

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Predicting population health with machine learning: a scoping review

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037860
Article Type:	Original research
Date Submitted by the Author:	19-Feb-2020
Complete List of Authors:	Morgenstern, Jason; McMaster University, Health Research Methods, Evidence, and Impact Buajitti, Emmalin; University of Toronto Dalla Lana School of Public Health; Institute for Clinical Evaluative Sciences, O'Neill, Meghan; University of Toronto Dalla Lana School of Public Health, Piggott, Thomas; McMaster University, Health Research Methods, Evidence, and Impact Goel, Vivek; University of Toronto Dalla Lana School of Public Health; Institute for Clinical Evaluative Sciences, Fridman, Daniel; Hospital for Sick Children Kornas, Kathy ; University of Toronto Dalla Lana School of Public Health Rosella, Laura; University of Toronto Dalla Lana School of Public Health;
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, STATISTICS & RESEARCH METHODS
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

PREDICTING POPULATION HEALTH WITH MACHINE LEARNING: A SCOPING REVIEW

AUTHORS

Jason D. Morgenstern¹, MD Emmalin Buajitti^{2,3}, MPH Meghan O'Neill², MPH Thomas Piggott¹, MD, MSc Vivek Goel^{2,3}, MD, MSc, PhD Daniel Fridman⁴, MPH, MA Kathy Kornas², MSc Laura C. Rosella^{2,3,5,6}, MHSc, PhD

AFFILIATIONS

- 1. Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- 2. Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- 3. Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
- 4. The Hospital for Sick Children, Toronto, Ontario, Canada
- 5. Public Health Ontario, Toronto, Ontario, Canada
- 6. Vector Institute, Toronto, Ontario, Canada

CORRESPONDENCE TO:

Dr. Laura Rosella Dalla Lana School of Public Health University of Toronto 27 King's College Circle Toronto, M5S 1A1, Canada laura.rosella@utoronto.ca Tel: (416) 978 6064 BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

ABSTRACT

Objective To determine how machine learning has been applied to prediction applications in population health contexts, including which outcomes were studied, which data sources were used, and how models were developed.

Design A scoping review.

Data Sources MEDLINE, EMBASE, CINAHL, ProQuest, Scopus, Web of Science, Cochrane Library, INSPEC, and ACM Digital Library were searched on July 18th, 2018.

Eligibility criteria We included English articles published since 1980 that used machine learning to predict population health-related outcomes. We excluded studies that only used logistic regression or were restricted to a clinical context.

Data extraction and synthesis We summarized findings extracted from published reports, which included general study characteristics, aspects of model development, reporting of results, and model discussion items.

Results Of 22 618 articles found by our search, 231 were included in the review. The United States (n=71, 30.74%) and China (n=40, 17.75%) produced the most studies and cardiovascular disease (n=22, 9.52%) was the most studied outcome. The median number of observations was 5414 (interquartile range (IQR)=16 543.5) and the median number of features was 17 (IQR=31). The most commonly used data sources were health records (n=126, 54.5%) and investigator-generated (n=86, 37.2%). Many studies did not incorporate recommended guidelines on machine learning and predictive modeling. Predictive discrimination was commonly assessed using area under the receiver operator curve (n=98, 42.42%) and calibration was rarely assessed (n=22, 9.52%).

Conclusions Machine learning applications in population health have concentrated on regions and diseases well-represented in traditional data sources, infrequently using big data. Additionally, important aspects of model development were under-reported. Greater use of big data and uptake of guidelines for predictive modeling could improve the yield from machine learning applications in population health.

Registration Registered on the Open Science Framework on July 17th, 2018 (available at: https://osf.io/rnqe6/).

Strengths and limitations of this study

- Our review is one of the first syntheses of machine learning applications in population and public health.
- We used a comprehensive search strategy, including nine peer-reviewed databases, grey literature, and reference searching.
- We extracted a wide array of study characteristics, including important elements of predictive modeling reporting guidelines.
- Since both machine learning and population health have broad definitions, there may be some relevant articles that were not included.
- Given our focus on prediction, we could not address many other important intersections of machine learning and population health, such as surveillance and health promotion.

INTRODUCTION

Predictive models have a long history in clinical medicine. One well-known example is the Framingham risk score, which was first developed in 1967.[1] Such models have proliferated throughout clinical practice to inform management and interventions, including preventive approaches. More recently, researchers have developed prediction models beyond individual clinical applications, for population health uses.[2,3] While there is no universal definition of population health, it includes "the health outcomes of a group of individuals, including the distribution of such outcomes within the group."[4] Similarly to clinical medicine, populationlevel models can be used to identify high-risk groups, directing the implementation of preventive

BMJ Open

interventions. Additionally, population health prediction models can inform policymakers about future disease burden and help to assess the impact of public health actions. Thus far, most predictive modeling in both medicine and population health has used parametric statistical regression models. More recently, there has been increasing interest in the use of a broader range of machine learning methods for prediction tasks.[5–7]

Machine learning can be loosely defined as the study and development of algorithms that learn from data with little or no human assistance.[8] These approaches have been increasingly applied in the past two decades as a result of the enabling growth of big data reserves and computational power.[9] Recent machine learning applications to prediction in population health contexts include forecasting childhood lead poisoning,[10] yellow fever incidence,[11] and the onset of suicidal ideation.[12]

The distinction between machine learning algorithms and parametric regression models is debated.[13] Regression models tend to impose more structure on the data, requiring greater human input for the verification of distributional assumptions and incorporation of domain knowledge in choosing the input parameters.[14] Algorithms employed in machine learning often derive more structure directly from the data, making fewer distributional assumptions about the data or variables. The literature remains divided on the relative advantages of more traditional approaches compared to newer methods;[15] however, given the wide variation in applications and the data used in these examples, broad assessments of superiority are often not appropriate. Also, there are debates regarding the differences in developing and validating machine learning approaches for health applications.[15,16]

Population health applications of prediction models are relatively new compared to clinical applications; correspondingly, the role of machine learning in these applications has been far less studied and discussed in the health literature. The goals of our review are to determine how machine learning has been applied to prediction in population health, the nature of the models and data used, and how the models have been developed. We hope that our results will help to inform future research in this area, including the development of guidelines for machine learning applications in population health.

METHODS

We based our scoping review on the framework proposed by Arksey and O'Malley[17] and refined by the Joanna Briggs Institute.[18] We also followed the more recent Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews.[19] Our study protocol was registered on the Open Science Framework on July 17th, 2018 (available at: https://osf.io/rnqe6/).

Our initial goal was to scope out all machine learning applications in population health. However, the screening process identified a much larger number of publications than anticipated. Consequently, to describe the subject area comprehensively, we restricted our scope to articles predicting future outcomes.

Search Strategy

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Our search strategy consisted of peer-reviewed literature databases, grey literature, and reference searches. First, we searched nine interdisciplinary, indexed databases (MEDLINE, EMBASE, CINAHL, ProQuest, Scopus, Web of Science, Cochrane Library, INSPEC, and ACM Digital Library) on July 18th, 2018. Our search was informed by consultation with a health science librarian, a machine learning textbook,[20] and a similar registered review.[15] Supplementary table A includes an example search query.

Our grey literature search included Google Scholar and Google. We developed a Google Scholar search based on terms related to 'machine learning' and 'population health', which was refined based on the relevance of initial results. The first 200 results were included in screening. A similar approach was used for the general Google search, which we restricted to the first 30 results. We examined relevant websites for publications. Results were limited to articles published on or before the date of the peer-reviewed literature search.

Finally, we searched the references of relevant reviews for additional articles. Most of these reviews were identified during screening.

Eligibility Criteria

We included articles if they used machine learning to develop a predictive model that could be applied in a population health context. Therefore, we excluded articles where the model was trained primarily on people with a pre-existing disease. We also excluded articles that were only indirectly related to population health; for example, traffic accident models that did not predict a health outcome. Studies predicting individual outcomes were included if the approach was

Page 8 of 58

determined to be scalable to a population level. Finally, articles using only logistic regression were excluded. See appendix A for the full eligibility criteria.

In order to manage the scope, articles were excluded if their full text could not be retrieved with our institutional licenses and if they were not written in English. Finally, articles published prior to 1980 were excluded as earlier machine learning investigators lacked comparable amounts of digitized data, software, and computational resources.

Screening Process

Initially, individual reviewers screened titles for obvious irrelevance to the review topic (JDM and EB). Examples of articles removed at this stage are outlined in appendix B. Then, we imported remaining references into Covidence systematic review management software.[21] Two reviewers screened the abstracts of remaining articles (JDM, EB, MO, and DF). Prior to evaluating full texts using all eligibility criteria, we then screened out articles that did not focus on a prediction application (JDM, EB, MO). Finally, two reviewers screened the full text of remaining articles (JDM, EB, MO). Conflicts were resolved by discussion between at least two reviewers.

Data Extraction and Synthesis

Individual authors extracted article data (JDM, EB, MO, and DF). We based our extraction items on important aspects of machine learning identified in a recent biomedical guideline[16] and on the transparent reporting of a multivariable prediction model for individual prognosis or

BMJ Open

diagnosis (TRIPOD) statement.[22] Major extraction categories included general study characteristics (e.g. geographic location and sample size), model development (e.g. algorithms used and type of validation), results (e.g. discrimination and calibration measures), and model discussion (e.g. practical costs of errors and implementation). See supplementary table B for a description of each extraction item.

We computed descriptive statistics for all extraction items. We also completed a narrative synthesis of discussion elements.

Patient and Public Involvement Statement

There was no patient or public involvement in this study.

RESULTS

We initially retrieved 16 172 articles, after removing duplicates (figure 1). We excluded 6494 articles after title screening, 7860 after abstract screening, 1453 when screening out nonprediction articles, and 121 after full-text screening. This resulted in 231 articles being included in the final review (appendix C).

J.C.L

General Study Characteristics

The number of articles published in the population health prediction area that used machine learning increased dramatically after 2007 (supplementary figure A). Studies were undertaken

worldwide, with the largest representation from the United States (US) (n=71, 30.74%) and China (n=40, 17.75%) (table 1). Relatively few articles came from Oceania (n=2, 0.87%), Africa (n=5, 2.16%), and the Americas outside of the US (n=13, 5.63%).

Characteristic*	Number or Median	Percent or Interquartile Range	
Region			
United States	71	30.74%	
Asia Excluding China	41	17.75%	
China	40	17.32%	
Europe	36	15.58%	
Americas Excluding United States	13	5.63%	
Africa	5	2.16%	
Oceania	2	0.87%	
Multi-region	15	6.49%	
Not Reported	8	3.46%	
Year published	4		
before 1990	1	0.4%	
1990-1999	3	1.3%	
2000-2004	13	5.6%	
2005-2009	18	7.8%	
2010-2014	70	30.3%	
2015-2018	126	54.5%	
Outcome level [†]			
Individual Risk Prediction	139	60.17%	
Population Risk prediction	92	39.83%	
Number of observations	5414	16 543.5	

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

1	
2	
3	
4 5	
6 7	
/	
8	
9 10	
10	
12	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
31 32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
50 51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

N		
Not reported	72	31.2%
Number of features	17	31
Not reported	59	25.5%
Used any unstructured text		
Yes	24	10.4%
No	207	89.6%
Machine learning model was compared with other	111	48.1%
statistical methods		
Reported data pre-processing [‡]		
Yes	160	69.3%
No	71	30.7%
Reported method of feature selection		
Yes	164	71.0%
No	67	29.0%
Reported hyper-parameter search		
Yes	114	49.4%
No	117	50.6%
Method of Validation		
Holdout	112	48.5%
Cross-validation or bootstrap	84	36.4%
External	15	6.5%
Not reported	32	13.9%
Reported descriptive statistics [§]		
Yes	140	60.6%
No	91	39.4%
Discussed the practical costs of prediction errors [¶]		
Yes	36	15.6%

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

1
2
3
4
5
6
7
8
9
10
11
12
13
14 15
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
44
45
46
47
48
49
50
51
52
53
55 54
54 55
55 56
57
58
59
60

1

No	195	84.4%	
Stated rationale for using machine lear	ning		
Yes	179	77.5%	
No	52	22.5%	
Discussed model usability			
Yes	91	39.4%	
No	140	60.6%	
Stated model limitations			
Yes	161	69.7%	
No	70	30.3%	
Discussed model implementation	0		
Yes	184	79.7%	
No	47	20.3%	
Dataset Availability by Study [∥]			
Closed	149	64.5%	
Public	42	18.2%	
Closed and Public	38	16.5%	
Unknown	1	0.4%	

[†]Individual risk prediction refers to studies that developed models to predict the health outcomes of individuals, while population risk prediction

refers to studies that developed models to predict aggregated population-level health outcomes.

*Whether any aspects of data cleaning or pre-processing were reported. Examples include how missing data was handled, whether log

transformations were done, and if derived variables were generated.

[§]Included a broad array of descriptive statistics such as sample population demographics, feature distributions, and outcome distributions.

Whether the article discussed the relative risks of false negative and false positive results based on their predictive model in contexts where it

might be used.

Closed refers to datasets that were not immediately available in the public domain or were not identifiable as such.

Table 1: Summary statistics of included articles

BMJ Open

The median number of observations in each article was 5414 (interquartile range (IQR)=16 543.5) and the median number of features (i.e. independent variables) used was 17 (IQR=31) (table 1). Seventy-two studies (31.2%) did not report the number of observations. These studies often used data from reportable disease databases, which do not necessarily have a firm sampling frame, making ascertainment of the number of observations difficult.

Algorithms

The most frequently used machine learning algorithms were neural networks (n=95, 41.13%), followed by support vector machines (n=59, 25.54%), single tree-based methods (n=52, 22.51%), and random forests (n=48, 20.78%) (supplementary table C). About half of the articles made a comparison with statistical methods (n=111, 48.1%), which were generally logistic regression or autoregressive integrated moving average models (table 1).

Outcomes

Non-communicable disease outcomes were assessed by many articles (n=95, 41.13%), with communicable diseases (n=76, 32.90%) and non-disease outcomes (n=60, 25.97%) studied somewhat less often. The outcome most frequently predicted was cardiovascular disease (n=22, 9.52%) (figure 2). Other commonly forecasted non-communicable disease outcomes were suicidality (n=13, 5.63%), cancer (n=12, 5.19%), and perinatal health (n=12, 5.19%). Influenza (n=15, 6.49%) and dengue fever (n = 14, 6.06%) were the most predicted communicable disease outcomes. Aside from non-communicable and communicable disease, mortality (n=13, 5.63%) and healthcare utilization (n=14, 6.06%) were also frequently predicted.

Meteorological/Air Quality Datasets Satellite Imagery Health Records Database Clinical Record Database[†] Disease Registry Population Health Survey Reportable Disease Database

Other Health Records Database

Government Database

Census

Data sources were usually structured (n=207, 89.6%) and close	sed, i.e. not	publicly av	vailable		
(n=189, 81.8%) (table 1). The most frequently reported data sources were health records (n=126,					
54.5%) and investigator-generated (e.g. cohort studies) (n=86	, 37.2%) (ta	able 2). A la	arge		
proportion of studies (n=42, 18.2%) used an environmental da	ata source (e.g. satellit	e imagery),		
mostly for prediction of infectious disease. Government database	bases (n=32	, 13.9%) an	id internet-		
based data (n=21, 9.1%) were less frequently used. Among studies from China and the US,					
80.0% and 67.6% respectively used health records data, whereas 54.5% of studies overall used					
these data sources (supplementary figure B).					
Sources of Data Used*	Number	Percent]		
Sources of Data Oseu	INUILDEL	rercent			
Environmental	42	18.2%			
Geographical Information Database	12	5.2%			

망	
ž	
2	
0	
ŏ	
Ð	
first	
S.	
÷	
2	
Ð	
Ē	
Ť	
Φ	
0	
g	
blished as 1	
5	
ω	
୍ତ	
g	
3	
ö	
ð	
4	
. T.	
3	
Ň	
Ģ	
Ó	
ယ္	
28	
ര്	
Ő	
0	
Ľ	
N	
10.1136/bmjopen-2020-037860 on 27 October 2020.	
0	
õ	
ö	
ğ	
Ψ.	
N	
0	
2	
9	
≤	
₽	
S.	
å	
Ð	
0	
d fr	
d fror	
d from	
d from h	
d from http	
BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://	
d from http://b	
d from http://bn	
d from http://bmjo	
aded from http://bmjop	
d from http://bmjope	
d from http://bmjopen.	
d from http://bmjopen.bi	
d from http://bmjopen.bm	
d from http://bmjopen.bmj.c	
d from http://bmjopen.bmj.co	
d from http://bmjopen.bmj.com	
d from http://bmjopen.bmj.com/	
d from http://bmjopen.bmj.com/ or	
d from http://bmjopen.bmj.com/ on ,	
d from http://bmjopen.bmj.com/ on Ap	
d from http://bmjopen.bmj.com/ on Apri	
d from http://bmjopen.bmj.com/ on April 2	
d from http://bmjopen.bmj.com/ on April 24	
d from http://bmjopen.bmj.com/ on April 24,	
d from http://bmjopen.bmj.com/ on April 24, 20	
d from http://bmjopen.bmj.com/ on April 24, 202	
d from http://bmjopen.bmj.com/ on April 24, 2024	
d from http://bmjopen.bmj.com/ on April 24, 2024 b	
d from http://bmjopen.bmj.com/ on April 24, 2024 by	
d from http://bmjopen.bmj.com/ on April 24, 2024 by gv	
d from http://bmjopen.bmj.com/ on April 24, 2024 by gue	
d from http://bmjopen.bmj.com/ on April 24, 2024 by gues	
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Pi	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	
://bmjopen.bmj.com/ on April 24, 2024 by guest.	

13.9%

9.1%

54.5%

19.9%

0.9%

6.5%

18.2%

13.0%

13.9%

4.8%

 Data

Vital Statistics	13	5.6%
Other Government Database	14	6.1%
HealthMap	3	1.3%
Private Insurance Data	9	3.9%
Private Insurance Claims	9	3.9%
Private Insurance Questionnaire	3	1.3%
Internet-based	21	9.1%
Search engine	12	5.2%
Social Media	12	5.2%
Investigator-generated [‡]	86	37.2%
Public Repositories [§]	19	8.2%
Health Organization Reports [¶]	5	2.2%
Not Reported	6	2.6%

*Categories are not mutually exclusive.

[†]Any dataset produced primarily for the purpose of delivering clinical care, such as electronic medical records and administrative healthcare databases produced by hospitals.

*Any datasets resulting from researcher-driven studies such as randomized controlled trials, cohort studies, and case-control studies.

[§]Any freely available datasets such as MIMIC or the UC Irvine Machine Learning Repository.

¹Health-related reports, typically including disease burden estimates, produced by non-governmental or governmental organizations such as the World Health Organization.

Table 2: Data sources

Features

Biomedical and sociodemographic features were frequently used (supplementary figure C). Of

these, the most commonly used were disease history (43.3%), age (48.5%), and sex/gender

(41.1%). Among lifestyle features, smoking was the most frequently used (25.1%) and of

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

environmental features, meteorology was common (17.3%). Social media posts (5.2%) and web search queries (5.2%) were not often used. See supplementary table D for more details.

Model Development and Validation

The majority of articles reported how data pre-processing (n=160, 69.3%) and feature selection (n=164, 71%) were done (table 1). Fewer authors reported how hyperparameters were selected (n=114, 49.4%). Most studies used a holdout method of validation (n=112, 48.5%), fifteen (6.5%) externally validated their models, and thirty-two (13.9%) did not report how models were validated.

Performance Metrics

Most articles reported a prediction discrimination metric (n=172, 74.46%), with fewer reporting a measure of overall model fit (n=77, 33.33%), and few reporting a measure of calibration (n=21, 9.09%) (table 3). The most common discrimination metrics employed were area under the receiver operator curve (n=98, 42.42%), accuracy (n=76, 32.90%), and recall (n=68, 29.44%). Calibration was mostly assessed with graphing methods (n=9, 3.90%) and Hosmer-Lemeshow statistics (n=8, 3.46%). Overall performance was usually measured with a form of mean error, such as root mean squared error (n=35, 15.15%).

Prediction Performance Metrics Used	Number	Percent
Any overall performance metric	77	33.33%
RMSE	35	15.15%

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

MSE	26	11.26%
MAE	24	10.39%
MAPE	23	9.96%
R2*	19	8.23%
Correlation	8	3.46%
AIC or BIC	8	3.46%
Other performance metric [†]	21	9.09%
Any discrimination metric	172	74.46%
Area under the curve [‡]	98	42.42%
Accuracy§	76	32.90%
Recall	68	29.44%
Precision	39	16.88%
F statistics	10	4.33%
Likelihood Ratio**	4	1.73%
Youden Index	3	1.30%
Manual or visual comparison	3	1.30%
Other discrimination metric ^{††}	4	1.73%
Any calibration metric	21	9.09%
Manual or visual comparison ^{‡‡}	9	3.90%
Hosmer-Lemeshow	8	3.46%
Observed/Expected	5	2.16%
Other calibration metric ^{§§}	3	1.30%
Any reclassification metric	6	2.60%
Net Reclassification Index	5	2.16%
Integrated Discrimination Improvement	3	1.30%

Absolute Percentage Error; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion.

*Includes R2 and pseudo-R2 metrics.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

[†]Includes penalty error, Total Sum of Squares, proportional reduction in error, overall prediction error, specific prediction error, Nash-Sutcliffe, Root Mean Squared Percentage Error (2), mean relative absolute error, Analysis of Variance F-stat, 2LogLikelihood, relative efficiency, deviance, Ljung-Box test, mean absolute deviation, standard error, Mean Percentage Error, Brier score, and log score.
[‡]Includes c-statistic, s-index, area under ROC / AUC.
[§]Includes accuracy, misclassification, and error rate.
[§]Includes sensitivity, specificity, true/false positive, and true/false negative.
[§]Includes positive predictive value, negative predictive value, and precision.
^{**}Includes G-means (2), k-statistic, Matthews correlation coefficient.
[‡]Includes calibration plots.
[§]Includes mean bias (from Bland-Altman plot), calibration factoring, and Calibration statistic.

Table 3: Prediction Performance Metrics

Study Discussion

Most articles included some discussion of their rationale for using machine learning (n=179, 77.5%), limitations of their study (n=161, 69.7%), and how the model might be implemented (n=184, 79.7%) (table 1). Few discussed model usability (n=91, 39.4%) and only a small number discussed the costs of prediction errors in real-world contexts (n=36, 15.6%). See appendix D for a narrative synthesis of discussion reporting items.

DISCUSSION

Our results show that machine learning is increasingly being applied to make predictions related to population health. Nearly half of the included studies were conducted in the US or China. Both countries produce the greatest number of scientific publications in general;[23] however, they also likely benefited from robust health data infrastructures. The US has rapidly digitized Page 19 of 58

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

much of its healthcare system, resulting in large electronic medical records (EMRs) linked with government data through public-private partnerships, including processes to make these data available to researchers.[24,25] Both the US and China made greater use of health records and less use of investigator-generated data relative to other regions, which may have made machine learning projects more tractable. They also used more internet-based data, which typically includes many observations and is high-dimensional, making it amenable to machine learning methods. Other countries with substantial EMR-use and government database linkage such as Finland, Singapore, and Denmark[26] likely have untapped potential for machine learning research. We noted that studies from Oceania, Africa, and the Americas (outside of the US) were limited. This may be partly due to less availability of traditional sources of structured health data. However, given that machine learning methods can incorporate non-traditional data sources, there is the potential to expand use of these methods even when structured health data is unavailable.

We found that a wide range of population health outcomes have been the focus of machine learning prediction models. However, relative to morbidity and mortality, multiple outcome categories like cancer, human immunodeficiency virus, dementia, gastroenteritis, pneumococcal disease, perinatal health, tuberculosis, and malaria appear understudied.[27] Many of these conditions are most prevalent in regions with decreased access to traditional health data, perhaps stymieing research. If machine learning methods are used to leverage novel data sources for research in these regions, it could enable greater study of neglected diseases.

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Most investigators did not analyze a large number of observations and features. We observed a high reliance on investigator-generated data, which likely made it difficult to achieve high sample sizes or high dimensional data. The use of smaller datasets may affect the performance of studied models, as machine learning algorithms generally require a high number of observations relative to features.[28] Additionally, most studies focused on features typical of clinical prediction models, such as biomedical factors and limited aspects of broader socioeconomic or environmental determinants of health. We also observed infrequent use of unstructured data and wearable data for prediction purposes. A reliance on small datasets and traditional numbers and types of features is unlikely to fully leverage any benefits of machine learning. This may be contributing to the small differences frequently seen between parametric regression and machine learning model performance. Greater use of linked population-level databases, large EMRs, internet data, and unstructured features would likely improve these approaches.

Based on the elements of model development that we studied, adherence to existing machine learning[16] and prediction model[22] guidelines appears limited. Most articles did not report their method of hyper-parameter selection, discuss practical costs of prediction errors, or consider model usability, which are needed for transparency and model assessment. Many studies did not report the number of features included, method of validation, method of feature selection, or any performance metric. Given these issues, it would be difficult or impossible to compare many of these machine learning models with existing approaches. However, we acknowledge that existing guidelines were not available when many included studies were published. Future work should apply existing guidance,[16] including from TRIPOD,[22] and anticipate the forthcoming TRIPOD-ML statement.[29]

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Lastly, we noted that included studies rarely assessed predictive performance in terms of calibration, which refers to a model's ability to accurately predict the absolute probability of outcomes.[30] In contrast, discrimination measures of predictive performance quantify a model's ability to correctly rank-order individuals. Many traditional machine learning tasks, such as image recognition, often have a high signal to noise ratio. In these cases, discrimination may be a suitable lone performance metric, as the algorithm can achieve near perfect performance. Conversely, health outcomes tend to be more stochastic. As a result, accurate prediction of probabilities is more important.[30] Models can have good predictive discrimination, but poor calibration, making them less useful in practice, particularly for population health applications. A further issue is that many measures of discrimination, such as accuracy and recall, artificially impose a threshold for calling events. Thresholds should ideally be ascertained by decision-makers based on their cost-utility curves.[30] Overall, applications of machine learning in population health would benefit from greater use of calibration performance metrics.

A strength of our study is that we addressed an understudied area, the intersection of machine learning and population health. Additionally, prediction is an application with untapped potential in population health, and where machine learning has the potential to make significant improvements. Our study also employed a comprehensive search strategy, including numerous multidisciplinary peer-reviewed databases, alongside a grey literature search. Furthermore, we applied insights from the field of clinical prediction modeling to population health and machine learning. Finally, given the focus on prediction, we were able to take a comprehensive approach to data extraction and synthesis.

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

In terms of limitations, concentrating on prediction prevented us from exploring applications of machine learning to other important aspects of population health, such as disease surveillance. These should be the focus of future research. Our review was also limited by including only English articles and articles with available full text, which may have introduced selection bias. Lastly, the two main concepts underlying our review, machine learning and population health, are not universally defined. As a result, we may have excluded articles that may be relevant to these fields.

This was the first scoping review specifically focused on machine learning prediction in population health applications. Predictive modeling in population health can help to inform preventive interventions, anticipate future disease burden, and assess the impact of health policies and programs. Advances in machine learning offer opportunities to improve these models, particularly when incorporating big data. This is still a nascent field, but based on our findings more research in Oceania, Africa, and South America would be particularly beneficial. Diseases such as malaria, tuberculosis, and dementia should also be further studied. Additionally, future machine learning projects could incorporate larger datasets and more non-traditional features. Greater use of resources such as HealthMap, social media, web search patterns, remote sensing, and WHO reports would enable more work in regions without formal data sources and enrich research in others. Another largely untapped prospect is using machine learning and high-dimensional data to incorporate richer representations of the social determinants of health. Opportunities should continue to grow as governments increasingly digitize their health service records and link databases to both health and non-health data. Overall, as applications of

BMJ Open

machine learning in population health develop, adherence to existing guidance[16,22,29] will improve our ability to assess and advance machine learning applications. Finally, it will be important to evaluate the impact of prediction models on decisions made in population health and the practice of public health.

CONTRIBUTORS

JDM contributed to the design of the study and led the literature search, article screening, data extraction, analysis, and writing of the manuscript. EB contributed to the design of the study, the literature search, article screening, data extraction, and analysis. MO contributed to article screening, data extraction, analysis, and writing of the manuscript. DF contributed to article screening and data extraction. KK contributed to the design of the study. LCR led the design of the study. All authors interpreted study results and contributed to drafting of the manuscript.

ACKNOWLEDGMENTS

We are grateful to Catherine Bornbaum for her assistance with the initial design of the study.

FUNDING

This work was funded by the Canadian Institutes of Health Research. The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

COMPETING INTERESTS

None declared.

PATIENT CONSENT FOR PUBLICATION

Not required.

Not required as only prior published research was included in the review.

DATA AVAILABILITY

The full data extraction table used for this review will be made publicly available after publication with no end date on Mendeley Data (DOI: 10.17632/7rrz9xrp2j.1).

REFERENCES

- Truett J, Cornfield J, Kannel W. A multivariate analysis of the risk of coronary heart disease in Framingham. J Chronic Dis 1967;20:511-24. doi:10.1016/0021-9681(67)90082-3
- Nunes MB, McPherson M, Kommers P, et al. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on E-Learning (Lisbon, Portugal, July 20-22, 2017).

2017;:251.http://libaccess.mcmaster.ca/login?url=https://search.proquest.com/docview/201352543 9?accountid=12347

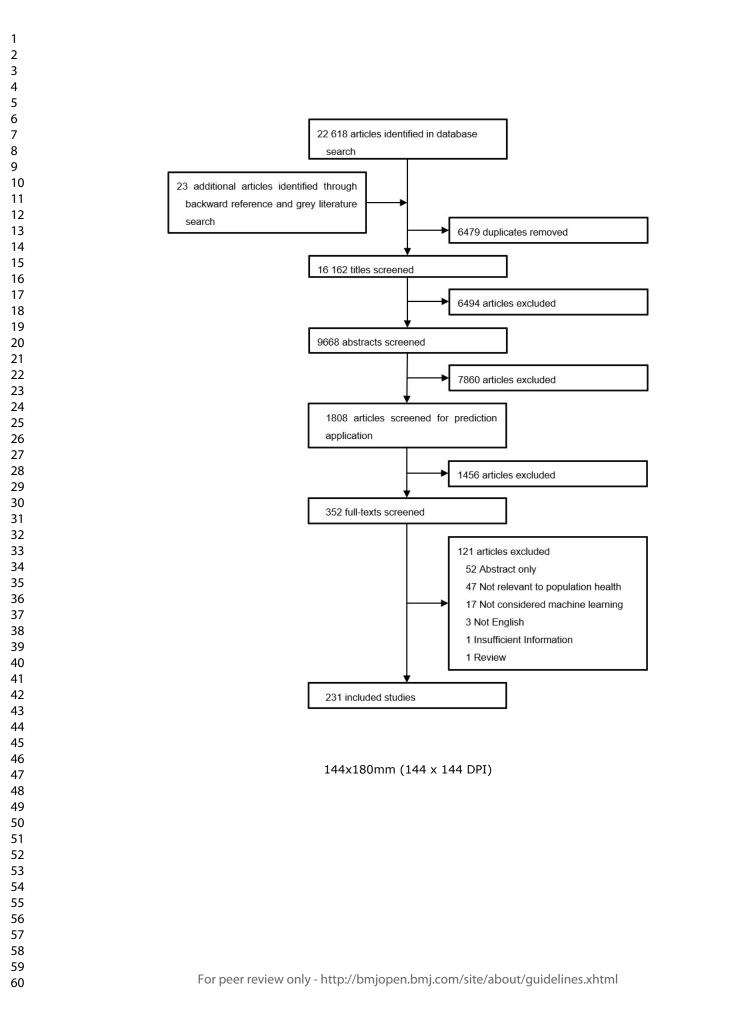
- Manuel DG, Tuna M, Bennett C, et al. Development and validation of a cardiovascular disease risk-prediction model using population health surveys: the Cardiovascular Disease Population Risk Tool (CVDPoRT). CMAJ 2018;190:E871-82. doi:10.1503/cmaj.170914
- Kindig D, Stoddart G. What is population health? Am J Public Health 2003:93:380-3.http://www.ncbi.nlm.nih.gov/pubmed/12604476 (accessed 24 Jun 2018).
- Panch T, Pearson-Stuttard J, Greaves F, et al. Artificial intelligence: opportunities and risks for public health. Lancet Digit Heal 2019;1:e13-4. doi:10.1016/s2589-7500(19)30002-0
- Aldridge RW. Research and training recommendations for public health data science. Lancet Public Heal 2019;4:e373. doi:10.1016/S2468-2667(19)30112-4

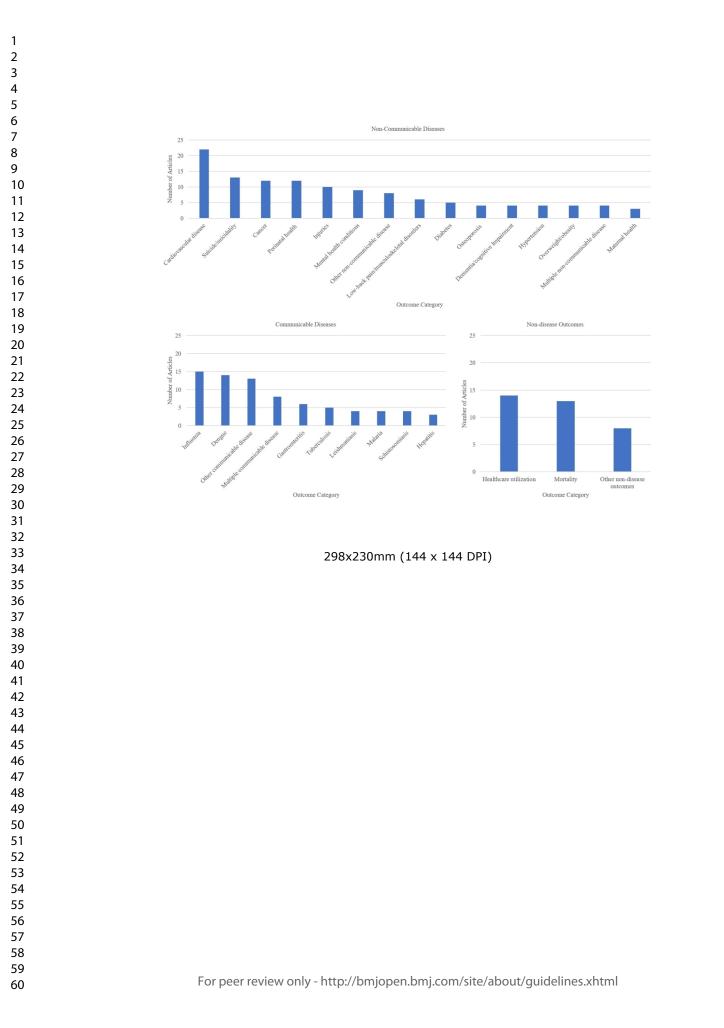
BMJ Open

7	Mooney SJ, Pejaver V. Big Data in Public Health: Terminology, Machine Learning, and Privacy.
	Annu Rev Public Health 2018;39:95-112. doi:https://dx.doi.org/10.1146/annurev-publhealth-
	040617-014208
8	Samuel AL. Some Studies in Machine Learning Using the Game of Checkers. IBM J Res Dev
	1959; 3 :210–29. doi:10.1147/rd.33.0210
9	Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. 2nd ed. Upper Saddle River,
	New Jersey: : Prentice Hall 2003.
10	Potash E, Brew J, Loewi A, et al. Predictive modeling for public health: Preventing childhood lead
	poisoning. Proc ACM SIGKDD Int Conf Knowl Discov Data Min 2015;2015-August:2039–47.
	doi:10.1145/2783258.2788629
11	Shearer FM, Longbottom J, Browne AJ, et al. Existing and potential infection risk zones of yellow
	fever worldwide: a modelling analysis. Lancet Glob Heal 2018;6:e270-8. doi:10.1016/S2214-
	109X(18)30024-X
12	De Choudhury M, Kiciman E, Dredze M, et al. Discovering shifts to suicidal ideation from mental
	health content in social media. In: Conference on Human Factors in Computing Systems -
	Proceedings. Association for Computing Machinery 2016. 2098–110.
	doi:10.1145/2858036.2858207
13	K.G.M. M, J.A.H. DG, W. B, et al. Checklist for data extraction and critical appraisal for
	systematic reviews of prediction modelling studies: The charms checklist. Eur J Epidemiol
	2015; 30 :904. doi:http://dx.doi.org/10.1007/s10654-015-0072-z
14	Breiman L. Statistical modeling: The two cultures. Stat Sci 2001;16:199–215.
	doi:10.1214/ss/1009213726
15	Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of
	machine learning over logistic regression for clinical prediction models. J Clin Epidemiol
	2019; 110 :12–22. doi:10.1016/j.jclinepi.2019.02.004
16	Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

