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Strengths and limitations of this study

►► The study identified several risk factors and devel-
oped a novel model for predicting future risk of in-
patient mortality based on features collected at the 
emergency department.

►► Large electronic health record database and high 
predictive power.

►► Single-site study without external validation.

Abstract
Objectives  To identify risk factors for inpatient mortality 
after patients’ emergency admission and to create a novel 
model predicting inpatient mortality risk.
Design  This was a retrospective observational study 
using data extracted from electronic health records 
(EHRs). The data were randomly split into a derivation set 
and a validation set. The stepwise model selection was 
employed. We compared our model with one of the current 
clinical scores, Cardiac Arrest Risk Triage (CART) score.
Setting  A single tertiary hospital in Singapore.
Participants  All adult hospitalised patients, admitted via 
emergency department (ED) from 1 January 2008 to 31 
October 2017 (n=433 187 by admission episodes).
Main outcome measure  The primary outcome of interest 
was inpatient mortality following this admission episode. 
The area under the curve (AUC) of the receiver operating 
characteristic curve of the predictive model with sensitivity 
and specificity for optimised cut-offs.
Results  15 758 (3.64%) of the episodes were observed 
inpatient mortality. 19 variables were observed as 
significant predictors and were included in our final 
regression model. Our predictive model outperformed the 
CART score in terms of predictive power. The AUC of CART 
score and our final model was 0.705 (95% CI 0.697 to 
0.714) and 0.817 (95% CI 0.810 to 0.824), respectively.
Conclusion  We developed and validated a model for 
inpatient mortality using EHR data collected in the ED. The 
performance of our model was more accurate than the 
CART score. Implementation of our model in the hospital 
can potentially predict imminent adverse events and 
institute appropriate clinical management.

Introduction
Inpatient mortality, a key performance indi-
cator of health services, provides general 
information concerning patient care 
delivery. Despite decades of research, inpa-
tient mortality remains an issue.1–3 Lu et al 
showed that preventable deaths in emergency 
admitted patients with early mortality are not 
rare.4 The Harvard Medical Practice Study 
I estimated 27.6% of the adverse events as a 

result of negligence.5 Even a delay of a few 
hours in transferring critically ill patients to 
the intensive care unit results in increased 
mortality.6 Several studies7–9 have shown that 
physiological deterioration or abnormal vital 
signs before cardiac arrest or death were 
common, making it possible to predict the 
progression of adverse events. Previous inter-
vention studies have demonstrated that inpa-
tient mortality can be avoided by adequate 
care,10 frequent physiological measurement11 
or other necessary measures. However, few 
studies managed to model the risk factors 
related to inpatients mortality after patients’ 
emergency admission through the emergency 
department (ED). Therefore, we proposed 
to use medical features collected at the ED 
to conduct predictive analysis, anticipating 
imminent adverse events and thus allowing 
physicians to respond appropriately.

There are numerous models for detecting 
mortality in the hospital, including the Early 
Warning Scores (EWS) system,12 which have 
been implemented in many hospitals to recog-
nise early clinical deterioration. The concept 
of EWS was proposed by Morgan et al in 1997 
and it included mainly the vital signs variables 
such as heart rate, blood pressure, respiratory 
rate, temperature and neurological status.13 
Subsequently, multiple variants have been 
developed, such as NEWS,14 Modified Early 
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Warning Scores (MEWS)15 and VitalPAC Early Warning 
Scores (ViEWS).16 The adoption of EWS in the hospital 
was found to correlate with reduced mortality rates and 
improved overall patient outcomes in a systematic review.17 
However, several studies18–20 pointed out its limitations, 
such as oversensitivity, low specificity and the need for an 
accompanying critical care outreach team. Accordingly, 
there still is a need for improvement in accurate recog-
nition. In 2012, the Cardiac Arrest Risk Triage (CART) 
score21 was developed with higher predictive power and 
usability than the MEWS. Furthermore, the increasing 
popularity of electronic health records (EHRs)22 creates 
an opportunity to acquire a more comprehensive and 
usable model for risk stratification in the hospital. Besides 
patient factors, non-patient factors, including prolonged 
emergency boarding,23 ED overcrowding24 and day of the 
week25 were used to augment the model’s sensitivity and 
specificity. Despite the common view of these worthwhile 
interventions, few clinical trials demonstrated a consis-
tent improvement in reducing the hospital-wide mortality 
rate.

