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ABSTRACT

Objective To determine how machine learning has been applied to prediction applications in 
population health contexts, including which outcomes were studied, which data sources were 
used, and how models were developed.

Design A scoping review.

Data Sources MEDLINE, EMBASE, CINAHL, ProQuest, Scopus, Web of Science, Cochrane 
Library, INSPEC, and ACM Digital Library were searched on July 18th, 2018.

Eligibility criteria We included English articles published since 1980 that used machine 
learning to predict population health-related outcomes. We excluded studies that only used 
logistic regression or were restricted to a clinical context.

Data extraction and synthesis We summarized findings extracted from published reports, 
which included general study characteristics, aspects of model development, reporting of results, 
and model discussion items.

Results Of 22 618 articles found by our search, 231 were included in the review. The United 
States (n=71, 30.74%) and China (n=40, 17.75%) produced the most studies and cardiovascular 
disease (n=22, 9.52%) was the most studied outcome. The median number of observations was 
5414 (interquartile range (IQR)=16 543·5) and the median number of features was 17 (IQR=31). 
The most commonly used data sources were health records (n=126, 54.5%) and investigator-
generated (n=86, 37.2%). Many studies did not incorporate recommended guidelines on machine 
learning and predictive modeling. Predictive discrimination was commonly assessed using area 
under the receiver operator curve (n=98, 42.42%) and calibration was rarely assessed (n=22, 
9.52%).

Conclusions Machine learning applications in population health have concentrated on regions 
and diseases well-represented in traditional data sources, infrequently using big data. 
Additionally, important aspects of model development were under-reported. Greater use of big 
data and uptake of guidelines for predictive modeling could improve the yield from machine 
learning applications in population health.

Registration Registered on the Open Science Framework on July 17th, 2018 (available at: 
https://osf.io/rnqe6/).
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INTRODUCTION

Predictive models have a long history in clinical medicine. One well-known example is the 

Framingham risk score, which was first developed in 1967.[1] Such models have proliferated 

throughout clinical practice to inform management and interventions, including preventive 

approaches. More recently, researchers have developed prediction models beyond individual 

clinical applications, for population health uses.[2,3] While there is no universal definition of 

population health, it includes  “the health outcomes of a group of individuals, including the 

distribution of such outcomes within the group.”[4] Similarly to clinical medicine, population-

level models can be used to identify high-risk groups, directing the implementation of preventive 

Strengths and limitations of this study

 Our review is one of the first syntheses of machine learning applications in population 

and public health.

 We used a comprehensive search strategy, including nine peer-reviewed databases, 

grey literature, and reference searching.

 We extracted a wide array of study characteristics, including important elements of 

predictive modeling reporting guidelines.

 Since both machine learning and population health have broad definitions, there may 

be some relevant articles that were not included.

 Given our focus on prediction, we could not address many other important 

intersections of machine learning and population health, such as surveillance and 

health promotion.
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interventions. Additionally, population health prediction models can inform policymakers about 

future disease burden and help to assess the impact of public health actions. Thus far, most 

predictive modeling in both medicine and population health has used parametric statistical 

regression models. More recently, there has been increasing interest in the use of a broader range 

of machine learning methods for prediction tasks.[5–7]

Machine learning can be loosely defined as the study and development of algorithms that learn 

from data with little or no human assistance.[8] These approaches have been increasingly applied 

in the past two decades as a result of the enabling growth of big data reserves and computational 

power.[9] Recent machine learning applications to prediction in population health contexts 

include forecasting childhood lead poisoning,[10] yellow fever incidence,[11] and the onset of 

suicidal ideation.[12] 

The distinction between machine learning algorithms and parametric regression models is 

debated.[13] Regression models tend to impose more structure on the data, requiring greater 

human input for the verification of distributional assumptions and incorporation of domain 

knowledge in choosing the input parameters.[14] Algorithms employed in machine learning 

often derive more structure directly from the data, making fewer distributional assumptions 

about the data or variables. The literature remains divided on the relative advantages of more 

traditional approaches compared to newer methods;[15] however, given the wide variation in 

applications and the data used in these examples, broad assessments of superiority are often not 

appropriate. Also, there are debates regarding the differences in developing and validating 

machine learning approaches for health applications.[15,16]
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Population health applications of prediction models are relatively new compared to clinical 

applications; correspondingly, the role of machine learning in these applications has been far less 

studied and discussed in the health literature. The goals of our review are to determine how 

machine learning has been applied to prediction in population health, the nature of the models 

and data used, and how the models have been developed. We hope that our results will help to 

inform future research in this area, including the development of guidelines for machine learning 

applications in population health.

METHODS

We based our scoping review on the framework proposed by Arksey and O’Malley[17] and 

refined by the Joanna Briggs Institute.[18] We also followed the more recent Preferred Reporting 

Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews.[19] Our study 

protocol was registered on the Open Science Framework on July 17th, 2018 (available at: 

https://osf.io/rnqe6/).

Our initial goal was to scope out all machine learning applications in population health. 

However, the screening process identified a much larger number of publications than anticipated. 

Consequently, to describe the subject area comprehensively, we restricted our scope to articles 

predicting future outcomes.

Search Strategy
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Our search strategy consisted of peer-reviewed literature databases, grey literature, and reference 

searches. First, we searched nine interdisciplinary, indexed databases (MEDLINE, EMBASE, 

CINAHL, ProQuest, Scopus, Web of Science, Cochrane Library, INSPEC, and ACM Digital 

Library) on July 18th, 2018. Our search was informed by consultation with a health science 

librarian, a machine learning textbook,[20] and a similar registered review.[15] Supplementary 

table A includes an example search query.

Our grey literature search included Google Scholar and Google. We developed a Google Scholar 

search based on terms related to ‘machine learning’ and ‘population health’, which was refined 

based on the relevance of initial results. The first 200 results were included in screening. A 

similar approach was used for the general Google search, which we restricted to the first 30 

results. We examined relevant websites for publications. Results were limited to articles 

published on or before the date of the peer-reviewed literature search.

Finally, we searched the references of relevant reviews for additional articles. Most of these 

reviews were identified during screening.

Eligibility Criteria

We included articles if they used machine learning to develop a predictive model that could be 

applied in a population health context. Therefore, we excluded articles where the model was 

trained primarily on people with a pre-existing disease. We also excluded articles that were only 

indirectly related to population health; for example, traffic accident models that did not predict a 

health outcome. Studies predicting individual outcomes were included if the approach was 
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determined to be scalable to a population level. Finally, articles using only logistic regression 

were excluded. See appendix A for the full eligibility criteria.

In order to manage the scope, articles were excluded if their full text could not be retrieved with 

our institutional licenses and if they were not written in English. Finally, articles published prior 

to 1980 were excluded as earlier machine learning investigators lacked comparable amounts of 

digitized data, software, and computational resources.

Screening Process

Initially, individual reviewers screened titles for obvious irrelevance to the review topic (JDM 

and EB). Examples of articles removed at this stage are outlined in appendix B. Then, we 

imported remaining references into Covidence systematic review management software.[21] 

Two reviewers screened the abstracts of remaining articles (JDM, EB, MO, and DF). Prior to 

evaluating full texts using all eligibility criteria, we then screened out articles that did not focus 

on a prediction application (JDM, EB, MO). Finally, two reviewers screened the full text of 

remaining articles (JDM, EB, MO). Conflicts were resolved by discussion between at least two 

reviewers.

Data Extraction and Synthesis

Individual authors extracted article data (JDM, EB, MO, and DF). We based our extraction items 

on important aspects of machine learning identified in a recent biomedical guideline[16] and on 

the transparent reporting of a multivariable prediction model for individual prognosis or 
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diagnosis (TRIPOD) statement.[22] Major extraction categories included general study 

characteristics (e.g. geographic location and sample size), model development (e.g. algorithms 

used and type of validation), results (e.g. discrimination and calibration measures), and model 

discussion (e.g. practical costs of errors and implementation). See supplementary table B for a 

description of each extraction item. 

We computed descriptive statistics for all extraction items. We also completed a narrative 

synthesis of discussion elements.

Patient and Public Involvement Statement

There was no patient or public involvement in this study.

RESULTS

We initially retrieved 16 172 articles, after removing duplicates (figure 1). We excluded 6494 

articles after title screening, 7860 after abstract screening, 1453 when screening out non-

prediction articles, and 121 after full-text screening. This resulted in 231 articles being included 

in the final review (appendix C).

General Study Characteristics

The number of articles published in the population health prediction area that used machine 

learning increased dramatically after 2007 (supplementary figure A). Studies were undertaken 
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worldwide, with the largest representation from the United States (US) (n=71, 30.74%) and 

China (n=40, 17.75%) (table 1). Relatively few articles came from Oceania (n=2, 0.87%), Africa 

(n=5, 2.16%), and the Americas outside of the US (n=13, 5.63%).

Characteristic* Number or Median Percent or Interquartile Range

Region

United States 71 30.74%

Asia Excluding China 41 17.75%

China 40 17.32%

Europe 36 15.58%

Americas Excluding United States 13 5.63%

Africa 5 2.16%

Oceania 2 0.87%

Multi-region 15 6.49%

Not Reported 8 3.46%

Year published

before 1990 1 0.4%

1990-1999 3 1.3%

2000-2004 13 5.6%

2005-2009 18 7.8%

2010-2014 70 30.3%

2015-2018 126 54.5%

Outcome level†

Individual Risk Prediction 139 60.17%

Population Risk prediction 92 39.83%

Number of observations 5414 16 543.5
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Not reported 72 31.2%

Number of features 17 31

Not reported 59 25.5%

Used any unstructured text

Yes 24 10.4%

No 207 89.6%

Machine learning model was compared with other 

statistical methods

111 48.1%

Reported data pre-processing‡

Yes 160 69.3%

No 71 30.7%

Reported method of feature selection

Yes 164 71.0%

No 67 29.0%

Reported hyper-parameter search

Yes 114 49.4%

No 117 50.6%

Method of Validation

Holdout 112 48.5%

Cross-validation or bootstrap 84 36.4%

External 15 6.5%

Not reported 32 13.9%

Reported descriptive statistics§

Yes 140 60.6%

No 91 39.4%

Discussed the practical costs of prediction errors¶

Yes 36 15.6%
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No 195 84.4%

Stated rationale for using machine learning

Yes 179 77.5%

No 52 22.5%

Discussed model usability 

Yes 91 39.4%

No 140 60.6%

Stated model limitations 

Yes 161 69.7%

No 70 30.3%

Discussed model implementation

Yes 184 79.7%

No 47 20.3%

Dataset Availability by Study||

Closed 149 64.5%

Public 42 18.2%

Closed and Public 38 16.5%

Unknown 1 0.4%

*Refer to supplementary table A for a description of each characteristic and rationales for including some elements.

†Individual risk prediction refers to studies that developed models to predict the health outcomes of individuals, while population risk prediction 

refers to studies that developed models to predict aggregated population-level health outcomes.

‡Whether any aspects of data cleaning or pre-processing were reported. Examples include how missing data was handled, whether log 

transformations were done, and if derived variables were generated.

§Included a broad array of descriptive statistics such as sample population demographics, feature distributions, and outcome distributions.

¶Whether the article discussed the relative risks of false negative and false positive results based on their predictive model in contexts where it 

might be used.

||Closed refers to datasets that were not immediately available in the public domain or were not identifiable as such.

Table 1: Summary statistics of included articles
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The median number of observations in each article was 5414 (interquartile range (IQR)=16 

543.5) and the median number of features (i.e. independent variables) used was 17 (IQR=31) 

(table 1). Seventy-two studies (31.2%) did not report the number of observations. These studies 

often used data from reportable disease databases, which do not necessarily have a firm sampling 

frame, making ascertainment of the number of observations difficult.

Algorithms

The most frequently used machine learning algorithms were neural networks (n=95, 41.13%), 

followed by support vector machines (n=59, 25.54%), single tree-based methods (n=52, 

22.51%), and random forests (n=48, 20.78%) (supplementary table C). About half of the articles 

made a comparison with statistical methods (n=111, 48.1%), which were generally logistic 

regression or autoregressive integrated moving average models (table 1).

Outcomes

Non-communicable disease outcomes were assessed by many articles (n=95, 41.13%), with 

communicable diseases (n=76, 32.90%) and non-disease outcomes (n=60, 25.97%) studied 

somewhat less often. The outcome most frequently predicted was cardiovascular disease (n=22, 

9.52%) (figure 2). Other commonly forecasted non-communicable disease outcomes were 

suicidality (n=13, 5.63%), cancer (n=12, 5.19%), and perinatal health (n=12, 5.19%). Influenza 

(n=15, 6.49%) and dengue fever (n = 14, 6.06%) were the most predicted communicable disease 

outcomes. Aside from non-communicable and communicable disease, mortality (n=13, 5.63%) 

and healthcare utilization (n=14, 6.06%) were also frequently predicted.
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Data

Data sources were usually structured (n=207, 89.6%) and closed, i.e. not publicly available 

(n=189, 81.8%) (table 1). The most frequently reported data sources were health records (n=126, 

54.5%) and investigator-generated (e.g. cohort studies) (n=86, 37.2%) (table 2). A large 

proportion of studies (n=42, 18.2%) used an environmental data source (e.g. satellite imagery), 

mostly for prediction of infectious disease. Government databases (n=32, 13.9%) and internet-

based data (n=21, 9.1%) were less frequently used. Among studies from China and the US, 

80.0% and 67.6% respectively used health records data, whereas 54.5% of studies overall used 

these data sources (supplementary figure B).

