

Co-existence of wheezing and constipation in childhood: explanations from an epidemiological study"

Journal:	BMJ Open
Manuscript ID:	bmjopen-2011-000237
Article Type:	Research
Date Submitted by the Author:	27-Jun-2011
Complete List of Authors:	Kiefte-de Jong, Jessica; Erasmus Medical Center, Pediatrics Lebon, Ankie; Erasmus Medical Center, Pediatrics Jaddoe, Vincent; Erasmus Medical Center, Pediatrics Hofman, Albert; Erasmus Medical Center, Epidemiology de Jongste, Johan; Erasmus Medical Center, Pediatrics Moll, Henriette; Erasmus Medical Center, Pediatrics
Primary Subject Heading :	Epidemiology
Keywords:	EPIDEMIOLOGY, GASTROENTEROLOGY, Community child health < PAEDIATRICS

1		
2 3		On eviatorian of when size and constinution in childhood.
4	1	Co-existence of wheezing and constipation in childhood:
5 6 7	2	explanations from an epidemiological study
8 9 10	3	
10 11 12	4	Kiefte-de Jong JC, MSc ^{a,b} , Lebon A, PhD ^{a,b} , Jaddoe VWV, MD, PhD ^{a, b, c} , Hofman A, MD, PhD ^c , de
13 14	5	Jongste JC, MD, PhD ^d , Moll HA ^b
15 16	6	
17 18	7	^a The Generation R Study Group, ^b Department of Paediatrics, ^c Department of Epidemiology,
19 20	8	^d Department of Paediatrics/Respiratory Medicine, Erasmus Medical Centre, Rotterdam The
21 22	9	Netherlands.
23 24	10	
25 26	11	
27 28	12	Keywords: functional constipation, wheezing, eczema
29 30	13	
31 32	14	Address correspondence to:
33 34	15	Prof. Henriëtte A. Moll, MD PhD, Department of Paediatrics, Erasmus Medical Centre, P.O. Box 2060,
35 36	16	3000 CB Rotterdam, the Netherlands, E-mail: h.a.moll@erasmusmc.nl
37 38	17	
39 40	18	Financial disclosure and conflict of interest: none
41 42	19	
43 44	20	Abbreviations: IBS, irritable bowel syndrome; AD, atopic dermatitis; ISAAC, international study of
45 46	21	asthma and allergies in childhood; BMI, body mass index; NOSIK, nijmeegse ouderlijke stress
47 48	22	index—kort (parenting stress index—short form); OR, odds ratio; CI, confidence interval; HPA,
49 50	23	hypothalamic pituitary-adrenal
51 52	24	
53 54	25	
55 56	26	
57 58	27	Word count abstract: 240
59 60	28	Word count manuscript: 3022
	29	

¢

2 3	30	CONTRIBUTOR'S STATEMENT:
4 5	31	
6 7	32	Jessica Kiefte-de Jong has analyzed the data, written the first draft of the paper, had full access to all
8 9	33	the data in the study and takes responsibility for the integrity of the data and the accuracy of the data
10 11	34	analysis. She fulfils the criteria as described by the ICMJE as follows:
12 13	35	1. Substantial contributions to conception and design, acquisition of data, and analysis and
14 15	36	interpretation of the data.
16 17	37	2. Drafting the article .
18 19	38	3. Final approval of the version to be published.
20 21	39	
22 23	40	Ankie Lebon has participated in the data analysis and had access to all the data in the study. She
24 25	41	fulfils the criteria as described by the ICMJE as follows:
26 27 28 29 30 31 32 33 34	42	1. Substantial contributions to conception and design, acquisition of data, analysis and interpretation
	43	of the data.
	44	2. Critical revision of the paper.
	45	3. Final approval of the version to be published.
35	46	
36 37 28	47	Johan de Jongste, Vincent Jaddoe, and Albert Hofman fulfil the criteria as described by the ICMJE as
38 39	48	follows:
40 41	49	1. Substantial contribution to conception and design, acquisition of data, and interpretation of the
42 43	50	data.
44 45	51	2. Critical revision of the paper.
46 47	52	3. Final approval of the version to be published.
48 49	53	
50 51	54	Henriëtte Moll supervised the study. She fulfils the criteria as described by the ICMJE as follows:
52 53	55	1. Substantial contributions to conception and design, acquisition of data, and analysis and
54 55	56	interpretation of the data.
56 57	57	2. Critical revisions of the paper.
58 59 60	58	3. Final approval of the version to be published

3
4
5
6
7
7 8 9 10 11
0
9
10
11
12
12 13 14 15 16 17 18
14
15
16
10
17
18
19
19 20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
22
23
24
25
26
27
28
20
29
30
31
32
33
34
25
30
36
37
38
39
40
41
42
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
57
58
59

60

59 ABSTRACT

60

12

61 **Objective:** To assess whether wheezing and atopic dermatitis were associated with constipation in 62 pre-school children and to what extent shared risk-factors contribute to this relationship.

Methods: A population-based sample of 4651 pre-school children was used. At the age of 24, 36 and 48 months, parental report of functional constipation was available according to the ROME II criteria and data on atopic dermatitis and wheezing was available using age-adapted questionnaires from the International Study of Asthma and Allergies in Childhood. Stepwise multivariate analyses were performed to assess whether body mass index, inflection exposure, food allergy and infant nutrition, and parental stress explained the association between wheezing, atopic dermatitis and constipation.

Results: Out of 4651 children, 12-17% had functional constipation between 24 and 48 months. Symptoms of wheezing and atopic dermatitis decreased from 20% and 30% at 24 months to 10% and 18% at 48 months. Between the age of 24 and 48 months, wheezing symptoms were significantly associated with functional constipation (aOR: 1.16; 95%CI: 1.01, 1.33) but these results were mainly explained by the child's infections exposure (aOR: 1.10; 95%CI: 0.96 – 1.25). No significant association was found between symptoms of atopic dermatitis and functional constipation (aOR: 1.04; 95%CI: 0.91, 1.18).

76 Conclusions: These findings suggest that functional constipation frequently co-exists with wheezing 77 in childhood but is mainly explained by the child's infection exposure. Therefore, an independent 78 association between respiratory symptoms and functional bowel disorders as suggested in previous 79 studies may be discussed.

) ARTICLE SUMMARY

Article focus

83	•	Both constipation, wheezing and atopic dermatitis are common symptoms in the paediatric
84		population.
85	•	Functional bowel disorders is linked with asthma and atopy in previous studies in adults but in
86		children these results are equivocal.
87	•	Functional bowel disorders, asthma and atopic disease may share common risk-factors which
88		include overweight, stress, infection exposure, food allergy and nutritional practice during
89		infancy. However, most studies did not take into account for these potential confounders.
90		
91	Key m	essages
92	•	Wheezing but not atopic dermatitis is associated with functional constipation in pre-school
93		children but this is mainly explained by a history of infections of the child whereas other
94		potential shared-risk factors as BMI, food allergy, timing of introduction of food allergens,
95		breast-feeding duration and parental stress do not have a major role in explaining the
96		association between wheezing and constipation.
97	•	This study suggests that the association between wheezing and functional constipation is not
98		independent in childhood. Further research is needed to explore whether this result also apply
99		to the outcome of asthma.
100		
101	Streng	ıths
102	•	Population-based study population. This study includes a large study population who were not
103		selected according to medical care and, therefore, a high external validity applies to this
104		study.
105	•	This study addresses a topical area that has not had sufficient study and can have a
106		contribution on the discussion how asthma or atopy may be associated with functional bowel
107		disorders. This study took multiple shared risk-factors of wheezing, atopic dermatitis and
108		constipation into account that sheds light on the suggested association in literature.
109		

Limitations

Symptoms were available only from parental-reported questionnaires. This could have led to misclassification of wheezing, atopic dermatitis and constipation since doctor diagnosis provides a more accurate diagnosis.

Early wheezing in infancy is not a sufficient predictor of childhood asthma. Hence, our study precludes conclusions with respect to functional bowel disorders and its link with asthma.

- <text><text> No data was available regarding parental concerns of the child's health status. Bias may occur when parents with high concerns are more likely to report symptoms in their child as wheezing, constipation and infectious disease.
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

119 INTRODUCTION

Functional bowel disease accounts for the majority of gastrointestinal symptoms worldwide (1). The prevalence of atopic diseases such as asthma and atopic dermatitis is also increasing in Western Countries(2). Several studies linked asthma and atopy in adults with the irritable bowel syndrome (IBS)(3-6), but in children different results have been described(7-8).

Some pathophysiological overlaps may explain the correlation between IBS and atopy. For example, atopic disease, which affects approximately 30% of the population, include food allergies that may cause various organ dysfunction implying that the link between IBS and atopy may be explained by food allergy(9). Likewise, a shared risk-factor for both asthma and functional bowel disorders is obesity. As reported in several studies, asthma is highly prevalent in children with obesity(10) and obesity has been found to be more common in subjects with functional constipation(11).

Since both atopy and functional bowel disorders are particularly prevalent in developed countries, a role for the 'hygiene hypothesis' in these two disorders is also proposed. The hygiene hypotheses concedes that current hygiene practices lead to reduced or altered exposure of bacteria and other micro-organisms that may result in an imbalance of the immune system and microflora early in life (12). Early microbial colonization of the infant's gastro-intestinal tract might reduce the risk of atopic disorders and altered intestinal flora has been an area of interest for years in both IBS and atopy (13-14). Finally, studies have addressed the role of stress in the aetiology both of atopic disorders(15) and functional bowel disorders(16). Prenatal and childhood stress have been suggested to disturb the regulation of immune and autonomic functions(17) that makes children vulnerable to develop both atopy and altered bowel habits.

To better understand the mechanisms playing a role in these disorders, it is warranted to examine which common risk-factors explain the association between atopy and functional bowel disorders as described in the literature. In addition, most of the exposures associated with disease start early in life and the majority of IBS subjects experience symptoms of constipation that are already present during childhood(18). The aim of our study, therefore, is to examine whether wheezing and atopic dermatitis are associated with functional constipation in childhood. A second aim is to assess if and to what extent cow's milk allergy, overweight, indices of infection exposure and parental stress contribute to the association between wheezing, atopic dermatitis and functional constipation in young children.

PATIENTS AND METHODS

Participants and study design

This study was embedded in the Generation R study, a population-based prospective cohort study from foetal life until young adulthood and has been described in detail previously (19-20). In total, 7893 mothers with a delivery date between April 2002 and January 2006 provided consent for follow-up. The study was approved by the Medical Ethical Committee of the Erasmus Medical Centre, Rotterdam, The Netherlands.