Currently, there are few studies on early risk stratifica-
tion of ED patients for inpatient mortality in Singapore. 
A study in the USA has focused on patients with a specific 
diagnosis.26 Increased age, low systolic blood pressure or 
sodium levels, elevated heart rate or creatinine at admis-
sion were identified as important predictors for inpa-
tient mortality in patients hospitalised for heart failure. 
However, few studies report the general risk of inpatient 
mortality from the information gathered when patients 
are presented to the ED in Singapore. In this study, we 
aimed to derive and validate a mortality prediction model 
from the available information commonly collected in 
the ED, assisting doctors in identifying high-risk patients.

Methods
Study design and setting
We performed a retrospective, single-centre study to 
derive a novel model to predict inpatient mortality 
in wards using routinely collected data in the ED and 
compared its accuracy to the CART score. Singapore is a 
city–state in Southeast Asia with 5.6 million people and a 
diverse ethnic composition. Its mixed healthcare system 
provides affordable care funded through both compul-
sory savings and partial subsidies. The site of this study is 
Singapore General Hospital (SGH), the largest and oldest 
tertiary hospital with more than 30 clinical disciplines 
and 1700 inpatient beds. Its ED receives over 120 000 
visits and refers 36 000 inpatient admissions annually. 
EHR data were obtained from Singapore Health Services 
and were employed in this study. This study was approved 
by Singapore Health Services’ Centralised Institutional 
Review Board where patient consent was waived.

Patient and public involvement
Patients and the public were not involved in the design or 
planning of the study.

Study population and outcome
All patients visiting the ED from 1 January 2008 until 
31 October 2017 who were subsequently admitted after 
their ED discharge across all clinical specialties in SGH 
were included in this study. We excluded patients who 
were below 21 years old and died in the ED. The primary 
outcome of interest was inpatient mortality, identified 
by the hospital’s admission and discharge administrative 
database.

Data collection and variables
We extracted data from the hospital’s EHR, named as 
the SingHealth Electronic Health lntelligence System 
(eHints). Patients’ details were deidentified to ensure 
that the data were sufficiently anonymised. Death records 
were obtained from the national death registry and were 
matched to specific patients in the hospital. We selected 
variables that were available in the ED prior to hospital 
admission to ensure the model was clinically useful for 
early identification. Selected variables included 4 demo-
graphical variables, 4 ED administrative variables and 11 
clinical variables. Demographic variables include age, 
gender, nationality and race. ED administrative variables 
included consultation waiting time (unit: hour), ED 
boarding time (unit: hour), day of the week and shift 
time. Among these, ED boarding time is the amount of 
time that patients spent from the first consultation to 
ED discharge. Consultation waiting time is the amount 
of time that patients spent from ED registration to the 
first consultation with ED physicians. Clinical variables 
included one clinical service variable, six commonly 
sampled vital signs and four commonly sampled labora-
tory tests; specifically, they were blood gas (yes/no), pulse 
(beats/min), respiration rate (breaths/min), fraction of 
inspired oxygen (FiO2), blood oxygen saturation (SPO2), 
diastolic blood pressure (mm Hg), systolic blood pressure 
(mm Hg), bicarbonate (mmol/L), creatinine (μmol/L), 
potassium (mmol/L) and sodium (mmol/L).

Statistical analysis
The data were analysed using R V.3.42 (R Foundation, 
Vienna, Austria). After confirming the cohort, the data 
were randomly split into a derivation set (n=333 187, 
77%) and a validation set (n=100 000, 23%). The deri-
vation set was used to generate the model. Model accu-
racy was reported on the validation set, and bootstrapped 
samples were applied to calculate 95% CIs. During this 
analysis, a value of vital signs or laboratory tests would be 
considered as an outlier if it was beyond the normal range 
on the basis of domain knowledge. All detected outliers 
were set to missing. Then, all missing values were imputed 
using the median value of the derivation dataset.