Sources of Data Used* Number Percent

Environmental 42 18.2%

Geographical Information Database 12 5.2%

Meteorological/Air Quality Datasets 32 13.9%

Satellite Imagery 21 9.1%

Health Records Database 126 54.5%

Clinical Record Database† 46 19.9%

Disease Registry 2 0.9%

Population Health Survey 15 6.5%

Reportable Disease Database 42 18.2%

Other Health Records Database 30 13.0%

Government Database 32 13.9%

Census 11 4.8%
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Vital Statistics 13 5.6%

Other Government Database 14 6.1%

HealthMap 3 1.3%

Private Insurance Data 9 3.9%

Private Insurance Claims 9 3.9%

Private Insurance Questionnaire 3 1.3%

Internet-based 21 9.1%

Search engine 12 5.2%

Social Media 12 5.2%

Investigator-generated‡ 86 37.2%

Public Repositories§ 19 8.2%

Health Organization Reports¶ 5 2.2%

Not Reported 6 2.6%

*Categories are not mutually exclusive.

†Any dataset produced primarily for the purpose of delivering clinical care, such as electronic medical records and administrative healthcare 

databases produced by hospitals.

‡Any datasets resulting from researcher-driven studies such as randomized controlled trials, cohort studies, and case-control studies.

§Any freely available datasets such as MIMIC or the UC Irvine Machine Learning Repository.

¶Health-related reports, typically including disease burden estimates, produced by non-governmental or governmental organizations such as the 

World Health Organization.

Table 2: Data sources

Features

Biomedical and sociodemographic features were frequently used (supplementary figure C). Of 

these, the most commonly used were disease history (43.3%), age (48.5%), and sex/gender 

(41.1%). Among lifestyle features, smoking was the most frequently used (25.1%) and of 
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environmental features, meteorology was common (17.3%). Social media posts (5.2%) and web 

search queries (5.2%) were not often used. See supplementary table D for more details.

Model Development and Validation

The majority of articles reported how data pre-processing (n=160, 69.3%) and feature selection 

(n=164, 71%) were done (table 1). Fewer authors reported how hyperparameters were selected 

(n=114, 49.4%). Most studies used a holdout method of validation (n=112, 48.5%), fifteen 

(6.5%) externally validated their models, and thirty-two (13.9%) did not report how models were 

validated.

Performance Metrics

Most articles reported a prediction discrimination metric (n=172, 74.46%), with fewer reporting 

a measure of overall model fit (n=77, 33.33%), and few reporting a measure of calibration (n=21, 

9.09%) (table 3). The most common discrimination metrics employed were area under the 

receiver operator curve (n=98, 42.42%), accuracy (n=76, 32.90%), and recall (n=68, 29.44%). 

Calibration was mostly assessed with graphing methods (n=9, 3.90%) and Hosmer-Lemeshow 

statistics (n=8, 3.46%). Overall performance was usually measured with a form of mean error, 

such as root mean squared error (n=35, 15.15%). 

Prediction Performance Metrics Used Number Percent

Any overall performance metric 77 33.33%

RMSE 35 15.15%
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MSE 26 11.26%

MAE 24 10.39%

MAPE 23 9.96%

R2* 19 8.23%

Correlation 8 3.46%

AIC or BIC 8 3.46%

Other performance metric† 21 9.09%

Any discrimination metric 172 74.46%

Area under the curve‡ 98 42.42%

Accuracy§ 76 32.90%

Recall¶ 68 29.44%

Precision|| 39 16.88%

F statistics 10 4.33%

Likelihood Ratio** 4 1.73%

Youden Index 3 1.30%

Manual or visual comparison 3 1.30%

Other discrimination metric†† 4 1.73%

Any calibration metric 21 9.09%

Manual or visual comparison‡‡ 9 3.90%

Hosmer-Lemeshow 8 3.46%

Observed/Expected 5 2.16%

Other calibration metric§§ 3 1.30%

Any reclassification metric 6 2.60%

Net Reclassification Index 5 2.16%

Integrated Discrimination Improvement 3 1.30%

RMSE = Root Mean Squared Error; MSE = Mean Squared Error; MAE = Mean Absolute Error; MAPE = Mean 

Absolute Percentage Error; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion.

*Includes R2 and pseudo-R2 metrics.
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†Includes penalty error, Total Sum of Squares, proportional reduction in error, overall prediction error, specific prediction error, Nash-Sutcliffe, 

Root Mean Squared Percentage Error (2), mean relative absolute error, Analysis of Variance F-stat, 2LogLikelihood, relative efficiency, 

deviance, Ljung-Box test, mean absolute deviation, standard error, Mean Percentage Error, Brier score, and log score.

‡Includes c-statistic, s-index, area under ROC / AUC.

§Includes accuracy, misclassification, and error rate.

¶Includes sensitivity, specificity, true/false positive, and true/false negative.

||Includes positive predictive value, negative predictive value, and precision.

**Includes positive/negative LR.

††Includes G-means (2), k-statistic, Matthews correlation coefficient.

‡‡Includes calibration plots.

§§Includes mean bias (from Bland-Altman plot), calibration factoring, and Calibration statistic.

Table 3: Prediction Performance Metrics

Study Discussion

Most articles included some discussion of their rationale for using machine learning (n=179, 

77.5%), limitations of their study (n=161, 69.7%), and how the model might be implemented 

(n=184, 79.7%) (table 1). Few discussed model usability (n=91, 39.4%) and only a small number 

discussed the costs of prediction errors in real-world contexts (n=36, 15.6%). See appendix D for 

a narrative synthesis of discussion reporting items.

DISCUSSION

Our results show that machine learning is increasingly being applied to make predictions related 

to population health. Nearly half of the included studies were conducted in the US or China. 

Both countries produce the greatest number of scientific publications in general;[23] however, 

they also likely benefited from robust health data infrastructures. The US has rapidly digitized 
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much of its healthcare system, resulting in large electronic medical records (EMRs) linked with 

government data through public-private partnerships, including processes to make these data 

available to researchers.[24,25] Both the US and China made greater use of health records and 

less use of investigator-generated data relative to other regions, which may have made machine 

learning projects more tractable. They also used more internet-based data, which typically 

includes many observations and is high-dimensional, making it amenable to machine learning 

methods. Other countries with substantial EMR-use and government database linkage such as 

Finland, Singapore, and Denmark[26] likely have untapped potential for machine learning 

research. We noted that studies from Oceania, Africa, and the Americas (outside of the US) were 

limited. This may be partly due to less availability of traditional sources of structured health data. 

However, given that machine learning methods can incorporate non-traditional data sources, 

there is the potential to expand use of these methods even when structured health data is 

unavailable.

We found that a wide range of population health outcomes have been the focus of machine 

learning prediction models. However, relative to morbidity and mortality, multiple outcome 

categories like cancer, human immunodeficiency virus, dementia, gastroenteritis, pneumococcal 

disease, perinatal health, tuberculosis, and malaria appear understudied.[27] Many of these 

conditions are most prevalent in regions with decreased access to traditional health data, perhaps 

stymieing research. If machine learning methods are used to leverage novel data sources for 

research in these regions, it could enable greater study of neglected diseases. 
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Most investigators did not analyze a large number of observations and features. We observed a 

high reliance on investigator-generated data, which likely made it difficult to achieve high 

sample sizes or high dimensional data. The use of smaller datasets may affect the performance of 

studied models, as machine learning algorithms generally require a high number of observations 

relative to features.[28] Additionally, most studies focused on features typical of clinical 

prediction models, such as biomedical factors and limited aspects of broader socioeconomic or 

environmental determinants of health. We also observed infrequent use of unstructured data and 

wearable data for prediction purposes. A reliance on small datasets and traditional numbers and 

types of features is unlikely to fully leverage any benefits of machine learning. This may be 

contributing to the small differences frequently seen between parametric regression and machine 

learning model performance. Greater use of linked population-level databases, large EMRs, 

internet data, and unstructured features would likely improve these approaches. 

Based on the elements of model development that we studied, adherence to existing machine 

learning[16] and prediction model[22] guidelines appears limited. Most articles did not report 

their method of hyper-parameter selection, discuss practical costs of prediction errors, or 

consider model usability, which are needed for transparency and model assessment. Many 

studies did not report the number of features included, method of validation, method of feature 

selection, or any performance metric. Given these issues, it would be difficult or impossible to 

compare many of these machine learning models with existing approaches. However, we 

acknowledge that existing guidelines were not available when many included studies were 

published. Future work should apply existing guidance,[16] including from TRIPOD,[22] and 

anticipate the forthcoming TRIPOD-ML statement.[29]
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Lastly, we noted that included studies rarely assessed predictive performance in terms of 

calibration, which refers to a model’s ability to accurately predict the absolute probability of 

outcomes.[30] In contrast, discrimination measures of predictive performance quantify a model’s 

ability to correctly rank-order individuals. Many traditional machine learning tasks, such as 

image recognition, often have a high signal to noise ratio. In these cases, discrimination may be a 

suitable lone performance metric, as the algorithm can achieve near perfect performance. 

Conversely, health outcomes tend to be more stochastic. As a result, accurate prediction of 

probabilities is more important.[30] Models can have good predictive discrimination, but poor 

calibration, making them less useful in practice, particularly for population health applications. A 

further issue is that many measures of discrimination, such as accuracy and recall, artificially 

impose a threshold for calling events. Thresholds should ideally be ascertained by decision-

makers based on their cost-utility curves.[30] Overall, applications of machine learning in 

population health would benefit from greater use of calibration performance metrics.

A strength of our study is that we addressed an understudied area, the intersection of machine 

learning and population health. Additionally, prediction is an application with untapped potential 

in population health, and where machine learning has the potential to make significant 

improvements. Our study also employed a comprehensive search strategy, including numerous 

multidisciplinary peer-reviewed databases, alongside a grey literature search. Furthermore, we 

applied insights from the field of clinical prediction modeling to population health and machine 

learning. Finally, given the focus on prediction, we were able to take a comprehensive approach 

to data extraction and synthesis. 
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In terms of limitations, concentrating on prediction prevented us from exploring applications of 

machine learning to other important aspects of population health, such as disease surveillance. 

These should be the focus of future research. Our review was also limited by including only 

English articles and articles with available full text, which may have introduced selection bias. 

Lastly, the two main concepts underlying our review, machine learning and population health, 

are not universally defined. As a result, we may have excluded articles that may be relevant to 

these fields.

This was the first scoping review specifically focused on machine learning prediction in 

population health applications. Predictive modeling in population health can help to inform 

preventive interventions, anticipate future disease burden, and assess the impact of health 

policies and programs. Advances in machine learning offer opportunities to improve these 

models, particularly when incorporating big data. This is still a nascent field, but based on our 

findings more research in Oceania, Africa, and South America would be particularly beneficial. 

Diseases such as malaria, tuberculosis, and dementia should also be further studied. Additionally, 

future machine learning projects could incorporate larger datasets and more non-traditional 

features. Greater use of resources such as HealthMap, social media, web search patterns, remote 

sensing, and WHO reports would enable more work in regions without formal data sources and 

enrich research in others. Another largely untapped prospect is using machine learning and high-

dimensional data to incorporate richer representations of the social determinants of health. 

Opportunities should continue to grow as governments increasingly digitize their health service 

records and link databases to both health and non-health data. Overall, as applications of 
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machine learning in population health develop, adherence to existing guidance[16,22,29] will 

improve our ability to assess and advance machine learning applications. Finally, it will be 

important to evaluate the impact of prediction models on decisions made in population health 

and the practice of public health.
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FIGURES LEGENDS

Figure 1: PRISMA flowchart of article screening process.

Figure 2: Number of articles by outcome.
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Supplementary Figure A: Number of articles by publication year. Articles from 2018 are not 
plotted in this figure because the review does not include all studies published that year. 
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Supplementary Figure B: Data Source by selected region. 
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Supplementary Figure C: Most commonly used feature categories. 
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Supplementary Table A: MEDLINE search query1 

 

Machine Learning Terms Population Health Terms 

1.     Exp Artificial Intelligence/ 24. Exp Population Health/ 

2.     Exp “neural networks (computer)”/ 25. Exp Population Surveillance/ 

3.     Support vector machine*.kf,tw 26. Exp Health Equity/ 

4.     Neural net*.kf,tw 27. Health status/ 

5.     Perceptron*.kf,tw 28. Health status disparities/ 

6.     Deep learning.kf,tw 29. Public health systems research/ 

7.     Random forest*.kf,tw 30. “Social determinants of health”/ 

8.     Lasso*.kf,tw 31. Health surveys/ 

9.     Gaussian mixture*.kf,tw 32. Health status indicators/ 

10.   Bayesian network*.kf,tw 33. “global burden of disease”/ 

11.   Classification tree*.kf,tw 34. Global health/ 

12.   Regression tree*.kf,tw 35. Environmental health/ 

13.   Relevance vector machine*.kf,tw 36. Harm reduction/ 

14.   Nearest neighbo*.kf,tw 37. Public health informatics/ 

15.   Probability estimation tree*.kf,tw 38. Community medicine/ 

16.   Elastic net*.kf,tw 39. Public health/ 

18.   Naive bayes.kf,tw 40. Epidemiology/ 

19.   Genetic algorithm*.kf,tw 41. Preventive medicine/ 

20.   Artificial intelligence.kf,tw 42. Occupational medicine/ 

21.   Machine learning.kf,tw 43. Environmental medicine/ 

22.   Statistical learning.kf,tw 44. Public health practice/ 

23.   /or 1-22 45. Preventive health services/ 
 

46. Health promotion/ 
 

47. public health.kf,tw 
 

48. population health.kf,tw 
 

49. health promot*.kf,tw 
 

50. population surveillance.kf,tw 
 

51. health surveillance.kf,tw 
 

52. health equity.kf,tw 
 

53. preventive medicine.kf,tw 
 

54. health protection.kf,tw 
 

55. disease prevention.kf,tw 
 

56. social determinant* of health.kf,tw 
 

57. health determinant*.kf,tw 
 

58. determinant* of health.kf,tw 
 

59. occupational medicine.kf,tw 
 

60. community medicine.kf,tw 
 

61. epidemiolog*.kf,tw 
 

62. health status*.kf,tw 
 

63. global health.kf,tw 
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64. environmental health.kf,tw 

 
65. harm reduction.kf,tw 

 
66. environmental medicine.kf,tw 

 
67. /or 24-66 

 
68. 23 and 67 

1Limited to articles published in 1980 or after. 
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Supplementary Table B: Data Extraction Field Descriptions 
 

Data Extraction Field Description 

Title The article titles. 