Functional constipation

At the age of 24, 36 and 48 months, stool pattern of the child was assessed by using a questionnaire (response rates: 70%, 64% and 63% respectively). Accordingly, the outcome of functional constipation was defined in this study if at least one of the following symptoms of ROME II(21)were reported: 1) defecation frequency <3 times a week for at least 2 weeks or 2) predominantly hard faeces for the majority of stools for at least 2 weeks.

To avoid the influence of metabolic disorders and clustering, children were excluded in the analyses in case of the following: 1) twinborn (n=238), 2) siblings within the Generation R cohort (n=343) 3) presence of a congenital heart condition (n = 47), 4) history of anaemia (n = 58) or 5) growth retardation defined as height for age < -2SD based on the Netherlands growth curves (n = 163)(22).

Wheezing and atopic dermatitis

Information regarding atopic dermatitis and wheezing was obtained using core questions from an age-adapted version of the validated "International Study of Asthma and Allergies in Childhood" (ISAAC) and doctor-attendance of eczema or episodes of itchy rash at the age of 24, 36 and 48 months(23). These outcomes were defined dichotomously: presence or absence of eczema and presence or absence of wheezing at 24, 36 and 48 months of age.

Covariates

Weight and height at 24, 36 and 48 months were available from the child health centres. Body Mass index (BMI) was then calculated and overweight was defined according to age- and gender-adapted BMI-thresholds for young children from the International Obesity Task Force(24).

At the age of 6 and 12 months, questionnaire data were available about a history of doctor-attended food allergy in the first year of life and the introduction of food allergens and breast-feeding duration that we described in detail in a previous study (25).

At the age of 24, 36 and 48 months, questionnaire data was available for the following indicators which were used as proxy for infection exposure of the child: attendance of daycare and doctor-attendance for fever (> 38 °C) accompanied with symptoms of cough, runny nose, earache, diarrhoea or vomiting in the past year.

The level of parental stress was assessed at the child's age of 24 months by using the Nijmeegse Ouderlijke Stress Index-Kort (NOSIK(26)), the Dutch version of the Parenting Stress Index-Short Form that has been shown to be reliable and valid(27). The NOSIK comprises two domains consisting of 25 items; parenting stress due to parent factors and parenting stress due to child factors. Only the items on the parent domain were available in this study (n=15). Items were assessed on a 4-point scale and the scores were summed and divided by the number of fulfilled items. Higher scores indicate greater levels of parental stress. In addition, these scores were demonstrated to be an important predictor of somatic complaints in this birth cohort (28).

Other variables possibly related to functional constipation, wheezing and atopic dermatitis were obtained from prenatal and postnatal questionnaires filled in by the parents (ethnicity, mother's educational level, maternal and paternal history of atopic dermatitis, asthma, hay fever, allergy to house dust and prenatal smoking). From obstetric records assessed in mid-wife practices and from hospital registries data on gender, birth weight and gestational age were available as described previously(19-20).

Statistical analysis

Firstly, univariate analyses were performed by using Chi-square tests for categorical variables and the Mann-Whitney U test for continuous variables. Secondly, hierarchical logistic regression analyses (29) by using generalized estimating equations (GEE) were performed. GEE analysis assesses the

association by correction for the within subject's dependence as a result of the repeated observations
on wheezing, eczema and functional constipation (30). Since the within-subject correlation coefficient
for wheezing, atopic dermatitis and functional constipation at the three time points were comparable
(r=0.3-0.4), an exchangeable working correlation structure was used in the GEE analyses.

Generalized Estimation equations were performed with functional constipation compared to no constipation as dependent variables and the presence of any wheezing or atopic dermatitis in the past year as independent variable. In addition, model 1 was adjusted for time, and major child characteristics as gender, mother's educational level, ethnicity (western versus non-western), birth weight, gestational age, maternal smoking and family history of atopic disorders (ie. asthma or atopic dermatitis). Subsequently to assess whether the association between functional constipation and atopy was dependent on BMI, infection exposure, food allergy and infant nutrition, or parental stress; the following variables were added separately to model 1: BMI (model 2), daycare attendance and history of respiratory or gastrointestinal infections in the previous year (model 3), history of food allergy, breast-feeding duration, and introduction of food allergens \leq 6 months (model 4) and NOSIK score (model 5). To test whether the associations between wheezing, atopic dermatitis and functional constipation were different at the age of 24, 36 and 48 months, effect modification by time was evaluated by adding the product-term of wheezing/atopic dermatitis and time (e.g. wheezing*time) as independent variable to the crude GEE model.

Non-response analysis at 48 months showed that non-responders slightly reported more often wheezing at 36 months (17.1% vs. 11.9%, P<0.01), functional constipation at 24 and 36 months (18% vs. 11.3% and 23.2 and 16.2% respectively, P<0.01), had more often mothers with a lower social economic background (16.6% vs. 5.8% P<0.01) and a non-western ethnicity (54.5% vs. 25.2%, P<0.01) and smoked more often during pregnancy (77.4% vs. 65.5% P<0.01). To reduce potential bias associated with missing data, missing values (approximately 0.1% - 40%) were multiple imputed (n=5 imputed datasets). The multiple imputation was based on the correlation between each variable with missing values with the other subject characteristics as described previously by Sterne et al(31). Data were analyzed in each data set separately to obtain desired effect sizes and standard errors. Finally, the results of the 5 imputed analyses were pooled and reported in this paper as odds ratios (OR) and 95% confidence interval (95%CI). A P-value <0.05 was considered as statistically

to beet terrier only significant. Statistical analyses were carried out by using SPSS 17.0 for Windows (SPSS Inc, Chicago, IL).

BMJ Open

3 4	240	RESULTS
4		

Characteristics of the study population are presented in table 1. Prevalence of functional constipation remained relatively stable between 12% and 14% at the age of 24, 36 and 48 months. The highest prevalence of wheezing symptoms during childhood was at the age of 24 months (20%) and this decreased to a prevalence of 12% at 36 and 48 months. The prevalence of atopic dermatitis decreased from 30% at the age of 24 months to 20% and 18% at the age of 36 and 48 months respectively. Out of 4651 children, 3-4% had persistent symptoms of functional constipation, atopic dermatitis or wheezing at all time points (i.e. at 24, 36 and 48 months).

At the age of 48 months, functional constipation was more prevalent in girls (16% vs 13%, P<0.01), children of non-Western origin (23% vs. 12%, P<0.01), children with a history of respiratory tract and gastrointestinal infections in the previous year (12% vs 20% and 14% vs 18%, P<0.01) and in children whose mothers who smoked during pregnancy (14% vs 16%, P<0.01). Children with functional constipation at 48 months had a lower birth weight (3373 vs 3488 grams, P<0.01) and had a higher parental stress score (0.37 vs 0.29, P<0.01) than children with no functional constipation.

The distribution of wheezing and atopic dermatitis in children with and without functional constipation between 24 and 48 months is shown in figure 1. Wheezing symptoms were significantly associated with symptoms of functional constipation in childhood but no significant association was found between atopic dermatitis and functional constipation after adjustment for gender, birth weight, gestational age, maternal smoking, maternal educational background, ethnicity and parental history of atopy (Table 2; model 1). The greatest alteration in the effect estimate in the analyses of wheezing and functional constipation was found after adjustment for infection exposure of the child, which mainly explained the association between wheezing and constipation (Table 2; model 3). Adjustment in addition to model 1 for other potential shared risk-factors did not explain the association between wheezing and functional constipation (Table 2).

No effect modification by the different time points (ie. 24, 36 an 48 months) was found for the analyses between wheezing, atopic dermatitis and functional constipation (P=0.57 for statistical interaction between wheezing and time and P=0.43 for statistical interaction between eczema and time).

DISCUSSION

This study shows that wheezing symptoms and functional constipation frequently coexist in pre-school children but this relationship was markedly influenced by infection exposure of the child. Other potential shared-risk factors as BMI, history of food allergy, infant nutrition, and parental stress did not explain the association between wheezing and constipation.

Several studies in adults showed a link between IBS and asthma (3-6), but results in children are inconsistent so far. In addition, Caffarelli et al. demonstrated no difference in constipation in allergic children compared to controls(8). Also, Simeone et al. showed no association between constipation and atopy in young children(7) whereas a small increase in IBS prevalence over time was observed in subjects with asthma aged 5-65 years(5).

The strength of our study lays in the large study population who were not selected according to medical care, thereby diminishing selection bias. Earlier studies have been carried out in selected populations of patients seeking medical care. This could lead to selection towards for instance children at high risk for atopic constitution that may have a higher proportion of IBS than in the general population. Also, most studies did not take account for potential shared risk-factors that may improperly suggest that the relationship is independent. The broad range of available data of potential confounders in our study elucidates the contribution of shared risk-factors in the association between atopy and functional bowel disorders.

Our study confirmed that the association between wheezing and functional constipation was influenced by infection exposure. Respiratory infections are risk-factors for asthma(32) but gastro-intestinal infections are also associated with IBS(33). It is, therefore, more likely that infection exposure of the child increases the risk of wheezing and constipation rather than that it acts protectively as suggested by other studies. In addition, from animal studies it is known that early exposure to micro-organisms is required to have a proper maturation of the immune system in and outside the gut that may have a protective effect on allergic disease (34). Also, it is speculated that childhood exposure to infection is responsible for low prevalence of IBS in developing countries and that early colonization may enable the intestinal epithelium to respond efficiently to antigenic challenge that may result in a pronounced amelioration of gastro-intestinal symptoms after

infections(35). Further in-depth research exploring the process of colonization may elucidate thecontribution of infections in the association between wheezing and constipation.

Underlying mechanisms as altered contractility of smooth muscles cells and dysfunction of the autonomic nervous system that can be triggered by emotional stress is suggested to play a common role in asthma and bowel disorders (15). Since parental stress was demonstrated to be an important predictor of somatic symptoms in children in a previous study (28) we expected a certain explanatory effect of parental stress on the association between wheezing and constipation. However, adjustment for parental stress only slightly weakened the association between wheezing and functional constipation. Nevertheless, it may well be that stress operates at the spectrum of infection exposure of the child since prenatal and postnatal stress can be associated with an increased risk of infectious disease in the offspring (36-37) which itself was thus of major importance in explaining the association between wheezing and constipation.

To appreciate the results some limitations of this study should be considered. We had data on functional constipation by the use of parental derived questionnaires and no additional information from medical records or physical examinations was available. Therefore, some subjects may be misclassified concerning the diagnosis of functional constipation. However, only if this misclassification is also related to wheezing, this misclassification has overestimated our results.