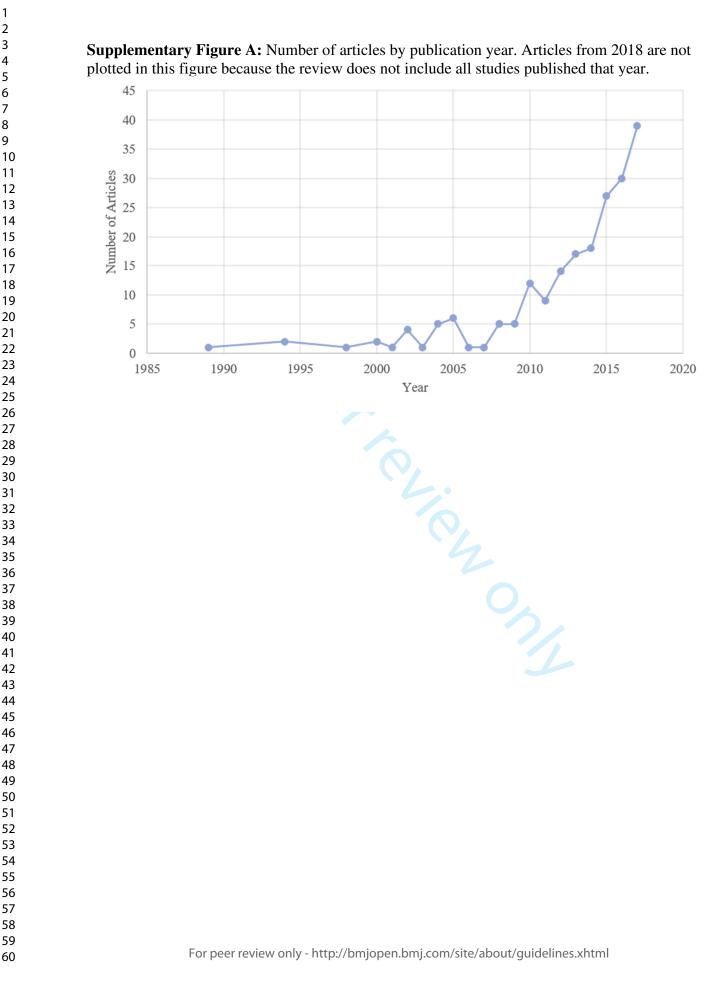
predictive models in biomedical research: A multidisciplinary view. J Med Internet Res 2016;18:e323. doi:10.2196/jmir.5870 Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol 2005;8:19-32. doi:10.1080/1364557032000119616 Joanna Briggs Institute. Joanna Briggs Institute Reviewers' Manual 2015 - Methodology for JBI Scoping Reviews. Adelaide: 2015. doi:10.1017/CBO9781107415324.004 Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med Published Online First: 4 September 2018. doi:10.7326/M18-0850 Hastie T, Tibshirani R, Witten D, et al. An Introduction to Statistical Learning: With Applications in R. New York, NY: : Springer 2013. Veritas Health Innovation. Covidence systematic review software. www.covidence.org Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med 2015;**13**:1. doi:https://dx.doi.org/10.1186/s12916-014-0241-z Country outputs | Nature Index. https://www.natureindex.com/countryoutputs/generate/All/global/All/score (accessed 15 Nov 2019). Hecht J. The future of electronic health records. Nature 2019;573:S114-6. doi:10.1038/d41586-019-02876-y Gliklich RE, Dreyer NA, Leavy MB. Public-Private Partnerships. 2014. OECD. Health Data Governance: Privacy, Monitoring and Research. Paris: 2015. http://dx.doi.org/10.1787/9789264244566-en Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;385:117-71. doi:10.1016/S0140-6736(14)61682-2 van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a

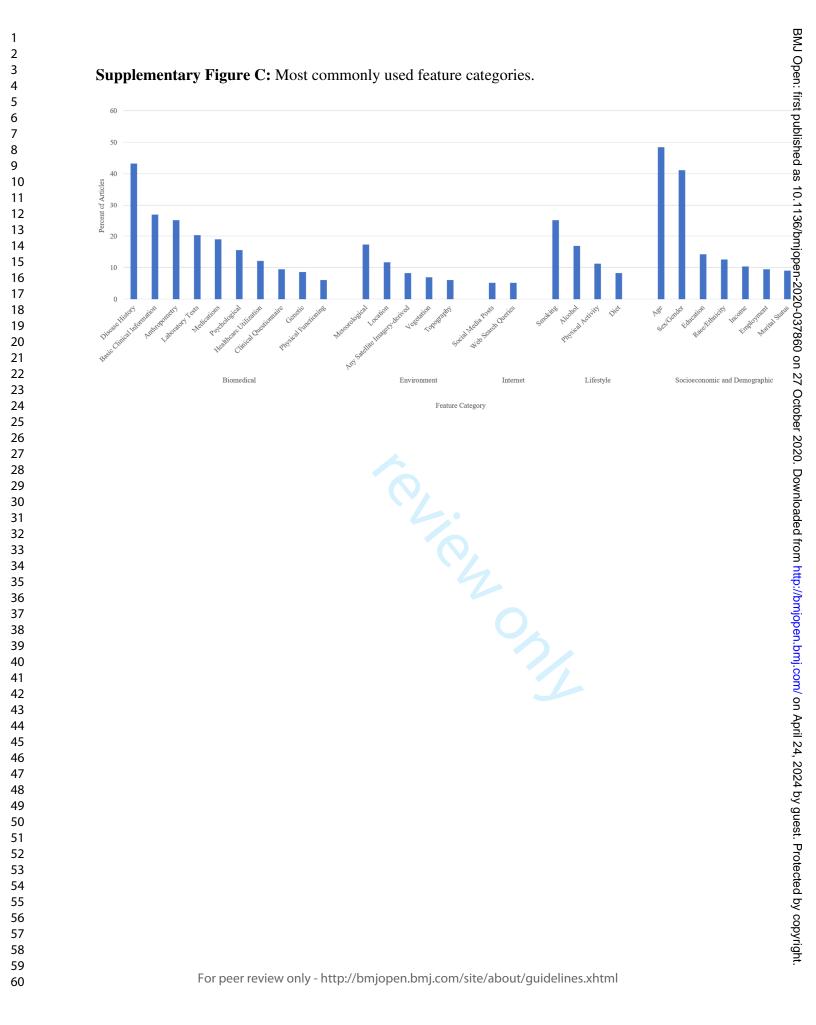
1 2						
2 3 4		simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014;14:137.				
5		doi:10.1186/1471-2288-14-137				
7 8	29	Collins GS, M Moons KG. Reporting of artificial intelligence prediction models. Published Online				
9 10		First: 2019. doi:10.1016/S0140-6736(19)30235-1				
11 12 13	30	Steyerberg EW. Clinical prediction models. New York: : Springer 2009.				
14 15 16 17	FIG	URES LEGENDS				
17 18 19	Figure 1: PRISMA flowchart of article screening process.					
20 21 22	Figure 2: Number of articles by outcome.					
23 24						
25 26						
27 28						
29						
30 31						
32 33						
34						
35 36						
37						
38 39						
40 41						
41 42						
43						
44 45						
46						
47 48						
49						
50 51						
52						
53 54						
54 55						
56						
57 58						
59						





BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
27
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
40 49
49 50
50
51
52
53
54
55
56
57
58
59
60

Machine Learning Terms		Population Health Terms
1. Exp Artificial Intelliger	nce/	24. Exp Population Health/
2. Exp "neural networks (computer)"/	25. Exp Population Surveillance/
3. Support vector machine	e*.kf,tw	26. Exp Health Equity/
4. Neural net*.kf,tw		27. Health status/
5. Perceptron*.kf,tw		28. Health status disparities/
6. Deep learning.kf,tw		29. Public health systems research/
7. Random forest*.kf,tw		30. "Social determinants of health"/
8. Lasso*.kf,tw		31. Health surveys/
9. Gaussian mixture*.kf,tv	W	32. Health status indicators/
10. Bayesian network*.kf,t	w	33. "global burden of disease"/
11. Classification tree*.kf,t	w	34. Global health/
12. Regression tree*.kf,tw		35. Environmental health/
13. Relevance vector mach	ine*.kf,tw	36. Harm reduction/
14. Nearest neighbo*.kf,tw		37. Public health informatics/
15. Probability estimation t	ree*.kf,tw	38. Community medicine/
16. Elastic net*.kf,tw		39. Public health/
18. Naive bayes.kf,tw		40. Epidemiology/
19. Genetic algorithm*.kf,t	W	41. Preventive medicine/
20. Artificial intelligence.k	f,tw	42. Occupational medicine/
21. Machine learning.kf,tw		43. Environmental medicine/
22. Statistical learning.kf,tv	W	44. Public health practice/
23. /or 1-22		45. Preventive health services/
		46. Health promotion/
		47. public health.kf,tw
		48. population health.kf,tw
		49. health promot*.kf,tw
		50. population surveillance.kf,tw
		51. health surveillance.kf,tw
		52. health equity.kf,tw
		53. preventive medicine.kf,tw
		54. health protection.kf,tw
		55. disease prevention.kf,tw
		56. social determinant* of health.kf,tw
		57. health determinant*.kf,tw
		58. determinant* of health.kf,tw
		59. occupational medicine.kf,tw
		60. community medicine.kf,tw
		61. epidemiolog*.kf,tw
		62. health status*.kf,tw
		63. global health.kf,tw

64. environmental health.kf,tw
65. harm reduction.kf,tw
66. environmental medicine.kf,tw
67. /or 24-66
68. 23 and 67

¹Limited to articles published in 1980 or after.

 i
 i

 bit
 i

Supplementar	y Table B: l	Data Extraction	Field Descriptions
--------------	--------------	-----------------	--------------------

Data Extraction Field	Description
Title	The article titles.
First Author	The last name and first initial of the first listed author of each article
Year of Publication	The year of publication noted for each article.
Outcome level	 One of two categories: 1. <i>Population risk prediction:</i> the aggregated outcome of a whole population was predicted 2. <i>Individual risk prediction</i>: outcomes of individual participants were predicted
Outcome	Selected from the following, which are not mutually exclusive, as some articles predicted multiple outcomes: Non-communicable Disease 1. Cardiovascular disease: any disease characterized by atherosclerosis and resulting ischemia, including myocardial infarction and stroke 2. Suicide/suicidality 3. Cancer 4. Perinatal health: including pre-term birth, fetal alcohol spectrum disorder, congenital heart disease, growth failure, and neural tube defects 5. Mental health conditions 6. Osteoporosis 7. Low-back pain and other musculoskeletal disorders 8. Diabetes 9. Dementia and cognitive Impairment 10. Hypertension 11. Injuries: including fractures, falls, traffic injury, and foreign body injuries 12. Overweight and obesity 13. Maternal health: including fertility, pregnancy risk, and severe maternal morbidity 14. Multiple non-communicable disease 15. Other non-communicable disease 16. Influenza 17. Dengue 18. Gastroenteritis 19. Tuberculosis 21. Hepatitis: of viral origin 24. Multiple communicable disease 25. Other communicable disease 26. Mortality 27. Dengue 28. Gastroenteritis 29. Tub
Region	Categorized based on Organisation for Economic Cooperation and Development (OECD) region except for the United States and China, which were given their own categorized ue to the high number of publications. One of the following: 1. Africa 2. Americas except for the United States 3. Asia except for the United States 4. China 5. Europe 6. Oceania 7. United States 8. Multi-region 9. Other/Unknown
Study Setting	One of two categories:

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

1 2	
3 4	
5 6	
7 8	
9 10	
11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
40 47 48	
49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

	1 Clinical when date was collected in any type of clinical setting
	 <i>Clinical</i>: when data was collected in any type of clinical setting <i>Community</i>: when data was collected in a community setting
Data Source Categories	Selected from the following categories, which were not mutually exclusive, and often
Data Source Categories	more than one was used:
	1. Geographical Information Database: any dataset containing basic map-based
	spatial information such as distances and topography
	2. Meteorological/Air Quality Datasets
	3. Satellite Imagery: examples include the moderate resolution imaging
	spectroradiometer (MODIS) and the Shuttle Radar Topography Mission
	(SRTM)
	4. <i>Clinical Record Database</i> : any dataset produced primarily for the purpose of
	delivering clinical care, such as electronic medical records and administrative
	healthcare databases produced by hospitals
	5. Disease Registry: a dataset maintained to monitor and/or provide care for a
	specific disease
	 Population Health Survey: a regular epidemiological survey administered periodically to assess the health of populations
	7. <i>Reportable Disease Database</i> : a dataset containing reports of diseases for
	which it is mandatory for healthcare providers to report
	8. <i>Other Health Records Database</i> : any other health records dataset not
	encompassed in other categories, including various surveillance systems
	9. Census
	10. <i>Vital Statistics</i> : information regularly collected by governments regarding
	births and deaths
	11. Other Government Database: other governmental datasets including
	socioeconomic and demographic information
	12. <i>HealthMap</i> : a public health surveillance system using natural language
	processing to analyze informal data sources such as online news, individual
	reports, expert-curated discussions
	13. Private Insurance Claims: including medical, hospital, and prescription drug
	claims
	14. Private Insurance Questionnaires
	15. <i>Internet Search:</i> including the number of searches of certain key terms and
	meta data such as the location of the searches
	16. Social Media: both posts and metadata
	17. Investigator-generated: any datasets resulting from researcher-driven studies
	such as randomized controlled trials, cohort studies, and case-control studies 18. <i>Public Repositories</i> : any freely available datasets such as MIMIC
	19. <i>Health Organization Reports</i> : health-related reports, typically including
	disease burden estimates, produced by non-governmental or governmental
	organizations such as the World Health Organization
	20. Not Reported
Feature Categories	Selected from the following categories, which were not mutually exclusive, as often
e	more than one category was used (if more than one instance of a feature category was
	found in an article it was only counted once):
	Biomedical
	1. Anthropometry: measurements of the human body such as height and weight
	2. Basic Clinical Information: information typically collected during a brief
	physician encounter such as a focused medical history and physical
	examination, including blood pressure
	3. Basic Medical Tests: any test requiring somewhat specialized equipment suc
	as an electrocardiogram
	4. <i>Clinical Questionnaire</i> : a standardized questionnaire administered in a
	clinical context such as the Montreal Cognitive Assessment or Patient Health Ouestionnaire-9
	5. <i>Disease History</i> : information regarding present and/or past diagnoses of an
	5. Disease History: information regarding present and/or past diagnoses of an individual
	6. <i>Genetic</i>
	7. Healthcare Utilization
	8. <i>Instrumental Activities of Daily Living</i> : features relating to an individual's
	daily functioning in areas such as cooking and shopping
	9. <i>Laboratory Tests</i> : any features derived from human specimens requiring
	specialized equipment for analysis, such as hematological and
	microbiological results
	10. Medical Imaging
	11. Medications
	12. <i>Physical Functioning</i> : features including the presence of any physical
	disabilities or the status of activities of daily living
	13. Prenatal: relevant aspects of the period before birth such as the use of
	prenatal vitamins or the results of routine lab results

1	
2	
3 4	
4 5	
6	
6 7	
8	
9 10	
10 11	
12	
13	
14	
15	
16 17	
18	
19	
20 21	
21	
22 23	
24	
24 25	
26	
27 28	
20 29	
30	
31	
32 33	
33 34	
35	
36	
37 38	
30 39	
40	
41	
42	
43 44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

	Psychological: features including mood or anxiety symptoms
15.	Self-Reported Health Status
	Internet-based
16.	Social Media Images
	Social Media Location: either aggregated or individual
18.	Social Media Metadata: any information other than the content of social
	media posts, such as the frequency of general posts and time of posting
19.	1
20.	Social Network: the interconnections among individuals in a social media
21	platform
	<i>Web Search Metadata</i> : any aspects of web searches other than their content
22.	Web Search Queries: the content of web search queries either individual or
	aggregated Lifestyle
23	Alcohol
	Diet
	Physical Activity
26.	Sleep
27.	Smoking
28.	Unspecified
29.	Other Substance-use
30.	Other Lifestyle
	Environment
31.	Air Quality
32.	Any Satellite Imagery-derived
	Biodiversity and Domestic Animals
	Satellite-based Built Environment
35.	Other Built Environment
	<i>Connectivity</i> : the ease of access to large urban centers and/or general services
	Electrical Lighting (satellite-based)
	General Environmental Exposures (not included in other categories) Hazard: characteristics of an external hazard such as the presence of lighting
59.	on a roadway
40	Satellite-based Land-use
	Other Land-use
	Location
	Meteorological 💿
44.	Surface Water Distribution/Flooding (satellite-based)
45.	Satellite-based Topography
	Other Topography
47.	Vector/Reservoir Characteristics: including mosquito surveillance numbers
	and the population of non-human primates in the case of yellow fever
48.	<i>Vegetation (satellite-based)</i> : such as the normalized difference vegetation
10	index (NDVI)
	Water Composition
	Other Satellite Imagery-derived Population Disease or Healthcare Statistics
51.	Socioeconomic and Demographic
52.	Adverse Adult Experiences/Trauma
	Adverse Childhood Experiences
	Age
	Antisocial Behaviour
	Economy Makeup: such as the number of individuals working in various
	types of occupations
	Education
	Electricity
	Employment
	Garbage Collection
	<i>Healthcare System</i> : such as the availability of universal, public healthcare
62.	<i>Household Characteristics</i> : the number of individuals in the household and their ages
62	their ages Housing Structure: aspects of the physical structure of housing such as the
03.	number of units and age of the building
64	Human Development Index
	Immigration Status
	Income
	Income Inequality
	Language
69.	Legal System

Literacy

70.

	 71. Marital Status 72. Occupational Risk: including risk factors for low-back pain such as prolonged sitting or injury from repetitive movements 73. Parental: including disciplinary styles and the amount of time spent at home and number of parent-child activities 74. Peer Group: behaviours of peer group 75. Political Stability 76. Population and Population Density 77. Population Growth 78. Race/Ethnicity 79. Religion 80. Sanitation: availability of sewage systems 81. Sex/Gender 82. Social Support 83. Unspecified 84. Vehicle Ownership: at population level 85. Water Supply Quality
	 86. Wealth 87. Other Socioeconomic and Demographic 88. Other Features 89. Not Reported
Number of Datasets Used	The number of distinct datasets used regardless of the number of sources.
Dataset Availability	 Selected from the following categories: 1. <i>Public</i>: all the datasets used by article authors were publicly available 2. <i>Closed</i>: all the datasets were not publicly available or appeared not to be available 3. <i>Closed and Public</i>: the datasets used were a mix of available and not available
Any Unstructured Text Used	Natural human language was included in the model as a feature with no initial ordinal/nominal structure imposed.
Number of Observations	The number of individuals or other units of observations (such as countries) included in the predictive model. If multiple subsets of the data and/or distinct datasets were used for different models, the largest number was used.
Machine Learning Algorithm Type	 The algorithm type used to build the predictive model, with multiple types often used in the same article. Algorithms were only counted once when used in each article, even if used to build multiple different models in the same article. Selected from the following categories: <i>Neural Networks</i>: includes deep learning/deep neural networks as well as other simpler neural networks <i>Support Vector Machine</i> <i>Single Tree-based Methods</i>: includes classification trees, regression trees, and decision trees <i>Random Forest</i> <i>Least Absolute Shrinkage and Selection Operator (LASSO)</i> <i>Bayesian Networks</i>: includes naïve bayes
	 algorithms; these were often used as a pre-processing step and in a few cases this was the only use of machine learning (i.e. a machine learning model was not used to build the predictive model itself) <i>Boosted Tree-based Methods</i>: includes gradient boosting and boosted trees <i>K-Nearest Neighbour</i> <i>Elastic Net</i> <i>Ridge Regression</i> <i>Other</i>: includes association rule learning, single task learning, multitask learning, rough set classifier, associative classification, bagging, partial least squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle swarm optimization, ant colony optimization, Isomap, PCA, Disease State Index, Stacking, kernel conditional density estimation, stepwise deletion, conditional random fields, contrast mining, grammatical evolution, Learning from Examples Using ROugh Sets, AUtoregression with exogenous outputs, and partial Particular Status Particular Status Particular Status Particular Status Particular Status Particular Status Particeles Using ROugh Sets, AUtoregression with exogenous outputs, and particular Particular Status Particular Part
Compared with Other Statistical Methods	 this was the only use of machine learning (i.e. a machine learning model was not used to build the predictive model itself) 8. Boosted Tree-based Methods: includes gradient boosting and boosted trees 9. K-Nearest Neighbour 10. Elastic Net 11. Ridge Regression 12. Other: includes association rule learning, single task learning, multitask learning, rough set classifier, associative classification, bagging, partial least squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle swarm optimization, ant colony optimization, Isomap, PCA, Disease State Index, Stacking, kernel conditional density estimation, stepwise deletion, conditional random fields, contrast mining, grammatical evolution, Learning from Examples Using ROugh Sets, AUtoregression with exogenous outputs, and natural language processing Whether the machine learning method's predictive performance was compared with a
Compared with Other Statistical Methods Reported Data Pre-processing	 this was the only use of machine learning (i.e. a machine learning model was not used to build the predictive model itself) 8. Boosted Tree-based Methods: includes gradient boosting and boosted trees 9. K-Nearest Neighbour 10. Elastic Net 11. Ridge Regression 12. Other: includes association rule learning, single task learning, multitask learning, rough set classifier, associative classification, bagging, partial least squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle swarm optimization, ant colony optimization, Isomap, PCA, Disease State Index, Stacking, kernel conditional density estimation, stepwise deletion, conditional random fields, contrast mining, grammatical evolution, Learning from Examples Using ROugh Sets, AUtoregression with exogenous outputs, and natural language processing

	informed, or mixed approaches. Feature selection is an important element of report identified by TRIPOD.[1]
Number of Features	The number of features included in the final prediction model after feature selection multiple models were used in one article, the largest number of features was chose
Reported Hyper-parameter Search	Whether the process for determining the hyper-parameters of the machine learning model, such as the number of features used to build each tree in a random forest, w reported (yes/no). This is an important aspect of model development[2], and thus considered an important element to report by the TRIPOD statement.[1]
Method of Validation	 How the authors validated the predictive performance of their model, selected from of the following categories: 1. <i>Holdout</i>: the dataset was divided into two parts; one part was used to tr model and the other was used to test the model 2. <i>Cross-validation and bootstrap</i>: the dataset was either divided into more two parts and repeatedly trained and tested on different parts of the data random sampling with replacement was used to train the model 3. <i>External</i>: the model was tested on a completely separate dataset
Reported Descriptive Statistics	Whether the article reported any descriptive statistics regarding their sample (yes/n We considered a broad array of descriptive statistics including sample population demographics, feature distributions, and outcome distributions. These are all impo reporting elements according to TRIPOD.[1]
Calibration Metrics	 The types of calibration predictive performance metrics used to evaluate models, we could be more than one. Calibration refers to a model's ability to accurately predict absolute probabilities of the outcome occurring.[3] One or more of the following categories was selected if a calibration metric was used: Manual or visual comparison: includes calibration plots Hosmer-Lemeshow Observed/Expected: is a ratio or comparison of observed and predicted/expected probabilities Other calibration metric: includes mean bias (from Bland-Altman plot) calibration factoring, calibration statistic
Discrimination Metrics	 The types of discrimination predictive performance metrics used to evaluate model which could be more than one. Discrimination refers to a model's ability to correct rank-order individuals according to their likelihood of developing the outcome.[3] or more of the following categories was selected if a discrimination metric was use Area under the curve: meaning receiver operator curve; also includes c-statistic and s-index Accuracy: includes accuracy, misclassification, and error rate Recall: includes sensitivity, specificity, true/false positive, and true/fals negative Precision F statistics Likelihood Ratio: includes both positive and negative likelihood ratios Youden Index Manual or visual comparison Other discrimination metric: includes G-means, k-statistic, and Matthew correlation coefficient
Overall Goodness of Fit Metrics	 The types of overall goodness of fit performance metrics used to evaluate models, could be more than one. Overall goodness of fit refers to a model's predictions' concordance with observed outcomes. One or more of the following categories was selected if an overall performance metric was used: <i>Root mean squared error</i> <i>Mean squared error</i> <i>Mean absolute error</i> <i>Mean absolute percentage error</i> <i>R²</i>: includes pseudo-R2s <i>Correlation</i> <i>Other performance metric</i>: includes penalty error, total sum of squares, proportional reduction in error, overall prediction error, specific predictic error, Nash-Sutcliffe, root mean squared percentage error mean relative absolute error, analysis of variance F-stat, -2LogLikelihood, relative efficiency, deviance, Ljung-Box test, mean absolute deviation, standard Brier score, log score, and mean percentage error
Did Machine Learning Models Outperform Traditional Methods?	Whether the machine learning-based predictive models outperformed the statistical parametric regression models based on the performance metrics supplied by the au (yes/no). However, this should not be taken to mean that the difference in model performance was reliable or valid. Often, important performance metrics and esser

Discussed the Practical Costs of Prediction Errors	Whether the article discussed the relative risks of false negative and false positive results based on their predictive model in contexts where it might be used (yes/no). These costs are important for determining the usefulness and application of predictive models.[3]
Stated Rationale for Using Machine Learning	Whether the article stated any reasons for using a machine learning approach instead of statistical parametric regression approach (yes/no).
Rationale for Using Machine Learning - Free Text	Reviewers included article quotations and summaries in this section to capture different rationales for using machine learning. Reviewers attempted to only extract free text regarding each specific type of rationale once
Discussed Model Usability	Whether the article discussed any aspect of how the model could be practically used in relevant context (yes/no).
Stated Model Limitations	Whether the article discussed any potential limitations of the research (yes/no).
Model limitations - Free Text	Reviewers included article quotations and summaries in this section to capture different reported limitations. Reviewers attempted to only extract free text regarding each specific type of limitation once.
Discussed Model Implementation	Whether the article included discussion of any consequences of model implementation such as potential clinical, population-health, and policy-level impacts (yes/no).
Model Implementation - Free Text	Reviewers included article quotations and summaries in this section to capture different reported consequences of model implementation. Reviewers attempted to only extract free text regarding each specific type of implementation impact once.
	Reviewers included article quotations and summaries in this section to capture differen reported consequences of model implementation. Reviewers attempted to only extract free text regarding each specific type of implementation impact once.

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

1	
2	
3	
4	
5	
6	
7	
8 9	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19 20	
20 21	
21 22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 34	
54 35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
46 47	
47 48	
49	
50	
51	
52	
53	
54	
55	

60

Supplementary Table C: Types of machine learning algorithms used.

Types of Algorithms	Number	Percent
Neural Networks [*]	95	41.13%
Support Vector Machine	59	25.54%
Single tree-based methods [†]	52	22.51%
Random Forest	48	20.78%
LASSO	25	10.82%
Bayesian Networks [‡]	23	9.96%
Feature selection methods [§]	20	8.66%
Boosted tree-based methods [¶]	19	8.23%
K-Nearest Neighbour	19	8.23%
Elastic Net	9	3.90%
Ridge regression	5	2.16%
Other	22	9.52%

*Includes deep neural networks.

[†]Includes CART, decision trees.

[‡]Includes naive bayes.

[§]Includes cluster methods (e.g. k-means clustering) and genetic algorithms.

[¶]Includes gradient boosting and boosted trees.

Including (all algorithms used once unless otherwise specified) association rule learning (n=3), single task learning, multitask learning, rough set classifier, associative classification, bagging, partial least squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle swarm optimization, ant colony optimization, isomap, principal components analysis, disease state Index, stacking, kernel conditional density estimation, stepwise deletion, conditional random fields, contrast mining, grammatical evolution, Learning from Examples Using ROugh Sets,

AUtoregression with exogenous outputs, and natural language processing (n=2).

Supplementary Table D: Detailed feature categories included in studies.

Feature Category	Number of Articles	Percent
Biomedical	141	61.04
Anthropometry	58	25.11
Basic Clinical Information	62	26.84
Basic Medical Tests	10	4.33
Clinical Questionnaire	22	9.52
Disease History	100	43.29
Genetic	20	8.66
Healthcare Utilization	28	12.12
Instrumental Activities of Daily Living	6	2.60
Laboratory Tests	47	20.35
Medical Imaging	10	4.33
Medications	44	19.05
Physical Functioning	14	6.06
Prenatal	10	4.33
Psychological	36	15.58
Self-Reported Health Status	7	3.03
Internet-based	21	9.09
Social Media Images	1	0.43
Social Media Location	5	2.16
Social Media Metadata	• 4	1.73
Social Media Posts	12	5.19
Social Network	3	1.30
Web Search Metadata	1	0.43
Web Search Queries	12	5.19
Lifestyle	81	35.06
Alcohol	39	16.88
Diet	19	8.23
Physical Activity	26	11.26
Sleep	11	4.76
Smoking	58	25.11
Unspecified	4	1.73
Other Substance-use	13	5.63
Other Lifestyle	13	5.63
Environment	82	35.50
Air Quality	5	2.16
Any Satellite Imagery-derived	19	8.23
Biodiversity and Domestic Animals	2	0.87
Built Environment	8	3.46
Satellite	4	1.73
Other	4	1.73

Connectivity

Electrical Lighting¹

4	1.73
1	0.43
9	3.90
10	4.33
2	0.87
1	0.43
1	0.43
27	11.69
40	17.32
6	2.60
14	6.06
12	5.19
2	0.87
9	3.90
16	6.93
1	0.43
7	3.03
38	16.45
150	64.94
5	2.16
4	1.73
112	48.48
2	0.87
1	0.43
33	14.29
2	0.87
22	9.52
1	0.43
5	2.16
10	4.33
4	1.73
1	0.43
5	2.16
24	10.39
3	1.30
2	0.87
1	0.43
2	0.87
21	9.09
10	4.33
3	1.30
1	0.43
1	0.43

1	
2 3 4	
4 5	
6 7	
8 9	
10	
12	
13	
15 16	
17 18	
19 20	
21 22	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	
25 26	
27	
28 29 30 31 32 33 34 35 36 37	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50	
51 52	
53 54	
55 56	
57 58	
59	

General Environmental Exposures (not included in other categories)	9	3.90
Hazard	10	4.33
Land-use	2	0.87
Satellite	1	0.43
Other	1	0.43
Location	27	11.69
Meteorological	40	17.32
Surface Water Distribution/Flooding ¹	6	2.60
Topography	14	6.06
Satellite	12	5.19
Other	2	0.87
Vector/Reservoir Characteristics	9	3.90
Vegetation ¹	16	6.93
Water Composition	1	0.43
Other Satellite Imagery-derived	7	3.03
Population-level Disease or Healthcare Statistics	38	16.45
Socioeconomic and Demographic Factors	150	64.94
Adverse Adult Experiences/Trauma	5	2.16
Adverse Childhood Experiences	4	1.73
Age	112	48.48
Antisocial Behaviour	2	0.87
Economy Makeup	1	0.43
Education	33	14.29
Electricity	2	0.87
Employment	22	9.52
Garbage Collection	1	0.43
Healthcare System	5	2.16
Household Characteristics	10	4.33
Housing Structure	4	1.73
Human Development Index	1	0.43
Immigration Status	5	2.16
Income	24	10.39
Income Inequality	3	1.30
Language	2	0.87
Legal System	1	0.43
Literacy	2	0.87
Marital Status	21	9.09
Occupational Risk	10	4.33
Parental	3	1.30
Peer Group	1	0.43
Political Stability	1	0.43

Population and Population Density	11	4.76
Population Growth	2	0.87
Race/Ethnicity	29	12.55
Religion	3	1.30
Sanitation	5	2.16
Sex/Gender	95	41.13
Social Support	10	4.33
Unspecified	6	2.60
Vehicle Ownership	2	0.87
Water Supply Quality	5	2.16
Wealth	2	0.87
Other Socioeconomic and Demographic	29	12.55
ther Features	17	7.36
ot Reported	1	0.43

¹See supplementary table B for greater detail regarding feature categories ²Satellite-derived

Appendix A: Eligibility Criteria

The following types of articles were excluded:

- Reviews;
- Focused on a methodological development;
- Only included an abstract;
- Only used linear regression, logistic regression, generalized additive models, or other approaches not considered machine learning for the purpose of this review;
- Only applied models to diagnosis, treatment decisions, or prognosis of individuals who already had a disease;
- Only related to logistics, human resources, finance, or management involved in provision of public health services;
- Focused on occupational health, traffic accidents, or environmental monitoring, with no direct link to population health outcomes;
- Used smart home or home monitoring systems;
- Used advanced imaging or other expensive predictors that would be difficult or unsafe to scale to a population level;
- Focused on clinical decision support systems;
- Predicted adverse drug effects, except vaccines.