First Author The last name and first initial of the first listed author of each article 

Year of Publication The year of publication noted for each article. 

Outcome level One of two categories: 
1. Population risk prediction: the aggregated outcome of a whole population 

was predicted 
2. Individual risk prediction: outcomes of individual participants were predicted 

Outcome Selected from the following, which are not mutually exclusive, as some articles 
predicted multiple outcomes: 

Non-communicable Disease 

1. Cardiovascular disease: any disease characterized by atherosclerosis and 
resulting ischemia, including myocardial infarction and stroke   

2. Suicide/suicidality 

3. Cancer 

4. Perinatal health: including pre-term birth, fetal alcohol spectrum disorder, 
congenital heart disease, growth failure, and neural tube defects  

5. Mental health conditions 

6. Osteoporosis  

7. Low-back pain and other musculoskeletal disorders 

8. Diabetes 

9. Dementia and cognitive Impairment 

10. Hypertension 

11. Injuries: including fractures, falls, traffic injury, and foreign body injuries 
12. Overweight and obesity 

13. Maternal health: including fertility, pregnancy risk, and severe maternal 
morbidity 

14. Multiple non-communicable disease 

15. Other non-communicable disease: including liver disorders, Crohn’s disease, 
glaucoma, dental caries, and lead poisoning 

Communicable Disease 

16. Influenza 

17. Dengue 

18. Gastroenteritis 

19. Tuberculosis 

20. Leishmaniasis 

21. Malaria 

22. Schistosomiasis 

23. Hepatitis: of viral origin 

24. Multiple communicable disease 

25. Other communicable disease: including zika, hand food and mouth disease, 
leptospirosis, yellow fever, West Nile, and typhoid fever 
Non-disease Outcomes 

26. Mortality 

27. Healthcare utilization 

28. Other non-disease outcomes: including health behaviours, vitamin d status, 
and wellness score 

Region Categorized based on Organisation for Economic Cooperation and Development 
(OECD) region except for the United States and China, which were given their own 
categories due to the high number of publications. One of the following: 

1. Africa 

2. Americas except for the United States 

3. Asia except for China 

4. China 

5. Europe 

6. Oceania 

7. United States 

8. Multi-region 

9. Other/Unknown 

Study Setting One of two categories: 

Page 35 of 58

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 on A
pril 24, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2020-037860 on 27 O

ctober 2020. D
ow

nloaded from
 

http://bmjopen.bmj.com/


For peer review only

1. Clinical: when data was collected in any type of clinical setting 

2. Community: when data was collected in a community setting 

Data Source Categories Selected from the following categories, which were not mutually exclusive, and often 
more than one was used: 

1. Geographical Information Database: any dataset containing basic map-based 
spatial information such as distances and topography 

2. Meteorological/Air Quality Datasets 
3. Satellite Imagery: examples include the moderate resolution imaging 

spectroradiometer (MODIS) and the Shuttle Radar Topography Mission 
(SRTM) 

4. Clinical Record Database: any dataset produced primarily for the purpose of 
delivering clinical care, such as electronic medical records and administrative 
healthcare databases produced by hospitals 

5. Disease Registry: a dataset maintained to monitor and/or provide care for a 
specific disease 

6. Population Health Survey: a regular epidemiological survey administered 
periodically to assess the health of populations 

7. Reportable Disease Database: a dataset containing reports of diseases for 
which it is mandatory for healthcare providers to report 

8. Other Health Records Database: any other health records dataset not 
encompassed in other categories, including various surveillance systems 

9. Census 

10. Vital Statistics: information regularly collected by governments regarding 
births and deaths 

11. Other Government Database: other governmental datasets including 
socioeconomic and demographic information 

12. HealthMap: a public health surveillance system using natural language 
processing to analyze informal data sources such as online news, individual 
reports, expert-curated discussions 

13. Private Insurance Claims: including medical, hospital, and prescription drug 
claims 

14. Private Insurance Questionnaires 

15. Internet Search: including the number of searches of certain key terms and 
meta data such as the location of the searches 

16. Social Media: both posts and metadata 

17. Investigator-generated: any datasets resulting from researcher-driven studies 
such as randomized controlled trials, cohort studies, and case-control studies 

18. Public Repositories: any freely available datasets such as MIMIC 

19. Health Organization Reports: health-related reports, typically including 
disease burden estimates, produced by non-governmental or governmental 
organizations such as the World Health Organization 

20. Not Reported 

Feature Categories Selected from the following categories, which were not mutually exclusive, as often 
more than one category was used (if more than one instance of a feature category was 
found in an article it was only counted once): 

Biomedical 

1. Anthropometry: measurements of the human body such as height and weight 
2. Basic Clinical Information: information typically collected during a brief 

physician encounter such as a focused medical history and physical 
examination, including blood pressure 

3. Basic Medical Tests: any test requiring somewhat specialized equipment such 
as an electrocardiogram  

4. Clinical Questionnaire: a standardized questionnaire administered in a 
clinical context such as the Montreal Cognitive Assessment or Patient Health 
Questionnaire-9 

5. Disease History: information regarding present and/or past diagnoses of an 
individual 

6. Genetic 

7. Healthcare Utilization 

8. Instrumental Activities of Daily Living: features relating to an individual’s 
daily functioning in areas such as cooking and shopping 

9. Laboratory Tests: any features derived from human specimens requiring 
specialized equipment for analysis, such as hematological and 
microbiological results 

10. Medical Imaging 

11. Medications 

12. Physical Functioning: features including the presence of any physical 
disabilities or the status of activities of daily living 

13. Prenatal: relevant aspects of the period before birth such as the use of 
prenatal vitamins or the results of routine lab results 
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14. Psychological: features including mood or anxiety symptoms 
15. Self-Reported Health Status 

Internet-based 

16. Social Media Images 

17. Social Media Location: either aggregated or individual 
18. Social Media Metadata: any information other than the content of social 

media posts, such as the frequency of general posts and time of posting 

19. Social Media Posts: social media post content 
20. Social Network: the interconnections among individuals in a social media 

platform 

21. Web Search Metadata: any aspects of web searches other than their content 
22. Web Search Queries: the content of web search queries either individual or 

aggregated 

Lifestyle 

23. Alcohol 

24. Diet 

25. Physical Activity 

26. Sleep 

27. Smoking 

28. Unspecified 

29. Other Substance-use 

30. Other Lifestyle 

Environment 

31. Air Quality 

32. Any Satellite Imagery-derived 

33. Biodiversity and Domestic Animals 

34. Satellite-based Built Environment 

35. Other Built Environment 

36. Connectivity: the ease of access to large urban centers and/or general services 

37. Electrical Lighting (satellite-based) 

38. General Environmental Exposures (not included in other categories) 

39. Hazard: characteristics of an external hazard such as the presence of lighting 
on a roadway 

40. Satellite-based Land-use 

41. Other Land-use 

42. Location 

43. Meteorological 

44. Surface Water Distribution/Flooding (satellite-based) 

45. Satellite-based Topography 

46. Other Topography 

47. Vector/Reservoir Characteristics: including mosquito surveillance numbers 
and the population of non-human primates in the case of yellow fever 

48. Vegetation (satellite-based): such as the normalized difference vegetation 
index (NDVI) 

49. Water Composition 

50. Other Satellite Imagery-derived 

51. Population Disease or Healthcare Statistics 

Socioeconomic and Demographic 

52. Adverse Adult Experiences/Trauma 

53. Adverse Childhood Experiences 

54. Age 

55. Antisocial Behaviour 

56. Economy Makeup: such as the number of individuals working in various 
types of occupations 

57. Education 

58. Electricity 

59. Employment 

60. Garbage Collection 

61. Healthcare System: such as the availability of universal, public healthcare 

62. Household Characteristics: the number of individuals in the household and 
their ages 

63. Housing Structure: aspects of the physical structure of housing such as the 
number of units and age of the building 

64. Human Development Index 

65. Immigration Status 

66. Income 

67. Income Inequality 

68. Language 

69. Legal System 

70. Literacy 
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71. Marital Status 

72. Occupational Risk: including risk factors for low-back pain such as 
prolonged sitting or injury from repetitive movements 

73. Parental: including disciplinary styles and the amount of time spent at home 
and number of parent-child activities 

74. Peer Group: behaviours of peer group 

75. Political Stability 

76. Population and Population Density 

77. Population Growth 

78. Race/Ethnicity 

79. Religion 

80. Sanitation: availability of sewage systems 
81. Sex/Gender 

82. Social Support 

83. Unspecified 

84. Vehicle Ownership: at population level 
85. Water Supply Quality 

86. Wealth 

87. Other Socioeconomic and Demographic 

88. Other Features 

89. Not Reported 

Number of Datasets Used The number of distinct datasets used regardless of the number of sources. 

Dataset Availability Selected from the following categories: 
1. Public: all the datasets used by article authors were publicly available 
2. Closed: all the datasets were not publicly available or appeared not to be 

available 
3. Closed and Public: the datasets used were a mix of available and not 

available 
Any Unstructured Text Used Natural human language was included in the model as a feature with no initial 

ordinal/nominal structure imposed. 
Number of Observations The number of individuals or other units of observations (such as countries) included in 

the predictive model. If multiple subsets of the data and/or distinct datasets were used for 
different models, the largest number was used. 

Machine Learning Algorithm Type The algorithm type used to build the predictive model, with multiple types often used in 
the same article. Algorithms were only counted once when used in each article, even if 
used to build multiple different models in the same article. Selected from the following 
categories: 

1. Neural Networks: includes deep learning/deep neural networks as well as 
other simpler neural networks 

2. Support Vector Machine 

3. Single Tree-based Methods: includes classification trees, regression trees, and 
decision trees 

4. Random Forest 

5. Least Absolute Shrinkage and Selection Operator (LASSO) 

6. Bayesian Networks: includes naïve bayes 
7. Feature Selection Methods: includes k-means clustering and genetic 

algorithms; these were often used as a pre-processing step and in a few cases 
this was the only use of machine learning (i.e. a machine learning model was 
not used to build the predictive model itself) 

8. Boosted Tree-based Methods: includes gradient boosting and boosted trees 
9. K-Nearest Neighbour 

10. Elastic Net 

11. Ridge Regression 

12. Other: includes association rule learning, single task learning, multitask 
learning, rough set classifier, associative classification, bagging, partial least 
squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle 
swarm optimization, ant colony optimization, Isomap, PCA, Disease State 
Index, Stacking, kernel conditional density estimation, stepwise deletion, 
conditional random fields, contrast mining, grammatical evolution, Learning 
from Examples Using ROugh Sets, AUtoregression with exogenous outputs, 
and natural language processing 

Compared with Other Statistical Methods Whether the machine learning method’s predictive performance was compared with a 
traditional parametric statistical regression model such as logistic regression (yes/no). 

Reported Data Pre-processing Whether any aspects of data cleaning or pre-processing were reported (yes/no). 
Examples include how missing data was handled, whether log transformations were 
done, and if derived variables were generated. Missing data and all model development 
processes have been identified as important to report by TRIPOD.[1] 

Reported Method of Feature Selection  Whether the method of feature selection was reported (yes/no). When there is a high 
number of features initially, this is usually done using algorithmic, domain knowledge-
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informed, or mixed approaches. Feature selection is an important element of reporting as 
identified by TRIPOD.[1] 

Number of Features The number of features included in the final prediction model after feature selection. If 
multiple models were used in one article, the largest number of features was chosen. 

Reported Hyper-parameter Search Whether the process for determining the hyper-parameters of the machine learning 
model, such as the number of features used to build each tree in a random forest, was 
reported (yes/no). This is an important aspect of model development[2], and thus 
considered an important element to report by the TRIPOD statement.[1] 

Method of Validation How the authors validated the predictive performance of their model, selected from one 
of the following categories: 

1. Holdout: the dataset was divided into two parts; one part was used to train the 
model and the other was used to test the model 

2. Cross-validation and bootstrap: the dataset was either divided into more than 
two parts and repeatedly trained and tested on different parts of the dataset or 
random sampling with replacement was used to train the model 

3. External: the model was tested on a completely separate dataset  
Reported Descriptive Statistics Whether the article reported any descriptive statistics regarding their sample (yes/no). 

