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
74
55
56
57
58

93	Due to the limited number of cases and the complex clinical characteristics of critically ill
94	patients, previous studies have reported either clinical or economic outcomes, have focused
95	on several species of pathogens, or have assessed only a limited number of pathogens. In the
96	present study, a health insurance database and a nationwide surveillance system for
97	healthcare-associated infections were used to estimate the clinical and economic
98	consequences of ICU-acquired BSIs caused by different pathogens in a large number of
99	patients in Taiwan. In addition, the impact of individual pathogens, especially
100	antibiotic-resistant bacteria on the World Health Organization (WHO) priority list,[8] were
101	investigated.
	investigated.

1 2		
3 4 5	102	METHODS
6 7 8	103	Data sources
9 10 11	104	Two datasets, the National Health Insurance Research Database (NHIRD) and the
12 13 14	105	Taiwan Nosocomial Infection Surveillance (TNIS) dataset, were used in this study.
15 16 17	106	Demographic data, diagnoses (according to the International Classification of Diseases, 9th
18 19 20	107	Revision, Clinical Modification [ICD-9-CM]), procedures, and medications for patients
21 22 23	108	enrolled in Taiwan's national insurance system have been collected in the NHIRD since
24 25 26	109	1995.[9] In 2007, the TNIS was launched by the Taiwan Centers for Disease Control to
27 28 29	110	evaluate the epidemiologic trend of healthcare-associated infections in the ICUs in Taiwan.
30 31 32	111	The latter is a web-based surveillance system which collects clinical information of patients
33 34 35	112	with healthcare-associated infections from the ICUs of participating hospitals. This
36 37 38	113	information includes demographic data, infection foci, causative pathogens, and antimicrobial
39 40 41	114	susceptibility results. Participation in TNIS is essential for the hospital accreditation in
42 43 44	115	Taiwan.
45 46 47	116	Both datasets were deposited in a database maintained by the Health and Welfare Data
48 49 50	117	Science Center, Ministry of Health and Welfare. Individual personal identification numbers
51 52 53	118	were encrypted so that data from the NHIRD and TNIS datasets could be interlinked. The
54 55 56	119	institutional review board of the National Health Research Institutes approved this study
57 58 59 60	120	(EC1051207-R4).

2		
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 13\\ 14\\ 15\\ 16\\ 17\\ 8\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 23\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 23\\ 44\\ 5\\ 46\\ 7\\ 48\\ 9\\ 51\\ 52\\ 54\\ 55\\ 56\end{array}$	121	
	122	Study population, data collection, and propensity-score matching
	123	This retrospective cohort study enrolled adult patients who underwent ICU
	124	hospitalization between 2007 and 2015 in Taiwan. From the entries in the TNIS database, we
	125	identified all of the patients whose first episode of an ICU-acquired BSI occurred during the
	126	study period. Coagulase-negative Staphylococci are often identified in the ICUs but a certain
	127	proportion is associated with contamination; therefore, these cases were not included in our
	128	analysis. We included species that constituted > 1 % of known bloodstream pathogens
	129	(Supplementary Table 1), which constituted 79.4% of all ICU-acquired BSI episodes. The
	130	index date for each case was defined as the date on which a positive blood culture result was
	131	obtained. The encrypted personal identification numbers of included patients were interlinked
	132	with NHIRD to retrieve their demographic data, comorbidities, procedures, and medications.
	133	For comparison, we identified ICU patients who did not have ICU-acquired infections
	134	registered in TNIS database. In addition, patients with a discharge diagnosis of sepsis
	135	(ICD-9-CM: 038.X, 995.91), severe sepsis (ICD-9-CM: 995.92), or septic shock (ICD-9-CM:
	136	785.52) in the comparison cohort, but not in the BSI group, were also excluded. The pool of
	137	comparison patients was created for selection of those with the same admission date as any
	138	patient with ICU-acquired BSI. Because the comparison patients did not have index date of
57 58 59 60	139	acquisition of infection, they were assigned "pseudo-index dates" during hospitalization,

Page 11 of 54

BMJ Open

3 4 5	140	which was selected from the index date of patients with the same day of hospitalization in the
6 7 8	141	BSI group. Baseline variables and those associated with ICU-acquired BSIs were first
9 10 11	142	selected. Propensity scores were then calculated for the likelihood of ICU-acquired BSIs by
12 13 14	143	multivariate logistic regression analysis. Variables were removed from the multivariable
15 16 17 18	144	model in a stepwise fashion. We used 1:2 greedy matching [10] within a caliper width equal
19 20 21	145	to 0.1 of the standard deviation of the logit of the propensity score. (Supplementary Table 2).
22 23 24	146	Patient data from January 2005 were used to ensure that individuals were followed for at least
24 25 26 27 28 29 30 31 32 33	147	two years prior to their selection for this study in order to confirm comorbidities[11] and for
	148	matching purposes. The variables with missing values included monthly income and
	149	urbanization level. Missing values were treated as a separate category by itself. The low rate
34 35 36	150	of missing data (Table 1) may not have a great impact on our study.
37 38	151	
39 40 41 42	152	Patient and Public Involvement
43 44	153	Patients and the public were not directly involved in the planning of this study.
45 46 47 48 49 50 51 52 53 54 55 56	154	
	155	Outcome measurements
	156	Clinical outcomes included in-hospital, 14-day, and 28-day mortality rate after the index
	157	date/pseudo-index date. Economic outcomes included hospitalization length after the index
57 58 59 60	158	date/pseudo-index date and cost of overall hospitalization. Hospitalization length was defined
00		10

3		
4	159	as the duration of hospital stay after the index date/pseudo-index date. The overall cost of
5 6		
7	160	hospitalization was calculated. The costs were standardized and presented in values from
8 9		1 1
9 10	161	2017.
11	101	2017.
12		
13 14	162	
15		
16	163	Subgroup analysis
17 18		
19	164	To evaluate the clinical and economic impact of ICU-acquired BSIs caused by different
20	104	To evaluate the enhicid and economic impact of 100 dequired Bors eaused by different
21		
22 23	165	pathogens, we performed analyses on patients infected with single pathogen. For example,
24		
25	166	the impact of WHO priority bacteria and Candida were examined separately, as was the
26 27		
28	167	impact of drug resistance in these bacteria. We included patients whose first episode of an
29	107	
30 31		
32	168	ICU-acquired BSI were caused by bacteria on the WHO priority list or <i>Candida</i> . Therefore,
33		
34 35	169	the clinical and economic outcomes of patients with Acinetobacter baumannii, Pseudomonas
35 36		
37	170	aeruginosa, common Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae,
38		
39 40	171	Enterobacter species, and Serratia marcescens), S. aureus, Enterococcus species, Candida
41	1/1	Emerobacier species, and servatia marcescens), s. aureas, Emerococcus species, Canada
42		
43 44	172	albicans, and non-albicans Candida (Candida tropicalis, Candida parapsilosis, and Candida
45		
46	173	glabrata) were determined.
47 48		
49	174	The definition of multiple drug resistance (MDR) of WHO priority bacteria according to
50	_, .	
51 52	475	the Francisco Contra for Discours Descention on 1 Contral (ECDC) and a diffe d[12]
53	175	the European Centre for Disease Prevention and Control (ECDC) was modified[12]
54		
55 56	176	(Supplementary Table 3). In this study, non-susceptibility to at least one agent in at least
50 57		
58	177	three antimicrobial categories in Gram-negative bacteria was defined as MDR. Oxacillin- and
59 60		
00		

2		
3 4 5 6	178	vancomycin-non-susceptible S. aureus and vancomycin-non-susceptible Enterococcus
7 8 9	179	species were considered MDR Gram-positive bacteria.
9 10 11 12	180	
13 14 15	181	Sensitivity analysis
16 17 18	182	To avoid competing risk between mortality and length of hospitalization/healthcare cost,
19 20 21	183	we included patients who survived to discharge. For these patients, length of hospitalization
22 23 24	184	after the index date/pseudo-index date and hospitalization costs were determined.
25 26 27	185	
28 29	186	Statistical analysis
30 31 32	187	Descriptive statistics were used to examine baseline demographic and clinical
33 34 35	188	characteristics of the ICU patients included in this study. To account for potential
36 37 38	189	confounding biases among the study cohort, propensity score matching analysis was
39 40 41	190	performed. Propensity scores were calculated with multivariate logistic regression.
42 43 44	191	Standardized differences between the two groups with differences less than 0.1 were
45 46 47	192	confirmed in order to assess baseline characteristics. The Mann-Whitney U test was used to
48 49 50	193	evaluate economic outcomes and the Chi-squared test was used to evaluate mortality rate.
51 52 53	194	Conditional logistic regression was used to calculate odds ratios (ORs) to evaluate risk of
54 55 56	195	mortality in patients with BSI and the comparison cohort, while a generalized linear model
57 58 59 60	196	was used to calculate β values to estimate excess costs and length of hospitalization.

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	

59 60 197 Variables with a *p*-value < 0.05 were eligible for inclusion in the model. *P*-values less than 0.05 were considered statistically significant. All analyses were performed by using SAS 198 199 statistical software (version 9.4, SAS Institute Inc., Cary, NC, USA). to been terien only 200

RESULTS

1 2	
3 4 5	201
6 7 8	202
9 10 11	203
12 13 14	204
15 16 17	205
18 19 20	206
21 22 23	207
24 25 26	208
27 28 29	209
30 31 32	210
33 34 35	211
36 37 38	212
39 40 41	213
42 43 44	214
45 46 47	215
48 49 50	216
51 52 53	217
54 55 56	218
57 58 59	219
60	

202	Among 38,659 episodes of ICU-acquired BSIs registered in TNIS during the 9-year
203	study period, 28,495 patients were identified to have their first episode of a BSI. The NHIRD
204	included 1,638,796 patients who underwent ICU hospitalization (Figure 1). After excluding
205	patients whose data could not be interlinked with NHIRD or who did not have target
206	pathogens, 14,234 patients with ICU-acquired BSIs were successfully matched to 28,468
207	ICU patients without ICU-acquired infections (1:2). The demographic and clinical
208	characteristics of the patients with BSI and comparison cohort are presented in Table 1. The
209	groups had standardized differences that were < 10% for all of the continuous and
210	dichotomous categorical variables which were examined.
211	Table 2 lists the clinical and economic outcomes of the ICU patients with BSIs and the
212	comparison cohort. The ICU patients with BSIs suffered a higher in-hospital mortality rate
213	(44.23% vs. 33.48%, respectively; $p < 0.001$), a higher 14-day mortality rate (30.37% vs.
214	23.77%, respectively; $p < 0.001$), and a higher 28-day mortality (39.48% vs. 32.28%,
215	respectively; $p < 0.001$). Logistic regression analyses showed that the OR of in-hospital
216	mortality for the ICU patients with BSIs was 1.67 (95% confidence interval [CI], 1.59-1.75;
217	<i>p</i> < 0.001), and it was 1.42 (95% CI, 1.35–1.49; <i>p</i> < 0.001) for 14-day mortality and 1.41
218	(95% CI, 1.34–1.47; $p < 0.001$) for 28-day mortality. These significant associations were also
219	observed in the subgroup analyses performed (Table 3).

	220	The ICU patients with BSIs had a longer length of hospitalization after the index date
	221	(18 vs. 10 days, respectively; $p < 0.001$). Moreover, on average, their hospital stay was
D 1	222	extended by 12.69 days (95% CI, 11.92–13.47; $p < 0.001$). The subgroup analyses performed
2 3 4	223	(Table 4) showed that all of the causative pathogens shared a similar trend. Compared with
5 5 7	224	the patients without ICU-acquired infections, the duration of hospitalization after the index
8 9 0	225	date for those with BSIs caused by MDR bacteria, WHO priority bacteria, or Candida spp.
1 2 3	226	was longer. In addition, hospitalization costs of the ICU patients with BSIs were higher
4 5 5	227	(16,038 vs. 10,372, respectively; $p < 0.001$) (Table 2), with the excess cost being 7,669 US
/ 3 9	228	dollars per patient (95% CI, 7,380–7,958; $p < 0.001$). Table 4 presents the higher costs
) 1 2	229	associated with each of the various causative pathogen.
3 4 5	230	For the ICU patients with BSIs who survived to discharge, their length of hospitalization
5 7 8	231	and healthcare costs were increased by 19.59 days and 8,871 US dollars, respectively,
9 0 1	232	(Supplementary Table 4) compared to the survivors without ICU-acquired infections.
2 3 4		
5 5 7		
5 9 0		
1 2 3		
4 5 5		
/ 8 9		

DISCUSSION

BMJ Open

1 2	
3 4 5	233
6 7 8	234
9 10 11	235
12 13 14	236
15 16 17	237
18 19 20	238
21 22 23	239
24 25 26	240
27 28 29	241
30 31 32	242
33 34 35	243
36 37 38	244
39 40 41	245
42 43 44	246
45 46 47	247
48 49 50	248
51 52 53	249
54 55 56	250
57 58 59 60	251

233	
234	This study demonstrated that ICU patients with BSIs in Taiwan had significantly worse
235	clinical outcomes and higher economic burden than ICU patients without ICU-acquired
236	infections from the same population. For example, the patients with BSI exhibited 1.67-,
237	1.42-, and 1.41-fold increases in in-hospital, 14-day, and 28-day mortality rates, respectively.
238	Per case, the patients with BSI had an excess hospital stay of 12.69 days and cost of 7,669 US
239	dollars. Furthermore, a similar clinical and economic impact was observed among all of the
240	causative pathogens examined.
241	BSIs have been associated with higher mortality and morbidity, contingent on the
242	causative pathogen involved.[1,3,13-16] For example, worse clinical outcomes have been
243	reported for patients with BSIs caused by A. baumannii, [16,17] P. aeruginosa, [15,16] S.
244	aureus,[1,4,15,16] Enterobacteriaceae,[4,16] and Candida spp.[1,16,18] In contrast,
245	controversial results have been obtained regarding the mortality of patients affected by
246	enterococcal bacteremia. While some authors have argued that Enterococcus spp. represents
247	a low virulence pathogen[1] and is not associated with increased mortality unless in the
248	presence of endocarditis,[19] other authors have reported contrasting results.[5,6,16,18] In
249	the present study, significantly higher mortality was observed for patients with enterococcal
250	bacteremia, and this may be due to vulnerability of the hosts examined, increased resistance,
251	and a larger study population.