Appendix B: Examples of article titles removed during title screening

1. Improved classification of mangroves health status using hyperspectral remote sensing data

2. Diesel engine and propulsion diagnostics of a mini-cruise ship by using artificial neural networks

3. Relationship between benthic macroinvertebrate bio-indices and physicochemical parameters of water: A tool for water resources managers

4. Adaptive one-switch row-column scanning

- 5. Development of a distributed bearing health monitoring and assessing system
- 6. Neural networks based sensor validation and recovery methodology for advanced aircraft engines
- 7. Mining images in publicly-available cameras for homeland security
- 8. The human pulvinar and attentional processing of visual distractors
- 9. Text classification techniques in oil industry applications

10. Research on acoustic mechanical fault diagnosis method of high voltage circuit breaker based on improved EEMD

1		
2		
3	Арр	endix C: All studies included in the review.
4 5		
5 6	1	Achrekar H, Gandhe A, Lazarus R, et al. Predicting Flu Trends using Twitter data. 2011.
7	2	doi:10.1109/INFCOMW.2011.5928903
8	2	Adamou M, Antoniou G, Greasidou E, <i>et al.</i> Mining Free-Text Medical Notes for Suicide Risk Assessment. Proc. 10th Hell. Conf. Artif. Intell. 2018. doi:10.1145/3200947.3201020
9	3	Adams LJ, Bello G, Dumancas GG. Development and Application of a Genetic Algorithm for Variable
10	5	Optimization and Predictive Modeling of Five-Year Mortality Using Questionnaire Data. <i>Bioinform Biol</i>
11		Insights 2015;9:31–41. doi:https://dx.doi.org/10.4137/BBI.S29469
12	4	Agarwal A, Baechle C, Behara RS, et al. Multi-method approach to wellness predictive modeling. J Big
13	_	Data 2016; 3 :1–23. doi:http://dx.doi.org/10.1186/s40537-016-0049-0
14	5	Agarwal V, Zhang L, Zhu J, <i>et al.</i> Impact of Predicting Health Care Utilization Via Web Search Behavior: A Data-Driven Analysis. <i>J Med Internet Res</i>
15 16		2016; 18 :e251.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medp&NEWS=N&AN=27
17		655225
18	6	Agopian AJ, Lupo PJ, Tinker SC, et al. Working towards a risk prediction model for neural tube defects.
19		Birth Defects Res A Clin Mol Teratol 2012;94:141-6. doi:https://dx.doi.org/10.1002/bdra.22883
20	7	Ahn C, Hwang Y, Park SK. Predictors of all-cause mortality among 514,866 participants from the Korean
21	0	National Health Screening Cohort. <i>PLoS One</i> 2017; 12 . doi:http://dx.doi.org/10.1371/journal.pone.0185458 Aichele S, Rabbitt P, Ghisletta P. Illness and intelligence are comparatively strong predictors of individual
22	8	differences in depressive symptoms following middle age. Aging Ment Health 2017;:1–10.
23		doi:https://dx.doi.org/10.1080/13607863.2017.1394440
24	9	Akbulut A, Ertugrul E, Topcu V. Fetal health status prediction based on maternal clinical history using
25 26		machine learning techniques. Comput Methods Programs Biomed 2018;163:87-100.
20		doi:http://dx.doi.org/10.1016/j.cmpb.2018.06.010
28	10	Akhavan P, Karimi M, Pahlavani P, et al. Risk mapping of Cutaneous Leishmaniasis via a fuzzy C Means-
29	11	based Neuro-Fuzzy inference system. 2014; 40 :19–23. doi:10.5194/isprsarchives-XL-2-W3-19-2014 Alby S, Shivakumar BL. A prediction model for type 2 diabetes risk among Indian women. <i>ARPN J Eng</i>
30	11	<i>Appl Sci</i> 2016; 11 :2037–43.https://www.scopus.com/inward/record.uri?eid=2-s2.0-
31		84959387072&partnerID=40&md5=0fde9764a6290488b1c3472e2bbb5f7c NS -
32	12	Allen T, Murray KA, Zambrana-Torrelio C, et al. Global hotspots and correlates of emerging zoonotic
33	10	diseases. Nat Commun 2017;8:1124. doi:https://dx.doi.org/10.1038/s41467-017-00923-8
34 35	13	Allore H, Tinetti ME, Araujo KLB, <i>et al.</i> A case study found that a regression tree outperformed multiple
35 36		linear regression in predicting the relationship between impairments and Social and Productive Activities scores. <i>J Clin Epidemiol</i> 2005; 58 :154–
37		61.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=15680749
38	14	Al-Mallah MH, Elshawi R, Ahmed AM, et al. Using Machine Learning to Define the Association between
39		Cardiorespiratory Fitness and All-Cause Mortality (from the Henry Ford Exercise Testing Project). Am J
40		<i>Cardiol</i> 2017; 120 :2078–84. doi:10.1016/j.amjcard.2017.08.029
41	15	Almeida AS, Werneck GL. Prediction of high-risk areas for visceral leishmaniasis using socioeconomic
42	16	indicators and remote sensing data. <i>Int J Health Geogr</i> 2014; 13 . doi:10.1186/1476-072X-13-13 Alves EB, Costa CHN, de Carvalho FAA, <i>et al.</i> Risk Profiles for Leishmania infantum Infection in Brazil.
43	10	<i>Am J Trop Med Hyg</i> 2016; 94 :1276–81. doi:10.4269/ajtmh.15-0513
44 45	17	Amini P, Ahmadinia H, Poorolajal J, et al. Evaluating the High Risk Groups for Suicide: A Comparison of
46		Logistic Regression, Support Vector Machine, Decision Tree and Artificial Neural Network. Iran J Public
47		Health 2016;45:1179–87.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149472/pdf/IJPH-45-1179.pdf
48	18	NS - Amini P, Maroufizadeh S, Samani RO, <i>et al.</i> Factors Associated with Macrosomia among Singleton Live-
49	10	births: A Comparison between Logistic Regression, Random Forest and Artificial Neural Network Methods.
50		<i>Epidemiol Biostat Public Heal</i> 2016; 13 . doi:10.2427/11985
51	19	Anand A, Shakti D. Prediction of diabetes based on personal lifestyle indicators. 2015;:673-6.
52		doi:10.1109/NGCT.2015.7375206
53 54	20	Anderson RT, Balkrishnan R, Camacho F. Risk classification of Medicare HMO enrollee cost levels using a
54 55		decision-tree approach. Am J Manag Care 2004; 10 :89–
56	21	98.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=15011809 Asensio-Cuesta S, Diego-Mas JA, Alcaide-Marzal J. Applying generalised feedforward neural networks to
57	<i>2</i> 1	resense subset of Drogo must refer the Date of reprinting Scholansed receive wind neural networks to
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

2
3
4
5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
54 55
56
57
58
59

60

- classifying industrial jobs in terms of risk of low back disorders. *Int J Ind Ergon* 2010;**40**:629–35. doi:10.1016/j.ergon.2010.04.007
- 22 Ayyagari R, Vekeman F, Lefebvre P, *et al.* Pulse pressure and stroke risk: development and validation of a new stroke risk model. *Curr Med Res Opin* 2014;**30**:2453–60. doi:10.1185/03007995.2014.971357
- 23 Azeez A, Obaromi D, Odeyemi A, *et al.* Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model. *Int J Environ Res Public Health* 2016;**13**. doi:10.3390/ijerph13080757
- 24 Bakar AA, Kefli Z, Abdullah S, *et al.* Predictive models for dengue outbreak using multiple rulebase classifiers. 2011;;5 pp. doi:10.1109/ICEEI.2011.6021830
- 25 Balaraman S, Schafer JJ, Tseng AM, *et al.* Plasma miRNA Profiles in Pregnant Women Predict Infant Outcomes following Prenatal Alcohol Exposure. *PLoS One* 2016;**11**. doi:http://dx.doi.org/10.1371/journal.pone.0165081
- 26 Bandyopadhyay S, Wolfson J, Vock DM, *et al.* Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data. *Data Min Knowl Discov* 2015;**29**:1033–69. doi:10.1007/s10618-014-0386-6
- 27 Bashir S, Qamar U, Khan FH. A Multicriteria Weighted Vote-Based Classifier Ensemble for Heart Disease Prediction. *Comput Intell* 2016;**32**:615–45. doi:http://dx.doi.org/10.1111/coin.12070
- Bath PA, Pendleton N, Morgan K, *et al.* New approach to risk determination: development of risk profile for new falls among community-dwelling older people by use of a Genetic Algorithm Neural Network (GANN). *J Gerontol A Biol Sci Med Sci* 2000;55:M17 http://widen.org/outlineb.cci/200;55:M17-
 - 21.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=10719768
- 29 Bayati M, Bhaskar S, Montanari A. Statistical analysis of a low cost method for multiple disease prediction. *Stat Methods Med Res* 2018;**27**:2312–28. doi:http://dx.doi.org/10.1177/0962280216680242
- 30 Ben-Ari A, Hammond K. Text Mining the EMR for Modeling and Predicting Suicidal Behavior among US Veterans of the 1991 Persian Gulf War. 2015;:3168–75. doi:10.1109/HICSS.2015.382
- 31 Berchialla P, Scarinzi C, Snidero S, *et al.* Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children. *Stat Methods Med Res* 2016;**25**:1244–59. doi:10.1177/0962280213476167
- 32 Bertsimas D, Bjarnadottir M V, Kane MA, *et al.* Algorithmic Prediction of Health-Care Costs. *Oper Res* 2008;**56**:1382–92. doi:10.1287/opre.1080.0619
- 33 Bhatt S, Cameron E, Flaxman SR, *et al.* Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization. *J R Soc Interface* 2017;**14**:20170520. doi:http://dx.doi.org/10.1098/rsif.2017.0520
- Bhatt S, Gething PW, Brady OJ, *et al.* The global distribution and burden of dengue. *Nature* 2013;496:504–7.http://libaccess.mcmaster.ca/login?url=https://search.proquest.com/docview/1350966952?accountid=1234
 - 35 Bi J, Sun J, Wu Y, *et al.* A machine learning approach to college drinking prediction and risk factor identification. *ACM Trans Intell Syst Technol* 2013;**4**:1–24. doi:10.1145/2508037.2508053
 - Bibi H, Nutman A, Shoseyov D, *et al.* Prediction of emergency department visits for respiratory symptoms using an artificial neural network. *Chest* 2002;122:1627–
 32.http://myaccess.library.utoronto.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=rzh &AN=106806480&site=ehost-live NS -
 - Blankenberg S, Zeller T, Saarela O, *et al.* Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. *Circulation* 2010;**121**:2388–97.
 doi:https://dx.doi.org/10.1161/CIRCULATIONAHA.109.901413
 - Braithwaite SR, Giraud-Carrier C, West J, *et al.* Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality. *JMIR Ment Heal* 2016;3:e21. doi:https://dx.doi.org/10.2196/mental.4822
 - 39 Buczak AL, Baugher B, Guven E, et al. Fuzzy association rule mining and classification for the prediction of malaria in South Korea. BMC Med Inform Decis Mak 2015;15:47. doi:https://dx.doi.org/10.1186/s12911-015-0170-6
- 40 Buczak AL, Koshute PT, Babin SM, *et al.* A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data. *BMC Med Inform Decis Mak* 2012;**12**:124. doi:https://dx.doi.org/10.1186/1472-6947-12-124
- 41 Caillet P, Klemm S, Ducher M, et al. Hip Fracture in the Elderly: A Re-Analysis of the EPIDOS Study with

BMJ Open

_
Ξ
Ś
<u>ب</u>
0
ð
Φ
÷
first
÷
g
F
≌
s
<u> </u>
ď
ŝ
ŝ
<u> </u>
0
·
<u> </u>
ω
୍
ğ
.З
<u> </u>
ō
Φ
۲.
2
0
3
ž
2
3
õ
õ
0
0
⊐
N
7
0
ŏ
ਨ
ŏ
Φ
2
Ň
õ
-
Q
Ş
ŝ
≓
Solu
nload
nloade
nloaded
nloaded fr
nloaded from
nloaded from
nloaded from h
nloaded from htt
BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http:
<pre>nloaded from http://</pre>
nloaded from http://bi
nloaded from http://bm
nloaded from http://bmjc
nloaded from http://bmjop
nloaded from http://bmjope
irst published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.
nloaded from http://bmjopen.b.
Noaded from http://bmjopen.bm
nloaded from http://bmjopen.bmj.
nloaded from http://bmjopen.bmj.cc
nloaded from http://bmjopen.bmj.com
nloaded from http://bmjopen.bmj.com/
nloaded from http://bmjopen.bmj.com/ c
nloaded from http://bmjopen.bmj.com/ on
nloaded from http://bmjopen.bmj.com/ on #
nloaded from http://bmjopen.bmj.com/ on Ap
nloaded from http://bmjopen.bmj.com/ on Apri
nloaded from http://bmjopen.bmj.com/ on April 2
Noaded from http://bmjopen.bmj.com/ on April 24
nloaded from http://bmjopen.bmj.com/ on April 24,
Noaded from http://bmjopen.bmj.com/ on April 24, 2
Noaded from http://bmjopen.bmj.com/ on April 24, 20;
Noaded from http://bmjopen.bmj.com/ on April 24, 2024
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 t
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by g
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by gu
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by gue
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest
Iloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. I
Iloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Pi
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Pro
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Prote
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protec
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected b
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by c
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by cop
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copy
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyri
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyrigil
Noaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

42	Causal Bayesian Networks. <i>PLoS One</i> 2015; 10 . doi:http://dx.doi.org/10.1371/journal.pone.0120125 Cao S, Wang F, Tam W, <i>et al.</i> A hybrid seasonal prediction model for tuberculosis incidence in China. <i>BMC Med Inform Decis Mak</i> 2013; 13 :56. doi:https://dx.doi.org/10.1186/1472-6947-13-56
43	Caon F, Meneghel G, Zaghi P, <i>et al.</i> Applicability of neural networks to suicidological research: a pilot study. <i>Arch suicide Res</i> 2002;6:285–
44	9.http://libaccess.mcmaster.ca/login?url=https://search.proquest.com/docview/38408407?accountid=12347 Chae S, Kwon S, Lee D. Predicting Infectious Disease Using Deep Learning and Big Data. <i>Int J Env Res</i>
	Public Heal 2018;15. doi:10.3390/ijerph15081596
45	Chang JS, Yeh RF, Wiencke JK, <i>et al.</i> Pathway analysis of single-nucleotide polymorphisms potentially associated with glioblastoma multiforme susceptibility using random forests. <i>Cancer Epidemiol Biomarkers Prev</i> 2008; 17 :1368–73. doi:10.1158/1055-9965.EPI-07-2830
46	Chen Y, Chu CW, Chen MIC, <i>et al.</i> The utility of LASSO-based models for real time forecasts of endemic infectious diseases: a cross country comparison. <i>J Biomed Inform</i> Published Online First: 2018. doi:https://dx.doi.org/10.1016/j.jbi.2018.02.014
47	Chen Y-T, Miller PD, Barrett-Connor E, <i>et al.</i> An approach for identifying postmenopausal women age 50- 64 years at increased short-term risk for osteoporotic fracture. <i>Osteoporos Int</i> 2007; 18 :1287– 96.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=17464525
48	Chenar SS, Deng Z. Development of genetic programming-based model for predicting oyster norovirus outbreak risks. <i>Water Res</i> 2018; 128 :20–37. doi:10.1016/j.watres.2017.10.032
49	Chenar SS, Deng Z. Development of artificial intelligence approach to forecasting oyster norovirus outbreaks along Gulf of Mexico coast. <i>Environ Int</i> 2018; 111 :212–23. doi:https://dx.doi.org/10.1016/j.envint.2017.11.032
50	Cheng Y, Jiang T, Zhu M, <i>et al.</i> Risk assessment models for genetic risk predictors of lung cancer using two-stage replication for Asian and European populations. <i>Oncotarget</i> 2017; 8 :53959–67. doi:https://dx.doi.org/10.18632/oncotarget.10403
51	Choi SB, Lee W, Yoon J-H, <i>et al.</i> Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea. <i>J Affect Disord</i> 2018; 231 :8–14. doi:https://dx.doi.org/10.1016/j.jad.2018.01.019
52	Conrad D, Wilker S, Pfeiffer A, <i>et al.</i> Does trauma event type matter in the assessment of traumatic load? <i>Eur J Psychotraumatol</i> 2017; 8 . doi:10.1080/20008198.2017.1344079
53	Courtney KL, Stewart S, Popescu M, <i>et al.</i> Predictors of preterm birth in birth certificate data. <i>Stud Health</i> <i>Technol Inform</i> 2008; 136 :555– 60.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=18487789
54	Crawford AG, Fuhr Jr JP, Clarke J, <i>et al.</i> Comparative effectiveness of total population versus disease- specific neural network models in predicting medical costs. <i>Dis Manag</i> 2005; 8 :277–87.
55	doi:10.1089/dis.2005.8.277 Dartois L, Gauthier E, Heitzmann J, <i>et al.</i> A comparison between different prediction models for invasive breast cancer occurrence in the French E3N cohort. <i>Breast Cancer Res Treat</i> 2015; 150 :415–26. doi:https://dx.doi.org/10.1007/s10549-015-3321-7
56	Darvishi E, Khotanlou H, Khoubi J, <i>et al.</i> Prediction Effects of Personal, Psychosocial, and Occupational Risk Factors on Low Back Pain Severity Using Artificial Neural Networks Approach in Industrial Workers. <i>J Manipulative Physiol Ther</i> 2017; 40 :486–93. doi:https://dx.doi.org/10.1016/j.jmpt.2017.03.012
57	Davidson MW, Haim DA, Radin JM. Using networks to combine 'big data' and traditional surveillance to improve influenza predictions. <i>Sci Rep</i> 2015; 5 :8154. doi:http://dx.doi.org/10.1038/srep08154
58	De Choudhury M, Gamon M, Counts S, <i>et al.</i> Predicting depression via social media. 2013;:128–37.https://www.scopus.com/inward/record.uri?eid=2-s2.0-
59	84900027892&partnerID=40&md5=37755eb6e5e5e0639df4438f14bf1c8f NS - DeClaris N, Hammad T, Wahab AF, <i>et al.</i> Neural network models for studying and for managing in real-
60	time schistosomiasis control programs. 1994; vol.2 :1362–3. doi:10.1109/IEMBS.1994.415473 Delgado-Gomez D, Blasco-Fontecilla H, Sukno F, <i>et al.</i> Suicide attempters classification: Toward predictive models of suicidal behavior. <i>Neurocomputing An Int J</i> 2012; 92 :3–8.
61	doi:http://dx.doi.org/10.1016/j.neucom.2011.08.033 Dicken RA, Fazle Rubby SAM, Naz S, <i>et al.</i> Risk assessment of the top five malignancies among males and females with respect to occupation, educational status and smoking habits. 2016;:6 pp.
62	doi:10.1109/ICIS.2016.7550756 Dierker LC, Avenevoli S, Goldberg A, <i>et al.</i> Defining subgroups of adolescents at risk for experimental and

Janeiro. <i>Math Probl Eng</i> 2011;:720304 (13 pp.). doi:10.1155/2011/720304 Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 8 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis us a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using suppor vector regression. <i>PLoS One</i> 2013; 8 :e79970. doi:https://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0079970 63.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11079905 Hu X, Quirchmayr G, Winivarter W, <i>et al.</i> Influenza early warning model based on Yunqi theory. <i>Chin .</i> <i>Integr Med</i> 2012; 18 :192–6. doi:10.1007/s11655-012-1003-4 Hu ZK, Jin B, Shin AY, <i>et al.</i> Real-Time Web-Based Assessment of Total Population Risk of Future Emergency Department Utilization: Statewide Prospective Active Case Finding Study. <i>Interact J Med Re</i> 2015; 4 :39–51. doi:10.2196/ijmr.4022 Husam IS, Abuhamad AAB, Zainudin S, <i>et al.</i> Feature selection algorithms for Malaysian dengue outbre detection model. <i>Sains Malaysiana</i> 2017; 46 :255–65. doi:10.17576/jsm-2017-4602-10 Husin NA, Mustapha N, Sulaiman MN, <i>et a</i>
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237–47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis us a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using suppor vector regression. <i>PLoS One</i> 2013; 8 :e79970. doi:https://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0079970 63.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11079905 Hu X, Quirchmayr G, Winiwarter W, <i>et al.</i> Influenza early warning model based on Yunqi theory. <i>Chin . Integr Med</i> 2012; 18 :192–6. doi:10.1007/s11655-012-1003-4 Hu ZK, Jin B, Shin AY, <i>et al.</i> Real-Time Web-Based Assessment of Total Population Risk of Future Emergency Department Utilization: Statewide Prospective Active Case Finding Study. <i>Interact J Med Re</i> 2015; 4 :39–51. doi:10.2196/ijmr.4022 Husam IS, Abuhamad AAB, Zainudin S, <i>et al.</i> Feature selection algorithms for Malaysian dengue outbre detection model. <i>Sains Malaysiana</i> 2017; 46 :255–65. doi:10.17576/jsm-2017-4602-10
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis us a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using suppor vector regression. <i>PLoS One</i> 2013; 8 :e79970. doi:https://dx.doi.org/10.1371/journal.pnet.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Durbin DR, Winston FK. Discovery of predictive models in an injury surveillance database: application of data mining in clinical research. <i>Proceedings AMIA Symp</i> 2000;:359– 63.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11079905 Hu X, Quirchmayr G, Winiwarter W, <i>et al.</i> Influenza early warning model based on Yunqi theory. <i>Chin J.</i> <i>Integr Med</i> 2012; 18 :192–6. doi:10.1007/s11655-012-1003-4 Hu ZK, Jin B, Shin AY, <i>et al.</i> Real-Time Web-Based Assessment of Total Population Risk of Future Emergency Department Utilization: Statewide Prospective Active Case Finding Study. <i>Interact J Med Re</i> 2015; 4 :39–51. doi:10.2196/ijmr.4022
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis us a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using suppor vector regression. <i>PLoS One</i> 2013; 8 :e79970. doi:https://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0015437 Holmes JH, Durbin DR, Winston FK. Discovery of predictive models in an injury surveillance database: application of data mining in clinical research. <i>Proceedings AMIA Symp</i> 2000;:359– 63.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11079905 Hu X, Quirchmayr G, Winiwarter W, <i>et al.</i> Influenza early warning model based on Yunqi theory. <i>Chin J.</i> <i>Integr Med</i> 2012; 18 :192–6. doi:10.1007/s11655-012-1003-4 Hu ZK, Jin B, Shin AY, <i>et al.</i> Real-Time Web-Based Assessment of Total Population Risk of Future
 Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013;88:99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002;69:237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis us a neural network. <i>Arch Gerontol Geriatr</i> 2005;40:157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017;11:e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using suppor vector regression. <i>PLoS One</i> 2013;8:e79970. doi:https://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010;5. doi:http://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Durbin DR, Winston FK. Discovery of predictive models in an injury surveillance database: application of data mining in clinical research. <i>Proceedings AMIA Symp</i> 2000;:359–63.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11079905 Hu X, Quirchmayr G, Winiwarter W, <i>et al.</i> Influenza early warning model based on Yunqi theory. <i>Chin</i>.
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis u a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using suppo vector regression. <i>PLoS One</i> 2013; 8 :e79970. doi:https://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0015437 Holmes JH, Durbin DR, Winston FK. Discovery of predictive models in an injury surveillance database: application of data mining in clinical research. <i>Proceedings AMIA Symp</i> 2000;:359– 63.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11079905
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis u a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using suppo vector regression. <i>PLoS One</i> 2013; 8 :e79970. doi:https://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0079970
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis u a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using suppor vector regression. <i>PLoS One</i> 2013; 8 :e79970. doi:https://dx.doi.org/10.1371/journal.pone.0079970
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis u a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis u a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling <i>Comput Methods Programs Biomed</i> 2002; 69 :237– 47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451
Girela JL, Gil D, Johnsson M, <i>et al.</i> Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653 Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling
Girela JL, Gil D, Johnsson M, et al. Semen parameters can be predicted from environmental factors and
Janeiro. Math Probl Eng 2011;:720304 (13 pp.). doi:10.1155/2011/720304
Gerardi DO, Monteiro LHA. System identification and prediction of dengue fever incidence in Rio de
Ganga GMD, Esposto KF, Braatz D. Application of discriminant analysis-based model for prediction of of low back disorders due to workplace design in industrial jobs. <i>Work J Prev Assess Rehabil</i> 2012; 41 :2370–6. doi:10.3233/WOR-2012-0467-2370
doi:http://dx.doi.org/10.1016/j.jns.2011.03.032
Gan X, Xu Y, Liu L, <i>et al.</i> Predicting the incidence risk of ischemic stroke in a hospital population of southern China: A classification tree analysis. <i>J Neurol Sci</i> 2011; 306 :108–14.
Gan R, Chen N, Huang D. Comparisons of forecasting for hepatitis in Guangxi Province, China by using three neural networks models. <i>PeerJ</i> 2016; 2016 :2684. doi:http://dx.doi.org/10.7717/peerj.2684
ageing and its determinants, using factor analysis and machine learning techniques: The ATHLOS proje <i>Sci Rep</i> 2017; 7 . doi:10.1038/srep43955
doi:http://dx.doi.org/10.1371/journal.pone.0183182 Félix Caballero F, Soulis G, Engchuan W, <i>et al</i> . Advanced analytical methodologies for measuring healt
Dykxhoorn J, Hatcher S, Roy-Gagnon M-H, et al. Early life predictors of adolescent suicidal thoughts a adverse outcomes in two population-based cohort studies. PLoS One 2017;12.
Dwivedi AK. Performance evaluation of different machine learning techniques for prediction of heart disease. <i>Neural Comput Appl</i> 2018; 29 :685–93. doi:10.1007/s00521-016-2604-1
Duh MS, Walker AM, Pagano M, <i>et al.</i> Prediction and cross-validation of neural networks versus logist regression: Using hepatic disorders as an example. <i>Am J Epidemiol</i> 1998; 147 :407–13.NS -
doi:http://dx.doi.org/10.1371/journal.pone.0190549 Dugan TM, Mukhopadhyay S, Carroll A, et al. Machine Learning Techniques for Prediction of Early Childhood Obesity. Appl Clin Inform 2015;6:506–20. doi:http://dx.doi.org/10.4338/ACI-2015-03-RA-0
Dogan M V, Grumbach IM, Michaelson JJ, <i>et al.</i> Integrated genetic and epigenetic prediction of corona heart disease in the Framingham Heart Study. <i>PLoS One</i> 2018; 13 :e0190549.
Dinh TQ, Le H V, Cao TH, <i>et al.</i> Forecasting the magnitude of dengue in southern vietnam. 2016; pt.I :5 63. doi:10.1007/978-3-662-49381-6_53

BMJ Open

86	prediction. <i>Accid Anal Prev</i> 2017; 108 :27–36. doi:10.1016/j.aap.2017.08.008 Jafari SA, Jahandideh S, Jahandideh M, <i>et al.</i> Prediction of road traffic death rate using neural network
	optimised by genetic algorithm. <i>Int J Inj Contr Saf Promot</i> 2015; 22 :153–7. doi:https://dx.doi.org/10.1080/17457300.2013.857695
87	Jiang D, Hao M, Ding F, <i>et al.</i> Mapping the transmission risk of Zika virus using machine learning mo <i>Acta Trop</i> 2018; 185 :391–9. doi:https://dx.doi.org/10.1016/j.actatropica.2018.06.021
88	Joseph A, Ramamurthy B. Suicidal behavior prediction using data mining techniques. Int J Mech Eng
	<i>Technol</i> 2018; 9 :293–301.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85045951449&partnerID=40&md5=74f2c78c8b63037785fb7ed22ef9b8a1 NS -
89	Juan YC, Chen CM, Chen SH. A classifier fusion approach to osteoporosis prediction for women in Ta J Ind Prod Eng 2015; 32 :360–8. doi:10.1080/21681015.2015.1064484
90	Karstoft K-I, Statnikov A, Andersen SB, <i>et al.</i> Early identification of posttraumatic stress following mi deployment: Application of machine learning methods to a prospective study of Danish soldiers. <i>J Affe</i> <i>Disord</i> 2015; 184 :170–5. doi:https://dx.doi.org/10.1016/j.jad.2015.05.057
91	Kennedy EH, Wiitala WL, Hayward RA, et al. Improved Cardiovascular Risk Prediction Using
	Nonparametric Regression and Electronic Health Record Data. <i>Med Care</i> 2013; 51 :251–8. doi:10.1097/MLR.0b013e31827da594
92	Kesorn K, Ongruk P, Chompoosri J, <i>et al.</i> Morbidity Rate Prediction of Dengue Hemorrhagic Fever (E Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas. <i>PLoS One</i> 2015; 10 . doi:http://dx.doi.org/10.1371/journal.pone.0125049
93	Kessler RC, Hwang I, Hoffmire CA, <i>et al.</i> Developing a practical suicide risk prediction model for targ high-risk patients in the Veterans health Administration. <i>Int J Methods Psychiatr Res</i> 2017; 26 :e1575. doi:10.1002/mpr.1575
94	Kessler RC, Rose S, Koenen KC, <i>et al.</i> How well can post-traumatic stress disorder be predicted from trauma risk factors? An exploratory study in the WHO World Mental Health Surveys. <i>World Psychiatr</i> 2014; 13 :265–74. doi:http://dx.doi.org/10.1002/wps.20150
95	Kim BJ, Kim SH. Prediction of inherited genomic susceptibility to 20 common cancer types by a super machine-learning method. <i>Proc Natl Acad Sci U S A</i> 2018; 115 :1322–7. doi:10.1073/pnas.1717960115
96	Kim H, Chun H-W, Kim S, <i>et al.</i> Longitudinal Study-Based Dementia Prediction for Public Health. <i>Int. Environ Res Public Health</i> 2017; 14 . doi:https://dx.doi.org/10.3390/ijerph14090983
97	Kim JK, Kang S. Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Corre Analysis. <i>J Healthc Eng</i> Published Online First: 2017. doi:10.1155/2017/2780501
98	Kim MH, Banerjee S, Park SM, <i>et al.</i> Improving risk prediction for depression via Elastic Net regression Results from Korea National Health Insurance Services Data. <i>AMIA</i> . <i>Annu Symp proceedings AMIA S</i>
	2016; 2016 :1860– 9.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexa&NEWS=N&AN=6181402
	NS -
99	Kooperberg C, LeBlanc M, Obenchain V. Risk prediction using genome-wide association studies. <i>Gen Epidemiol</i> 2010; 34 :643–52. doi:10.1002/gepi.20509
100	Kwak J, Kim S, Kim G, et al. Scrub Typhus Incidence Modeling with Meteorological Factors in South Korea. Int J Environ Res Public Health 2015;12:7254–73. doi:10.3390/ijerph120707254
101	Lakshmi BN, Indumathi TS, Ravi N. A comparative study of classification algorithms for risk prediction pregnancy. 2015;:6 pp. doi:10.1109/TENCON.2015.7373161
102	Lebrón-Aldea D, Dhurandhar EJ, Pérez-Rodríguez P, <i>et al.</i> Integrated genomic and BMI analysis for ty diabetes risk assessment. <i>Front Genet</i> 2015; 5 . doi:10.3389/fgene.2015.00075
103	Leclerc BS, Begin C, Cadieux E, et al. A classification and regression tree for predicting recurrent falli
	among community-dwelling seniors using home-care services. <i>Can J Public Health</i> 2009; 100 :263–7.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=19722338
104	Ledien J, Sorn S, Hem S, <i>et al.</i> Assessing the performance of remotely-sensed flooding indicators and potential contribution to early warning for leptospirosis in Cambodia. <i>PLoS One</i> 2017; 12 . doi:http://dx.doi.org/10.1371/journal.pone.0181044
105	Lemke KW, Gudzune KA, Kharrazi H, <i>et al.</i> Assessing markers from ambulatory laboratory tests for predicting high-risk patients. <i>Am J Manag Care</i> 2018; 24 :e190–
	5.https://ajmc.s3.amazonaws.com/_media/_pdf/AJMC_06_2018_Lemke final.pdfhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexb&NEWS=N&AN=62 947 NS -

1	
2 3	106
4	106
5	107
6 7	
8	108
9	100
10 11	109
12	110
13 14	111
15	
16	112
17 18	
19	113
20	115
21 22	114
23	
24	115
25 26	116
27	116
28	117
29 30	
31	118
32	110
33 34	119
35	
36	120
37 38	121
39	
40	122
41 42	
43	123
44	
45 46	
47	124
48	
49 50	125
50	
52	126
53 54	
54 55	127
56	
57 58	

59

60

106 Leonenko VN, Bochenina KO, Kesarev SA, *et al.* Influenza peaks forecasting in Russia: Assessing the applicability of statistical methods. 2017;**108**:2363–7. doi:10.1016/j.procs.2017.05.196

- 107 Li H, Luo M, Zheng J, *et al.* An artificial neural network prediction model of congenital heart disease based on risk factors: A hospital-based case-control study. *Medicine (Baltimore)* 2017;96:e6090. doi:https://dx.doi.org/10.1097/MD.00000000006090
- 108 Li J, Cao N, Li H, *et al.* ANN approach for modeling and prediction of water quality in Sichuan Kaschin-Beck disease districts. 2010;**vol.3**:1129–32. doi:10.1109/BMEI.2010.5639611
- 109 Li Q, Zhao L, Xue Y, *et al.* Exploring the impact of co-experiencing stressor events for teens stress forecasting. 2017;**10570 LNCS**:313–28. doi:10.1007/978-3-319-68786-5_25
- 110 Li ZB, Liu P, Wang W, *et al.* Using support vector machine models for crash injury severity analysis. *Accid Anal Prev* 2012;**45**:478–86. doi:10.1016/j.aap.2011.08.016
- 111 Liang F, Guan P, Wu W, *et al.* Forecasting influenza epidemics by integrating internet search queries and traditional surveillance data with the support vector machine regression model in Liaoning, from 2011 to 2015. *PeerJ* 2018;6:e5134. doi:https://dx.doi.org/10.7717/peerj.5134
- Liao YL, Wang JF, Wu JL, et al. PSO/ACO Algorithm-based Risk Assessment of Human Neural Tube Defects in Heshun County, China. *Biomed Environ Sci* 2012;25:569–76. doi:10.3967/0895-3988.2012.05.011
- Liliana C, Oancea B, Nedelcu M, et al. Predicting cardiovascular diseases prevalence using neural networks. Econ Comput Econ Cybern Stud Res 2015;49:69–80.NS -
- Liu J, Tang Z-H, Zeng F, *et al.* Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population. *BMC Med Informatics Decis Mak* 2013;13:80. doi:10.1186/1472-6947-13-80
- 115 Liu K, Wang T, Yang Z, *et al.* Using Baidu Search Index to Predict Dengue Outbreak in China. *Sci Rep* 2016;**6**:38040. doi:https://dx.doi.org/10.1038/srep38040
- 116 Lopez E de M, Chanok SJ, Picornell AC, *et al.* Whole genome prediction of bladder cancer risk with the Bayesian LASSO. *Genet Epidemiol* 2014;**38**:467–76. doi:https://dx.doi.org/10.1002/gepi.21809
- 117 Luo W, Nguyen T, Nichols M, *et al.* Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset. *PLoS One* 2015;**10**:e0125602. doi:https://dx.doi.org/10.1371/journal.pone.0125602
- 118 Luo Y, Li Z, Guo H, *et al.* Predicting congenital heart defects: A comparison of three data mining methods. *PLoS One* 2017;**12**:e0177811. doi:https://dx.doi.org/10.1371/journal.pone.0177811
- 119 Makar M, Ghassemi M, Cutler DM, et al. Short-term Mortality Prediction for Elderly Patients Using Medicare Claims Data. Int J Mach Learn Comput 2015;5:192–7. doi:https://dx.doi.org/10.7763/IJMLC.2015.V5.506
- 120 Malovini A, Nuzzo A, Ferrazzi F, *et al.* Phenotype forecasting with SNPs data through gene-based Bayesian networks. *BMC Bioinformatics* 2009;**10**. doi:10.1186/1471-2105-10-S2-S7
- 121 Marcus MW, Raji OY, Duffy SW, *et al.* Incorporating epistasis interaction of genetic susceptibility single nucleotide polymorphisms in a lung cancer risk prediction model. *Int J Oncol* 2016;**49**:361–70. doi:https://dx.doi.org/10.3892/ijo.2016.3499
- 122 Mardones-Restat F, Jones G, Mardones-Santander F, *et al.* Growth failure prediction in chile. *Int J Epidemiol* 1989;**18**:S44–9. doi:10.1093/ije/18.Supplement_2.S44
- 123 Mathulamuthu SS, Asirvadam VS, Dass SC, et al. Predicting dengue cases by aggregation of climate variable using manifold learning. In: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 12-14 Sept. 2017. Piscataway, NJ, USA: : IEEE 2017. 535–40. doi:10.1109/ICSIPA.2017.8120670
- 124 McCoy Jr. TH, Castro VM, Roberson AM, *et al.* Improving Prediction of Suicide and Accidental Death After Discharge From General Hospitals With Natural Language Processing. *JAMA psychiatry* 2016;**73**:1064–71. doi:https://dx.doi.org/10.1001/jamapsychiatry.2016.2172
- 125 McKenzie DP, Toumbourou JW, Forbes AB, *et al.* Predicting future depression in adolescents using the Short Mood and Feelings Questionnaire: A two-nation study. *J Affect Disord* 2011;**134**:151–9. doi:10.1016/j.jad.2011.05.022
- 126 Mendelek F, Caby I, Pelayo P, *et al.* The Application of a Classification-Tree Model for Predicting Low Back Pain Prevalence Among Hospital Staff. *Arch Environ Occup Heal* 2013;**68**:135–44. doi:10.1080/19338244.2012.663010
- 127 Miller PD, Barlas S, Brenneman SK, *et al.* An approach to identifying osteopenic women at increased short-term risk of fracture. *Arch Intern Med* 2004;**164**:1113–

BMJ Open

	BMJ (
	0pen: fi
	irst pub
	lished a
	as 10.1
	136/bm
	ijopen-2
	BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjope
	37860 c
	n 27 O
	ctober
	2020. E
	Downloa
	aded fro
	om http
	://bmjoj
	pen.bm
	j.com/ (
	on April
	24, 20
	, 2024 by g
	y guest. P
	'rotecte
	d by cc
	pyright.