We considered a broad array of descriptive statistics including sample population 
demographics, feature distributions, and outcome distributions. These are all important 
reporting elements according to TRIPOD.[1] 

Calibration Metrics The types of calibration predictive performance metrics used to evaluate models, which 
could be more than one. Calibration refers to a model’s ability to accurately predict 
absolute probabilities of the outcome occurring.[3] One or more of the following 
categories was selected if a calibration metric was used: 

1. Manual or visual comparison: includes calibration plots 
2. Hosmer-Lemeshow 

3. Observed/Expected: is a ratio or comparison of observed and 
predicted/expected probabilities 

4. Other calibration metric: includes mean bias (from Bland-Altman plot), 
calibration factoring, calibration statistic 

Discrimination Metrics The types of discrimination predictive performance metrics used to evaluate models, 
which could be more than one. Discrimination refers to a model’s ability to correctly 
rank-order individuals according to their likelihood of developing the outcome.[3] One 
or more of the following categories was selected if a discrimination metric was used: 

1. Area under the curve: meaning receiver operator curve; also includes c-
statistic and s-index 

2. Accuracy: includes accuracy, misclassification, and error rate 
3. Recall: includes sensitivity, specificity, true/false positive, and true/false 

negative 

4. Precision: includes positive predictive value, negative predictive value, and 
precision 

5. F statistics 

6. Likelihood Ratio: includes both positive and negative likelihood ratios 
7. Youden Index 

8. Manual or visual comparison 

9. Other discrimination metric: includes G-means, k-statistic, and Matthews 
correlation coefficient 

Overall Goodness of Fit Metrics The types of overall goodness of fit performance metrics used to evaluate models, which 
could be more than one. Overall goodness of fit refers to a model’s predictions’ 
concordance with observed outcomes. One or more of the following categories was 
selected if an overall performance metric was used: 

1. Root mean squared error 

2. Mean squared error 

3. Mean absolute error 

4. Mean absolute percentage error 

5. R2: includes pseudo-R2s 
6. Correlation 

7. Akaike Information Criterion or Bayesian Information Criterion 

8. Other performance metric: includes penalty error, total sum of squares, 
proportional reduction in error, overall prediction error, specific prediction 
error, Nash-Sutcliffe, root mean squared percentage error, mean relative 
absolute error, analysis of variance F-stat, -2LogLikelihood, relative 
efficiency, deviance, Ljung-Box test, mean absolute deviation, standard error, 
Brier score, log score, and mean percentage error 

Did Machine Learning Models Outperform 
Traditional Methods? 

Whether the machine learning-based predictive models outperformed the statistical 
parametric regression models based on the performance metrics supplied by the authors 
(yes/no). However, this should not be taken to mean that the difference in model 
performance was reliable or valid. Often, important performance metrics and essential 
aspects of model development were not reported, making accurate comparisons difficult. 
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Discussed the Practical Costs of Prediction Errors Whether the article discussed the relative risks of false negative and false positive results 
based on their predictive model in contexts where it might be used (yes/no). These costs 
are important for determining the usefulness and application of predictive models.[3] 

Stated Rationale for Using Machine Learning Whether the article stated any reasons for using a machine learning approach instead of a 
statistical parametric regression approach (yes/no). 

Rationale for Using Machine Learning - Free 
Text 

Reviewers included article quotations and summaries in this section to capture different 
rationales for using machine learning. Reviewers attempted to only extract free text 
regarding each specific type of rationale once 

Discussed Model Usability Whether the article discussed any aspect of how the model could be practically used in a 
relevant context (yes/no). 

Stated Model Limitations Whether the article discussed any potential limitations of the research (yes/no). 

Model limitations - Free Text Reviewers included article quotations and summaries in this section to capture different 
reported limitations. Reviewers attempted to only extract free text regarding each 
specific type of limitation once. 

Discussed Model Implementation Whether the article included discussion of any consequences of model implementation 
such as potential clinical, population-health, and policy-level impacts (yes/no). 

Model Implementation - Free Text Reviewers included article quotations and summaries in this section to capture different 
reported consequences of model implementation. Reviewers attempted to only extract 
free text regarding each specific type of implementation impact once. 
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Supplementary Table C: Types of machine learning algorithms used. 
 

Types of Algorithms Number Percent 

Neural Networks* 95 41.13% 

Support Vector Machine 59 25.54% 

Single tree-based methods† 52 22.51% 

Random Forest 48 20.78% 

LASSO 25 10.82% 

Bayesian Networks‡ 23 9.96% 

Feature selection methods§ 20 8.66% 

Boosted tree-based methods¶ 19 8.23% 

K-Nearest Neighbour 19 8.23% 

Elastic Net 9 3.90% 

Ridge regression 5 2.16% 

Other|| 22 9.52% 
*Includes deep neural networks. 
†Includes CART, decision trees. 
‡Includes naive bayes. 
§Includes cluster methods (e.g. k-means clustering) and genetic algorithms. 
¶Includes gradient boosting and boosted trees. 
||Including (all algorithms used once unless otherwise specified) association rule learning (n=3), single task learning, multitask learning, rough set 
classifier, associative classification, bagging, partial least squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle swarm 
optimization, ant colony optimization, isomap, principal components analysis, disease state Index, stacking, kernel conditional density estimation, 
stepwise deletion, conditional random fields, contrast mining, grammatical evolution, Learning from Examples Using ROugh Sets, 
AUtoregression with exogenous outputs, and natural language processing (n=2). 
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Supplementary Table D: Detailed feature categories included in studies. 
 

Feature Category Number of Articles Percent 

Biomedical 141 61.04 

Anthropometry 58 25.11 

Basic Clinical Information 62 26.84 

Basic Medical Tests 10 4.33 

Clinical Questionnaire 22 9.52 

Disease History 100 43.29 

Genetic 20 8.66 

Healthcare Utilization 28 12.12 

Instrumental Activities of Daily Living 6 2.60 

Laboratory Tests 47 20.35 

Medical Imaging 10 4.33 

Medications 44 19.05 

Physical Functioning 14 6.06 

Prenatal 10 4.33 

Psychological 36 15.58 

Self-Reported Health Status 7 3.03 

Internet-based 21 9.09 

Social Media Images 1 0.43 

Social Media Location 5 2.16 

Social Media Metadata 4 1.73 

Social Media Posts 12 5.19 

Social Network 3 1.30 

Web Search Metadata 1 0.43 

Web Search Queries 12 5.19 

Lifestyle 81 35.06 

Alcohol 39 16.88 

Diet 19 8.23 

Physical Activity 26 11.26 

Sleep 11 4.76 

Smoking 58 25.11 

Unspecified 4 1.73 

Other Substance-use 13 5.63 

Other Lifestyle 13 5.63 

Environment 82 35.50 

Air Quality 5 2.16 

Any Satellite Imagery-derived 19 8.23 

Biodiversity and Domestic Animals 2 0.87 

Built Environment 8 3.46 

Satellite 4 1.73 

Other 4 1.73 
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Connectivity 4 1.73 

Electrical Lighting1 1 0.43 

General Environmental Exposures (not included in other categories) 9 3.90 

Hazard 10 4.33 

Land-use 2 0.87 

Satellite 1 0.43 

Other 1 0.43 

Location 27 11.69 

Meteorological 40 17.32 

Surface Water Distribution/Flooding1 6 2.60 

Topography 14 6.06 

Satellite 12 5.19 

Other 2 0.87 

Vector/Reservoir Characteristics 9 3.90 

Vegetation1 16 6.93 

Water Composition 1 0.43 

Other Satellite Imagery-derived 7 3.03 

Population-level Disease or Healthcare Statistics 38 16.45 

Socioeconomic and Demographic Factors 150 64.94 

Adverse Adult Experiences/Trauma 5 2.16 

Adverse Childhood Experiences 4 1.73 

Age 112 48.48 

Antisocial Behaviour 2 0.87 

Economy Makeup 1 0.43 

Education 33 14.29 

Electricity 2 0.87 

Employment 22 9.52 

Garbage Collection 1 0.43 

Healthcare System 5 2.16 

Household Characteristics 10 4.33 

Housing Structure 4 1.73 

Human Development Index 1 0.43 

Immigration Status 5 2.16 

Income 24 10.39 

Income Inequality 3 1.30 

Language 2 0.87 

Legal System 1 0.43 

Literacy 2 0.87 

Marital Status 21 9.09 

Occupational Risk 10 4.33 

Parental 3 1.30 

Peer Group 1 0.43 

Political Stability 1 0.43 
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Population and Population Density 11 4.76 

Population Growth 2 0.87 

Race/Ethnicity 29 12.55 

Religion 3 1.30 

Sanitation 5 2.16 

Sex/Gender 95 41.13 

Social Support 10 4.33 

Unspecified 6 2.60 

Vehicle Ownership 2 0.87 

Water Supply Quality 5 2.16 

Wealth 2 0.87 

Other Socioeconomic and Demographic 29 12.55 

Other Features 17 7.36 

Not Reported 1 0.43 

1See supplementary table B for greater detail regarding feature categories 
2Satellite-derived 
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Appendix A: Eligibility Criteria 
 
The following types of articles were excluded: 
 

● Reviews; 

● Focused on a methodological development; 

● Only included an abstract; 

● Only used linear regression, logistic regression, generalized additive models, or other approaches not 
considered machine learning for the purpose of this review; 

● Only applied models to diagnosis, treatment decisions, or prognosis of individuals who already had a 
disease; 

● Only related to logistics, human resources, finance, or management involved in provision of public health 
services; 

● Focused on occupational health, traffic accidents, or environmental monitoring, with no direct link to 
population health outcomes; 

● Used smart home or home monitoring systems; 
● Used advanced imaging or other expensive predictors that would be difficult or unsafe to scale to a 

population level; 
● Focused on clinical decision support systems; 
● Predicted adverse drug effects, except vaccines. 
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Appendix B: Examples of article titles removed during title screening 
 
1. Improved classification of mangroves health status using hyperspectral remote sensing data 
2. Diesel engine and propulsion diagnostics of a mini-cruise ship by using artificial neural networks 
3. Relationship between benthic macroinvertebrate bio-indices and physicochemical parameters of water: A tool for 
water resources managers 
4. Adaptive one-switch row-column scanning 
5. Development of a distributed bearing health monitoring and assessing system 
6. Neural networks based sensor validation and recovery methodology for advanced aircraft engines 
7. Mining images in publicly-available cameras for homeland security 
8. The human pulvinar and attentional processing of visual distractors 
9. Text classification techniques in oil industry applications 
10. Research on acoustic mechanical fault diagnosis method of high voltage circuit breaker based on improved 
EEMD 
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Appendix C: All studies included in the review. 
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8  Aichele S, Rabbitt P, Ghisletta P. Illness and intelligence are comparatively strong predictors of individual 
differences in depressive symptoms following middle age. Aging Ment Health 2017;:1–10. 
doi:https://dx.doi.org/10.1080/13607863.2017.1394440 

9  Akbulut A, Ertugrul E, Topcu V. Fetal health status prediction based on maternal clinical history using 
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12  Allen T, Murray KA, Zambrana-Torrelio C, et al. Global hotspots and correlates of emerging zoonotic 
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13  Allore H, Tinetti ME, Araujo KLB, et al. A case study found that a regression tree outperformed multiple 
linear regression in predicting the relationship between impairments and Social and Productive Activities 
scores. J Clin Epidemiol 2005;58:154–
61.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=15680749 

14  Al-Mallah MH, Elshawi R, Ahmed AM, et al. Using Machine Learning to Define the Association between 
Cardiorespiratory Fitness and All-Cause Mortality (from the Henry Ford Exercise Testing Project). Am J 

Cardiol 2017;120:2078–84. doi:10.1016/j.amjcard.2017.08.029 
15  Almeida AS, Werneck GL. Prediction of high-risk areas for visceral leishmaniasis using socioeconomic 
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16  Alves EB, Costa CHN, de Carvalho FAA, et al. Risk Profiles for Leishmania infantum Infection in Brazil. 
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17  Amini P, Ahmadinia H, Poorolajal J, et al. Evaluating the High Risk Groups for Suicide: A Comparison of 

Logistic Regression, Support Vector Machine, Decision Tree and Artificial Neural Network. Iran J Public 

Health 2016;45:1179–87.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149472/pdf/IJPH-45-1179.pdf 
NS  - 

18  Amini P, Maroufizadeh S, Samani RO, et al. Factors Associated with Macrosomia among Singleton Live-
births: A Comparison between Logistic Regression, Random Forest and Artificial Neural Network Methods. 
Epidemiol Biostat Public Heal 2016;13. doi:10.2427/11985 

19  Anand A, Shakti D. Prediction of diabetes based on personal lifestyle indicators. 2015;:673–6. 
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Appendix D: Narrative Synthesis of Aspects of Discussion 
 
Rationale for applying machine learning approaches mainly centered around it being “state of the art” or better 
suited to modeling complex data than regression. Machine learning was thought to be “state of the art” due to 
improved accuracy and deeper insights. Discussions of complex modeling focused on capturing non-linear 
relationships, interactions, and high-dimensionality. 
 
When authors discussed model limitations, frequent concerns were an inadequate sample size, too few features, 
questionable generalizability, and a lack of interpretability. Aspects of the data other than sample size and feature 
number, such as potential measurement error or selection bias, were infrequently mentioned. 
 
When discussing model implementation, many articles stated that predictive accuracy would be improved; but they 
did not frequently discuss how this could be translated to specific health-related policies or actions. Additionally, 
they rarely mentioned organizations and knowledge users that would be best suited to leverage the model. 
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ABSTRACT (300 / 300 words)

Objective. To determine how machine learning has been applied to prediction applications in 
population health contexts. Specifically, to describe which outcomes have been studied, the data 
sources most widely used, and whether reporting of machine learning predictive models aligns 
with established reporting guidelines.

Design. A scoping review.

Data Sources. MEDLINE, EMBASE, CINAHL, ProQuest, Scopus, Web of Science, Cochrane 
Library, INSPEC, and ACM Digital Library were searched on July 18th, 2018.

Eligibility criteria. We included English articles published between 1980 and 2018 that used 
machine learning to predict population health-related outcomes. We excluded studies that only 
used logistic regression or were restricted to a clinical context.

Data extraction and synthesis. We summarized findings extracted from published reports, 
which included general study characteristics, aspects of model development, reporting of results, 
and model discussion items.