Baseline characteristics of the study population were 
analysed on both derivation and validation sets to confirm 
similarity. In the descriptive summaries, frequencies and 
percentage were reported for categorical variables, while 
means and SDs were reported for continuous variables. We 
compared admitted patients with and without inpatient 
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Figure 1  Flow of patients’ emergency admissions.

mortality using two-tailed Student's t-test for continuous 
variables and χ2 test for categorical variables. The p-value 
shows the significance of difference for admitted patients 
between inpatient mortality and successful discharge. 
Because of the large sample size associated with EHRs, 
the threshold for declaring the statistical significance 
level was set at p<0.01, much smaller than the usual 0.05 
level, in order to reduce the chances of finding spurious 
effects.

The prediction model was built by applying two-step 
logistic regression to the derivation set. First, univariate 
analysis was performed on all variables to access their 
independent association with inpatient mortality. The 
largest cohort of each variable was selected as the baseline 
for comparison with other groups. ORs and the corre-
sponding CIs were calculated. Second, variables with 
p<0.01 from the first step were selected to be analysed 
using multivariate logistic regression with backward step-
wise variable selection.

In the final regression model, the modelling perfor-
mance was evaluated on the validation set. Our model 
generated a probability of inpatient mortality from 0 to 
1 for each admission episodes. The predictive power of 
the model was calculated using the area under the curve 
(AUC) in the receiver operating characteristic analysis. In 
order to compare our model with current clinical scores, 
we also applied the CART21 score into the same validation 
set and compared the performance between the CART 
score and our novel model.

Results
Basic characteristics
A total of 433 187 unique emergency admission episodes 
were included in this study. Of the 433 187 eligible 
episodes, 15 758 episodes (3.64%) met the outcome, that 
is, inpatient mortality. The mean age of the whole cohort 
was 62.1 (SD=17.7) years; 50.1% were female (n=216 914); 
most patients were Singaporean (90.5%, n=392 219); the 
ethnic compositions were similar to population norms 
(71.2% for Chinese, 12.1% for Malay, 10.6% for Indian 
and 6.1% for others); 2.1% (n=9144) of the patients 
received blood gas services in the ED; the mean ED 
boarding time was 4.78 (SD=3.83) hours; and the mean 
ED consultation waiting time was 0.77 (SD=0.79) hours.

The whole cohort was subsequently divided into the 
derivation set and validation set, as displayed in figure 1. 
Table 1 shows the statistics of highly similar populations 
in both sets. The derivation set was constitutive of patients 
with a mean age of 62.1 (SD=17.7), with similar male 
(49.9%) and female (50.1%) proportions and with the 
ethnic breakdown representing the general Singaporean 
population. Compared with the patients who survived to 
discharge, patients who died in the hospital were older, 
had shorter ED boarding time and consultation waiting 
time, and had a higher probability of receiving blood gas 
services while in the ED. They also had lower SPO2, blood 
pressure, bicarbonate and sodium concentration with a 

higher pulse, respiration rate, FiO2, and potassium and 
creatinine concentrations.

Univariate analysis
Table  2 shows the OR and adjusted OR of all demo-
graphic, administrative and clinical variables. All variables 
were respectively significant in the univariate regression 
in terms of the p value. We treated vital signs and labo-
ratory test values as continuous variables, and their ORs 
represented the increase or decrease in the odds of inpa-
tient mortality for a one-unit increase in this feature. 
Observed from the demographical data, patients who 
were male, ethnic Chinese had a higher risk of inpatient 
mortality. Patients who were foreigners and other races 
beyond Chinese were unlikely to die in the hospital after 
emergency admission. Administratively, patients who 
had shorter consultation waiting time and ED boarding 
time were more likely to die in the hospital. Clinically, 
patients with a higher pulse, respiration rate, FIO2, creat-
inine and potassium concentrations, and lower blood 
pressure, SPO2, bicarbonate and sodium concentration 
had a higher risk of inpatient death. All 19 variables were 
selected for multivariate stepwise analysis as a result of all 
their p values being below 0.01.