128	20.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=151592 Miotto R, Li L, Dudley JT. Deep Learning to Predict Patient Future Diseases from the Electronic Hea Records. In: Advances in Information Retrieval. 38th European Conference on IR Research, ECIR 20
	23 March 2016. Cham, Switzerland: : Springer International Publishing 2016. 768–74. doi:10.1007/9
	319-30671-1_66
129	Mittag F, Römer M, Zell A. Influence of Feature Encoding and Choice of Classifier on Disease Risk
	Prediction in Genome-Wide Association Studies. PLoS One 2015;10.
	doi:http://dx.doi.org/10.1371/journal.pone.0135832
130	Mo H, Liu L, Li J, et al. Risk Factors Selection for SGA Prediction. 2016;vol.2:627–32.
	doi:10.1109/COMPSAC.2016.180
131	Modu B, Polovina N, Lan Y, et al. Towards a Predictive Analytics-Based Intelligent Malaria Outbrea
	Warning System. Appl Sci-Basel 2017;7. doi:10.3390/app7080836
132	Nalini C, Meera D. Breast cancer prediction system using Data mining methods. Int J Pure Appl Math
	2018; 119 :10901–11.https://www.scopus.com/inward/record.uri?eid=2-s2.0-
	85048797875&partnerID=40&md5=2f62acf2b7bc59f17af18d08fe43c210 NS -
133	Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of B
	Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis.
	Geospat Health 2006;1:115–
	26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=186862
134	Nuutinen M, Leskela RL, Suojalehto E, et al. Development and validation of classifiers and variable
	for predicting nursing home admission. BMC Med Inform Decis Mak 2017;17. doi:10.1186/s12911-0
	0442-4
135	Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit
	generalized additive models, artificial neural networks and seasonal autoregressive integrated moving
	average models. PLoS One 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065
136	Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr
	forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159-90. doi:10.1007/978-3-319-65455
137	Panaretos D, Koloverou E, Dimopoulos AC, et al. A comparison of statistical and machine-learning
	techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (20
	2012): the ATTICA study. Br J Nutr 2018;120:1-9. doi:https://dx.doi.org/10.1017/S00071145180011
138	Park J, Edington DW. A sequential neural network model for diabetes prediction. Artif Intell Med
	2001; 23 :277–
	93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044
139	Parsaeian M, Mohammad K, Mahmoudi M, et al. Comparison of Logistic Regression and Artificial N
	Network in Low Back Pain Prediction: Second National Health Survey. Iran J Public Heal 2012;41:8
	92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS -
140	Pei Z, Liu J, Liu M, et al. Risk-Predicting Model for Incident of Essential Hypertension Based on
	Environmental and Genetic Factors with Support Vector Machine. Interdiscip Sci 2018;10:126–30.
	doi:https://dx.doi.org/10.1007/s12539-017-0271-2
141	Pekkala T, Hall A, Lotjonen J, et al. Development of a Late-Life Dementia Prediction Index with
	Supervised Machine Learning in the Population-Based CAIDE Study. J Alzheimers Dis 2017;55:1055
	67.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medl&NEWS=N&AN=278022
142	Peterson AT, Martinez-Campos C, Nakazawa Y, et al. Time-specific ecological niche modeling predi
	spatial dynamics of vector insects and human dengue cases. Trans R Soc Trop Med Hyg 2005;99:647-
	55.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=159796
143	Poole S, Grannis S, Shah NH. Predicting Emergency Department Visits. AMIA Jt Summits Transl Sci
	proceedings AMIA Jt Summits Transl Sci 2016; 2016 :438–
	45.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=275706
144	Popescu M, Khalilia M. Improving Disease Prediction Using ICD-9 Ontological Features. In: 2011 II
	International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 27-30 June 2011. Piscataway, NJ, U
	IEEE 2011. 1805–9.NS -
145	Potash E, Brew J, Loewi A, et al. Predictive Modeling for Public Health: Preventing Childhood Lead
	Poisoning. Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2015.
	doi:10.1145/2783258.2788629
146	Puddu PE, Menotti A. Artificial neural networks versus proportional hazards Cox models to predict 4
	all-cause mortality in the Italian Rural Areas of the Seven Countries Study. BMC Med Res Methodol

Page 54 of 58

BMJ Open

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

60

2012;**12**. doi:10.1186/1471-2288-12-100 147 Puddu PE, Menotti A, Artificial neural network versus multiple logistic function to predict 25-year coronary heart disease mortality in the Seven Countries Study. Eur J Cardiovasc Prev Rehabil 2009;16:583-91. doi:https://dx.doi.org/10.1097/HJR.0b013e32832d49e1 148 Oiang X, Kou Z. Prediction of interspecies transmission for avian influenza A virus based on a backpropagation neural network. Math Comput Model 2010;52:2060-5. doi:10.1016/j.mcm.2010.06.008 149 Rajliwall NS, Chetty G, Davey R. Chronic disease risk monitoring based on an innovative predictive modelling framework. Institute of Electrical and Electronics Engineers Inc. 2018. 1-8. doi:10.1109/SSCI.2017.8285257 150 Ram S, Zhang W, Williams M, et al. Predicting asthma-related emergency department visits using big data. IEEE J Biomed Heal informatics 2015;19:1216-23. doi:https://dx.doi.org/10.1109/JBHI.2015.2404829 151 Ramos R, Silva C, Moreira MWL, et al. Using predictive classifiers to prevent infant mortality in the Brazilian northeast. Institute of Electrical and Electronics Engineers Inc. 2017. 1–6. doi:10.1109/HealthCom.2017.8210811 152 Rasmy L, Zheng WJ, Xu H, et al. A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. J Biomed Inform 2018;84:11-6. doi:http://dx.doi.org/10.1016/j.jbi.2018.06.011 153 Ray EL, Sakrejda K, Lauer SA, et al. Infectious disease prediction with kernel conditional density estimation. Stat Med 2017:36:4908-29. doi:http://dx.doi.org/10.1002/sim.7488 154 Razavian N, Blecker S, Schmidt AM, et al. Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors. Big data 2015;3:277-87. doi:https://dx.doi.org/10.1089/big.2015.0020 155 Ren H, Li J, Yuan Z-A, et al. The development of a combined mathematical model to forecast the incidence of hepatitis E in Shanghai, China. BMC Infect Dis 2013;13:421. doi:https://dx.doi.org/10.1186/1471-2334-13-421 Robson JO, Verstraete SG, Shiboski S, et al. A Risk Score for Childhood Obesity in an Urban Latino 156 Cohort. J Pediatr 2016;172:29-34.e1. doi:10.1016/j.jpeds.2016.01.055 157 Rodriguez EA, Estrada FE, Torres WC, et al. Early prediction of severe maternal morbidity using machine learning techniques. Lect. Notes Comput. Sci. 2016;10022 LNAI:259-70. doi:10.1007/978-3-319-47955-2 22 Rose S. Mortality risk score prediction in an elderly population using machine learning. Am J Epidemiol 158 2013;177:443-52. doi:https://dx.doi.org/10.1093/aje/kws241 159 Saberian F, Zamani A, Shoorehdeli MA, et al. Prediction of seasonal influenza epidemics in Tehran using artificial neural networks. In: 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 20-22 May 2014. Piscataway, NJ, USA: : IEEE 2014. 1921–3. doi:10.1109/IranianCEE.2014.6999855 Sadilek A, Kautz H, Silenzio V. Modeling spread of disease from social interactions. 2012. 322-160 9.https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871981836&partnerID=40&md5=ddc1c242ae203453a8846fa59de09240 NS -Sadilek A, Kautz H, Silenzio V. Predicting disease transmission from geo-tagged micro-blog data. 2012. 161 136-42.https://www.scopus.com/inward/record.uri?eid=2-s2.0-84868268429&partnerID=40&md5=adeafe49ba93bc3c38d55525b18c1243 NS -Safi N, Adimi F, Soebiyanto RP, et al. Toward malaria risk prediction in Afghanistan using remote sensing. 162 International Society for Photogrammetry and Remote Sensing 2010. 339-42.https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924065446&partnerID=40&md5=db144d9b2dbec33ad5dc068d11cfed8d NS -163 Sanchez AS, Iglesias-Rodriguez FJ, Fernandez PR, et al. Applying the K-nearest neighbor technique to the classification of workers according to their risk of suffering musculoskeletal disorders. Int J Ind Ergon 2016:**52**:92–9. doi:10.1016/j.ergon.2015.09.012 164 Santos JC, Matos S. Analysing Twitter and web queries for flu trend prediction. Theor Biol Med Model 2014;11 Suppl 1:S6. doi:https://dx.doi.org/10.1186/1742-4682-11-S1-S6 165 Schalkwijk D, Graaf A, Tsivtsivadze E, et al. Lipoprotein metabolism indicators improve cardiovascular risk prediction. PLoS One. 2014;9:e92840. doi:10.1371/journal.pone.0092840 166 Shaoyan Z, Tjortjis C, Xiaojun Z, et al. Comparing data mining methods with logistic regression in childhood obesity prediction. Inf Syst Front 2009;11:449-60. doi:10.1007/s10796-009-9157-0 167 Shearer FM, Longbottom J, Browne AJ, et al. Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis. Lancet Glob Heal 2018;6:e270-8. doi:https://dx.doi.org/10.1016/S2214-109X(18)30024-X

BMJ Open

t em -75.	BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjop
An	-2020-037860 on 27 Oct
tor	ober 2020.
cine	Downloa
roc. eural	uded fro
	om ht
3 ng.	p://bm
sion	jopen.b
icts	mj.com/ on A
its:	pril 24, 20
1)24 by gue
941	en.bmj.com/ on April 24, 2024 by guest. Protected by copyright
	yht.

168	Sheets L, Petroski GF, Zhuang Y, <i>et al.</i> Combining Contrast Mining with Logistic Regression To Pred Healthcare Utilization in a Managed Care Population. <i>Appl Clin Inform</i> 2017; 8 :430–46. doi:http://dx.doi.org/10.4338/ACI-2016-05-RA-0078
169	Shen F, Yuan J, Sun Z, <i>et al.</i> Risk Identification and Prediction of Coal Workers' Pneumoconiosis in Kailuan Colliery Group in China: A Historical Cohort Study. <i>PLoS One</i> 2013; 8 . doi:http://dx.doi.org/10.1371/journal.pone.0082181
170	Shi Y, Liu X, Kok S-Y, <i>et al.</i> Three-Month Real-Time Dengue Forecast Models: An Early Warning S for Outbreak Alerts and Policy Decision Support in Singapore. <i>Environ Health Perspect</i> 2016; 124 :130 doi:https://dx.doi.org/10.1289/ehp.1509981
171	Simon GE, Johnson E, Lawrence JM, <i>et al.</i> Predicting Suicide Attempts and Suicide Deaths Followin, Outpatient Visits Using Electronic Health Records. <i>Am J Psychiatry</i> 2018;:appiajp201817101167. doi:https://dx.doi.org/10.1176/appi.ajp.2018.17101167
172	Soebiyanto RP, Kiang R. Meteorological parameters as predictors for seasonal influenza. <i>Geocarto In</i> 2014; 29 :39–47. doi:10.1080/10106049.2013.799717
173	Song J. SVR model for prediction of incidence influenza based on automated method. Adv. Mater. Re 2014; 926–930 :1159–63. doi:10.4028/www.scientific.net/AMR.926-930.1159
174	Song X, Mitnitski A, MacKnight C, <i>et al.</i> Assessment of individual risk of death using self-report data artificial neural network compared with a frailty index. <i>J Am Geriatr Soc</i> 2004; 52 :1180–4. doi:http://dx.doi.org/10.1111/j.1532-5415.2004.52319.x
175	Song X, Mitnitski A, Cox J, <i>et al.</i> Comparison of machine learning techniques with classical statistica models in predicting health outcomes. <i>Stud Health Technol Inform</i> 2004; 107 :736–
176	40.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=153609 Spencer KL, Olson LM, Schnetz-Boutaud N, <i>et al.</i> Using Genetic Variation and Environmental Risk Data to Identify Individuals at High Risk for Age-Related Macular Degeneration. <i>PLoS One</i> 2011; 6 . doi:http://dx.doi.org/10.1371/journal.pone.0017784
177	Sung Kean K, Tae Keun Y, Ein O, <i>et al.</i> Osteoporosis risk prediction using machine learning and conventional methods. In: 2013 35th Annual International Conference of the IEEE Engineering in Me and Biology Society (EMBC), 3-7 July 2013. Piscataway, NJ, USA: : IEEE 2013. 188–91.
178	doi:10.1109/EMBC.2013.6609469 Sushmita S, Newman S, Marquardt J, <i>et al.</i> Population Cost Prediction on Public Healthcare Datasets 5th Int. Conf. Digit. Heal. 2015. 2015. doi:10.1145/2750511.2750521
179	Tafaro L, Cicconetti P, Piccirillo G, <i>et al.</i> Is it possible to predict one-year survival in centenarians? A network study. <i>Gerontology</i> 2005; 51 :199–
180	205.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=15832 Tamaki Y, Nomura Y, Katsumura S, <i>et al.</i> Construction of a dental caries prediction model by data m <i>J Oral Sci</i> 2009; 51 :61–8. doi:http://dx.doi.org/10.2334/josnusd.51.61
181	Toschke AM, Beyerlein A, von Kries R. Children at high risk for overweight: a classification and reg trees analysis approach. <i>Obes Res</i> 2005; 13 :1270– 4.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=1607699
182	Tran T, Luo W, Phung D, <i>et al.</i> Risk stratification using data from electronic medical records better p suicide risks than clinician assessments. <i>BMC Psychiatry</i> 2014; 14 . doi:10.1186/1471-244X-14-76
183	van den Kommer TN, Comijs HC, Dik MG, <i>et al.</i> Development of classification models for early identification of persons at risk for persistent cognitive decline. <i>J Neurol</i> 2008; 255 :1486–94. doi:10.1007/s00415-008-0942-3
184	Van Voorhees BW, Paunesku D, Gollan J, <i>et al.</i> Predicting future risk of depressive episode in adoles the Chicago Adolescent Depression Risk Assessment (CADRA). <i>Ann Fam Med</i> 2008;6:503–11. doi:https://dx.doi.org/10.1370/afm.887
185	Vestergaard P, Kruse C, Goemaere S, <i>et al.</i> Predicting mortality and incident immobility in older Bely men by characteristics related to sarcopenia and frailty. <i>Osteoporos Int</i> 2018; 29 :1437–45. doi:10.1007/s00198-018-4467-z
186	Volkova S, Ayton E, Porterfield K, <i>et al.</i> Forecasting influenza-like illness dynamics for military populations using neural networks and social media. <i>PLoS One</i> 2017; 12 . doi:10.1371/journal.pone.01
187	Voss R, Cullen P, Schulte H, <i>et al.</i> Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Munster Study (PROCAM) using neural networks. <i>Int J Epidemiol</i> 2002; 31 :1253–
	64.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=125407

	the way to individual wellness. AI Access Foundation 2014. 82-
	9.https://www.scopus.com/inward/record.uri?eid=2-s2.0-
	84904912879 & partner ID=40 & md5=02 cbb14 baeb 811 a357606 bcc5e9d11 ca NS -
189	Walton NA, Poynton MR, Gesteland PH, <i>et al.</i> Predicting the start week of respiratory syncytial virus
169	outbreaks using real time weather variables. <i>BMC Med Informatics Decis Mak</i> 2010; 10 :68.
	doi:10.1186/1472-6947-10-68
100	
190	Walz Y, Wegmann M, Leutner B, <i>et al.</i> Use of an ecologically relevant modelling approach to improve
	remote sensing-based schistosomiasis risk profiling. <i>Geospat Health</i> 2015; 10 :271–9.
101	doi:10.4081/gh.2015.398
191	Wang AG, An N, Chen GL, <i>et al.</i> Predicting hypertension without measurement: A non-invasive,
100	questionnaire-based approach. Expert Syst Appl 2015;42:7601–9. doi:10.1016/j.eswa.2015.06.012
192	Wang CJ, Li YQ, Wang L, <i>et al.</i> Development and Evaluation of a Simple and Effective Prediction
	Approach for Identifying Those at High Risk of Dyslipidemia in Rural Adult Residents. <i>PLoS One</i>
102	2012;7:e43834. doi:http://dx.doi.org/10.1371/journal.pone.0043834
193	Wang JF, Liu X, Liao YL, et al. Prediction of Neural Tube Defect Using Support Vector Machine. Bio
	Environ Sci 2010;23:167–72. doi:10.1016/S0895-3988(10)60048-7
194	Wang J, Jia P, Cuadros DF, et al. A Remote Sensing Data Based Artificial Neural Network Approach
	Predicting Climate-Sensitive Infectious Disease Outbreaks: A Case Study of Human Brucellosis. Remo
105	Sens 2017;9. doi:10.3390/rs9101018
195	Wang J, Zhou Y, Kou Z. One class support vector machine for predicting avian-to-human transmission
106	avian influenza a virus. 2012. 184–8. doi:10.1109/CSAE.2012.6272935
196	Wang J, Deng Z. Modeling and Prediction of Oyster Norovirus Outbreaks along Gulf of Mexico Coast
	Environ Heal Perspect
	2016;124:627.http://libaccess.mcmaster.ca/login?url=https://search.proquest.com/docview/180610435
	ountid=12347
197	Wang KW, Deng C, Li JP, et al. Hybrid methodology for tuberculosis incidence time-series forecasting
	based on ARIMA and a NAR neural network. <i>Epidemiol Infect</i> 2017;145:1118–29.
	doi:https://dx.doi.org/10.1017/S0950268816003216
198	Wang Y, Gu J. Comparative study among three different artificial neural networks to infectious diarrhe
	forecasting. Institute of Electrical and Electronics Engineers Inc. 2014. 40–6.
100	doi:10.1109/BIBM.2014.6999373
199	Wang Y, Li J, Gu J, et al. Artificial neural networks for infectious diarrhea prediction using meteorolog
• • • •	factors in Shanghai (China). Appl Soft Comput J 2015;35:280–90. doi:10.1016/j.asoc.2015.05.047
200	Warren H, Casas J-P, Hingorani A, et al. Genetic prediction of quantitative lipid traits: comparing shrin
• • •	models to gene scores. Genet Epidemiol 2014;38:72–83. doi:https://dx.doi.org/10.1002/gepi.21777
201	Wei WD, Jiang JJ, Gao L, et al. A New Hybrid Model Using an Autoregressive Integrated Moving Av
	and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng County, Chin
• • •	<i>J Trop Med Hyg</i> 2017; 97 :799–805. doi:10.4269/ajtmh.16-0648
202	Wei W, Visweswaran S, Cooper GF, et al. The application of naive Bayes model averaging to predict
	Alzheimer's disease from genome-wide data. J Am Med Informatics Assoc 2011;18:370–5.
202	doi:10.1136/amiajnl-2011-000101
203	Wei W, Jiang J, Liang H, et al. Application of a Combined Model with Autoregressive Integrated Mov
	Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Inci
204	in Heng County, China. PLoS One 2016;11:e0156768. doi:https://dx.doi.org/10.1371/journal.pone.015
204	Wen L, Li-Zhong Z, Dong-Wang M, et al. Predicting the risk for colorectal cancer with personal
	characteristics and fecal immunochemical test. <i>Medicine (Baltimore)</i> 2018; 97 :1–7.
205	doi:10.1097/MD.00000000010529
205	Woolery LK, Grzymala-Busse J. Machine learning for an expert system to predict preterm birth risk. J
	Med Inform Assoc 1994;1:439-
• • •	46.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med3&NEWS=N&AN=7850569
206	Wu C, Kao SC, Shih CH, et al. Open data mining for Taiwan's dengue epidemic. Acta Trop 2018;183:
• • -	doi:http://dx.doi.org/10.1016/j.actatropica.2018.03.017
207	Wu H, Cai Y, Wu Y, et al. Time series analysis of weekly influenza-like illness rate using a one-year p
	of factors in random forest regression. <i>Biosci Trends</i> 2017; 11 :292–6.
	doi:https://dx.doi.org/10.5582/bst.2017.01035
	doi.nups.//dx.doi.org/10.5582/0st.2017.01055

BMJ Open

2		
3	200	We II Deer I Standart WE Deediction Medaling Line EUD Date Challenges Strategies and a Companying
4	208	Wu JL, Roy J, Stewart WF. Prediction Modeling Using EHR Data Challenges, Strategies, and a Comparison of Machine Learning Approaches. <i>Med Care</i> 2010; 48 :S106–13. doi:10.1097/MLR.0b013e3181de9e17
5	209	Wu W, Guo J, An S, <i>et al.</i> Comparison of Two Hybrid Models for Forecasting the Incidence of
6	207	Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China. <i>PLoS One</i> 2015; 10 .
7		doi:http://dx.doi.org/10.1371/journal.pone.0135492
8	210	Wu Y, Yang Y, Nishiura H, <i>et al.</i> Deep Learning for Epidemiological Predictions. 41st Int. ACM SIGIR
9	210	Conf. Res. & Dev. Inf. Retr. 2018. doi:10.1145/3209978.3210077
10	211	Yan W, Xu Y, Yang X, <i>et al.</i> A hybrid model for short-term bacillary dysentery prediction in Yichang city,
11		China. Jpn J Infect Dis 2010; 63 :264–
12		70.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=20657066
13	212	Yang C, Delcher C, Shenkman E, et al. Machine Learning Approaches for Predicting High Utilizers in
14		Health Care. 2017; pt.II :382–95. doi:10.1007/978-3-319-56154-7_35
15	213	Ye C, Fu T, Hao S, et al. Prediction of Incident Hypertension Within the Next Year: Prospective Study
16		Using Statewide Electronic Health Records and Machine Learning. J Med Internet Res 2018;20:e22.
17		doi:https://dx.doi.org/10.2196/jmir.9268
18	214	Yiheng Z, Jingyao Z, Jiebo L. Predicting Multiple Risky Behaviors via Multimedia Content. In: Social
19		Informatics. 9th International Conference, SocInfo 2017, 13-15 Sept. 2017. Cham, Switzerland: : Springer
20		International Publishing 2017. 65–73. doi:10.1007/978-3-319-67256-4_7
21	215	Yoo TK, Kim SK, Kim DW, et al. Osteoporosis Risk Prediction for Bone Mineral Density Assessment of
22		Postmenopausal Women Using Machine Learning. Yonsei Med J 2013;54:1321–30.
23	216	doi:10.3349/ymj.2013.54.6.1321
24	216	Yoon Y, Song J, Hong SH, <i>et al.</i> Analysis of multiple single nucleotide polymorphisms of candidate genes
25		related to coronary heart disease susceptibility by using support vector machines. <i>Clin Chem Lab Med</i>
26	217	2003; 41 :529–34. doi:http://dx.doi.org/10.1515/CCLM.2003.080
27	217	Young SD, Torrone EA, Urata J, <i>et al.</i> Using Search Engine Data as a Tool to Predict Syphilis. <i>Epidemiology</i> 2018; 29 :574–8. doi:10.1097/EDE.00000000000836
28	218	Young SG, Tullis JA, Cothren J. A remote sensing and GIS-assisted landscape epidemiology approach to
29	210	West Nile virus. Appl Geogr 2013;45:241–9. doi:10.1016/j.apgeog.2013.09.022
30	219	Young SD, Zhang × Qingpeng. Using search engine big data for predicting new HIV diagnoses. <i>PLoS One</i>
31	21)	2018; 13 . doi:http://dx.doi.org/10.1371/journal.pone.0199527
32	220	Yu L, Zhou L, Tan L, <i>et al.</i> Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated
33		Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting
34		Incidence Cases of HFMD in Shenzhen, China. PLoS One 2014;9.
35		doi:http://dx.doi.org/10.1371/journal.pone.0098241
36	221	Zeng Q, Huang HL, Pei X, et al. Modeling nonlinear relationship between crash frequency by severity and
37		contributing factors by neural networks. Anal Methods Accid Res 2016;10:12–25.
38		doi:10.1016/j.amar.2016.03.002
39	222	Zhang G, Huang S, Duan Q, et al. Application of a Hybrid Model for Predicting the Incidence of
40		Tuberculosis in Hubei, China. PLoS One 2013;8. doi:http://dx.doi.org/10.1371/journal.pone.0080969
41	223	Zhang X, Liu Y, Yang M, et al. Comparative Study of Four Time Series Methods in Forecasting Typhoid
42		Fever Incidence in China. PLoS One 2013;8. doi:http://dx.doi.org/10.1371/journal.pone.0063116
43	224	Zhang X, Zhang T, Young AA, et al. Applications and comparisons of four time series models in
44		epidemiological surveillance data. <i>PLoS One</i> 2014; 9 :e88075.
45	225	doi:https://dx.doi.org/10.1371/journal.pone.0088075
46	225	Zhao D, Weng C, Zhao D, <i>et al.</i> Combining PubMed knowledge and EHR data to develop a weighted
47		bayesian network for pancreatic cancer prediction. <i>J Biomed Inform</i> 2011; 44 :859–68.
48	226	doi:10.1016/j.jbi.2011.05.004 Zheo X. Xiong P. McCullouch I.F. <i>et al.</i> Comparison of Presst Cancer Rick Predictive Models and
49	226	Zhao Y, Xiong P, McCullough LE, <i>et al.</i> Comparison of Breast Cancer Risk Predictive Models and Screening Strategies for Chinese Women. <i>J Womens Heal</i> 2017; 26 :294–302. doi:10.1089/jwh.2015.5692
50	227	Zhongwen G, Meng L. Design of H7N9 Avian Influenza Management and Forecasting System Based on
51	/	GIS. In: 2015 IEEE 5th International Conference on Electronics, Information and Emergency
52		Communication (ICEIEC), 14-16 May 2015. Piscataway, NJ, USA: : IEEE 2015. 376–9.
53		doi:10.1109/ICEIEC.2015.7284562
54	228	Zhou LL, Xia J, Yu LJ, et al. Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in
55		Humans. Int J Environ Res Public Heal 2016; 13 . doi:10.3390/ijerph13040355
56	229	Zhou L, Yu L, Wang Y, et al. A hybrid model for predicting the prevalence of schistosomiasis in humans of
57		
58		
59		

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

- Qianjiang City, China. *PLoS One* 2014;**9**:e104875. doi:https://dx.doi.org/10.1371/journal.pone.0104875 Zhou Y, Glenn C, Luo J. Understanding and predicting multiple risky behaviors from social media. AI Access Foundation 2017. 600–5.https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029534550&partnerID=40&md5=ae29c604e757e03f7561a191d4b296e1 NS -
- Zhuo Z, Jiang L, Chee Keong K, et al. Learning in Glaucoma Genetic Risk Assessment. In: 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), 31 Aug.-4 Sept. 2010. Piscataway, NJ, USA: : IEEE 2010. 6182–5. doi:10.1109/IEMBS.2010.5627757

to beet terien only

Appendix D: Narrative Synthesis of Aspects of Discussion

Rationale for applying machine learning approaches mainly centered around it being "state of the art" or better suited to modeling complex data than regression. Machine learning was thought to be "state of the art" due to improved accuracy and deeper insights. Discussions of complex modeling focused on capturing non-linear relationships, interactions, and high-dimensionality.

When authors discussed model limitations, frequent concerns were an inadequate sample size, too few features, questionable generalizability, and a lack of interpretability. Aspects of the data other than sample size and feature number, such as potential measurement error or selection bias, were infrequently mentioned.

When discussing model implementation, many articles stated that predictive accuracy would be improved; but they did not frequently discuss how this could be translated to specific health-related policies or actions. Additionally, they rarely mentioned organizations and knowledge users that would be best suited to leverage the model.

or beer to view only

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

BMJ Open

Predicting population health with machine learning: a scoping review

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037860.R1
Article Type:	Original research
Date Submitted by the Author:	27-Jul-2020
Complete List of Authors:	Morgenstern, Jason; McMaster University, Health Research Methods, Evidence, and Impact Buajitti, Emmalin; University of Toronto; Institute for Clinical Evaluative Sciences, O'Neill, Meghan; University of Toronto, Piggott, Thomas; McMaster University, Health Research Methods, Evidence, and Impact Goel, Vivek; University of Toronto; Institute for Clinical Evaluative Sciences, Fridman, Daniel; Hospital for Sick Children Kornas, Kathy ; University of Toronto Rosella, Laura; University of Toronto; Institute for Clinical Evaluative Sciences,
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Research methods
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, STATISTICS & RESEARCH METHODS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

PREDICTING POPULATION HEALTH WITH MACHINE LEARNING: A SCOPING REVIEW

AUTHORS

Jason D. Morgenstern¹, MD Emmalin Buajitti^{2,3}, MPH Meghan O'Neill², MPH Thomas Piggott¹, MD, MSc Vivek Goel^{2,3}, MD, MSc, PhD Daniel Fridman⁴, MPH, MA Kathy Kornas², MSc Laura C. Rosella^{2,3,5,6}, MHSc, PhD

AFFILIATIONS

- 1. Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- 2. Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- 3. Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
- 4. The Hospital for Sick Children, Toronto, Ontario, Canada
- 5. Public Health Ontario, Toronto, Ontario, Canada
- 6. Vector Institute, Toronto, Ontario, Canada

CORRESPONDENCE TO:

Dr. Laura Rosella Dalla Lana School of Public Health University of Toronto 27 King's College Circle Toronto, M5S 1A1, Canada laura.rosella@utoronto.ca Tel: (416) 978 6064

ABSTRACT (300 / 300 words)

Objective. To determine how machine learning has been applied to prediction applications in population health contexts. Specifically, to describe which outcomes have been studied, the data sources most widely used, and whether reporting of machine learning predictive models aligns with established reporting guidelines.

Design. A scoping review.

Data Sources. MEDLINE, EMBASE, CINAHL, ProQuest, Scopus, Web of Science, Cochrane Library, INSPEC, and ACM Digital Library were searched on July 18th, 2018.

Eligibility criteria. We included English articles published between 1980 and 2018 that used machine learning to predict population health-related outcomes. We excluded studies that only used logistic regression or were restricted to a clinical context.

Data extraction and synthesis. We summarized findings extracted from published reports, which included general study characteristics, aspects of model development, reporting of results, and model discussion items.

Results. Of 22 618 articles found by our search, 231 were included in the review. The United States (n=71, 30.74%) and China (n=40, 17.75%) produced the most studies. Cardiovascular disease (n=22, 9.52%) was the most studied outcome. The median number of observations was 5414 (interquartile range (IQR)=16543.5) and the median number of features was 17 (IQR=31). Health records (n=126, 54.5%) and investigator-generated data (n=86, 37.2%) were the most common data sources. Many studies did not incorporate recommended guidelines on machine learning and predictive modeling. Predictive discrimination was commonly assessed using area under the receiver operator curve (n=98, 42.42%) and calibration was rarely assessed (n=22, 9.52%).

Conclusions. Machine learning applications in population health have concentrated on regions and diseases well-represented in traditional data sources, infrequently using big data. Important aspects of model development were under-reported. Greater use of big data and reporting guidelines for predictive modeling could improve machine learning applications in population health.

Registration. Registered on the Open Science Framework on July 17th, 2018 (available at: <u>https://osf.io/rnqe6/</u>).

Strengths and limitations of this study

• Our review is one of the first syntheses of machine learning applications in population and public health.

• We used a robust search strategy, including nine peer-reviewed databases, grey literature, and reference searching, to comprehensively describe the literature.

• We compared reported study characteristics to established predictive modeling reporting guidelines, which provide an objective measure of the quality of reporting.

• Since both machine learning and population health have broad definitions, there may be some relevant articles that were not included.

• Given our focus on prediction, we could not address many other important intersections of machine learning and population health, such as surveillance and health promotion.