It has been suggested that food allergy in early infancy may be a risk factor for wheezing attacks(38). The limited clarifying effect of food allergy on our study results might be explained by the fact that not all food-sensitized children have manifest food allergy(39). Consequently, sensitization to food allergens, as demonstrated by tests of specific serum IgE, might be a better explanation rather than report of food allergy or timing of introduction of food allergens in the association between atopic disorders and functional constipation. We did not have other evidence of food allergy in the first year available than the parental report of doctor-diagnosed food allergy. It is known that self-report of food allergy overestimates the true prevalence of food allergy. On the other hand, we expect that this information bias may have led to over-adjusted odds ratios and thereby an underestimation of the final results because parents who believe that their child had food allergy may also have reported symptoms related to atopic diseases or constipation more frequently. Nevertheless, bias may occur when parents with high concerns are more likely to report symptoms in their child as wheezing, constipation and infectious disease. Adjustment for NOSIK score may slightly reduce this effect.

However, it only consisted of information on parental stress due to parent factors but not stress due tothe child's health status.

At last, previous studies on functional bowel disorders focused on the link with asthma. Early wheezing in infancy is not a major predictor of childhood asthma(32). Hence, our results do not allow for conclusions regarding functional constipation and childhood asthma. Although we took several shared-risk factors into account when analyzing the association between wheezing and constipation, other determinants may also explain the association between asthma and functional bowel disorders in other studies. Recently it has been demonstrated that consumption of fruit and vegetables is associated with a lower prevalence of asthma (40) but also with constipation in children(41). Another symptom that may overlap wheezing with constipation is gastro-oesophageal reflux disease. Gastro-oesophageal reflux disease is a relatively common disorder in infants and children which has been demonstrated to be associated with respiratory symptoms(42) and functional bowel disorders(43). Therefore, explaining the association between other respiratory symptoms and asthma, and functional constipation in both children and adults needs further clarification.

31 342

343 Conclusion

In a population-based setting, functional constipation and wheezing symptoms may coexist in pre-school children. However, this association is not independent and can be mainly explained by infection exposure of the child. Other potential shared risk-factors as BMI, food allergy, infant nutrition and parental stress do not explain this association. Further research should elucidate whether colonization plays a role in the explanatory effect of infectious disease in the association between wheezing and constipation and if these results do also apply to the adult population and to secondary care patients.

1		
2 3 4	351	ACKNOWLEDGMENTS
4 5 6	352	The Generation R Study is conducted by the Erasmus Medical Centre in close collaboration with the
7 8	353	School of Law and Faculty of Social Sciences of the Erasmus University Rotterdam, the Municipal
9 10	354	Health Service-Rotterdam Metropolitan Area, the Rotterdam Homecare Foundation, and the Stichting
10 11 12	355	Trombosedienst & Artsenlaboratorium Rijnmond. We acknowledge the contributions of children and
13 14	356	parents, general practitioners, hospitals and midwives in Rotterdam
15 16	357	This phase of the Generation R Study was supported by the Erasmus Medical Centre, the Erasmus
17 18	358	University Rotterdam, the Netherlands Organization for Health Research and Development (Zon Mw)
19 20	359	and Europe Container terminals B.V.
21 22	360	
23 24	361	
25 26	362	
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		

REFERENCES 1. Rasquin A, Di Lorenzo C, Forbes D, Guiraldes E, Hyams JS, Staiano A, et al. Childhood functional gastrointestinal disorders: child/adolescent. Gastroenterology. 2006 Apr;130(5):1527-37. 2. Matricardi PM. Prevalence of atopy and asthma in eastern versus western Europe: why the difference? Ann Allergy Asthma Immunol. 2001 Dec;87(6 Suppl 3):24-7. 3. Roussos A, Koursarakos P, Patsopoulos D, Gerogianni I, Philippou N. Increased prevalence of irritable bowel syndrome in patients with bronchial asthma. Respir Med. 2003 Jan;97(1):75-9. 4. Yazar A, Atis S, Konca K, Pata C, Akbay E, Calikoglu M, et al. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. The American journal of gastroenterology. 2001 May;96(5):1511-6. 5. Cole JA, Rothman KJ, Cabral HJ, Zhang Y, Farraye FA. Incidence of IBS in a cohort of people with asthma. Digestive diseases and sciences. 2007 Feb;52(2):329-35. 6. Powell N, Huntley B, Beech T, Knight W, Knight H, Corrigan CJ. Increased prevalence of gastrointestinal symptoms in patients with allergic disease. Postgrad Med J. 2007 Mar;83(977):182-6. 7. Simeone D, Miele E, Boccia G, Marino A, Troncone R, Staiano A. Prevalence of atopy in children with chronic constipation. Archives of disease in childhood. 2008 Dec;93(12):1044-7. 8. Caffarelli C, Coscia A, Baldi F, Borghi A, Capra L, Cazzato S, et al. Characterization of irritable bowel syndrome and constipation in children with allergic diseases. European journal of pediatrics. 2007 Dec;166(12):1245-52. 9. Tobin MC, Keshavazian A, Farhardi A. Atopic irritable bowel syndrome: same old hat or a new entity? Expert Rev Gastroenterol Hepatol. 2008 Aug;2(4):457-9. Scholtens S, Wijga AH, Seidell JC, Brunekreef B, de Jongste JC, Gehring U, et al. 10. Overweight and changes in weight status during childhood in relation to asthma symptoms at 8 years of age. J Allergy Clin Immunol. 2009 Jun;123(6):1312-8 e2. 11. Pashankar DS, Loening-Baucke V. Increased prevalence of obesity in children with functional constipation evaluated in an academic medical center. Pediatrics. 2005 Sep;116(3):e377-80. 12. Garn H, Renz H. Epidemiological and immunological evidence for the hygiene hypothesis. Immunobiology. 2007;212(6):441-52. 13. Chmielewska A, Szajewska H. Systematic review of randomised controlled trials: probiotics for functional constipation. World J Gastroenterol Jan 2010;16(1):69-75.

Page 17 of 24

1 2		
2 3 4	394	14. Osborn DA, Sinn JK. Probiotics in infants for prevention of allergic disease and food
5 6	395	hypersensitivity. Cochrane Database Syst Rev. 2007(4):CD006475.
7 8	396	15. Wright RJ. Stress and atopic disorders. J Allergy Clin Immunol. 2005 Dec;116(6):1301-6.
9 10	397	16. Jarrett M, Heitkemper M, Cain KC, Tuftin M, Walker EA, Bond EF, et al. The relationship
10 11 12	398	between psychological distress and gastrointestinal symptoms in women with irritable bowel
13 14	399	syndrome. Nurs Res. 1998 May-Jun;47(3):154-61.
15 16	400	17. Essex MJ, Klein MH, Cho E, Kalin NH. Maternal stress beginning in infancy may sensitize
17 18	401	children to later stress exposure: effects on cortisol and behavior. Biol Psychiatry. 2002 Oct
19 20	402	15;52(8):776-84.
20 21 22	403	18. Khan S, Campo J, Bridge JA, Chiappetta LC, Wald A, di Lorenzo C. Long-term outcome of
23 24	404	functional childhood constipation. Digestive diseases and sciences. 2007 Jan;52(1):64-9.
24 25 26	405	19. Jaddoe VW, van Duijn CM, van der Heijden AJ, Mackenbach JP, Moll HA, Steegers EA, et al.
27	406	The Generation R Study: design and cohort update until the age of 4 years. European journal of
28 29 20	407	epidemiology. 2008;23(12):801-11.
30 31 22	408	20. Jaddoe VW, van Duijn CM, van der Heijden AJ, Mackenbach JP, Moll HA, Steegers EA, et al.
32 33	409	The Generation R Study: design and cohort update 2010. European journal of epidemiology. 2010
34 35	410	Nov;25(11):823-41.
36 37	411	21. Rasquin-Weber A, Hyman PE, Cucchiara S, Fleisher DR, Hyams JS, Milla PJ, et al.
38 39	412	Childhood functional gastrointestinal disorders. Gut. 1999 Sep;45 Suppl 2:II60-8.
40 41	413	22. Fredriks AM, van Buuren S, Burgmeijer RJ, Meulmeester JF, Beuker RJ, Brugman E, et al.
42 43	414	Continuing positive secular growth change in The Netherlands 1955-1997. Pediatric research. 2000
44 45	415	Mar;47(3):316-23.
46 47	416	23. Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, et al. International Study of
48 49	417	Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur Respir J. 1995 Mar;8(3):483-
50 51	418	91.
52 53	419	24. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child
54 55	420	overweight and obesity worldwide: international survey. BMJ (Clinical research ed. 2000 May
56 57 58 59 60	421	6;320(7244):1240-3.

1 2		
3 4	422	25. Kiefte-de Jong JC, Escher JC, Arends LR, Jaddoe VW, Hofman A, Raat H, et al. Infant
5 6	423	nutritional factors and functional constipation in childhood: the Generation R study. The American
7 8	424	journal of gastroenterology. 2010 Apr;105(4):940-5.
9 10	425	26. De Brock AJLL, Vermulst AA, Gerris JRM, Abidin R. Nijmeegse Ouderlijke Stress Index
10 11 12	426	(NOSI)—manual. Lisse: Swets en Zeitlinger.; 1992.
13 14	427	27. Haskett ME, Ahern LS, Ward CS, Allaire JC. Factor structure and validity of the parenting
15 16	428	stress index-short form. J Clin Child Adolesc Psychol. 2006 Jun;35(2):302-12.
17 18	429	28. Wolff N, Darlington AS, Hunfeld J, Verhulst F, Jaddoe V, Hofman A, et al. Determinants of
19 20	430	Somatic Complaints in 18-month-old Children: The Generation R Study. J Pediatr Psychol. 2009 Sep
20 21 22	431	8.
22 23 24	432	29. Victora CG, Huttly SR, Fuchs SC, Olinto MT. The role of conceptual frameworks in
25	433	epidemiological analysis: a hierarchical approach. International journal of epidemiology. 1997
26 27	434	Feb;26(1):224-7.
28 29	435	30. Twisk JW. Longitudinal data analysis. A comparison between generalized estimating
30 31	436	equations and random coefficient analysis. European journal of epidemiology. 2004;19(8):769-76.
32 33	437	31. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation
34 35	438	for missing data in epidemiological and clinical research: potential and pitfalls. BMJ (Clinical research
36 37	439	ed. 2009;338:b2393.
38 39	440	32. Caudri D, Wijga A, CM AS, Hoekstra M, Postma DS, Koppelman GH, et al. Predicting the
40 41	441	long-term prognosis of children with symptoms suggestive of asthma at preschool age. J Allergy Clin
42 43	442	Immunol. 2009 Nov;124(5):903-10 e1-7.
44 45	443	33. Ghoshal UC, Ranjan P. Post-infectious irritable bowel syndrome: the past, the present and
46 47	444	the future. J Gastroenterol Hepatol. 2011 Apr;26 Suppl 3:94-101.
48 49	445	34. Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut?
50 51	446	Trends Microbiol. 2004 Dec;12(12):562-8.
52 53	447	35. Gwee KA. Irritable bowel syndrome in developing countriesa disorder of civilization or
54 55	448	colonization? Neurogastroenterol Motil. 2005 Jun;17(3):317-24.
56 57	449	36. Nielsen NM, Hansen AV, Simonsen J, Hviid A. Stressful life events in childhood and risk of
58 59	450	infectious disease hospitalization. European journal of pediatrics. 2011 Jun 22.
60		