Results. Of 22 618 articles found by our search, 231 were included in the review. The United 
States (n=71, 30.74%) and China (n=40, 17.75%) produced the most studies. Cardiovascular 
disease (n=22, 9.52%) was the most studied outcome. The median number of observations was 
5414 (interquartile range (IQR)=16543.5) and the median number of features was 17 (IQR=31). 
Health records (n=126, 54.5%) and investigator-generated data (n=86, 37.2%) were the most 
common data sources. Many studies did not incorporate recommended guidelines on machine 
learning and predictive modeling. Predictive discrimination was commonly assessed using area 
under the receiver operator curve (n=98, 42.42%) and calibration was rarely assessed (n=22, 
9.52%).

Conclusions. Machine learning applications in population health have concentrated on regions 
and diseases well-represented in traditional data sources, infrequently using big data. Important 
aspects of model development were under-reported. Greater use of big data and reporting 
guidelines for predictive modeling could improve machine learning applications in population 
health.

Registration. Registered on the Open Science Framework on July 17th, 2018 (available at: 
https://osf.io/rnqe6/). 
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Strengths and limitations of this study

• Our review is one of the first syntheses of machine learning applications in population 

and public health.

• We used a robust search strategy, including nine peer-reviewed databases, grey literature, 

and reference searching, to comprehensively describe the literature.

• We compared reported study characteristics to established predictive modeling reporting 

guidelines, which provide an objective measure of the quality of reporting.

• Since both machine learning and population health have broad definitions, there may be 

some relevant articles that were not included.

• Given our focus on prediction, we could not address many other important intersections 

of machine learning and population health, such as surveillance and health promotion.

Word Count: 3663
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INTRODUCTION

Predictive models have a long history in clinical medicine. One well-known example is the 

Framingham risk score, which was first developed in 1967.[1] Such models have proliferated 

throughout clinical practice to inform management and interventions, including preventive 

approaches. More recently, researchers have developed prediction models beyond individual 

clinical applications, for population health uses.[2,3] While there is no universal definition of 

population health, it generally encompasses  “the health outcomes of a group of individuals, 

including the distribution of such outcomes within the group.”[4] Similarly to clinical medicine, 

population-level models can be used to identify high-risk groups, directing the implementation of 

preventive interventions. Additionally, population health prediction models can inform 

policymakers about future disease burden and help to assess the impact of public health actions. 

Thus far, most predictive modeling in both medicine and population health has used parametric 

statistical regression models. More recently, there has been increasing interest in the use of a 

broader range of machine learning methods for prediction tasks.[5–7]

Machine learning can be loosely defined as the study and development of algorithms that learn 

from data with little or no human assistance.[8] These approaches have been increasingly applied 

in the past two decades as a result of the enabling growth of big data reserves and computational 

power.[9] Recent machine learning applications to prediction in population health contexts 

include forecasting childhood lead poisoning,[10] yellow fever incidence,[11] and the onset of 

suicidal ideation.[12] 
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The distinction between machine learning algorithms and parametric regression models is 

debated.[13] Regression models tend to impose more structure on the data, requiring greater 

human input for the verification of distributional assumptions and incorporation of domain 

knowledge in choosing the input parameters.[14] Algorithms employed in machine learning 

often derive more structure directly from the data, making fewer distributional assumptions 

about the data or variables. The literature remains divided on the relative advantages of more 

traditional approaches compared to newer methods;[15] however, given the wide variation in 

applications and the data used in these examples, broad assessments of superiority are often not 

appropriate. Also, there are debates regarding the differences in developing and validating 

machine learning approaches for health applications.[15,16]

Population health applications of prediction models are relatively new compared to clinical 

applications; correspondingly, the role of machine learning in these applications has been far less 

studied and discussed in the health literature. The goals of our review are to determine how 

machine learning has been applied to prediction in population health, the nature of the models 

and data used, and how the models have been developed. We also sought to assess how well the 

published literature aligns with recommended guidelines for reporting of predictive models and 

machine learning, by extracting features related to model development and performance that are 

highlighted by two such guidelines.[16,17] 

METHODS
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We based our scoping review on the framework proposed by Arksey and O’Malley[18] and 

refined by the Joanna Briggs Institute.[19] We also followed the more recent Preferred Reporting 

Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews.[20] Our study 

protocol was registered on the Open Science Framework on July 17th, 2018 (available at: 

https://osf.io/rnqe6/).

Our initial goal was to scope out all machine learning applications in population health. 

However, the screening process identified a much larger number of publications than anticipated. 

Consequently, to describe the subject area comprehensively, we restricted our scope to articles 

predicting future outcomes.

Search Strategy

Our search strategy consisted of peer-reviewed literature databases, grey literature, and reference 

searches. First, we searched nine interdisciplinary, indexed databases (MEDLINE, EMBASE, 

CINAHL, ProQuest, Scopus, Web of Science, Cochrane Library, INSPEC, and ACM Digital 

Library) on July 18th, 2018 for papers published between 1980 and 2018. Our search was 

informed by consultation with a health science librarian, a machine learning textbook,[21] and a 

similar registered review.[15] Supplementary Table A includes the full MEDLINE search 

strategy and filters, and serves an example search query for all database searches.

Our grey literature search included Google Scholar and Google. We developed a Google Scholar 

search based on terms related to ‘machine learning’ and ‘population health’, which was refined 

based on the relevance of initial results. The first 200 results were included in screening. A 
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similar approach was used for the general Google search, which we restricted to the first 30 

results. We examined relevant websites for publications. Results were limited to articles 

published on or before the date of the peer-reviewed literature search. Finally, we searched the 

references of relevant reviews for additional articles. Most of these reviews were identified 

during screening.

Eligibility Criteria

We included articles if they used machine learning to develop a predictive model that could be 

applied in a population health context. Therefore, we excluded articles where the model was 

trained primarily on people with a pre-existing disease. We also excluded articles that were only 

indirectly related to population health; for example, traffic accident models that did not predict a 

health outcome. Studies predicting individual outcomes were included if the approach was 

determined to be scalable to a population level. Finally, articles using only logistic regression 

were excluded. See Appendix A for the full eligibility criteria.

In order to manage the scope, articles were excluded if their full text could not be retrieved with 

our institutional licenses and if they were not written in English. Finally, articles published prior 

to 1980 were excluded as earlier machine learning investigators lacked comparable amounts of 

digitized data, software, and computational resources.

Screening Process
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Initially, individual reviewers screened titles for obvious irrelevance to the review topic (JDM 

and EB). An example of an obviously irrelevant topic would be a paper describing the machine 

health lifespan of a piece of industrial equipment; specific examples of articles removed at this 

stage are listed in Appendix B. Then, we imported remaining references into Covidence 

systematic review management software.[22] Two reviewers screened the abstracts of remaining 

articles (JDM, EB, MO, and DF). Prior to evaluating full texts using all eligibility criteria, we 

then screened out articles that did not focus on a prediction application (JDM, EB, MO). Finally, 

two reviewers screened the full text of remaining articles (JDM, EB, MO). Conflicts were 

resolved by discussion between at least two reviewers.

Data Extraction and Synthesis

Individual authors extracted article data (JDM, EB, MO, and DF). We based our extraction items 

on features identified in a recent biomedical guideline for reporting of machine learning 

predictive models [16] and on the transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis (TRIPOD) statement.[17] Major extraction categories 

identified from these guidelines included general study characteristics (e.g. geographic location 

and sample size), model development (e.g. algorithms used and type of validation), results (e.g. 

discrimination and calibration measures), and model discussion (e.g. practical costs of errors and 

implementation). See Supplementary Table B for a description of each extraction item. 

We computed descriptive statistics for all extraction items. For categorical extracted features 

(e.g. whether or not unstructured text was used, the method of validation used), we calculated the 

total number and percent of all studies in a particular category. For continuous extracted features 
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(e.g. number of observations in the study sample), we calculated the median value and the 

interquartile range (range between quartile 1 and quartile 3 in the value distribution). We also 

completed a narrative synthesis of discussion elements based on the text of included manuscripts.

Patient and Public Involvement Statement

There was no patient or public involvement in this study.

RESULTS

We initially retrieved 16 172 articles, after removing duplicates (Figure 1). We excluded 6494 

articles after title screening, 7860 after abstract screening, 1453 when screening out non-

prediction articles, and 121 after full-text screening. This resulted in 231 articles being included 

in the final review (Appendix C).

General Study Characteristics

The number of articles published in the population health prediction area that used machine 

learning increased dramatically after 2007 (Supplementary Figure A). Studies were undertaken 

worldwide, with the largest representation from the United States (US) (n=71, 30.74%) and 

China (n=40, 17.75%) (Table 1). Relatively few articles came from Oceania (n=2, 0.87%), 

Africa (n=5, 2.16%), and the Americas outside of the US (n=13, 5.63%). 
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Characteristic* Number of Articles# Percent of Articles** 

Region

United States 71 30.74%

Asia Excluding China 41 17.75%

China 40 17.32%

Europe 36 15.58%

Americas Excluding United States 13 5.63%

Africa 5 2.16%

Oceania 2 0.87%

Multi-region 15 6.49%

Not Reported 8 3.46%

Year published

before 1990 1 0.4%

1990-1999 3 1.3%

2000-2004 13 5.6%

2005-2009 18 7.8%

2010-2014 70 30.3%

2015-2018 126 54.5%

Outcome level†

Individual Risk Prediction 139 60.17%

Population Risk prediction 92 39.83%

Number of observations Median = 5414# IQR = 16543.5**

Not reported 72 31.2%

Number of features Median = 17# IQR = 31**

Not reported 59 25.5%

Used any unstructured text

Yes 24 10.4%
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Characteristic* Number of Articles# Percent of Articles** 

No 207 89.6%

Machine learning model was compared with other 

statistical methods

111 48.1%

Reported data pre-processing‡

Yes 160 69.3%

No 71 30.7%

Reported method of feature selection

Yes 164 71.0%

No 67 29.0%

Reported hyper-parameter search

Yes 114 49.4%

No 117 50.6%

Method of Validation

Holdout 112 48.5%

Cross-validation or bootstrap 84 36.4%

External 15 6.5%

Not reported 32 13.9%

Reported descriptive statistics§

Yes 140 60.6%

No 91 39.4%

Discussed the practical costs of prediction errors¶

Yes 36 15.6%

No 195 84.4%

Stated rationale for using machine learning

Yes 179 77.5%

No 52 22.5%
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Characteristic* Number of Articles# Percent of Articles** 

Discussed model usability 

Yes 91 39.4%

No 140 60.6%

Stated model limitations 

Yes 161 69.7%

No 70 30.3%

Discussed model implementation

Yes 184 79.7%

No 47 20.3%

Dataset Availability by Study||

Closed 149 64.5%

Public 42 18.2%

Closed and Public 38 16.5%

Unknown 1 0.4%

*Refer to Supplementary Table A for a description of each characteristic and rationales for including some elements.

†Individual risk prediction refers to studies that developed models to predict the health outcomes of individuals, while population risk prediction 

refers to studies that developed models to predict aggregated population-level health outcomes.

‡Whether any aspects of data cleaning or pre-processing were reported. Examples include how missing data was handled, whether log 

transformations were done, and if derived variables were generated.

§Included a broad array of descriptive statistics such as sample population demographics, feature distributions, and outcome distributions.

¶Whether the article discussed the relative risks of false negative and false positive results based on their predictive model in contexts where it 

might be used.

||Closed refers to datasets that were not immediately available in the public domain or were not identifiable as such.

#In rows where the characteristic being measured is an integer count (e.g. number of features), this column refers to the median value.

**In rows where the characteristic being measured is an integer count (e.g. number of features), this column refers to the interquartile range (IQR; 

quartile 3 – quartile 1). 

Table 1: Summary statistics of included articles
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The median number of observations in each article was 5414 (interquartile range (IQR)=16 

543.5) and the median number of features (i.e. independent variables) used was 17 (IQR=31) 

(Table 1). Seventy-two studies (31.2%) did not report the number of observations. These studies 

often used data from reportable disease databases, which do not necessarily have a firm sampling 

frame, making ascertainment of the number of observations difficult.

Algorithms

The most frequently used machine learning algorithms were neural networks (n=95, 41.13%), 

followed by support vector machines (n=59, 25.54%), single tree-based methods (n=52, 

22.51%), and random forests (n=48, 20.78%) (Supplementary Table C). About half of the 

articles made a comparison with statistical methods (n=111, 48.1%), which were generally 

logistic regression or autoregressive integrated moving average models (Table 1).

Outcomes

Non-communicable disease outcomes were assessed by many articles (n=95, 41.13%), with 

communicable diseases (n=76, 32.90%) and non-disease outcomes (n=60, 25.97%) studied 

somewhat less often. The outcome most frequently predicted was cardiovascular disease (n=22, 

9.52%) (Figure 2). Other commonly forecasted non-communicable disease outcomes were 

suicidality (n=13, 5.63%), cancer (n=12, 5.19%), and perinatal health (n=12, 5.19%). Influenza 

(n=15, 6.49%) and dengue fever (n = 14, 6.06%) were the most predicted communicable disease 

outcomes. Aside from non-communicable and communicable disease, mortality (n=13, 5.63%) 

and healthcare utilization (n=14, 6.06%) were also frequently predicted.
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Data

Data sources were usually structured (n=207, 89.6%) and closed, i.e. not publicly available 

(n=189, 81.8%) (Table 1). In general, high-dimensional data with many observations, such as 

multi-linked electronic medical records (EMRs) or internet-based data, may offer the most value 

for machine learning applications. These data types were represented in some of the articles 

captured, for which the most frequently reported data sources were health records (n=126, 

54.5%) and investigator-generated (e.g. cohort studies) (n=86, 37.2%) (Table 2). A large 

proportion of studies (n=42, 18.2%) used an environmental data source (e.g. satellite imagery), 

mostly for prediction of infectious disease. Government databases (n=32, 13.9%) and internet-

based data (n=21, 9.1%) were less frequently used. Among studies from China and the US, 

80.0% and 67.6% respectively used health records data, whereas 54.5% of studies overall used 

these data sources (Supplementary Figure B). 