Multivariate analysis
All variables were used to create the stepwise regression 
model and no variable was removed through stepwise 
variable selection. The final model contains 19 variables, 
and the multivariate analysis with the corresponding 
adjusted ORs is shown in table  2. Older Singaporeans 
with Chinese ethnicity had a higher change of inpatient 
mortality. Although diastolic blood pressure, shift time 
and day of the week were not very significant in multivar-
iate analysis, they were included in the final model after 
backward stepwise variable selection and due to clinical 
judgements.27

Predictive model performance
Our model shows good discriminatory capability on 
predicting inpatient mortality. On the validation set, the 
model achieved an AUC of 0.817 (95% CI 0.810 to 0.824) 
with a sensitivity of 73.1% (95% CI 70.7% to 77.6%) and 
a specificity of 75.4% (95% C: 70.9% to 76.9%) under 
the optimal threshold (probability=0.037), as shown in 
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figure  2. In contrast, the performance of the existing 
CART score achieved an AUC of 0.705 (95% CI 0.697 
to 0.714) with a sensitivity of 72.1% (95% CI 70.7% to 
73.6%) and a specificity of 56.1% (95% CI 55.8% to 
56.4%) under the optimal threshold (CART value=7). 
The calibration curve of our developed model is shown 
in figure 3.

Discussion
In this study, the main finding is that 19 routinely 
collected variables from the ED EHR system can be used 
to predict inpatient mortality for patients after their 
emergency admission. Our predictive model has better 
discriminative power than the CART score (AUC 0.817 vs 
0.705) on the same validation set. The results suggest the 
possibility of building a reliable inpatient mortality model 
from the basic demographic, administrative and limited 
clinical information acquired from the ED when patients 
are admitted to the hospital through ED. By deriving a 
model of inpatient mortality using routinely collected ED 
data, our study identifies factors associated with inpatient 
mortality and provides a potentially useful tool for risk 
stratification of ED patients.

A major strength of our model is the size of the dataset, 
which was used for deriving this model. This is among the 
largest datasets used to generate an inpatient mortality 
predictive model with a cohort of over 430 000 patients 
in a 10-year period, targeting almost the whole hospital. 
In addition, it included a large amount of diversity due 
to Singapore’s diverse population. Another advantage of 
our model is its comprehensiveness, making it applicable 
to the general patient population presenting to the ED 
rather than some specific patient subgroups. Further-
more, the application of EHR systems will make our 
model easy to implement.

There are several reasons why the CART score under-
performed in our novel model in our study. At first, the 
CART score did not comprise laboratory test variables. 
The importance of including routine laboratory test 
values in the risk predictive model has been demonstrated 
in other studies. For example, in a study by Churpek and 
colleagues,28 including laboratory values in their model 
contributes important knowledge to the field. Pine et al29 
and Froom et al30 also gave evidence of laboratory values 
improving predictions of hospital mortality. Second, 
CART was unable to make use of valuable routine admin-
istrative data. Guttmann et al31 and Parker et al32 have 
previously shown that waiting time, work shifts and other 
administrative variables were greatly associated with inpa-
tient mortality and hospital admission. In comparison, 
our model takes both ED administrative data and labo-
ratory test values into account, proving a higher accuracy 
than the CART score.

Previous researchers have created several predictive 
tools for inpatient mortality. For example, Prytherch 
et al16 developed the ViEWS score, mainly using vital 
signs to predict mortality for hospitalised patients within 
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Table 2  Univariate and multivariate analyses

Unadjusted OR (95% CI) P value Adjusted OR (95% CI)
Adjusted P 
value

Demographics

 � Age 1.034 (1.033 to 1.035) <0.001 1.035 (1.033 to 1.036) <0.001

Gender

 � Female Baseline Baseline

 � Male 1.211 (1.168 to 1.256) <0.001 1.144 (1.1 to 1.19) <0.001

Nationality

 � Singaporean Baseline Baseline

 � Foreigner 0.549 (0.508 to 0.594) <0.001 0.898 (0.82 to 0.984) 0.021

Race

 � Chinese Baseline Baseline

 � Malay 0.696 (0.654 to 0.74) <0.001 0.865 (0.809 to 0.925) <0.001

 � Indian 0.538 (0.5 to 0.579) <0.001 0.69 (0.638 to 0.746) <0.001

 � Others 0.512 (0.464 to 0.564) <0.001 0.773 (0.692 to 0.862) <0.001

ED administrative

 � Consultation waiting time 0.437 (0.42 to 0.454) <0.001 0.683 (0.659 to 0.709) <0.001

