Article Text

Download PDFPDF

Testing a digital system that ranks the risk of unplanned intensive care unit admission in all ward patients: protocol for a prospective observational cohort study
  1. James Malycha1,2,3,
  2. Oliver C Redfern1,2,
  3. Guy Ludbrook3,
  4. Duncan Young1,2,
  5. Peter J Watkinson1,2
  1. 1Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
  2. 2Kadoorie Centre for Critical Care Research and Education, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
  3. 3Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
  1. Correspondence to Dr James Malycha; james.malycha{at}ndcn.ox.ac.uk

Abstract

Introduction Traditional early warning scores (EWSs) use vital sign derangements to detect clinical deterioration in patients treated on hospital wards. Combining vital signs with demographics and laboratory results improves EWS performance. We have developed the Hospital Alerting Via Electronic Noticeboard (HAVEN) system. HAVEN uses vital signs, as well as demographic, comorbidity and laboratory data from the electronic patient record, to quantify and rank the risk of unplanned admission to an intensive care unit (ICU) within 24 hours for all ward patients. The primary aim of this study is to find additional variables, potentially missed during development, which may improve HAVEN performance. These variables will be sought in the medical record of patients misclassified by the HAVEN risk score during testing.

Methods This will be a prospective, observational, cohort study conducted at the John Radcliffe Hospital, part of the Oxford University Hospitals NHS Foundation Trust in the UK. Each day during the study periods, we will document all highly ranked patients (ie, those with the highest risk for unplanned ICU admission) identified by the HAVEN system. After 48 hours, we will review the progress of the identified patients. Patients who were subsequently admitted to the ICU will be removed from the study (as they will have been correctly classified by HAVEN). Highly ranked patients not admitted to ICU will undergo a structured medical notes review. Additionally, at the end of the study periods, all patients who had an unplanned ICU admission but whom HAVEN failed to rank highly will have a structured medical notes review. The review will identify candidate variables, likely associated with unplanned ICU admission, not included in the HAVEN risk score.

Ethics and dissemination Approval has been granted for gathering the data used in this study from the South Central Oxford C Research Ethics Committee (16/SC/0264, 13 June 2016) and the Confidentiality Advisory Group (16/CAG/0066).

Discussion Our study will use a clinical expert conducting a structured medical notes review to identify variables, associated with unplanned ICU admission, not included in the development of the HAVEN risk score. These variables will then be added to the risk score and evaluated for potential performance gain. To the best of our knowledge, this is the first study of this type. We anticipate that documenting the HAVEN development methods will assist other research groups developing similar technology.

Trial registration number ISRCTN12518261

  • clinical deterioration
  • intensive care unit
  • critical care unit
  • predictive score
  • electronic patient record
  • qualitative medical note review

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

View Full Text

Statistics from Altmetric.com

Footnotes

  • Contributors JM and OCR designed the study, undertook the methodological planning and wrote the protocol. DY and PJW assisted in study design and GL commented on successive drafts of the manuscript. All the authors read and approved the final manuscript.

  • Funding This publication presents independent research supported by the Health Innovation Challenge Fund (HICF-R9-524 and WT-103703/Z/14/Z), a parallel funding partnership between the Department of Health and Wellcome Trust.

  • Disclaimer The views expressed in this publication are those of the author(s) and not necessarily those of the Department of Health or Wellcome Trust.

  • Competing interests None declared.

  • Patient consent for publication Not required.

  • Ethics approval Health Research Authority approval was obtained from the South Central Oxford C Research Ethics Committee (16/SC/0264) and the Confidentiality Advisory Group (16/CAG/0066). Informed consent will not be obtained from the patients; however, patients who have requested that their data are not used for research purposes will be identified and removed from the study database. Patients will be allocated a study ID and all data transferred to the research database will have directly identifiable information removed. All documents will be stored securely and only accessible by study staff and authorised personnel. The study will comply with the UK Data Protection Act 2018.

  • Provenance and peer review Not commissioned; externally peer reviewed.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.