Page 19 of 24

1 2			
- 3 4	451	37.	Nielsen NM, Hansen AV, Simonsen J, Hviid A. Prenatal stress and risk of infectious diseases
5 6	452	in offspr	ing. Am J Epidemiol. 2011 May 1;173(9):990-7.
7 8	453	38.	Tomac N, Turan E, Ertan U, Ozmen S. Cow's milk allergy as a risk factor for forthcoming
9 10	454	wheezin	ng attacks. Allergy. 2004 Sep;59(9):1017-8.
10 11 12	455	39.	Eller E, Kjaer HF, Host A, Andersen KE, Bindslev-Jensen C. Food allergy and food
13 14	456	sensitiza	ation in early childhood: results from the DARC cohort. Allergy. 2009 Jul;64(7):1023-9.
15 16	457	40.	Nagel G, Weinmayr G, Kleiner A, Garcia-Marcos L, Strachan DP, Group IPTS. Effect of diet
17 18	458	on asthr	ma and allergic sensitisation in the International Study on Allergies and Asthma in Childhood
19 20	459	(ISAAC)) Phase Two. Thorax. 2010 Jun;65(6):516-22.
20 21 22	460	41.	Lee WT, Ip KS, Chan JS, Lui NW, Young BW. Increased prevalence of constipation in pre-
22 23 24	461	school c	children is attributable to under-consumption of plant foods: A community-based study. Journal
25	462	of paedi	atrics and child health. 2008 Apr;44(4):170-5.
26 27 28	463	42.	Hancox RJ, Poulton R, Taylor DR, Greene JM, McLachlan CR, Cowan JO, et al. Associations
28 29 30	464	betweer	n respiratory symptoms, lung function and gastro-oesophageal reflux symptoms in a
31	465	populati	on-based birth cohort. Respir Res. 2006;7:142.
32 33	466	43.	Yarandi SS, Nasseri-Moghaddam S, Mostajabi P, Malekzadeh R. Overlapping
34 35	467	gastroes	sophageal reflux disease and irritable bowel syndrome: increased dysfunctional symptoms.
36 37 38 39	468	World J	Gastroenterol. 2010 Mar 14;16(10):1232-8.
	469		
40 41	470 471		
42 43	771		
44 45			
46 47			
48 49			
50 51			
52 53			
54 55			
56 57			
58 59			
60			

Х

BMJ Open

	Item No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Х
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Х
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Х
Objectives	3	State specific objectives, including any prespecified hypotheses	Х
Methods			
Study design	4	Present key elements of study design early in the paper	Х
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Х
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	Х
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Х
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	X
Bias	9	Describe any efforts to address potential sources of bias	Х
Study size	10	Explain how the study size was arrived at	Х
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Х
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Х
		(b) Describe any methods used to examine subgroups and	Х

(d) If applicable, explain how loss to follow-up was addressed (*e*) Describe any sensitivity analyses Results Participants 13* (a) Report numbers of individuals at each stage of study-eg Х numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage X (non-response Analyse described) (c) Consider use of a flow diagram Descriptive data 14* (a) Give characteristics of study participants (eg demographic, Х clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest

(c) Explain how missing data were addressed

interactions

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	Х
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	X
		(b) Report category boundaries when continuous variables were categorized	Х
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Х
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Х
Discussion			
Key results	18	Summarise key results with reference to study objectives	Х
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Х
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Х
Generalisability	21	Discuss the generalisability (external validity) of the study results	Х
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Х

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

		Ν
		(%)
other		
ducational level of mother		
	Low	774 (16%)
	Midlow	1365 (29%)
	Midhigh	1148 (25%)
	High	1363 (29%)
aternal smoking		1154 (25%)
aternal alcohol consumption		1869 (40%)
arental stress score mean (SD)		0.36 (0.30)
story of atopy		2238 (48%)
hild		
ale N (%)		2333 (50%)
hnicity N (%)		
	Dutch/other Western	3421 (74%)
	Non-Western	1230 (26%)
rth weight mean (SD)		3431 (540)
estational age at delivery mean	(SD)	39.9 (1.6)
story of food allergy in first year	r of life	265 (6%)
Introduction of food allergens ≤ 6 months		3472 (75%)
uration of breast-feeding in mor	ths mean (SD)	4.8 (3.8)
rèche attendance in first two ye	ars of life	3579 (77%)
verweight in second year of life		915 (20%)

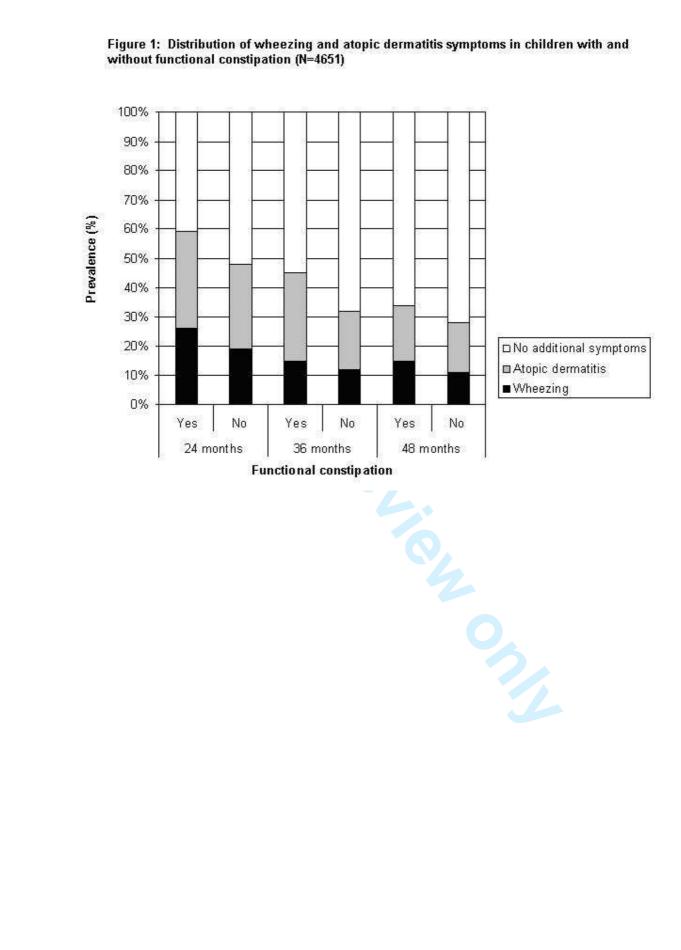

Table 1. Maternal and Child Characteristics of the Study Population (N=4651)

 Table 2. Hierarchical logistic models on the association between wheezing, eczema and

 functional constipation between 24 and 48 months of age (N=4651)

No constipation	Functional Constipation
•	OR
	95%CI
Reference	1.11
	(0.98 – 1.27)
Reference	1.16*
- /	(1.01 – 1.31)
Reference	1.16*
Deferrere	(1.01 – 1.32)
Reference	1.10
Poforonoo	(0.96 – 1.25) 1.15*
Reference	(1.01 – 1.32)
Beference	1.14*
	(1.00 - 1.30)
	OR
	95%CI
Reference	1.03
	(0.91 – 1.16)
Reference	1.04
	(0.91 – 1.18)
Reference	1.04
	(0.91 – 1.18)
Reference	1.04
	(0.91 – 1.19)
Reference	1.03
Deference	(0.60 - 1.18)
Heierence	1.03 (0.90 – 1.18)
	constipation Reference Reference Reference Reference Reference Reference

OR: odds ratio; 95%CI: 95% confidence interval; * P<0.05; Model 1: baseline model adjusted for time, gender, mothers educational level, ethnicity, birth weight, gestational age, maternal smoking and family history of atopy; Model 2: model 1+ adjustment for body mass index; Model 3: model 1+ adjustment for history of respiratory tract or gastrointestinal infections in past year and daycare attendance in first two years of life; Model 4: model 1+ adjustment for history of food allergy, breast-feeding duration, and introduction of food allergens ≤ 6 months; Model 5: model 1+ parental stress.

Association between wheezing and childhood in pre-school children: explanations from a longitudinal birth cohort.

Journal:	BMJ Open
Manuscript ID:	bmjopen-2011-000237.R1
Article Type:	Research
Date Submitted by the Author:	05-Aug-2011
Complete List of Authors:	Kiefte-de Jong, Jessica; Erasmus Medical Center, Pediatrics Lebon, Ankie; Erasmus Medical Center, Pediatrics Jaddoe, Vincent; Erasmus Medical Center, Pediatrics Hofman, Albert; Erasmus Medical Center, Epidemiology de Jongste, Johan; Erasmus Medical Center, Pediatrics Moll, Henriette; Erasmus Medical Center, Pediatrics
Primary Subject Heading :	Epidemiology
Keywords:	EPIDEMIOLOGY, GASTROENTEROLOGY, Community child health < PAEDIATRICS

1 2		
3 4	1	Is there an association between wheezing and constipation in pre-school children?
5 6	2	Explanations from a longitudinal birth-cohort
7 8	3	
9 10	4	Kiefte-de Jong JC, MSc ^{a,b} , Lebon A, PhD ^{a,b} , Jaddoe VWV, MD, PhD ^{a, b, c} , Hofman A, MD, PhD ^c , de
10 11 12	5	Jongste JC, MD, PhD ^d , Moll HA ^b
13 14	6	
15 16	7	^a The Generation R Study Group, ^b Department of Paediatrics, ^c Department of Epidemiology,
17 18	8	^d Department of Paediatrics/Respiratory Medicine, Erasmus Medical Centre, Rotterdam The
19 20	9	Netherlands.
20 21 22	10	
23 24	11	
24 25 26	12	Keywords: functional constipation, wheezing, eczema
20 27 28	13	
29 30	14	Address correspondence to:
30 31 32	15	Prof. Henriëtte A. Moll, MD PhD, Department of Paediatrics, Erasmus Medical Centre, P.O. Box 2060,
33 34	16	3000 CB Rotterdam, the Netherlands, E-mail: h.a.moll@erasmusmc.nl
35 36	17	
37 38	18	Financial disclosure and conflict of interest: none
39 40	19	
40 41 42	20	Abbreviations: IBS, irritable bowel syndrome; AD, atopic dermatitis; ISAAC, international study of
43	21	asthma and allergies in childhood; BMI, body mass index; NOSIK, nijmeegse ouderlijke stress
44 45 46	22	index—kort (parenting stress index—short form); OR, odds ratio; CI, confidence interval; HPA,
46 47 49	23	hypothalamic pituitary-adrenal
48 49 50	24	
50 51	25	
52 53	26	
54 55	27	Word count abstract: 245
56 57	28	Word count manuscript: 3557
58 59	29	
60	30	

CONTRIBUTOR'S STATEMENT:

- Involvement in the design, planning, conducting the study and data collection: H.A. Moll, V.W.V.
- Jaddoe, A. Hofman, J.C. de Jongste, J.C. Kiefte-de Jong. Statistical analyses, interpreting data: J.C.
- Kiefte-de Jong, H.A. Moll, A. Lebon. Drafting the final manuscript: J.C. Kiefte-de Jong, H.A. Moll.
- All authors critically reviewed the manuscript and approved the final version of the manuscript to be
 - published.