Sources of Data Used* Number Percent

Environmental 42 18.2%

Geographical Information Database 12 5.2%

Meteorological/Air Quality Datasets 32 13.9%

Satellite Imagery 21 9.1%

Health Records Database 126 54.5%

Clinical Record Database† 46 19.9%

Disease Registry 2 0.9%

Population Health Survey 15 6.5%

Reportable Disease Database 42 18.2%
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Other Health Records Database 30 13.0%

Government Database 32 13.9%

Census 11 4.8%

Vital Statistics 13 5.6%

Other Government Database 14 6.1%

HealthMap 3 1.3%

Private Insurance Data 9 3.9%

Private Insurance Claims 9 3.9%

Private Insurance Questionnaire 3 1.3%

Internet-based 21 9.1%

Search engine 12 5.2%

Social Media 12 5.2%

Investigator-generated‡ 86 37.2%

Public Repositories§ 19 8.2%

Health Organization Reports¶ 5 2.2%

Not Reported 6 2.6%

*Categories are not mutually exclusive.

†Any dataset produced primarily for the purpose of delivering clinical care, such as electronic medical records and administrative healthcare 

databases produced by hospitals.

‡Any datasets resulting from researcher-driven studies such as randomized controlled trials, cohort studies, and case-control studies.

§Any freely available datasets such as MIMIC or the UC Irvine Machine Learning Repository.

¶Health-related reports, typically including disease burden estimates, produced by non-governmental or governmental organizations such as the 

World Health Organization.

Table 2: Data sources

Features

The median number of features used in a machine learning algorithm was 17 (IQR = 31; Table 

1). The frequency of specific feature categories used are shown in Supplementary Figure C and 
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Supplementary Table D. Biomedical and sociodemographic features were frequently used 

(Supplementary Figure C). Of these, the most commonly used were disease history (43.3%), age 

(48.5%), and sex/gender (41.1%). Among lifestyle features, smoking was the most frequently 

used (25.1%) and of environmental features, meteorology was common (17.3%). Social media 

posts (5.2%) and web search queries (5.2%) were not often used. In general, most studies 

focused on features typical of clinical prediction models, such as subject demographics, 

behaviours, and medical histories. We observed limited use of other data, such as unstructured 

text or image-based features, which are difficult to parse using traditional statistical approaches 

and could benefit more from machine learning applications

Model Development and Validation

The majority of articles reported how data pre-processing (n=160, 69.3%) and feature selection 

(n=164, 71%) were done (Table 1). Fewer authors reported how hyperparameters were selected 

(n=114, 49.4%). Most studies used a holdout method of validation (n=112, 48.5%), fifteen 

(6.5%) externally validated their models, and thirty-two (13.9%) did not report how models were 

validated.

Performance Metrics

Most articles reported a prediction discrimination metric (n=172, 74.46%), which quantifies a 

model’s ability to correctly rank-order individuals (Table 3).[23] Discrimination is a useful 

performance metric in cases where classification is the primary goal, including many machine 

learning-relevant tasks such as image recognition. The most common discrimination metrics 
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employed were area under the receiver operator curve (n=98, 42.42%), accuracy (n=76, 32.90%), 

and recall (n=68, 29.44%). 

In clinical and public health settings, accurate prediction of outcome probabilities is important to 

the practical utility of a tool, so assessing model calibration is very important.

Few articles in our study reported a measure of calibration (n=21, 9.09%), which describes how 

well a model predicts the absolute probability of outcomes(table 3).[23] Calibration was mostly 

assessed with graphing methods (n=9, 3.90%) and Hosmer-Lemeshow statistics (n=8, 3.46%). 

Some articles also reported a measure of overall model fit (n=77, 33.33%). Overall performance 

was usually measured with a form of mean error, such as root mean squared error (n=35, 

15.15%). 

Prediction Performance Metrics Used Number Percent

Any overall performance metric 77 33.33%

RMSE 35 15.15%

MSE 26 11.26%

MAE 24 10.39%

MAPE 23 9.96%

R2* 19 8.23%

Correlation 8 3.46%

AIC or BIC 8 3.46%

Other performance metric† 21 9.09%

Any discrimination metric 172 74.46%

Area under the curve‡ 98 42.42%

Accuracy§ 76 32.90%

Recall¶ 68 29.44%

Precision|| 39 16.88%
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F statistics 10 4.33%

Likelihood Ratio** 4 1.73%

Youden Index 3 1.30%

Manual or visual comparison 3 1.30%

Other discrimination metric†† 4 1.73%

Any calibration metric 21 9.09%

Manual or visual comparison‡‡ 9 3.90%

Hosmer-Lemeshow 8 3.46%

Observed/Expected 5 2.16%

Other calibration metric§§ 3 1.30%

Any reclassification metric 6 2.60%

Net Reclassification Index 5 2.16%

Integrated Discrimination Improvement 3 1.30%

RMSE = Root Mean Squared Error; MSE = Mean Squared Error; MAE = Mean Absolute Error; MAPE = Mean 

Absolute Percentage Error; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion.

*Includes R2 and pseudo-R2 metrics.

†Includes penalty error, Total Sum of Squares, proportional reduction in error, overall prediction error, specific prediction error, Nash-Sutcliffe, 

Root Mean Squared Percentage Error (2), mean relative absolute error, Analysis of Variance F-stat, 2LogLikelihood, relative efficiency, 

deviance, Ljung-Box test, mean absolute deviation, standard error, Mean Percentage Error, Brier score, and log score.

‡Includes c-statistic, s-index, area under ROC / AUC.

§Includes accuracy, misclassification, and error rate.

¶Includes sensitivity, specificity, true/false positive, and true/false negative.

||Includes positive predictive value, negative predictive value, and precision.

**Includes positive/negative LR.

††Includes G-means (2), k-statistic, Matthews correlation coefficient.

‡‡Includes calibration plots.

§§Includes mean bias (from Bland-Altman plot), calibration factoring, and Calibration statistic.

Table 3: Prediction Performance Metrics

Study Discussion and Narrative Synthesis
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Most articles included some discussion of their rationale for using machine learning (n=179, 

77.5%), although some articles did not mention or explain their rationale (n = 52, 22.5%) (Table 

1). Rationale for applying machine learning approaches mainly focused on being “state of the 

art” or better suited to modeling complex data than regression.

Most articles also had some discussion of the limitations of their study (n=161, 69.7%), and how 

the model might be implemented (n=184, 79.7%) (Table 1). Frequent concerns were an 

inadequate sample size, too few features, questionable generalizability, and a lack of 

interpretability. When discussing model implementation, many articles stated that predictive 

accuracy would be improved; but they did not frequently discuss how this could be translated to 

specific health-related policies or actions.  

Less than half of the articles discussed model usability (n=91, 39.4%); that is, whether and how 

the model could practically be used in a relevant context. This is an important reporting 

component of the TRIPOD statement (“Discuss the potential clinical use of the model and 

implications for future research”) and is relevant for understanding real-word applications of 

prediction models.[17] Also, only a small number discussed the costs of prediction errors in real-

world contexts (n=36, 15.6%). 

See Appendix D for further narrative synthesis of discussion reporting items.

DISCUSSION

Our results show that machine learning is increasingly being applied to make predictions related 

to population health. However, applications of machine learning to population health prediction 

tasks have not capitalized fully on the opportunities presented by emerging big data resources 
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and efficient machine learning algorithms. Furthermore, reporting of these models often does not 

align with established guidelines for reporting of prediction models, which limits their ability to 

be critically appraised, compared with existing statistical models, or implemented in clinical or 

public health practice. 

Applications of Machine Learning Prediction Models

Nearly half of the included studies were conducted in the US or China. Both countries produce 

the greatest number of scientific publications in general;[24] however, they also likely benefited 

from robust health data infrastructures. The US has rapidly digitized much of its healthcare 

system, resulting in large EMRs linked with government data through public-private 

partnerships, including processes to make these data available to researchers.[25,26] Both the US 

and China made greater use of health records and less use of investigator-generated data relative 

to other regions, which may have made machine learning projects more tractable. They also used 

more internet-based data, which typically includes many observations and is high-dimensional, 

making it amenable to machine learning methods. We noted that studies from Oceania, Africa, 

and the Americas (outside of the US) were limited. This may be partly due to less availability of 

traditional sources of structured health data. However, given that machine learning methods can 

incorporate non-traditional data sources, there is the potential to expand use of these methods 

even when structured health data is unavailable.

We found that a wide range of population health outcomes have been the focus of machine 

learning prediction models. However, relative to morbidity and mortality, multiple outcome 

categories like cancer, human immunodeficiency virus, dementia, gastroenteritis, pneumococcal 

disease, perinatal health, tuberculosis, and malaria appear understudied.[27] Many of these 
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conditions are most prevalent in regions with decreased access to traditional health data, perhaps 

stymieing research. If machine learning methods are used to leverage novel data sources for 

research in these regions, it could enable greater study of neglected diseases. 

Most investigators did not analyze a large number of observations and features. We observed a 

high reliance on electronic health records and investigator-generated data, including the use of 

relatively small study cohorts. Small study sample sizes or narrow data collection associated with 

these data sources can make it difficult to achieve high sample sizes or high dimensional data, 

which may impact machine learning algorithm performance. Specifically, the use of smaller 

investigator-generated datasets may affect the performance of studied models, as machine 

learning algorithms generally require a high number of observations relative to features.[28] 

Additionally, most studies focused on features typical of clinical prediction models, such as 

biomedical factors and limited aspects of broader socioeconomic or environmental determinants 

of health. We also observed infrequent use of unstructured data and wearable data for prediction 

purposes. A reliance on small datasets and traditional numbers and types of features is unlikely 

to fully leverage any benefits of machine learning. This may be contributing to the small 

differences frequently seen between parametric regression and machine learning model 

performance. Greater use of linked population-level databases, large EMRs, internet data, and 

unstructured features would likely improve these approaches. 

Reporting of Machine Learning Prediction Models

Based on the elements of model development that we studied, adherence to existing machine 

learning[16] and prediction model[17] guidelines appears limited. Most articles did not report 

their method of hyper-parameter selection, discuss practical costs of prediction errors, or 
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consider model usability, which are needed for transparency and model assessment. Many 

studies did not report the number of features included, method of validation, method of feature 

selection, or any performance metric. Given these issues, it would be difficult or impossible to 

compare many of these machine learning models with existing approaches. However, we 

acknowledge that existing guidelines were not available when many included studies were 

published. Future work should apply existing guidance,[16] including from TRIPOD,[17] and 

anticipate the forthcoming TRIPOD-ML statement.[29]

Lastly, we noted that included studies rarely assessed predictive performance in terms of 

calibration, which refers to a model’s ability to accurately predict the absolute probability of 

outcomes.[23] In contrast, discrimination measures of predictive performance quantify a model’s 

ability to correctly rank-order individuals. Many traditional machine learning tasks, such as 

image recognition, often have a high signal to noise ratio. In these cases, discrimination may be a 

suitable lone performance metric, as the algorithm can achieve near perfect performance. 

Conversely, health outcomes tend to be more stochastic. As a result, accurate prediction of 

probabilities is more important.[23] Models can have good predictive discrimination, but poor 

calibration, making them less useful in practice, particularly for population health applications. A 

further issue is that many measures of discrimination, such as accuracy and recall, artificially 

impose a threshold for calling events. Thresholds should ideally be ascertained by decision-

makers based on their cost-utility curves.[23] Overall, applications of machine learning in 

population health would benefit from greater use of calibration performance metrics.

Strengths and Limitations of this Review
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A strength of our study is that we addressed an understudied area, the intersection of machine 

learning and population health. Additionally, prediction is an application with untapped potential 

in population health, and where machine learning has the potential to make significant 

improvements. Our study also employed a comprehensive search strategy, including numerous 

multidisciplinary peer-reviewed databases, alongside a grey literature search. Furthermore, we 

applied insights from the field of clinical prediction modeling to population health and machine 

learning. Finally, given the focus on prediction, we were able to take a comprehensive approach 

to data extraction and synthesis. 

In terms of limitations, concentrating on prediction prevented us from exploring applications of 

machine learning to other important aspects of population health, such as disease surveillance. 

These should be the focus of future research. Our review was also limited by including only 

English articles and articles with available full text, which may have introduced selection bias. 

Because of the broad scope of this review, and inconsistent reporting of model development and 

validation in reviewed articles, we were unable to carry out a critical appraisal of the literature 

and are unable to comment significantly on the overall performance of published machine 

learning population health prediction tools. This would be of great value for understanding the 

clinical and population health relevance of machine learning prediction tools. Lastly, the two 

main concepts underlying our review, machine learning and population health, are not 

universally defined. As a result, we may have excluded articles that may be relevant to these 

fields.

Research Recommendations and Conclusion
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This was the first scoping review specifically focused on machine learning prediction in 

population health applications. Predictive modeling in population health can help to inform 

preventive interventions, anticipate future disease burden, and assess the impact of health 

policies and programs. Advances in machine learning offer opportunities to improve these 

models, particularly when incorporating big data. Countries with substantial EMR-use and 

government database linkage such as Finland, Singapore, and Denmark[30] likely have untapped 

potential for machine learning research. This is still a nascent field, but based on our findings 

more research in Oceania, Africa, and South America would also be particularly beneficial. 