Word Count: 3663

BMJ Open

INTRODUCTION

Predictive models have a long history in clinical medicine. One well-known example is the Framingham risk score, which was first developed in 1967.[1] Such models have proliferated throughout clinical practice to inform management and interventions, including preventive approaches. More recently, researchers have developed prediction models beyond individual clinical applications, for population health uses.[2,3] While there is no universal definition of population health, it generally encompasses "the health outcomes of a group of individuals, including the distribution of such outcomes within the group."[4] Similarly to clinical medicine, population-level models can be used to identify high-risk groups, directing the implementation of preventive interventions. Additionally, population health prediction models can inform policymakers about future disease burden and help to assess the impact of public health actions. Thus far, most predictive modeling in both medicine and population health has used parametric statistical regression models. More recently, there has been increasing interest in the use of a broader range of machine learning methods for prediction tasks.[5–7]

Machine learning can be loosely defined as the study and development of algorithms that learn from data with little or no human assistance.[8] These approaches have been increasingly applied in the past two decades as a result of the enabling growth of big data reserves and computational power.[9] Recent machine learning applications to prediction in population health contexts include forecasting childhood lead poisoning,[10] yellow fever incidence,[11] and the onset of suicidal ideation.[12]

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

The distinction between machine learning algorithms and parametric regression models is debated.[13] Regression models tend to impose more structure on the data, requiring greater human input for the verification of distributional assumptions and incorporation of domain knowledge in choosing the input parameters.[14] Algorithms employed in machine learning often derive more structure directly from the data, making fewer distributional assumptions about the data or variables. The literature remains divided on the relative advantages of more traditional approaches compared to newer methods;[15] however, given the wide variation in applications and the data used in these examples, broad assessments of superiority are often not appropriate. Also, there are debates regarding the differences in developing and validating machine learning approaches for health applications.[15,16]

Population health applications of prediction models are relatively new compared to clinical applications; correspondingly, the role of machine learning in these applications has been far less studied and discussed in the health literature. The goals of our review are to determine how machine learning has been applied to prediction in population health, the nature of the models and data used, and how the models have been developed. We also sought to assess how well the published literature aligns with recommended guidelines for reporting of predictive models and machine learning, by extracting features related to model development and performance that are highlighted by two such guidelines.[16,17]

METHODS

BMJ Open

We based our scoping review on the framework proposed by Arksey and O'Malley[18] and refined by the Joanna Briggs Institute.[19] We also followed the more recent Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews.[20] Our study protocol was registered on the Open Science Framework on July 17th, 2018 (available at: https://osf.io/rnge6/).

Our initial goal was to scope out all machine learning applications in population health. However, the screening process identified a much larger number of publications than anticipated. Consequently, to describe the subject area comprehensively, we restricted our scope to articles predicting future outcomes.

Search Strategy

Our search strategy consisted of peer-reviewed literature databases, grey literature, and reference searches. First, we searched nine interdisciplinary, indexed databases (MEDLINE, EMBASE, CINAHL, ProQuest, Scopus, Web of Science, Cochrane Library, INSPEC, and ACM Digital Library) on July 18th, 2018 for papers published between 1980 and 2018. Our search was informed by consultation with a health science librarian, a machine learning textbook,[21] and a similar registered review.[15] Supplementary Table A includes the full MEDLINE search strategy and filters, and serves an example search query for all database searches.

Our grey literature search included Google Scholar and Google. We developed a Google Scholar search based on terms related to 'machine learning' and 'population health', which was refined based on the relevance of initial results. The first 200 results were included in screening. A

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

similar approach was used for the general Google search, which we restricted to the first 30 results. We examined relevant websites for publications. Results were limited to articles published on or before the date of the peer-reviewed literature search. Finally, we searched the references of relevant reviews for additional articles. Most of these reviews were identified during screening.

Eligibility Criteria

We included articles if they used machine learning to develop a predictive model that could be applied in a population health context. Therefore, we excluded articles where the model was trained primarily on people with a pre-existing disease. We also excluded articles that were only indirectly related to population health; for example, traffic accident models that did not predict a health outcome. Studies predicting individual outcomes were included if the approach was determined to be scalable to a population level. Finally, articles using only logistic regression were excluded. See Appendix A for the full eligibility criteria.

In order to manage the scope, articles were excluded if their full text could not be retrieved with our institutional licenses and if they were not written in English. Finally, articles published prior to 1980 were excluded as earlier machine learning investigators lacked comparable amounts of digitized data, software, and computational resources.

Screening Process

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Initially, individual reviewers screened titles for obvious irrelevance to the review topic (JDM and EB). An example of an obviously irrelevant topic would be a paper describing the *machine health* lifespan of a piece of industrial equipment; specific examples of articles removed at this stage are listed in Appendix B. Then, we imported remaining references into Covidence systematic review management software.[22] Two reviewers screened the abstracts of remaining articles (JDM, EB, MO, and DF). Prior to evaluating full texts using all eligibility criteria, we then screened out articles that did not focus on a prediction application (JDM, EB, MO). Finally, two reviewers screened the full text of remaining articles (JDM, EB, MO). Conflicts were resolved by discussion between at least two reviewers.

Data Extraction and Synthesis

Individual authors extracted article data (JDM, EB, MO, and DF). We based our extraction items on features identified in a recent biomedical guideline for reporting of machine learning predictive models [16] and on the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement.[17] Major extraction categories identified from these guidelines included general study characteristics (e.g. geographic location and sample size), model development (e.g. algorithms used and type of validation), results (e.g. discrimination and calibration measures), and model discussion (e.g. practical costs of errors and implementation). See Supplementary Table B for a description of each extraction item.

We computed descriptive statistics for all extraction items. For categorical extracted features (e.g. whether or not unstructured text was used, the method of validation used), we calculated the total number and percent of all studies in a particular category. For continuous extracted features

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

(e.g. number of observations in the study sample), we calculated the median value and the interquartile range (range between quartile 1 and quartile 3 in the value distribution). We also completed a narrative synthesis of discussion elements based on the text of included manuscripts.

Patient and Public Involvement Statement

There was no patient or public involvement in this study.

RESULTS

We initially retrieved 16 172 articles, after removing duplicates (Figure 1). We excluded 6494 articles after title screening, 7860 after abstract screening, 1453 when screening out non-prediction articles, and 121 after full-text screening. This resulted in 231 articles being included in the final review (Appendix C).

General Study Characteristics

The number of articles published in the population health prediction area that used machine learning increased dramatically after 2007 (Supplementary Figure A). Studies were undertaken worldwide, with the largest representation from the United States (US) (n=71, 30.74%) and China (n=40, 17.75%) (Table 1). Relatively few articles came from Oceania (n=2, 0.87%), Africa (n=5, 2.16%), and the Americas outside of the US (n=13, 5.63%).

Characteristic*	Number of Articles#	Percent of Articles**
Region		
United States	71	30.74%
Asia Excluding China	41	17.75%
China	40	17.32%
Europe	36	15.58%
Americas Excluding United States	13	5.63%
Africa	5	2.16%
Oceania	2	0.87%
Multi-region	15	6.49%
Not Reported	8	3.46%
Year published		
before 1990	1	0.4%
1990-1999	3	1.3%
2000-2004	13	5.6%
2005-2009	18	7.8%
2010-2014	70	30.3%
2015-2018	126	54.5%
Outcome level [†]		
Individual Risk Prediction	139	60.17%
Population Risk prediction	92	39.83%
Number of observations	Median = 5414 [#]	IQR = 16543.5**
Not reported	72	31.2%
Number of features	Median = $17^{\#}$	IQR = 31**
Not reported	59	25.5%
Used any unstructured text		
Yes	24	10.4%

Characteristic [*]	Number of Articles#	Percent of Articles**
No	207	89.6%
Machine learning model was compared with other	111	48.1%
statistical methods		
Reported data pre-processing [‡]		
Yes	160	69.3%
No	71	30.7%
Reported method of feature selection		
Yes	164	71.0%
No	67	29.0%
Reported hyper-parameter search		
Yes	114	49.4%
No	117	50.6%
Method of Validation		
Holdout	112	48.5%
Cross-validation or bootstrap	84	36.4%
External	15	6.5%
Not reported	32	13.9%
Reported descriptive statistics [§]	5	
Yes	140	60.6%
No	91	39.4%
Discussed the practical costs of prediction errors [¶]		
Yes	36	15.6%
No	195	84.4%
Stated rationale for using machine learning		
Yes	179	77.5%
No	52	22.5%

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Characteristic*	Number of Articles [#]	Percent of Articles**	
Discussed model usability			
Yes	91	39.4%	
No	140	60.6%	
Stated model limitations			
Yes	161	69.7%	
No	70	30.3%	
Discussed model implementation			
Yes	184	79.7%	
No	47	20.3%	
Dataset Availability by Study			
Closed	149	64.5%	
Public	42	18.2%	
Closed and Public	38	16.5%	
Unknown	1.	0.4%	

*Refer to Supplementary Table A for a description of each characteristic and rationales for including some elements.

[†]Individual risk prediction refers to studies that developed models to predict the health outcomes of individuals, while population risk prediction

refers to studies that developed models to predict aggregated population-level health outcomes.

*Whether any aspects of data cleaning or pre-processing were reported. Examples include how missing data was handled, whether log

transformations were done, and if derived variables were generated.

[§]Included a broad array of descriptive statistics such as sample population demographics, feature distributions, and outcome distributions.

Whether the article discussed the relative risks of false negative and false positive results based on their predictive model in contexts where it

might be used.

^{II}Closed refers to datasets that were not immediately available in the public domain or were not identifiable as such.

*In rows where the characteristic being measured is an integer count (e.g. number of features), this column refers to the median value.

**In rows where the characteristic being measured is an integer count (e.g. number of features), this column refers to the interquartile range (IQR; quartile 3 – quartile 1).

quartice 5 quartice 1).

Table 1: Summary statistics of included articles

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

The median number of observations in each article was 5414 (interquartile range (IQR)=16 543.5) and the median number of features (i.e. independent variables) used was 17 (IQR=31) (Table 1). Seventy-two studies (31.2%) did not report the number of observations. These studies often used data from reportable disease databases, which do not necessarily have a firm sampling frame, making ascertainment of the number of observations difficult.

Algorithms

The most frequently used machine learning algorithms were neural networks (n=95, 41.13%), followed by support vector machines (n=59, 25.54%), single tree-based methods (n=52, 22.51%), and random forests (n=48, 20.78%) (Supplementary Table C). About half of the articles made a comparison with statistical methods (n=111, 48.1%), which were generally logistic regression or autoregressive integrated moving average models (Table 1).

Outcomes

Non-communicable disease outcomes were assessed by many articles (n=95, 41.13%), with communicable diseases (n=76, 32.90%) and non-disease outcomes (n=60, 25.97%) studied somewhat less often. The outcome most frequently predicted was cardiovascular disease (n=22, 9.52%) (Figure 2). Other commonly forecasted non-communicable disease outcomes were suicidality (n=13, 5.63%), cancer (n=12, 5.19%), and perinatal health (n=12, 5.19%). Influenza (n=15, 6.49%) and dengue fever (n = 14, 6.06%) were the most predicted communicable disease outcomes. Aside from non-communicable and communicable disease, mortality (n=13, 5.63%) and healthcare utilization (n=14, 6.06%) were also frequently predicted.

Data

Data sources were usually structured (n=207, 89.6%) and closed, i.e. not publicly available (n=189, 81.8%) (Table 1). In general, high-dimensional data with many observations, such as multi-linked electronic medical records (EMRs) or internet-based data, may offer the most value for machine learning applications. These data types were represented in some of the articles captured, for which the most frequently reported data sources were health records (n=126, 54.5%) and investigator-generated (e.g. cohort studies) (n=86, 37.2%) (Table 2). A large proportion of studies (n=42, 18.2%) used an environmental data source (e.g. satellite imagery), mostly for prediction of infectious disease. Government databases (n=32, 13.9%) and internet-based data (n=21, 9.1%) were less frequently used. Among studies from China and the US, 80.0% and 67.6% respectively used health records data, whereas 54.5% of studies overall used these data sources (Supplementary Figure B).

Sources of Data Used*	Number	Percent	
Environmental	42	18.2%	
Geographical Information Database	12	5.2%	
Meteorological/Air Quality Datasets	32	13.9%	
Satellite Imagery	21	9.1%	
Health Records Database	126	54.5%	
Clinical Record Database [†]	46	19.9%	
Disease Registry	2	0.9%	
Population Health Survey	15	6.5%	
Reportable Disease Database	42	18.2%	

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Census114.8%Vital Statistics135.6%Other Government Database146.1%HealthMap31.3%Private Insurance Data93.9%Private Insurance Claims93.9%Private Insurance Questionnaire31.3%Internet-based219.1%Search engine125.2%Social Media125.2%Investigator-generated‡8637.2%Public Repositories§198.2%Health Organization Reports¶52.2%	Other Health Records Database	30	13.0%
Vital Statistics135.6%Other Government Database146.1%HealthMap31.3%Private Insurance Data93.9%Private Insurance Claims93.9%Private Insurance Questionnaire31.3%Internet-based219.1%Search engine125.2%Social Media125.2%Investigator-generated [‡] 8637.2%Public Repositories [§] 198.2%Health Organization Reports [¶] 52.2%	Government Database	32	13.9%
Other Government Database146.1%HealthMap31.3%Private Insurance Data93.9%Private Insurance Claims93.9%Private Insurance Questionnaire31.3%Internet-based219.1%Search engine125.2%Social Media125.2%Investigator-generated‡8637.2%Public Repositories§198.2%Health Organization Reports¶52.2%	Census	11	4.8%
HealthMap31.3%Private Insurance Data93.9%Private Insurance Claims93.9%Private Insurance Questionnaire31.3%Internet-based219.1%Search engine125.2%Social Media125.2%Investigator-generated‡8637.2%Public Repositories§198.2%Health Organization Reports¶52.2%	Vital Statistics	13	5.6%
Private Insurance Data93.9%Private Insurance Claims93.9%Private Insurance Questionnaire31.3%Internet-based219.1%Search engine125.2%Social Media125.2%Investigator-generated [‡] 8637.2%Public Repositories [§] 198.2%Health Organization Reports [¶] 52.2%	Other Government Database	14	6.1%
Private Insurance Claims93.9%Private Insurance Questionnaire31.3%Internet-based219.1%Search engine125.2%Social Media125.2%Investigator-generated‡8637.2%Public Repositories§198.2%Health Organization Reports¶52.2%	HealthMap	3	1.3%
Private Insurance Questionnaire31.3%Internet-based219.1%Search engine125.2%Social Media125.2%Investigator-generated [‡] 8637.2%Public Repositories [§] 198.2%Health Organization Reports [¶] 52.2%	Private Insurance Data	9	3.9%
Internet-based219.1%Search engine125.2%Social Media125.2%Investigator-generated‡8637.2%Public Repositories§198.2%Health Organization Reports¶52.2%	Private Insurance Claims	9	3.9%
Search engine125.2%Social Media125.2%Investigator-generated‡8637.2%Public Repositories§198.2%Health Organization Reports¶52.2%	Private Insurance Questionnaire	3	1.3%
Social Media125.2%Investigator-generated‡8637.2%Public Repositories§198.2%Health Organization Reports¶52.2%	Internet-based	21	9.1%
Investigator-generated‡8637.2%Public Repositories§198.2%Health Organization Reports¶52.2%	Search engine	12	5.2%
Public Repositories [§] 19 8.2% Health Organization Reports [¶] 5 2.2%	Social Media	12	5.2%
Health Organization Reports 5 2.2%	Investigator-generated [‡]	86	37.2%
	Public Repositories [§]	19	8.2%
Not Reported 6 2.6%	Health Organization Reports [¶]	5	2.2%
	Not Reported	6	2.6%

[†]Any dataset produced primarily for the purpose of delivering clinical care, such as electronic medical records and administrative healthcare databases produced by hospitals.

[‡]Any datasets resulting from researcher-driven studies such as randomized controlled trials, cohort studies, and case-control studies.

[§]Any freely available datasets such as MIMIC or the UC Irvine Machine Learning Repository.

Health-related reports, typically including disease burden estimates, produced by non-governmental or governmental organizations such as the World Health Organization.

Table 2: Data sources

Features

The median number of features used in a machine learning algorithm was 17 (IQR = 31; Table

1). The frequency of specific feature categories used are shown in Supplementary Figure C and

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Supplementary Table D. Biomedical and sociodemographic features were frequently used (Supplementary Figure C). Of these, the most commonly used were disease history (43.3%), age (48.5%), and sex/gender (41.1%). Among lifestyle features, smoking was the most frequently used (25.1%) and of environmental features, meteorology was common (17.3%). Social media posts (5.2%) and web search queries (5.2%) were not often used. In general, most studies focused on features typical of clinical prediction models, such as subject demographics, behaviours, and medical histories. We observed limited use of other data, such as unstructured text or image-based features, which are difficult to parse using traditional statistical approaches and could benefit more from machine learning applications

Model Development and Validation

The majority of articles reported how data pre-processing (n=160, 69.3%) and feature selection (n=164, 71%) were done (Table 1). Fewer authors reported how hyperparameters were selected (n=114, 49.4%). Most studies used a holdout method of validation (n=112, 48.5%), fifteen (6.5%) externally validated their models, and thirty-two (13.9%) did not report how models were validated.

Performance Metrics

Most articles reported a prediction discrimination metric (n=172, 74.46%), which quantifies a model's ability to correctly rank-order individuals (Table 3).[23] Discrimination is a useful performance metric in cases where classification is the primary goal, including many machine learning-relevant tasks such as image recognition. The most common discrimination metrics

employed were area under the receiver operator curve (n=98, 42.42%), accuracy (n=76, 32.90%), and recall (n=68, 29.44%).

In clinical and public health settings, accurate prediction of outcome probabilities is important to the practical utility of a tool, so assessing model calibration is very important.

Few articles in our study reported a measure of calibration (n=21, 9.09%), which describes how well a model predicts the absolute probability of outcomes(table 3).[23] Calibration was mostly assessed with graphing methods (n=9, 3.90%) and Hosmer-Lemeshow statistics (n=8, 3.46%). Some articles also reported a measure of overall model fit (n=77, 33.33%). Overall performance was usually measured with a form of mean error, such as root mean squared error (n=35, 15.15%).

Prediction Performance Metrics Used	Number	Percent
Any overall performance metric	77	33.33%
RMSE	35	15.15%
MSE	26	11.26%
MAE	24	10.39%
МАРЕ	23	9.96%
R2*	19	8.23%
Correlation	8	3.46%
AIC or BIC	8	3.46%
Other performance metric [†]	21	9.09%
Any discrimination metric	172	74.46%
Area under the curve [‡]	98	42.42%
Accuracy§	76	32.90%
Recall [¶]	68	29.44%
Precision	39	16.88%

F statistics	10	4.33%
Likelihood Ratio**	4	1.73%
Youden Index	3	1.30%
Manual or visual comparison	3	1.30%
Other discrimination metric ^{††}	4	1.73%
Any calibration metric	21	9.09%
Manual or visual comparison ^{‡‡}	9	3.90%
Hosmer-Lemeshow	8	3.46%
Observed/Expected	5	2.16%
Other calibration metric ^{§§}	3	1.30%
Any reclassification metric	6	2.60%
Net Reclassification Index	5	2.16%
Integrated Discrimination Improvement	3	1.30%
MSE = Root Mean Squared Error; MSE = Mean Squared E	rror; MAE = Mean A	bsolute Error; MAPE =
bsolute Percentage Error; AIC = Akaike Information Criteri	on: BIC = Bavesian I	nformation Criterion.

[†]Includes penalty error, Total Sum of Squares, proportional reduction in error, overall prediction error, specific prediction error, Nash-Sutcliffe,

Root Mean Squared Percentage Error (2), mean relative absolute error, Analysis of Variance F-stat, 2LogLikelihood, relative efficiency,

deviance, Ljung-Box test, mean absolute deviation, standard error, Mean Percentage Error, Brier score, and log score.

[‡]Includes c-statistic, s-index, area under ROC / AUC.

§Includes accuracy, misclassification, and error rate.

Includes sensitivity, specificity, true/false positive, and true/false negative.

Includes positive predictive value, negative predictive value, and precision.

**Includes positive/negative LR.

^{††}Includes G-means (2), k-statistic, Matthews correlation coefficient.

^{‡‡}Includes calibration plots.

^{§§}Includes mean bias (from Bland-Altman plot), calibration factoring, and Calibration statistic.

Table 3: Prediction Performance Metrics

Study Discussion and Narrative Synthesis

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Most articles included some discussion of their rationale for using machine learning (n=179, 77.5%), although some articles did not mention or explain their rationale (n = 52, 22.5%) (Table 1). Rationale for applying machine learning approaches mainly focused on being "state of the art" or better suited to modeling complex data than regression.

Most articles also had some discussion of the limitations of their study (n=161, 69.7%), and how the model might be implemented (n=184, 79.7%) (Table 1). Frequent concerns were an inadequate sample size, too few features, questionable generalizability, and a lack of interpretability. When discussing model implementation, many articles stated that predictive accuracy would be improved; but they did not frequently discuss how this could be translated to specific health-related policies or actions.

Less than half of the articles discussed model usability (n=91, 39.4%); that is, whether and how the model could practically be used in a relevant context. This is an important reporting component of the TRIPOD statement ("Discuss the potential clinical use of the model and implications for future research") and is relevant for understanding real-word applications of prediction models.[17] Also, only a small number discussed the costs of prediction errors in realworld contexts (n=36, 15.6%).

See Appendix D for further narrative synthesis of discussion reporting items.

DISCUSSION

Our results show that machine learning is increasingly being applied to make predictions related to population health. However, applications of machine learning to population health prediction tasks have not capitalized fully on the opportunities presented by emerging big data resources

BMJ Open

and efficient machine learning algorithms. Furthermore, reporting of these models often does not align with established guidelines for reporting of prediction models, which limits their ability to be critically appraised, compared with existing statistical models, or implemented in clinical or public health practice.

Applications of Machine Learning Prediction Models

Nearly half of the included studies were conducted in the US or China. Both countries produce the greatest number of scientific publications in general;[24] however, they also likely benefited from robust health data infrastructures. The US has rapidly digitized much of its healthcare system, resulting in large EMRs linked with government data through public-private partnerships, including processes to make these data available to researchers.[25,26] Both the US and China made greater use of health records and less use of investigator-generated data relative to other regions, which may have made machine learning projects more tractable. They also used more internet-based data, which typically includes many observations and is high-dimensional, making it amenable to machine learning methods. We noted that studies from Oceania, Africa, and the Americas (outside of the US) were limited. This may be partly due to less availability of traditional sources of structured health data. However, given that machine learning methods can incorporate non-traditional data sources, there is the potential to expand use of these methods even when structured health data is unavailable.

We found that a wide range of population health outcomes have been the focus of machine learning prediction models. However, relative to morbidity and mortality, multiple outcome categories like cancer, human immunodeficiency virus, dementia, gastroenteritis, pneumococcal disease, perinatal health, tuberculosis, and malaria appear understudied.[27] Many of these BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

conditions are most prevalent in regions with decreased access to traditional health data, perhaps stymieing research. If machine learning methods are used to leverage novel data sources for research in these regions, it could enable greater study of neglected diseases. Most investigators did not analyze a large number of observations and features. We observed a

high reliance on electronic health records and investigator-generated data, including the use of relatively small study cohorts. Small study sample sizes or narrow data collection associated with these data sources can make it difficult to achieve high sample sizes or high dimensional data, which may impact machine learning algorithm performance. Specifically, the use of smaller investigator-generated datasets may affect the performance of studied models, as machine learning algorithms generally require a high number of observations relative to features.[28] Additionally, most studies focused on features typical of clinical prediction models, such as biomedical factors and limited aspects of broader socioeconomic or environmental determinants of health. We also observed infrequent use of unstructured data and wearable data for prediction purposes. A reliance on small datasets and traditional numbers and types of features is unlikely to fully leverage any benefits of machine learning. This may be contributing to the small differences frequently seen between parametric regression and machine learning model performance. Greater use of linked population-level databases, large EMRs, internet data, and unstructured features would likely improve these approaches.

Reporting of Machine Learning Prediction Models

Based on the elements of model development that we studied, adherence to existing machine learning[16] and prediction model[17] guidelines appears limited. Most articles did not report their method of hyper-parameter selection, discuss practical costs of prediction errors, or

Page 23 of 61

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

consider model usability, which are needed for transparency and model assessment. Many studies did not report the number of features included, method of validation, method of feature selection, or any performance metric. Given these issues, it would be difficult or impossible to compare many of these machine learning models with existing approaches. However, we acknowledge that existing guidelines were not available when many included studies were published. Future work should apply existing guidance,[16] including from TRIPOD,[17] and anticipate the forthcoming TRIPOD-ML statement.[29]

Lastly, we noted that included studies rarely assessed predictive performance in terms of calibration, which refers to a model's ability to accurately predict the absolute probability of outcomes.[23] In contrast, discrimination measures of predictive performance quantify a model's ability to correctly rank-order individuals. Many traditional machine learning tasks, such as image recognition, often have a high signal to noise ratio. In these cases, discrimination may be a suitable lone performance metric, as the algorithm can achieve near perfect performance. Conversely, health outcomes tend to be more stochastic. As a result, accurate prediction of probabilities is more important.[23] Models can have good predictive discrimination, but poor calibration, making them less useful in practice, particularly for population health applications. A further issue is that many measures of discrimination, such as accuracy and recall, artificially impose a threshold for calling events. Thresholds should ideally be ascertained by decision-makers based on their cost-utility curves.[23] Overall, applications of machine learning in population health would benefit from greater use of calibration performance metrics. *Strengths and Limitations of this Review*

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

A strength of our study is that we addressed an understudied area, the intersection of machine learning and population health. Additionally, prediction is an application with untapped potential in population health, and where machine learning has the potential to make significant improvements. Our study also employed a comprehensive search strategy, including numerous multidisciplinary peer-reviewed databases, alongside a grey literature search. Furthermore, we applied insights from the field of clinical prediction modeling to population health and machine learning. Finally, given the focus on prediction, we were able to take a comprehensive approach to data extraction and synthesis.

In terms of limitations, concentrating on prediction prevented us from exploring applications of machine learning to other important aspects of population health, such as disease surveillance. These should be the focus of future research. Our review was also limited by including only English articles and articles with available full text, which may have introduced selection bias. Because of the broad scope of this review, and inconsistent reporting of model development and validation in reviewed articles, we were unable to carry out a critical appraisal of the literature and are unable to comment significantly on the overall performance of published machine learning population health prediction tools. This would be of great value for understanding the clinical and population health relevance of machine learning prediction tools. Lastly, the two main concepts underlying our review, machine learning and population health, are not universally defined. As a result, we may have excluded articles that may be relevant to these fields.

Research Recommendations and Conclusion

Page 25 of 61

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

This was the first scoping review specifically focused on machine learning prediction in population health applications. Predictive modeling in population health can help to inform preventive interventions, anticipate future disease burden, and assess the impact of health policies and programs. Advances in machine learning offer opportunities to improve these models, particularly when incorporating big data. Countries with substantial EMR-use and government database linkage such as Finland, Singapore, and Denmark[30] likely have untapped potential for machine learning research. This is still a nascent field, but based on our findings more research in Oceania, Africa, and South America would also be particularly beneficial. Diseases with a high global burden of disease that were underrepresented in our findings include malaria, tuberculosis, and dementia, which may be opportune for further study.[31] Additionally, future machine learning projects could incorporate larger datasets and more non-traditional features. Greater use of resources such as HealthMap, social media, web search patterns, remote sensing, and WHO reports would enable more work in regions without formal data sources and enrich research in others. Another largely untapped prospect is using machine learning and highdimensional data to incorporate richer representations of the social determinants of health. Opportunities should continue to grow as governments increasingly digitize their health service records and link databases to both health and non-health data. Overall, as applications of machine learning in population health develop, adherence to existing guidance [16,17,29] will improve our ability to assess and advance machine learning applications. We hope that our results will help to inform future research in this area, including the development of guidelines for machine learning applications in population health. Finally, it will be important to evaluate the impact of prediction models on decisions made in population health and the practice of public health.

CONTRIBUTORS

 JDM contributed to the design of the study and led the literature search, article screening, data extraction, analysis, and writing of the manuscript. EB contributed to the design of the study, the literature search, article screening, data extraction, and analysis. MO contributed to article screening, data extraction, analysis, and writing of the manuscript. TP and VG contributed to the design of the study and supervised work. DF contributed to article screening and data extraction. KK contributed to the design of the study. LCR led the design of the study. All authors interpreted study results and contributed to drafting of the manuscript.

ACKNOWLEDGMENTS

We are grateful to Catherine Bornbaum for her assistance with the initial design of the study.

FUNDING

This work was funded by the Canadian Institutes of Health Research (FRN: 72054363). LCR is funded by a Canada Research Chair in Population Health Analytics. The funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

COMPETING INTERESTS

None declared.

PATIENT CONSENT FOR PUBLICATION

Not required.

ETHICS APPROVAL

Not required as only prior published research was included in the review.

DATA AVAILABILITY

The full data extraction table used for this review will be made publicly available after publication with no end date on Mendeley Data (DOI: 10.17632/7rrz9xrp2j.1).

REFERENCES

- Truett J, Cornfield J, Kannel W. A multivariate analysis of the risk of coronary heart disease in Framingham. *J Chronic Dis* 1967;20:511–24. doi:10.1016/0021-9681(67)90082-3
 Nunes MB, McPherson M, Kommers P, *et al.* Proceedings of the International Association for
 - Nunes MB, McPherson M, Kommers P, *et al.* Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on E-Learning (Lisbon, Portugal, July 20-22, 2017).

2017;:251.http://libaccess.mcmaster.ca/login?url=https://search.proquest.com/docview/201352543 9?accountid=12347

- 3 Manuel DG, Tuna M, Bennett C, *et al.* Development and validation of a cardiovascular disease risk-prediction model using population health surveys: the Cardiovascular Disease Population Risk Tool (CVDPoRT). *CMAJ* 2018;**190**:E871–82. doi:10.1503/cmaj.170914
- Kindig D, Stoddart G. What is population health? *Am J Public Health* 2003;93:380–
 3.http://www.ncbi.nlm.nih.gov/pubmed/12604476 (accessed 24 Jun 2018).
- 5 Panch T, Pearson-Stuttard J, Greaves F, *et al.* Artificial intelligence: opportunities and risks for public health. *Lancet Digit Heal* 2019;1:e13–4. doi:10.1016/s2589-7500(19)30002-0
- 6 Aldridge RW. Research and training recommendations for public health data science. *Lancet Public Heal* 2019;**4**:e373. doi:10.1016/S2468-2667(19)30112-4
- Mooney SJ, Pejaver V. Big Data in Public Health: Terminology, Machine Learning, and Privacy.
 Annu Rev Public Health 2018;39:95–112. doi:https://dx.doi.org/10.1146/annurev-publhealth-

040617-014208 Samuel AL. Some Studies in Machine Learning Using the Game of Checkers. IBM J Res Dev 1959;**3**:210–29. doi:10.1147/rd.33.0210 Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. 2nd ed. Upper Saddle River, New Jersey: : Prentice Hall 2003. Potash E, Brew J, Loewi A, et al. Predictive modeling for public health: Preventing childhood lead poisoning. Proc ACM SIGKDD Int Conf Knowl Discov Data Min 2015;2015-Augus:2039–47. doi:10.1145/2783258.2788629 Shearer FM, Longbottom J, Browne AJ, et al. Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis. Lancet Glob Heal 2018;6:e270-8. doi:10.1016/S2214-109X(18)30024-X De Choudhury M, Kiciman E, Dredze M, et al. Discovering shifts to suicidal ideation from mental health content in social media. In: Conference on Human Factors in Computing Systems -Proceedings. Association for Computing Machinery 2016. 2098–110. doi:10.1145/2858036.2858207 K.G.M. M, J.A.H. DG, W. B, et al. Checklist for data extraction and critical appraisal for systematic reviews of prediction modelling studies: The charms checklist. Eur J Epidemiol 2015;**30**:904. doi:http://dx.doi.org/10.1007/s10654-015-0072-z Breiman L. Statistical modeling: The two cultures. Stat Sci 2001;16:199–215. doi:10.1214/ss/1009213726 Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 2019;110:12-22. doi:10.1016/j.jclinepi.2019.02.004 Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view. J Med Internet Res 2016;18:e323. doi:10.2196/jmir.5870

BMJ Open

17	Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction
	model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med
	2015;13:1. doi:https://dx.doi.org/10.1186/s12916-014-0241-z
18	Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res
	Methodol 2005;8:19-32. doi:10.1080/1364557032000119616
19	Joanna Briggs Institute. Joanna Briggs Institute Reviewers' Manual 2015 - Methodology for JBI
	Scoping Reviews. Adelaide: 2015. doi:10.1017/CBO9781107415324.004
20	Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR):
	Checklist and Explanation. Ann Intern Med Published Online First: 4 September 2018.
	doi:10.7326/M18-0850
21	Hastie T, Tibshirani R, Witten D, et al. An Introduction to Statistical Learning: With Applications
	in R. New York, NY: : Springer 2013.
22	Veritas Health Innovation. Covidence systematic review software. www.covidence.org
23	Steyerberg EW. Clinical prediction models. New York: : Springer 2009.
24	Country outputs Nature Index. https://www.natureindex.com/country-
	outputs/generate/All/global/All/score (accessed 15 Nov 2019).
25	Hecht J. The future of electronic health records. <i>Nature</i> 2019; 573 :S114–6. doi:10.1038/d41586-
	019-02876-у
26	Gliklich RE, Dreyer NA, Leavy MB. Public-Private Partnerships. 2014.
27	Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age-sex specific all-cause and
	cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global
	Burden of Disease Study 2013. Lancet 2015;385:117-71. doi:10.1016/S0140-6736(14)61682-2
28	van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a
	simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014;14:137.
	doi:10.1186/1471-2288-14-137
29	Collins GS, M Moons KG. Reporting of artificial intelligence prediction models. Published Online

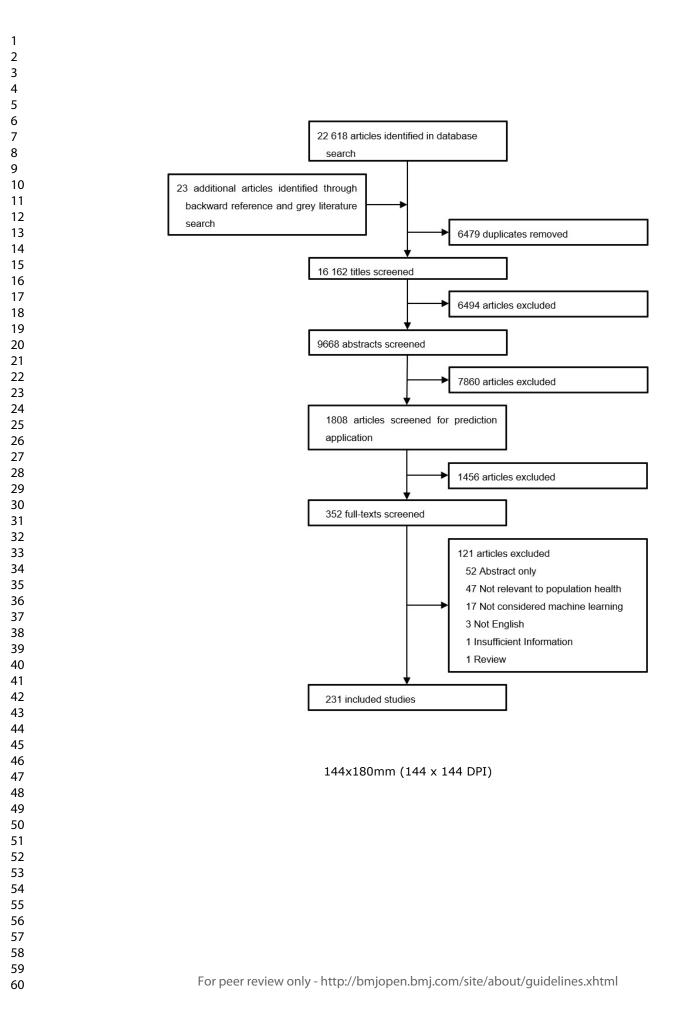
First: 2019. doi:10.1016/S0140-6736(19)30235-1

- 30 OECD. Health Data Governance: Privacy, Monitoring and Research. Paris: 2015. http://dx.doi.org/10.1787/9789264244566-en
- Kyu HH, Abate D, Abate KH, *et al.* Global, regional, and national disability-adjusted life-years
 (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. *Lancet* 2018;**392**:1859–922. doi:10.1016/S0140-6736(18)32335-3

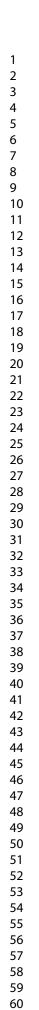
FIGURES LEGENDS

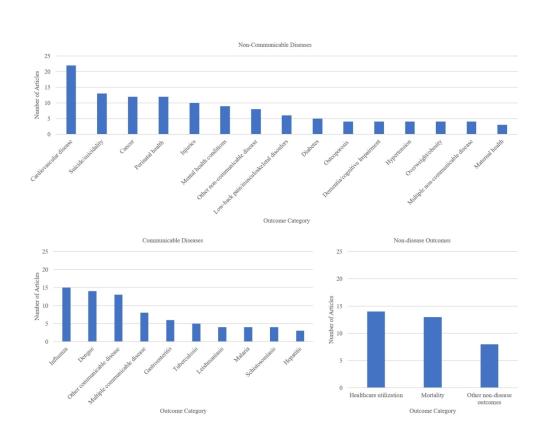
Figure 1: PRISMA flowchart of article screening process.