3	
4	
5 6	
7	
2	
8	
9	
1	0
4	4
1	1
1	2
1	3
1	4
4	
1	0
1	6
1	7
1	8
4	0
1	9
2	0
2	1
2	01234567890123456789012345678901
2	2
2	3
2	4
2	5
2	6
~	2
2	1
2	8
2	9
2	ñ
2	4
3	1
3	2
3	3
2	1
0	4
3	5
3	6
3	7
2	Ω.
2	0
3	9
4	0
4	1
1	2
	3
	4
4	5
4	-
4	
4	8
4	9
	0
	1
5	2
5	
	4
	5
5	
5	7
5	و
5	
5	9

60

JO ADJINACI	38	ABSTRACT
-------------	----	----------

39

1 2

40 **Objective:** To assess whether wheezing and atopic dermatitis were associated with constipation in
 41 pre-school children and to what extent shared risk-factors contribute to this relationship.

42 **Methods:** A population-based sample of 4651 pre-school children was used. At the age of 24, 36 and 43 48 months, parental report of functional constipation was available according to the ROME II criteria 44 and data on atopic dermatitis and wheezing was available using age-adapted questionnaires from the 45 International Study of Asthma and Allergies in Childhood. Stepwise multivariate analyses were 46 performed to assess whether body mass index, infection exposure, food allergy and infant nutrition, 47 and parental stress explained the association between wheezing, atopic dermatitis and constipation.

Results: Out of 4651 children, 12-17% had functional constipation between 24 and 48 months.
Symptoms of wheezing and atopic dermatitis decreased from 20% and 30% at 24 months to 10% and 18% at 48 months. Between the age of 24 and 48 months, wheezing symptoms were significantly associated with functional constipation (OR: 1.17; 1.02 – 1.34) but these results were mainly explained by the child's infections exposure and use of antibiotics (aOR: 1.08; 95%CI: 0.95 – 1.24).
No significant association was found between symptoms of atopic dermatitis and functional constipation (OR: 1.08; 95%CI: 0.94, 1.23).

55 **Conclusions:** These findings suggest that functional constipation co-exists with wheezing in 56 childhood but is mainly explained by the child's infection exposure and use of antibiotics. Therefore, 57 an independent association between respiratory symptoms and functional bowel disorders as 58 suggested in previous studies is questionable.

1		
2 3	59	ARTICLE
4 5	60	
6 7	61	Article fo
8 9	62	• (
10 11	63	• F
12 13	64	• F
14 15	65	n
16 17	66	
18 19	67	Key mes
20 21	68	• V
22 23	69	С
24 25	70	• +
26 27	71	F
28 29 30	72	a
30 31 32	73	
32 33 34	74	Strength
34 35 36	75	• F
30 37 38	76	C
39 40	77	• T
40 41 42	78	С
42 43 44	79	d
44 45 46	80	• T
40 47 48	81	s
49 50	82	
50 51 52	83	Limitatio
53 54	84	• 5
55 56	85	n
57 58	86	• E
59 60		
00		

59	ARTICLE SUMMARY
60	
61	Article focus
62	 Constipation, wheezing and atopic dermatitis are common symptoms in children.
63	Functional bowel disorders are linked with asthma and atopy in adults.
64	• Functional bowel disorders, asthma and atopic disease may share common risk-factors that
65	may explain co-existence of these symptoms.
66	
67	Key messages
68	• Wheezing but not atopic dermatitis is associated with functional constipation in pre-school
69	children. The association is mainly explained by a history of infection exposure.
70	• Hence the association between wheezing and functional constipation is not independent.
71	Further research is needed to explore whether this result also apply to the outcome of
72	asthma.
73	
74	Strengths
75	Population-based study population. The study group were not selected according to medical
76	• Topulation based study population. The study group were not selected according to medical
76	care.
76 77	
	care.
77	care.This study addresses a topical area that has not had sufficient study and can have a
77 78	 care. This study addresses a topical area that has not had sufficient study and can have a contribution on the discussion how asthma or atopy may be associated with functional bowel
77 78 79	 care. This study addresses a topical area that has not had sufficient study and can have a contribution on the discussion how asthma or atopy may be associated with functional bowel disorders.
77 78 79 80	 care. This study addresses a topical area that has not had sufficient study and can have a contribution on the discussion how asthma or atopy may be associated with functional bowel disorders. This study took multiple shared risk-factors of wheezing and constipation into account that
77 78 79 80 81	 care. This study addresses a topical area that has not had sufficient study and can have a contribution on the discussion how asthma or atopy may be associated with functional bowel disorders. This study took multiple shared risk-factors of wheezing and constipation into account that
 77 78 79 80 81 82 	 care. This study addresses a topical area that has not had sufficient study and can have a contribution on the discussion how asthma or atopy may be associated with functional bowel disorders. This study took multiple shared risk-factors of wheezing and constipation into account that sheds light on the suggested association in literature.
 77 78 79 80 81 82 83 	 care. This study addresses a topical area that has not had sufficient study and can have a contribution on the discussion how asthma or atopy may be associated with functional bowel disorders. This study took multiple shared risk-factors of wheezing and constipation into account that sheds light on the suggested association in literature. Limitations
 77 78 79 80 81 82 83 84 	 care. This study addresses a topical area that has not had sufficient study and can have a contribution on the discussion how asthma or atopy may be associated with functional bowel disorders. This study took multiple shared risk-factors of wheezing and constipation into account that sheds light on the suggested association in literature. Limitations Symptoms were available only from parental-reported questionnaires. This may led to
 77 78 79 80 81 82 83 84 85 	 care. This study addresses a topical area that has not had sufficient study and can have a contribution on the discussion how asthma or atopy may be associated with functional bowel disorders. This study took multiple shared risk-factors of wheezing and constipation into account that sheds light on the suggested association in literature. Limitations Symptoms were available only from parental-reported questionnaires. This may led to misclassification of the symptoms.

1 2	
2 3	87
4 5	88
6 7	89
8 9	90
10 11	
12	91
13 14	
15 16	
17 18	
19 20	
20 21 22	
23 24	
25	
26 27	
28 29	
30 31	
32 33	
34	
35 36	
37 38	
39 40	
41 42	
43 44	
45	
46 47	
48 49	
50 51	
52 53	
54	
55 56	
57 58	
59 60	
60	

No data was available regarding parental concerns of the child's health status. Bias may
 occur when parents with high concerns are more likely to report symptoms in their child as
 wheezing, constipation and infectious disease.

 No data was available on IgE sensitization, thus the study preclude conclusions on the association between allergic disease and constipation.

> 5 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

92 INTRODUCTION

Functional constipation and other functional bowel diseases account for the majority of gastrointestinal symptoms worldwide and is increasing in the Western world (1-2). The prevalence of atopic diseases such as asthma and atopic dermatitis is also increasing in Western Countries(3). In adults, several studies have suggested that asthma or atopy may be linked with constipation(4) or other functional gastro-intestinal disorders (5-8). In children, different results with regard to constipation have been described (9-10). Some pathophysiological overlaps may explain the proposed correlation between constipation and atopy. For example, atopic disease, which affects approximately 30% of the population, include food allergies that may cause various organ dysfunction implying that the link between constipation and atopy may be explained by food allergy(11). Likewise, a shared risk-factor for both asthma and constipation is obesity. As reported in several studies, asthma is highly prevalent in children with obesity(12) and obesity has been found to be more common in subjects with functional constipation(13). Since both atopy and functional bowel disorders are particularly prevalent in developed countries, a

role for the 'hygiene hypothesis' in these two disorders is also proposed. The hygiene hypotheses concedes that current hygiene practices lead to reduced or altered exposure of bacteria and other micro-organisms that may result in an imbalance of the immune system and microflora early in life (14). Early microbial colonization of the infant's gastro-intestinal tract might reduce the risk of atopic disorders and altered intestinal flora has been an area of interest for years in both constipation and atopy (15-16). Finally, studies have addressed the role of stress in the aetiology both of atopic disorders(17) and constipation (18). Prenatal and childhood stress have been suggested to disturb the regulation of immune and autonomic functions(19) that makes children vulnerable to develop both atopy and altered bowel habits.

To better understand the mechanisms playing a role in these disorders, it is warranted to examine which common risk-factors explain the association between atopy and constipation as described in the literature. In addition, most of the exposures associated with disease start early in life and the majority of adults with other functional bowel disorders experience symptoms of functional constipation that are already present during childhood (20). The aim of our study, therefore, is to examine whether wheezing and atopic dermatitis are associated with functional constipation in

BMJ Open

childhood. A second aim is to assess if and to what extent cow's milk allergy, overweight, indices of infection exposure and parental stress contribute to the association between wheezing, atopic dermatitis and functional constipation in young children.

PATIENTS AND METHODS

Participants and study design

This study was embedded in the Generation R study, a population-based prospective cohort study from foetal life until young adulthood and has been described in detail previously (21-22). In total, 7893 mothers with a delivery date between April 2002 and January 2006 provided consent for follow-up. The study was approved by the Medical Ethical Committee of the Erasmus Medical Centre, Rotterdam, The Netherlands.

Functional constipation

At the age of 24, 36 and 48 months, stool pattern of the child was assessed by using a questionnaire (response rates: 70%, 64% and 63% respectively). Accordingly, the outcome of functional constipation was defined in this study if at least one of the following symptoms of ROME II(23)were reported: 1) defecation frequency <3 times a week for at least 2 weeks or 2) predominantly hard faeces for the majority of stools for at least 2 weeks.

To avoid the influence of metabolic disorders and clustering, children were excluded in the analyses in case of the following: 1) twinborn (n=238), 2) siblings within the Generation R cohort (n=343) 3) presence of a congenital heart condition (n = 47), 4) any history of doctor diagnosis of anaemia, collected by questionnaire (n = 58) or 5) growth retardation defined as height for age < -2SD based on the Netherlands growth curves (n = 163)(24).

