Training the biomedical informatics workforce in Latin America: results of a needs assessment

Magaly M Blas,1 Walter H Curioso,1 Patricia J Garcia,1 Mirko Zimic,1 Cesar P Carcamo,1 Jesus M Castagnetto,1 Andres G Lescano,1,2 Diego M Lopez3

ABSTRACT

Objective: To report the results of a needs assessment of research and training in Medical Informatics (MI) and Bioinformatics (BI) in Latin America.

Methods and results: This assessment was conducted by QUIPU: The Andean Global Health Informatics Research and Training Center. After sending email invitations to MI—BI related professionals from Latin America, 142 surveys were received from 11 Latin American countries. The following were the top four ranked MI-related courses that a training programme should include: introduction to biomedical informatics; data representation and databases; mobile health; and courses that address issues of security, confidentiality and privacy. Several new courses and topics for research were suggested by survey participants. The information collected is guiding the development of curricula and a research agenda for the MI and BI QUIPU multidisciplinary programme for the Andean Region and Latin America.

INTRODUCTION

The WHO has recognised the use of information and communication technologies (ICT) as a core competency of the 21st century healthcare workforce to support patient care.1 Thus, professionals well-trained in the use of ICT are highly needed.2 Training programmes in Biomedical Informatics have emerged over the last 40 years, especially in developed countries.3 4 In Latin America, a few countries have developed initiatives and programmes in Biomedical and/or Health Informatics (ie, Brazil,5 6 Cuba,7 Peru,8 9 Colombia10), Medical Informatics (ie, Argentina,11 Peru12), and Bioinformatics (ie, Brazil,13 14 Peru12). These programmes have encompassed short courses, certificate programmes, Master’s programmes and even sub-specialty programmes (ie, Argentina).15

Several assessments have characterised the needs for research and training in Biomedical Informatics. These assessments have been conducted mainly in the USA, Europe and Australia.16–19 To our knowledge, no assessments have been published with data from Latin America.

The objective of this paper is to report the results of a needs assessment in Biomedical Informatics in Latin America. This needs assessment was conducted as part of one of the activities of QUIPU: The Andean Global Health Informatics Research and Training Center (http://www.andeanquipu.org). ‘Quipu’ is a Quechua word that describes an ancient system used throughout the Andes by the Incas to record and distribute information. The Center is funded by the Fogarty International Center (FIC)/National Institutes of Health (NIH),20 and...
Training the biomedical informatics workforce in Latin America

administered by Universidad Peruana Cayetano Heredia (UPCH) in collaboration with the US Naval Medical Research Unit Six in Peru (NAMRU-6), the Universidad del Cauca in Colombia and the University of Washington in Seattle (USA).21

METHODS

Online survey of Medical Informatics and Bioinformatics

We conducted a needs assessment of biomedical informatics training and research. We broadly classified this field into Medical Informatics (MI) and Bioinformatics (BI). For the purposes of this study, we considered the field of MI in a very broad sense, including Clinical Informatics and Public Health Informatics. We designed an online survey using LimeSurvey (http://www.limesurvey.org), an Open Source application successfully used in previous studies conducted by our group.22 The survey questions were based on those used in previous electronic and paper surveys, as well as questions suggested by local and international experts in MI and BI.

The survey was divided into four sections: (1) demographics, (2) type and level of experience in MI or BI, (3) needs regarding training in MI–BI in the Latin American region, and (4) research needs. Participants were asked to rate a list of existing courses on a scale of 1 to 5 (1=unimportant to 5=very important), including courses that should be common to both disciplines (MI and BI). They were also asked to suggest additional courses that were not included in the questionnaire. In the last section of the survey, which included open ended questions, respondents were asked to list three priority areas in Biomedical Informatics research that they consider important for their country.

We piloted the survey for correct language, optimal workflow and accurate interpretation of question meaning with 15 selected health professionals before launching the needs assessment. Pilot users were not invited to respond in the final version of the survey.

Survey distribution

In partnership with the International Medical Informatics Association for Latin America and the Caribbean (IMIA-LAC), we sent targeted email invitations to 330 selected MI–BI related professionals from Latin America, 190 attendees of our previous informatics courses,12 23 24 and four mailing lists related to health informatics, namely the IMIA-LAC mailing list (imia-lac@googlegroups.com), a Latin American Telemedicine mailing list (telemedicina-imtavh@googlegroups.com), a Peruvian Medical Informatics mailing list (apim@yahoogroups.com) and a Colombian eHealth mailing list (esalud-colombia@afrodita.unicauca.edu.co).

The MI–BI related professionals were nominated by national and international collaborators of the QUIPU programme, and the attendees of previous Biomedical Informatics courses were identified from a contact database. Emails were sent individually and included information about the objectives of the survey, the organisations involved, the confidentiality of the information, and a link that redirected participants to the survey. The survey was available online for 70 days.

This study was approved by the Human Ethics Committee of the Universidad Peruana Cayetano Heredia and the US Naval Medical Research Unit Six, Peru.