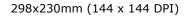
Figure 2: Number of articles by outcome.

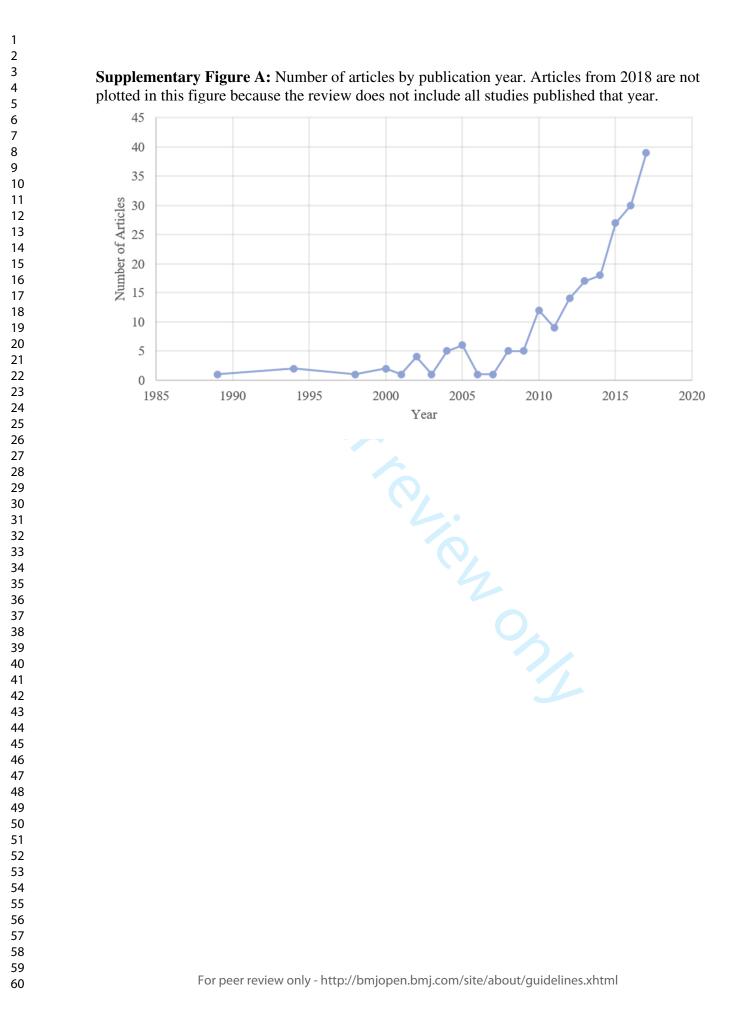


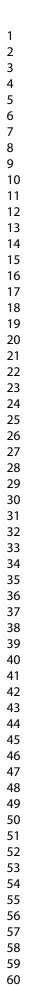
BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

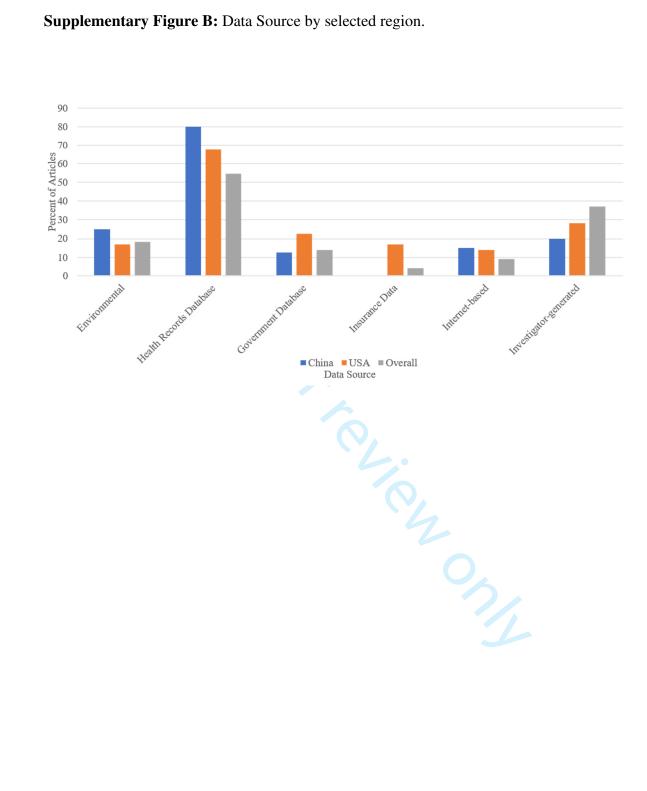


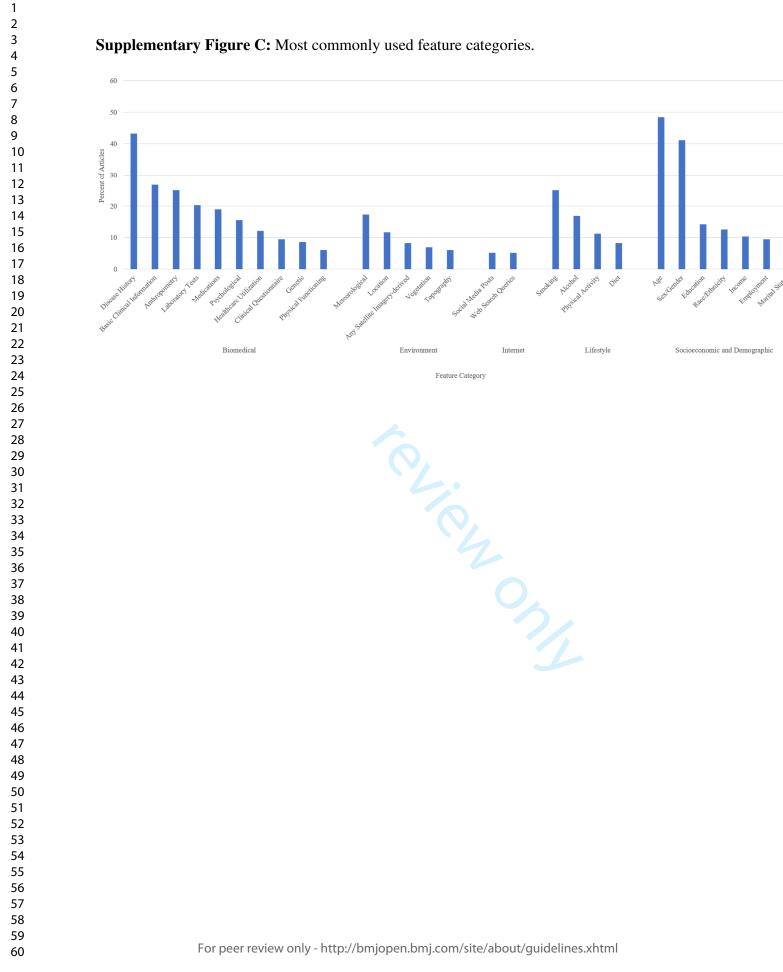












1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
57 58	
59	

1

Supplementary Table A: MEDLINE search query¹

Machine Learning Terms	Population Health Terms
1. Exp Artificial Intelligence/	24. Exp Population Health/
2. Exp "neural networks (computer)"/	25. Exp Population Surveillance/
3. Support vector machine*.kf,tw	26. Exp Health Equity/
4. Neural net*.kf,tw	27. Health status/
5. Perceptron*.kf,tw	28. Health status disparities/
6. Deep learning.kf,tw	29. Public health systems research/
7. Random forest*.kf,tw	30. "Social determinants of health"/
8. Lasso*.kf,tw	31. Health surveys/
9. Gaussian mixture*.kf,tw	32. Health status indicators/
10. Bayesian network*.kf,tw	33. "global burden of disease"/
11. Classification tree*.kf,tw	34. Global health/
12. Regression tree*.kf,tw	35. Environmental health/
13. Relevance vector machine*.kf,tw	36. Harm reduction/
14. Nearest neighbo*.kf,tw	37. Public health informatics/
15. Probability estimation tree*.kf,tw	38. Community medicine/
16. Elastic net*.kf,tw	39. Public health/
18. Naive bayes.kf,tw	40. Epidemiology/
19. Genetic algorithm*.kf,tw	41. Preventive medicine/
20. Artificial intelligence.kf,tw	42. Occupational medicine/
21. Machine learning.kf,tw	43. Environmental medicine/
22. Statistical learning.kf,tw	44. Public health practice/
23. /or 1-22	45. Preventive health services/
	46. Health promotion/
	47. public health.kf,tw
	48. population health.kf,tw
	49. health promot*.kf,tw
	50. population surveillance.kf,tw
	51. health surveillance.kf,tw
	52. health equity.kf,tw
	53. preventive medicine.kf,tw
	54. health protection.kf,tw
	55. disease prevention.kf,tw
	56. social determinant* of health.kf,tw
	57. health determinant*.kf,tw
	58. determinant* of health.kf,tw
	59. occupational medicine.kf,tw
	60. community medicine.kf,tw
	61. epidemiolog*.kf,tw
	62. health status*.kf,tw
	63. global health.kf,tw

Page 37 of 61

64. environmental health.kf,tw
65. harm reduction.kf,tw
66. environmental medicine.kf,tw
67. /or 24-66
68. 23 and 67

¹Limited to articles published in 1980 or after.

 image: bit im

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Supplementary Table B: Data Extraction Field Descriptions

Data Extraction Field	Description
Title	The article titles.
First Author	The last name and first initial of the first listed author of each article
Year of Publication	The year of publication noted for each article.
Outcome level	 One of two categories: 1. <i>Population risk prediction:</i> the aggregated outcome of a whole population was predicted 2. <i>Individual risk prediction:</i> outcomes of individual participants were predicted
Outcome	Selected from the following, which are not mutually exclusive, as some articles predicted multiple outcomes: Non-communicable Disease 1. Cardiovascular disease: any disease characterized by atherosclerosis and resulting ischemia, including myocardial infarction and stroke 2. Suicide/suicidality 3. Caracer 4. Perinatal health: including pre-term birth, fetal alcohol spectrum disorder, congenital heart disease, growth failure, and neural tube defects 5. Mental health conditions 6. Osteoporosis 7. Low-back pain and other musculoskeletal disorders 8. Diabetes 9. Dementia and cognitive Impairment 10. Hypertension 11. fnjuries: including fractures, falls, traffic injury, and foreign body injuries 10. Overweight and obesity 13. Maternal health: including fertility, pregnancy risk, and severe maternal morbidity 14. Multiple non-communicable disease 15. Other non-communicable disease 16. Influenza 17. Dengue 18. Gastroenteritis 19. Tuberculosis 20. Schistosomiasis <
Region	Categorized based on Organisation for Economic Cooperation and Development (OECD) region except for the United States and China, which were given their own categories due to the high number of publications. One of the following: 1. Africa 2. Americas except for the United States
Study Setting	 Asia except for China China China Europe Oceania United States Multi-region Other/Unknown
Study Setting	One of two categories:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	
47 48 49 50 51 52 53 54 55 56 57 58 59 60	

	1. <i>Clinical</i> : when data was collected in any type of clinical setting
	2. <i>Community</i> : when data was collected in a community setting
Data Source Categories	Selected from the following categories, which were not mutually exclusive, and often
	more than one was used:
	1. Geographical Information Database: any dataset containing basic map-base
	spatial information such as distances and topography
	2. Meteorological/Air Quality Datasets
	3. Satellite Imagery: examples include the moderate resolution imaging
	spectroradiometer (MODIS) and the Shuttle Radar Topography Mission
	(SRTM)
	4. <i>Clinical Record Database</i> : any dataset produced primarily for the purpose of
	delivering clinical care, such as electronic medical records and administrativ
	healthcare databases produced by hospitals
	5. <i>Disease Registry</i> : a dataset maintained to monitor and/or provide care for a
	specific disease
	6. <i>Population Health Survey</i> : a regular epidemiological survey administered
	Periodically to assess the heart of populations
	7. <i>Reportable Disease Database</i> : a dataset containing reports of diseases for
	which it is mandatory for healthcare providers to report
	8. Other Health Records Database: any other health records dataset not
	encompassed in other categories, including various surveillance systems
	9. Census
	10. <i>Vital Statistics</i> : information regularly collected by governments regarding
	births and deaths
	11. Other Government Database: other governmental datasets including
	socioeconomic and demographic information
	12. <i>HealthMap</i> : a public health surveillance system using natural language
	processing to analyze informal data sources such as online news, individua
	reports, expert-curated discussions
	13. <i>Private Insurance Claims:</i> including medical, hospital, and prescription dru
	claims
	14. Private Insurance Questionnaires
	15. Internet Search: including the number of searches of certain key terms and
	meta data such as the location of the searches
	16. Social Media: both posts and metadata
	17. <i>Investigator-generated</i> : any datasets resulting from researcher-driven studie
	such as randomized controlled trials, cohort studies, and case-control studie
	18. <i>Public Repositories</i> : any freely available datasets such as MIMIC
	19. Health Organization Reports: health-related reports, typically including
	disease burden estimates, produced by non-governmental or governmental
	organizations such as the World Health Organization
	20. Not Reported
Feature Categories	Selected from the following categories, which were not mutually exclusive, as often
Teature Categories	more than one category was used (if more than one instance of a feature category was
	more than one category was used (in more than one mistance of a feature category was
	found in an article it was only counted once):
	Biomedical
	1. Anthropometry: measurements of the human body such as height and weight
	2. Basic Clinical Information: information typically collected during a brief
	physician encounter such as a focused medical history and physical
	examination, including blood pressure
	3. Basic Medical Tests: any test requiring somewhat specialized equipment su
	as an electrocardiogram
	4. <i>Clinical Questionnaire</i> : a standardized questionnaire administered in a
	clinical context such as the Montreal Cognitive Assessment or Patient Heal
	Ouestionnaire-9
	5. <i>Disease History</i> : information regarding present and/or past diagnoses of an
	individual
	6. Genetic
	7. Healthcare Utilization
	8. Instrumental Activities of Daily Living: features relating to an individual's
	daily functioning in areas such as cooking and shopping
	9. Laboratory Tests: any features derived from human specimens requiring
	specialized equipment for analysis, such as hematological and
	microbiological results
	10. Medical Imaging
	11. Medications
	12. <i>Physical Functioning</i> : features including the presence of any physical
	disabilities or the status of activities of daily living
	13. <i>Prenatal</i> : relevant aspects of the period before birth such as the use of
	prenatal vitamins or the results of routine lab results

2		
3	14	. Psychological: features including mood or anxiety symptoms
4		. Self-Reported Health Status
5	10	Internet-based
6		. Social Media Images . Social Media Location: either aggregated or individual
7		<i>Social Media Metadata</i> : any information other than the content of social
8		media posts, such as the frequency of general posts and time of posting
9		. Social Media Posts: social media post content
10	20	. Social Network: the interconnections among individuals in a social media platform
11	21	. Web Search Metadata: any aspects of web searches other than their content
12	22	. Web Search Queries: the content of web search queries either individual or
13		aggregated
14	23	Lifestyle . Alcohol
15		. Diet
		. Physical Activity
16		. Sleep . Smoking
17		. Unspecified
18	29	. Other Substance-use
19	30	. Other Lifestyle
20	31	Environment . Air Quality
21	31	. Any Satellite Imagery-derived
22	33	. Biodiversity and Domestic Animals
23		Satellite-based Built Environment
24	30	 Other Built Environment Connectivity: the ease of access to large urban centers and/or general services
25		• Electrical Lighting (satellite-based)
26	38	. General Environmental Exposures (not included in other categories)
27	39	. <i>Hazard</i> : characteristics of an external hazard such as the presence of lighting
28	40	on a roadway . Satellite-based Land-use
29		. Other Land-use
30		. Location
31		. Meteorological Surface Water Distribution/Flooding (satellite-based)
32		Satellite-based Topography
33		. Other Topography
34	47	. Vector/Reservoir Characteristics: including mosquito surveillance numbers
35	48	and the population of non-human primates in the case of yellow fever Vegetation (satellite-based): such as the normalized difference vegetation
36	0	index (NDVI)
37		. Water Composition
38		Other Satellite Imagery-derived
39	51	Population Disease or Healthcare Statistics Socioeconomic and Demographic
40	52	. Adverse Adult Experiences/Trauma
41		. Adverse Childhood Experiences
42		. Age . Antisocial Behaviour
43		<i>Economy Makeup</i> : such as the number of individuals working in various
44		types of occupations
45		. Education
46		. Electricity . Employment
47		Garbage Collection
48	61	. Healthcare System: such as the availability of universal, public healthcare
49	62	. <i>Household Characteristics</i> : the number of individuals in the household and their ages
50	63	their ages . <i>Housing Structure</i> : aspects of the physical structure of housing such as the
51		number of units and age of the building
52		. Human Development Index
		. Immigration Status
53		. Income . Income Inequality
54		. Language
55		. Legal System
56	70	. Literacy
57		

1 2
3
4
5 6
7
8
9
10 11
12
13
14 15
15 16
17
18
19 20
20
22
23 24
24 25
26
27
28 29
29 30
31
32
33 34
35
36
37
38 39
40
41
42 43
43 44
45
46
47 48
49
50
51 52
52 53
54
55
56 57
57 58
59
60

	71. Marital Status
	72. Occupational Risk: including risk factors for low-back pain such as
	prolonged sitting or injury from repetitive movements
	73. <i>Parental</i> : including disciplinary styles and the amount of time spent at home and number of parent-child activities
	74. <i>Peer Group</i> : behaviours of peer group
	75. Political Stability
	76. Population and Population Density
	77. Population Growth
	78. Race/Ethnicity
	79. Religion
	80. Sanitation: availability of sewage systems
	81. Sex/Gender
	82. Social Support
	83. Unspecified84. Vehicle Ownership: at population level
	85. Water Supply Quality
	86. Wealth
	87. Other Socioeconomic and Demographic
	88. Other Features
	89. Not Reported
Number of Datasets Used	The number of distinct datasets used regardless of the number of sources.
Dataset Availability	Selected from the following categories:
	1. <i>Public</i> : all the datasets used by article authors were publicly available
	2. <i>Closed</i> : all the datasets were not publicly available or appeared not to be
	 available 3. <i>Closed and Public</i>: the datasets used were a mix of available and not
	available
Any Unstructured Text Used	Natural human language was included in the model as a feature with no initial
They ensured text esec	ordinal/nominal structure imposed.
Number of Observations	The number of individuals or other units of observations (such as countries) included in
	the predictive model. If multiple subsets of the data and/or distinct datasets were used for
	different models, the largest number was used.
Machine Learning Algorithm Type	The algorithm type used to build the predictive model, with multiple types often used in
	the same article. Algorithms were only counted once when used in each article, even if
	used to build multiple different models in the same article. Selected from the following categories:
	1. Neural Networks: includes deep learning/deep neural networks as well as
	other simpler neural networks
	2. Support Vector Machine
	3. Single Tree-based Methods: includes classification trees, regression trees, and
	decision trees
	4. Random Forest
	5. Least Absolute Shrinkage and Selection Operator (LASSO)
	 Bayesian Networks: includes naïve bayes Feature Selection Methods: includes k-means clustering and genetic
	algorithms; these were often used as a pre-processing step and in a few cases
	this was the only use of machine learning (i.e. a machine learning model was
	not used to build the predictive model itself)
	8. Boosted Tree-based Methods: includes gradient boosting and boosted trees
	9. K-Nearest Neighbour
	10. Elastic Net
	 Ridge Regression Other: includes association rule learning, single task learning, multitask
	12. Other: includes association rule learning, single task learning, multitask learning, rough set classifier, associative classification, bagging, partial least
	squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle
	swarm optimization, ant colony optimization, Isomap, PCA, Disease State
	Index, Stacking, kernel conditional density estimation, stepwise deletion,
	conditional random fields, contrast mining, grammatical evolution, Learning
	from Examples Using ROugh Sets, AUtoregression with exogenous outputs,
	and natural language measures
Compared with Other Statistical Mathed	and natural language processing
Compared with Other Statistical Methods	Whether the machine learning method's predictive performance was compared with a
	Whether the machine learning method's predictive performance was compared with a traditional parametric statistical regression model such as logistic regression (yes/no).
Compared with Other Statistical Methods Reported Data Pre-processing	Whether the machine learning method's predictive performance was compared with a
	Whether the machine learning method's predictive performance was compared with a traditional parametric statistical regression model such as logistic regression (yes/no). Whether any aspects of data cleaning or pre-processing were reported (yes/no).
Reported Data Pre-processing	 Whether the machine learning method's predictive performance was compared with a traditional parametric statistical regression model such as logistic regression (yes/no). Whether any aspects of data cleaning or pre-processing were reported (yes/no). Examples include how missing data was handled, whether log transformations were done, and if derived variables were generated. Missing data and all model development processes have been identified as important to report by TRIPOD.[1]
	 Whether the machine learning method's predictive performance was compared with a traditional parametric statistical regression model such as logistic regression (yes/no). Whether any aspects of data cleaning or pre-processing were reported (yes/no). Examples include how missing data was handled, whether log transformations were done, and if derived variables were generated. Missing data and all model development

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

	informed, or mixed approaches. Feature selection is an important element of reporting as
	identified by TRIPOD.[1]
Number of Features	The number of features included in the final prediction model after feature selection. If multiple models were used in one article, the largest number of features was chosen.
Reported Hyper-parameter Search	Whether the process for determining the hyper-parameters of the machine learning model, such as the number of features used to build each tree in a random forest, was reported (yes/no). This is an important aspect of model development[2], and thus considered an important element to report by the TRIPOD statement.[1]
Method of Validation	 How the authors validated the predictive performance of their model, selected from one of the following categories: 1. <i>Holdout</i>: the dataset was divided into two parts; one part was used to train the model and the other was used to test the model 2. <i>Cross-validation and bootstrap</i>: the dataset was either divided into more than two parts and repeatedly trained and tested on different parts of the dataset or random sampling with replacement was used to train the model 3. <i>External</i>: the model was tested on a completely separate dataset
Reported Descriptive Statistics	Whether the article reported any descriptive statistics regarding their sample (yes/no). We considered a broad array of descriptive statistics including sample population demographics, feature distributions, and outcome distributions. These are all important reporting elements according to TRIPOD.[1]
Calibration Metrics	 The types of calibration predictive performance metrics used to evaluate models, which could be more than one. Calibration refers to a model's ability to accurately predict absolute probabilities of the outcome occurring.[3] One or more of the following categories was selected if a calibration metric was used: <i>Manual or visual comparison</i>: includes calibration plots <i>Hosmer-Lemeshow</i> <i>Observed/Expected</i>: is a ratio or comparison of observed and predicted/expected probabilities <i>Other calibration metric</i>: includes mean bias (from Bland-Altman plot), calibration factoring, calibration statistic
Discrimination Metrics	 The types of discrimination predictive performance metrics used to evaluate models, which could be more than one. Discrimination refers to a model's ability to correctly rank-order individuals according to their likelihood of developing the outcome.[3] One or more of the following categories was selected if a discrimination metric was used: <i>Area under the curve</i>: meaning receiver operator curve; also includes c-statistic and s-index <i>Accuracy</i>: includes accuracy, misclassification, and error rate <i>Recall</i>: includes sensitivity, specificity, true/false positive, and true/false negative <i>Precision</i>: includes positive predictive value, negative predictive value, and precision <i>F statistics</i> <i>Likelihood Ratio</i>: includes both positive and negative likelihood ratios <i>Youden Index</i> <i>Manual or visual comparison</i> <i>Other discrimination metric</i>: includes G-means, k-statistic, and Matthews correlation coefficient
Overall Goodness of Fit Metrics	The types of overall goodness of fit performance metrics used to evaluate models, which could be more than one. Overall goodness of fit refers to a model's predictions' concordance with observed outcomes. One or more of the following categories was selected if an overall performance metric was used: <i>Root mean squared error</i> <i>Mean absolute error</i> <i>Mean absolute percentage error</i> <i>Re²</i>: includes pseudo-R2s <i>Correlation</i> <i>Other performance metric</i>: includes penalty error, total sum of squares, proportional reduction in error, overall prediction error, mean relative absolute error, malysis of variance F-stat, -2LogLikelihood, relative efficiency, deviance, Ljung-Box test, mean absolute deviation, standard error, Brier score, log score, and mean percentage error
Did Machine Learning Models Outperform Traditional Methods?	Whether the machine learning-based predictive models outperformed the statistical parametric regression models based on the performance metrics supplied by the authors (yes/no). However, this should not be taken to mean that the difference in model performance was reliable or valid. Often, important performance metrics and essential aspects of model development were not reported, making accurate comparisons difficult.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
י ר	
2	
3	
4	
5	
6	
7	
8	
9	
	0
1	1
1	2
1	3
1	4
1	5
1	6
1	6 7
1 1	8
1	9
2	0
2	1
2	2
2	
2	
2	5
2	6 7
2	-
2	
2	9
3	0
3	1
3	
3	
3	4
3	4 5 6
3	7
	8
3	9
4	0
4	1
4	י ר
4	2
4	3
4	
4	5

Discussed the Practical Costs of Prediction Errors	Whether the article discussed the relative risks of false negative and false positive results based on their predictive model in contexts where it might be used (yes/no). These costs are important for determining the usefulness and application of predictive models.[3]
Stated Rationale for Using Machine Learning	Whether the article stated any reasons for using a machine learning approach instead of a statistical parametric regression approach (yes/no).
Rationale for Using Machine Learning - Free Text	Reviewers included article quotations and summaries in this section to capture different rationales for using machine learning. Reviewers attempted to only extract free text regarding each specific type of rationale once
Discussed Model Usability	Whether the article discussed any aspect of how the model could be practically used in a relevant context (yes/no).
Stated Model Limitations	Whether the article discussed any potential limitations of the research (yes/no).
Model limitations - Free Text	Reviewers included article quotations and summaries in this section to capture different reported limitations. Reviewers attempted to only extract free text regarding each specific type of limitation once.
Discussed Model Implementation	Whether the article included discussion of any consequences of model implementation such as potential clinical, population-health, and policy-level impacts (yes/no).
Model Implementation - Free Text	Reviewers included article quotations and summaries in this section to capture different
	re text regarding each specific type of implementation impact once.

Supplementary Table C: Types of machine learning algorithms used.

Types of Algorithms	Number	Percent
Neural Networks [*]	95	41.13%
Support Vector Machine	59	25.54%
Single tree-based methods ^{\dagger}	52	22.51%
Random Forest	48	20.78%
LASSO	25	10.82%
Bayesian Networks [‡]	23	9.96%
Feature selection methods [§]	20	8.66%
Boosted tree-based methods	19	8.23%
K-Nearest Neighbour	19	8.23%
Elastic Net	9	3.90%
Ridge regression	5	2.16%
Other ^{II}	22	9.52%

*Includes deep neural networks.

[†]Includes CART, decision trees.

[‡]Includes naive bayes.

[§]Includes cluster methods (e.g. k-means clustering) and genetic algorithms.

[¶]Includes gradient boosting and boosted trees.

^{II}Including (all algorithms used once unless otherwise specified) association rule learning (n=3), single task learning, multitask learning, rough set classifier, associative classification, bagging, partial least squares discriminant analysis, Just-Add-Data Bio Tool, super learner, particle swarm optimization, ant colony optimization, isomap, principal components analysis, disease state Index, stacking, kernel conditional density estimation, stepwise deletion, conditional random fields, contrast mining, grammatical evolution, Learning from Examples Using ROugh Sets, AUtoregression with exogenous outputs, and natural language processing (n=2).

AUtoregression with exogenous outputs, and natural language processing (n=2).

Supplementary Table D: Detailed feature categories included in studies.

Feature Category	Number of Articles	Percent
Biomedical	141	61.04
Anthropometry	58	25.11
Basic Clinical Information	62	26.84
Basic Medical Tests	10	4.33
Clinical Questionnaire	22	9.52
Disease History	100	43.29
Genetic	20	8.66
Healthcare Utilization	28	12.12
Instrumental Activities of Daily Living	6	2.60
Laboratory Tests	47	20.35
Medical Imaging	10	4.33
Medications	44	19.05
Physical Functioning	14	6.06
Prenatal	10	4.33
Psychological	36	15.58
Self-Reported Health Status	7	3.03
nternet-based	21	9.09
Social Media Images	1	0.43
Social Media Location	5	2.16
Social Media Metadata	4	1.73
Social Media Posts	12	5.19
Social Network	3	1.30
Web Search Metadata	1	0.43
Web Search Queries	12	5.19
Lifestyle	81	35.06
Alcohol	39	16.88
Diet	19	8.23
Physical Activity	26	11.26
Sleep	11	4.76
Smoking	58	25.11
Unspecified	4	1.73
Other Substance-use	13	5.63
Other Lifestyle	13	5.63
Environment	82	35.50
Air Quality	5	2.16
Any Satellite Imagery-derived	19	8.23
Biodiversity and Domestic Animals	2	0.87
Built Environment	8	3.46
Satellite	4	1.73
Other	4	1.73

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Connectivity	4	1.73
Electrical Lighting ¹	1	0.43
General Environmental Exposures (not included in other categories)	9	3.90
Hazard	10	4.33
Land-use	2	0.87
Satellite	1	0.43
Other	1	0.43
Location	27	11.69
Meteorological	40	17.32
Surface Water Distribution/Flooding ¹	6	2.60
Topography	14	6.06
Satellite	12	5.19
Other	2	0.87
Vector/Reservoir Characteristics	9	3.90
Vegetation ¹	16	6.93
Water Composition	1	0.43
Other Satellite Imagery-derived	7	3.03
Population-level Disease or Healthcare Statistics	38	16.45
Socioeconomic and Demographic Factors	150	64.94
Adverse Adult Experiences/Trauma	5	2.16
Adverse Childhood Experiences	4	1.73
Age	112	48.48
Antisocial Behaviour	2	0.87
Economy Makeup	1	0.43
Education	33	14.29
Electricity	2	0.87
Employment	22	9.52
Garbage Collection	1	0.43
Healthcare System	5	2.16
Household Characteristics	10	4.33
Housing Structure	4	1.73
Human Development Index	1	0.43
Immigration Status	5	2.16
Income	24	10.39
Income Inequality	3	1.30
Language	2	0.87
Legal System	1	0.43
Literacy	2	0.87
Marital Status	21	9.09
Occupational Risk	10	4.33
Parental	3	1.30
1 alema	1	
Peer Group	1	0.43

1	
2	
3	
•	
4	
5	
6	
7	
8	
9	
-	
10	
11	
12	
13	
14	
15	
15	
16	
17	
16 17 18	
19	
20	
20	
21 22 23	
22	
23	
24	
25	
26	
27	
27	
26 27 28	
29	
29 30	
29	
29 30 31	
29 30 31 32	
29 30 31 32 33	
29 30 31 32 33 34	
29 30 31 32 33 34 35	
29 30 31 32 33 34 35 36	
29 30 31 32 33 34 35	
29 30 31 32 33 34 35 36	
29 30 31 32 33 34 35 36 37 38	
29 30 31 32 33 34 35 36 37 38 39	
29 30 31 32 33 34 35 36 37 38 39 40	
29 30 31 32 33 34 35 36 37 38 39 40 41	
29 30 31 32 33 34 35 36 37 38 39 40 41 42	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	
29 30 31 32 33 34 35 36 37 38 39 40 41 42	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	

60

Population and Popula	tion Density	11	4.76
Population Growth		2	0.87
Race/Ethnicity		29	12.55
Religion		3	1.30
Sanitation		5	2.16
Sex/Gender		95	41.13
Social Support		10	4.33
Unspecified		6	2.60
Vehicle Ownership		2	0.87
Water Supply Quality		5	2.16
Wealth		2	0.87
Other Socioeconomic	and Demographic	29	12.55
Other Features	O.	17	7.36
Not Reported		1	0.43
		ature categories	

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Appendix A: Eligibility Criteria

The following types of articles were excluded:

- Reviews:
- . Focused on a methodological development;
- Only included an abstract; •
- Only used linear regression, logistic regression, generalized additive models, or other approaches not • considered machine learning for the purpose of this review;
- Only applied models to diagnosis, treatment decisions, or prognosis of individuals who already had a . disease;
- Only related to logistics, human resources, finance, or management involved in provision of public health services;
- Focused on occupational health, traffic accidents, or environmental monitoring, with no direct link to population health outcomes;
- Used smart home or home monitoring systems;
- Used advanced imaging or other expensive predictors that would be difficult or unsafe to scale to a population level;
- Focused on clinical decision support systems;
- por except vacche. Predicted adverse drug effects, except vaccines.