Wheezing and atopic dermatitis

Information regarding atopic dermatitis and wheezing was obtained on the basis of core questions from "International Study of Asthma and Allergies in Childhood" (ISAAC) and doctor-attendance of eczema or episodes of itchy rash at the age of 24, 36 and 48 months(25) which has been used succesfully in a previous study to predict asthma (26). In addition, the following questions were asked at the age of 24, 36 and 48 months: "Has your child had problems with a wheezing chest during the last year?" and "Has your child had an itchy rash that came and went during the past year?" These outcomes were analyzed dichotomously: presence or absence of eczema and presence or absence of wheezing in the previous year at 24, 36 and 48 months of age.

1		
2 3	155	
4 5	156	Covariates
6 7	157	Weight and height at 24, 36 and 48 months were available from the child health centres. Body Mass
8 9	158	index (BMI) was then calculated and overweight was defined according to age- and gender-adapted
10 11 12	159	BMI-thresholds for young children from the International Obesity Task Force(27).
12 13 14	160	At the age of 6 and 12 months, questionnaire data were available about a history of doctor-attended
14 15 16	161	food allergy in the first year of life and the introduction of food allergens and breast-feeding duration
17	162	that we described in detail in a previous study (28). Briefly, parents were asked at what age they had
18 19	163	introduced the following products in the infant's diet for the first time: milk, yoghurt, porridge, egg,
20 21	164	bread or biscuits, peanuts, nuts and soy products. The reported introduction of these food products
22 23	165	were cross-checked with a short food-frequency questionnaire filled in at the children's age of 6 and
24 25	166	12 months consisting of food-products frequently consumed according to a Dutch food consumption
26 27	167	survey in infants. For example, if the parent indicated at the age of 12 months that they had never
28 29 30 31 32 33	168	introduced gluten in their infant's diet but at the infant's age of 6 months the parent filled in that the
	169	infant consumed porridge based on wheat for at least once, then the introduction of this gluten was
	170	considered to be before or equal to 6 months of age. Breast-feeding duration was assessed according
34 35	171	to five variables: ever breast-feeding, cessation of breast-feeding and receiving any breast-feeding at
36 37	172	the age of 2, 6 and 12 months.
38 39	173	At the age of 24, 36 and 48 months, questionnaire data was available for the following indicators
40 41	174	which were used as proxy for infection exposure of the child: attendance of daycare and doctor-
42 43	175	attendance for fever (> 38°C) accompanied with symptoms of cough, runny nose, earache, diarrhoea
44 45	176	or vomiting in the past year <mark>, and any use of antibiotics in the previous year (yes vs no).</mark>
46 47	177	The level of parental stress was assessed at the child's age of 24 months by using the Nijmeegse
48 49	178	Ouderlijke Stress Index-Kort (NOSIK(29)), the Dutch version of the Parenting Stress Index-Short
50 51	179	Form that has been shown to be reliable and valid(30). The NOSIK comprises two domains consisting
52 53	180	of 25 items; parenting stress due to parent factors and parenting stress due to child factors. Only the
54 55	181	items on the parent domain were available in this study ($n=15$ items on partenal stress due to parent
56 57	182	factors). Items were assessed on a 4-point scale and the scores were summed and divided by the
58 59	183	number of fulfilled items. Higher scores indicate greater levels of parental stress. In addition, these
60	184	scores were demonstrated to be an important predictor of somatic complaints in this birth cohort (31).

Other variables possibly related to functional constipation, wheezing and atopic dermatitis were obtained from prenatal and postnatal questionnaires filled in by the parents (ethnicity, mother's educational level, maternal and paternal history of atopic dermatitis, asthma, hay fever, allergy to house dust and prenatal smoking). From obstetric records assessed in mid-wife practices and from hospital registries data on gender, birth weight and gestational age were available as described previously(21-22).

192 Statistical analysis

Firstly, univariate analyses were performed by using Chi-square tests for categorical variables and the Mann-Whitney U test for continuous variables. Secondly, logistic regression analyses by using generalized estimating equations (GEE) were performed. Briefly, regression analysis by GEE assesses the association between two variables by correction for the within subject's dependence as a result of the repeated observations on wheezing, eczema and functional constipation since repeated measurements within one individual are frequently correlated (32). The within-subject correlation coefficient for wheezing, atopic dermatitis and functional constipation at the three time points were comparable (r=0.3-0.4). Therefore, an exchangeable working correlation structure was used in the GEE analyses as adjustment for the dependency between the repeated measurements.

Logistic regression analysis with GEE was performed with functional constipation compared to no constipation as dependent variables and the presence of any wheezing or atopic dermatitis in the past year as independent variable. In addition, model 1 was adjusted for time (i.e. age), and major child characteristics as gender, mother's educational level, ethnicity (western versus non-western), birth weight, gestational age, maternal smoking and family history of atopic disorders on the basis factors associated with asthma-like symptoms and constipation in literature(28, 33). Subsequently, to assess whether the association between functional constipation and atopy was dependent on BMI, infection exposure, food allergy and infant nutrition, or parental stress; the following variables were added separately to model 1: BMI (model 2), daycare attendance, use of antibiotics in previous year, and history of respiratory or gastrointestinal infections in the previous year (model 3), history of food allergy, breast-feeding duration, and introduction of food allergens ≤ 6 months (model 4), and parental stress score (NOSIK) (model 5). To test whether the associations between wheezing, atopic dermatitis and functional constipation were different at the age of 24, 36 and 48 months, effect

BMJ Open

3 4	215	modification by time was evaluated by adding the product-term of wheezing/atopic dermatitis and time
5 6	216	(e.g. wheezing*time) as independent variable to the crude GEE model.
7 8	217	To reduce potential bias associated with missing data, missing values (approximately 0.1% - 40%)
9 10	218	were multiple imputed (n=5 imputed datasets). The multiple imputation was based on the correlation
10 11 12	219	between each variable with missing values with the other subject characteristics as described
13 14	220	previously by Sterne et al(34). Data were analyzed in each data set separately to obtain desired effect
14 15 16	221	sizes and standard errors. Finally, the results of the 5 imputed analyses were pooled and reported in
17 18	222	this paper. In addition, the pooled odds ratio (OR) was calculated by taking the average of the OR's of
19 20	223	the 5 imputed datasets. The pooled standard error to assess the 95% confience intervals (95%CI)
21 22	224	was then calculated by using Ruben's rule(35): $\sqrt{[W+(1+1/m)^*B]}$ with W= mean variance of the effect
23	225	size within the imputed datasets; B=variance of the effect sizes between the imputed datasets; m=
24 25 26	226	number of imputed datasets (n=5). A P-value <0.05 was considered as statistically significant.
20 27	227	Statistical analyses were carried out by using SPSS 17.0 for Windows (SPSS Inc, Chicago, IL).

1 2		
4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 24 25 26 7 8 9 0 12 33 4 5 6 7 8 9 0 12 23 24 5 26 7 8 9 0 11 23 34 5 6 7 8 9 0 11 23 34 5 6 7 8 9 0 11 12 34 5 6 7 8 9 0 11 12 34 5 6 7 8 9 0 11 12 34 15 16 7 8 9 0 11 12 34 15 16 7 8 9 0 21 22 32 4 5 6 7 8 9 0 11 12 33 4 5 6 7 8 9 0 11 12 33 4 5 6 7 8 9 0 21 22 32 4 5 6 7 8 9 0 21 22 32 4 5 6 7 8 9 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	228	RESULTS
	229	
	230	Characteristics of the study population are presented in table 1.
	231	Non-response analysis at 48 months showed that non-responders slightly reported more often
	232	wheezing at 36 months (17.1% vs. 11.9%, <i>P</i> <0.01), functional constipation at 24 and 36 months (18%
	233	vs. 11.3% and 23.2 and 16.2% respectively, P<0.01), had more often mothers with a lower social
	234	economic background (16.6% vs. 5.8% P<0.01) and a non-western ethnicity (54.5% vs. 25.2%,
	235	P<0.01) and smoked more often during pregnancy (77.4% vs. 65.5%, P<0.01).
	236	Prevalence of functional constipation remained relatively stable between 12% and 14% at the age of
	237	24, 36 and 48 months. The highest prevalence of wheezing symptoms during childhood was at the
	238	age of 24 months (20%) and this decreased to a prevalence of 12% at 36 and 48 months. The
	239	prevalence of atopic dermatitis decreased from 30% at the age of 24 months to 20% and 18% at the
	240	age of 36 and 48 months respectively. Out of 4651 children, 3-4% had persistent symptoms of
	241	functional constipation, atopic dermatitis or wheezing at all time points (i.e. at 24, 36 and 48 months).
	242	At the age of 48 months, functional constipation was more prevalent in girls (16% vs 13%, P<0.01),
	243	children of non-Western origin (23% vs. 12%, P<0.01), children with a history of respiratory tract and
	244	gastrointestinal infections in the previous year (12% vs 20% and 14% vs 18%, P<0.01) and in children
	245	whose mothers who smoked during pregnancy (14% vs 16%, P<0.01). Children with functional
	246	constipation at 48 months had a lower birth weight (3373 vs 3488 grams, P<0.01) and had a higher
	247	parental stress score (0.37 vs 0.29, P<0.01) than children with no functional constipation.
42 43	248	The distribution of wheezing and atopic dermatitis in children with and without functional constipation
44 45	249	between 24 and 48 months is shown in figure 1. Wheezing symptoms were significantly associated
46 47 48 49 50 51	250	with symptoms of functional constipation in childhood but no significant association was found
	251	between atopic dermatitis and functional constipation in univariate analyses (Table 2). After
	252	adjustment for age, gender, birth weight, gestational age, maternal smoking, maternal educational
52 53	253	background, ethnicity and parental history of atopy, wheezing remained significantly associated with
54 55	254	functional constipation (Table 2; model 1), which was also the case after stepwise adjustment for BMI,
55 56 57 58 59 60	255	history of food allergy and infant nutrition and parental stress (Table 2; model 2, 4 and 5). The
	256	greatest alteration in the effect estimate in the analyses of wheezing and functional constipation was
	257	found after adjustment for infection exposure <mark>and use of antibiotics of</mark> the child, which mainly

BMJ Open

explained the association between wheezing and constipation (Table 2; model 3). Adjustment in uni Jagian (Ta) Jeno 2007 for statistical (between eczenta and age) addition to model 1 for other potential shared risk-factors did not explain the association between wheezing and functional constipation (Table 2).

- The results between wheezing and constiaption did not significantly differ by the different time points
- of 24, 36 an 48 months (P=0.57 for statistical interaction between wheezing and age and P=0.43 for
- statistical interaction between eczema and age).