Statistical analysis

Demographic data and rankings from the questionnaire were analysed using SPSS V.11.0.

RESULTS

Participant characteristics

We received 142 surveys; 64% (91) of the respondents were male, 58% of participants were 40 years old or younger, and 49% had a Master’s or PhD degree. Overall, 47% of the respondents reported that they were working in Peru, 38% in another Latin American country, 10% outside Latin America (Belgium, Spain, France, Ireland and the USA), and 6% did not report their country of work. A total of 11 Latin American countries were represented in the survey. Latin American participants were from Colombia (24), Ecuador (6), Chile (5), Venezuela (5), Argentina (4), Brazil (4), Mexico (1), Uruguay (3), Honduras (1) and Guatemala (1). More than half (55.6%) of the participants were based at a university; 46.5% participated in teaching activities and 62% conducted research.

Most of the respondents (66%) identified their area of expertise as related to MI and 16.9% as related to BI. Table 1 summarises the demographic characteristics of study participants and areas of self-reported expertise.

Regarding their self-reported experience with software and programming, 90 (63%) reported using specialised software such as SPSS and STATA (used for statistical analysis), or Blast (Basic Local Alignment Search Tool used for aligning primary biological sequence information of proteins or DNA sequences). Sixty participants (42.3%) were capable of using/programming in JAVA and/or PHP, and/or administering general informatics services; 56 (39.4%) reported experience with telemedicine or electronic medical records.

Training needs for Medical Informatics and Bioinformatics

Participants ranked a list of 25 courses in Medical Informatics and five courses in Bioinformatics. The top three ranked courses in Medical Informatics were: Introduction to Biomedical Informatics, Data Representation and Databases, and Mobile Health. The top three ranked courses in Bioinformatics were: Sequence Analysis, Gene and Sequence Annotation, and Molecular Modelling (table 2).

Participants also suggested common courses for both Medical Informatics and Bioinformatics disciplines. The common courses suggested by more than 50% of the participants were: Introduction to Biomedical...
Informatics (80.3%), Information Retrieval in Databases (61.3%), Biostatistics (61.3%), Foundations in Biology, Biophysics and Informatics (58.5%), Data Representation and Databases (57.7%), Clinical Informatics (58.5%), and Epidemiology (50.0%).

Several new courses in Medical Informatics were suggested by participants. These included: Administration and Management in Informatics; Artificial Intelligence; Auditing in Informatics; Business Models in Informatics; Body Networks: Design of Health Personal Systems; Change Management in Informatics; Competency Development; Decision Making in Informatics; Evidence-based Medicine in Informatics; Expert Systems; History of Medical Informatics; Imaging Systems; Introduction to Biomedical Engineering; Intercultural and Global Health Informatics; Low-cost Cluster Design and Implementation; Methodology of Knowledge Generation; Operational Research in Informatics; Open Source Tools in Informatics; Qualitative Research; Semantic Web; Standards in Informatics; and Telemedicine and Tele-education.

New courses in Bioinformatics suggested by participants were: Bioinformatics Algorithms, Clusters and Grid Computing; Biological Systems; Comparative Genomics; Computational Evolutionary Biology; Data Mining; Database Management and Information Retrieval; Gene Expression Analysis; Genetic Therapy; Drug Design; Molecular Docking; Functional Genomics;
Low-cost Cluster Design and Implementation; Management and Administration in Bioinformatics; Nanotechnology; New Applications in Bioinformatics; Pattern Recognition and Sequence Analysis; Population Genomics; Proteomics; Perl Programming in Bioinformatics; and Project Management.

Research priorities suggested
Participants were asked in an open ended question to list three priority areas in Biomedical Informatics research that they think are needed in their country. The top ten topics recognised as research priorities were: Evaluation of Health Information Systems; Policy in Health Informatics; Interoperability and Standards; Evidence-based Decision Making in Informatics; Rural Telemedicine; Mobile Health; Electronic Health Records; Sequence Analysis and Gene Finding; Tele-education; and Cost-effectiveness analysis in Biomedical Informatics.

DISCUSSION
Participants in this survey represented a diverse array of individuals from several Latin American countries, with different disciplines related to MI and BI, and with a variety of interests in training and research. The results have allowed us to recognise topics of preference for diverse courses and research areas in Biomedical Informatics.