Diseases with a high global burden of disease that were underrepresented in our findings include 

malaria, tuberculosis, and dementia, which may be opportune for further study.[31] Additionally, 

future machine learning projects could incorporate larger datasets and more non-traditional 

features. Greater use of resources such as HealthMap, social media, web search patterns, remote 

sensing, and WHO reports would enable more work in regions without formal data sources and 

enrich research in others. Another largely untapped prospect is using machine learning and high-

dimensional data to incorporate richer representations of the social determinants of health. 

Opportunities should continue to grow as governments increasingly digitize their health service 

records and link databases to both health and non-health data. Overall, as applications of 

machine learning in population health develop, adherence to existing guidance[16,17,29] will 

improve our ability to assess and advance machine learning applications. We hope that our 

results will help to inform future research in this area, including the development of guidelines 

for machine learning applications in population health. Finally, it will be important to evaluate 

the impact of prediction models on decisions made in population health and the practice of 

public health.
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FIGURES LEGENDS

Figure 1: PRISMA flowchart of article screening process.

Figure 2: Number of articles by outcome.
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Supplementary Figure A: Number of articles by publication year. Articles from 2018 are not 
plotted in this figure because the review does not include all studies published that year. 
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Supplementary Figure B: Data Source by selected region. 
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Supplementary Figure C: Most commonly used feature categories. 
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Supplementary Table A: MEDLINE search query1 

 

Machine Learning Terms Population Health Terms 

1.     Exp Artificial Intelligence/ 24. Exp Population Health/ 

2.     Exp “neural networks (computer)”/ 25. Exp Population Surveillance/ 

3.     Support vector machine*.kf,tw 26. Exp Health Equity/ 

4.     Neural net*.kf,tw 27. Health status/ 

5.     Perceptron*.kf,tw 28. Health status disparities/ 

6.     Deep learning.kf,tw 29. Public health systems research/ 

7.     Random forest*.kf,tw 30. “Social determinants of health”/ 

8.     Lasso*.kf,tw 31. Health surveys/ 

9.     Gaussian mixture*.kf,tw 32. Health status indicators/ 

10.   Bayesian network*.kf,tw 33. “global burden of disease”/ 

11.   Classification tree*.kf,tw 34. Global health/ 

12.   Regression tree*.kf,tw 35. Environmental health/ 

13.   Relevance vector machine*.kf,tw 36. Harm reduction/ 

14.   Nearest neighbo*.kf,tw 37. Public health informatics/ 

15.   Probability estimation tree*.kf,tw 38. Community medicine/ 

16.   Elastic net*.kf,tw 39. Public health/ 

18.   Naive bayes.kf,tw 40. Epidemiology/ 

19.   Genetic algorithm*.kf,tw 41. Preventive medicine/ 

20.   Artificial intelligence.kf,tw 42. Occupational medicine/ 

21.   Machine learning.kf,tw 43. Environmental medicine/ 

22.   Statistical learning.kf,tw 44. Public health practice/ 

23.   /or 1-22 45. Preventive health services/ 
 

46. Health promotion/ 
 

47. public health.kf,tw 
 

48. population health.kf,tw 
 

49. health promot*.kf,tw 
 

50. population surveillance.kf,tw 
 

51. health surveillance.kf,tw 
 

52. health equity.kf,tw 
 

53. preventive medicine.kf,tw 
 

54. health protection.kf,tw 
 

55. disease prevention.kf,tw 
 

56. social determinant* of health.kf,tw 
 

57. health determinant*.kf,tw 
 

58. determinant* of health.kf,tw 
 

59. occupational medicine.kf,tw 
 

60. community medicine.kf,tw 
 

61. epidemiolog*.kf,tw 
 

62. health status*.kf,tw 
 

63. global health.kf,tw 
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64. environmental health.kf,tw 

 
65. harm reduction.kf,tw 

 
66. environmental medicine.kf,tw 

 
67. /or 24-66 

 
68. 23 and 67 

1Limited to articles published in 1980 or after. 
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Supplementary Table B: Data Extraction Field Descriptions 
 

Data Extraction Field Description 

Title The article titles. 

First Author The last name and first initial of the first listed author of each article 

Year of Publication The year of publication noted for each article. 

Outcome level One of two categories: 
1. Population risk prediction: the aggregated outcome of a whole population 

was predicted 
2. Individual risk prediction: outcomes of individual participants were predicted 

Outcome Selected from the following, which are not mutually exclusive, as some articles 
predicted multiple outcomes: 

Non-communicable Disease 

1. Cardiovascular disease: any disease characterized by atherosclerosis and 
resulting ischemia, including myocardial infarction and stroke   

2. Suicide/suicidality 

3. Cancer 

4. Perinatal health: including pre-term birth, fetal alcohol spectrum disorder, 
congenital heart disease, growth failure, and neural tube defects  

5. Mental health conditions 

6. Osteoporosis  

7. Low-back pain and other musculoskeletal disorders 

8. Diabetes 

9. Dementia and cognitive Impairment 

10. Hypertension 

11. Injuries: including fractures, falls, traffic injury, and foreign body injuries 
12. Overweight and obesity 

13. Maternal health: including fertility, pregnancy risk, and severe maternal 
morbidity 

14. Multiple non-communicable disease 

15. Other non-communicable disease: including liver disorders, Crohn’s disease, 
glaucoma, dental caries, and lead poisoning 

Communicable Disease 

16. Influenza 

17. Dengue 

18. Gastroenteritis 

19. Tuberculosis 

20. Leishmaniasis 

21. Malaria 

22. Schistosomiasis 

23. Hepatitis: of viral origin 

24. Multiple communicable disease 

25. Other communicable disease: including zika, hand food and mouth disease, 
leptospirosis, yellow fever, West Nile, and typhoid fever 
Non-disease Outcomes 

26. Mortality 

27. Healthcare utilization 

28. Other non-disease outcomes: including health behaviours, vitamin d status, 
and wellness score 

Region Categorized based on Organisation for Economic Cooperation and Development 
(OECD) region except for the United States and China, which were given their own 
categories due to the high number of publications. One of the following: 

1. Africa 

2. Americas except for the United States 

3. Asia except for China 

4. China 

5. Europe 

6. Oceania 

7. United States 

8. Multi-region 

9. Other/Unknown 

Study Setting One of two categories: 
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1. Clinical: when data was collected in any type of clinical setting 

2. Community: when data was collected in a community setting 

Data Source Categories Selected from the following categories, which were not mutually exclusive, and often 
more than one was used: 

1. Geographical Information Database: any dataset containing basic map-based 
spatial information such as distances and topography 

2. Meteorological/Air Quality Datasets 
3. Satellite Imagery: examples include the moderate resolution imaging 

spectroradiometer (MODIS) and the Shuttle Radar Topography Mission 
(SRTM) 

4. Clinical Record Database: any dataset produced primarily for the purpose of 
delivering clinical care, such as electronic medical records and administrative 
healthcare databases produced by hospitals 

5. Disease Registry: a dataset maintained to monitor and/or provide care for a 
specific disease 

6. Population Health Survey: a regular epidemiological survey administered 
periodically to assess the health of populations 

7. Reportable Disease Database: a dataset containing reports of diseases for 
which it is mandatory for healthcare providers to report 

8. Other Health Records Database: any other health records dataset not 
encompassed in other categories, including various surveillance systems 

9. Census 

10. Vital Statistics: information regularly collected by governments regarding 
births and deaths 

11. Other Government Database: other governmental datasets including 
socioeconomic and demographic information 

12. HealthMap: a public health surveillance system using natural language 
processing to analyze informal data sources such as online news, individual 
reports, expert-curated discussions 

13. Private Insurance Claims: including medical, hospital, and prescription drug 
claims 

14. Private Insurance Questionnaires 

15. Internet Search: including the number of searches of certain key terms and 
meta data such as the location of the searches 

16. Social Media: both posts and metadata 

17. Investigator-generated: any datasets resulting from researcher-driven studies 
such as randomized controlled trials, cohort studies, and case-control studies 

18. Public Repositories: any freely available datasets such as MIMIC 

19. Health Organization Reports: health-related reports, typically including 
disease burden estimates, produced by non-governmental or governmental 
organizations such as the World Health Organization 

20. Not Reported 

Feature Categories Selected from the following categories, which were not mutually exclusive, as often 
more than one category was used (if more than one instance of a feature category was 
found in an article it was only counted once): 

Biomedical 

1. Anthropometry: measurements of the human body such as height and weight 
2. Basic Clinical Information: information typically collected during a brief 

physician encounter such as a focused medical history and physical 
examination, including blood pressure 

3. Basic Medical Tests: any test requiring somewhat specialized equipment such 
as an electrocardiogram  

4. Clinical Questionnaire: a standardized questionnaire administered in a 
clinical context such as the Montreal Cognitive Assessment or Patient Health 
Questionnaire-9 

5. Disease History: information regarding present and/or past diagnoses of an 
individual 

6. Genetic 

7. Healthcare Utilization 

8. Instrumental Activities of Daily Living: features relating to an individual’s 
daily functioning in areas such as cooking and shopping 

9. Laboratory Tests: any features derived from human specimens requiring 
specialized equipment for analysis, such as hematological and 
microbiological results 

10. Medical Imaging 

11. Medications 

12. Physical Functioning: features including the presence of any physical 
disabilities or the status of activities of daily living 

13. Prenatal: relevant aspects of the period before birth such as the use of 
prenatal vitamins or the results of routine lab results 
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14. Psychological: features including mood or anxiety symptoms 
15. Self-Reported Health Status 

Internet-based 

16. Social Media Images 

17. Social Media Location: either aggregated or individual 
18. Social Media Metadata: any information other than the content of social 

media posts, such as the frequency of general posts and time of posting 

19. Social Media Posts: social media post content 
20. Social Network: the interconnections among individuals in a social media 

platform 

21. Web Search Metadata: any aspects of web searches other than their content 
22. Web Search Queries: the content of web search queries either individual or 

aggregated 

Lifestyle 

23. Alcohol 

24. Diet 

25. Physical Activity 

26. Sleep 

27. Smoking 

28. Unspecified 

29. Other Substance-use 

30. Other Lifestyle 

Environment 

31. Air Quality 

32. Any Satellite Imagery-derived 

33. Biodiversity and Domestic Animals 

34. Satellite-based Built Environment 

35. Other Built Environment 

36. Connectivity: the ease of access to large urban centers and/or general services 

37. Electrical Lighting (satellite-based) 

38. General Environmental Exposures (not included in other categories) 

39. Hazard: characteristics of an external hazard such as the presence of lighting 
on a roadway 

40. Satellite-based Land-use 

41. Other Land-use 

42. Location 

43. Meteorological 

44. Surface Water Distribution/Flooding (satellite-based) 

45. Satellite-based Topography 

46. Other Topography 

47. Vector/Reservoir Characteristics: including mosquito surveillance numbers 
and the population of non-human primates in the case of yellow fever 

48. Vegetation (satellite-based): such as the normalized difference vegetation 
index (NDVI) 

49. Water Composition 

50. Other Satellite Imagery-derived 

51. Population Disease or Healthcare Statistics 

Socioeconomic and Demographic 

52. Adverse Adult Experiences/Trauma 

53. Adverse Childhood Experiences 

54. Age 

55. Antisocial Behaviour 

56. Economy Makeup: such as the number of individuals working in various 
types of occupations 

57. Education 

58. Electricity 

59. Employment 

60. Garbage Collection 

61. Healthcare System: such as the availability of universal, public healthcare 

62. Household Characteristics: the number of individuals in the household and 
their ages 

63. Housing Structure: aspects of the physical structure of housing such as the 
number of units and age of the building 

64. Human Development Index 

65. Immigration Status 

66. Income 

67. Income Inequality 

68. Language 

69. Legal System 

70. Literacy 
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71. Marital Status 

72. Occupational Risk: including risk factors for low-back pain such as 
prolonged sitting or injury from repetitive movements 

73. Parental: including disciplinary styles and the amount of time spent at home 
and number of parent-child activities 

74. Peer Group: behaviours of peer group 

75. Political Stability 

76. Population and Population Density 

77. Population Growth 

78. Race/Ethnicity 

79. Religion 

80. Sanitation: availability of sewage systems 
81. Sex/Gender 

82. Social Support 

83. Unspecified 

84. Vehicle Ownership: at population level 
85. Water Supply Quality 

86. Wealth 

87. Other Socioeconomic and Demographic 

88. Other Features 

89. Not Reported 

Number of Datasets Used The number of distinct datasets used regardless of the number of sources. 

Dataset Availability Selected from the following categories: 
1. Public: all the datasets used by article authors were publicly available 
2. Closed: all the datasets were not publicly available or appeared not to be 

available 
3. Closed and Public: the datasets used were a mix of available and not 

available 
Any Unstructured Text Used Natural human language was included in the model as a feature with no initial 

ordinal/nominal structure imposed. 
Number of Observations The number of individuals or other units of observations (such as countries) included in 

the predictive model. If multiple subsets of the data and/or distinct datasets were used for 
different models, the largest number was used. 

Machine Learning Algorithm Type The algorithm type used to build the predictive model, with multiple types often used in 
the same article. Algorithms were only counted once when used in each article, even if 
used to build multiple different models in the same article. Selected from the following 
categories: 

1. Neural Networks: includes deep learning/deep neural networks as well as 
other simpler neural networks 

2. Support Vector Machine 

3. Single Tree-based Methods: includes classification trees, regression trees, and 
decision trees 

4. Random Forest 

5. Least Absolute Shrinkage and Selection Operator (LASSO) 

6. Bayesian Networks: includes naïve bayes 
7. Feature Selection Methods: includes k-means clustering and genetic 

algorithms; these were often used as a pre-processing step and in a few cases 
this was the only use of machine learning (i.e. a machine learning model was 
not used to build the predictive model itself) 

8. Boosted Tree-based Methods: includes gradient boosting and boosted trees 
9. K-Nearest Neighbour 

10. Elastic Net 

11. Ridge Regression 

12. Other: includes association rule learning, single task learning, multitask 
learning, rough set classifier, associative classification, bagging, partial least 
squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle 
swarm optimization, ant colony optimization, Isomap, PCA, Disease State 
Index, Stacking, kernel conditional density estimation, stepwise deletion, 
conditional random fields, contrast mining, grammatical evolution, Learning 
from Examples Using ROugh Sets, AUtoregression with exogenous outputs, 
and natural language processing 

Compared with Other Statistical Methods Whether the machine learning method’s predictive performance was compared with a 
traditional parametric statistical regression model such as logistic regression (yes/no). 