Appendix B: Examples of article titles removed during title screening

- 1. Improved classification of mangroves health status using hyperspectral remote sensing data
- 2. Diesel engine and propulsion diagnostics of a mini-cruise ship by using artificial neural networks

3. Relationship between benthic macroinvertebrate bio-indices and physicochemical parameters of water: A tool for water resources managers

- 4. Adaptive one-switch row-column scanning
- 5. Development of a distributed bearing health monitoring and assessing system
- 6. Neural networks based sensor validation and recovery methodology for advanced aircraft engines
- 7. Mining images in publicly-available cameras for homeland security
- 8. The human pulvinar and attentional processing of visual distractors
- 9. Text classification techniques in oil industry applications

10. Research on acoustic mechanical fault diagnosis method of high voltage circuit breaker based on improved EEMD

1	Achrekar H, Gandhe A, Lazarus R, et al. Predicting Flu Trends using Twitter data. 2011. doi:10.1109/INFCOMW.2011.5928903
2	Adamou M, Antoniou G, Greasidou E, <i>et al.</i> Mining Free-Text Medical Notes for Suicide Risk Assess Proc. 10th Hell. Conf. Artif. Intell. 2018. doi:10.1145/3200947.3201020
3	Adams LJ, Bello G, Dumancas GG. Development and Application of a Genetic Algorithm for Variab Optimization and Predictive Modeling of Five-Year Mortality Using Questionnaire Data. <i>Bioinform B</i> <i>Insights</i> 2015; 9 :31–41. doi:https://dx.doi.org/10.4137/BBI.S29469
4	Agarwal A, Baechle C, Behara RS, <i>et al.</i> Multi-method approach to wellness predictive modeling. <i>J E Data</i> 2016; 3 :1–23. doi:http://dx.doi.org/10.1186/s40537-016-0049-0
5	Agarwal V, Zhang L, Zhu J, <i>et al.</i> Impact of Predicting Health Care Utilization Via Web Search Beha Data-Driven Analysis. <i>J Med Internet Res</i> 2016; 18 :e251.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medp&NEWS=N&A
6	655225 Agopian AJ, Lupo PJ, Tinker SC, <i>et al.</i> Working towards a risk prediction model for neural tube defea
7	Birth Defects Res A Clin Mol Teratol 2012;94:141–6. doi:https://dx.doi.org/10.1002/bdra.22883 Ahn C, Hwang Y, Park SK. Predictors of all-cause mortality among 514,866 participants from the Ko
8	National Health Screening Cohort. <i>PLoS One</i> 2017; 12 . doi:http://dx.doi.org/10.1371/journal.pone.018 Aichele S, Rabbitt P, Ghisletta P. Illness and intelligence are comparatively strong predictors of indivi- differences in depressive symptoms following middle age. <i>Aging Ment Health</i> 2017;:1–10. doi:https://dx.doi.org/10.1080/13607863.2017.1394440
9	 Akbulut A, Ertugrul E, Topcu V. Fetal health status prediction based on maternal clinical history using machine learning techniques. <i>Comput Methods Programs Biomed</i> 2018;163:87–100. doi:http://dx.doi.org/10.1016/j.cmpb.2018.06.010
10	Akhavan P, Karimi M, Pahlavani P, <i>et al.</i> Risk mapping of Cutaneous Leishmaniasis via a fuzzy C M based Neuro-Fuzzy inference system. 2014; 40 :19–23. doi:10.5194/isprsarchives-XL-2-W3-19-2014
11	Alby S, Shivakumar BL. A prediction model for type 2 diabetes risk among Indian women. <i>ARPN J E</i> <i>Appl Sci</i> 2016; 11 :2037–43.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84959387072&partnerID=40&md5=0fde9764a6290488b1c3472e2bbb5f7c NS -
12	Allen T, Murray KA, Zambrana-Torrelio C, <i>et al.</i> Global hotspots and correlates of emerging zoonotic diseases. <i>Nat Commun</i> 2017;8:1124. doi:https://dx.doi.org/10.1038/s41467-017-00923-8
13	Allore H, Tinetti ME, Araujo KLB, <i>et al.</i> A case study found that a regression tree outperformed mult linear regression in predicting the relationship between impairments and Social and Productive Activi scores. <i>J Clin Epidemiol</i> 2005; 58 :154–
14	61.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=156807 Al-Mallah MH, Elshawi R, Ahmed AM, <i>et al.</i> Using Machine Learning to Define the Association bet Cardiorespiratory Fitness and All-Cause Mortality (from the Henry Ford Exercise Testing Project). <i>An</i> <i>Cardiol</i> 2017; 120 :2078–84. doi:10.1016/j.amjcard.2017.08.029
15	Almeida AS, Werneck GL. Prediction of high-risk areas for visceral leishmaniasis using socioeconom indicators and remote sensing data. <i>Int J Health Geogr</i> 2014; 13 . doi:10.1186/1476-072X-13-13
16	Alves EB, Costa CHN, de Carvalho FAA, <i>et al.</i> Risk Profiles for Leishmania infantum Infection in Bi <i>Am J Trop Med Hyg</i> 2016; 94 :1276–81. doi:10.4269/ajtmh.15-0513
17	Amini P, Ahmadinia H, Poorolajal J, <i>et al.</i> Evaluating the High Risk Groups for Suicide: A Comparise Logistic Regression, Support Vector Machine, Decision Tree and Artificial Neural Network. <i>Iran J Put Health</i> 2016; 45 :1179–87.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149472/pdf/IJPH-45-1179NS -
18	Amini P, Maroufizadeh S, Samani RO, <i>et al.</i> Factors Associated with Macrosomia among Singleton L births: A Comparison between Logistic Regression, Random Forest and Artificial Neural Network Mac <i>Epidemiol Biostat Public Heal</i> 2016; 13 . doi:10.2427/11985
19	Anand A, Shakti D. Prediction of diabetes based on personal lifestyle indicators. 2015;:673–6. doi:10.1109/NGCT.2015.7375206
20	Anderson RT, Balkrishnan R, Camacho F. Risk classification of Medicare HMO enrollee cost levels u decision-tree approach. <i>Am J Manag Care</i> 2004; 10 :89–98.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=150118
21	Asensio-Cuesta S, Diego-Mas JA, Alcaide-Marzal J. Applying generalised feedforward neural network

ž	
2	
P	
ēn	
 ⊐ti	
pen: first pu	
p	
Ъ	
blished	
Je	
d as	
ŝ	
10.1	
ω	
6/6	
<u>ă</u>	
ъ	
ĕ	
bmjopen-2020-037860 on 27 O	
02	
õ	
3	
82	
õ	
õ	
5	
27	
Q	
f	
ğ	
4	
Ö	
2020. D	
Ū	
80	
'n	
loa	
loade	
published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded f	
loaded fro	
from	
Ť	
from	
from http://bmjopen.bmj.com/ on April	
from	
from http://bmjopen.bmj.com/ on April	
from http://bmjopen.bmj.com/ on April 24,	
from http://bmjopen.bmj.com/ on April 24,	
from http://bmjopen.bmj.com/ on April 24,	
from http://bmjopen.bmj.com/ on April 24, 2024 by gu	
from http://bmjopen.bmj.com/ on April 24,	
from http://bmjopen.bmj.com/ on April 24, 2024 by gu	
from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	
from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	
from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	
from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	
from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	
from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	
from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	
from http://bmjopen.bmj.com/ on April 24, 2024 by guest.	

	classifying industrial jobs in terms of risk of low back disorders. <i>Int J Ind Ergon</i> 2010; 40 :629–35. doi:10.1016/j.ergon.2010.04.007
22	Ayyagari R, Vekeman F, Lefebvre P, <i>et al.</i> Pulse pressure and stroke risk: development and validation of a new stroke risk model. <i>Curr Med Res Opin</i> 2014; 30 :2453–60. doi:10.1185/03007995.2014.971357
23	Azeez A, Obaromi D, Odeyemi A, <i>et al.</i> Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model. <i>Int J Environ Res Public Health</i> 2016; 13 .
24	doi:10.3390/ijerph13080757 Bakar AA, Kefli Z, Abdullah S, <i>et al.</i> Predictive models for dengue outbreak using multiple rulebase classifiers. 2011;:5 pp. doi:10.1109/ICEEI.2011.6021830
25	Balaraman S, Schafer JJ, Tseng AM, <i>et al.</i> Plasma miRNA Profiles in Pregnant Women Predict Infant Outcomes following Prenatal Alcohol Exposure. <i>PLoS One</i> 2016; 11 .
26	doi:http://dx.doi.org/10.1371/journal.pone.0165081 Bandyopadhyay S, Wolfson J, Vock DM, <i>et al.</i> Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data. <i>Data Min Knowl</i> <i>Discov</i> 2015; 29 :1033–69. doi:10.1007/s10618-014-0386-6
27	Bashir S, Qamar U, Khan FH. A Multicriteria Weighted Vote-Based Classifier Ensemble for Heart Disease Prediction. <i>Comput Intell</i> 2016; 32 :615–45. doi:http://dx.doi.org/10.1111/coin.12070
28	Bath PA, Pendleton N, Morgan K, <i>et al.</i> New approach to risk determination: development of risk profile for new falls among community-dwelling older people by use of a Genetic Algorithm Neural Network (GANN). <i>J Gerontol A Biol Sci Med Sci</i> 2000; 55 :M17-21.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=10719768
29	Bayati M, Bhaskar S, Montanari A. Statistical analysis of a low cost method for multiple disease prediction. <i>Stat Methods Med Res</i> 2018; 27 :2312–28. doi:http://dx.doi.org/10.1177/0962280216680242
30	Ben-Ari A, Hammond K. Text Mining the EMR for Modeling and Predicting Suicidal Behavior among US Veterans of the 1991 Persian Gulf War. 2015;:3168–75. doi:10.1109/HICSS.2015.382
31	Berchialla P, Scarinzi C, Snidero S, <i>et al.</i> Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children. <i>Stat Methods Med Res</i> 2016; 25 :1244–59. doi:10.1177/0962280213476167
32	Bertsimas D, Bjarnadottir M V, Kane MA, <i>et al.</i> Algorithmic Prediction of Health-Care Costs. <i>Oper Res</i> 2008; 56 :1382–92. doi:10.1287/opre.1080.0619
33	Bhatt S, Cameron E, Flaxman SR, <i>et al.</i> Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization. <i>J R Soc Interface</i> 2017; 14 :20170520. doi:http://dx.doi.org/10.1098/rsif.2017.0520
34	Bhatt S, Gething PW, Brady OJ, <i>et al.</i> The global distribution and burden of dengue. <i>Nature</i> 2013; 496 :504–7.http://libaccess.mcmaster.ca/login?url=https://search.proquest.com/docview/1350966952?accountid=1234
35	Bi J, Sun J, Wu Y, <i>et al.</i> A machine learning approach to college drinking prediction and risk factor identification. <i>ACM Trans Intell Syst Technol</i> 2013; 4 :1–24. doi:10.1145/2508037.2508053
36	Bibi H, Nutman A, Shoseyov D, <i>et al.</i> Prediction of emergency department visits for respiratory symptoms using an artificial neural network. <i>Chest</i> 2002; 122 :1627–32.http://myaccess.library.utoronto.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=rzh
37	&AN=106806480&site=ehost-live NS - Blankenberg S, Zeller T, Saarela O, <i>et al.</i> Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. <i>Circulation</i> 2010; 121 :2388–97.
38	doi:https://dx.doi.org/10.1161/CIRCULATIONAHA.109.901413 Braithwaite SR, Giraud-Carrier C, West J, <i>et al.</i> Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality. <i>JMIR Ment Heal</i> 2016; 3 :e21. doi:https://dx.doi.org/10.2196/mental.4822
39	Buczak AL, Baugher B, Guven E, <i>et al.</i> Fuzzy association rule mining and classification for the prediction of malaria in South Korea. <i>BMC Med Inform Decis Mak</i> 2015; 15 :47. doi:https://dx.doi.org/10.1186/s12911-015-0170-6
40	Buczak AL, Koshute PT, Babin SM, et al. A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data. BMC Med Inform Decis Mak 2012; 12 :124.
41	doi:https://dx.doi.org/10.1186/1472-6947-12-124 Caillet P, Klemm S, Ducher M, <i>et al.</i> Hip Fracture in the Elderly: A Re-Analysis of the EPIDOS Study with

42	Causal Bayesian Networks. <i>PLoS One</i> 2015; 10 . doi:http://dx.doi.org/10.1371/journal.pone.0120125 Cao S, Wang F, Tam W, <i>et al.</i> A hybrid seasonal prediction model for tuberculosis incidence in China. <i>BMC</i>
	Med Inform Decis Mak 2013;13:56. doi:https://dx.doi.org/10.1186/1472-6947-13-56
43	Caon F, Meneghel G, Zaghi P, <i>et al.</i> Applicability of neural networks to suicidological research: a pilot study. <i>Arch suicide Res</i> 2002; 6 :285–
	9.http://libaccess.mcmaster.ca/login?url=https://search.proquest.com/docview/38408407?accountid=12347
44	Chae S, Kwon S, Lee D. Predicting Infectious Disease Using Deep Learning and Big Data. Int J Env Res
4.5	Public Heal 2018; 15 . doi:10.3390/ijerph15081596
45	Chang JS, Yeh RF, Wiencke JK, <i>et al.</i> Pathway analysis of single-nucleotide polymorphisms potentially associated with glioblastoma multiforme susceptibility using random forests. <i>Cancer Epidemiol Biomarkers Prev</i> 2008; 17 :1368–73. doi:10.1158/1055-9965.EPI-07-2830
46	Chen Y, Chu CW, Chen MIC, <i>et al.</i> The utility of LASSO-based models for real time forecasts of endemic infectious diseases: a cross country comparison. <i>J Biomed Inform</i> Published Online First: 2018.
47	doi:https://dx.doi.org/10.1016/j.jbi.2018.02.014 Chen Y-T, Miller PD, Barrett-Connor E, <i>et al.</i> An approach for identifying postmenopausal women age 50- 64 years at increased short-term risk for osteoporotic fracture. <i>Osteoporos Int</i> 2007; 18 :1287–
	96.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=17464525
48	Chenar SS, Deng Z. Development of genetic programming-based model for predicting oyster norovirus outbreak risks. <i>Water Res</i> 2018; 128 :20–37. doi:10.1016/j.watres.2017.10.032
49	Chenar SS, Deng Z. Development of artificial intelligence approach to forecasting oyster norovirus
	outbreaks along Gulf of Mexico coast. Environ Int 2018;111:212-23.
	doi:https://dx.doi.org/10.1016/j.envint.2017.11.032
50	Cheng Y, Jiang T, Zhu M, <i>et al.</i> Risk assessment models for genetic risk predictors of lung cancer using
	two-stage replication for Asian and European populations. <i>Oncotarget</i> 2017; 8 :53959–67.
1	doi:https://dx.doi.org/10.18632/oncotarget.10403 Choi SB, Lee W, Yoon J-H, <i>et al.</i> Ten-year prediction of suicide death using Cox regression and machine
1	learning in a nationwide retrospective cohort study in South Korea. J Affect Disord 2018;231:8–14.
	doi:https://dx.doi.org/10.1016/j.jad.2018.01.019
52	Conrad D, Wilker S, Pfeiffer A, <i>et al.</i> Does trauma event type matter in the assessment of traumatic load?
-	<i>Eur J Psychotraumatol</i> 2017; 8 . doi:10.1080/20008198.2017.1344079
3	Courtney KL, Stewart S, Popescu M, <i>et al.</i> Predictors of preterm birth in birth certificate data. <i>Stud Health Technol Inform</i> 2008; 136 :555–
	60.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=18487789
54	Crawford AG, Fuhr Jr JP, Clarke J, <i>et al.</i> Comparative effectiveness of total population versus disease- specific neural network models in predicting medical costs. <i>Dis Manag</i> 2005; 8 :277–87.
	doi:10.1089/dis.2005.8.277
5	Dartois L, Gauthier E, Heitzmann J, <i>et al.</i> A comparison between different prediction models for invasive breast cancer occurrence in the French E3N cohort. <i>Breast Cancer Res Treat</i> 2015; 150 :415–26. doi:https://dx.doi.org/10.1007/s10549-015-3321-7
56	Darvishi E, Khotanlou H, Khoubi J, <i>et al.</i> Prediction Effects of Personal, Psychosocial, and Occupational
	Risk Factors on Low Back Pain Severity Using Artificial Neural Networks Approach in Industrial Workers. <i>J Manipulative Physiol Ther</i> 2017; 40 :486–93. doi:https://dx.doi.org/10.1016/j.jmpt.2017.03.012
57	Davidson MW, Haim DA, Radin JM. Using networks to combine 'big data' and traditional surveillance to
	improve influenza predictions. <i>Sci Rep</i> 2015; 5 :8154. doi:http://dx.doi.org/10.1038/srep08154
58	De Choudhury M, Gamon M, Counts S, <i>et al.</i> Predicting depression via social media. 2013;:128–
	37.https://www.scopus.com/inward/record.uri?eid=2-s2.0-
59	84900027892&partnerID=40&md5=37755eb6e5e5e0639df4438f14bf1c8f NS - DeClaris N, Hammad T, Wahab AF, <i>et al.</i> Neural network models for studying and for managing in real-
59	time schistosomiasis control programs. 1994; vol.2:1362–3. doi:10.1109/IEMBS.1994.415473
50	Delgado-Gomez D, Blasco-Fontecilla H, Sukno F, <i>et al.</i> Suicide attempters classification: Toward predictive
50	models of suicidal behavior. <i>Neurocomputing An Int J</i> 2012; 92 :3–8.
	doi:http://dx.doi.org/10.1016/j.neucom.2011.08.033
51	Dicken RA, Fazle Rubby SAM, Naz S, <i>et al.</i> Risk assessment of the top five malignancies among males and
	females with respect to occupation, educational status and smoking habits. 2016;:6 pp.
	doi:10.1109/ICIS.2016.7550756
	Dierker LC, Avenevoli S, Goldberg A, et al. Defining subgroups of adolescents at risk for experimental and

ĩ
5
0
pen:
pen: first p
fi
st
pu
published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloa
is'
ы
0
ŝ
10
10.11
3
6
bn
136/bmjopen-20
ð
ř
Ż
22
Y
ы Ш
8
60
õ
27
0
-2020-037860 on 27 October
g
еŗ
20
22
2020. Downl
D
Ň
<u>n</u>
ă
ade
<u>o</u>
d fro
d from http://bmjope
d fro
d from http://bmjopen.bmj.com/ on April
d fro
d from http://bmjopen.bmj.com/ on April
d from http://bmjopen.bmj.com/ on April 24,
d from http://bmjopen.bmj.com/ on April 24, 2024 by
d from http://bmjopen.bmj.com/ on April 24, 2024 by
d from http://bmjopen.bmj.com/ on April 24, 2024 by
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Prote
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Prot
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protect
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte
d from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte

63	Dinh TQ, Le H V, Cao TH, <i>et al.</i> Forecasting the magnitude of dengue in southern vietnam. 2016; pt.I :55-63. doi:10.1007/978-3-662-49381-6_53
64	Dogan M V, Grumbach IM, Michaelson JJ, <i>et al.</i> Integrated genetic and epigenetic prediction of coronary heart disease in the Framingham Heart Study. <i>PLoS One</i> 2018; 13 :e0190549.
	doi:http://dx.doi.org/10.1371/journal.pone.0190549
65	Dugan TM, Mukhopadhyay S, Carroll A, et al. Machine Learning Techniques for Prediction of Early
66	Childhood Obesity. <i>Appl Clin Inform</i> 2015; 6 :506–20. doi:http://dx.doi.org/10.4338/ACI-2015-03-RA-002 Duh MS, Walker AM, Pagano M, <i>et al.</i> Prediction and cross-validation of neural networks versus logistic
67	regression: Using hepatic disorders as an example. <i>Am J Epidemiol</i> 1998; 147 :407–13.NS - Dwivedi AK. Performance evaluation of different machine learning techniques for prediction of heart disease. <i>Namel Comput Amel</i> 2018; 20 :655–02. doi:10.1007/s00521.016.2604.1
68	disease. <i>Neural Comput Appl</i> 2018; 29 :685–93. doi:10.1007/s00521-016-2604-1 Dykxhoorn J, Hatcher S, Roy-Gagnon M-H, <i>et al.</i> Early life predictors of adolescent suicidal thoughts an
00	adverse outcomes in two population-based cohort studies. <i>PLoS One</i> 2017; 12 . doi:http://dx.doi.org/10.1371/journal.pone.0183182
69	Félix Caballero F, Soulis G, Engchuan W, et al. Advanced analytical methodologies for measuring health
	ageing and its determinants, using factor analysis and machine learning techniques: The ATHLOS project Sci Rep 2017;7. doi:10.1038/srep43955
70	Gan R, Chen N, Huang D. Comparisons of forecasting for hepatitis in Guangxi Province, China by using
71	three neural networks models. <i>PeerJ</i> 2016; 2016 :2684. doi:http://dx.doi.org/10.7717/peerj.2684
71	Gan X, Xu Y, Liu L, <i>et al.</i> Predicting the incidence risk of ischemic stroke in a hospital population of southern China: A classification tree analysis. <i>J Neurol Sci</i> 2011; 306 :108–14. doi:http://dx.doi.org/10.1016/j.jns.2011.03.032
72	Ganga GMD, Esposto KF, Braatz D. Application of discriminant analysis-based model for prediction of 1
12	of low back disorders due to workplace design in industrial jobs. <i>Work J Prev Assess Rehabil</i> 2012; 41 :2370–6. doi:10.3233/WOR-2012-0467-2370
73	Gerardi DO, Monteiro LHA. System identification and prediction of dengue fever incidence in Rio de Janeiro. <i>Math Probl Eng</i> 2011;:720304 (13 pp.). doi:10.1155/2011/720304
74	Girela JL, Gil D, Johnsson M, et al. Semen parameters can be predicted from environmental factors and
	lifestyle using artificial intelligence methods. <i>Biol Reprod</i> 2013; 88 :99. doi:https://dx.doi.org/10.1095/biolreprod.112.104653
75	Gismondi RC, Almeida RMVR, Infantosi AFC. Artificial neural networks for infant mortality modelling
	Comput Methods Programs Biomed 2002;69:237–
76	47.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12204451 Gueli N, Piccirillo G, Troisi G, <i>et al.</i> The influence of lifestyle on cardiovascular risk factors: Analysis us
77	a neural network. <i>Arch Gerontol Geriatr</i> 2005; 40 :157–72. doi:10.1016/j.archger.2004.08.002 Guo P, Liu T, Zhang Q, <i>et al.</i> Developing a dengue forecast model using machine learning: A case study
78	China. <i>PLoS Negl Trop Dis</i> 2017; 11 :e0005973. doi:https://dx.doi.org/10.1371/journal.pntd.0005973 Guo S, Lucas RM, Ponsonby A-L, <i>et al.</i> A novel approach for prediction of vitamin d status using support
79	vector regression. <i>PLoS One</i> 2013;8:e79970. doi:https://dx.doi.org/10.1371/journal.pone.0079970 Harrigan RJ, Thomassen HA, Buermann W, <i>et al.</i> Economic Conditions Predict Prevalence of West Nile
0.0	Virus. <i>PLoS One</i> 2010; 5 . doi:http://dx.doi.org/10.1371/journal.pone.0015437
80	Holmes JH, Durbin DR, Winston FK. Discovery of predictive models in an injury surveillance database: application of data mining in clinical research. <i>Proceedings AMIA Symp</i> 2000;:359–
	63.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11079905
81	Hu X, Quirchmayr G, Winiwarter W, <i>et al.</i> Influenza early warning model based on Yunqi theory. <i>Chin</i> <i>Integr Med</i> 2012; 18 :192–6. doi:10.1007/s11655-012-1003-4
82	Hu ZK, Jin B, Shin AY, et al. Real-Time Web-Based Assessment of Total Population Risk of Future
	Emergency Department Utilization: Statewide Prospective Active Case Finding Study. <i>Interact J Med Re</i> 2015; 4 :39–51. doi:10.2196/ijmr.4022
83	Husam IS, Abuhamad AAB, Zainudin S, <i>et al.</i> Feature selection algorithms for Malaysian dengue outbre detection model. <i>Sains Malaysiana</i> 2017; 46 :255–65. doi:10.17576/jsm-2017-4602-10
84	Husin NA, Mustapha N, Sulaiman MN, <i>et al.</i> Performance of hybrid GANN in comparison with other standalone models on dengue outbreak prediction. <i>J Comput Sci</i> 2016; 12 :300–6.
85	doi:10.3844/jcssp.2016.300.306 Iranitalab A, Khattak A. Comparison of four statistical and machine learning methods for crash severity

BMJ Open: first published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Jafari SA, Jahandideh S, Jahandideh M, et al. Prediction of road traffic death rate using neural networks

Jiang D. Hao M. Ding F. et al. Mapping the transmission risk of Zika virus using machine learning models.

Joseph A, Ramamurthy B. Suicidal behavior prediction using data mining techniques. Int J Mech Eng

prediction. Accid Anal Prev 2017;108:27-36. doi:10.1016/j.aap.2017.08.008

optimised by genetic algorithm. Int J Inj Contr Saf Promot 2015;22:153-7.

Acta Trop 2018;185:391–9. doi:https://dx.doi.org/10.1016/j.actatropica.2018.06.021

doi:https://dx.doi.org/10.1080/17457300.2013.857695

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

1

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Technol 2018;9:293-301.https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045951449&partnerID=40&md5=74f2c78c8b63037785fb7ed22ef9b8a1 NS -Juan YC, Chen CM, Chen SH. A classifier fusion approach to osteoporosis prediction for women in Taiwan. J Ind Prod Eng 2015;32:360-8. doi:10.1080/21681015.2015.1064484 Karstoft K-I, Statnikov A, Andersen SB, et al. Early identification of posttraumatic stress following military deployment: Application of machine learning methods to a prospective study of Danish soldiers. J Affect Disord 2015;184:170-5. doi:https://dx.doi.org/10.1016/j.jad.2015.05.057 Kennedy EH, Wiitala WL, Hayward RA, et al. Improved Cardiovascular Risk Prediction Using Nonparametric Regression and Electronic Health Record Data. Med Care 2013;51:251–8. doi:10.1097/MLR.0b013e31827da594 Kesorn K, Ongruk P, Chompoosri J, et al. Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas. PLoS One 2015;10. doi:http://dx.doi.org/10.1371/journal.pone.0125049 Kessler RC, Hwang I, Hoffmire CA, et al. Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration. Int J Methods Psychiatr Res 2017;26:e1575. doi:10.1002/mpr.1575 Kessler RC, Rose S, Koenen KC, et al. How well can post-traumatic stress disorder be predicted from pretrauma risk factors? An exploratory study in the WHO World Mental Health Surveys. World Psychiatry 2014;13:265-74. doi:http://dx.doi.org/10.1002/wps.20150 Kim BJ, Kim SH. Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method. Proc Natl Acad Sci USA 2018;115:1322-7. doi:10.1073/pnas.1717960115 Kim H, Chun H-W, Kim S, et al. Longitudinal Study-Based Dementia Prediction for Public Health. Int J Environ Res Public Health 2017;14. doi:https://dx.doi.org/10.3390/ijerph14090983 Kim JK, Kang S. Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Correlation Analysis. J Healthc Eng Published Online First: 2017. doi:10.1155/2017/2780501 Kim MH, Banerjee S, Park SM, et al. Improving risk prediction for depression via Elastic Net regression -Results from Korea National Health Insurance Services Data. AMIA . Annu Symp proceedings AMIA Symp 2016:2016:1860-9.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexa&NEWS=N&AN=618140270 NS -Kooperberg C, LeBlanc M, Obenchain V. Risk prediction using genome-wide association studies. Genet Epidemiol 2010;34:643-52. doi:10.1002/gepi.20509 Kwak J, Kim S, Kim G, et al. Scrub Typhus Incidence Modeling with Meteorological Factors in South Korea. Int J Environ Res Public Health 2015;12:7254-73. doi:10.3390/ijerph120707254 Lakshmi BN, Indumathi TS, Ravi N. A comparative study of classification algorithms for risk prediction in pregnancy. 2015;:6 pp. doi:10.1109/TENCON.2015.7373161 Lebrón-Aldea D, Dhurandhar EJ, Pérez-Rodríguez P, et al. Integrated genomic and BMI analysis for type 2 diabetes risk assessment. Front Genet 2015;5. doi:10.3389/fgene.2015.00075 Leclerc BS, Begin C, Cadieux E, et al. A classification and regression tree for predicting recurrent falling among community-dwelling seniors using home-care services. Can J Public Health 2009:100:263-7.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=19722338 Ledien J, Sorn S, Hem S, et al. Assessing the performance of remotely-sensed flooding indicators and their potential contribution to early warning for leptospirosis in Cambodia. PLoS One 2017;12. doi:http://dx.doi.org/10.1371/journal.pone.0181044 Lemke KW, Gudzune KA, Kharrazi H, et al. Assessing markers from ambulatory laboratory tests for predicting high-risk patients. Am J Manag Care 2018;24:e190-5.https://ajmc.s3.amazonaws.com/_media/_pdf/AJMC_06_2018_Lemke final.pdfhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexb&NEWS=N&AN=622514 947 NS -