Page 18 of 54

BMJ Open

252	The high healthcare burden of BSIs reported in previous literature[3,13,20] and in the
253	present study underscores the importance of preventing ICU-acquired BSIs by infection
254	control measurements. Furthermore, the results of these studies help to assess cost
255	effectiveness of infection control measurements in the process of policy-making. For example,
256	patients with ICU-acquired BSIs during the 9-year period cost Taiwan an estimated 297
257	million US dollars and 492,129 days (supplementary Table 5). A policy that reduced the rate
258	of infection by 10%[21] would translate into a savings of 30 million US dollars and 49,213
259	patient-days saved.
260	Drug resistance has been found to be correlated with higher medical costs due to the
261	need for second-line antimicrobials for treatment, as well as additional diagnostic and
262	treatment tools.[22, 23] In the present study, the costs for MDR bacteria included extra 84
263	million US dollars and 140,043 days over nine years (Supplementary Table 5). However, cost
264	differences between susceptible and resistant strains were not determined in the present study.
265	Drug-susceptible strains were not included as controls due to differences in testing methods,
266	drugs, and breakpoints for these strains which could lead to mis-assignments of drug-resistant
267	pathogens as susceptible pathogens.
268	Candidemia poses a great threat to ICU patients due to its excessive medical
269	burdens,[16,18,20] and C. albicans is the most common pathogen. However, in some
270	countries, the prevalence of non-albicans Candida exceeds that of C. albicans.[24] For those

	271	infected with non-albicans Candida, higher rates of mortality, [24,25] longer hospitalization
	272	stays, and increased hospital costs have been described;[25-27] although other studies have
0 1	273	reported contradicting findings.[28,29] These discrepancies may be due to host factors and
2 3 4	274	differences in the virulence and resistance patterns[24] of non-albicans Candida. In the
5 6 7	275	present study, the crude 14-day and in-hospital mortality rates of 951 patients infected with C.
8 9 0	276	albicans were 37.96% and 55.94%, respectively. In comparison, among 703 patients infected
1 2 3	277	with non-albicans Candida, these rates were 34.99% and 53.06%, respectively. While the
4 5 6	278	hospital costs and length of stay were higher in the non-albicans Candida group compared to
7 8 9	279	the C. albicans group, the 95% CI overlapped for the two groups (Table 4). These data
0 1 2	280	suggested that the clinical and economic outcomes of these two groups did not greatly differ.
3 4 5	281	However, the present study was not designed to specifically compare the outcomes of those
6 7 8	282	infected with C. albicans versus non-albicans Candida. Therefore, additional studies with a
9 0 1	283	larger number of patients, adjustment for host factors, and consideration of antifungal drugs,
2 3 4 5 6 7	284	incubation time, and treatment duration are needed to clarify the impact of each Candida
	285	species.
8 9 0	286	The large number of patients examined in this study and the use of propensity score
1 2 3	287	matching represent two major strengths of the present study. These aspects also allowed the
4 5 6 7	288	impact of each pathogen group to be discerned. However, there were also several limitations
7 8 9	289	associated with the present study which merit discussion. First, the exact cost after the index

Page 20 of 54

1 2	
3 4	
5 6	
7 8	
9 10	
10 11 12	
13 14	
15	
16 17 18	
19 20	
21	
23	
24 25	
26 27	
28 29	
30 31 32	
33	
35	
36 37	
38 39	
40 41 42	
42 43	
44 45	
46 47 48	
48 49 50	
50 51 52	
52 53 54	
54 55 56	
57 58	
59 60	

290	date could not be retrieved from the NHIRD. Therefore, the high total cost shown in this
291	study may be due to costs incurred prior to the onset of a BSI. It is possible that matching of
292	the duration before the index date and comorbidity may have reduced overestimations of
293	healthcare costs due to time-dependent bias.[30] Second, confounding factors associated with
294	clinical impact, such as APACHE II or Pitt Bacteremia scores, were not included in this study.
295	Instead, other clinical risk factors (Charlson Comorbidity Index score, number of organ
296	failures, use of inotropic agents, and receipt of invasive procedures) were incorporated in our
297	model. Third, our study is inherently limited by its retrospective design, which includes a
298	dependence on the accuracy of the ICD codes used and unmeasurable bias.[31,32] Fourth, the
299	prolonged hospitalization may have been due to a change in patient management in response
300	to a BSI, rather than increased morbidity due to a BSI.[15] In addition, the number of
301	participating hospitals varied during study period and therefore was considered in propensity
302	score matching. Finally, the collection of personal identification numbers is not mandatory in
303	TNIS, which resulted in failure of interlink. However, their impact on the outcome was
304	unknown.
305	
306	CONCLUSIONS
307	ICU-acquired BSIs have a negative clinical and economic impact on affected patients
308	regardless of the causative pathogens involved. Awareness of these negative affects is
	19

1 2		
3 4 5	309	important for promoting infection control measurements and for policy-making.
6 7 8	310	
9 10 11		
12 13		
14 15 16		
17 18 19		
20 21		
22 23 24		
25 26		
27 28 29		
30 31 32		
33 34		
35 36 37		
38 39 40		
41 42 43		
44 45		
46 47 48		
49 50 51		
52 53		
54 55 56		
57 58 59		
59 60		

1 2		
3 4 5	311	LIST OF ABBREVIATIONS
6 7 8	312	BSI = bloodstream infection;
9 10 11	313	CI = confidence interval;
12 13 14	314	ECDC = European Centre for Disease Prevention and Control;
15 16 17	315	ICD-9-CM = international classification of diseases, 9th revision, clinical modification;
18 19 20	316	ICU = intensive care unit;
21 22 23	317	IQR = interquartile range;
24 25 26	318	MDR = multiple drug resistance;
27 28 29	319	NHIRD = National Health Insurance Research Database;
30 31 32	320	OR = odds ratio;
33 34 35	321	TNIS = Taiwan Nosocomial Infection Surveillance;
36 37 38	322	WHO = World Health Organization;
39 40 41 42	323	
42 43 44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58		
59 60		

1 2		
3 4 5	324	DECLARATIONS
6 7 8	325	Ethics approval and consent to participate
9 10 11	326	The institutional review board of the National Health Research Institutes approved this study
12 13 14	327	(EC1051207-R4).
15 16 17	328	
18 19 20	329	Consent for publication
21 22 23	330	Not applicable.
24 25 26	331	
27 28 29	332	Availability of data and materials
30 31 32 33	333	The data that support the findings of this study are available from Ministry of Health and
33 34 35	334	Welfare, Taiwan but restrictions apply to the availability of these data, which were used
36 37 38	335	under license for the current study, and so are not publicly available. Data are however
39 40 41	336	available from the authors upon reasonable request and with permission of Ministry of Health
42 43 44	337	and Welfare, Taiwan.
45 46 47	338	
48 49 50	339	Competing interests
51 52 53	340	The authors declare that they have no competing interests.
54 55 56	341	
57 58 59	342	Funding
60		22

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

343	This work was supported by a grant from the National Health Research Institutes [Grant no.
344	108-0324-01-19-06] and Tri-Service General Hospital [TSGH-C107-099 and
345	TSGH-E-109237]. The sponsors had no role in the study design; collection, analysis, or
346	interpretation of data; writing of the report; or the decision to submit the article for
347	publication.
348	
349	Author contributions
350	Conceptualization: CAH, SCK
351	Data curation: YTC, CAH, SCK
352	Formal analysis: SMS, YTC
353	Funding acquisition: YCW, SCK
354	Investigation: YCW, SCK
355	Methodology: YTC, CAH, SCK
356	Methodology: YTC, CAH, SCK Project administration: YCW, CAH, SCK
357	Resources: YTC, CAH, SCK
358	Software: SMS, YTC
359	Supervision: SMS, YTC
360	Validation: CAH, SCK

Visualization: YCW, SMS

1 2		
2 3 4 5 6	362	Writing—original draft: YCW, SMS, SCK
7 8	363	Writing—review & editing: YCW, CAH, SCK
9 10 11	364	All authors approved the final version of the manuscript.
12 13 14	365	
15 16 17	366	Acknowledgements
18 19 20	367	Not applicable.
21 22 23	368	Not applicable.
24 25 26		
27 28 29		
30 31 32		
33 34 35 36		
37 38 39		
40 41 42		
43 44 45		
46 47 48		
49 50 51		
52 53 54		
55 56 57		
58 59 60		
00		

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 20	
4	
5 6	
7	
8	
9 10	
10	
12	
13	
14 15	
16	
17	
18	
19 20	
20	
22	
23	
24 25	
26	
27	
28	
29 30	
31	
32	
33	
34 35	
36	
37	
38	
39 40	
41	•
42	
43 44	
44 45	
46	
47	
48 49	
49 50	
51	
52	
53 54	
54 55	
56	

370 REFERENCES

7 8 9	371	1.	Prowle JR, Echeverri JE, Ligabo EV, et al. Acquired bloodstream infection in the
10 11 12	372		intensive care unit: incidence and attributable mortality. Crit Care 2011; 15: R100.
13 14 15	373	2.	Garrouste-Orgeas M, Timsit JF, Tafflet M, et al. Excess risk of death from intensive
16 17 18	374		care unit-acquired nosocomial bloodstream infections: a re-appraisal. Clin Infect Dis
19 20 21	375		2006; 42 : 1118-26.
22 23 24	376	3.	Laupland KB, Lee H, Gregson DB, Manns BJ. Cost of intensive care unit-acquired
25 26 27	377		bloodstream infections. J Hosp Infect 2006; 63: 124-32.
28 29 30	378	4.	Stewardson AJ, Allignol A, Beyersmann J, et al. The health and economic burden of
31 32 33	379		bloodstream infections caused by antimicrobial-susceptible and non-susceptible
34 35 36	380		Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011:
37 38 39	381		a multicentre retrospective cohort study. <i>Euro Surveill</i> 2016; 21 : pii=30319.
40 41 42	382	5.	Landry SL, Kaiser DL, Wenzel RP. Hospital stay and mortality attributed to
43 44 45	383		nosocomial enterococcal bacteremia: a controlled study. Am J Infect Control 1989;
46 47 48	384		17: 323-9.
49 50 51	385	6.	Ong DS, Bonten MJ, Safdari K, et al. Epidemiology, management, and risk-adjusted
52 53 54	386		mortality of ICU-acquired enterococcal bacteremia. Clin Infect Dis 2015; 61:
54 55 56 57	387		1413-20.
57 58 59 60	388	7.	Kramer TS, Remschmidt C, Werner S, et al. The importance of adjusting for

Page 27 of 54

1

2			
3 4 5 6	389		Enterococcus species when assessing the burden of vancomycin resistance: a cohort
7 8 9	390		study including over 1000 cases of enterococcal bloodstream infections. Antimicrob
10 11	391		Resist Infect Control 2018; 7: 133.
12 13 14	392	8.	Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of
15 16 17	393		new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.
18 19 20	394		Lancet Infect Dis 2018; 18: 318-27.
21 22 23	395	9.	Wu TY, Majeed A, Kuo KN. An overview of the healthcare system in Taiwan.
24 25 26	396		London J Prim Care (Abingdon) 2010; 3 : 115-9.
27 28 29	397	10.	Tu JV, Bowen J, Chiu M, et al. Effectiveness and safety of drug-eluting stents in
30 31 32	398		Ontario. <i>N Engl J Med</i> 2007; 357 : 1393-402.
33 34 35	399	11.	Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with
36 37 38	400		ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45: 613-9.
39 40 41	401	12.	Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively
42 43 44	402		drug-resistant and pandrug-resistant bacteria: an international expert proposal for
45 46 47	403		interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:
48 49 50	404		268-81.
51 52 53	405	13.	Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically iII
54 55 56	406		patients: excess length of stay, extra costs, and attributable mortality. JAMA 1994;
57 58 59	407		271 : 1598-601.
60			

1

Page 28 of 54

2 3			
4 5 6	408	14.	Laupland KB, Zygun DA, Davies HD, et al. Population-based assessment of intensive
7 8 9	409		care unit-acquired bloodstream infections in adults: incidence, risk factors, and
10 11 12	410		associated mortality rate. Crit Care Med 2002; 30: 2462-7.
13 14 15	411	15.	Barnett AG, Page K, Campbell M, et al. The increased risks of death and extra length
16 17 18	412		of hospital and ICU stay from hospital-acquired bloodstream infections: a
19 20 21	413		case-control study. BMJ Open 2013; 3: e003587.
22 23 24	414	16.	Marra AR, Camargo LF, Pignatari AC, et al. Nosocomial bloodstream infections in
25 26 27	415		Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide
28 29 30	416		surveillance study. <i>J Clin Microbiol</i> 2011; 49 : 1866-71.
31 32 33	417	17.	Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in
34 35 36	418		patients with Acinetobacter baumannii infection: systematic review and
37 38 39	419		meta-analysis. Clin Microbiol Infect 2014; 20: 416-23.
40 41 42	420	18.	Schwab F, Geffers C, Behnke M, et al. ICU mortality following ICU-acquired
43 44 45	421		primary bloodstream infections according to the type of pathogen: a prospective
46 47 48	422		cohort study in 937 Germany ICUs (2006-2015). PloS One 2018; 13: e0194210.
49 50 51	423	19.	Caballero-Granado FJ, Becerril B, Cuberos L, et al. Attributable mortality rate and
52 53	424		duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis
54 55 56	425		2001; 32 : 587-94.
57 58 59	426	20.	Blot SI, Depuydt P, Annemans L, et al. Clinical and economic outcomes in critically
60			2

3 4 5	427		ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis
6 7 8	428		2005; 41 : 1591-8.
9 10 11	429	21.	Tseng SH, Lee CM, Lin TY, et al. Combating antimicrobial resistance: antimicrobial
12 13 14 15	430		stewardship program in Taiwan. J Microbiol Immunol Infect 2012; 45: 79-89.
16 17 18	431	22.	Howard D, Cordell R, McGowan JE, Jr., et al. Measuring the economic costs of
19 20 21	432		antimicrobial resistance in hospital settings: summary of the Centers for Disease
22 23 24	433		Control and Prevention-Emory Workshop. Clin Infect Dis 2001; 33: 1573-8.
25 26 27	434	23.	Mauldin PD, Salgado CD, Hansen IS, et al. Attributable hospital cost and length of
28 29 30	435		stay associated with health care-associated infections caused by antibiotic-resistant
31 32 33	436		gram-negative bacteria. Antimicrob Agents Chemother 2010; 54: 109-15.
34 35 36	437	24.	Horn DL, Neofytos D, Anaissie EJ, et al. Epidemiology and outcomes of candidemia
37 38 39	438		in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin
40 41 42	439		Infect Dis 2009; 48 : 1695-703.
43 44 45	440	25.	Dimopoulos G, Ntziora F, Rachiotis G, et al. Candida albicans versus non-albicans
46 47 48	441		intensive care unit-acquired bloodstream infections: differences in risk factors and
49 50 51	442		outcome. Anesth Analg 2008; 106: 523-9.
52 53 54	443	26.	Moran C, Grussemeyer CA, Spalding JR, et al. Comparison of costs, length of stay,
55 56 57	444		and mortality associated with Candida glabrata and Candida albicans bloodstream
58 59 60	445		infections. Am J Infect Control 2010; 38: 78-80.

1 2

3 4 5	446	27.	Gong X, Luan T, Wu X, et al. Invasive candidiasis in intensive care units in China:
6 7 8	447		risk factors and prognoses of Candida albicans and non-albicans Candida infections.
9 10 11	448		Am J Infect Control 2016; 44: e59-63.
12 13 14	449	28.	Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidemia
15 16 17	450		in 3648 patients: data from the prospective antifungal therapy (PATH Alliance®)
18 19 20	451		registry, 2004-2008. Diagn Microbiol Infect Dis 2012; 74: 323-31.
21 22 23	452	29.	Barchiesi F, Orsetti E, Gesuita R, et al.; Candidemia Study Group. Epidemiology,
24 25 26	453		clinical characteristics, and outcome of candidemia in a tertiary referral center in Italy
27 28 29	454		from 2010 to 2014. Infection 2016; 44: 205-13.
30 31 32	455	30.	Nelson RE, Samore MH, Jones M, et al. Reducing time-dependent bias in estimates of
33 34 35	456		the attributable cost of health care-associated Methicillin-resistant Staphylococcus
36 37 38	457		aureus infections: a comparison of three estimation strategies. Med Care 2015; 53:
39 40 41	458		827-34.
42 43 44	459	31.	Kuo SC, Shih SM, Hsieh LY, et al. Antibiotic restriction policy paradoxically
45 46 47	460		increased private drug consumptions outside Taiwan's National Health Insurance. J
48 49 50	461		Antimicrob Chemother 2017; 72: 1544-5.
51 52 53	462	32.	Sarrazin MSV, Rosenthal GE. Finding pure and simple truths with administrative
54 55 56	463		data. JAMA 2012; 307 : 1433-5.
57 58 59 60	464		

(SD)

BMJ Open

	Patients with BSI,	Comparison	Standardized
Characteristics	n (%)	cohort, n (%)	difference
No. of patients	14,234	28,468	
Year of Index Date			
2007	1,244 (8.74%)	3,474 (12.2%)	0.113
2008	1,608 (11.3%)	3,101 (10.89%)	0.013
2009	1,714 (12.04%)	2,923 (10.27%)	0.056
2010	1,745 (12.26%)	3,119 (10.96%)	0.041
2011	1,947 (13.68%)	3,107 (10.91%)	0.084
2012	1,727 (12.13%)	3,119 (10.96%)	0.037
2013	1,496 (10.51%)	2,985 (10.49%)	0.001
2014	1,371 (9.63%)	3,226 (11.33%)	0.056
2015	1,382 (9.71%)	3,414 (11.99%)	0.073
Season of In-date			
Mar-May	3,564 (25.04%)	7,207 (25.32%)	0.006
Jun-Aug	3,577 (25.13%)	7,224 (25.38%)	0.006
Sep-Nov	3,519 (24.72%)	6,964 (24.46%)	0.006
Dec-Feb	3,574 (25.11%)	7,073 (24.85%)	0.006
Males	8,971 (63.03%)	17,861 (62.74%)	0.006
Age, years, mean (SD)	65.12 (21.62)	65.08 (20.60)	0.002

0.033

pseudo-index date, days, mean 15.69 (12.14) 15.29 (11.96)