Reported Data Pre-processing Whether any aspects of data cleaning or pre-processing were reported (yes/no). 
Examples include how missing data was handled, whether log transformations were 
done, and if derived variables were generated. Missing data and all model development 
processes have been identified as important to report by TRIPOD.[1] 

Reported Method of Feature Selection  Whether the method of feature selection was reported (yes/no). When there is a high 
number of features initially, this is usually done using algorithmic, domain knowledge-
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informed, or mixed approaches. Feature selection is an important element of reporting as 
identified by TRIPOD.[1] 

Number of Features The number of features included in the final prediction model after feature selection. If 
multiple models were used in one article, the largest number of features was chosen. 

Reported Hyper-parameter Search Whether the process for determining the hyper-parameters of the machine learning 
model, such as the number of features used to build each tree in a random forest, was 
reported (yes/no). This is an important aspect of model development[2], and thus 
considered an important element to report by the TRIPOD statement.[1] 

Method of Validation How the authors validated the predictive performance of their model, selected from one 
of the following categories: 

1. Holdout: the dataset was divided into two parts; one part was used to train the 
model and the other was used to test the model 

2. Cross-validation and bootstrap: the dataset was either divided into more than 
two parts and repeatedly trained and tested on different parts of the dataset or 
random sampling with replacement was used to train the model 

3. External: the model was tested on a completely separate dataset  
Reported Descriptive Statistics Whether the article reported any descriptive statistics regarding their sample (yes/no). 

We considered a broad array of descriptive statistics including sample population 
demographics, feature distributions, and outcome distributions. These are all important 
reporting elements according to TRIPOD.[1] 

Calibration Metrics The types of calibration predictive performance metrics used to evaluate models, which 
could be more than one. Calibration refers to a model’s ability to accurately predict 
absolute probabilities of the outcome occurring.[3] One or more of the following 
categories was selected if a calibration metric was used: 

1. Manual or visual comparison: includes calibration plots 
2. Hosmer-Lemeshow 

3. Observed/Expected: is a ratio or comparison of observed and 
predicted/expected probabilities 

4. Other calibration metric: includes mean bias (from Bland-Altman plot), 
calibration factoring, calibration statistic 

Discrimination Metrics The types of discrimination predictive performance metrics used to evaluate models, 
which could be more than one. Discrimination refers to a model’s ability to correctly 
rank-order individuals according to their likelihood of developing the outcome.[3] One 
or more of the following categories was selected if a discrimination metric was used: 

1. Area under the curve: meaning receiver operator curve; also includes c-
statistic and s-index 

2. Accuracy: includes accuracy, misclassification, and error rate 
3. Recall: includes sensitivity, specificity, true/false positive, and true/false 

negative 

4. Precision: includes positive predictive value, negative predictive value, and 
precision 

5. F statistics 

6. Likelihood Ratio: includes both positive and negative likelihood ratios 
7. Youden Index 

8. Manual or visual comparison 

9. Other discrimination metric: includes G-means, k-statistic, and Matthews 
correlation coefficient 

Overall Goodness of Fit Metrics The types of overall goodness of fit performance metrics used to evaluate models, which 
could be more than one. Overall goodness of fit refers to a model’s predictions’ 
concordance with observed outcomes. One or more of the following categories was 
selected if an overall performance metric was used: 

1. Root mean squared error 

2. Mean squared error 

3. Mean absolute error 

4. Mean absolute percentage error 

5. R2: includes pseudo-R2s 
6. Correlation 

7. Akaike Information Criterion or Bayesian Information Criterion 

8. Other performance metric: includes penalty error, total sum of squares, 
proportional reduction in error, overall prediction error, specific prediction 
error, Nash-Sutcliffe, root mean squared percentage error, mean relative 
absolute error, analysis of variance F-stat, -2LogLikelihood, relative 
efficiency, deviance, Ljung-Box test, mean absolute deviation, standard error, 
Brier score, log score, and mean percentage error 

Did Machine Learning Models Outperform 
Traditional Methods? 

Whether the machine learning-based predictive models outperformed the statistical 
parametric regression models based on the performance metrics supplied by the authors 
(yes/no). However, this should not be taken to mean that the difference in model 
performance was reliable or valid. Often, important performance metrics and essential 
aspects of model development were not reported, making accurate comparisons difficult. 
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Discussed the Practical Costs of Prediction Errors Whether the article discussed the relative risks of false negative and false positive results 
based on their predictive model in contexts where it might be used (yes/no). These costs 
are important for determining the usefulness and application of predictive models.[3] 

Stated Rationale for Using Machine Learning Whether the article stated any reasons for using a machine learning approach instead of a 
statistical parametric regression approach (yes/no). 

Rationale for Using Machine Learning - Free 
Text 

Reviewers included article quotations and summaries in this section to capture different 
rationales for using machine learning. Reviewers attempted to only extract free text 
regarding each specific type of rationale once 

Discussed Model Usability Whether the article discussed any aspect of how the model could be practically used in a 
relevant context (yes/no). 

Stated Model Limitations Whether the article discussed any potential limitations of the research (yes/no). 

Model limitations - Free Text Reviewers included article quotations and summaries in this section to capture different 
reported limitations. Reviewers attempted to only extract free text regarding each 
specific type of limitation once. 

Discussed Model Implementation Whether the article included discussion of any consequences of model implementation 
such as potential clinical, population-health, and policy-level impacts (yes/no). 

Model Implementation - Free Text Reviewers included article quotations and summaries in this section to capture different 
reported consequences of model implementation. Reviewers attempted to only extract 
free text regarding each specific type of implementation impact once. 
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Supplementary Table C: Types of machine learning algorithms used. 
 

Types of Algorithms Number Percent 

Neural Networks* 95 41.13% 

Support Vector Machine 59 25.54% 

Single tree-based methods† 52 22.51% 

Random Forest 48 20.78% 

LASSO 25 10.82% 

Bayesian Networks‡ 23 9.96% 

Feature selection methods§ 20 8.66% 

Boosted tree-based methods¶ 19 8.23% 

K-Nearest Neighbour 19 8.23% 

Elastic Net 9 3.90% 

Ridge regression 5 2.16% 

Other|| 22 9.52% 
*Includes deep neural networks. 
†Includes CART, decision trees. 
‡Includes naive bayes. 
§Includes cluster methods (e.g. k-means clustering) and genetic algorithms. 
¶Includes gradient boosting and boosted trees. 
||Including (all algorithms used once unless otherwise specified) association rule learning (n=3), single task learning, multitask learning, rough set 
classifier, associative classification, bagging, partial least squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle swarm 
optimization, ant colony optimization, isomap, principal components analysis, disease state Index, stacking, kernel conditional density estimation, 
stepwise deletion, conditional random fields, contrast mining, grammatical evolution, Learning from Examples Using ROugh Sets, 
AUtoregression with exogenous outputs, and natural language processing (n=2). 
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Supplementary Table D: Detailed feature categories included in studies. 
 

Feature Category Number of Articles Percent 

Biomedical 141 61.04 

Anthropometry 58 25.11 

Basic Clinical Information 62 26.84 

Basic Medical Tests 10 4.33 

Clinical Questionnaire 22 9.52 

Disease History 100 43.29 

Genetic 20 8.66 

Healthcare Utilization 28 12.12 

Instrumental Activities of Daily Living 6 2.60 

Laboratory Tests 47 20.35 

Medical Imaging 10 4.33 

Medications 44 19.05 

Physical Functioning 14 6.06 

Prenatal 10 4.33 

Psychological 36 15.58 

Self-Reported Health Status 7 3.03 

Internet-based 21 9.09 

Social Media Images 1 0.43 

Social Media Location 5 2.16 

Social Media Metadata 4 1.73 

Social Media Posts 12 5.19 

Social Network 3 1.30 

Web Search Metadata 1 0.43 

Web Search Queries 12 5.19 

Lifestyle 81 35.06 

Alcohol 39 16.88 

Diet 19 8.23 

Physical Activity 26 11.26 

Sleep 11 4.76 

Smoking 58 25.11 

Unspecified 4 1.73 

Other Substance-use 13 5.63 

Other Lifestyle 13 5.63 

Environment 82 35.50 

Air Quality 5 2.16 

Any Satellite Imagery-derived 19 8.23 

Biodiversity and Domestic Animals 2 0.87 

Built Environment 8 3.46 

Satellite 4 1.73 

Other 4 1.73 
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Connectivity 4 1.73 

Electrical Lighting1 1 0.43 

General Environmental Exposures (not included in other categories) 9 3.90 

Hazard 10 4.33 

Land-use 2 0.87 

Satellite 1 0.43 

Other 1 0.43 

Location 27 11.69 

Meteorological 40 17.32 

Surface Water Distribution/Flooding1 6 2.60 

Topography 14 6.06 

Satellite 12 5.19 

Other 2 0.87 

Vector/Reservoir Characteristics 9 3.90 

Vegetation1 16 6.93 

Water Composition 1 0.43 

Other Satellite Imagery-derived 7 3.03 

Population-level Disease or Healthcare Statistics 38 16.45 

Socioeconomic and Demographic Factors 150 64.94 

Adverse Adult Experiences/Trauma 5 2.16 

Adverse Childhood Experiences 4 1.73 

Age 112 48.48 

Antisocial Behaviour 2 0.87 

Economy Makeup 1 0.43 

Education 33 14.29 

Electricity 2 0.87 

Employment 22 9.52 

Garbage Collection 1 0.43 

Healthcare System 5 2.16 

Household Characteristics 10 4.33 

Housing Structure 4 1.73 

Human Development Index 1 0.43 

Immigration Status 5 2.16 

Income 24 10.39 

Income Inequality 3 1.30 

Language 2 0.87 

Legal System 1 0.43 

Literacy 2 0.87 

Marital Status 21 9.09 

Occupational Risk 10 4.33 

Parental 3 1.30 

Peer Group 1 0.43 

Political Stability 1 0.43 
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Population and Population Density 11 4.76 

Population Growth 2 0.87 

Race/Ethnicity 29 12.55 

Religion 3 1.30 

Sanitation 5 2.16 

Sex/Gender 95 41.13 

Social Support 10 4.33 

Unspecified 6 2.60 

Vehicle Ownership 2 0.87 

Water Supply Quality 5 2.16 

Wealth 2 0.87 

Other Socioeconomic and Demographic 29 12.55 

Other Features 17 7.36 

Not Reported 1 0.43 

1See supplementary table B for greater detail regarding feature categories 
2Satellite-derived 
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Appendix A: Eligibility Criteria 
 
The following types of articles were excluded: 
 

● Reviews; 

● Focused on a methodological development; 

● Only included an abstract; 

● Only used linear regression, logistic regression, generalized additive models, or other approaches not 
considered machine learning for the purpose of this review; 

● Only applied models to diagnosis, treatment decisions, or prognosis of individuals who already had a 
disease; 

● Only related to logistics, human resources, finance, or management involved in provision of public health 
services; 

● Focused on occupational health, traffic accidents, or environmental monitoring, with no direct link to 
population health outcomes; 

● Used smart home or home monitoring systems; 
● Used advanced imaging or other expensive predictors that would be difficult or unsafe to scale to a 

population level; 
● Focused on clinical decision support systems; 
● Predicted adverse drug effects, except vaccines. 
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Appendix B: Examples of article titles removed during title screening 
 
1. Improved classification of mangroves health status using hyperspectral remote sensing data 
2. Diesel engine and propulsion diagnostics of a mini-cruise ship by using artificial neural networks 
3. Relationship between benthic macroinvertebrate bio-indices and physicochemical parameters of water: A tool for 
water resources managers 
4. Adaptive one-switch row-column scanning 
5. Development of a distributed bearing health monitoring and assessing system 
6. Neural networks based sensor validation and recovery methodology for advanced aircraft engines 
7. Mining images in publicly-available cameras for homeland security 
8. The human pulvinar and attentional processing of visual distractors 
9. Text classification techniques in oil industry applications 
10. Research on acoustic mechanical fault diagnosis method of high voltage circuit breaker based on improved 
EEMD 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 49 of 61

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 on A
pril 24, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2020-037860 on 27 O

ctober 2020. D
ow

nloaded from
 

http://bmjopen.bmj.com/


For peer review only

Appendix C: All studies included in the review. 
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Appendix D: Narrative Synthesis of Aspects of Discussion 
 
Rationale for applying machine learning approaches mainly centered around it being “state of the art” or better 
suited to modeling complex data than regression. Machine learning was thought to be “state of the art” due to 
improved accuracy and deeper insights. Discussions of complex modeling focused on capturing non-linear 
relationships, interactions, and high-dimensionality. 
 
When authors discussed model limitations, frequent concerns were an inadequate sample size, too few features, 
questionable generalizability, and a lack of interpretability. Aspects of the data other than sample size and feature 
number, such as potential measurement error or selection bias, were infrequently mentioned. 
 
When discussing model implementation, many articles stated that predictive accuracy would be improved; but they 
did not frequently discuss how this could be translated to specific health-related policies or actions. Additionally, 
they rarely mentioned organizations and knowledge users that would be best suited to leverage the model. 
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