 � ED boarding time 0.96 (0.954 to 0.966) <0.001 0.981 (0.975 to 0.987) <0.001

Day of week

 � Midweek Baseline Baseline

 � Monday 0.988 (0.937 to 1.042) 0.661 1.009 (0.953 to 1.068) 0.761

 � Friday 1.104 (1.045 to 1.167) <0.001 1.084 (1.022 to 1.149) 0.007

 � Weekend 1.129 (1.08 to 1.181) <0.001 1.001 (0.954 to 1.051) 0.954

Shift time

 � 8:00–16:00 Baseline Baseline

 � 16:00–24:00 1.053 (1.012 to 1.095) 0.01 1.023 (0.981 to 1.067) 0.288

 � 24:00–8:00 1.092 (1.031 to 1.156) 0.003 0.94 (0.883 to 1) 0.05

Clinical data

 � Blood gas (yes=1, no=0) 4.297 (4 to 4.617) <0.001 1.224 (1.121 to 1.336) <0.001

 � Pulse 1.035 (1.034 to 1.036) <0.001 1.025 (1.024 to 1.026) <0.001

 � Respiration rate 1.2 (1.192 to 1.208) <0.001 1.034 (1.027 to 1.042) <0.001

 � FiO2 1.04 (1.039 to 1.04) <0.001 1.028 (1.027 to 1.029) <0.001

 � SPO2 0.966 (0.963 to 0.969) <0.001 0.979 (0.976 to 0.983) <0.001

 � Diastolic BP 0.975 (0.973 to 0.976) <0.001 0.999 (0.997 to 1.001) 0.18

 � Systolic BP 0.984 (0.983 to 0.984) <0.001 0.985 (0.984 to 0.986) <0.001

 � Bicarbonate 0.889 (0.885 to 0.893) <0.001 0.967 (0.962 to 0.972) <0.001

 � Creatinine 1.001 (1.001 to 1.001) <0.001 1.001 (1.001 to 1.001) <0.001

 � Potassium 1.528 (1.494 to 1.562) <0.001 1.159 (1.129 to 1.189) <0.001

 � Sodium 0.938 (0.935 to 0.941) <0.001 0.961 (0.958 to 0.964) <0.001

BP, blood pressure;ED, emergency department; FiO2, fraction of inspired oxygen; SpO2, blood oxygen saturation.

24 hours. The significant predictors of mortality were 
the pulse, breathing rate, temperature, systolic BP, SPO2, 
FiO2 and mental status. Although vital signs are potential 
predictors of adverse events, they give the rapid response 
team (RRT) a very short time to respond, especially in 
a hospital with full capacity or lack of manpower. Since 

changes in vital signs occur hours before the event, these 
changes may not be seen at the time of consultation at the 
ED when potentially high-risk patients have non-discrimi-
natory vital signs similar to those of other healthy patients. 
Second, elderly patients may not have the expected vital 
sign changes associated with the clinical deterioration, 
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Figure 2  Receiver operating characteristic curves of our 
model and CART score on the validation set. AUC, area 
under the curve; CART, Cardiac Arrest Risk Triage.

Figure 3  Model calibration curve on the validation set.

and modelling using vital signs alone might miss out 
cases. It was demonstrated in a study by Churpek and 
colleagues,33 who suggest additional predictors of adverse 
events for elderly patients. Our model is notably different 
from this because it involved laboratory test values and 
administrative data besides vital signs and were presum-
ably appropriate for the rapidly ageing population in 
Singapore.34

Another study35 in Australia employed multivariate 
logistic regression of variables from datasets obtained at 
triage in one hospital to derive and validate a mortality 
prediction model, the Triage Information Mortality 
Model (TIMM). This TIMM included age, gender, time 
of the year, ambulance, Australasian triage scale and nine 
chief complaint codes. However, it did not include any 
physiological variables that were considered as strong 
predictors and could be obtained conveniently from the 
EHR system. In comparison, our model combined demo-
graphic, administrative and physiological variables, which 
will provide a much more comprehensive profile and 
capture sufficient information from patients in the ED, 
hence improving the model’s predictive power.