Dependent	2,416 (16.97%)	4,813 (16.91%)	
< 657.33	4,740 (33.3%)	9,575 (33.63%)	
657.33-1504.60	6,324 (44.43%)	12,563 (44.13%)	
> 1504.60	740 (5.2%)	1,484 (5.21%)	
Unknown	14 (0.1%)	33 (0.12%)	
Urbanization level			
1 (urban)	3,639 (25.57%)	7,293 (25.62%)	
2	3,968 (27.88%)	7,920 (27.82%)	
3	2,227 (15.65%)	4,432 (15.57%)	
4 (rural)	4,389 (30.83%)	8,802 (30.92%)	
Unknown	11 (0.08%)	21 (0.07%)	
Hospital level			
Medical center	7,168 (50.36%)	14,393 (50.56%)	
Regional hospital	6,125 (43.03%)	12,242 (43%)	
Local hospital	940 (6.6%)	(6.44%)	
Charlson Comorbidity Index	2 005 (2 00)	2105 (2.05)	
score, mean (SD)	3.085 (2.80)	3.105 (2.95)	
0	2,950 (20.73%)	6,411 (22.52%)	
1	1,930 (13.56%)	3,928 (13.8%)	
2	2,283 (16.04%)	4,251 (14.93%)	
≥3	7,071 (49.68%)	13,878 (48.75%)	
Comorbidities			
Diabetes mellitus	4,840 (34%)	9,642 (33.87%)	
		7,048 (24.76%)	

2					
3 4		Myocardial infarction	525 (3.69%)	1,124 (3.95%)	0.014
5 6 7		Heart failure	2,532 (17.79%)	5,173 (18.17%)	0.01
7 8 9		Peripheral vascular disease	742 (5.21%)	1,509 (5.3%)	0.004
10 11		Liver disease	2,740 (19.25%)	5,393 (18.94%)	0.008
12 13		Chronic kidney disease	3,864 (27.15%)	7,982 (28.04%)	0.02
14 15		Dyslipidemia	2,766 (19.43%)	5,683 (19.96%)	0.013
16 17 18		Cancer	2,753 (19.34%)	5,635 (19.79%)	0.011
19 20		Number of dysfunctional organs,			
21 22		mean (SD)	1.015 (0.809)	1.02 (0.855)	0.005
23 24		0	4,035 (28.35%)	8,549 (30.03%)	0.037
25 26 27		1	6,445 (45.28%)	12,293 (43.18%)	0.042
27 28 29		2	3,273 (22.99%)	6,243 (21.93%)	0.026
30 31		≥3	481 (3.38%)	1,383 (4.86%)	0.074
32 33		Use of inotropic agents	11,398 (80.08%)	22,858 (80.29%)	0.005
34 35		Use of steroid	9 (0.06%)	20 (0.07%)	0.003
36 37					
38 39		Use of ventilator	12,493 (87.77%)	25,075 (88.08%)	0.01
40 41		Use of ventilator (>3 days)	11,668 (81.97%)	23,458 (82.4%)	0.011
42 43					
43 44		Emergent renal replacement	2615 (18.37%)	5,370 (18.86%)	0.013
45 46		therapy			
47 48		Propensity score (SD)	0.128 (0.109)	0.127 (0.109)	0.004
49 50	467	$A + b = \frac{1}{2} + \frac{1}{2$	infaction, CDt	dand darriation	

Abbreviations: BSI = bloodstream infection; SD = standard deviation.

24

		Full cohort		Novem	Matched cohort	
Outcomes	ICU patients	Comparison	<i>P</i> -value	ICU patients	Comparison	P-val
	with BSI	cohort	1 value	with B SI	cohort	1 (4)
No. of patients	17,834	713,518		14,234	28,468	
Clinical outcomes				ı http://bmjo		
In-hospital mortality, n (%)	8,639 (48.44)	65,282 (9.15)	< 0.0001	ō	9,532 (33.48%)	< 0.0
14-day mortality, n (%)	5,693 (31.92)	54,998 (7.71)	< 0.0001	4,323 (30.37%)	6,766 (23.77%)	< 0.00
28-day mortality, n (%)	7,469 (42.01)	73,552 (10.31)	< 0.0001	5,619 (39.48%)	9,189 (32.28%)	<0.00
Economic outcomes				2024		
Length of hospitalization after the index	18 (6, 40)	6 (3, 13)	< 0.0001	by guest.		< 0.00

Page 35 of	f 54				BMJ Open		mjopen		
1							-2020-03		
2 3 4 5		(IQR)					mjopen-2020-037484 on 26 November 16,038		
6 7 8		Cost of hospitalization	on (USD) ^{<i>a</i>} , median	18,457	4,971	< 0.0001	16,038	10,372	< 0.0001
9 10 11	_	(IQR)		(10,938, 30,778)	(2,770, 8,598)		(9,667, 25, 9 46)	(6,289, 16,932)	
12 13 470 14)	Abbreviations: ICU = i	intensive care unit; BSI =	bloodstream infecti	on; IQR= interqu	artile range	Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.		
15 16 471 17	1 '	⁷ The costs are standard	ized and presented as the				ded fror		
18 19							n http:		
20 21							//bmj		
22							open.		
23 24							.bmj.		
25 26							com/		
27							on P		
28 29							April 2		
30							<u>23</u> , 2		
31 32							024		
33							by g		
34							uest		
35 36							r P		
37							otec		
38							cted		
39							l by		
40							cop		34
41 42							yric		5-
42			-				jht.		
44			For peer	review only - http://bmj	open.bmj.com/site/	about/guidel	ines.xhtml		
45									
46									

28-days mortality

1.79 (1.6, 2)

1.5 (1.3, 1.72)

1.45 (1.27, 1.66)

1.47 (1.23, 1.77)

1.31 (1.19, 1.43)

1.31 (1.15, 1.51)

1.6 (1.37, 1.85)

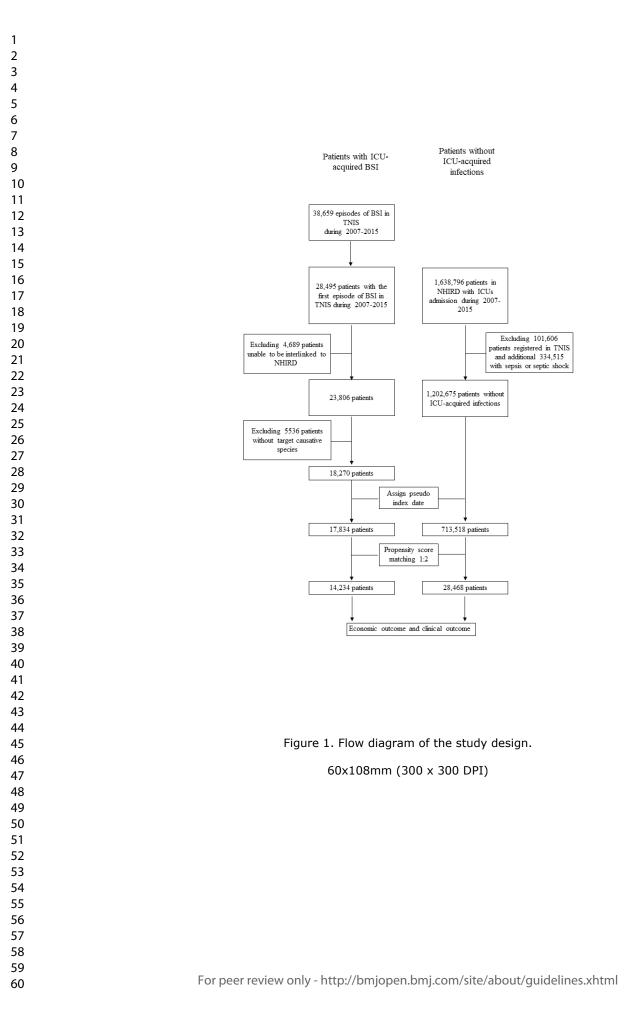
1.68 (1.42, 1.98)

1.61 (1.32, 1.95)

		Odds ra	atio (95% Confidenc	e interval)
	Pathogen groups (Number of patients)	In-hospital mortality	14-days mortality	28-days mor
	MDR Gram-negative bacteria (2,232)	2.12 (1.89, 2.38)	1.77 (1.57, 1.99)	1.79 (1.6,
	MDR Gram-positive bacteria (1,429)	1.84 (1.59, 2.12)	1.52 (1.31, 1.76)	1.5 (1.3, 1
	Acinetobacter baumannii (1,761)	1.67 (1.47, 1.91)	1.45 (1.26, 1.66)	1.45 (1.27,
	Pseudomonas aeruginosa (853)	1.69 (1.41, 2.03)	1.73 (1.42, 2.1)	1.47 (1.23,
	Enterobacteriaceae ^{b} (3,548)	1.59 (1.45, 1.75)	1.28 (1.16, 1.41)	1.31 (1.19,
	Staphylococcus aureus (1,721)	1.63 (1.42, 1.87)	1.24 (1.07, 1.44)	1.31 (1.15,
	Enterococcus species ^c (1,277)	1.87 (1.6, 2.18)	1.69 (1.44, 1.99)	1.6 (1.37, 1
	Candida albicans (951)	2.04 (1.71, 2.43)	1.61 (1.35, 1.91)	1.68 (1.42,
	Non-albicans Candida ^d (703)	1.97 (1.61, 2.41)	1.58 (1.29, 1.95)	1.61 (1.32,
473	Abbreviations: MDR = multiple drug r	esistance.		
474	^a Only patients with bloodstream infect	ions involving a sing	gle pathogen were inc	luded in this
475	analysis.			
476	^b Enterobacteriaceae included Escherici	hia coli, Klebsiella p	oneumoniae, Enteroba	acter cloacae,
477	Enterobacter aerogenesa, and Serratia	marcescens.		
478	^c Enterococcus species included Entero	coccus faecium, Ent	terococcus faecalis, ai	nd other

479	Enterococcus species.
480	^d Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida
481	glabrata.
482	
483	
	480 481 482

3 4


		184 84
able 4. Economic outcomes for t		mjopen-2020-037484 on 26
	Excess costs or length of hospital	ization (95% Confidence interval)
athogen groups	Length of hospitalization	Cost of bospitalization (USD)
	after the index date (days)	Cost of bospitalization (USD)
IDR Gram-negative bacteria	10.41 (8.55, 12.27)	7,553 (6,725, 8,401)
IDR Gram-positive bacteria	13.82 (11.38, 16.27)	6,342 (5,500, 7,184)
cinetobacter baumannii	9.4 (7.65, 11.14)	6,727 (5,823, 7,632)
seudomonas aeruginosa	10.01 (7.83, 12.19)	6,7×1 (5,609, 7,913)
nterobacteriaceae ^b	15.05 (13.33, 16.76)	7,44 (6,881, 8,007)
taphylococcus aureus	14.72 (12.63, 16.81)	5,221 (4,528, 5,894)
nterococcus species ^c	10.66 (7.85, 13.48)	ق 2 7,2 4 9 (6,305, 8,132)
andida albicans	11.37 (8.82, 13.92)	8,688 (7,512, 9,864)

Page	39 of 54		BMJ Open	mjopen	
1 2 3				n-2020-03748	
4 5		Non-albicans Candida ^d	15.13 (11.77, 18.49)	11,42	6 (10,025, 12,927)
6 7 8 9	485	Abbreviations: MDR = multiple of	drug resistance.		
10 11 12	486	^a Only patients with bloodstream	infections involving a single pathogen were included i	in this analysis.	
13 14 15	487	^b Enterobacteriaceae included Esc	herichia coli, Klebsiella pneumoniae, Enterobacter cl	loacae, Enterobacter d	erogenes, and Serratia marcescens.
16 17 18	488	^c Enterococcus species included E	Enterococcus faecium, Enterococcus faecalis, and othe	er Enterococcus species	
19 20	489	^d Non-albicans Candida included	Candida tropicalis, Candida parapsilosis, and Candid	da glabrata.	
21 22 23	490				
24 25 26	491				
27 28 29	492			ida glabrata.	
30 31 32					
33 34 35					
36 37				Jest. Protected by copyright	
38 39					
40 41 42				copyriq	38
42 43 44			For peer review only - http://bmjopen.bmj.com/site/ab	bout/guidelines.xhtml	
45 46					

		BMJ Open	mjopen-	Page 40 of 54
1			-2020-037484	
2 3			03748	
4 5	493	FIGURE LEGENDS	4 on 26	
6 7 8	494	Figure 1. Flow diagram of the study design.	6 Novemb	
9 10 11 12	495		er 2020. I	
13 14 15	496		Download	
16 17 18	497	Abbreviations: ICU = intensive care unit; BSI = bloodstream infection; TNIS = '	Taiwan Nosocomial Infections Surve	eillance; NHIRD = National
19 20 21	498	Health Insurance Research Database.	ittp://bmjc	
22 23 24	499		ppen.bmj	
25 26 27	500		com/ on	
28 29 30	501		bmj.com/ on April 23, 2024	
31 32 33	502		2024 by g	
34 35 36	503		by guest. Pro	
37 38 39	504		otected by	
40 41 42			Protected by copyright	39
43 44 45		For peer review only - http://bmjopen.bmj.com	ן i/site/about/guidelines.xhtml	
46				

Page	e 41 of 54	BMJ Open	
1 2		n-2020-037484	
3 4 5	505	SUPPLEMENTARY FILES:	
6 7 8	506	Supplementary Table 1. The number of episodes of intensive care unit-acquired bloodstream infections caused by common pathogens before	
9 10 11	507	enrollment and the number of patients infected after matching.	
12 13 14	508	Supplementary Table 2. Propensity score model results of probability of bloodstream infections among intens are unit patients and matched	1
15 16 17	509	comparison cohort.	
18 19 20	510	Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and antimicrobial agents used to get fine drug resistance.	
21 22 23	511	Supplementary Table 4. The economic outcomes among patients with bloodstream infections and comparison cohort who survived to the	
24 25 26	512	discharge.	
27 28 29 30 31 32 33 34 35	513	Supplementary Table 5. Estimated 9-year excessive hospitalization or healthcare cost in all patients with block stream infections.	
36 37 38 39		Jest. Protected by copyright.	
40 41 42 43		copyright.	40
44 45 46		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 42 of 54

- Supplementary Table 1. The number of episodes of intensive care unit-acquired
- bloodstream infections caused by common pathogens before enrollment and the number
 - of patients infected after matching.

	No. of BSI episodes	No. of patients after
	before enrollment ^a	matching ^b
Acinetobacter baumannii	5,214	1,761
Staphylococcus aureus	4,382	1,721
Klebsiella pneumoniae	3,965	1,357
Pseudomonas aeruginosa	2,619	853
Candida albicans	2,554	951
Escherichia coli	2,287	843
Enterobacter cloacae	1,982	746
Enterococcus faecium	1,950	647
Stenotrophomonas maltophilia	1,599	454
Enterococcus faecalis	1,427	419
Serratia marcescens	1,239	439
Candida tropicalis	890	329
Burkholderia cepacia	808	251
Other Enterococcus species ^c	688	211
Elizabethkingia meningoseptica	659	173
Chryseobacterium indologenes	553	152
Candida parapsilosis	534	177
Candida glabrata	461	197
Enterobacter aerogenes	419	163

Abbreviations: BSI= bloodstream infection.

^aThe number of episodes of bloodstream infections with known pathogens was 38,659.

Coagulase-negative staphylococci was excluded from analyses due to possibility of

- contamination. One episode may have multiple pathogens. There were 30,697 episodes of
- bloodstream infections caused by the pathogens listed above.
- ^bThe number of patients enrolled case was 14,234 (Table 1) but only patients with
- bloodstream infections caused by a single pathogen was counted here (Table 3 and 4) and it
- was 11,844. There were 2,390 patients with bloodstream infections caused by multiple
- pathogens.
 - ^cEnterococcus species other than Enterococcus faecium and Enterococcus faecalis. to occur terren only

15 Supplementary Table 2. Propensity score model results of probability of bloodstream

16 infections among intensive care unit patients and matched comparison cohort.