106	Leonenko VN, Bochenina KO, Kesarev SA, <i>et al.</i> Influenza peaks forecasting in Russia: Assessing the
107	applicability of statistical methods. 2017; 108 :2363–7. doi:10.1016/j.procs.2017.05.196 Li H, Luo M, Zheng J, <i>et al.</i> An artificial neural network prediction model of congenital heart disease based
107	on risk factors: A hospital-based case-control study. <i>Medicine (Baltimore)</i> 2017; 96 :e6090.
	doi:https://dx.doi.org/10.1097/MD.00000000006090
108	Li J, Cao N, Li H, et al. ANN approach for modeling and prediction of water quality in Sichuan Kaschin-
	Beck disease districts. 2010;vol.3:1129-32. doi:10.1109/BMEI.2010.5639611
109	Li Q, Zhao L, Xue Y, <i>et al.</i> Exploring the impact of co-experiencing stressor events for teens stress
110	forecasting. 2017; 10570 LNCS :313–28. doi:10.1007/978-3-319-68786-5_25
110	Li ZB, Liu P, Wang W, <i>et al.</i> Using support vector machine models for crash injury severity analysis. <i>Accid Anal Prev</i> 2012; 45 :478–86. doi:10.1016/j.aap.2011.08.016
111	Liang F, Guan P, Wu W, <i>et al.</i> Forecasting influenza epidemics by integrating internet search queries and
	traditional surveillance data with the support vector machine regression model in Liaoning, from 2011 to
	2015. PeerJ 2018;6:e5134. doi:https://dx.doi.org/10.7717/peerj.5134
112	Liao YL, Wang JF, Wu JL, et al. PSO/ACO Algorithm-based Risk Assessment of Human Neural Tube
	Defects in Heshun County, China. <i>Biomed Environ Sci</i> 2012; 25 :569–76. doi:10.3967/0895-3988.2012.05.011
113	Liliana C, Oancea B, Nedelcu M, <i>et al.</i> Predicting cardiovascular diseases prevalence using neural networks.
-	Econ Comput Econ Cybern Stud Res 2015;49:69–80.NS -
14	Liu J, Tang Z-H, Zeng F, et al. Artificial neural network models for prediction of cardiovascular autonomic
	dysfunction in general Chinese population. BMC Med Informatics Decis Mak 2013;13:80.
115	doi:10.1186/1472-6947-13-80 Liu K, Wang T, Yang Z, <i>et al.</i> Using Baidu Search Index to Predict Dengue Outbreak in China. <i>Sci Rep</i>
15	2016; 6 :38040. doi:https://dx.doi.org/10.1038/srep38040
16	Lopez E de M, Chanok SJ, Picornell AC, <i>et al.</i> Whole genome prediction of bladder cancer risk with the
	Bayesian LASSO. Genet Epidemiol 2014;38:467-76. doi:https://dx.doi.org/10.1002/gepi.21809
17	Luo W, Nguyen T, Nichols M, <i>et al.</i> Is demography destiny? Application of machine learning techniques to
	accurately predict population health outcomes from a minimal demographic dataset. <i>PLoS One</i> 2015; 10 :e0125602. doi:https://dx.doi.org/10.1371/journal.pone.0125602
18	Luo Y, Li Z, Guo H, <i>et al.</i> Predicting congenital heart defects: A comparison of three data mining methods.
	PLoS One 2017;12:e0177811. doi:https://dx.doi.org/10.1371/journal.pone.0177811
19	Makar M, Ghassemi M, Cutler DM, et al. Short-term Mortality Prediction for Elderly Patients Using
	Medicare Claims Data. Int J Mach Learn Comput 2015;5:192–7.
20	doi:https://dx.doi.org/10.7763/IJMLC.2015.V5.506 Malovini A, Nuzzo A, Ferrazzi F, <i>et al.</i> Phenotype forecasting with SNPs data through gene-based Bayesian
20	networks. BMC Bioinformatics 2009;10. doi:10.1186/1471-2105-10-S2-S7
21	Marcus MW, Raji OY, Duffy SW, et al. Incorporating epistasis interaction of genetic susceptibility single
	nucleotide polymorphisms in a lung cancer risk prediction model. Int J Oncol 2016;49:361-70.
22	doi:https://dx.doi.org/10.3892/ijo.2016.3499
22	Mardones-Restat F, Jones G, Mardones-Santander F, <i>et al.</i> Growth failure prediction in chile. <i>Int J Epidemiol</i> 1989; 18 :S44–9. doi:10.1093/ije/18.Supplement_2.S44
23	Mathulamuthu SS, Asirvadam VS, Dass SC, <i>et al.</i> Predicting dengue cases by aggregation of climate
-	variable using manifold learning. In: 2017 IEEE International Conference on Signal and Image Processing
	Applications (ICSIPA), 12-14 Sept. 2017. Piscataway, NJ, USA: : IEEE 2017. 535-40.
104	doi:10.1109/ICSIPA.2017.8120670
24	McCoy Jr. TH, Castro VM, Roberson AM, et al. Improving Prediction of Suicide and Accidental Death
	After Discharge From General Hospitals With Natural Language Processing. <i>JAMA psychiatry</i> 2016; 73 :1064–71. doi:https://dx.doi.org/10.1001/jamapsychiatry.2016.2172
125	McKenzie DP, Toumbourou JW, Forbes AB, <i>et al.</i> Predicting future depression in adolescents using the
- 1	Short Mood and Feelings Questionnaire: A two-nation study. J Affect Disord 2011; 134 :151–9.
	doi:10.1016/j.jad.2011.05.022
26	Mendelek F, Caby I, Pelayo P, <i>et al.</i> The Application of a Classification-Tree Model for Predicting Low
	Back Pain Prevalence Among Hospital Staff. Arch Environ Occup Heal 2013;68:135–44. doi:10.1080/19338244.2012.663010
127	Miller PD, Barlas S, Brenneman SK, <i>et al.</i> An approach to identifying osteopenic women at increased short-
/	term risk of fracture. Arch Intern Med 2004; 164 :1113–
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Miotto R, Li L, Dudley JT. Deep Learning to Predict Patient Future Diseases from the Electronic Her Records. In: Advances in Information Retrieval. 38th European Conference on IR Research, ECIR 20 23 March 2016. Cham, Switzerland: : Springer International Publishing 2016. 768–74. doi:10.1007/5 319-30671-1_66 Mittag F, Römer M, Zell A. Influence of Feature Encoding and Choice of Classifier on Disease Risk Prediction in Genome-Wide Association Studies. <i>PLoS One</i> 2015;10. doi:http://dx.doi.org/10.1371/journal.pone.0135832 Mo H, Liu L, Li J, <i>et al.</i> Risk Factors Selection for SGA Prediction. 2016;vol.2:627–32. doi:10.1109/COMPSAC.2016.180 Modu B, Polovina N, Lan Y, <i>et al.</i> Towards a Predictive Analytics-Based Intelligent Malaria Outbre: Warning System. <i>Appl Sci-Basel</i> 2017;7. doi:10.3390/app7080836 Nalini C, Meera D. Breast cancer prediction system using Data mining methods. <i>Int J Pure Appl Mat</i> 2018;119:1090-11. https://www.scopus.com/inward/necord.uri/scid=2-s2.0- 85048797875&partnerID=40&md5=2f62acf2b7bc59f17af18d08fe43c210 NS - Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of E Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. <i>Geospat Health</i> 2006;1:115- 26. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=186866 Nuutinen M, Leskela RL, Suojalehto E, <i>et al.</i> Development and validation of classifiers and variable for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-0 0442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue Greasting in São Paulo city wi generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.ponc.0195065 Ózcan T, Tuysüz F, Healthcare expenditure prediction in Turkey by using gene
 Mittag F, Römer M, Zell A. Influence of Feature Encoding and Choice of Classifier on Disease Risk Prediction in Genome-Wide Association Studies. <i>PLoS One</i> 2015;10. doi:http://dx.doi.org/10.1371/journal.pone.0135832 Mo H, Liu L, Li J, <i>et al.</i> Risk Factors Selection for SGA Prediction. 2016;vol.2:627–32. doi:10.1109/COMPSAC.2016.180 Modu B, Polovina N, Lan Y, <i>et al.</i> Towards a Predictive Analytics-Based Intelligent Malaria Outbret Warning System. <i>Appl Sci-Basel</i> 2017;7. doi:10.3390/app7080836 Nalini C, Meera D. Breast cancer prediction system using Data mining methods. <i>Int J Pure Appl Mat</i> 2018;119:10901–11.https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048797875&partnerID=40&md5=2162acf2b7bc59117af18d08fe43c210 NS - Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of F Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. <i>Geospat Health</i> 2006;1:115–26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=186866 Nuutinen M, Leskela RL, Suojalehto E, <i>et al.</i> Development and validation of classifiers and variable for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-00442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wir generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic
 Prediction in Genome-Wide Association Studies. <i>PLoS One</i> 2015;10. doi:http://dx.doi.org/10.1371/journal.pone.0135832 Mo H, Liu L, Li J, <i>et al.</i> Risk Factors Selection for SGA Prediction. 2016;vol.2:627–32. doi:10.1109/COMPSAC.2016.180 Modu B, Polovina N, Lan Y, <i>et al.</i> Towards a Predictive Analytics-Based Intelligent Malaria Outbret Warning System. <i>Appl Sci-Basel</i> 2017;7. doi:10.3390/app7080836 Nalini C, Meera D. Breast cancer prediction system using Data mining methods. <i>Int J Pure Appl Mat</i> 2018;119:10901–11.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85048797875&partner1D=40&md5=2f62acf2b7bc59f17af18d08fe43c210 NS - Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of F Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. <i>Geospat Health</i> 2006;1:115– 26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=18686. Nuutinen M, Leskela RL, Suojalehto E, <i>et al.</i> Development and validation of classifiers and variable for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-0 0442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Ozcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dictary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington
 Mo H, Liu L, Li J, et al. Risk Factors Selection for SGA Prediction. 2016;vol.2:627–32. doi:10.1109/COMPSAC.2016.180 Modu B, Polovina N, Lan Y, et al. Towards a Predictive Analytics-Based Intelligent Malaria Outbrer Warning System. Appl Sci-Basel 2017;7. doi:10.3390/app7080836 Nalini C, Meera D. Breast cancer prediction system using Data mining methods. Int J Pure Appl Mat 2018;119:10901–11.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85048797875&partnerID=40&md5=2f62acf2b7bc59f17af18d08fe43c210 NS - Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of F Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. Geospat Health 2006;1:115– 26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=18686/ Nuutinen M, Leskela RL, Suojalehto E, et al. Development and validation of classifiers and variable for predicting nursing home admission. BMC Med Inform Decis Mak 2017;17. doi:10.1186/s12911-0 0442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLoS One 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forceasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, et al. A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. Br J Nutr 2018;120:1–9. doi:https://dx.doi.org/10.1017/078-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, et al. A comparison of statistical and machine-learning techniques in evaluating the association b
 doi:10.1109/COMPSAC.2016.180 Modu B, Polovina N, Lan Y, et al. Towards a Predictive Analytics-Based Intelligent Malaria Outbrea Warning System. Appl Sci-Basel 2017;7. doi:10.3390/app7080836 Nalini C, Meera D. Breast cancer prediction system using Data mining methods. Int J Pure Appl Mat 2018;119:10901–11.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85048797875&partnerID=40&md5=2f62acf2b7bc59f17af18d08fe43c210 NS - Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of E Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. Geospat Health 2006;1:115– 26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=18686/. Nuutinen M, Leskela RL, Suojalehto E, et al. Development and validation of classifiers and variable for predicting nursing home admission. BMC Med Inform Decis Mak 2017;17. doi:10.1186/s12911-0 0442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wir generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLoS One 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, et al. A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. Br J Nutr 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. Artif Intell Med 2001;23:277– 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11704/ Parsaeian M, Mohammad K, Mahmoudi M, et al. Comparison of
 Warning System. <i>Appl Sci-Basel</i> 2017;7. doi:10.3390/app7080836 Nalini C, Meera D. Breast cancer prediction system using Data mining methods. <i>Int J Pure Appl Mat</i> 2018;119:10901–11. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048797875&partnerID=40&md5=2f62acf2b7bc59f17af18d08fe43c210 NS - Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of E Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. <i>Geospat Health</i> 2006;1:115–26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=18686/ Nuutinen M, Leskela RL, Suojalehto E, <i>et al.</i> Development and validation of classifiers and variable for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-00442-4 Oswaldo Santos B, Reis Santan LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277–93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial Network in Low Back Pain Prediction: Second National Health Survey. <i>Irra J Pu</i>
 Nalini Č, Meera D. Breast cancer prediction system using Data mining methods. <i>Int J Pure Appl Mat</i> 2018;119:10901–11.https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048797875&partnerID=40&md5=2f62acf2b7bc59f17af18d08fe43c210 NS - Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of E Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. <i>Geospat Health</i> 2006;1:115–26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=18686/2006.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=18686/200442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277–93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logitic Regression and Artificial Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012; 41: 92.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logitic Regression and A
 2018;119:10901-11.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85048797875&partnerID=40&md5=2f62acf2b7bc59f17af18d08fe43c210 NS - Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of E Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. <i>Geospat Health</i> 2006;1:115- 26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=18686/ Nuutinen M, Leskela RL, Suojalehto E, <i>et al.</i> Development and validation of classifiers and variable for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-0 0442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159-90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1-9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277- 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41: 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of
 Nieto P, Malone JB, Bavia ME. Ecological niche modeling for visceral leishmaniasis in the state of E Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. <i>Geospat Health</i> 2006;1:115–26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=186862 Nuutinen M, Leskela RL, Suojalehto E, <i>et al.</i> Development and validation of classifiers and variable for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-00442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277–93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/jiph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. <i>Geospat Health</i> 2006;1:115–26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=186864 Nuutinen M, Leskela RL, Suojalehto E, <i>et al.</i> Development and validation of classifiers and variable for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-00442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277–93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:392.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 26.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=186867 Nuutinen M, Leskela RL, Suojalehto E, <i>et al.</i> Development and validation of classifiers and variable for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-0 0442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277–93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 for predicting nursing home admission. <i>BMC Med Inform Decis Mak</i> 2017;17. doi:10.1186/s12911-0.0442-4 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277–93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 Oswaldo Santos B, Reis Santana LM, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city wit generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277– 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-654555 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277– 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 average models. <i>PLoS One</i> 2018;13. doi:http://dx.doi.org/10.1371/journal.pone.0195065 Özcan T, Tüysüz F. Healthcare expenditure prediction in Turkey by using genetic algorithm based gr forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277– 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 forecasting models. Int. Ser. Oper. Res.Manag. Sci. 2018;262:159–90. doi:10.1007/978-3-319-65455 Panaretos D, Koloverou E, Dimopoulos AC, <i>et al.</i> A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277– 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277– 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 2012): the ATTICA study. <i>Br J Nutr</i> 2018;120:1–9. doi:https://dx.doi.org/10.1017/S0007114518001 Park J, Edington DW. A sequential neural network model for diabetes prediction. <i>Artif Intell Med</i> 2001;23:277– 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 2001;23:277– 93.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=117044 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 Parsaeian M, Mohammad K, Mahmoudi M, <i>et al.</i> Comparison of Logistic Regression and Artificial N Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
 Network in Low Back Pain Prediction: Second National Health Survey. <i>Iran J Public Heal</i> 2012;41:3 92.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469002/pdf/ijph-41-86.pdf NS - Pei Z, Liu J, Liu M, <i>et al.</i> Risk-Predicting Model for Incident of Essential Hypertension Based on
140 Pei Z, Liu J, Liu M, et al. Risk-Predicting Model for Incident of Essential Hypertension Based on
doi:https://dx.doi.org/10.1007/s12539-017-0271-2
Pekkala T, Hall A, Lotjonen J, <i>et al.</i> Development of a Late-Life Dementia Prediction Index with
Supervised Machine Learning in the Population-Based CAIDE Study. J Alzheimers Dis 2017;55:105
 67.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medl&NEWS=N&AN=278022 Peterson AT, Martinez-Campos C, Nakazawa Y, <i>et al.</i> Time-specific ecological niche modeling pred
spatial dynamics of vector insects and human dengue cases. Trans R Soc Trop Med Hyg 2005;99:647
55.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=15979(
143 Poole S, Grannis S, Shah NH. Predicting Emergency Department Visits. AMIA Jt Summits Transl Sci proceedings AMIA Jt Summits Transl Sci 2016;2016:438–
45.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=275706
144 Popescu M, Khalilia M. Improving Disease Prediction Using ICD-9 Ontological Features. In: 2011 I.
International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 27-30 June 2011. Piscataway, NJ, U IEEE 2011. 1805–9.NS -
145 Potash E, Brew J, Loewi A, et al. Predictive Modeling for Public Health: Preventing Childhood Lead
Poisoning. Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2015. doi:10.1145/2783258.2788629
146 Puddu PE, Menotti A. Artificial neural networks versus proportional hazards Cox models to predict 4
all-cause mortality in the Italian Rural Areas of the Seven Countries Study. BMC Med Res Methodol
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	2012; 12 . doi:10.1186/1471-2288-12-100
147	Puddu PE, Menotti A. Artificial neural network versus multiple logistic function to predict 25-year cord heart disease mortality in the Seven Countries Study. <i>Eur J Cardiovasc Prev Rehabil</i> 2009; 16 :583–91. doi:https://dx.doi.org/10.1097/HJR.0b013e32832d49e1
148	Qiang X, Kou Z. Prediction of interspecies transmission for avian influenza A virus based on a back- propagation neural network. <i>Math Comput Model</i> 2010; 52 :2060–5. doi:10.1016/j.mcm.2010.06.008
149	Rajliwall NS, Chetty G, Davey R. Chronic disease risk monitoring based on an innovative predictive modelling framework. Institute of Electrical and Electronics Engineers Inc. 2018. 1–8. doi:10.1109/SSCI.2017.8285257
150	Ram S, Zhang W, Williams M, <i>et al.</i> Predicting asthma-related emergency department visits using big <i>IEEE J Biomed Heal informatics</i> 2015; 19 :1216–23. doi:https://dx.doi.org/10.1109/JBHI.2015.2404829
151	Ramos R, Silva C, Moreira MWL, <i>et al.</i> Using predictive classifiers to prevent infant mortality in the Brazilian northeast. Institute of Electrical and Electronics Engineers Inc. 2017. 1–6. doi:10.1109/HealthCom.2017.8210811
152	Rasmy L, Zheng WJ, Xu H, <i>et al.</i> A study of generalizability of recurrent neural network-based predict models for heart failure onset risk using a large and heterogeneous EHR data set. <i>J Biomed Inform</i> 2018;84:11–6. doi:http://dx.doi.org/10.1016/j.jbi.2018.06.011
153	Ray EL, Sakrejda K, Lauer SA, <i>et al.</i> Infectious disease prediction with kernel conditional density estimation. <i>Stat Med</i> 2017; 36 :4908–29. doi:http://dx.doi.org/10.1002/sim.7488
154	Razavian N, Blecker S, Schmidt AM, et al. Population-Level Prediction of Type 2 Diabetes From Clair Data and Analysis of Risk Factors. Big data 2015;3:277–87. doi:https://dx.doi.org/10.1089/big.2015.00
155	Ren H, Li J, Yuan Z-A, <i>et al.</i> The development of a combined mathematical model to forecast the incide of hepatitis E in Shanghai, China. <i>BMC Infect Dis</i> 2013; 13 :421. doi:https://dx.doi.org/10.1186/1471-2313-421
156	Robson JO, Verstraete SG, Shiboski S, <i>et al.</i> A Risk Score for Childhood Obesity in an Urban Latino Cohort. <i>J Pediatr</i> 2016; 172 :29-34.e1. doi:10.1016/j.jpeds.2016.01.055
157	Rodriguez EA, Estrada FE, Torres WC, <i>et al.</i> Early prediction of severe maternal morbidity using mach learning techniques. Lect. Notes Comput. Sci. 2016;10022 LNAI:259–70. doi:10.1007/978-3-319-479: 2_22
158	Rose S. Mortality risk score prediction in an elderly population using machine learning. <i>Am J Epidemic</i> 2013; 177 :443–52. doi:https://dx.doi.org/10.1093/aje/kws241
159	Saberian F, Zamani A, Shoorehdeli MA, <i>et al.</i> Prediction of seasonal influenza epidemics in Tehran us: artificial neural networks. In: 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 20-22 J 2014. Piscataway, NJ, USA: : IEEE 2014. 1921–3. doi:10.1109/IranianCEE.2014.6999855
160	Sadilek A, Kautz H, Silenzio V. Modeling spread of disease from social interactions. 2012. 322– 9.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84871981836&partnerID=40&md5=ddc1c242ae203453a8846fa59de09240 NS -
161	Sadilek A, Kautz H, Silenzio V. Predicting disease transmission from geo-tagged micro-blog data. 201: 136–42.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84868268429&partnerID=40&md5=adeafe49ba93bc3c38d55525b18c1243 NS -
162	Safi N, Adimi F, Soebiyanto RP, <i>et al.</i> Toward malaria risk prediction in Afghanistan using remote sen International Society for Photogrammetry and Remote Sensing 2010. 339– 42.https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84924065446&partnerID=40&md5=db144d9b2dbec33ad5dc068d11cfed8d NS -
163	Sanchez AS, Iglesias-Rodriguez FJ, Fernandez PR, <i>et al.</i> Applying the K-nearest neighbor technique to classification of workers according to their risk of suffering musculoskeletal disorders. <i>Int J Ind Ergon</i> 2016; 52 :92–9. doi:10.1016/j.ergon.2015.09.012
164	Santos JC, Matos S. Analysing Twitter and web queries for flu trend prediction. <i>Theor Biol Med Model</i> 2014; 11 Suppl 1 :S6. doi:https://dx.doi.org/10.1186/1742-4682-11-S1-S6
165	Schalkwijk D, Graaf A, Tsivtsivadze E, <i>et al.</i> Lipoprotein metabolism indicators improve cardiovascula risk prediction. PLoS One. 2014; 9 :e92840. doi:10.1371/journal.pone.0092840
166	Shaoyan Z, Tjortjis C, Xiaojun Z, <i>et al.</i> Comparing data mining methods with logistic regression in childhood obesity prediction. <i>Inf Syst Front</i> 2009; 11 :449–60. doi:10.1007/s10796-009-9157-0
167	Shearer FM, Longbottom J, Browne AJ, <i>et al.</i> Existing and potential infection risk zones of yellow feve worldwide: a modelling analysis. <i>Lancet Glob Heal</i> 2018; 6 :e270–8. doi:https://dx.doi.org/10.1016/S22 109X(18)30024-X

168 Sheets L, Petroski GF, Zhuang Y, *et al.* Combining Contrast Mining with Logistic Regression To Predict Healthcare Utilization in a Managed Care Population. *Appl Clin Inform* 2017;8:430–46. doi:http://dx.doi.org/10.4338/ACI-2016-05-RA-0078

- 169 Shen F, Yuan J, Sun Z, et al. Risk Identification and Prediction of Coal Workers' Pneumoconiosis in Kailuan Colliery Group in China: A Historical Cohort Study. PLoS One 2013;8. doi:http://dx.doi.org/10.1371/journal.pone.0082181
- 170 Shi Y, Liu X, Kok S-Y, *et al.* Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore. *Environ Health Perspect* 2016;**124**:1369–75. doi:https://dx.doi.org/10.1289/ehp.1509981
- 171 Simon GE, Johnson E, Lawrence JM, *et al.* Predicting Suicide Attempts and Suicide Deaths Following Outpatient Visits Using Electronic Health Records. *Am J Psychiatry* 2018;:appiajp201817101167. doi:https://dx.doi.org/10.1176/appi.ajp.2018.17101167
- 172 Soebiyanto RP, Kiang R. Meteorological parameters as predictors for seasonal influenza. *Geocarto Int* 2014;**29**:39–47. doi:10.1080/10106049.2013.799717
- 173 Song J. SVR model for prediction of incidence influenza based on automated method. Adv. Mater. Res. 2014;**926–930**:1159–63. doi:10.4028/www.scientific.net/AMR.926-930.1159
- 174 Song X, Mitnitski A, MacKnight C, *et al.* Assessment of individual risk of death using self-report data: An artificial neural network compared with a frailty index. *J Am Geriatr Soc* 2004;**52**:1180–4. doi:http://dx.doi.org/10.1111/j.1532-5415.2004.52319.x
- Song X, Mitnitski A, Cox J, *et al.* Comparison of machine learning techniques with classical statistical models in predicting health outcomes. *Stud Health Technol Inform* 2004;**107**:736–40.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=15360910
- 176 Spencer KL, Olson LM, Schnetz-Boutaud N, *et al.* Using Genetic Variation and Environmental Risk Factor Data to Identify Individuals at High Risk for Age-Related Macular Degeneration. *PLoS One* 2011;**6**. doi:http://dx.doi.org/10.1371/journal.pone.0017784
- Sung Kean K, Tae Keun Y, Ein O, et al. Osteoporosis risk prediction using machine learning and conventional methods. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3-7 July 2013. Piscataway, NJ, USA: : IEEE 2013. 188–91. doi:10.1109/EMBC.2013.6609469
- 178 Sushmita S, Newman S, Marquardt J, *et al.* Population Cost Prediction on Public Healthcare Datasets. Proc. 5th Int. Conf. Digit. Heal. 2015. 2015. doi:10.1145/2750511.2750521
- 179 Tafaro L, Cicconetti P, Piccirillo G, *et al.* Is it possible to predict one-year survival in centenarians? A neural network study. *Gerontology* 2005;**51**:199–205 http://www.download.com/acidavala.com/acidav
- 205.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=15832048
 Tamaki Y, Nomura Y, Katsumura S, *et al.* Construction of a dental caries prediction model by data mining. *J Oral Sci* 2009;**51**:61–8. doi:http://dx.doi.org/10.2334/josnusd.51.61
- 181 Toschke AM, Beyerlein A, von Kries R. Children at high risk for overweight: a classification and regression trees analysis approach. *Obes Res* 2005;**13**:1270–
- 4.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=16076998
 Tran T, Luo W, Phung D, *et al.* Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments. *BMC Psychiatry* 2014;14. doi:10.1186/1471-244X-14-76
- van den Kommer TN, Comijs HC, Dik MG, *et al.* Development of classification models for early identification of persons at risk for persistent cognitive decline. *J Neurol* 2008;255:1486–94. doi:10.1007/s00415-008-0942-3
- 184 Van Voorhees BW, Paunesku D, Gollan J, et al. Predicting future risk of depressive episode in adolescents: the Chicago Adolescent Depression Risk Assessment (CADRA). Ann Fam Med 2008;6:503–11. doi:https://dx.doi.org/10.1370/afm.887
- 185 Vestergaard P, Kruse C, Goemaere S, *et al.* Predicting mortality and incident immobility in older Belgian men by characteristics related to sarcopenia and frailty. *Osteoporos Int* 2018;29:1437–45. doi:10.1007/s00198-018-4467-z
- 186 Volkova S, Ayton E, Porterfield K, *et al.* Forecasting influenza-like illness dynamics for military populations using neural networks and social media. *PLoS One* 2017;**12**. doi:10.1371/journal.pone.0188941
 - 187 Voss R, Cullen P, Schulte H, *et al.* Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Munster Study (PROCAM) using neural networks. *Int J Epidemiol* 2002;**31**:1253–
 (Altri the integrate integr

64.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12540731

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BM
BMJ O
$\overline{\mathbf{n}}$
en: fir
stp
ŭ
ublished as 1
lec
as
10
136
br
Ъ
pei
۲- 2-
020
6
378
860
0
D N
2
ğ
0 b c
9
2020
ö
0
Š
wnloa
wnloade
wnloaded fr
wnloaded from
10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from ht
published as 10.1136/bmjopen-2020-037860 on 27 October 2020. Downloaded from http:
wnloaded from http://br
wnloaded from http://bmjc
wnloaded from http://bmjope
wnloaded from http://bmjopen.b
wnloaded from http://bmjopen.bmj
wnloaded from http://bmjopen.bmj.co
wnloaded from http://bmjopen.bmj.com/
wnloaded from http://bmjopen.bmj.com/ on
wnloaded from http://bmjopen.bmj.com/ on Ap
o://bmjopen.bmj.com/ on April
wnloaded from http://bmjopen.bmj.com/ on April 24,
o://bmjopen.bmj.com/ on April 24, 20
o://bmjopen.bmj.com/ on April 24,
o://bmjopen.bmj.com/ on April 24, 20
o://bmjopen.bmj.com/ on April 24, 20
o://bmjopen.bmj.com/ on April 24, 20
o://bmjopen.bmj.com/ on April 24, 2024 by gu
o://bmjopen.bmj.com/ on April 24, 2024 by guest. Prot
o://bmjopen.bmj.com/ on April 24, 2024 by guest. Protect
b://bmjopen.bmj.com/ on April 24, 2024 by guest. Prote
b://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte
b://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte
b://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte
b://bmjopen.bmj.com/ on April 24, 2024 by guest. Protecte

188	Vovsha I, Rajan A, Salleb-Aouissi A, <i>et al.</i> Predicting preterm birth is not elusive: Machine learning pa
	the way to individual wellness. AI Access Foundation 2014. 82–
	9.https://www.scopus.com/inward/record.uri?eid=2-s2.0-
100	84904912879&partnerID=40&md5=02cbb14baeb811a357606bcc5e9d11ca NS -
189	Walton NA, Poynton MR, Gesteland PH, et al. Predicting the start week of respiratory syncytial virus
	outbreaks using real time weather variables. <i>BMC Med Informatics Decis Mak</i> 2010; 10 :68.
100	doi:10.1186/1472-6947-10-68
190	Walz Y, Wegmann M, Leutner B, <i>et al.</i> Use of an ecologically relevant modelling approach to improve
	remote sensing-based schistosomiasis risk profiling. <i>Geospat Health</i> 2015; 10 :271–9.
101	doi:10.4081/gh.2015.398
191	Wang AG, An N, Chen GL, <i>et al.</i> Predicting hypertension without measurement: A non-invasive, questionnaire-based approach. <i>Expert Syst Appl</i> 2015; 42 :7601–9. doi:10.1016/j.eswa.2015.06.012
192	Wang CJ, Li YQ, Wang L, <i>et al.</i> Development and Evaluation of a Simple and Effective Prediction
192	Approach for Identifying Those at High Risk of Dyslipidemia in Rural Adult Residents. <i>PLoS One</i>
102	2012;7:e43834. doi:http://dx.doi.org/10.1371/journal.pone.0043834
193	Wang JF, Liu X, Liao YL, et al. Prediction of Neural Tube Defect Using Support Vector Machine. Bio
104	Environ Sci 2010;23:167–72. doi:10.1016/S0895-3988(10)60048-7
194	Wang J, Jia P, Cuadros DF, et al. A Remote Sensing Data Based Artificial Neural Network Approach
	Predicting Climate-Sensitive Infectious Disease Outbreaks: A Case Study of Human Brucellosis. <i>Remo</i>
195	Sens 2017;9. doi:10.3390/rs9101018 Wang J, Zhou Y, Kou Z. One class support vector machine for predicting avian-to-human transmissior
195	avian influenza a virus. 2012. 184–8. doi:10.1109/CSAE.2012.6272935
196	Wang J, Deng Z. Modeling and Prediction of Oyster Norovirus Outbreaks along Gulf of Mexico Coast
190	Environ Heal Perspect
	2016; 124 :627.http://libaccess.mcmaster.ca/login?url=https://search.proquest.com/docview/180610435
	ountid=12347
197	Wang KW, Deng C, Li JP, <i>et al.</i> Hybrid methodology for tuberculosis incidence time-series forecastin
177	based on ARIMA and a NAR neural network. <i>Epidemiol Infect</i> 2017; 145 :1118–29.
	doi:https://dx.doi.org/10.1017/S0950268816003216
198	Wang Y, Gu J. Comparative study among three different artificial neural networks to infectious diarrho
	forecasting. Institute of Electrical and Electronics Engineers Inc. 2014. 40–6.
	doi:10.1109/BIBM.2014.6999373
199	Wang Y, Li J, Gu J, et al. Artificial neural networks for infectious diarrhea prediction using meteorolog
	factors in Shanghai (China). Appl Soft Comput J 2015;35:280-90. doi:10.1016/j.asoc.2015.05.047
200	Warren H, Casas J-P, Hingorani A, et al. Genetic prediction of quantitative lipid traits: comparing shri
	models to gene scores. Genet Epidemiol 2014;38:72-83. doi:https://dx.doi.org/10.1002/gepi.21777
201	Wei WD, Jiang JJ, Gao L, et al. A New Hybrid Model Using an Autoregressive Integrated Moving Av
	and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng County, Chin
	J Trop Med Hyg 2017; 97 :799–805. doi:10.4269/ajtmh.16-0648
202	Wei W, Visweswaran S, Cooper GF, et al. The application of naive Bayes model averaging to predict
	Alzheimer's disease from genome-wide data. J Am Med Informatics Assoc 2011;18:370-5.
	doi:10.1136/amiajnl-2011-000101
203	Wei W, Jiang J, Liang H, et al. Application of a Combined Model with Autoregressive Integrated Mov
	Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Inc.
	in Heng County, China. PLoS One 2016;11:e0156768. doi:https://dx.doi.org/10.1371/journal.pone.015
204	Wen L, Li-Zhong Z, Dong-Wang M, et al. Predicting the risk for colorectal cancer with personal
	characteristics and fecal immunochemical test. <i>Medicine (Baltimore)</i> 2018;97:1–7.
	doi:10.1097/MD.00000000010529
205	Woolery LK, Grzymala-Busse J. Machine learning for an expert system to predict preterm birth risk. J
	Med Inform Assoc 1994;1:439–
	46.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med3&NEWS=N&AN=7850569
206	Wu C, Kao SC, Shih CH, et al. Open data mining for Taiwan's dengue epidemic. Acta Trop 2018;183:
	doi:http://dx.doi.org/10.1016/j.actatropica.2018.03.017
207	Wu H, Cai Y, Wu Y, et al. Time series analysis of weekly influenza-like illness rate using a one-year p
	of factors in random forest regression. Biosci Trends 2017;11:292-6.
	doi:https://dx.doi.org/10.5582/bst.2017.01035

- Wu JL, Roy J, Stewart WF. Prediction Modeling Using EHR Data Challenges, Strategies, and a Comparison of Machine Learning Approaches. *Med Care* 2010;48:S106–13. doi:10.1097/MLR.0b013e3181de9e17
 Wu W, Guo J, An S, *et al.* Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China. *PLoS One* 2015;10. doi:http://dx.doi.org/10.1371/journal.pone.0135492
 Wu W, Yu Y, Yu H, *et al.* Comparison for Excitence of Excitence of the Syndrome in Jiangsu Province, China. *PLoS One* 2015;10.
 - 210 Wu Y, Yang Y, Nishiura H, *et al.* Deep Learning for Epidemiological Predictions. 41st Int. ACM SIGIR Conf. Res. & Dev. Inf. Retr. 2018. doi:10.1145/3209978.3210077
 - 211 Yan W, Xu Y, Yang X, *et al.* A hybrid model for short-term bacillary dysentery prediction in Yichang city, China. *Jpn J Infect Dis* 2010;**63**:264–
 - 70.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=20657066
 Yang C, Delcher C, Shenkman E, *et al.* Machine Learning Approaches for Predicting High Utilizers in Health Care. 2017;pt.II:382–95. doi:10.1007/978-3-319-56154-7 35
 - 213 Ye C, Fu T, Hao S, *et al.* Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning. *J Med Internet Res* 2018;**20**:e22. doi:https://dx.doi.org/10.2196/jmir.9268
 - 214 Yiheng Z, Jingyao Z, Jiebo L. Predicting Multiple Risky Behaviors via Multimedia Content. In: Social Informatics. 9th International Conference, SocInfo 2017, 13-15 Sept. 2017. Cham, Switzerland: : Springer International Publishing 2017. 65–73. doi:10.1007/978-3-319-67256-4_7
 - 215 Yoo TK, Kim SK, Kim DW, et al. Osteoporosis Risk Prediction for Bone Mineral Density Assessment of Postmenopausal Women Using Machine Learning. Yonsei Med J 2013;54:1321–30. doi:10.3349/ymj.2013.54.6.1321
 - 216 Yoon Y, Song J, Hong SH, et al. Analysis of multiple single nucleotide polymorphisms of candidate genes related to coronary heart disease susceptibility by using support vector machines. Clin Chem Lab Med 2003;41:529–34. doi:http://dx.doi.org/10.1515/CCLM.2003.080
 - 217 Young SD, Torrone EA, Urata J, *et al.* Using Search Engine Data as a Tool to Predict Syphilis. *Epidemiology* 2018;**29**:574–8. doi:10.1097/EDE.0000000000836
 - 218 Young SG, Tullis JA, Cothren J. A remote sensing and GIS-assisted landscape epidemiology approach to West Nile virus. *Appl Geogr* 2013;**45**:241–9. doi:10.1016/j.apgeog.2013.09.022
 - 219 Young SD, Zhang × Qingpeng. Using search engine big data for predicting new HIV diagnoses. *PLoS One* 2018;**13**. doi:http://dx.doi.org/10.1371/journal.pone.0199527
- 220 Yu L, Zhou L, Tan L, et al. Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhen, China. PLoS One 2014;9. doi:http://dx.doi.org/10.1371/journal.pone.0098241
- 221 Zeng Q, Huang HL, Pei X, *et al.* Modeling nonlinear relationship between crash frequency by severity and contributing factors by neural networks. *Anal Methods Accid Res* 2016;**10**:12–25. doi:10.1016/j.amar.2016.03.002
- 222 Zhang G, Huang S, Duan Q, *et al.* Application of a Hybrid Model for Predicting the Incidence of Tuberculosis in Hubei, China. *PLoS One* 2013;**8**. doi:http://dx.doi.org/10.1371/journal.pone.0080969
- 223 Zhang X, Liu Y, Yang M, *et al.* Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China. *PLoS One* 2013;**8**. doi:http://dx.doi.org/10.1371/journal.pone.0063116
- Zhang X, Zhang T, Young AA, *et al.* Applications and comparisons of four time series models in epidemiological surveillance data. *PLoS One* 2014;9:e88075. doi:https://dx.doi.org/10.1371/journal.pone.0088075
- 225 Zhao D, Weng C, Zhao D, *et al.* Combining PubMed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction. *J Biomed Inform* 2011;**44**:859–68. doi:10.1016/j.jbi.2011.05.004
- 226 Zhao Y, Xiong P, McCullough LE, *et al.* Comparison of Breast Cancer Risk Predictive Models and Screening Strategies for Chinese Women. *J Womens Heal* 2017;**26**:294–302. doi:10.1089/jwh.2015.5692
- Zhongwen G, Meng L. Design of H7N9 Avian Influenza Management and Forecasting System Based on GIS. In: 2015 IEEE 5th International Conference on Electronics, Information and Emergency Communication (ICEIEC), 14-16 May 2015. Piscataway, NJ, USA: : IEEE 2015. 376–9. doi:10.1109/ICEIEC.2015.7284562
- 228 Zhou LL, Xia J, Yu LJ, *et al.* Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans. *Int J Environ Res Public Heal* 2016;**13**. doi:10.3390/ijerph13040355
- 229 Zhou L, Yu L, Wang Y, et al. A hybrid model for predicting the prevalence of schistosomiasis in humans of

1	
2	
2	
5	
3 4 5 6 7 8 9	
5	
5	
6	
7	
,	
8	
9	
10	
11	
10	
12 13 14 15 16 17	
13	
1/	
14	
15	
16	
10	
17	
18 19	
10	
19	
20 21 22 23 24 25 26 27	
20	
21	
22	
~~	
23	
24	
25	
25	
26	
27	
27	
28	
20	
29	
30	
31	
51	
32	
22	
55	
34	
35	
55	
33 34 35 36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	

60

230	Qianjiang City, China. <i>PLoS One</i> 2014; 9 :e104875. doi:https://dx.doi.org/10.1371/journal.pone.0104875 Zhou Y, Glenn C, Luo J. Understanding and predicting multiple risky behaviors from social media. AI
230	Zhou 1, Gienn C, Luo J. Understanding and predicting multiple risky benaviors from social media. Al
	Access Foundation 2017. 600-5.https://www.scopus.com/inward/record.uri?eid=2-s2.0-
	85029534550&partnerID=40&md5=ae29c604e757e03f7561a191d4b296e1 NS -
231	Zhuo Z, Jiang L, Chee Keong K, et al. Learning in Glaucoma Genetic Risk Assessment. In: 2010 32nd
	Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010),
	31 Aug4 Sept. 2010. Piscataway, NJ, USA: : IEEE 2010. 6182-5. doi:10.1109/IEMBS.2010.5627757

to beet eview only

Appendix D: Narrative Synthesis of Aspects of Discussion

Rationale for applying machine learning approaches mainly centered around it being "state of the art" or better suited to modeling complex data than regression. Machine learning was thought to be "state of the art" due to improved accuracy and deeper insights. Discussions of complex modeling focused on capturing non-linear relationships, interactions, and high-dimensionality.

When authors discussed model limitations, frequent concerns were an inadequate sample size, too few features, questionable generalizability, and a lack of interpretability. Aspects of the data other than sample size and feature number, such as potential measurement error or selection bias, were infrequently mentioned.

When discussing model implementation, many articles stated that predictive accuracy would be improved; but they did not frequently discuss how this could be translated to specific health-related policies or actions. Additionally, they rarely mentioned organizations and knowledge users that would be best suited to leverage the model.

or beer to view only