Our data analysis also produces some notable findings 
regarding risk factors related to inpatient mortality. It 
identified increased age, low blood pressure, high heart 
rate and elevated creatinine and potassium concentra-
tions, and decreased sodium and bicarbonate concen-
trations when patients present to the ED as important 
predictors for inpatient mortality. Besides these factors, 
our study identified some non-patient factors, such as 
emergency boarding time, day of the week and shift time, 
which can affect patient outcomes. Presenting to ED on 
Friday or the weekend and a shift time of 24:00 to 8:00 
were found to increase risk, consistent with a large study 
by Aylin and colleagues36 in the USA, which shows 10% 
higher odds of death for all emergency admission during 
the weekend compared with admission during a weekday. 
An excess in mortality may reflect differences in quality of 
care, potentially as a result of the ED overcrowding, insuf-
ficient services, change of shift and slower access to crit-
ical investigations. However, the differences in mortality 
decreased after adjustment for other factors in our anal-
ysis. Shorter ED boarding time and consultation waiting 
time become predictors potentially due to severely crit-
ical patients with a fast track to admission and intensive 
resources.

The information needed for this novel model is readily 
available at the time of consultation at the ED when the 
first set of laboratory tests is done, when a physician has to 
make a decision on further management and disposition 
of the patient. Our model can be deployed for early iden-
tification of high-risk patients. Afterward, we can allocate 
more intensive resources to high-risk patients with a suffi-
cient level of monitoring, increasing nursing attention,37 
activation of an RRT38 or a medical emergency team.39 
Thus, through our model, these patients could be seen 
early after emergency admission, and the previously 
mentioned interventions can be started to avoid severe 
sudden adverse events during their inpatient stay. Simi-
larly, low-risk patients below the predictive threshold 
could potentially be safely identified who might not need 
admission or intensive monitoring and thus save precious 
in-patient resources. Overall, the good performance, 
usability and widespread adoption of an advanced EHR 
system make our model easy to integrate into the hospital 
electronic system such that the probability of inpatient 
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mortality or real-time risk score can be calculated for every 
patient when they are presented to the ED and ready for 
admission to the hospital. The model can supplement the 
physician’s judgement in decision-making.

Limitation
There are several limitations in this study. First, all vari-
ables included in this study are based on EHR, and it 
only contains routinely collected information and does 
not include all information available that should, in 
theory, be elicited early when patients present to the ED. 
For example, comorbidity information or the Charlson 
Comorbidity Index40 was considered as significant predic-
tors. However, they were not available in our current 
analysis. Other health uses, such as intubation and resus-
citation, have been proven to be predictive of overall 
mortality and should have been included in our model. 
Furthermore, due to the lack of neurological features such 
as the Glasgow Coma Scale (GCS) score, which were not 
common variables collected in a Singaporean hospital, we 
were not able to calculate the MEWS score and compare 
it with our model. In future studies, the GCS and other 
important features should be recorded and incorporated 
into prospective investigations. Second, this is a single-
site study at a tertiary hospital, and our findings may not 
be generalised to other settings; thus, our results need to 
be validated in different hospital settings in Singapore or 
other countries in future research, especially population 
consisting of different ethnicities to avoid centre-specific 
bias. Prospective data collection is supposed to explore 
the clinical value and effect of our model in practice and 
to further prove its efficacy. Third, our model is complex 
and the calculation should be done electronically. The 
ability to implement an EHR system varies in different 
hospitals and the lack of features monitored by the system 
may limit the generalisability of our model.

Conclusion
In summary, we identified several risk factors and devel-
oped a novel model for inpatient mortality using 10-year 
EHR data routinely collected at the ED. The discrimina-
tive capability of our model was better than that of the 
traditional clinical score, the CART score. Implementa-
tion of our model in the ED can allow accurate and timely 
identification of a high-risk cohort for interventions 
during their inpatient stay, resulting in a potential reduc-
tion in avoidable inpatient mortality.
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