Estimate	Odds ratios	inte	rval	<i>P</i> -valu	
	ratios	interval		<i>P</i> -value	
		Lower	Upper	_	
-0.0014	0.9986	0.9974	0.9998	0.0251	
0.0070	1 00 60	0.0000	1 0010	0.40.4	
0.0063	1.0063	0.9909	1.0219	0.4243	
5	1.000				
0.2803	1.3235	1.2105	1.4470	< 0.000	
0.4057	1.5003	1.3709	1.6419	<0.000	
0.3662	1.4423	1.3146	1.5824	<0.000	
0.4363	1.5470	1.4019	1.7072	<0.000	
0.3246	1.3835	1.2457	1.5364	<0.000	
0.2361	1.2663	1.1312	1.4174	<0.000	
0.0780	1.0811	0.9590	1.2188	0.202	
0.0354	1.0360	0.9128	1.1759	0.583	
	1.000				
0.0198	1.0200	0.9534	1.0912	0.565	
0.0404	1.0412	0.9787	1.1077	0.200	
0.0401	1.0409	0.9816	1.1038	0.180	
0.0111	1.0112	0.9662	1.0583	0.632	
	0.4057 0.3662 0.4363 0.3246 0.2361 0.0780 0.0354 0.0198 0.0404 0.0401	1.000 0.2803 1.3235 0.4057 1.5003 0.3662 1.4423 0.4363 1.5470 0.3246 1.3835 0.2361 1.2663 0.0780 1.0811 0.0354 1.0360 1.000 0.0198 1.0200 0.0404 1.0412 0.0401 1.0409	- 1.000 $ 0.2803$ 1.3235 1.2105 0.4057 1.5003 1.3709 0.3662 1.4423 1.3146 0.4363 1.5470 1.4019 0.3246 1.3835 1.2457 0.2361 1.2663 1.1312 0.0780 1.0811 0.9590 0.0354 1.0360 0.9128 $ 1.000$ $ 0.0198$ 1.0200 0.9534 0.0404 1.0412 0.9787 0.0401 1.0409 0.9816	1.000 0.2803 1.3235 1.2105 1.4470 0.4057 1.5003 1.3709 1.6419 0.3662 1.4423 1.3146 1.5824 0.4363 1.5470 1.4019 1.7072 0.3246 1.3835 1.2457 1.5364 0.2361 1.2663 1.1312 1.4174 0.0780 1.0811 0.9590 1.2188 0.0354 1.0360 0.9128 1.1759 1.000 0.0198 1.0200 0.9534 1.0912 0.0404 1.0412 0.9787 1.1077 0.0401 1.0409 0.9816 1.1038	

Dependent		1.000			
<657.33	0.0518	1.0532	0.9824	1.1291	0.1444
657.33–1504.60	0.0699	1.0724	0.9985	1.1518	0.0550
>1504.60	0.0984	1.1034	0.9871	1.2334	0.0835
Urbanization level					
1 (urban)		1.000			
2	0.0093	1.0094	0.9516	1.0706	0.7560
3	-0.0006	0.9994	0.9293	1.0748	0.9872
4 (rural)	-0.0163	0.9838	0.9291	1.0417	0.5753
Hospital level					
Level I (Medical center)		1.000			
Level II (Regional	-0.0068	0.9932	0.9364	1.0534	0.8200
hospital)	0.0000		0.7504	1.0554	0.0200
Level III (Local hospital)	-0.0439	0.9570	0.7894	1.1603	0.6548
Charlson Comorbidity Index					
score					
0		1.000	Ð,		
1	0.1421	1.1527	1.0681	1.2439	0.0003
2	0.2932	1.3407	1.2390	1.4508	< 0.0001
≥3	0.3456	1.4129	1.2880	1.5498	< 0.0001
Comorbidities					
Diabetes mellitus	0.0050	1.0051	0.9521	1.0610	0.8553
Cerebrovascular disease	-0.0419	0.9589	0.8833	1.0410	0.3166
Myocardial infarction	-0.0702	0.9322	0.7377	1.1779	0.5564
Heart failure	-0.0607	0.9411	0.8525	1.0389	0.2292

Page 47 of 54	7 of 54 BMJ Open					
1 2						
2 3 4 5	Peripheral vascular	-0.0299	0.9706	0.8779	1.0731	0.5601
6 7	disease					
8 9	Liver disease	-0.0437	0.9572	0.8832	1.0375	0.2877
10 11	Chronic kidney disease	-0.1133	0.8929	0.8179	0.9748	0.0114
12 13	Dyslipidemia	-0.0425	0.9584	0.8916	1.0302	0.2490
14 15	Cancer	-0.1626	0.8499	0.7934	0.9105	< 0.0001
16 17 18	Number of dysfunctional					
18 19 20	organs					
21 22	0		1.000			
23 24 25	1	0.1450	1.1561	0.9750	1.3707	0.0951
25 26 27	2	0.2044	1.2268	0.8853	1.6999	0.2195
28 29	\geq 3	-0.2233	0.7999	0.4839	1.3222	0.3839
30 31	Use of inotropic agents	0.0551	1.0567	0.7982	1.3989	0.7001
32 33 34	Use of steroid	-0.0091	0.9909	0.4451	2.2061	0.9822
35 36	Use of ventilator	-0.0226	0.9776	0.8350	1.1446	0.7786
37 38	Use of ventilator (>3 days)	0.0279	1.0283	0.6260	1.6891	0.9122
39 40 41	Emergent renal replacement	0.0024	1.0024	0.8515	1.1801	0.9770
42 43	therapy		.0024 1.0024		0.8515 1.1801	
44 45 17						
46 47 48						
48 49 50						
50 51 52						
53 54						
55 56						
57 58 59						
60						5
						5

18 Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and

19 antimicrobial agents used to define drug resistance.

Pathogens	Antimicrobial categories	Antimicrobial agents
		Gentamicin
		Tobramycin
	Aminoglycosides	Amikacin
		Netilmicin
		Imipenem
	Carbapenems	Meropenem
		Doripenem
Acinetobacter		Ciprofloxacin
<i>baumannii</i> ^a	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β -lactamase inhibitors	Ticarcillin-clavulanic aci
		Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime
		Ceftriaxone
Pseudomonas		Gentamicin
	A min a alterna di la a	Tobramycin
	Aminoglycosides	Amikacin
aeruginosa ^a		Netilmicin
	Carlanau	Imipenem
	Carbapenems	Meropenem

		Doripenem
		Ciprofloxacin
	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β-lactamase inhibitors	Ticarcillin-clavulanic ac
		Cefepime
	Antipseudomonal cephalosporins	Cefpirome
		Ceftazidime
	~	Gentamicin
	Aminochuppidas	Tobramycin
	Aminoglycosides	Amikacin
		Netilmicin
		Imipenem
Enterobacteriaceae ^a	Carbonnes	Meropenem
(Escherichia coli,	Carbapenems	Doripenem
Klebsiella pneumoniae,		Ertapenem
Enterobacter cloacae		Ciprofloxacin
nterobacter	Fluoroquinolones	Levofloxacin
aerogenes, or Serratia	Antipseudomonal penicillins +	Piperacillin-tazobactam
marcescens)	β-lactamase inhibitors	Ticarcillin-clavulanic ac
		Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime

			Ceftriaxone
	Staphylococcus aureus	Glycopeptides	Vancomycin
	Staphylococcus aureus	β-lactamase-resistant penicillins	Oxacillin
	Enterococcus faecium,		
	Enterococcus faecalis,	Glycopeptides	Vancomycin
	or other Enterococcus	Grycopeptides	vancomycm
	species ^b		
20	^a Drug resistance was de	efined as being non-susceptible to ≥ 1	agent in ≥ 3 antimicrobial
21	categories.		
22	^b Drug resistance was d	efined as being non-susceptible to ≥ 1	agent.

ge 51 of 54	BMJ (Open	mjopen-2020-03
23 24	Supplementary Table 4. The economic outcomes among patients with the discharge. ^a	n bloodstream infections and com	Parison cohort who survived to
	Clinical outcomes	Excess costs or length of hospitalization	25 26 P-value 27 20
		(95% Confidence interval) ^b	<u>v</u> 28
	Length of hospitalization after the index date/pseudo-index date, days	19.59 (18.67, 20.51)	$\frac{1}{10} < 0.0001$
	Cost of hospitalization, USD	8,871 (8,475, 9,268)	0.0001 29 < 0.00030
		110.00	
32	^a A total of 7,939 of patients with intensive care uit-acquired bloodstream		
33 34	^b Adjusted imbalanced variables in Table 1.	infections and 18,936 comparators	bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright
			on April 23, 2024
			by Yd
			uest.
			Prot
			ectec
			l by c
			соруг
			ight.
	For peer review only - http://bmjopen.	.bmj.com/site/about/guidelines.xhtml	

		on 26
Pathogen groups	9-year excessive hospita	alization or healthcare cost
(Numbers of patients) ^a	Length of hospitalization after the index date (days) ^b	Cost oghospitalization (USD) ^{b, c}
All pathogens (38,659)	492,129	
MDR Gram-negative bacteria (6,825)	86,882	ه 52,363,448
MDR Gram-positive bacteria (4,176)	53,160	32,039,525
Acinetobacter baumannii (5,214)	66,374	40,003,372
Pseudomonas aeruginosa (2,619)	33,340	20,093,754
Enterobacteriaceae ^d (9,486)	120,757	296,603,446 52,363,448 32,039,525 40,003,372 20,093,754 72,779,438 72,779,438 33,620,019 31,034,454 19,595,054 14,362,546
Staphylococcus aureus (4,382)	55,783	A 33,620,019
Enterococcus species ^e (4,045)	51,493	31,034,454
Candida albicans (2,554)	32,512	ي بو 19,595,054
Non-albicans Candida ^f (1,872)	23,831	ية P 14,362,546

3 4

Page 5	53 of 54	프 BMJ Open
1		
2 3 4 5 6 7 8 9	38	^a The number of all episodes of intensive care unit-acquired bloodstream infections caused by designated pathogens during 2007-2015. The
	39	incluson and exclusion criteira in the method section were not applied in this Table (see Figure 1).
	40	^b The 9-year excessive hospitalization was calculated by multiplying the number of episodes during 9-year in $\frac{8}{5}$ cted by the designated pathogen(s)
10 11	41	and the average excessive hospitalization per case with the designated pathogen(s). The average excessive hospitalization per case was
12 13	42	difference of average hospitalization duration between the case with the designated pathogen(s) and their matched comparison. The average
14 15 16	43	hospitalization duration in bloodstream infection group was the sum of total hospitalization duration divided $\frac{1}{8}$ when umber of case and so was
17 18	44	that in matched control group.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	45	Ave _{Hospitalization} per case= [(sum of hospitalization length)/the number of patients].
	46	Excessive Ave _{Hospitalization} per person= (Ave _{Hospitalization} in bloodstream infection group) - (Ave _{Hospitalization} in consparison group).
	47	Total excessive hospitalization length over 9 years = (excessive Ave _{Hospitalization} per person) × (total number of episodes over 9 years)
	48	The 9-year excessive healthcare cost was calculated similarly.
	49	^c The costs are standardized and presented the values in 2017.
	50	^d Enterobacteriaceae included Escherichia coli, Klebsiella pneumoniaea, Enterobacter cloacae, Enterobacter arguerogenesa, and Serratia
	51	marcescens.
	52	eEnterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species
37 38 30	53	^e Enterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species ^f Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida glabrata. 11
39 40 41		8 9 9 11
42 43		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
44 45		r or peer review only - http://binjopen.binj.com/site/about/guidelines.xittini

		BMJ Open BMJ Open	Page
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>co</i> tort studies	
		484 84	
Section/Topic	Item #	Recommendation 69 26	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	#1 and #3-4
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	#3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	#6-7
Objectives	3	State specific objectives, including any prespecified hypotheses	#6-7
Methods	1 -		
Study design	4	Present key elements of study design early in the paper	#8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	#8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe gethods of follow-up	#9
		(b) For matched studies, give matching criteria and number of exposed and unexposed	#9-10
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Gee diagnostic criteria, if applicable	#10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	#9-10
Bias	9	Describe any efforts to address potential sources of bias	#9-10
Study size	10	Explain how the study size was arrived at	#8-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which growpings were chosen and why	#9-10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	#9-12
		(a) Describe all statistical methods, including those used to control for confounding	#9-12
			#10
		(c) Explain how missing data were addressedOriginal(d) If applicable, explain how loss to follow-up was addressedOriginal	Not applicable
		(e) Describe any sensitivity analyses	#12
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 mjopen-2020

copyright.

Darticipanto	13*	(a) Depart numbers of individuals at each stage of study – og numbers natentially eligible, evenin til for eligibility, confirmed	#14
Participants	13	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	#14
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#14
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	#14 and #30-32
		confounders B	
		(b) Indicate number of participants with missing data for each variable of interest Σ	#19 and #31
		(c) Summarise follow-up time (eg, average and total amount)	#14-15
Outcome data	15*	Report numbers of outcome events or summary measures over time	#14-15
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	#14-15
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	#14-15
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful tine period	#14-15
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 🧃	#15
Discussion			
Key results	18	Summarise key results with reference to study objectives	#16
Limitations			#18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	#16-20
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	#16-20
Other information		April	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	#22-23
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in the function of the studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine@rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan: A nationwide population-based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037484.R4
Article Type:	Original research
Date Submitted by the Author:	30-Oct-2020
Complete List of Authors:	Wang, Yung-Chih; National Defense Medical Center, Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine Shih, Shu-Man; National Health Research Institutes, Institute of Population Health Sciences Chen, Yung-Tai; Taipei City Hospital Heping Fuyou Branch, Department of Medicine Hsiung, Chao Agnes; National Health Research Institutes, Institute of Population Health Sciences Kuo, Shu-Chen; National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Infectious diseases, Intensive care
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, MICROBIOLOGY, INFECTIOUS DISEASES, HEALTH ECONOMICS, INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Article category: Original research

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
29	
30	
31 32	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2	
3	Clinical and Economic Impact of Intensive Care Unit-Acquired Bloodstream Infections
4	in Taiwan: A nationwide population-based retrospective cohort study
5	Yung-Chih Wang, MD, PhD ¹ ; Shu-Man Shih ² ; Yung-Tai Chen, MD ^{3,4} ; Chao A. Hsiung,
6	PhD ² ; Shu-Chen Kuo, MD, PhD ^{5*}
7	
8	¹ Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine,
9	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
10	² Institute of Population Health Sciences, National Health Research Institutes, Miaoli County,
11	Taiwan
12	³ Divisions of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
13	⁴ Department of Medicine, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
14	⁵ National Institute of Infectious Diseases and Vaccinology, National Health Research
15	Institutes, Miaoli County, Taiwan
16	
17	Correspondence to:
18	Shu-Chen Kuo. MD, PhD
19	National Institute of Infectious Diseases and Vaccinology, National Health Research

2		
3		
4 5	20	Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
6		
7	21	Dhome: + 896.27.206.166
8	21	Phone: +886 37 206 166
9		
10	22	Fax: +886 37 586457
11	22	1 u. + 000 57 500+57
12		
13	23	E-mail: ludwigvantw@gmail.com
14		
15		
16 17	24	
17 18		
19	25	
20	25	
21		
22	26	
23	20	
24		
25	27	Running title: Impact of Intensive Care Unit-Acquired Bloodstream Infections in Taiwan
26		
27 28		
28 29	28	
30		
31	29	
32	29	
33		Word count:
34	30	
35		
36		
37 38	31	Word count:
30 39		
40	32	Abstract: 270 words
41	52	Abstract: 270 words
42		
43	33	Text: 2742 words
44		
45		
46		
47 48		
40 49		
50		
51		
52		
53		
54		
55		
56 57		
57 58		
58 59		
60		

1	
2	
3	
4	
5	
6	
7	
, 8	
o 9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55 54	
54 55	
56	
57	
58	
59	
60	

35	ABSTRACT	
36	Objectives: To estimate the clinical and economic impact of intensive care unit-acquired	
37	bloodstream infections in Taiwan.	
38	Design: Retrospective cohort study.	
39	Setting: Nationwide Taiwanese population in the National Health Insurance Research	
40	Database and the Taiwan Nosocomial Infections Surveillance (2007-2015) dataset.	
41	Participants: The first episodes of intensive care unit-acquired bloodstream infections in	
42	patients \geq 20 years of age in the datasets. Propensity score-matching (1:2) of demographic	
43	data, comorbidities, and disease severity was performed to select a comparison cohort from a	
44	pool of intensive care unit patients without intensive care unit-acquired infections from the	
45	same datasets.	
46	Primary and secondary outcome measures: The 14-day mortality rate, length of	
47	hospitalization, and healthcare cost.	
48	Results: After matching, the in-hospital mortality of 14,234 patients with intensive care	
49	unit-acquired bloodstream infections was 44.23%, compared to 33.48% for 28,468 intensive	
50	care unit patients without bloodstream infections. The 14-day mortality rate was also higher	
51	in the bloodstream infections cohort (4,323, 30.37% vs. 6,766 deaths, 23.77%, respectively; p	
52	< 0.001). Furthermore, the patients with intensive care unit-acquired bloodstream infections	
53	had a prolonged length of hospitalization after their index date (18 days[IQR 7–39] vs. 10	

1 2	
3 4 5	5
2 3 4 5 6 7 8 9 10	5
11	5
12 13 14 15 16 17	5
15 16 17	5
18 19	5
20 21 22 23 24 25 26 27 28 29 30 31	6
24 25 26	6
27 28 29	6
30 31 32	6
32 33 34 35 36	6
36 37 38	
39 40 41	
42 43 44	
45 46	
47 48 49	
50 51 52	
53 54 55	
56 57 58	
59	

54	days [IQR 4–21], respectively; $p < 0.001$) and a higher healthcare cost (16,038 US dollars
55	[IQR 9,667–25,946] vs. 10,372 US dollars [IQR 6,289–16,932], respectively; p < 0.001). The
56	excessive hospital stay and healthcare cost per case were 12.69 days and 7,669 US dollars,
57	respectively. Similar results were observed in subgroup analyses of various World Health
58	Organization's priority pathogens and Candida spp.
59	Conclusions: Intensive care unit-acquired bloodstream infections in critically ill patients
60	were associated with increased mortality, longer hospital stays, and higher healthcare costs.
61	
62	
63	Keywords: bloodstream infection; healthcare costs; hospital stay; intensive care unit;
64	mortality.