DISCUSSION

This study shows that wheezing symptoms and functional constipation frequently coexist in pre-school children but this relationship was markedly influenced by infection exposure of the child. Other potential shared-risk factors as BMI, history of food allergy, infant nutrition, and parental stress did not explain the association between wheezing and constipation.

Several studies in adults showed a link between functional bowel disorders and asthma (5-8), but different results in children are described so far. In addition, Caffarelli et al. demonstrated no difference in constipation in allergic children compared to controls(36) but reported that other gastrointestinal symptoms as diarrhoea and vomiting are more prevalent in children with atopic eczema than in controls(10). Also, Simeone et al. showed no association between constipation and atopy in young children(9) whereas a small increase in the prevalence irritable bowel syndrome over time was observed in subjects with asthma aged 5-65 years(7). Yet, Leander et al(4) showed recently that constipation was associated with asthma independently of age (9)

The strength of our study lays in the large study population who were not selected according to medical care, thereby diminishing selection bias. Earlier studies have been carried out in selected populations of patients seeking medical care. This could lead to selection towards for instance children at high risk for atopic constitution that may have a higher proportion of functional bowel disorders than in the general population. Also, most studies did not take account for potential shared risk-factors that may improperly suggest that the relationship is independent. The broad range of available data of potential confounders in our study elucidates the contribution of shared risk-factors in the association between atopy and functional bowel disorders.

Our study confirmed that the association between wheezing and functional constipation was influenced by infection exposure. This finding can be explained in several ways. First, respiratory infections are risk-factors for wheezing and asthma (26) but gastro-intestinal infections are also associated with constipation (37). During for example an influenza-like ilnesses, both respiratory and gastrointestinal symptoms may co-exist (38-39) and may clarify that our association wheezing and constipation is explained by history of infections as defined by fever acompanied with diarrhoea or respiratory symptoms. Second, from animal studies it is known that very early exposure to micro-organisms, for example by crowding or infections earlier in life, is required to have a proper maturation

BMJ Open

of the immune system in and outside the gut which may have a protective effect on allergic disease (40). Also, it is speculated that frequent exposure to childhood infections is responsible for the low prevalence of functional bowel disorders in developing countries and that early colonization may enable the intestinal epithelium to respond efficiently to antigenic challenge that may result in a pronounced amelioration of gastro-intestinal symptoms after infections (41). However, if the latter was the case in our study, we would expect that adjustment for infection exposure would make the association between wheezing and constipation even stronger instead of weaker. Further in-depth research exploring the process of colonization may elucidate the contribution of infections and exposure to microorganisms in the association between wheezing and constipation.

Underlying mechanisms as altered contractility of smooth muscles cells and dysfunction of the autonomic nervous system that can be triggered by emotional stress is suggested to play a common role in asthma and constipation (17-18). Since parental stress was demonstrated to be an important predictor of somatic symptoms in children in a previous study (31) we expected a certain explanatory effect of parental stress on the association between wheezing and constipation. However, adjustment for parental stress only slightly weakened the association between wheezing and functional constipation. Nevertheless, it may well be that stress operates at the spectrum of infection exposure of the child since prenatal and postnatal stress can be associated with an increased risk of infectious disease in the offspring (42-43) which itself was thus of major importance in explaining the association between wheezing and constipation.

To appreciate the results some limitations of this study should be considered. We had data on functional constipation by the use of parental derived questionnaires and no additional information from medical records or physical examinations was available. Therefore, some subjects may be misclassified concerning the diagnosis of functional constipation. However, only if this misclassification is also related to wheezing, this misclassification has overestimated our results.

Loss to follow-up is a common phenomenon in large birth-cohort studies. Relative to other birth cohort studies, the participation rate of our study was high (60-70% in our study group versus 30-40% in other studies)(44). As in most other studies, the non-response analyses showed that the participation in our study was selective. Nevertheless, this would only have influenced our results when the association between wheezing and constipation would be completely different among participants of this study relative to those who did not participate(44). It has been suggested that food allergy in early

infancy may be a risk factor for wheezing attacks(45). The limited clarifying effect of food allergy on our study results might be explained by the fact that not all food-sensitized children have manifest food allergy(46). Consequently, sensitization to food allergens, as demonstrated by tests of specific serum IgE, might be a better explanation rather than report of food allergy or timing of introduction of food allergens in the association between atopic disorders and functional constipation. We did not have other evidence of food allergy in the first year available than the parental report of doctor-diagnosed food allergy. It is known that self-report of food allergy overestimates the true prevalence of food allergy. On the other hand, we expect that this information bias may have led to over-adjusted odds ratios and thereby an underestimation of the final results because parents who believe that their child had food allergy may also have reported symptoms related to atopic diseases or constipation more frequently. Nevertheless, bias may occur when parents with high concerns are more likely to report symptoms in their child as wheezing, constipation and infectious disease. Adjustment for NOSIK score may slightly reduce this effect. However, it only consisted of information on parental stress due to parent factors but not stress due to the child's health status.

At last, previous studies on functional bowel disorders focused on the link with asthma and allergic disease. Early wheezing in infancy is not a major predictor of childhood asthma (26) and we did not have data on allergic sensitization as measured by IgE. Hence, our results do not allow for conclusions regarding functional constipation and childhood asthma and allergic disease. Although we took several shared-risk factors into account when analyzing the association between wheezing and constipation, other determinants may also explain the association between asthma and functional bowel disorders in other studies. Recently it has been demonstrated that consumption of fruit and vegetables is associated with a lower prevalence of asthma (47) but also with constipation in children(48). Another symptom that may overlap wheezing with constipation is gastro-oesophageal reflux disease. Gastro-oesophageal reflux disease is a relatively common disorder in infants and children which has been demonstrated to be associated with respiratory symptoms(49) and functional bowel disorders(50). Therefore, explaining the association between other respiratory symptoms and asthma, and functional constipation in both children and adults needs further clarification.

354 Conclusion

In a population-based setting, functional constipation and wheezing symptoms may coexist in pre-school children. However, this association is not independent and can be mainly explained by <text> infection exposure of the child and antibiotic use. Other potential shared risk-factors as BMI, food allergy, infant nutrition and parental stress do not explain this association. Further research should elucidate whether colonization plays a role in the explanatory effect of infectious disease in the association between wheezing and constipation and if these results do also apply to the adult population and to secondary care patients.

2	
3 4	362
5 6	363
7 8	364
9 10	365
11 12	366
13 14	367
15 16	368
17	369
18 19	370
20 21	371
22 23	372
24 25 26	373
27 28 29 30 31 32	
32 33 34	
35 36	
37 38	
39 40	
40 41 42	
43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

1

362 **ACKNOWLEDGMENTS**

363 The Generation R Study is conducted by the Erasmus Medical Centre in close collaboration with the

- 364 School of Law and Faculty of Social Sciences of the Erasmus University Rotterdam, the Municipal
- 365 Health Service-Rotterdam Metropolitan Area, the Rotterdam Homecare Foundation, and the Stichting
- 366 Trombosedienst & Artsenlaboratorium Rijnmond. We acknowledge the contributions of children and
- 367 parents, general practitioners, hospitals and midwives in Rotterdam
- 368 This phase of the Generation R Study was supported by the Erasmus Medical Centre, the Erasmus
- , Org. , 369 University Rotterdam, the Netherlands Organization for Health Research and Development (Zon Mw)
- 370 and Europe Container terminals B.V.

1							
2 3	374	REFERENCES					
4 5 6	375 376	1. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States part II: lower					
7 8	377	gastrointestinal diseases. Gastroenterology. 2009 Mar;136(3):741-54.					
9 10	378	2. Rasquin A, Di Lorenzo C, Forbes D, Guiraldes E, Hyams JS, Staiano A, et al. Childhood					
10 11 12	379	functional gastrointestinal disorders: child/adolescent. Gastroenterology. 2006 Apr;130(5):1527-37.					
12 13 14	380	3. Matricardi PM. Prevalence of atopy and asthma in eastern versus western Europe: why the					
14 15 16	381	difference? Ann Allergy Asthma Immunol. 2001 Dec;87(6 Suppl 3):24-7.					
17	382	4. Leander M, Cronqvist A, Janson C, Uddenfeldt M, Rask-Andersen A. Health-related quality of					
18 19 20	383	life predicts onset of asthma in a longitudinal population study. Respir Med. 2009 Feb;103(2):194-200.					
20 21 22	384	5. Yazar A, Atis S, Konca K, Pata C, Akbay E, Calikoglu M, et al. Respiratory symptoms and					
22 23 24	385	pulmonary functional changes in patients with irritable bowel syndrome. The American journal of					
24 25 26	386	gastroenterology. 2001 May;96(5):1511-6.					
27	387	6. Roussos A, Koursarakos P, Patsopoulos D, Gerogianni I, Philippou N. Increased prevalence					
28 29 20	388	of irritable bowel syndrome in patients with bronchial asthma. Respir Med. 2003 Jan;97(1):75-9.					
30 31 22	389	7. Cole JA, Rothman KJ, Cabral HJ, Zhang Y, Farraye FA. Incidence of IBS in a cohort of					
32 33	390	people with asthma. Digestive diseases and sciences. 2007 Feb;52(2):329-35.					
34 35	391	8. Powell N, Huntley B, Beech T, Knight W, Knight H, Corrigan CJ. Increased prevalence of					
36 37	392	gastrointestinal symptoms in patients with allergic disease. Postgrad Med J. 2007 Mar;83(977):182-6.					
38 39	393	9. Simeone D, Miele E, Boccia G, Marino A, Troncone R, Staiano A. Prevalence of atopy in					
40 41	394	children with chronic constipation. Archives of disease in childhood. 2008 Dec;93(12):1044-7.					
42 43	395	10. Caffarelli C, Cavagni G, Deriu FM, Zanotti P, Atherton DJ. Gastrointestinal symptoms in					
44 45	396	atopic eczema. Archives of disease in childhood. 1998 Mar;78(3):230-4.					
46 47	397	11. Tobin MC, Keshavazian A, Farhardi A. Atopic irritable bowel syndrome: same old hat or a					
48 49	398	new entity? Expert Rev Gastroenterol Hepatol. 2008 Aug;2(4):457-9.					
50 51	399	12. Scholtens S, Wijga AH, Seidell JC, Brunekreef B, de Jongste JC, Gehring U, et al.					
52 53	400	Overweight and changes in weight status during childhood in relation to asthma symptoms at 8 years					
54 55	401	of age. J Allergy Clin Immunol. 2009 Jun;123(6):1312-8 e2.					
56 57	402	13. Pashankar DS, Loening-Baucke V. Increased prevalence of obesity in children with functional					
58 59 60	403	constipation evaluated in an academic medical center. Pediatrics. 2005 Sep;116(3):e377-80.					