A course covering basic concepts in Biomedical Informatics was ranked as a top priority by participants. In addition, topics related to security, confidentiality and privacy, as well as emerging areas in Biomedical Informatics, such as Mobile Health, were suggested as priority courses. Given the wide distribution and availability of cell-phones and mobile devices, Mobile Health is showing promising impact as an emerging area of interest, especially in developing countries.\(^\text{25}\)\(^\text{26}\)

Security and privacy concerns are becoming increasingly important in modern health information systems.\(^\text{27}\) These concerns call for dedicated support infrastructures due to the sensitivity of personal information and its corresponding personal and social impact, especially considering the increase in network-based or network-aware health information systems. International initiatives in this direction include security standards, that is, security standards provided by the International Organization for Standardization (ISO).\(^\text{28}\)

In general, there is a need for an agreed on framework for curriculum development in Biomedical Informatics. Kampov-Polevoi et al recently developed a Course-Based Informatics Programme Categorisation (CBIPC) scheme based on the descriptions of 636 courses offered by 73 Public Health, Nursing, Health, Medical and Bioinformatics programmes in the USA. This scheme was used to classify coursework and to compare programmes across these different Biomedical and Health Informatics disciplines. Using this scheme, the authors found that there is substantial variability in programme content by informatics discipline; some programmes are characterised by fewer different course types, and by the common presence of certain courses (eg, Public Health, Bioinformatics, and Nursing Informatics). In contrast, other programmes such as Medical and Health Informatics offer greater curricular diversity. Additionally, there is similarity across several programmes in that a number of course topics—including programming, database systems and statistics, as well as courses dealing with legal, ethical and social issues—are present in the majority of these programmes.\(^\text{29}\)

Recently, Chang et al published a study focused on identifying the nursing informatics competencies required for nurses in Taiwan.\(^\text{30}\) They used a modified web-based Delphi method for two expert groups in nursing—educators and administrators—and identified 318 nursing informatics competencies selected by consensus for both item importance and appropriate level of nursing practice.\(^\text{30}\) Although our study was not intended to identify competencies, the study by Chang et al found that nursing informatics competencies required for nursing professionals in Taiwan are similar to those required for US nursing professionals.

Stead et al have recently provided a framework and reported a set of core informatics competencies for health professionals of the future according to the Accreditation Council for Graduate Medical Education core competencies. These included patient care, medical knowledge, practice-based learning and improvement, interpersonal skills and communication, professionalism and system-based practice.\(^\text{31}\) Future studies that evaluate competencies in Latin America are needed to explore the similarities and differences with other countries.\(^\text{32}\)

Participants suggested several research topics which could be integrated as part of the research agenda in Biomedical Informatics. These topics were closely related to the courses suggested for the development of a curriculum in Biomedical Informatics. Research areas such as Health Information Systems, Policy in Biomedical Informatics, and Interoperability and Standards are of crucial importance in our globalised world. Others, such as Rural Telemedicine and Tele-education, reflect the importance of conducting research that improves the health and education of remote and often neglected areas in Latin America.

Given the limited resources in the Latin American region, the creation of networks of universities with experience in Biomedical Informatics training and research should be promoted. The recently created QUIPU network (‘Red QUIPU’) is a promising group that aims to discuss regional curricula, look for funding that could be shared by member countries that are part of the network, share faculty and content with the members of the network (eg, via e-learning), and promote collaborations in Biomedical Informatics research and training.\(^\text{21}\)

Our study has some limitations. First, our sample was purposive and not intended to represent all Biomedical...
Informatics-related professionals in Latin America. Second, since the survey was conducted over the internet, our sampling is likely to be biased in terms of educational background and age. Another limitation is that we did not provide a definition of Medical Informatics and/or Bioinformatics. These definitions vary immensely from country to country and from group to group, so respondents self-identified themselves to MI or BI according to their own understanding of the fields. One of the strengths of this paper is that a total of 11 Latin American countries are represented by this survey, which is considered significant for an online survey in Latin America.

In summary, defining the needs for Biomedical Informatics professionals is an ongoing process that needs to be evaluated systematically. Currently, there is no consensus around these needs, which highlights the importance to further characterise the competencies for a biomedical informatics programme. Future assessments should characterise the needs of persons who wish to enter the field in order to have a broader curricular and research perspective. The information collected in this assessment is guiding the development of the curricula and research agenda for training and research in the Andean Region through the QUIPU Center.

Acknowledgements We would like to thank all faculty, researchers and students from Latin America who participated in this needs assessment.

Correction notice The “To cite: “…” information and running footer in this article have been updated with the correct volume number (volume 1).

Funding This work was supported by QUIPU: The Andean Global Health Informatics Research and Training Center, a FIC/NIH funded grant (D43TW008439-0109); and in part, by three grants from the FIC/NIH (R01TW007986; R01TW008598 and 2043 TW007393).

Competing interests One author of this manuscript is an employee of the US Government. This work was prepared as part of his duties. Title 17 U.S.C. § 105 provides that ‘Copyright protection under this title is not available for any work of the United States Government.’ Title 17 U.S.C. § 101 defines a US Government work as a work prepared by a military service member or employee of the US Government as part of that person’s official duties.

Ethics approval This study was approved by the Human Ethics Committee of the Universidad Peruana Cayetano Heredia and the US Naval Medical Research UnitSix, Peru.

Contributors MB, WC and PG conceived, designed and implemented the study, analysed the data and drafted the manuscript; MZ, CC, JC, AL and DL conceived and designed the study, collaborated on the interpretation of data and drafted the manuscript. All authors approved the final version of the manuscript.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data available.

REFERENCES