66 STRENGTHS AND LIMITATIONS OF THIS STUDY

- 1. A large number of patients obtained from Nationwide Taiwanese population from two
- 68 datasets in Taiwan were included.
- 69 2. Propensity score-matching was performed to select a comparison cohort.
- 3. The 14-day and 28-day mortality rate, length of hospitalization, and healthcare cost were
- 71 analyzed.
 - 72 4. Subgroup analyses of several drug-resistant pathogens were conducted.
 - 73 5. The retrospective design may include some unmeasurable bias.

2	
3	
4	
5	
6 7	
7 8	
9	
10	
11	
12	
13	
14	
16	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
18	
19	
19 20 21 22 23	
22	
23	
24	
25	
26	
22 23 24 25 26 27 28	
29	
29 30	
~ 4	
 31 32 33 34 35 36 37 38 	
33 34	
35	
36	
37	
38 39	
39 40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57 58	
58 59	
60	

74 BACKGROUND

75	Critically ill patients in intensive care units (ICUs) are vulnerable to various infections,
76	and these can lead to increased morbidity, mortality, and healthcare costs. Bloodstream
77	infections (BSIs) are one of the most common infections acquired by ICU patients. It was
78	reported that BSIs affected approximately 7 % of patients admitted to ICUs.[1] Previous
79	studies have shown that ICU-acquired BSIs resulted in attributable mortality of 24.8%,[2]
80	extended hospital stays by 13.5 days[3] and the cost of treatment was approximately 12,321
81	US dollars per case. Moreover, despite advances in medical care and the development of new
82	therapies, the outcome of BSIs in critically ill patients is adversely affected by a greater
83	number of vulnerable hosts and the emergence of drug-resistant pathogens.
84	Discrepancies regarding the impact of pathogens on mortality have been reported.
85	
	However, worse clinical outcome and higher economic burden have been reported for
86	However, worse clinical outcome and higher economic burden have been reported for patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving
86	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving
86 87	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving third-generation cephalosporin-resistant <i>Enterobacteriaceae</i> have been shown to significantly
86 87 88	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving third-generation cephalosporin-resistant <i>Enterobacteriaceae</i> have been shown to significantly increase mortality risk compared to BSIs involving susceptible strains.[4] Moreover,
86 87 88 89	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving third-generation cephalosporin-resistant <i>Enterobacteriaceae</i> have been shown to significantly increase mortality risk compared to BSIs involving susceptible strains.[4] Moreover, candidemia has been associated with a 4-fold increase in mortality, while <i>Staphylococcus</i>
86 87 88 89 90	patients with BSI caused by resistant pathogens.[1, 4] For example, BSIs involving third-generation cephalosporin-resistant <i>Enterobacteriaceae</i> have been shown to significantly increase mortality risk compared to BSIs involving susceptible strains.[4] Moreover, candidemia has been associated with a 4-fold increase in mortality, while <i>Staphylococcus</i> <i>aureus</i> BSIs doubled the risk of mortality.[1] Meanwhile, the clinical impact of <i>Enterococci</i>

In the

1
-
2
1
4 r
5
6
7
8
9
10
11
12
13
17
14
15
16
17
18
19
20
21
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22 24 25 6 27 28 9 30 31 22 33 32 33 34 35
22
23
24
25
26
27
28
29
30
31 32 33 34 35 36 37
32
22 22
22
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

93	Due to the limited number of cases and the complex clinical characteristics of critically ill
94	patients, previous studies have reported either clinical or economic outcomes, have focused
95	on several species of pathogens, or have assessed only a limited number of pathogens. In the
96	present study, a health insurance database and a nationwide surveillance system for
97	healthcare-associated infections were used to estimate the clinical and economic
98	consequences of ICU-acquired BSIs caused by different pathogens in a large number of
99	patients in Taiwan. In addition, the impact of individual pathogens, especially
100	antibiotic-resistant bacteria on the World Health Organization (WHO) priority list,[8] were
101	investigated.
	investigated.

1 2		
3 4 5	102	METHODS
6 7 8	103	Data sources
9 10 11	104	Two datasets, the National Health Insurance Research Database (NHIRD) and the
12 13 14	105	Taiwan Nosocomial Infection Surveillance (TNIS) dataset, were used in this study.
15 16 17	106	Demographic data, diagnoses (according to the International Classification of Diseases, 9th
18 19 20	107	Revision, Clinical Modification [ICD-9-CM]), procedures, and medications for patients
21 22 23	108	enrolled in Taiwan's national insurance system have been collected in the NHIRD since
24 25 26	109	1995.[9] In 2007, the TNIS was launched by the Taiwan Centers for Disease Control to
27 28 29	110	evaluate the epidemiologic trend of healthcare-associated infections in the ICUs in Taiwan.
30 31 32	111	The latter is a web-based surveillance system which collects clinical information of patients
33 34 35	112	with healthcare-associated infections from the ICUs of participating hospitals. This
36 37 38	113	information includes demographic data, infection foci, causative pathogens, and antimicrobial
39 40 41	114	susceptibility results. Participation in TNIS is essential for the hospital accreditation in
42 43 44	115	Taiwan.
45 46 47	116	Both datasets were deposited in a database maintained by the Health and Welfare Data
48 49 50	117	Science Center, Ministry of Health and Welfare. Individual personal identification numbers
51 52 53	118	were encrypted so that data from the NHIRD and TNIS datasets could be interlinked. The
54 55 56	119	institutional review board of the National Health Research Institutes approved this study
57 58 59	120	(EC1051207-R4).
60		8

2		
3 4 5	121	
6 7 8	122	Study population, data collection, and propensity-score matching
9 10 11	123	This retrospective cohort study enrolled adult patients who underwent ICU
12 13 14	124	hospitalization between 2007 and 2015 in Taiwan. From the entries in the TNIS database, we
15 16 17	125	identified all of the patients whose first episode of an ICU-acquired BSI occurred during the
18 19 20	126	study period. Coagulase-negative Staphylococci are often identified in the ICUs but a certain
21 22 23	127	proportion is associated with contamination; therefore, these cases were not included in our
24 25 26	128	analysis. We included species that constituted > 1 % of known bloodstream pathogens
27 28 29	129	(Supplementary Table 1), which constituted 79.4% of all ICU-acquired BSI episodes. The
30 31 32	130	index date for each case was defined as the date on which a positive blood culture result was
33 34 35	131	obtained. The encrypted personal identification numbers of included patients were interlinked
36 37 38	132	with NHIRD to retrieve their demographic data, comorbidities, procedures, and medications.
39 40 41	133	For comparison, we identified ICU patients who did not have ICU-acquired infections
42 43 44	134	registered in TNIS database. In addition, patients with a discharge diagnosis of sepsis
45 46 47	135	(ICD-9-CM: 038.X, 995.91), severe sepsis (ICD-9-CM: 995.92), or septic shock (ICD-9-CM:
48 49 50 51 52 53	136	785.52) in the comparison cohort, but not in the BSI group, were also excluded. The pool of
	137	comparison patients was created for selection of those with the same admission date as any
54 55 56	138	patient with ICU-acquired BSI. Because the comparison patients did not have index date of
57 58 59 60	139	acquisition of infection, they were assigned "pseudo-index dates" during hospitalization,

Page 11 of 52

	140	which was selected from the index date of patients with the same day of hospitalization in the
	141	BSI group. Baseline variables and those associated with ICU-acquired BSIs were first
0 1	142	selected. Propensity scores were then calculated for the likelihood of ICU-acquired BSIs by
2 3 4 5	143	multivariate logistic regression analysis. Variables were removed from the multivariable
6 7	144	model in a stepwise fashion. We used 1:2 greedy matching [10] within a caliper width equal
8 9 0	145	to 0.1 of the standard deviation of the logit of the propensity score. (Supplementary Table 2).
1 2 3	146	Patient data from January 2005 were used to ensure that individuals were followed for at least
4 5 6 7	147	two years prior to their selection for this study in order to confirm comorbidities [11] and for
7 8 9	148	matching purposes. The determination of comorbidities and organ dysfunction by ICD-9-CM
0 1	149	codes were in accordance with the previous studies [11-13]. The variables with missing
2 3 4 5	150	values included monthly income and urbanization level. Missing values were treated as a
6 7 8	151	separate category by itself. The low rate of missing data (Table 1) may not have a great
9 0 1	152	impact on our study.
2 3 4	153	
2 3 4 5 6 7	154	Patient and Public Involvement
8 9 0	155	Patients and the public were not directly involved in the planning of this study.
1 2 3	156	
4 5 6 7	157	Outcome measurements
7 8 9	158	Clinical outcomes included in-hospital, 14-day, and 28-day mortality rate after the index
0		10

date/pseudo-index date. Economic outcomes included hospitalization length after the index date/pseudo-index date and cost of overall hospitalization. Hospitalization length was defined as the duration of hospital stay after the index date/pseudo-index date. The overall cost of hospitalization was calculated. The costs were standardized and presented in values from 2017. Subgroup analysis To evaluate the clinical and economic impact of ICU-acquired BSIs caused by different pathogens, we performed analyses on patients infected with single pathogen. For example, the impact of WHO priority bacteria and *Candida* were examined separately, as was the impact of drug resistance in these bacteria. We included patients whose first episode of an ICU-acquired BSI were caused by bacteria on the WHO priority list or Candida. Therefore, the clinical and economic outcomes of patients with Acinetobacter baumannii, Pseudomonas aeruginosa, common Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae, Enterobacter species, and Serratia marcescens), S. aureus, Enterococcus species, Candida albicans, and non-albicans Candida (Candida tropicalis, Candida parapsilosis, and Candida glabrata) were determined. The definition of multiple drug resistance (MDR) of WHO priority bacteria according to the European Centre for Disease Prevention and Control (ECDC) was modified [14]

BMJ Open

2 3		
4 5 6	178	(Supplementary Table 3). In this study, non-susceptibility to at least one agent in at least
7 8 9	179	three antimicrobial categories in Gram-negative bacteria was defined as MDR. Oxacillin- and
10 11 12	180	vancomycin-non-susceptible S. aureus and vancomycin-non-susceptible Enterococcus
13 14 15	181	species were considered MDR Gram-positive bacteria.
16 17 18	182	
19 20 21	183	Sensitivity analysis
22 23 24	184	To avoid competing risk between mortality and length of hospitalization/healthcare cost,
25 26 27	185	we included patients who survived to discharge. For these patients, length of hospitalization
28 29 30	186	after the index date/pseudo-index date and hospitalization costs were determined.
31 32 33	187	
34 35 36	188	Statistical analysis
37 38 39	189	Descriptive statistics were used to examine baseline demographic and clinical
40 41 42	190	characteristics of the ICU patients included in this study. To account for potential
43 44 45	191	confounding biases among the study cohort, propensity score matching analysis was
46 47 48	192	performed. Propensity scores were calculated with multivariate logistic regression.
49 50 51	193	Standardized differences between the two groups with differences less than 0.1 were
52 53 54	194	confirmed in order to assess baseline characteristics. The Mann-Whitney U test was used to
54 55 56 57	195	evaluate economic outcomes and the Chi-squared test was used to evaluate mortality rate.
57 58 59 60	196	Conditional logistic regression was used to calculate odds ratios (ORs) to evaluate risk of

mortality in patients with BSI and the comparison cohort, while a generalized linear model was used to calculate β values to estimate excess costs and length of hospitalization. Variables with a *p*-value < 0.05 were eligible for inclusion in the model. *P*-values less than 0.05 were considered statistically significant. All analyses were performed by using SAS statistical software (version 9.4, SAS Institute Inc., Cary, NC, USA).

RESULTS

1 2	
3 4 5	203
6 7 8	204
9 10 11	205
12 13 14 15	206
16 17 18	207
19 20	208
21 22 23 24	209
24 25 26 27	210
28 29 30	211
31 32 33	212
34 35 36	213
37 38 39	214
40 41 42	215
43 44 45	216
46 47 48	217
49 50 51	218
52 53 54	219
55 56 57	220
57 58 59 60	221

205	
204	Among 38,659 episodes of ICU-acquired BSIs registered in TNIS during the 9-year
205	study period, 28,495 patients were identified to have their first episode of a BSI. The NHIRD
206	included 1,638,796 patients who underwent ICU hospitalization (Figure 1). After excluding
207	patients whose data could not be interlinked with NHIRD or who did not have target
208	pathogens, 14,234 patients with ICU-acquired BSIs were successfully matched to 28,468
209	ICU patients without ICU-acquired infections (1:2). The demographic and clinical
210	characteristics of the patients with BSI and comparison cohort are presented in Table 1. The
211	groups had standardized differences that were < 10% for all of the continuous and
212	dichotomous categorical variables which were examined.
213	Table 2 lists the clinical and economic outcomes of the ICU patients with BSIs and the
214	comparison cohort. The ICU patients with BSIs suffered a higher in-hospital mortality rate
215	(44.23% vs. 33.48%, respectively; $p < 0.001$), a higher 14-day mortality rate (30.37% vs.
216	23.77%, respectively; $p < 0.001$), and a higher 28-day mortality (39.48% vs. 32.28%,
217	respectively; $p < 0.001$). Logistic regression analyses showed that the OR of in-hospital
218	mortality for the ICU patients with BSIs was 1.67 (95% confidence interval [CI], 1.59-1.75;
219	p < 0.001), and it was 1.42 (95% CI, 1.35–1.49; $p < 0.001$) for 14-day mortality and 1.41
220	(95% CI, 1.34–1.47; $p < 0.001$) for 28-day mortality. These significant associations were also
221	observed in the subgroup analyses performed (Table 3).