Page 20 of 26

BMJ Open

Garn H, Renz H. Epidemiological and immunological evidence for the hygiene hypothesis.

14.

Immunobiology. 2007;212(6):441-52. 15. Chmielewska A, Szajewska H. Systematic review of randomised controlled trials: probiotics for functional constipation. World J Gastroenterol Jan 2010;16(1):69-75. 16. Osborn DA, Sinn JK. Probiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database Syst Rev. 2007(4):CD006475. Wright RJ. Stress and atopic disorders. J Allergy Clin Immunol. 2005 Dec;116(6):1301-6. 17. 18. Papatheodoridis GV, Vlachogiannakos J, Karaitianos I, Karamanolis DG. A Greek survey of community prevalence and characteristics of constipation. European journal of gastroenterology & hepatology. 2010 Mar;22(3):354-60. 19. Essex MJ, Klein MH, Cho E, Kalin NH. Maternal stress beginning in infancy may sensitize children to later stress exposure: effects on cortisol and behavior. Biol Psychiatry. 2002 Oct 15;52(8):776-84. Khan S, Campo J, Bridge JA, Chiappetta LC, Wald A, di Lorenzo C. Long-term outcome of 20. functional childhood constipation. Digestive diseases and sciences. 2007 Jan;52(1):64-9. Jaddoe VW, van Duijn CM, van der Heijden AJ, Mackenbach JP, Moll HA, Steegers EA, et al. 21. The Generation R Study: design and cohort update until the age of 4 years. European journal of epidemiology. 2008;23(12):801-11. Jaddoe VW, van Duijn CM, van der Heijden AJ, Mackenbach JP, Moll HA, Steegers EA, et al. 22. The Generation R Study: design and cohort update 2010. European journal of epidemiology. 2010 Nov;25(11):823-41. 23. Rasquin-Weber A, Hyman PE, Cucchiara S, Fleisher DR, Hyams JS, Milla PJ, et al. Childhood functional gastrointestinal disorders. Gut. 1999 Sep;45 Suppl 2:II60-8. Fredriks AM, van Buuren S, Burgmeijer RJ, Meulmeester JF, Beuker RJ, Brugman E, et al. 24. Continuing positive secular growth change in The Netherlands 1955-1997. Pediatric research. 2000 Mar;47(3):316-23. 25. Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, et al. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur Respir J. 1995 Mar;8(3):483-91.

Page 21 of 26

1 2 3

4

BMJ Open

5
6
7
7 8
ð
9
10
11
12
13
12 13 14
14 15
10
16
17
18
19
20 21
21
21
21 22 23 24 25 26 27 28 29 30 31 32 33 24
23
24
25
26
27
28
20
29
30
31
32
33
34
32 33 34 35
33
36
37 38
38
39
40
41
39 40 41 42 42
43
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
50 57
57
58
59
60

433 26. Caudri D, Wijga A, CM AS, Hoekstra M, Postma DS, Koppelman GH, et al. Predicting the
434 long-term prognosis of children with symptoms suggestive of asthma at preschool age. J Allergy Clin
435 Immunol. 2009 Nov;124(5):903-10 e1-7.

436 27. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child
 437 overweight and obesity worldwide: international survey. BMJ (Clinical research ed. 2000 May
 438 6;320(7244):1240-3.

439 28. Kiefte-de Jong JC, Escher JC, Arends LR, Jaddoe VW, Hofman A, Raat H, et al. Infant
440 nutritional factors and functional constipation in childhood: the Generation R study. The American
441 journal of gastroenterology. 2010 Apr;105(4):940-5.

442 29. De Brock AJLL, Vermulst AA, Gerris JRM, Abidin R. Nijmeegse Ouderlijke Stress Index
 3 443 (NOSI)—manual. Lisse: Swets en Zeitlinger.; 1992.

444 30. Haskett ME, Ahern LS, Ward CS, Allaire JC. Factor structure and validity of the parenting
stress index-short form. J Clin Child Adolesc Psychol. 2006 Jun;35(2):302-12.

446 31. Wolff N, Darlington AS, Hunfeld J, Verhulst F, Jaddoe V, Hofman A, et al. Determinants of
447 Somatic Complaints in 18-month-old Children: The Generation R Study. J Pediatr Psychol. 2009 Sep
448 8.

449 32. Twisk JW. Longitudinal data analysis. A comparison between generalized estimating 6 7 450 equations and random coefficient analysis. European journal of epidemiology. 2004;19(8):769-76.

451 33. Civelek E, Cakir B, Orhan F, Yuksel H, Boz AB, Uner A, et al. Risk factors for current
 452 wheezing and its phenotypes among elementary school children. Pediatr Pulmonol. 2011
 453 Feb;46(2):166-74.

454 34. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 46 455 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ (Clinical research 456 ed. 2009;338:b2393.

457 35. Rubin DB, Schenker N. Multiple imputation in health-care databases: an overview and some applications. Stat Med. 1991 Apr;10(4):585-98.

459 36. Caffarelli C, Coscia A, Baldi F, Borghi A, Capra L, Cazzato S, et al. Characterization of irritable bowel syndrome and constipation in children with allergic diseases. European journal of pediatrics. 2007 Dec;166(12):1245-52.

37. Porter CK, Gormley R, Tribble DR, Cash BD, Riddle MS. The Incidence and gastrointestinal infectious risk of functional gastrointestinal disorders in a healthy US adult population. The American journal of gastroenterology. 2011 Jan;106(1):130-8. 38. Wang YH, Huang YC, Chang LY, Kao HT, Lin PY, Huang CG, et al. Clinical characteristics of children with influenza A virus infection requiring hospitalization. J Microbiol Immunol Infect. 2003 Jun;36(2):111-6. 39. Dilantika C, Sedyaningsih ER, Kasper MR, Agtini M, Listiyaningsih E, Uyeki TM, et al. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness. BMC Infect Dis. 2010;10:3. 40. Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 2004 Dec;12(12):562-8. 41. Gwee KA. Irritable bowel syndrome in developing countries--a disorder of civilization or colonization? Neurogastroenterol Motil. 2005 Jun;17(3):317-24. Nielsen NM, Hansen AV, Simonsen J, Hviid A. Stressful life events in childhood and risk of 42. infectious disease hospitalization. European journal of pediatrics. 2011 Jun 22. Nielsen NM, Hansen AV, Simonsen J, Hviid A. Prenatal stress and risk of infectious diseases 43. in offspring. Am J Epidemiol. 2011 May 1;173(9):990-7. 44. Nohr EA, Frydenberg M, Henriksen TB, Olsen J. Does low participation in cohort studies induce bias? Epidemiology. 2006 Jul;17(4):413-8. 45. Tomac N, Turan E, Ertan U, Ozmen S. Cow's milk allergy as a risk factor for forthcoming wheezing attacks. Allergy. 2004 Sep;59(9):1017-8. Eller E, Kjaer HF, Host A, Andersen KE, Bindslev-Jensen C. Food allergy and food 46. sensitization in early childhood: results from the DARC cohort. Allergy. 2009 Jul;64(7):1023-9. Nagel G, Weinmayr G, Kleiner A, Garcia-Marcos L, Strachan DP, Group IPTS. Effect of diet 47. on asthma and allergic sensitisation in the International Study on Allergies and Asthma in Childhood (ISAAC) Phase Two. Thorax. 2010 Jun;65(6):516-22. 48. Lee WT, Ip KS, Chan JS, Lui NW, Young BW. Increased prevalence of constipation in pre-school children is attributable to under-consumption of plant foods: A community-based study. Journal of paediatrics and child health. 2008 Apr;44(4):170-5.

BMJ Open

1 2		
3 4	491	49. Hancox RJ, Poulton R, Taylor DR, Greene JM, McLachlan CR, Cowan JO, et al. Associations
5 6 7 8	492	between respiratory symptoms, lung function and gastro-oesophageal reflux symptoms in a
	493	population-based birth cohort. Respir Res. 2006;7:142.
9 10	494	50. Yarandi SS, Nasseri-Moghaddam S, Mostajabi P, Malekzadeh R. Overlapping
10 11 12	495	gastroesophageal reflux disease and irritable bowel syndrome: increased dysfunctional symptoms.
12 13 14	496	World J Gastroenterol. 2010 Mar 14;16(10):1232-8.
15	497	
$\begin{array}{c} 16\\ 17\\ 8\\ 9\\ 0\\ 21\\ 22\\ 23\\ 24\\ 25\\ 6\\ 7\\ 8\\ 9\\ 0\\ 1\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	498 499	

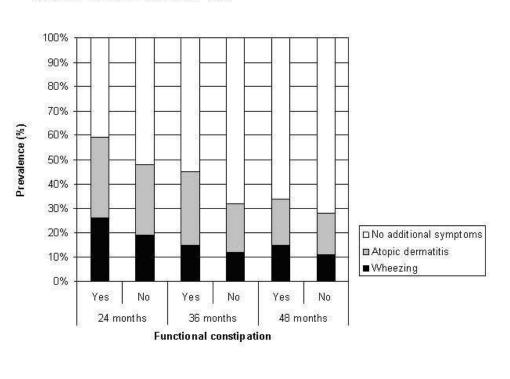


Figure 1: Distribution of wheezing and atopic dermatitis symptoms in children with and without functional constipation (N=4651)

54x43mm (300 x 300 DPI)

For peer rev

BMJ Open

	Item No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the	Х
		title or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	Х
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	Х
		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	Х
Methods			
Study design	4	Present key elements of study design early in the paper	Х
Setting	5	Describe the setting, locations, and relevant dates, including periods	Х
		of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	Х
		selection of participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of	
		exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	Х
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	X
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Х
Study size	10	Explain how the study size was arrived at	Х
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	Х
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control	Х
		for confounding	
		(b) Describe any methods used to examine subgroups and	Х
		interactions	
		(c) Explain how missing data were addressed	Х
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	X
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	X (non-response
			Analyse described)
		(c) Consider use of a flow diagram	X
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	X
Descriptive call		clinical, social) and information on exposures and potential	21
		confounders	
		(b) Indicate number of participants with missing data for each	Х
		(b) indicate number of participants with missing data for each	Λ

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		(c) Summarise follow-up time (eg, average and total amount)	Х
Outcome data	15*	Report numbers of outcome events or summary measures over time	Х
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	Х
		estimates and their precision (eg, 95% confidence interval). Make	
		clear which confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous variables were	Х
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	Х
		absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and	Х
		interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Х
Limitations	19	Discuss limitations of the study, taking into account sources of	Х
		potential bias or imprecision. Discuss both direction and magnitude	
		of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	Х
		objectives, limitations, multiplicity of analyses, results from similar	
		studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	Х
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	Х
		study and, if applicable, for the original study on which the present	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.