-		
; ; ;	222	The ICU patients with BSIs had a longer length of hospitalization after the index date
5 7 8	223	(18 vs. 10 days, respectively; $p < 0.001$). Moreover, on average, their hospital stay was
) 0 1	224	extended by 12.69 days (95% CI, 11.92–13.47; $p < 0.001$). The subgroup analyses performed
2 3 4	225	(Table 4) showed that all of the causative pathogens shared a similar trend. Compared with
5 6 7	226	the patients without ICU-acquired infections, the duration of hospitalization after the index
8 9 20	227	date for those with BSIs caused by MDR bacteria, WHO priority bacteria, or Candida spp.
21 22 23	228	was longer. In addition, hospitalization costs of the ICU patients with BSIs were higher
24 25 26	229	(16,038 vs. 10,372, respectively; $p < 0.001$) (Table 2), with the excess cost being 7,669 US
27 28 29	230	dollars per patient (95% CI, 7,380–7,958; $p < 0.001$). Table 4 presents the higher costs
0 1 2	231	associated with each of the various causative pathogen.
3 4 5	232	For the ICU patients with BSIs who survived to discharge, their length of hospitalization
6 7 8	233	and healthcare costs were increased by 19.59 days and 8,871 US dollars, respectively,
9 0 1	234	(Supplementary Table 4) compared to the survivors without ICU-acquired infections.
2		
3 4		
4 5		
6		
7		
8		
9 0		
51		
52		
3		
i4		
5 6		
57		
8		
9		
60		

DISCUSSION

1 2	
3 4 5	235
6 7 8 9	236
9 10 11 12	237
13 14	238
15 16 17 18	239
19 20 21	240
22 23	241
24 25 26 27	242
27 28 29 30	243
30 31 32 33	244
34 35 36	245
37 38 39	246
40 41 42	247
42 43 44 45	248
46 47	249
48 49 50 51	250
52 53	251
54 55 56 57	252
57 58 59 60	253

236	This study demonstrated that ICU patients with BSIs in Taiwan had significantly worse
237	clinical outcomes and higher economic burden than ICU patients without ICU-acquired
238	infections from the same population. For example, the patients with BSI exhibited 1.67-,
239	1.42-, and 1.41-fold increases in in-hospital, 14-day, and 28-day mortality rates, respectively.
240	Per case, the patients with BSI had an excess hospital stay of 12.69 days and cost of 7,669 US
241	dollars. Furthermore, a similar clinical and economic impact was observed among all of the
242	causative pathogens examined.
243	BSIs have been associated with higher mortality and morbidity, contingent on the
244	causative pathogen involved. [1, 3, 15-18] For example, worse clinical outcomes have been
245	reported for patients with BSIs caused by A. baumannii, [18, 19] P. aeruginosa, [17, 18] S.
246	aureus, [1, 4, 17, 18] Enterobacteriaceae, [4, 18] and Candida spp. [1, 18, 20] In contrast,
247	controversial results have been obtained regarding the mortality of patients affected by
248	enterococcal bacteremia. While some authors have argued that Enterococcus spp. represents
249	a low virulence pathogen [1] and is not associated with increased mortality unless in the
250	presence of endocarditis,[21] other authors have reported contrasting results.[5, 6, 18, 20] In
251	the present study, significantly higher mortality was observed for patients with enterococcal
252	bacteremia, and this may be due to vulnerability of the hosts examined, increased resistance,
253	and a larger study population.

Page 18 of 52

BMJ Open

254	The high healthcare burden of BSIs reported in previous literature [3, 15, 22] and in the
255	present study underscores the importance of preventing ICU-acquired BSIs by infection
256	control measurements. Furthermore, the results of these studies help to assess cost
257	effectiveness of infection control measurements in the process of policy-making. For example,
258	patients with ICU-acquired BSIs during the 9-year period cost Taiwan an estimated 297
259	million US dollars and 492,129 days (supplementary Table 5). A policy that reduced the rate
260	of infection by 10% [23] would translate into a savings of 30 million US dollars and 49,213
261	patient-days saved.
262	Drug resistance has been found to be correlated with higher medical costs due to the
263	need for second-line antimicrobials for treatment, as well as additional diagnostic and
264	treatment tools. [24, 25] In the present study, the costs for MDR bacteria included extra 84
265	million US dollars and 140,043 days over nine years (Supplementary Table 5). However, cost
266	differences between susceptible and resistant strains were not determined in the present study.
267	Drug-susceptible strains were not included as controls due to differences in testing methods,
268	drugs, and breakpoints for these strains which could lead to mis-assignments of drug-resistant
269	pathogens as susceptible pathogens.
270	Candidemia poses a great threat to ICU patients due to its excessive medical burdens,
271	[18, 20, 22] and C. albicans is the most common pathogen. However, in some countries, the
272	prevalence of non-albicans Candida exceeds that of C. albicans.[26] For those infected with

3 4	270		
5	273	non-albicans Candida, higher rates of mortality, [26, 27] longer hospitalization stays, and	
7 8 9	274	increased hospital costs have been described;[27-29] although other studies have reported	
10 11 12	275	contradicting findings.[30, 31] These discrepancies may be due to host factors and	
13 14 15	276	differences in the virulence and resistance patterns [26] of non-albicans Candida. In the	
16 17 18	277	present study, the crude 14-day and in-hospital mortality rates of 951 patients infected with 0	ζ.
19 20 21	278	albicans were 37.96% and 55.94%, respectively. In comparison, among 703 patients infected	l
22 23 24	279	with non- <i>albicans Candida</i> , these rates were 34.99% and 53.06%, respectively. While the	
25 26 27	280	hospital costs and length of stay were higher in the non-albicans Candida group compared to	1
28 29 30	281	the <i>C. albicans</i> group, the 95% CI overlapped for the two groups (Table 4). These data	
31 32 33	282	suggested that the clinical and economic outcomes of these two groups did not greatly differ.	
34 35 36	283	However, the present study was not designed to specifically compare the outcomes of those	
37 38 39	284	infected with C. albicans versus non-albicans Candida. Therefore, additional studies with a	
40 41 42	285	larger number of patients, adjustment for host factors, and consideration of antifungal drugs,	
43 44 45	286	incubation time, and treatment duration are needed to clarify the impact of each Candida	
46 47 48	287	species.	
49 50 51	288	The large number of patients examined in this study and the use of propensity score	
52 53 54	289	matching represent two major strengths of the present study. These aspects also allowed the	
55 56	290	impact of each pathogen group to be discerned. However, there were also several limitations	
57 58 59 60	291	associated with the present study which merit discussion. First, the exact cost after the index	
		1	8

Page 20 of 52

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
40 41 42 43 44	

292	date could not be retrieved from the NHIRD. Therefore, the high total cost shown in this
293	study may be due to costs incurred prior to the onset of a BSI. It is possible that matching of
294	the duration before the index date and comorbidity may have reduced overestimations of
295	healthcare costs due to time-dependent bias.[32] Second, confounding factors associated with
296	clinical impact, such as APACHE II or Pitt Bacteremia scores, were not included in this study.
297	Instead, other clinical risk factors (Charlson Comorbidity Index score, number of organ
298	failures, use of inotropic agents, and receipt of invasive procedures) were incorporated in our
299	model. Third, our study is inherently limited by its retrospective design, which includes a
300	dependence on the accuracy of the ICD codes used and unmeasurable bias.[33, 34] Fourth,
301	the prolonged hospitalization may have been due to a change in patient management in
302	response to a BSI, rather than increased morbidity due to a BSI.[17] Fifth, the number of
303	participating hospitals varied during study period and therefore was considered in propensity
304	score matching. Finally, the collection of personal identification numbers is not mandatory in
305	TNIS, which resulted in failure of interlink. However, their impact on the outcome was
306	unknown. In addition, the administrative data are inherently subjected to coding errors and
307	changes in coding practices.[34]
308	
309	CONCLUSIONS
310	ICU-acquired BSIs have a negative clinical and economic impact on affected patients

1 2		
2		
4 5	311	regardless of the causative pathogens involved. Awareness of these negative affects is
6		
7 8	312	important for promoting infection control measurements and for policy-making.
9		
10 11	313	
12		
13 14		
15		
16 17		
18		
19 20		
20 21		
22		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		

1 2		
3 4 5	314	LIST OF ABBREVIATIONS
6 7 8	315	BSI = bloodstream infection;
9 10 11	316	CI = confidence interval;
12 13 14	317	ECDC = European Centre for Disease Prevention and Control;
15 16 17	318	ICD-9-CM = international classification of diseases, 9th revision, clinical modification;
18 19 20	319	ICU = intensive care unit;
21 22 23	320	IQR = interquartile range;
24 25 26	321	MDR = multiple drug resistance;
27 28 29	322	NHIRD = National Health Insurance Research Database;
30 31 32	323	OR = odds ratio;
33 34 35	324	TNIS = Taiwan Nosocomial Infection Surveillance;
36 37 38	325	WHO = World Health Organization;
39 40 41	326	
42 43 44		
45 46 47		
48 49		
50 51		
52 53		
54		
55 56		
57 58		
59 60		

1 2		
3 4 5	327	DECLARATIONS
6 7 8	328	Ethics approval and consent to participate
9 10 11	329	The institutional review board of the National Health Research Institutes approved this study
12 13 14	330	(EC1051207-R4).
15 16 17	331	
18 19 20	332	Consent for publication
21 22 23	333	Not applicable.
24 25 26	334	
27 28 29 30 31 32	335	Availability of data and materials
	336	The data that support the findings of this study are available from Ministry of Health and
33 34 35	337	Welfare, Taiwan but restrictions apply to the availability of these data, which were used
36 37 38 39 40 41	338	under license for the current study, and so are not publicly available. Data are however
	339	available from the authors upon reasonable request and with permission of Ministry of Health
42 43 44	340	and Welfare, Taiwan.
45 46 47 48 49 50	341	
	342	Competing interests
51 52 53	343	The authors declare that they have no competing interests.
54 55 56	344	
57 58 59 60	345	Funding

1 2	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22	(1)
6 7 8	(1)
9 10 11	(1)
12 13 14	(1)
15 16 17	(1)
18 19 20	-
21	(1)
22 23 24 25 26	(1)
26 27 28 29	(1)
30 31 32 33	(1)
34	-
35 36 37 38	(1)
39 40 41	(1)
42 43 44	-
45 46 47	(1)
48 49 50	(1)
50 51 52 53	(1)
53 54 55 56	(1)
56 57 58 59	(1)
59 60	

This work was supported by a grant from the National Health Research Institutes [Grant no.
108-0324-01-19-06] and Tri-Service General Hospital [TSGH-C107-099 and
TSGH-E-109237]. The sponsors had no role in the study design; collection, analysis, or
interpretation of data; writing of the report; or the decision to submit the article for
publication.
Author contributions
Conceptualization: CAH, SCK
Data curation: YTC, CAH, SCK
Formal analysis: SMS, YTC
Funding acquisition: YCW, SCK
Investigation: YCW, SCK
Methodology: YTC, CAH, SCK
Project administration: YCW, CAH, SCK
Resources: YTC, CAH, SCK
Software: SMS, YTC
Supervision: SMS, YTC
Validation: CAH, SCK

⁸ 364 Visualization: YCW, SMS

1 2 3		
3 4 5 6	365	Writing—original draft: YCW, SMS, SCK
7 8 9 10 11	366	Writing—review & editing: YCW, CAH, SCK
	367	All authors approved the final version of the manuscript.
12 13 14	368	
15 16 17	369	Acknowledgements
18 19 20	370	Not applicable.
21 22 23	371	Not applicable.
24 25 26		
27 28 29		
30 31 32		
33 34 35		
36 37 38		
39 40 41 42		
42 43 44 45		
45 46 47 48		
48 49 50 51		
52 53		
54 55 56		
57 58 59		
60		

REFERENCES

Prowle JR, Echeverri JE, Ligabo EV, et al. Acquired bloodstream infection in the 1. intensive care unit: incidence and attributable mortality. Crit Care 2011; 15: R100. Garrouste-Orgeas M, Timsit JF, Tafflet M, et al. Excess risk of death from intensive 2. care unit-acquired nosocomial bloodstream infections: a re-appraisal. Clin Infect Dis 2006; 42: 1118-26. 3. Laupland KB, Lee H, Gregson DB, Manns BJ. Cost of intensive care unit-acquired bloodstream infections. J Hosp Infect 2006; 63: 124-32. Stewardson AJ, Allignol A, Beyersmann J, et al. The health and economic burden of 4. bloodstream infections caused by antimicrobial-susceptible and non-susceptible Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011: a multicentre retrospective cohort study. Euro Surveill 2016; 21: pii=30319. 5. Landry SL, Kaiser DL, Wenzel RP. Hospital stay and mortality attributed to nosocomial enterococcal bacteremia: a controlled study. Am J Infect Control 1989; 17: 323-9. 6. Ong DS, Bonten MJ, Safdari K, et al. Epidemiology, management, and risk-adjusted mortality of icu-acquired enterococcal bacteremia. Clin Infect Dis 2015; 61: 1413-20. 7. Kramer TS, Remschmidt C, Werner S, et al. The importance of adjusting for enterococcus species when assessing the burden of vancomycin resistance: a cohort study including over 1000 cases of enterococcal bloodstream infections. Antimicrob Resist Infect Control 2018; 7: 133. 8. Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18: 318-27. 9. Wu TY, Majeed A, Kuo KN. An overview of the healthcare system in Taiwan. London J Prim Care (Abingdon) 2010; 3: 115-9. 10. Tu JV, Bowen J, Chiu M, et al. Effectiveness and safety of drug-eluting stents in Ontario. N Engl J Med 2007; 357: 1393-402. 11. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45: 613-9. 12. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005; 43: 1130-9. 13. Shen HN, Lu CL, Li CY. Effect of diabetes on severity and hospital mortality in patients with acute pancreatitis: a national population-based study. Diabetes Care 2012; 35: 1061-6. 14. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively

1			
2 3	410		drug-resistant and pandrug-resistant bacteria: an international expert proposal for
4 5	411		interim standard definitions for acquired resistance. <i>Clin Microbiol Infect</i> 2012; 18 :
6	412		268-81.
7 8	413	15.	Pittet D, Tarara D, Wenzel RP. Nosocomial Bloodstream Infection in Critically III
9	414		Patients: Excess Length of Stay, Extra Costs, and Attributable Mortality. JAMA 1994;
10 11	415		271 : 1598-601.
12 13	416	16.	Laupland KB, Zygun DA, Davies HD, et al. Population-based assessment of intensive
13 14	417		care unit-acquired bloodstream infections in adults: Incidence, risk factors, and
15 16	418		associated mortality rate. Crit Care Med 2002; 30 : 2462-7.
16 17	419	17.	Barnett AG, Page K, Campbell M, et al. The increased risks of death and extra lengths
18 19	420		of hospital and ICU stay from hospital-acquired bloodstream infections: a
20 21 22	421		case-control study. BMJ Open 2013; 3: e003587.
	422	18.	Marra AR, Camargo LF, Pignatari AC, et al. Nosocomial bloodstream infections in
23	423		Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide
24 25	424		surveillance study. J Clin Microbiol 2011; 49: 1866-71.
26	425	19.	Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in
27 28	426		patients with Acinetobacter baumannii infection: systematic review and
29	427		meta-analysis. Clin Microbiol Infect 2014; 20: 416-23.
30 31	428	20.	Schwab F, Geffers C, Behnke M, et al. ICU mortality following ICU-acquired
32	429		primary bloodstream infections according to the type of pathogen: A prospective
33 34 35	430		cohort study in 937 Germany ICUs (2006-2015). PloS One 2018; 13: e0194210.
	431	21.	Caballero-Granado FJ, Becerril B, Cuberos L, et al. Attributable mortality rate and
36 37	432		duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis
38	433		2001; 32 : 587-94.
39 40	434	22.	Blot SI, Depuydt P, Annemans L, et al. Clinical and economic outcomes in critically
41	435		ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis
42 43	436		2005; 41 : 1591-8.
44	437	23.	Tseng SH, Lee CM, Lin TY, et al. Combating antimicrobial resistance: Antimicrobial
45 46	438		stewardship program in Taiwan. J Microbiol Immunol Infect 2012; 45: 79-89.
47	439	24.	Howard D, Cordell R, McGowan JE, Jr., et al. Measuring the economic costs of
48 49	440		antimicrobial resistance in hospital settings: summary of the Centers for Disease
50 51	441		Control and Prevention-Emory Workshop. Clin Infect Dis 2001; 33: 1573-8.
52	442	25.	Mauldin PD, Salgado CD, Hansen IS, et al. Attributable hospital cost and length of
53 54	443		stay associated with health care-associated infections caused by antibiotic-resistant
55	444		gram-negative bacteria. Antimicrob Agents Chemother 2010; 54: 109-15.
56 57	445	26.	Horn DL, Neofytos D, Anaissie EJ, et al. Epidemiology and Outcomes of Candidemia
58	446		in 2019 Patients: Data from the Prospective Antifungal Therapy Alliance Registry.
59 60	447		<i>Clin Infect Dis</i> 2009; 48 : 1695-703.
50			26

2			
3 4	448	27.	Dimopoulos G, Ntziora F, Rachiotis G, et al. Candida albicans versus non-albicans
5	449		intensive care unit-acquired bloodstream infections: differences in risk factors and
6 7	450		outcome. Anesth Analg 2008; 106: 523-9.
8	451	28.	Moran C, Grussemeyer CA, Spalding JR, et al. Comparison of costs, length of stay,
9 10	452		and mortality associated with Candida glabrata and Candida albicans bloodstream
11	453		infections. Am J Infect Control 2010; 38: 78-80.
12 13	454	29.	Gong X, Luan T, Wu X, et al. Invasive candidiasis in intensive care units in China:
13 14	455		Risk factors and prognoses of Candida albicans and non-albicans Candida infections.
15 16	456		Am J Infect Control 2016; 44: e59-63.
16	457	30.	Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidemia
18 10	458		in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance(R))
19 20	459		registry, 2004-2008. Diagn Microbiol Infect Dis 2012; 74: 323-31.
21 22	460	31.	Barchiesi F, Orsetti E, Gesuita R, et al. Epidemiology, clinical characteristics, and
22 23	461		outcome of candidemia in a tertiary referral center in Italy from 2010 to 2014.
24	462		Infection 2016; 44: 205-13.
25 26	463	32.	Nelson RE, Samore MH, Jones M, et al. Reducing Time-dependent Bias in Estimates
27	464		of the Attributable Cost of Health Care-associated Methicillin-resistant
28 29	465		Staphylococcus aureus Infections: A Comparison of Three Estimation Strategies. Med
30 31	466		<i>Care</i> 2015; 53 : 827-34.
31	467	33.	Kuo SC, Shih SM, Hsieh LY, et al. Antibiotic restriction policy paradoxically
33 34	468		increased private drug consumptions outside Taiwan's National Health Insurance. J
34 35	469		Antimicrob Chemother 2017; 72: 1544-5.
36	470	34.	Sarrazin MSV, Rosenthal GE. Finding pure and simple truths with administrative
37 38	471		data. JAMA 2012; 307 : 1433-5.
39			
40 41	472		
42			
43 44			
45			
46 47			
48			
49 50			
51			
52 53			
54			
55 56			
57			
58 59			
60			

BMJ Open

473 Table 1. Characteristics of the intensive care unit patients with bloodstream infections

474 and the matched comparison cohort.

Characteristics	Patients with BSI,	Comparison	Standardized
	n (%)	cohort, n (%)	difference
No. of patients	14,234	28,468	
Year of Index Date			
2007	1,244 (8.74%)	3,474 (12.2%)	0.113
2008	1,608 (11.3%)	3,101 (10.89%)	0.013
2009	1,714 (12.04%)	2,923 (10.27%)	0.056
2010	1,745 (12.26%)	3,119 (10.96%)	0.041
2011	1,947 (13.68%)	3,107 (10.91%)	0.084
2012	1,727 (12.13%)	3,119 (10.96%)	0.037
2013	1,496 (10.51%)	2,985 (10.49%)	0.001
2014	1,371 (9.63%)	3,226 (11.33%)	0.056
2015	1,382 (9.71%)	3,414 (11.99%)	0.073
Season of In-date			
Mar-May	3,564 (25.04%)	7,207 (25.32%)	0.006
Jun-Aug	3,577 (25.13%)	7,224 (25.38%)	0.006
Sep-Nov	3,519 (24.72%)	6,964 (24.46%)	0.006
Dec-Feb	3,574 (25.11%)	7,073 (24.85%)	0.006
Males	8,971 (63.03%)	17,861 (62.74%)	0.006
Age, years, mean (SD)	65.12 (21.62)	65.08 (20.60)	0.002
Length of stay before index date/			
pseudo-index date, days, mean	15.69 (12.14)	15.29 (11.96)	0.033
(SD)			

Monthly income, USD			
Dependent	2,416 (16.97%)	4,813 (16.91%)	
< 657.33	4,740 (33.3%)	9,575 (33.63%)	
657.33-1504.60	6,324 (44.43%)	12,563 (44.13%)	
> 1504.60	740 (5.2%)	1,484 (5.21%)	
Unknown	14 (0.1%)	33 (0.12%)	
Urbanization level			
1 (urban)	3,639 (25.57%)	7,293 (25.62%)	(
2	3,968 (27.88%)	7,920 (27.82%)	
3	2,227 (15.65%)	4,432 (15.57%)	
4 (rural)	4,389 (30.83%)	8,802 (30.92%)	
Unknown	11 (0.08%)	21 (0.07%)	
Hospital level			
Medical center	7,168 (50.36%)	14,393 (50.56%)	
Regional hospital	6,125 (43.03%)	12,242 (43%)	
Local hospital	940 (6.6%)	1,833 (6.44%)	
Charlson Comorbidity Index			
score, mean (SD)	3.085 (2.80)	3.105 (2.95)	
0	2,950 (20.73%)	6,411 (22.52%)	
1	1,930 (13.56%)	3,928 (13.8%)	
2	2,283 (16.04%)	4,251 (14.93%)	
≥3	7,071 (49.68%)	13,878 (48.75%)	
Comorbidities			
Diabetes mellitus	4,840 (34%)	9,642 (33.87%)	
Cerebrovascular disease	3,552 (24.95%)	7,048 (24.76%)	

2				
3 4	Myocardial infarction	525 (3.69%)	1,124 (3.95%)	0.014
5 6 7	Heart failure	2,532 (17.79%)	5,173 (18.17%)	0.01
7 8 9	Peripheral vascular disease	742 (5.21%)	1,509 (5.3%)	0.004
10 11	Liver disease	2,740 (19.25%)	5,393 (18.94%)	0.008
12 13	Chronic kidney disease	3,864 (27.15%)	7,982 (28.04%)	0.02
14 15 16	Dyslipidemia	2,766 (19.43%)	5,683 (19.96%)	0.013
17 18	Cancer	2,753 (19.34%)	5,635 (19.79%)	0.011
19 20	Number of dysfunctional organs,	1.015 (0.000)	1.00 (0.055)	0.005
21 22	mean (SD)	1.015 (0.809)	1.02 (0.855)	0.005
23 24 25	0	4,035 (28.35%)	8,549 (30.03%)	0.037
26 27	1	6,445 (45.28%)	12,293 (43.18%)	0.042
28 29	2	3,273 (22.99%)	6,243 (21.93%)	0.026
30 31	≥ 3	481 (3.38%)	1,383 (4.86%)	0.074
32 33 34	Use of inotropic agents	11,398 (80.08%)	22,858 (80.29%)	0.005
35 36	Use of steroid	9 (0.06%)	20 (0.07%)	0.003
37 38	Use of ventilator	12,493 (87.77%)	25,075 (88.08%)	0.01
39 40	Use of ventilator (>2 dave)	11,668 (81.97%)	22 459 (92 40/)	0.011
41 42	Use of ventilator (>3 days)	11,008 (81.9770)	23,458 (82.4%)	0.011
43 44	Emergent renal replacement	2615 (18.37%)	5,370 (18.86%)	0.013
45 46	therapy	× /		
47 48	Propensity score (SD)	0.128 (0.109)	0.127 (0.109)	0.004
49		infaction, CD - stor	1 1 1	

Abbreviations: BSI = bloodstream infection; SD = standard deviation.

BMJ Open

mjopen-2020-037

		Full cohort		lovemt	Matched cohort		
Outcomes	ICU patients with BSI	Comparison cohort	<i>P</i> -value	ICU patients	Comparison cohort	<i>P</i> -valu	
No. of patients	17,834	713,518		14,234	28,468		
Clinical outcomes				а http://bmjop 6,295 (44.23%) bmj.cd			
In-hospital mortality, n (%)	8,639 (48.44)	65,282 (9.15)	< 0.0001	6,295 (44.23%)	9,532 (33.48%)	< 0.000	
14-day mortality, n (%)	5,693 (31.92)	54,998 (7.71)	< 0.0001	4,323 (30.3 2 %) S	6,766 (23.77%)	< 0.000	
28-day mortality, n (%)	7,469 (42.01)	73,552 (10.31)	< 0.0001	5,619 (39.♣%) ઙૢ	9,189 (32.28%)	<0.000	
Economic outcomes				2024 by guest			
Length of hospitalization after the index	18 (6, 40)	6 (3, 13)	< 0.0001	ية 18 (7, 3 9	10 (4, 21)	< 0.000	
date/pseudo-index date, days, median				18 (7, 39) tected by copyright.			

Page 33 of 52	2			BMJ Open		mjopen-		
1 2						2020-03		
3 4 5	(IQR)					mjopen-2020-037484 on 26 November 16,038		
6 7 8	Cost of hospitalizat	ion (USD) ^a , median	18,457	4,971	< 0.0001	16,038	10,372	< 0.0001
9 10 11	(IQR)		(10,938, 30,778)	(2,770, 8,598)		(9,667, 25,946)	(6,289, 16,932)	
12 13 478 14	Abbreviations: ICU =	intensive care unit; BSI =	= bloodstream infecti	on; IQR= interqu	artile range	Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.		
15 16 479 17	^{<i>a</i>} The costs are standard	dized and presented as th				ded fror		
18 19						n http:		
20 21						://bmj		
22						open		
23 24						ı.bmj		
25						.com		
26 27						on		
28						Apri		
29 30						123,		
31						202		
32 33						4 by		
33 34						gue		
35						st. F		
36						Prot		
37 38						ecte		
39						ğ		
40						Co C		22
41						ругі		32
42 43		_				ght.		
44		For peer	review only - http://bmj	open.bmj.com/site/	about/guidel	ines.xhtml		
45								
46								

4	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
6 7	
8	
9	
10	
12	
13	
14	
15	
17	
18	
19	
20 21	
22	
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40 \end{array}$	
24	
25 26	
27	
28	
29	
31	
32	
33 24	
34 35	
36	
37	
38	
39 40	
41	
42	
43 44	
45	
46	
47 48	
40 49	
50	
51	
52 53	
55 54	
55	
56 57	
57 58	
59	
60	

	Odds ratio (95% Confidence interval)			
Pathogen groups (Number of patients)	In-hospital mortality	14-days mortality	28-days mortality	
MDR Gram-negative bacteria (2,232)	2.12 (1.89, 2.38)	1.77 (1.57, 1.99)	1.79 (1.6, 2)	
MDR Gram-positive bacteria (1,429)	1.84 (1.59, 2.12)	1.52 (1.31, 1.76)	1.5 (1.3, 1.72)	
Acinetobacter baumannii (1,761)	1.67 (1.47, 1.91)	1.45 (1.26, 1.66)	1.45 (1.27, 1.66)	
Pseudomonas aeruginosa (853)	1.69 (1.41, 2.03)	1.73 (1.42, 2.1)	1.47 (1.23, 1.77)	
Enterobacteriaceae ^{b} (3,548)	1.59 (1.45, 1.75)	1.28 (1.16, 1.41)	1.31 (1.19, 1.43)	
Staphylococcus aureus (1,721)	1.63 (1.42, 1.87)	1.24 (1.07, 1.44)	1.31 (1.15, 1.51)	
Enterococcus species ^c (1,277)	1.87 (1.6, 2.18)	1.69 (1.44, 1.99)	1.6 (1.37, 1.85)	
Candida albicans (951)	2.04 (1.71, 2.43)	1.61 (1.35, 1.91)	1.68 (1.42, 1.98)	
Non-albicans Candida ^d (703)	1.97 (1.61, 2.41)	1.58 (1.29, 1.95)	1.61 (1.32, 1.95)	
Abbreviations: MDR = multiple drug	resistance.	1		
^a Only patients with bloodstream infect	tions involving a sing	gle pathogen were inc	luded in this	
analysis.				

484 ^bEnterobacteriaceae included *Escherichia coli*, *Klebsiella pneumoniae*, *Enterobacter cloacae*,

485 *Enterobacter aerogenesa,* and *Serratia marcescens.*

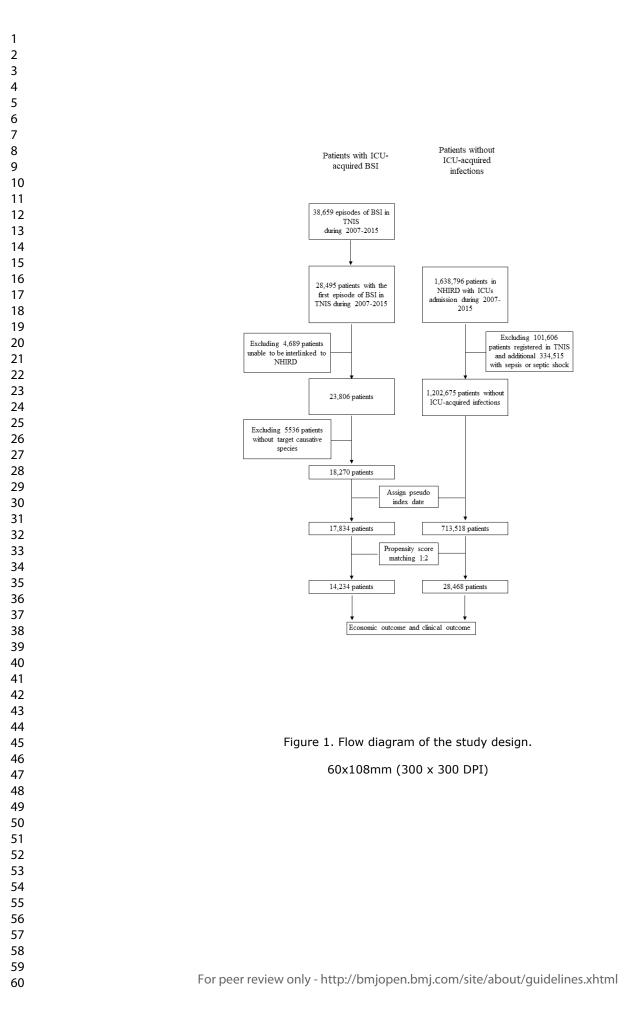
486 *cEnterococcus species* included *Enterococcus faecium, Enterococcus faecalis*, and other

2		
3 4	107	
5	487	Enterococcus species.
6		
7 8	488	^d Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida
9		
10	489	glabrata.
11 12		
13	490	
14	450	
15 16		
17	491	
18		
19 20		
20 21		
22		
23		
24 25		
26		
27		
28 29		
30		
31 22		
32 33		
34		
35		
36 37		
38		
39		
40 41		
42		
43		
44 45		
46		
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
58		
59		
60		

3 4

		mjopen-2020-037484 on 26
able 4. Economic outcomes for th	e various pathogen groups.	.84 on 2
Excess costs or length of hospi		lization (95% Confidence interval)
athogen groups	Length of hospitalization	Cost of bospitalization (USD)
	after the index date (days)	Cost of hospitalization (USD)
IDR Gram-negative bacteria	10.41 (8.55, 12.27)	7,563 (6,725, 8,401)
IDR Gram-positive bacteria	13.82 (11.38, 16.27)	6,342 (5,500, 7,184)
cinetobacter baumannii	9.4 (7.65, 11.14)	6,727 (5,823, 7,632)
Pseudomonas aeruginosa	10.01 (7.83, 12.19)	6,761 (5,609, 7,913)
enterobacteriaceae ^b	15.05 (13.33, 16.76)	7,444 (6,881, 8,007)
taphylococcus aureus	14.72 (12.63, 16.81)	5,21 (4,528, 5,894)
Interococcus species ^c	10.66 (7.85, 13.48)	9 7,2 9 9 (6,305, 8,132)
Candida albicans	11.37 (8.82, 13.92)	8,688 (7,512, 9,864)
		by copyright

Page	e 37 of 52		BMJ Open	mjopen	
1 2 3				-2020-0374	,025, 12,927)
4 5		Non-albicans Candida ^d	15.13 (11.77, 18.49)	11,4 2 6 (10	,025, 12,927)
6 7 8 9	493	Abbreviations: MDR = multiple dr	rug resistance.	n this analysis.	
9 10 11 12	494	^a Only patients with bloodstream in	fections involving a single pathogen were included in	n this analysis.	
13 14 15	495		erichia coli, Klebsiella pneumoniae, Enterobacter clo		enes, and Serratia marcescens.
16 17	496	^c Enterococcus species included En	nterococcus faecium, Enterococcus faecalis, and other	r Enterococcus species.	
18 19 20	497	^d Non-albicans Candida included C	Candida tropicalis, Candida parapsilosis, and Candid	la glabrata.	
21 22 23	498			la glabrata.	
24 25 26	499			ij.com/ o	
27 28 29	500			n April 23	
30 31 32				, 2024 b	
33 34 35				y guest.	
36 37				uest. Protected by copyright.	
38 39				ted by	
40 41				соруг	36
42 43			For poor review only http://bmienon.hmi.com/cite/abc	ig nt out/guidalinas yhtml	
44 45			For peer review only - http://bmjopen.bmj.com/site/abc	out/guidennes.xntml	
46					


		BMJ Open	mjopen-2020-037484 on	Page 38 of 52
1			1-2020	
2 3			-0374	
4	501	FIGURE LEGENDS	.84 01	
5 6				
7 8	502	Figure 1. Flow diagram of the study design.	26 Novem	
9 10	503		ber	
11 12	505		2020. [
13 14	504		Download	
15		с. <u>Б</u>	Ð	
16 17	505	Abbreviations: ICU = intensive care unit; BSI = bloodstream infection; TNIS = Taiwan Nosoc	q	HIRD = National
18 19	506	Health Insurance Research Database.	http:/	
20 21		Health Insurance Research Database.	/bmjo	
22 23	507		pen.b	
24 25	508		nj.cor	
26 27	500		n n n n n n n n n n n n n n n n n n n	
28 29	509		April	
30			23, 20	
31 32	510		124 by	
33 34	511		gues	
35 36			t. Prot	
37 38	512		ected	
39 40			by cc	
41 42			n http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.	37
43 44		For peer review only - http://bmjopen.bmj.com/site/about/guid	delines.xhtml	
45 46				

Page	e 39 of 52	BMJ Open	
1		n-2020-037484	
2 3		03748	
4 5	513	SUPPLEMENTARY FILES:	
6 7 8 9	514	Supplementary Table 1. The number of episodes of intensive care unit-acquired bloodstream infections caused by common pathogens before \vec{B}	
9 10 11 12	515	enrollment and the number of patients infected after matching.	
13 14	516	Supplementary Table 2. Propensity score model results of probability of bloodstream infections among intensive care unit patients and matched	1
15 16 17	517	comparison cohort.	
18 19 20	518	Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and antimicrobial agents used to get fine drug resistance.	
21 22 23 24	519	Supplementary Table 4. The economic outcomes among patients with bloodstream infections and comparison cohort who survived to the	
24 25 26 27	520	discharge.	
28 29 30 31 32 33 34 35	521	Supplementary Table 5. Estimated 9-year excessive hospitalization or healthcare cost in all patients with bloedstream infections.	
36 37		Protecte	
38 39 40 41 42		Protected by copyright.	38
43 44 45 46		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 40 of 52

BMJ Open: first published as 10.1136/bmjopen-2020-037484 on 26 November 2020. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

- Supplementary Table 1. The number of episodes of intensive care unit-acquired
- bloodstream infections caused by common pathogens before enrollment and the number
 - of patients infected after matching.

	No. of BSI episodes	No. of patients after
	before enrollment ^a	matching ^b
Acinetobacter baumannii	5,214	1,761
Staphylococcus aureus	4,382	1,721
Klebsiella pneumoniae	3,965	1,357
Pseudomonas aeruginosa	2,619	853
Candida albicans	2,554	951
Escherichia coli	2,287	843
Enterobacter cloacae	1,982	746
Enterococcus faecium	1,950	647
Stenotrophomonas maltophilia	1,599	454
Enterococcus faecalis	1,427	419
Serratia marcescens	1,239	439
Candida tropicalis	890	329
Burkholderia cepacia	808	251
Other Enterococcus species ^c	688	211
Elizabethkingia meningoseptica	659	173
Chryseobacterium indologenes	553	152
Candida parapsilosis	534	177
Candida glabrata	461	197
Enterobacter aerogenes	419	163

Abbreviations: BSI= bloodstream infection.

^aThe number of episodes of bloodstream infections with known pathogens was 38,659.

Coagulase-negative staphylococci was excluded from analyses due to possibility of

- contamination. One episode may have multiple pathogens. There were 30,697 episodes of
- bloodstream infections caused by the pathogens listed above.
- ^bThe number of patients enrolled case was 14,234 (Table 1) but only patients with
- olled c, used by a sing. 2,390 patients with
 o other than *Enterococcus faec*. bloodstream infections caused by a single pathogen was counted here (Table 3 and 4) and it
- was 11,844. There were 2,390 patients with bloodstream infections caused by multiple
- pathogens.
 - ^cEnterococcus species other than Enterococcus faecium and Enterococcus faecalis.

15 Supplementary Table 2. Propensity score model results of probability of bloodstream

16 infections among intensive care unit patients and matched comparison cohort.

	Odda		95% Cor			
Parameter	Estimate	Odds	interval		<i>P</i> -value	
		ratios	Lower	Upper	_	
Age, years	-0.0014	0.9986	0.9974	0.9998	0.0251	
Length of stay before index	0.000	1.00(2	0.0000	1.0010	0.4042	
date/pseudo-index date, days	0.0063	1.0063	0.9909	1.0219	0.4243	
Year of index date						
2007	5	1.000				
2008	0.2803	1.3235	1.2105	1.4470	<0.000	
2009	0.4057	1.5003	1.3709	1.6419	< 0.000	
2010	0.3662	1.4423	1.3146	1.5824	<0.000	
2011	0.4363	1.5470	1.4019	1.7072	< 0.000	
2012	0.3246	1.3835	1.2457	1.5364	< 0.000	
2013	0.2361	1.2663	1.1312	1.4174	< 0.000	
2014	0.0780	1.0811	0.9590	1.2188	0.2021	
2015	0.0354	1.0360	0.9128	1.1759	0.5838	
Season of Indate						
Mar-May		1.000				
Jun-Aug	0.0198	1.0200	0.9534	1.0912	0.5659	
Sep-Nov	0.0404	1.0412	0.9787	1.1077	0.2008	
Dec-Feb	0.0401	1.0409	0.9816	1.1038	0.1806	
	0.0111	1.0112	0.9662	1.0583	0.6326	

Dependent		1.000			
<657.33	0.0518	1.0532	0.9824	1.1291	0.1444
657.33–1504.60	0.0699	1.0724	0.9985	1.1518	0.0550
>1504.60	0.0984	1.1034	0.9871	1.2334	0.0835
Urbanization level					
1 (urban)		1.000			
2	0.0093	1.0094	0.9516	1.0706	0.7560
3	-0.0006	0.9994	0.9293	1.0748	0.9872
4 (rural)	-0.0163	0.9838	0.9291	1.0417	0.5753
Hospital level					
Level I (Medical center)		1.000			
Level II (Regional	-0.0068	0.9932	0.9364	1.0534	0.8200
hospital)	0.0000		0.7504	1.0554	0.0200
Level III (Local hospital)	-0.0439	0.9570	0.7894	1.1603	0.6548
Charlson Comorbidity Index					
score					
0		1.000	Ξ,		
1	0.1421	1.1527	1.0681	1.2439	0.0003
2	0.2932	1.3407	1.2390	1.4508	< 0.0001
≥3	0.3456	1.4129	1.2880	1.5498	< 0.0001
Comorbidities					
Diabetes mellitus	0.0050	1.0051	0.9521	1.0610	0.8553
Cerebrovascular disease	-0.0419	0.9589	0.8833	1.0410	0.3166
Myocardial infarction	-0.0702	0.9322	0.7377	1.1779	0.5564
Heart failure	-0.0607	0.9411	0.8525	1.0389	0.2292

Page 45 of 52			BMJ Open			
1 2						
2 3 4 5	Peripheral vascular	-0.0299	0.9706	0.8779	1.0731	0.5601
6 7	disease					
8 9	Liver disease	-0.0437	0.9572	0.8832	1.0375	0.2877
10 11	Chronic kidney disease	-0.1133	0.8929	0.8179	0.9748	0.0114
12 13	Dyslipidemia	-0.0425	0.9584	0.8916	1.0302	0.2490
14 15	Cancer	-0.1626	0.8499	0.7934	0.9105	< 0.0001
16 17 18	Number of dysfunctional					
19 20	organs					
21 22	0		1.000			
23 24	1	0.1450	1.1561	0.9750	1.3707	0.0951
25 26 27	2	0.2044	1.2268	0.8853	1.6999	0.2195
28 29	\geq 3	-0.2233	0.7999	0.4839	1.3222	0.3839
30 31	Use of inotropic agents	0.0551	1.0567	0.7982	1.3989	0.7001
32 33 34	Use of steroid	-0.0091	0.9909	0.4451	2.2061	0.9822
35 36	Use of ventilator	-0.0226	0.9776	0.8350	1.1446	0.7786
37 38	Use of ventilator (>3 days)	0.0279	1.0283	0.6260	1.6891	0.9122
39 40 41	Emergent renal replacement	0.0024	1.0024	0.8515	1.1801	0.9770
42 43	therapy	0.0024	1.0024	0.8515	1.1001	0.9770
44 45 17						
46 47 48						
49 50						
51 52						
53 54						
55 56 57						
58 59						
60						5

18 Supplementary Table 3. WHO priority pathogens, antimicrobial categories, and

19 antimicrobial agents used to define drug resistance.

Pathogens	Antimicrobial categories	Antimicrobial agents
		Gentamicin
		Tobramycin
	Aminoglycosides	Amikacin
		Netilmicin
		Imipenem
	Carbapenems	Meropenem
		Doripenem
Acinetobacter baumannii ^a		Ciprofloxacin
	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β-lactamase inhibitors	Ticarcillin-clavulanic aci
		Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime
		Ceftriaxone
		Gentamicin
		Tobramycin
Pseudomonas	Aminoglycosides	Amikacin
aeruginosa ^a		Netilmicin
		Imipenem
	Carbapenems	Meropenem

		Doripenem
		Ciprofloxacin
	Fluoroquinolones	Levofloxacin
	Antipseudomonal penicillins +	Piperacillin-tazobactam
	β-lactamase inhibitors	Ticarcillin-clavulanic ac
		Cefepime
	Antipseudomonal cephalosporins	Cefpirome
		Ceftazidime
	~	Gentamicin
	Aminochuppidas	Tobramycin
	Aminoglycosides	Amikacin
		Netilmicin
		Imipenem
Enterobacteriaceae ^a		Meropenem
(Escherichia coli,	Carbapenems	Doripenem
Klebsiella pneumoniae,		Ertapenem
Enterobacter cloacae		Ciprofloxacin
Enterobacter	Fluoroquinolones	Levofloxacin
aerogenes, or Serratia	Antipseudomonal penicillins +	Piperacillin-tazobactam
marcescens)	β-lactamase inhibitors	Ticarcillin-clavulanic ac
		Cefotaxime
		Cefepime
	Extended-spectrum cephalosporins	Cefpirome
		Ceftazidime

			Ceftriaxone
	Staphylococcus aureus	Glycopeptides	Vancomycin
	Staphylococcus aureus	β-lactamase-resistant penicillins	Oxacillin
	Enterococcus faecium,		
	Enterococcus faecalis,	Glycopeptides	Vancomycin
	or other Enterococcus	Orycopeptides	vancomycm
	species ^b		
20	^a Drug resistance was de	efined as being non-susceptible to ≥ 1	agent in ≥ 3 antimicrobial
21	categories.		
22	^b Drug resistance was d	efined as being non-susceptible to ≥ 1	agent.

age 49 of 52	BMJ	Open	mjopen-2020-03
23 24	Supplementary Table 4. The economic outcomes among patients with the discharge. ^a	h bloodstream infections and com	Parison cohort who survived to S S C S S S
)	Clinical outcomes	Excess costs or length of hospitalization	Compension 25 P-value 27 20 20
<u>2</u>		(95% Confidence interval) ^b	<u>v</u> 28
3 1	Length of hospitalization after the index date/pseudo-index date, days	19.59 (18.67, 20.51)	$\frac{1}{29} < 0.0001$
5	Cost of hospitalization, USD	8,871 (8,475, 9,268)	$< 0.0001 \\ 29 \\ < 0.00030 \\ ft$
7 3 9 32	^a A total of 7,939 of patients with intensive care uit-acquired bloodstream	infections and 18.936 comparators	$\frac{9}{3}$ 31 $\frac{1}{3}$
) 22	^b Adjusted imbalanced variables in Table 1.		
2 34 3 34		infections and 18,936 comparators	bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.
9) 1 <u>2</u> 3			rril 23, 2024 by gu
1 5			uest.
5			Prot
7 3			ected
)			l by c
			оругі
<u>2</u> 3	For peer review only - http://bmjopen		ght.
1 5	To peer review only - http://binjopen	.org.com/ site/ about/ guidelines.xittilli	
5			

		st in all patients with bloodstream infections
Pathogen groups	9-year excessive hosp	italization or healthcare cost
(Numbers of patients) ^a	Length of hospitalization after the index dat (days) ^b	te Cost oShospitalization (USD) ^{b, c}
All pathogens (38,659)	492,129	296,603,446
MDR Gram-negative bacteria (6,825)	86,882	ष्ट्र र्हे 52,363,448
MDR Gram-positive bacteria (4,176)	53,160	
Acinetobacter baumannii (5,214)	66,374	40,003,372
Pseudomonas aeruginosa (2,619)	33,340	32,039,525 40,003,372 20,093,754 72,779,438 33,620,019
Enterobacteriaceae ^d (9,486)	120,757	g 72,779,438
Staphylococcus aureus (4,382)	55,783	33,620,019
Enterococcus species ^e (4,045)	51,493	8 31,034,454
Candida albicans (2,554)	32,512	202 31,034,454 by guest. Protected by copyright
Non-albicans Candida ^f (1,872)	23,831	ष्ट्र २ 14,362,546

Page 5	51 of 52	BMJ Open BMJ Open 972020-03
1		2020-0
2 3 4	38	^a The number of all episodes of intensive care unit-acquired bloodstream infections caused by designated pathogens during 2007-2015. The
5 6	39	incluson and exclusion criteira in the method section were not applied in this Table (see Figure 1).
7 8 9	40	^b The 9-year excessive hospitalization was calculated by multiplying the number of episodes during 9-year in $\frac{8}{5}$ cted by the designated pathogen(s)
10 11	41	and the average excessive hospitalization per case with the designated pathogen(s). The average excessive hospitalization per case was
12 13	42	difference of average hospitalization duration between the case with the designated pathogen(s) and their matched comparison. The average
14 15 16	43	hospitalization duration in bloodstream infection group was the sum of total hospitalization duration divided $\frac{1}{2}$ the number of case and so was
10 17 18	44	that in matched control group.
19 20	45	Ave _{Hospitalization} per case= [(sum of hospitalization length)/the number of patients].
21 22 22	46	Excessive Ave _{Hospitalization} per person= (Ave _{Hospitalization} in bloodstream infection group) - (Ave _{Hospitalization} in consistent of the second
23 24 25	47	Total excessive hospitalization length over 9 years = (excessive Ave _{Hospitalization} per person) × (total number of periods over 9 years)
26 27	48	The 9-year excessive healthcare cost was calculated similarly.
28 29	49	^c The costs are standardized and presented the values in 2017.
30 31 32	50	^d Enterobacteriaceae included Escherichia coli, Klebsiella pneumoniaea, Enterobacter cloacae, Enterobacter Saerogenesa, and Serratia
33 34	51	marcescens.
35 36	52	^e Enterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species
37 38 39	53	^e Enterococcus species included Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species ^f Non-albicans Candida included Candida tropicalis, Candida parapsilosis, and Candida glabrata. 11 Eor peer review only - http://bmiopen.bmi.com/site/about/quidelines.yhtml
40 41		୍ଟୁ ତୁ ସୁ
42 43		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
44 45		r or peer review only - http://binjopen.binj.com/site/about/guidelines.xittini

BMJ Open

Section/Topic	ltem #	Recommendation 69	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	#1 and #3-4
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was	#3-4
Introduction		Eveloin the scientific background and rationals for the investigation being reported	
Background/rationale	2		#6-7
Objectives	3	State specific objectives, including any prespecified hypotheses	#6-7
Methods		oad	
Study design	4	Present key elements of study design early in the paper	#8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	#8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe Bethods of follow-up	#9
		(b) For matched studies, give matching criteria and number of exposed and unexposed	#9-10
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Gree diagnostic criteria, if applicable	#10
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	#9-10
measurement		comparability of assessment methods if there is more than one group 2	
Bias	9	Comparability of assessment methods if there is more than one group > Describe any efforts to address potential sources of bias =	#9-10
Study size	10	Explain how the study size was arrived at	#8-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which growings were chosen and why	#9-10
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	#9-12
		(b) Describe any methods used to examine subgroups and interactions	#9-12
		(c) Explain how missing data were addressed	#10
		(c) Explain how missing data were addressedO(d) If applicable, explain how loss to follow-up was addressedO	Not applicable
		(e) Describe any sensitivity analyses	#12
Results		copyright.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 mjopen-2020

copyright.

			1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	#14
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#14
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on $\overline{\mathbb{R}}$ posures and potential	#14 and #30-32
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	#19 and #31
		(c) Summarise follow-up time (eg, average and total amount)	#14-15
Outcome data	15*	Report numbers of outcome events or summary measures over time	#14-15
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	#14-15
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	#14-15
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	#14-15
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 👼	#15
Discussion			
Key results	18	Summarise key results with reference to study objectives	#16
Limitations		i i i i i i i i i i i i i i i i i i i	#18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	#16-20
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	#16-20
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	#22-23
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in the function of the studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine@rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml