BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Patients living in greener neighborhoods live longer and take fewer opioids following hip arthroplasty

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029522
Article Type:	Research
Date Submitted by the Author:	30-Jan-2019
Complete List of Authors:	Donovan, Geoffrey; USDA Forest Service, PNW Research Station Gatziolis, Demetrios Douwes, Jereon; Massey University, Centre for Public Health Research
Keywords:	EPIDEMIOLOGY, Hip < ORTHOPAEDIC & TRAUMA SURGERY, Knee < ORTHOPAEDIC & TRAUMA SURGERY

SCHOLARONE[™] Manuscripts

1		
2 3	1	Detients living in greener neighborhoods live lenger and take fewer enigids following his orthrespecty
4	1	Patients living in greener neighborhoods live longer and take fewer opioids following hip arthroplasty
5		
6 7	2	Geoffrey H. Donovan, ^{a,*,1} Demetrios Gatziolis, ^b and Jeroen Douwes ^a
8	3	°Center for Public Health Research, Massey University, PO Box 756, Wellington 6140, New Zealand
9	4	^b USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, Oregon, USA
10 11	5	*Corresponding author ORCID: 0000-0002-1624-3440
12	6	
13	7	Word count: 3,000
14	8	
15	9	
16		
17 18	10	
19		
20		
21		
22		
23 24		
2 4 25		
26		
27		
28		
29 30		
31		Word count: 3,000
32		
33		
34 25		
35 36		
37		
38		
39		
40		
41 42		
43		
44		
45		
46		
47 48		
49		
50		
51		
52		
53 54		
55		¹ Permanent address: USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR 97205,
56		USA +1 503-808-2043 gdonovan@fs.fed.us
57		
58 59		1
27		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
1/ 10	
18 19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

20

31

1

11 ABSTRACT 12 **Objectives:** Determine whether patients who live in greener and more walkable neighborhoods live 13 longer, and take fewer opioids, following hip or knee arthroplasty. 14 Design: Retrospective cohort study 15 Setting: Residential environment following surgery at one of 54 hospitals New Zealand hospitals 16 **Participants:** All people who received a total hip or knee arthroplasty at a publicly-funded hospital in 17 New Zealand in 2006 and 2007 (7,449 hip arthroplasties and 6,558 knee arthroplasties). 18 Primary and secondary outcome measure: Time to all-cause mortality and number of post-surgical 19 opioid prescriptions

vegetation index (NDVI), lived longer following hip arthroplasty (standardized OR: 0.94 95% CI: 0.900.98), but no significant association was found for knee arthroplasty. Patients who lived in greener
neighborhoods also took fewer opioids in the 12 months following surgery (standardized OR: 0.97 95%
CI: 0.95-1.00). As with post-surgical mortality, the relationship between greenness and opioid use was

Results: Patients who lived in greener neighborhoods, as measured by the normalized difference

25 only significant for hip arthroplasty.

Conclusions: Consistent with the literature on enhanced-recovery programs, people who lived in
greener neighborhoods took fewer opioids, and lived longer, following hip arthroplasty. Improving
access to the natural environment may therefore be an effective component of post-surgical recovery
programs.

30 **Keywords:** Normalized difference vegetation index, natural environment, surgical recovery, orthopedic

2 3 4	32	STRENGHTS AND LIMITATIONS OF THIS STUDY
5 6 7	33	• First study to examine the relationship between natural environment and surgical recovery
8 9	34	outside of a hospital setting
10 11 12	35	• Large cohort followed longitudinally for 9+ years
13 14	36	• Observational study, so we couldn't establish a causal link between the natural environment
15 16	37	and surgical recovery
17 18 19	38	Exposure was based on residential meshblock not residential address
20 21	39	Competing interests: None declared
22 23 24	40	Funding: No external funding was received
25 26 27	41	Data availability statement: De-identified data are not publicly available but may be obtained from
28 29	42	Statistics New Zealand after gaining ethical approval and submitting a research proposal (contact:
30 31	43	access2microdata@stats.govt.nz). Note that, even with these approvals, data must be accessed via a
32 33 34	44	secure data lab in New Zealand. Exposure data, and code used for statistical analysis, are freely available
35 36	45	from the authors.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	46	
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47 INTRODUCTION

Rates of hip and knee arthroplasty are rising globally. For example, in OECD countries, the incidence of hip arthroplasty rose from 140/100,000 people in 2005 to 164/100,000 in 2011 [1]. Similarly, the incidence of knee arthroplasty in OECD countries rose from 114/100,000 in 2005 to 150/100,000 in 2011 [2]. Increases in life expectancy and obesity rates suggest that this trend is likely to continue [3]. Given this increased demand, and constrained healthcare budgets, research has focused on identifying approaches that improve post-surgical health outcomes, shorten length of stay, and reduce costs. For example, enhanced-recovery programs that emphasize rapid mobilization and rehabilitation following hip or knee arthroplasty, can reduce length of hospital stay [4] and decrease mortality [5]. However, no research has focused on the effect of patients' residential environment, despite the well-established link between exposure to the natural environment and increased physical activity [6-9], and research showing that viewing a natural scene while recovering from surgery can reduce both length of hospital stay and post-surgical opioid use [10]. We address this gap in the literature by evaluating the relationship between exposure to the built and natural environment and recovery from hip or knee arthroplasty in a large New Zealand cohort.

62 Literature review

Numerous studies have examined how different elements of enhanced-recovery programs affect postoperative outcomes (also known as fast-track or rapid-recovery programs). These programs use
coordinated multimodal techniques to reduce recovery times and improve post-operative outcomes [3].
For example, pre-operative education can shorten hospital stays [11] and reduce post-operative pain
[12]. Several studies have found that pre-emptive analgesia allows more rapid mobilization and return
of function [13, 14]. Multiple studies have found that rapid mobilization on the day of surgery (typically
2-6 hours after surgery) reduces length of stay and improves function [15-17]. Similarly, aggressive

BMJ Open

3	
1	
4 5 7 8 9 10	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
24	
54	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

70	physical therapy (extending beyond the day of surgery) can reduce length of stay and improve function
71	[18-20]. Finally, in a prospective study of 4,500 patients in the UK, enhanced recovery was associated
72	with improved two-year survival rates when compared to traditional post-surgical protocols, which
73	suggests that post-operative mobility may have long-term benefits [5].
74	Several studies have found that exposure to the natural environment is associated with increased
75	physical activity. For example, using survey data in Chicago (n=1,544), Fan et al. [21] found that
76	respondents with a greater area of public parks within 0.5 miles of their home were more likely to
77	engage in physical activity. A survey of 1,895 people in Adelaide, Australia [9] found that respondents
78	who perceived their neighborhood as greener were more likely to engage in recreational walking.
79	Similarly, a study in 1,803 people in Perth, Australia [22] found that people who lived nearer to
80	recreational amenities, including public parks, were more likely to meet minimum physical-activity
81	requirements.
82	METHODS
83	Study sample

84 Our sample consisted of all people who received a total hip or knee arthroplasty at a publicly-funded 85 hospital in New Zealand in 2006 and 2007 (7,449 hip arthroplasties and 6,558 knee arthroplasties). We 86 obtained individual-level hospital and pharmaceutical records via Statistics New Zealand's Integrated 87 Data Infrastructure (IDI), which is a large database of routinely-collected individual-level data [23]. The 88 IDI is structured around a central spine designed to identify all New Zealand residents. Datasets 89 describing health, education, benefits, criminal justice, population (births, deaths, and immigration), 90 income and work, and housing are linked to this central spine. 91 As this study was based on routinely-collected health data, and did not involve contacting individual

92 patients, the study was classified as minimal risk by the New Zealand Health and Disabilities Ethics

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	93	Committee and was approved by Statistics New Zealand (MAA-2017-57). In addition, our research
4 5	94	conformed to the Declaration of Helsinki guidelines.
6 7	-	
8 9 10	95	Patient and Public Involvement statement: There was no patient recruitment.
10 11 12 13	96	Outcomes
14 15	97	We used two outcomes to measure recovery: time to all-cause mortality and number of opioid
16 17	98	prescriptions 3, 12, and 24 months post-surgery. We chose these outcomes, as they are important
18 19	99	metrics of post-surgical recovery, and previous research has shown that rapid mobilization and
20 21 22	100	rehabilitation can reduce two-year mortality rates following hip or knee arthroplasty [24], and exposure
23 24	101	to the natural environment, in a hospital setting, is associated with reduced perioperative use of opioids
25 26 27	102	[10].
28 29	103	By the end of 2016, 2,263 of the 7,449 people who had received a hip arthroplasty had died as had
30 31 32	104	1,741 of the 6,558 people who received knee arthroplasties.
33 34	105	The number of opioid prescriptions received was calculated by linkage to pharmacy records. We did not
35 36 27	106	include prescriptions for methadone or bruprenorphine, as in New Zealand these are primarily used to
37 38 39	107	treat addiction. To control for pre-surgical pain, we calculated the number of opioid prescriptions each
40 41	108	participant received in the 12 months before surgery. Finally, to account for opioid potency, we
42 43	109	categorized each opioid prescription as either strong (potency equal to or greater than morphine) or
44 45	110	weak (potency less than morphine). On average, study participants received 3.04 (SD=9.38) opioid
46 47 48	111	prescriptions in the 12 months before surgery (0.68 strong and 2.36 weak) and 2.72 (SD=7.06) opioid
49 50 51	112	prescriptions in the 12 months after surgery (0.75 strong and 1.98 weak).
52 53	113	Exposures
54 55	114	All exposures are based on a participant's residential meshblock, which is the smallest geographic unit at
56 57	115	which Statistics New Zealand reports data. On average, 95 people live in a meshblock.
58 50		6
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	116	Linking to address history in the IDI allowed us to estimate exposures for each year of the study (2005-
5 6	117	2016). From these annual values, we calculated mean post-surgical exposure, which we defined as the
7 8 9	118	mean exposure from the year of surgery to death or 2016, whichever came first.
10 11 12	119	Walkability
13 14	120	We used a previously validated walkability index [25] with three components: number of households per
15 16 17	121	hectare (data source: 2006 New Zealand Census), number of road intersections per square kilometer
17 18 19	122	(data source: Land Information New Zealand), and land-use mix (data source: 2008 New Zealand Land
20 21	123	Cover Database v4.1).
22 23 24 25	124	Land-use mix is defined as:
26 27 28 29	125	Land-use mix is defined as: $Land-use mix = \frac{\sum_{i=1}^{n} (LC_{i} * ln(LC_{i}))}{ln(N)}$ Where <i>LC_i</i> denotes the proportion of each meshblock that is covered by the <i>i</i> th land-cover type and <i>N</i>
30 31	126	Where LC_i denotes the proportion of each meshblock that is covered by the <i>i</i> th land-cover type and N
32 33 34	127	denotes the total number of land-cover types. Following Frank et al., we standardized household
35 36	128	density, intersection density, and land-use mix (by subtracting the mean and dividing by the standard
37 38 39	129	deviation), and summed the three standardized scores into a single walkability index.
40 41	130	Greenness
42 43 44	131	We used two measures of exposure to the natural environment: land-cover data (see above) and the
45 46	132	Normalized Difference Vegetation Index (NDVI), which is a greenness index derived from satellite
47 48 49	133	imagery. Specifically, we used maximum annual NDVI derived from 30m-resolution Landsat imagery that
49 50 51	134	was calculated at the top of the atmosphere, which normalized all atmospheric effects. We standardized
52 53	135	NDVI values to make regression coefficients easier to interpret. From these annual values, we calculated
54 55 56	136	mean post-surgical greenness exposure.
57 58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

137	Covariates

Using data from the IDI, we controlled for sex, ethnicity, and age. In addition, we controlled for neighborhood deprivation using the New Zealand Deprivation Index (NZDep), which is a well-validated index calculated from nine census variables [26]. NZDep ranges from 1 to 10 with higher values denoting higher levels of social deprivation. Finally, we controlled for eight chronic conditions at time of surgery: coronary heart disease, gout, chronic obstructive pulmonary disease (COPD), diabetes, cancer, stroke, acute myocardial infarction, and traumatic brain injury. Conditions were pre-defined by Statistics New Zealand based on hospital-admissions and pharmacy data [27]. **Statistical analysis** We analyzed time-to-death data using a frailty model that included hospital-level random effects. We were particularly careful to account for the hospital where the surgery was performed, because smaller hospitals that may not be able to provide the specialist care of a larger hospital are more likely to be in rural areas that are greener. We evaluated five different functional forms for the survival function (Weibull, exponential, log-logistic, log-normal, and gamma) and chose between them using the Akaike information criterion. We analyzed the number of post-operative opioid scripts using a mixed negative-binomial regression that included hospital-level random effects. A backwards-selection procedure was used for all model selection: variables were dropped from the analysis using progressively smaller p-value thresholds (final threshold: p<0.1). Insignificant variables can still be confounders [28], so we systematically re-introduced dropped variables and retained them if the coefficients on variables of interest changed by more than 10%.

157 To avoid including highly collinear combinations of variables, we estimated ordinary least squares

158 versions of each model (results not shown), which allowed us to calculate variance-inflation factors for

159 each independent variables. If any variable had a variance-inflation factor over two, we dropped it from

1 2		
3	160	the regression model. When choosing between two collinear variables, we included the variable with
4 5		
6	161	the lowest p-value when individually regressed against the dependent variable.
7 8	160	We also conducted stratified analyzes to see whether the relationship between the natural environment
9	162	We also conducted stratified analyses to see whether the relationship between the natural environment
10 11	163	and health outcomes was the same across different strata of the sample. Analyses were conducted for
12 13	164	hip and knee arthroplasty combined as well as for each outcome separately.
14 15		
15 16	165	RESULTS
17		
18 19	166	Table 1 provides descriptive statistics for our sample.
20		
21 22	167	In the frailty model, specifying the survival function using a Weibull distribution gave the best model fit.
23	100	Deine olden mole Europeen Neu Zelenden en Māeri (the indicensus neerle of Neu Zeclend) were oll
24 25	168	Being older, male, European New Zealander, or Māori (the indigenous people of New Zealand) were all
26	169	mortality risk factors (Table 2). Similarly, people who received more pre-surgery opioids, or had a longer
27 28	170	
29	170	hospital stay, were at greater risk of mortality. Six chronic conditions were risk factors as was higher
30 31	171	neighborhood deprivation, although this relationship was only significant for hip arthroplasty.
32		
33 34	172	People who lived in greener neighborhoods (defined as mean post-surgical NDVI) were at lower risk of
34 35		4
36 27	173	mortality, although this relationship was only significant in the hip-and-knee arthroplasty and hip-
37 38	174	arthroplasty-only models (Table 2). To better elucidate the dose-response function linking NDVI and
39 40		
40 41	175	mortality, we re-estimated the hip-and-knee-arthroplasty frailty model splitting NDVI into quartiles
42 43	176	(Table 3). Only the highest quartile was statistically significant, although NDVI remained protective in the
44	4 7 7	
45 46	177	second and third quartiles.
40 47	470	
48	178	Figure 1 shows the odds-ratio for mean lifetime NDVI for different strata of the sample. Stratifying the
49 50	179	sample resulted in some loss of significance, due to lower numbers in each stratum. Notably, the
51		
52 53	180	protective effect of NDVI was higher for men than women. The protective effect of NDVI was also
54	181	modestly higher for people who lived in higher SES neighborhoods (NZDep 1-5) compared to lower SES
55 56		
57		
58 59		9
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

neighborhoods (NZDep 6-10). Similarly, NDVI was somewhat more protective for people who were
younger than average (mean age at surgery=68).

In the opioid model (Table 4), women, European New Zealanders, and people who were prescribed more pre-surgery opioid prescriptions received significantly more post-surgical opioid scripts in all three time periods with the exception of European New Zealanders in the 24 months post-surgery model (Table 4). Those who received a knee arthroplasty (as opposed to a hip arthroplasty), or stayed longer in hospital, also received more post-surgical opioids, as did people who had COPD, coronary heart disease, or traumatic brain injury. In contrast, older people received fewer opioid prescriptions, although the significance of this relationship varied across the three time periods. Separating opioids into weak and strong was not revealing and reduced the significance of variables of interest (data not shown). Mean post-surgical greenness was associated with significantly fewer post-surgical opioid prescriptions in all three time periods (Table 4). Living in a rural area, walkability, and land cover were not significantly associated with the number of post-surgical opioid prescriptions or post-surgical longevity (data not shown). In addition, consistent with the frailty model, NDVI was not significant, when the analysis was restricted to knee-arthroplasty (results not shown). Finally, when we split NDVI into quartiles, none were significant (results not shown).

198 In the stratified analysis (figure 2), greenness was more protective for men than women, which is
 199 consistent with the frailty model.

DISCUSSION

In a cohort of people who received a total hip or knee arthroplasty at a publicly-funded hospital in New
 Zealand in 2006 or 2007, we found that residents of greener neighborhoods received fewer post-surgical
 opioid prescriptions and lived longer, with the strongest results for hip arthroplasty. Our results are
 consistent with those reported by Ulrich [10], who found that, after gall-bladder surgery, patients

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 28

1 2

3 4	205	recovered faster, and took fewer opioids, if they were in a room with a view of a natural scene. Our
5 6	206	results were also consistent with a previous study [5], which found that rapid mobilization following hip
7 8	207	or knee arthroplasty was associated with better two-year survival rates. Our study suggests that the
9 10 11	208	benefits of mobilization (assuming this plays a role in the observed association between green space and
12 13 14	209	mortality or opioid-use) extend beyond the immediate post-surgical period.
15 16	210	In both the opioid and survival models, we found that greenness was more protective for men than
17 18	211	women. This differential association may be because women's life expectancy is greater than men, so
19 20	212	they are less likely to have a live-in partner who could encourage them to be physically active, and
21 22 23	213	accompany them while they engage in outdoor activity that they might otherwise find too daunting. This
23 24 25	214	possible mechanism is consistent with multiple studies showing that having a live-in partner is
26 27	215	protective of a range of health outcomes [29]. In addition, this suggests that women, or indeed men,
28 29	216	who live alone may benefit from additional post-surgical support.
30 31 32	217	Greenness was associated with lower post-surgical opioid use, and lower mortality, in people recovering
33 34	218	from hip arthroplasty but not those recovering from knee arthroplasty. This may be because knee
35 36 37	219	arthroplasty is a more difficult and painful surgery to recover from (post-surgical opioid use was higher
38 39	220	for knee-arthroplasty patients), and the protective effect of neighborhood greenness is insufficient to
40 41	221	induce a clinically significant increase in post-surgical mobilization. However, other mechanism may also
42 43 44	222	be involved (see below), so results should be interpreted with care.
45 46	223	There was modest evidence that younger people, and those living is less deprived neighborhoods,
47 48	224	derived greater benefit from exposure to greenness. This may be because younger people are more
49 50 51	225	physically able to engage in outdoor activity, and that greenspace in higher SES neighborhoods may be
52 53 54	226	better maintained and more appealing because of lower crime.
55 56		
57 58		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	227	When we split NDVI into quartiles in the frailty model, we found that only the top quartile was
5 6	228	protective at conventional significance levels. This suggests that there may be a minimum threshold
7 8 9	229	below which greenness offers no health benefits. However, it is important to note that NDVI is a coarse
9 10 11	230	measure of overall greenness. It does not reveal which elements of the natural environment provide the
12 13	231	greatest health benefits. Identifying the most protective elements would help inform the design of
14 15 16	232	landscapes that are not in the top quartile of NDVI, but nonetheless provide health benefits.
17 18	233	The magnitude of the protective effect of neighborhood greenness is not trivial. For example, in the 3-
19 20	234	months post-surgery model of opioid use, a 2-SD decrease in NDVI is roughly equivalent to the risk of
21 22 23	235	having chronic heart disease at the time of surgery. In the hip-only frailty model, a 2-SD decrease in
24 25	236	NDVI is roughly equivalent to the risk of being two years older.
26 27	237	Physical activity is likely not the only mechanism linking greenness and improved post-surgical
28 29	238	outcomes. For example, exposure to the natural environment can reduce short-term markers of stress
30 31 32	239	such as heart rate, blood pressure, and salivary cortisol [30, 31]. In turn, stress is a well-documented risk
33 34	240	factor for premature mortality [32] and can also trigger opioid cravings [33]. Similarly, exposure to the
35 36 27	241	natural environment is associated with increased social connectivity [34], and social isolation can
37 38 39	242	increase individual reactivity to opioids [35] as well as being a risk factor for premature mortality [36].
40 41	243	More recently, research suggests that exposure to the natural environment may increase the microbial
42 43	244	diversity of the human microbiome [37], and protect against adverse health outcomes [38] through
44 45 46	245	improved immune function. In addition, improved immune function is associated with improved surgical
40 47 48	246	recovery [39] and better orthopedic outcomes in elderly patients [40].
49 50	247	Our study has several limitations. This is an observational study, so we were not able to establish a
51 52 53	248	causal relationship between exposure to the natural environment, opioid use, and surgical recovery. In
54 55	249	addition, our metrics of exposure to the natural environment were coarse. In particular, meshblock-level
56 57 58		10
58 59 60		12 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~~		

1 2		
3 4	250	NDVI is an imperfect measure of a person's exposure to the natural environment. This is especially true
5 6	251	in larger, rural meshblocks, where mean NDVI may not optimally represent a person's residential
7 8 9	252	exposure to the natural environment. In addition, our outcome measures do not fully capture all
10 11	253	elements of surgical recovery. For example, we did not have access to data on post-surgical physical
12 13 14	254	activity levels or weight.
$\begin{array}{c} 14\\ 15\\ 16\\ 7\\ 18\\ 9\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 90\\ 41\\ 42\\ 43\\ 44\\ 50\\ 51\\ 52\\ 35\\ 55\\ 55\\ \end{array}$	255	activity levels or weight.
56 57		
58 59		13
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TABLES

Table 1: Descriptive statistics for study participants who received a hip or knee arthroplasty at a publicly-funded hospital in New Zealand in 2006 or 2007 (hip: n=7,449; knee: n=6,558)¹

	H	IP	KN	IEE
Variable	Mean	SD	Mean	SD
Male (%)	43.2	-	44.9	-
Ethnicity: NZ European (%)	82.0	-	81.1	-
Ethnicity: Māori (%)	9.9	-	6.4	-
Ethnicity: Pacific Islander (%)	0.99	-	3.2	-
Chronic condition: COPD (%)	8.8	-	9.8	-
Chronic condition: acute MI (%)	5.8	-	5.1	-
Chronic condition: CHD (%)	10.6	-	12.1	-
Chronic condition: stroke (%)	2.3	-	2.6	-
Chronic condition: diabetes (%)	12.4	-	15.5	-
Chronic condition: traumatic brain injury (%)	1.5	-	1.1	-
Length of hospital stay (days)	6.4	4.5	6.2	3.0
Opioid scripts (12 month pre-surgery)	3.2	6.8	2.4	5.2
Opioid scripts (12 month post-surgery)	2.1	4.9	2.8	5.1
Age on day of surgery	68.2	12.0	69.5	9.9
Mean post-surgical NDVI	0.527	0.123	0.526	0.121
¹ Following IDI protocols, all sample sizes (including t multiple of three		of hospitals)		

29			0.527	0.125	0.520	0.121	
	259	¹ Following IDI protocols, all sample sizes (including th	e number	of hospitals)	have been	rounded to	the nearest
30				or nospitals,		rounded to	, the nearest
21	260	multiple of three					

BMJ Open

Table 2: Frailty model of time to all-cause mortality (Hip and knee: number of participants=14,010, number of observations= 149,523; hip:
 number of participants=7,449, number of observations=78,501; knee: number of participants=6,558, number of observations= 71,022)¹. The
 ethnicity reference group is a composite of all ethnicities other than European NZ or Māori.

		HIP AN	ID KNEE		HIP		KNEE
Vari	able	HR	95% CI	HR	95% CI	HR	95% CI
Age (y	vears)	1.090***	1.086 - 1.094	1.084***	1.078 - 1.089	1.098***	1.091 - 1.10
Fem	ale	0.711***	0.667 - 0.758	0.730***	0.670 - 0.796	0.665***	0.604 - 0.73
Ethnicity: E	uropean NZ	1.309***	1.151 - 1.490	1.279***	1.063 - 1.538	1.284***	1.072 - 1.53
Ethnicity	/: Māori	2.137***	1.806 - 2.528	1.910***	1.516 - 2.406	2.286***	1.778 - 2.93
Mean post-su	rgical NZDep	1.010*	0.998 - 1.023	1.018**	1.002 - 1.035	0.999	0.980 - 1.01
Chronic cond	lition: COPD	1.448***	1.325 - 1.583	1.410***	1.250 - 1.591	1.478***	1.294 - 1.68
Chronic condi	tion: acute MI	1.442***	1.293 - 1.607	1.384***	1.199 - 1.597	1.476***	1.249 - 1.74
Chronic cond	ition: cancer	1.485***	1.357 - 1.625	1.592***	1.417 - 1.790	1.333***	1.157 - 1.53
Chronic conc	ition: Stroke	1.567***	1.346 - 1.825	1.702***	1.394 - 2.078	1.385***	1.094 - 1.75
Chronic condi	tion: diabetes	1.306***	1.203 - 1.417	1.278***	1.142 - 1.430	1.342***	1.191 - 1.51
Chronic condition: Tr	aumatic brain injury	1.299*	0.994 - 1.697	1.193	0.835 - 1.703	1.452*	0.968 - 2.17
Opioid scripts 12 m	onths pre-surgery	1.005***	1.004 - 1.006	1.018***	1.014 - 1.022	1.004***	1.002 - 1.00
Mean post-surgical	NDVI (standardized)	0.954***	0.922 - 0.987	0.936***	0.895 - 0.979	0.978	0.929 - 1.02
Length of h		1.034***	1.029 - 1.039	1.030***	1.025 - 1.036	1.052***	1.040 - 1.06
Variance of hospi	tal random effect	0.01404		0.011138	6	0.006208	
Number of	Hospitals ¹	54		51		51	

Table 3: Frailty model of time to all-cause mortality following hip or knee arthroplasty with NDVI quartiles (number of participants=14,010;
 number of observations= 149,523)¹. The ethnicity reference group is a composite of all ethnicities other than European NZ or Māori.

	Variables	HR	95% CI	_
	Age (years)	1.090***	1.086 - 1.094	
	Female	0.714***	0.670 - 0.761	
	Ethnicity: European NZ	1.305***	1.147 - 1.484	
	Ethnicity: Māori	2.124***	1.796 - 2.513	
	NZDep	1.012*	1.000 - 1.024	
	Chronic condition: COPD	1.448***	1.325 - 1.583	
	Chronic condition: acute MI	1.443***	1.295 - 1.608	
	Chronic condition: cancer	1.489***	1.361 - 1.629	
	Chronic condition: Stroke	1.568***	1.347 - 1.826	
	Chronic condition: diabetes	1.307***	1.204 - 1.418	
	Chronic condition: Traumatic brain injury	1.300*	0.995 - 1.699	
	Opioid scripts 12 months pre-surgery	1.005***	1.004 - 1.006	
	NDVI (standardized) quartile 2	0.933	0.856 - 1.017	
	NDVI (standardized) quartile 3	0.953	0.873 - 1.041	
	NDVI (standardized) quartile 4	0.884**	0.804 - 0.971	
	(builder dized) qualifier	0.004	0.804 - 0.971	
3	Length of hospital stay ***p<0.01, **p<0.05, *p<0.1	1.034***	1.029 - 1.039	1
3 4 5 6	Length of hospital stay	1.034***	1.029 - 1.039	- en rounded to the nearest multiple of thre
4 5	Length of hospital stay ***p<0.01, **p<0.05, *p<0.1	1.034***	1.029 - 1.039	- en rounded to the nearest multiple of thre

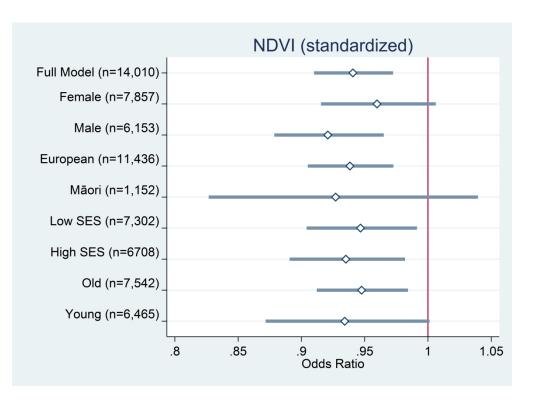
		3 MONTH	IS POST SURGERY	12 MONT	THS POST SURGERY	24 MON	THS POST SURGERY
		HR	95% CI	HR	95% CI	HR	95% CI
	Opioid scripts 12 months pre-surgery	1.083***	1.079 - 1.087	1.136***	1.130 - 1.141	1.147***	1.141 - 1.154
	Female	1.124***	1.072 - 1.177	1.177***	1.121 - 1.237	1.195***	1.134 - 1.259
	Ethnicity: European NZ	1.247***	1.171 - 1.329	1.121***	1.051 - 1.196	1.01	0.944 - 1.080
	Age	0.994***	0.992 - 0.996	0.998	0.996 - 1.001	0.998*	0.995 - 1.000
	Mean post-surgical NDVI (standardized)	0.969***	0.947 - 0.992	0.971**	0.947 - 0.995	0.969**	0.944 - 0.994
	Knee	1.653***	1.578 - 1.731	1.594***	1.519 - 1.673	1.547***	1.471 - 1.627
	COPD	1.219***	1.133 - 1.311	1.272***	1.175 - 1.378	1.374***	1.262 - 1.496
	CHD	1.133***	1.057 - 1.214	1.091**	1.012 - 1.175	1.069*	0.988 - 1.157
	Traumatic Brain Injury	1.197*	0.992 - 1.444	1.335***	1.088 - 1.637	1.448***	1.166 - 1.799
	Days in Hospital	1.015***	1.009 - 1.022	1.035***	1.027 - 1.043	1.037***	1.029 - 1.045
	Variance of hospital random effect	1.164***	1.064 - 1.272	1.072***	1.020 - 1.127	1.071**	1.009 - 1.137
281 282							

2		
3	283	FIGURE LEGENDS
4 5	284	Figure 1: Odds-ratio plot of standardized mean post-surgical NDVI for time to all-cause mortality
6 7	285	following hip or knee arthroplasty (number of participants=14,010, number of observations= 149,523) ¹ .
8	286	Low/high SES denotes participants whose lifetime NZ Deprivation Index is above/below average.
9	287	Old/young denote participants who are older/younger than the sample mean. The ethnicity reference
10	288	group is a composite of all ethnicities other than European NZ or Māori (figures 1 and 2 were created
11 12	289	with the user-written Stata command COEFPLOT)
13	290	¹ Following IDI protocols, all sample sizes have been rounded to the nearest multiple of three
14 15	291	
15 16	292	Figure 2: Odds ratio plat of standardized mean past surgical NDV// for surphysical analysistics 2
17 18	293 294	Figure 2: Odds-ratio plot of standardized mean post-surgical NDVI for number of opioid prescriptions 3 months post-surgery (n=14,010) ¹ . For definitions and reference groups see figure 1.
19 20	295 296	months post-surgery (n=14,010) ¹ . For definitions and reference groups see figure 1. ¹ Following IDI protocols, all sample sizes have been rounded to the nearest multiple of three
21	290	
22		
23		
24 25		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36 37		
38		
39		
40		
41		
42 43		
43 44		
45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55 56		
56 57		
58		18
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	297	Contributorship statement: GHD designed the study, conducted the analysis, and wrote the majority of
5 6	298	the manuscript. DG created the exposure metrics and edited the manuscript. JD wrote parts of the
7 8	299	manuscript and edited multiple drafts.
9 10 11 12 13 14 15 16 7 18 9 20 21 22 32 22 22 22 22 22 22 22 22 22 22 22	300	For peer teriew only
57 58 59		19
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

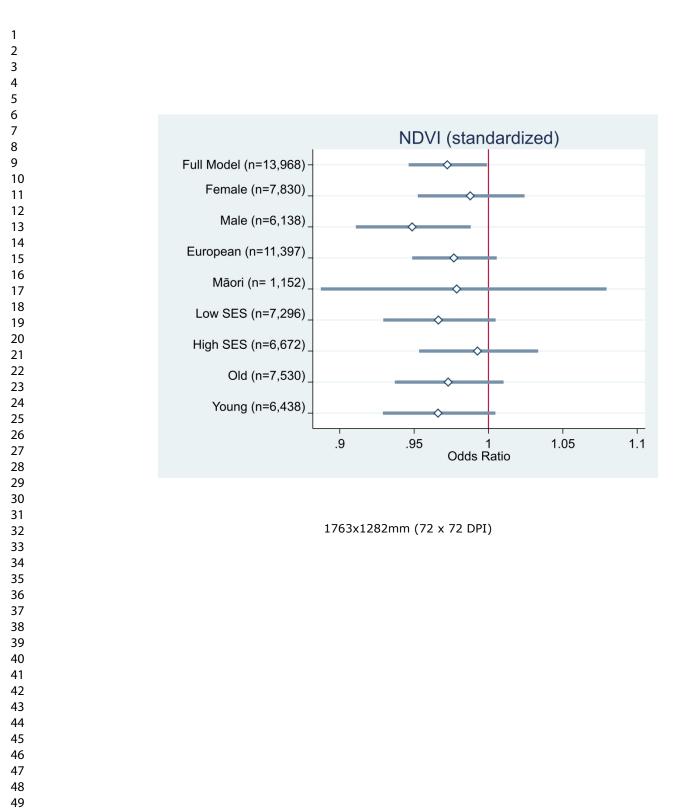
3 ⊿	301	LITERATURE CITED
4 5 6	302	1 Pabinger C, Geissler A. Utilization rates of hip arthroplasty in OECD countries. <i>Osteoarthritis</i>
7 8	303	Cartilage 2014; 22 :734-41.
9 10	304	2 Pabinger C, Lothaller H, Geissler A. Utilization rates of knee-arthroplasty in OECD countries.
11 12 13	305	Osteoarthritis and Cartilage 2015; 23 :1664-73.
14 15	306	3 Ibrahim M, Twaij H, Giebaly D, <i>et al.</i> Enhanced recovery in total hip replacement. <i>Bone Joint J</i>
16 17	307	2013; 95 :1587-94.
18 19 20	308	4 Larsen K, Hvass KE, Hansen TB, et al. Effectiveness of accelerated perioperative care and
20 21 22	309	rehabilitation intervention compared to current intervention after hip and knee arthroplasty. A before-
23 24	310	after trial of 247 patients with a 3-month follow-up. BMC musculoskeletal disorders 2008;9:59.
25 26	311	5 Savaridas T, Serrano-Pedraza I, Khan SK, <i>et al.</i> Reduced medium-term mortality following
27 28	312	primary total hip and knee arthroplasty with an enhanced recovery program. A study of 4,500
29 30 31	313	consecutive procedures. Acta orthopaedica 2013;84:40-3.
32 33	314	6 Almanza E, Jerrett M, Dunton G, et al. A study of community design, greenness, and physical
34 35	315	activity in children using satellite, GPS and accelerometer data. <i>Health Place</i> 2012; 18 :46-54.
36 37	316	7 Gordon-Larsen P, Nelson MC, Page P, <i>et al.</i> Inequality in the built environment underlies key
38 39 40	317	health disparities in physical activity and obesity. <i>Pediatrics</i> 2006; 117 :417-24.
40 41 42	318	8 Handy SL, Boarnet MG, Ewing R, <i>et al.</i> How the built environment affects physical activity.
43 44	319	American journal of preventive medicine 2002; 23 :64-73.
45 46	320	9 Sugiyama T, Leslie E, Giles-Corti B, <i>et al.</i> Associations of neighbourhood greenness with physical
47 48 49	321	and mental health: do walking, social coherence and local social interaction explain the relationships?
50 51	322	Journal of Epidemiology & Community Health 2008; 62 :e9-e.
52 53	323	10 Ulrich RS. View through a window may influence recovery from surgery. <i>Science</i> 1984; 224 :420-
54 55	324	1.
56 57		
58 59		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 28


1

2 3 4	325	11	Yoon RS, Nellans KW, Geller JA, et al. Patient education before hip or knee arthroplasty lowers
4 5 6	326	length	of stay. The Journal of arthroplasty 2010; 25 :547-51.
7 8	327	12	Siggeirsdottir K, Olafsson Ö, Jonsson Jr H, et al. Short hospital stay augmented with education
9 10	328	and ho	me-based rehabilitation improves function and quality of life after hip replacement: randomized
11 12 13	329	study	of 50 patients with 6 months of follow-up. <i>Acta orthopaedica</i> 2005; 76 :555-62.
14 15	330	13	Juliano K, Edwards D, Spinello D, et al. Initiating physical therapy on the day of surgery decreases
16 17	331	length	of stay without compromising functional outcomes following total hip arthroplasty. HSS journal
18 19	332	2011; 7	2:16-20.
20 21 22	333	14	Yeap YL, Butterworth JF. Analgesic techniques after total hip arthroplasty. Anesthesia &
23 24	334	Analge	esia 2011; 113 :687-8.
25 26	335	15	Chua MJ, Hart AJ, Mittal R, et al. Early mobilisation after total hip or knee arthroplasty: A
27 28	336	multic	entre prospective observational study. <i>PloS one</i> 2017; 12 :e0179820.
29 30 31	337	16	Guerra ML, Singh PJ, Taylor NF. Early mobilization of patients who have had a hip or knee joint
32 33	338	replace	ement reduces length of stay in hospital: a systematic review. Clinical rehabilitation 2015;29:844-
34 35	339	54.	
36 37 38	340	17	Husted H, Hansen HC, Holm G, et al. What determines length of stay after total hip and knee
39 40	341	arthro	plasty? A nationwide study in Denmark. Archives of orthopaedic and trauma surgery
41 42	342	2010; 1	30 :263.
43 44	343	18	Freburger JK. An analysis of the relationship between the utilization of physical therapy services
45 46 47	344	and ou	itcomes of care for patients after total hip arthroplasty. <i>Physical therapy</i> 2000; 80 :448-58.
47 48 49	345	19	Hughes K, Kuffner L, Dean B. Effect of weekend physical therapy treatment on postoperative
50 51	346	length	of stay following total hip and total knee arthroplasty. Physiotherapy Canada Physiotherapie
52 53	347	Canad	a 1993; 45 :245-9.
54 55 56			
57 58			21
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	348	20	Matheis C, Stöggl T. Strength and mobilization training within the first week following total hip
5 6	349	arthro	plasty. Journal of bodywork and movement therapies 2018; 22 :519-27.
7 8 9	350	21	Fan Y, Das KV, Chen Q. Neighborhood green, social support, physical activity, and stress:
9 10 11	351	assess	ing the cumulative impact. <i>Health Place</i> 2011; 17 :1202-11.
12 13	352	22	Giles-Corti B, Donovan RJ. The relative influence of individual, social and physical environment
14 15	353	detern	ninants of physical activity. Social Science & Medicine 2002;54:1793-812.
16 17 18	354	23	Statistics New Zealand. Integrated Data Infrastructure. 2017.
19 20	355	24	Larsen K, Sørensen OG, Hansen TB, et al. Accelerated perioperative care and rehabilitation
21 22	356	interve	ention for hip and knee replacement is effective: a randomized clinical trial involving 87 patients
23 24	357	with 3	months of follow-up. Acta orthopaedica 2008; 79 :149-59.
25 26 27	358	25	Frank LD, Sallis JF, Saelens BE, et al. The development of a walkability index: application to the
27 28 29	359	Neight	porhood Quality of Life Study. British journal of sports medicine 2010; 44 :924-33.
30 31	360	26	Salmond CE, Crampton P. Development of New Zealand's deprivation index (NZDep) and its
32 33	361	Uptake	e as a national policy tool. <i>Canadian Journal of Public Health</i> 2012; 103 :S7-S11.
34 35 36	362	27	Statistics New Zealand. IDI Data Dictionary: Chronic condition/significant health event cohort.
30 37 38	363	Wellin	gton, New Zealand: Statistics New Zealand 2015:14.
39 40	364	28	Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. Philadelphia, PA: Wolters Kluwer
41 42	365	2008.	
43 44	366	29	Wong CW, Kwok CS, Narain A, et al. Marital status and risk of cardiovascular diseases: a
45 46 47	367	system	natic review and meta-analysis. Heart 2018;104:1937-48.
48 49	368	30	Li D, Sullivan WC. Impact of views to school landscapes on recovery from stress and mental
50 51 52 53 54 55 56	369	fatigue	e. Landscape and Urban Planning 2016; 148 :149-58.
57 58			22
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


Page 23 of 28

1 2			
2 3 4	370	31	Takayama N, Korpela K, Lee J, et al. Emotional, restorative and vitalizing effects of forest and
5 6	371	urban	environments at four sites in Japan. International journal of environmental research and public
7 8 9	372	health	2014; 11 :7207-30.
9 10 11	373	32	Kivimäki M, Leino-Arjas P, Luukkonen R, et al. Work stress and risk of cardiovascular mortality:
12 13	374	prospe	ective cohort study of industrial employees. <i>Bmj</i> 2002; 325 :857.
14 15	375	33	Sinha R. The role of stress in addiction relapse. <i>Current psychiatry reports</i> 2007; 9 :388-95.
16 17	376	34	Ulmer JM, Wolf KL, Backman DR, et al. Multiple health benefits of urban tree canopy: The
18 19 20	377	mount	ting evidence for a green prescription. <i>Health Place</i> 2016; 42 :54-62.
21 22	378	35	Deroche Vr, Piazza PV, Moal ML, et al. Social isolation-induced enhancement of the
23 24	379	psycho	omotor effects of morphine depends on corticosterone secretion. <i>Brain Research</i> 1994; 640 :136-9.
25 26	380	36	Steptoe A, Shankar A, Demakakos P, et al. Social isolation, loneliness, and all-cause mortality in
27 28 29	381	older r	men and women. Proceedings of the National Academy of Sciences of the United States of America
30 31	382	2013;1	L10 :5797-801.
32 33	383	37	Hanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and
34 35	384	allergy	vare interrelated. Proceedings of the National Academy of Sciences 2012;109:8334-9.
36 37 38	385	38	Donovan GH, Gatziolis D, Longley I, et al. Vegetation diversity protects against childhood
38 39 40	386	asthm	a: results from a large New Zealand birth cohort. <i>Nature plants</i> 2018; 4 :358-64.
41 42	387	39	Gaudillière B, Fragiadakis GK, Bruggner RV, et al. Clinical recovery from surgery correlates with
43 44	388	single-	cell immune signatures. 2014; 6 :255ra131-255ra131.
45 46 47	389	40	Lei M, Hua L, Wang DJBm. The effect of probiotic treatment on elderly patients with distal radius
47 48 49	390	fractu	re: a prospective double-blind, placebo-controlled randomised clinical trial. 2016; 7 :631-7.
50 51 52 53 54 55 55 56	391		
57 58			23
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1763x1282mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	2
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			· ·
Study design	4	Present key elements of study design early in the paper	5-9
	5	Describe the setting, locations, and relevant dates, including periods of	5-6
Setting	3	recruitment, exposure, follow-up, and data collection	3-0
Dortiginanta	6	(a) Cohort study—Give the eligibility criteria, and the sources and	5-6
Participants	0		3-0
		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-9
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-8
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	N/2
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	6-9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	N/2
		(d) Cohort study—If applicable, explain how loss to follow-up was	N/4
		addressed	11/1
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2		(<u>e</u>) Describe any sensitivity analyses	9
3	Continued on next page		
4 5	10		
6			
7			
8			
9 10			
10			
12			
13			
14 15			
15			
17			
18			
19 20			
20 21			
22			
23			
24 25			
26			
27			
28 29			
30			
31			
32			
33 34			
35			
36			
37 38			
39			
40			
41			
42 43			
44			
45			
46 47			
48			
49			
50			
51 52			
53			
54			
55 56			
50 57			
58			
59			
60			

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	14-
-		eligible, examined for eligibility, confirmed eligible, included in the study,	16
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	14
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/4
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	6
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	15-
		their precision (eg, 95% confidence interval). Make clear which confounders were	17
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-
			12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	12-
		imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	11-
		multiplicity of analyses, results from similar studies, and other relevant evidence	12
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	3
		applicable, for the original study on which the present article is based	1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The relationship between exposure to the natural environment and recovery from hip or knee arthroplasty: a New Zealand retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029522.R1
Article Type:	Original research
Date Submitted by the Author:	03-Jun-2019
Complete List of Authors:	Donovan, Geoffrey; USDA Forest Service, PNW Research Station Gatziolis, Demetrios; USDA Forest Service Pacific Northwest Research Station Douwes, Jeroen; Massey University, Centre for Public Health Research
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, Hip < ORTHOPAEDIC & TRAUMA SURGERY, Knee < ORTHOPAEDIC & TRAUMA SURGERY

1		
2		
3 4	1	The relationship between exposure to the natural environment and recovery from hip or knee
5		
6	2	arthroplasty: a New Zealand retrospective cohort study
7		
8	3	Geoffrey H. Donovan, ^{a,*,1} Demetrios Gatziolis, ^b and Jeroen Douwes ^a
9	5	
10	4	^a Center for Public Health Research, Massey University, PO Box 756, Wellington 6140, New Zealand
11	5	^b USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, Oregon, USA
12 13	6	*Corresponding author ORCID: 0000-0002-1624-3440
13 14	7	
15	8	Word count: 3,000
16	9	
17	10	
18		
19		
20	11	
21		
22		
23 24		
24 25		
26		
27		
28		
29		
30		Word count: 3,000
31		
32		
33 34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 45		
43 46		
40 47		
48		
49		
50		
51		
52		
53		
54		
55		¹ Permanent address: USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR 97205,
56 57		USA +1 503-808-2043, geoffrey.donovan@usda.gov
57 58		1
59		±

12 ABSTRACT

Objectives: Determine whether patients who live in greener and more walkable neighborhoods live
 longer, and take fewer opioids, following hip or knee arthroplasty.

Design: Retrospective cohort study.

Setting: Residential environment following surgery at one of 54 New Zealand hospitals.

Participants: All people who received a total hip or knee arthroplasty at a publicly-funded hospital in
New Zealand in 2006 and 2007 (7,449 hip arthroplasties and 6,558 knee arthroplasties).

Primary and secondary outcome measure: Time to all-cause mortality and number of post-surgical
opioid prescriptions.

Results: Patients who lived in greener neighborhoods, as measured by the normalized difference vegetation index (NDVI), lived longer following hip or knee arthroplasty (standardized OR: 0.95 95% CI: 0.92-0.99). However, when we estimated separate hip-arthroplasty-only and knee-arthroplasty-only models, greenness was only significantly associated with greater longevity following hip arthroplasty. Similarly, patients who lived in greener neighborhoods took fewer opioids in the 12 months following hip or knee arthroplasty (standardized OR: 0.97 95% CI: 0.95-0.99), but in separate hip-arthroplasty-only and knee-arthroplasty-only models, greenness was only significantly associated with lower opioid use following hip arthroplasty. Walkability was not significantly associated with post-surgical opioid use or post-surgical longevity. All odds ratios were adjusted for sex, ethnicity, age, pre-surgical chronic health conditions, pre-surgical opioid use, social deprivation, and length of hospital stay.

Conclusions: Consistent with the literature on enhanced-recovery programs, people who lived in
 greener neighborhoods took fewer opioids, and lived longer, following hip arthroplasty. Improving

1 2		
2 3 4	33	access to the natural environment may therefore be an effective component of post-surgical recovery
5 6	34	programs.
7 8 9	35	Keywords: Normalized difference vegetation index, natural environment, surgical recovery, orthopedic
10 11	36	
12 13		
14 15 16		
17 18		
19 20		
21 22 23		
24 25		
26 27		
28 29 30		
31 32		
33 34 35		
36 37		
38 39		
40 41 42		
43 44		
45 46 47		
47 48 49		
50 51		
52 53 54		
55 56		
57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

37	STRENGTHS AND LIMITATIONS OF THIS STUDY
38	• First study to examine the relationship between natural environment and surgical recovery
39	outside of a hospital setting
40	Large cohort followed longitudinally for 9+ years
41	• Observational study, so a causal link between the natural environment and surgical recovery
42	couldn't be established
43	Exposure was based on residential meshblock not residential address
44	Competing interests: None declared
45	Funding: No external funding was received
46	Data availability statement: De-identified data are not publicly available but may be obtained from
47	Statistics New Zealand after gaining ethics approval and submitting a research proposal (contact:
48	access2microdata@stats.govt.nz). Note that, even with these approvals, data must be accessed via a
49	secure data lab in New Zealand. Exposure data, and code used for statistical analysis, are freely available
50	from the authors.
51	4
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	 38 39 40 41 42 43 44 45 46 47 48 49 50

BMJ Open

52 INTRODUCTION	ON
-----------------	----

Rates of hip and knee arthroplasty are rising globally. For example, in Organization for Economic Cooperation and Development (OECD) countries, the incidence of hip arthroplasty rose from 140/100,000 people in 2005 to 164/100,000 in 2011 [1]. Similarly, the incidence of knee arthroplasty in OECD countries rose from 114/100,000 in 2005 to 150/100,000 in 2011 [2]. Increases in life expectancy and obesity rates suggest that this trend is likely to continue [3]. Given this increased demand, and constrained healthcare budgets, research has focused on identifying approaches that improve post-surgical health outcomes, shorten length of stay, and reduce costs. For example, enhanced-recovery programs that emphasize rapid mobilization and rehabilitation following hip or knee arthroplasty can reduce length of hospital stay [4] and decrease mortality [5]. However, no research has focused on the effect of patients' residential environments, despite the well-established link between exposure to the natural environment and increased physical activity [6-9], and research showing that passively viewing a natural scene while recovering from surgery can reduce both length of hospital stay and post-surgical opioid use [10]. We address this gap in the literature by evaluating the relationship between exposure to the built and natural environment and recovery from hip or knee arthroplasty in a large New Zealand cohort.

68 Literature review

Numerous studies have examined how different elements of enhanced-recovery programs affect postoperative outcomes (also known as fast-track or rapid-recovery programs). These programs use
coordinated multimodal techniques to reduce recovery times and improve post-operative outcomes [3].
For example, pre-operative education can shorten hospital stays [11] and reduce post-operative pain
[12]. Several studies have found that pre-emptive analgesia allows more rapid mobilization and return
of function [13, 14]. Multiple studies have found that rapid mobilization on the day of surgery (typically

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2-6 hours after surgery) reduces length of stay and improves function [15-17]. Similarly, aggressive physical therapy (extending beyond the day of surgery) can reduce length of stay and improve function [18-20]. Finally, in a prospective study of 4,500 patients in the UK, enhanced recovery was associated with improved two-year survival rates when compared to traditional post-surgical protocols, which suggests that post-operative mobility may have long-term benefits [5]. Several studies have found that exposure to the natural environment is associated with increased physical activity. For example, using survey data in Chicago (n=1,544), Fan et al. [21] found that respondents with a greater area of public parks within 0.5 miles of their home were more likely to engage in physical activity. A survey of 1,895 people in Adelaide, Australia [9] found that respondents who perceived their neighborhoods as greener were more likely to engage in recreational walking. Similarly, a study in 1,803 people in Perth, Australia [22] found that people who lived nearer to recreational amenities, including public parks, were more likely to meet minimum physical-activity requirements. Passive exposure to the natural environment can also produce health benefits. In particular, several studies have found that greenness exposure can reduce perceived pain in a range of settings. Specifically, a RCT of 46 healthy volunteers [23] found that participants who had just watched a video of a natural scene had significantly higher pain threshold and tolerance than participants who had watched a blank screen. Similarly, a RCT of adults undergoing flexible bronchoscopy found that participants who viewed a natural scene reported significantly less pain [24]. Finally, an RCT of a two-day forestry-therapy program in Korea found that participants in the program (n=33) had significantly lower levels of pain and depression than controls (n=25). In addition, participants had significantly higher heart-rate variability and natural-killer cell activity. **METHODS**

Page 7 of 31

1		
2 3 4	98	Study sample
5 6 7	99	Our sample consisted of all people who received a total hip or knee arthroplasty at a publicly-funded
, 8 9	100	hospital in New Zealand in 2006 and 2007 (7,449 hip arthroplasties and 6,558 knee arthroplasties). We
10 11	101	obtained individual-level hospital and pharmaceutical records via Statistics New Zealand's Integrated
12 13	102	Data Infrastructure (IDI), which is a large database of routinely-collected individual-level data [25]. The
14 15 16	103	IDI is structured around a central spine designed to identify all New Zealand residents. Datasets
17 18	104	describing health, education, benefits, criminal justice, population (births, deaths, and immigration),
19 20	105	income and work, and housing are linked to this central spine.
21 22	106	As this study was based on routinely-collected health data, and did not involve contacting individual
23 24		
25 26	107	patients, the study was classified as minimal risk by the New Zealand Health and Disabilities Ethics
27 28	108	Committee and was approved by Statistics New Zealand (MAA-2017-57). Before we were granted
29 30	109	access, all data were anonymized by Statistics New Zealand. In addition, our research conformed to the
31 32 33	110	Declaration of Helsinki guidelines.
34 35	111	Patient and Public Involvement statement: Neither patients, nor the public, were involved in the design
36 37	112	or conduct of this study.
38 39 40 41	113	Outcomes
42 43	114	We used two outcomes to measure recovery: time to all-cause mortality and number of opioid
44 45	115	prescriptions 3, 12, and 24 months post-surgery. We chose these outcomes as they are important
46 47	116	metrics of post-surgical recovery. In addition, previous research has shown that rapid mobilization and
48 49 50	117	rehabilitation can reduce two-year mortality rates following hip or knee arthroplasty [26], and exposure
51 52	118	to the natural environment, in a hospital setting, is associated with reduced perioperative use of opioids
53 54 55	119	[10].
56 57		
58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	120	By the end of 2016, 2,263 (30.0%) of the 7,449 people who had received a hip arthroplasty had died as
5 6 7	121	had 1,741 (26.5%) of the 6,558 people who received knee arthroplasties.
8 9	122	The number of opioid prescriptions received was calculated by linkage to pharmacy records. We did not
10 11 12	123	include prescriptions for methadone or buprenorphine, as in New Zealand these are primarily used to
12 13 14	124	treat addiction. To control for pre-surgical pain, we calculated the number of opioid prescriptions each
15 16	125	participant received in the 12 months before surgery. Finally, to account for opioid potency, we
17 18	126	categorized each opioid prescription as either strong (potency equal to or greater than morphine) or
19 20	127	weak (potency less than morphine). On average, study participants received 3.04 (SD=9.38) opioid
21 22 23	128	prescriptions in the 12 months before surgery (0.68 strong and 2.36 weak) and 2.72 (SD=7.06) opioid
24 25	129	prescriptions in the 12 months after surgery (0.75 strong and 1.98 weak).
26 27 28	130	Exposures
29 30 31	131	All exposures are based on a participant's residential meshblock, which is the smallest geographic unit at
32 33	132	which Statistics New Zealand reports data. On average, 95 people live in a meshblock.
34 35 36	133	Linking to address history in the IDI allowed us to estimate exposures for each year of the study (2005-
37 38	134	2016). From these annual values, we calculated mean post-surgical exposure, which we defined as the
39 40	135	mean exposure from the year of surgery to death or 2016, whichever came first.
41 42 43	136	We had no information on participants' pre- or post-surgical physical activity. Therefore, exposure
44 45	137	metrics describe the physical environment that a participant is exposed to, but they do not describe how
46 47 48	138	a participant physically interacts with different environments.
49 50 51	139	Walkability
52 53	140	We used a previously validated walkability index [27] with three components: number of households per
54 55 56	141	hectare (data source: 2006 New Zealand Census), number of road intersections per square kilometer
57 58		8
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

(data source: Land Information New Zealand), and land-use mix (data source: 2008 New Zealand Land
Cover Database v4.1). In all three cases, we used the version of each data source that was closest to
baseline. Land-cover data were available from 2001, 2008, and 2012. However, the classification
schemes were not consistent across the three years. In addition, when we compared 2008 and 2012
data, we found that the net area of New Zealand that changed from one land class to another was only
0.903%. Therefore, we used 2008 data for our analysis.

148 Land-use mix is defined as:

Land – use mix = $\frac{\sum_{i=1}^{n} (LC_i * ln(LC_i))}{ln(N)}$

Where *LC_i* denotes the proportion of each meshblock that is covered by the *i*th land-cover type and *N*denotes the total number of land-cover types. Following Frank et al., we standardized household
density, intersection density, and land-use mix (by subtracting the mean and dividing by the standard
deviation), and summed the three standardized scores into a single walkability index.

154 Greenness

We used two measures of exposure to the natural environment: land-cover data (see above) and the
Normalized Difference Vegetation Index (NDVI), which is a greenness index derived from satellite
imagery. Specifically, for each year from 2005 to 2016, we used maximum annual NDVI derived from
30m-resolution Landsat imagery that was calculated at the top of the atmosphere, which normalized all
atmospheric effects. We standardized NDVI values to make regression coefficients easier to interpret.
From these annual values, we calculated mean post-surgical greenness exposure. **Covariates**

2	
2 3 4	162
5	163
6 7	
8 9	164
10 11	165
12 13	166
14 15	167
16 17	168
18 19	169
20 21	17(
22 23	
24 25	172
26 27	172
28 29	173
30 31	17
32	174
33 34	175
35 36	176
37 38	177
39 40	178
41 42	
43 44	179
45 46	18(
47 48	182
49 50	182
51	
52 53	183
54 55	4.0
55 56	184
57	
58 59	
60	

1

2 Using data from the IDI, we controlled for sex, ethnicity, and age. In addition, we controlled for 3 neighborhood deprivation using the New Zealand Deprivation Index (NZDep), which is a well-validated 4 index calculated from nine census variables [28]. NZDep ranges from 1 to 10 with higher values denoting 5 higher levels of social deprivation. Finally, we controlled for eight chronic conditions at time of surgery: 6 coronary heart disease, gout, chronic obstructive pulmonary disease (COPD), diabetes, cancer, stroke, 7 acute myocardial infarction, and traumatic brain injury. We chose to account for these conditions as 8 they are major health outcomes that could affect surgical recovery, and they were pre-defined by 9 Statistics New Zealand based on hospital-admissions and pharmacy data [29]. Note that we did not have 0 access to data on physical activity, BMI, or diet.

171 Statistical analysis

We analyzed time-to-death data using a frailty model that included hospital-level random effects. We
were particularly careful to account for the hospital where the surgery was performed, because smaller
hospitals that may not be able to provide the specialist care of a larger hospital are more likely to be in
rural areas that are greener. We evaluated five different functional forms for the survival function
(Weibull, exponential, log-logistic, log-normal, and gamma) and chose between them using the Akaike
information criterion. We analyzed the number of post-operative opioid scripts using a mixed negativebinomial regression that included hospital-level random effects.

A backwards-selection procedure was used for all model selection: variables were dropped from the
 analysis using progressively smaller p-value thresholds (final threshold: p<0.1). Insignificant variables can
 still be confounders [30], so we systematically re-introduced dropped variables and retained them if the
 coefficients on variables of interest changed by more than 10%.

183 To avoid including highly collinear combinations of variables, we estimated ordinary least squares
 ⁵ 184 versions of each model (results not shown), which allowed us to calculate variance-inflation factors for

1		
2 3 4	185	each independent variable. If any variable had a variance-inflation factor over two, we dropped it from
5 6	186	the regression model. When choosing between two collinear variables, we included the variable with
7 8 9	187	the lowest p-value when individually regressed against the dependent variable.
10 11 12	188	We also conducted stratified analyses to see whether the relationship between the natural environment
13 14	189	and health outcomes was the same across different strata of the sample. Analyses were conducted for
15 16 17	190	hip and knee arthroplasty combined as well as for each outcome separately.
18 19	191	RESULTS
20 21 22	192	Table 1 provides descriptive statistics for our sample.
23 24 25	193	In the frailty model, specifying the survival function using a Weibull distribution gave the best model fit.
26 27	194	Being older, male, European New Zealander, or Māori (the indigenous people of New Zealand) were all
28 29	195	mortality risk factors (Table 2) (The reference ethnic group was Pacific, Asian, MELAA, or other).
30 31	196	Similarly, people who received more pre-surgery opioids, or had a longer hospital stay, were at greater
32 33 34	197	risk of mortality. Six chronic conditions were risk factors as was higher neighborhood deprivation,
35 36	198	although this relationship was only significant for hip arthroplasty.
37 38 39	199	People who lived in greener neighborhoods (defined as mean post-surgical NDVI) were at lower risk of
40 41	200	mortality, although this relationship was only significant in the hip-and-knee arthroplasty and hip-
42 43	201	arthroplasty-only models (Table 2). To better elucidate the dose-response function linking NDVI and
44 45	202	mortality, we re-estimated the hip-and-knee-arthroplasty frailty model splitting NDVI into quartiles
46 47 48	203	(Table 3). Only the highest quartile was statistically significant, in the combined and hip-only models,
49 50	204	although NDVI remained protective in the second and third quartiles. In the knee-only model, the
51 52	205	second quartile of NDVI was protective although only at the 10% level. In addition, the third and fourth
53 54 55	206	quartiles of NDVI did not show a consistent protective effect.
56 57		
58 50		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1 shows the odds ratio for mean lifetime NDVI for different strata of the sample. Stratifying the sample resulted in some loss of significance, due to lower numbers in each stratum. Notably, the protective effect of NDVI was higher for men than women. The protective effect of NDVI was also modestly higher for people who lived in higher SES neighborhoods (NZDep 1-5) compared to lower SES neighborhoods (NZDep 6-10). Similarly, NDVI was somewhat more protective for people who were younger than average (mean age at surgery=68).

In the opioid model (Table 4), women, European New Zealanders, and people who were prescribed more pre-surgery opioid prescriptions received significantly more post-surgical opioid scripts in all three time periods with the exception of European New Zealanders in the 24 months post-surgery model (Table 4). Those who received a knee arthroplasty (as opposed to a hip arthroplasty) or stayed longer in hospital also received more post-surgical opioids, as did people who had COPD, coronary heart disease, or traumatic brain injury. In contrast, older people received fewer opioid prescriptions, although the significance of this relationship varied across the three time periods. Separating opioids into weak and strong was not revealing and reduced the significance of variables of interest (data not shown). Mean post-surgical greenness was associated with significantly fewer post-surgical opioid prescriptions in all three time periods (Table 4). Living in a rural area and land cover were not significantly associated with the number of post-surgical opioid prescriptions or time to all-cause mortality (data not shown). In addition, walkability was not significantly associated with either opioid use or mortality. For example, the odds ratio on walkability in the 3-month post-surgical opioid model was 1.043 (95% CI: 0.966-1.127), and the odds ratio in the hip-only frailty model was 1.035 (95% CI: 0.971-1.104). Even when the analysis was restricted to only-hip or only-knee arthroplasties, the relationship between walkability and mortality or opioid use remained insignificant.

1 2		
2 3 4	229	In addition, consistent with the frailty model, NDVI was not significant, when the analysis was restricted
5 6	230	to knee-arthroplasty (results not shown). Finally, when we split NDVI into quartiles, none were
7 8 9	231	significant (results not shown).
10 11 12	232	In the stratified analysis (figure 2), greenness was more protective for men than women, which is
12 13 14	233	consistent with the frailty model.
15 16 17	234	DISCUSSION
18 19	235	In a cohort of people who received a total hip or knee arthroplasty at a publicly-funded hospital in New
20 21 22	236	Zealand in 2006 or 2007, we found that residents of greener neighborhoods received fewer post-surgical
23 24	237	opioid prescriptions and lived longer, with the strongest results for hip arthroplasty. Our results are
25 26	238	consistent with those reported by Ulrich [10], who found that, after gall-bladder surgery, patients
27 28 29	239	recovered faster and took fewer opioids if they were in a room with a view of a natural scene. Our
29 30 31	240	results are also consistent with a previous study [5], which found that rapid mobilization following hip or
32 33	241	knee arthroplasty was associated with better two-year survival rates. Finally, results suggests that the
34 35 36	242	benefits of exposure to the natural environment extend beyond the immediate post-surgical period.
37 38	243	In both the opioid and survival models, we found that greenness was more protective for men than
39 40	244	women. This differential association may be because women's life expectancy is greater than men, so
41 42 43	245	they are less likely to have a live-in partner who could encourage them to be physically active, and
44 45	246	accompany them while they engage in outdoor activity that they might otherwise find too daunting (we
46 47	247	have no evidence that women in our sample had fewer live-in partners). This possible mechanism is
48 49	248	consistent with multiple studies showing that having a live-in partner is protective of a range of health
50 51 52	249	outcomes [31]. In addition, this suggests that women, or indeed men, who live alone may benefit from
53 54 55	250	additional post-surgical support. However, other mechanisms may also be involved. For example,
56 57		
58 59		13
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	251	women may be more active or may have more social support at baseline, which might reduce the
5 6 7	252	protective effect of exposure to the natural environment.
8 9	253	Greenness was associated with lower post-surgical opioid use, and lower mortality, in people recovering
10 11	254	from hip arthroplasty but not those recovering from knee arthroplasty. This may be because knee
12 13 14	255	arthroplasty is a more difficult and painful surgery to recover from [32] (post-surgical opioid use was
15 16	256	65% higher for knee-arthroplasty patients in our sample), and the protective effect of neighborhood
17 18	257	greenness is insufficient to induce a clinically significant increase in post-surgical mobilization.
19 20 21	258	There was modest evidence that younger people, and those living in less deprived neighborhoods,
22 23	259	derived greater benefit from exposure to greenness. This may be because younger people are more
24 25 26	260	physically able to engage in outdoor activity, and that greenspace in higher SES neighborhoods may be
27 28	261	better maintained and more appealing because of lower crime [33].
29 30 31	262	When we split NDVI into quartiles in the frailty model, we found that only the top quartile was
32 33	263	protective at conventional significance levels. This suggests that there may be a minimum threshold
34 35	264	below which greenness offers no health benefits. However, it is important to note that NDVI is a coarse
36 37	265	measure of overall greenness. It does not reveal which elements of the natural environment provide the
38 39 40	266	greatest health benefits. Identifying the most protective elements would help inform the design of
41 42	267	landscapes that are not in the top quartile of NDVI, but nonetheless provide health benefits.
43 44 45	268	The magnitude of the protective effect of neighborhood greenness is not trivial. For example, in the 3-
46 47	269	months post-surgery model of opioid use, a 2-SD decrease in NDVI is roughly equivalent to the risk of
48 49	270	having chronic heart disease at the time of surgery. In the hip-only frailty model, a 2-SD decrease in
50 51 52	271	NDVI is roughly equivalent to the risk of being two years older.
53 54	272	Physical activity is likely not the only mechanism linking greenness and improved post-surgical
55 56 57	273	outcomes. For example, exposure to the natural environment can reduce short-term markers of stress
58		14
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	274	such as heart rate, blood pressure, and salivary cortisol [34, 35]. In turn, stress is a well-documented risk
5 6	275	factor for premature mortality [36] and can also trigger opioid cravings [37]. Similarly, exposure to the
7 8	276	natural environment is associated with increased social connectivity [38], and social isolation can
9 10 11	277	increase individual reactivity to opioids [39] as well as being a risk factor for premature mortality [40].
12 13	278	More recently, research suggests that exposure to the natural environment may increase the microbial
14 15	279	diversity of the human microbiome [41], and protect against adverse health outcomes [42] through
16 17	280	improved immune function. In addition, improved immune function is associated with improved surgical
18 19 20	281	recovery [43] and better orthopedic outcomes in elderly patients [44].
21 22 23	282	Our study has several limitations. This is an observational study, so we were not able to establish a
23 24 25	283	causal relationship between exposure to the natural environment, opioid use, and surgical recovery. In
26 27	284	addition, our metrics of exposure to the natural environment were coarse. In particular, meshblock-level
28 29	285	NDVI is an imperfect measure of a person's exposure to the natural environment. This is especially true
30 31	286	in larger, rural meshblocks, where mean NDVI may not optimally represent a person's residential
32 33 34	287	exposure to the natural environment.
35	• • •	
36 37	288	Conclusions
38 39 40	289	In a large (n=14,010) cohort of participants who received a hip or knee arthroplasty at a publicly-funded
40 41 42	290	New Zealand hospital in 2006 or 2007, we found that exposure to the natural environment was
43 44	291	associated with fewer post-surgical opioid prescriptions, and increased time to all-cause mortality, in
45 46	292	hip-arthroplasty patients only. Results suggest that clinicians should consider a patient's home
47 48	293	environment when designing post-operative care plans. In particular, clinicians may wish to explicitly
49 50 51	294	incorporate neighborhood greenspace. When a patient doesn't have access to greenspace, additional
52 53	295	support may be warranted to encourage at-home mobilization.
54 55 56	296	
57		
58 59		15
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TABLES

Table 1: Descriptive statistics for study participants who received a hip or knee arthroplasty at a publicly-funded hospital in New Zealand in 2006 or 2007 (hip: n=7,449; knee: n=6,558)¹

		HIP		KNEE	
	Variable	Mean	SD	Mean	SD
	Male (%)	43.2	-	44.9	-
	Race: NZ European (%)	82.0	-	81.1	-
	Race: Māori (%)	9.9	-	6.4	-
	Race: Pacific Islander (%)	0.99	-	3.2	-
	Race: Asian (%)	1.53	-	1.56	-
	Race MELAA ² (%)	2.67	-	2.84	-
	Race: Other/Unspecified (5)	2.91	-	4.9	-
	Chronic condition: COPD (%)	8.8	-	9.8	-
	Chronic condition: acute MI (%)	5.8	-	5.1	-
	Chronic condition: CHD (%)	10.6	-	12.1	-
	Chronic condition: stroke (%)	2.3	-	2.6	-
	Chronic condition: diabetes (%)	12.4	-	15.5	-
	Chronic condition: traumatic brain injury (%)	1.5	-	1.1	-
	Length of hospital stay (days)	6.4	4.5	6.2	3.0
	Opioid scripts (12 month pre-surgery)	3.2	6.8	2.4	5.2
	Opioid scripts (12 month post-surgery)	2.1	4.9	2.8	5.1
	Age on day of surgery	68.2	12.0	69.5	9.9
	Mean post-surgical NDVI	0.527	0.123	0.526	0.122
300	¹ Following IDI protocols, all sample sizes have been round	ed to the neare	st multiple of t	hree	
301	² Aggregate category used by Statistics New Zealand to describe Middle Eastern, Latin American, or				

- 302 African ethnicity

BMJ Open

Table 2: Frailty model of time to all-cause mortality (Hip and knee: number of participants=14,010, number of observations= 149,523; hip:
 number of participants=7,449, number of observations=78,501; knee: number of participants=6,558, number of observations= 71,022)¹. The
 ethnicity reference group is a composite of all ethnicities other than European NZ or Māori.

		ID KNEE		HIP	KNEE	
Variable	HR	95% CI	HR	95% CI	HR	95% CI
Age (years)	1.090***	1.086 - 1.094	1.084***	1.078 - 1.089	1.098***	1.091 - 1.10
Female	0.711***	0.667 - 0.758	0.730***	0.670 - 0.796	0.665***	0.604 - 0.73
Ethnicity: European NZ	1.309***	1.151 - 1.490	1.279***	1.063 - 1.538	1.284***	1.072 - 1.53
Ethnicity: Māori	2.137***	1.806 - 2.528	1.910***	1.516 - 2.406	2.286***	1.778 - 2.93
Mean post-surgical NZDep 🛛 🖊 🦯	1.010*	0.998 - 1.023	1.018**	1.002 - 1.035	0.999	0.980 - 1.02
Chronic condition: COPD	1.448***	1.325 - 1.583	1.410***	1.250 - 1.591	1.478***	1.294 - 1.68
Chronic condition: acute MI	1.442***	1.293 - 1.607	1.384***	1.199 - 1.597	1.476***	1.249 - 1.74
Chronic condition: cancer	1.485***	1.357 - 1.625	1.592***	1.417 - 1.790	1.333***	1.157 - 1.53
Chronic condition: stroke	1.567***	1.346 - 1.825	1.702***	1.394 - 2.078	1.385***	1.094 - 1.7
Chronic condition: diabetes	1.306***	1.203 - 1.417	1.278***	1.142 - 1.430	1.342***	1.191 - 1.5
Chronic condition: traumatic brain injury	1.299*	0.994 - 1.697	1.193	0.835 - 1.703	1.452*	0.968 - 2.1
Opioid scripts 12 months pre-surgery	1.005***	1.004 - 1.006	1.018***	1.014 - 1.022	1.004***	1.002 - 1.00
Mean post-surgical NDVI (standardized)	0.954***	0.922 - 0.987	0.936***	0.895 - 0.979	0.978	0.929 - 1.0
Length of hospital stay	1.034***	1.029 - 1.039	1.030***	1.025 - 1.036	1.052***	1.040 - 1.0
Variance of hospital random effect	0.01404		0.011138		0.006208	
Number of hospitals ¹	54		51		51	

 Table 3: Frailty model of time to all-cause mortality following hip or knee arthroplasty with NDVI quartiles (Hip and knee: number of
 participants=14,010, number of observations= 149,523; hip: number of participants=7,449, number of observations=78,501; knee: number of
 participants=6,558, number of observations= 71,022)¹. The ethnicity reference group is a composite of all ethnicities other than European NZ or
 Māori.

	HIP A	ND KNEE	ŀ	HIP		KNEE
Variables	HR	95% Cl	OR	95% CI	OR	95% C
Age (years)	1.090***	1.086 - 1.094	1.083***	1.078-1.089	1.098***	1.091-1.105
Female	0.714***	0.670 - 0.761	0.735***	0.674-0.801	0.666***	0.605-0.734
Ethnicity: European NZ	1.305***	1.147 - 1.484	1.272**	1.058-1.529	1.277***	1.066-1.53
Ethnicity: Māori	2.124***	1.796 - 2.513	1.895***	1.504-2.386	2.276***	1.771-2.926
NZDep	1.012*	1.000 - 1.024	1.021**	1.005-1.038	0.998	0.98-1.016
Chronic condition: COPD	1.448***	1.325 - 1.583	1.41***	1.249-1.591	1.476***	1.292-1.686
Chronic condition: acute MI	1.443***	1.295 - 1.608	1.383***	1.199-1.596	1.476***	1.249-1.744
Chronic condition: cancer	1.489***	1.361 - 1.629	1.602***	1.425-1.8	1.33***	1.154-1.532
Chronic condition: stroke	1.568***	1.347 - 1.826	1.702***	1.394-2.079	1.384***	1.092-1.753
Chronic condition: diabetes	1.307***	1.204 - 1.418	1.275***	1.139-1.427	1.348***	1.196-1.519
Chronic condition: traumatic brain injury	1.300*	0.995 - 1.699	1.194	0.836-1.705	1.464*	0.976-2.195
Opioid scripts 12 months pre-surgery	1.005***	1.004 - 1.006	1.018***	1.014-1.023	1.004***	1.002-1.006
NDVI (standardized) quartile 2	0.933	0.856 - 1.017	0.988	0.881-1.107	0.852*	0.747-0.971
NDVI (standardized) quartile 3	0.953	0.873 - 1.041	0.926	0.823-1.042	0.974	0.854-1.111
NDVI (standardized) quartile 4	0.884**	0.804 - 0.971	0.863**	0.762-0.978	0.902	0.784-1.038
Length of hospital stay	1.034***	1.029 - 1.039	1.03	1.024-1.035	1.052***	1.041-1.064

316 ***p<0.01, **p<0.05, *p<0.1

¹ Following IDI protocols, all sample sizes (including the number of hospitals) have been rounded to the nearest multiple of three

35 319

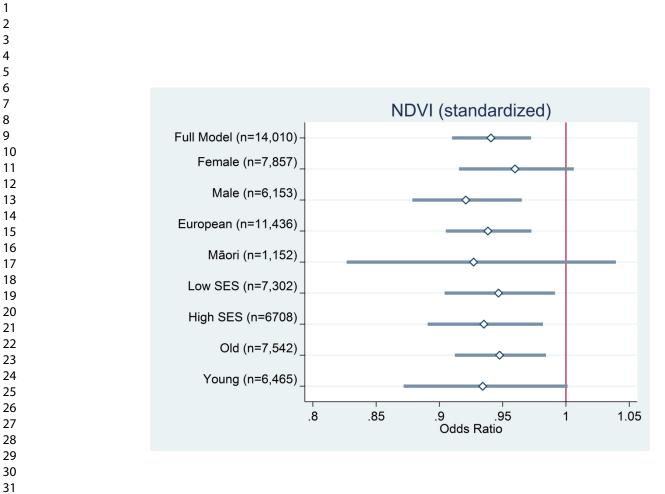
BMJ Open

		3 MONTH	IS POST SURGERY	12 MONT	HS POST SURGERY	24 MON	THS POST SURGER
		HR	95% CI	HR	95% CI	HR	95% CI
	Opioid scripts 12 months pre-surgery	1.083***	1.079 - 1.087	1.136***	1.130 - 1.141	1.147***	1.141 - 1.154
	Female	1.124***	1.072 - 1.177	1.177***	1.121 - 1.237	1.195***	1.134 - 1.259
	Ethnicity: European NZ	1.247***	1.171 - 1.329	1.121***	1.051 - 1.196	1.01	0.944 - 1.080
	Age	0.994***	0.992 - 0.996	0.998	0.996 - 1.001	0.998*	0.995 - 1.000
	Mean post-surgical NDVI (standardized)	0.969***	0.947 - 0.992	0.971**	0.947 - 0.995	0.969**	0.944 - 0.994
	Knee	1.653***	1.578 - 1.731	1.594***	1.519 - 1.673	1.547***	1.471 - 1.627
	COPD	1.219***	1.133 - 1.311	1.272***	1.175 - 1.378	1.374***	1.262 - 1.496
	CHD	1.133***	1.057 - 1.214	1.091**	1.012 - 1.175	1.069*	0.988 - 1.157
	Traumatic brain Injury	1.197*	0.992 - 1.444	1.335***	1.088 - 1.637	1.448***	1.166 - 1.799
	Days in hospital	1.015***	1.009 - 1.022	1.035***	1.027 - 1.043	1.037***	1.029 - 1.045
322 323 324 325	Variance of hospital random effect	1.164***	1.064 - 1.272	1.072***	1.020 - 1.127	1.071**	1.009 - 1.137
	¹ Following IDI protocols, all sample sizes have	been rounde	ed to the nearest mu		14 On		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

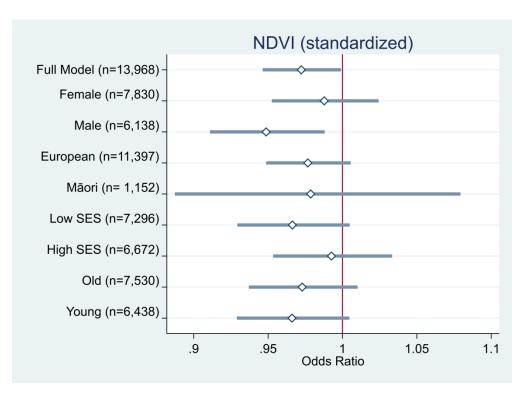
2 3	226	
4	326	FIGURE LEGENDS
5 6	327	Figure 1: Odds-ratio plot of standardized mean post-surgical NDVI for time to all-cause mortality
7	328	following hip or knee arthroplasty (number of participants=14,010, number of observations= 149,523) ¹ .
8	329	Low/high SES denotes participants whose lifetime NZ Deprivation Index is above/below average.
9	330	Old/young denote participants who are older/younger than the sample mean. The ethnicity reference
10 11	331 332	group is a composite of all ethnicities other than European NZ or Māori (figures 1 and 2 were created with the user written State command COEFDLOT)
12	332	with the user-written Stata command COEFPLOT)
13	333	¹ Following IDI protocols, all sample sizes have been rounded to the nearest multiple of three
14 15	334 225	
16	335 336	Figure 2: Odds-ratio plot of standardized mean post-surgical NDVI for number of opioid prescriptions 3
17	337	
18 10		
19 20	338	¹ Following IDI protocols, all sample sizes have been rounded to the nearest multiple of three
21	339	
22		
23 24		
25		
26		
27 28		
29		
30		
31 32		
33		
34		
35 36		
37		
38		
39 40		
41		
42		
43 44		
45		
46		
47 48		
40 49		
50		
51		
52 53		
54		
55		
56 57		
57 58		20
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	340	Contributorship statement: GHD designed the study, conducted the analysis, and wrote the majority of
5 6	341	the manuscript. DG created the exposure metrics and edited the manuscript. JD wrote parts of the
7 8	342	manuscript and edited multiple drafts.
9 10 11 12 13 14 15 16 7 8 9 21 22 32 25 26 27 8 9 31 32 33 45 36 7 8 9 0 12 23 24 25 26 27 8 9 31 32 33 45 36 7 8 9 0 12 23 24 25 26 27 8 9 31 32 33 45 36 7 8 9 0 12 23 24 25 26 27 8 9 31 32 33 45 36 7 8 9 0 11 22 3 45 56 7 8 9 0 31 22 3 34 56 7 8 9 0 31 32 33 45 36 7 8 9 0 11 22 3 4 55 56 7 8 9 0 31 22 3 34 55 56 7 8 9 0 31 22 3 34 55 56 7 8 9 0 12 23 45 56 7 8 9 0 31 22 33 45 56 7 8 9 0 12 23 45 56 7 8 9 0 12 23 45 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 8 9 0 12 23 24 55 56 7 57 55 57 57 57 57 57 57 57 57 57 57 5	343	
58 59 60		21 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		To peer review only intepsychion jopen.on jone/about/guidelines.xhtml


244	
344	LITERATURE CITED
345	1 Pabinger C, Geissler A. Utilization rates of hip arthroplasty in OECD countries. <i>Osteoarthritis</i>
346	<i>Cartilage</i> 2014; 22 :734-41.
347	2 Pabinger C, Lothaller H, Geissler A. Utilization rates of knee-arthroplasty in OECD countries.
348	Osteoarthritis and Cartilage 2015; 23 :1664-73.
349	3 Ibrahim M, Twaij H, Giebaly D, et al. Enhanced recovery in total hip replacement. Bone Joint J
350	2013; 95 :1587-94.
351	4 Larsen K, Hvass KE, Hansen TB, et al. Effectiveness of accelerated perioperative care and
352	rehabilitation intervention compared to current intervention after hip and knee arthroplasty. A before-
353	after trial of 247 patients with a 3-month follow-up. BMC musculoskeletal disorders 2008;9:59.
354	5 Savaridas T, Serrano-Pedraza I, Khan SK, <i>et al.</i> Reduced medium-term mortality following
355	primary total hip and knee arthroplasty with an enhanced recovery program. A study of 4,500
356	consecutive procedures. Acta orthopaedica 2013;84:40-3.
357	6 Almanza E, Jerrett M, Dunton G, et al. A study of community design, greenness, and physical
358	activity in children using satellite, GPS and accelerometer data. <i>Health Place</i> 2012;18:46-54.
359	7 Gordon-Larsen P, Nelson MC, Page P, et al. Inequality in the built environment underlies key
360	health disparities in physical activity and obesity. <i>Pediatrics</i> 2006; 117 :417-24.
361	8 Handy SL, Boarnet MG, Ewing R, et al. How the built environment affects physical activity.
362	American journal of preventive medicine 2002; 23 :64-73.
363	9 Sugiyama T, Leslie E, Giles-Corti B, et al. Associations of neighbourhood greenness with physical
364	and mental health: do walking, social coherence and local social interaction explain the relationships?
365	Journal of Epidemiology & Community Health 2008; 62 :e9-e.
366	10 Ulrich RS. View through a window may influence recovery from surgery. <i>Science</i> 1984; 224 :420-
367	1.
	22
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

2 3	368	11	Yoon RS, Nellans KW, Geller JA, et al. Patient education before hip or knee arthroplasty lowers			
4 5 6	369	length	of stay. The Journal of arthroplasty 2010; 25 :547-51.			
7 8	370	12	Siggeirsdottir K, Olafsson Ö, Jonsson Jr H, et al. Short hospital stay augmented with education			
9 10	371	and ho	me-based rehabilitation improves function and quality of life after hip replacement: randomized			
11 12 13	372	study o	of 50 patients with 6 months of follow-up. <i>Acta orthopaedica</i> 2005; 76 :555-62.			
14 15	373	13	Juliano K, Edwards D, Spinello D, et al. Initiating physical therapy on the day of surgery decreases			
16 17	374	length	of stay without compromising functional outcomes following total hip arthroplasty. HSS journal			
18 19	375	2011; 7 :16-20.				
20 21 22	376	14	Yeap YL, Butterworth JF. Analgesic techniques after total hip arthroplasty. Anesthesia &			
23 24	377	Analge	esia 2011; 113 :687-8.			
25 26	378	15	Chua MJ, Hart AJ, Mittal R, et al. Early mobilisation after total hip or knee arthroplasty: A			
27 28	379	multic	entre prospective observational study. <i>PloS one</i> 2017; 12 :e0179820.			
29 30 31	380	16	Guerra ML, Singh PJ, Taylor NF. Early mobilization of patients who have had a hip or knee joint			
32 33	381	replace	ement reduces length of stay in hospital: a systematic review. Clinical rehabilitation 2015;29:844-			
34 35	382	54.				
36 37 38	383	17	Husted H, Hansen HC, Holm G, et al. What determines length of stay after total hip and knee			
38 39 40	384	arthro	plasty? A nationwide study in Denmark. Archives of orthopaedic and trauma surgery			
41 42	385	2010; 1	30 :263.			
43 44	386	18	Freburger JK. An analysis of the relationship between the utilization of physical therapy services			
45 46 47	387	and ou	tcomes of care for patients after total hip arthroplasty. <i>Physical therapy</i> 2000; 80 :448-58.			
47 48 49	388	19	Hughes K, Kuffner L, Dean B. Effect of weekend physical therapy treatment on postoperative			
50 51	389	length	of stay following total hip and total knee arthroplasty. Physiotherapy Canada Physiotherapie			
52 53	390	Canad	a 1993; 45 :245-9.			
54 55 56						
57 58			23			
59						
58			23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

2 3		• •	
4	391	20	Matheis C, Stöggl T. Strength and mobilization training within the first week following total hip
5 6	392	arthro	plasty. Journal of bodywork and movement therapies 2018;22:519-27.
7 8	393	21	Fan Y, Das KV, Chen Q. Neighborhood green, social support, physical activity, and stress:
9 10 11	394	assess	ing the cumulative impact. <i>Health Place</i> 2011; 17 :1202-11.
12 13	395	22	Giles-Corti B, Donovan RJ. The relative influence of individual, social and physical environment
14 15	396	detern	ninants of physical activity. Social Science & Medicine 2002;54:1793-812.
16 17	397	23	Tse MM, Ng JK, Chung JW, et al. The effect of visual stimuli on pain threshold and tolerance.
18 19 20	398	Journa	Il of clinical nursing 2002; 11 :462-9.
20 21 22	399	24	Diette GB, Lechtzin N, Haponik E, et al. Distraction therapy with nature sights and sounds
23 24	400	reduce	es pain during flexible bronchoscopy: A complementary approach to routine analgesia. Chest
25 26	401	2003;1	123:941-8.
27 28 29	402	25	Statistics New Zealand. Integrated Data Infrastructure. 2017.
30 31	403	26	Larsen K, Sørensen OG, Hansen TB, et al. Accelerated perioperative care and rehabilitation
32 33	404	interve	ention for hip and knee replacement is effective: a randomized clinical trial involving 87 patients
34 35	405	with 3	months of follow-up. Acta orthopaedica 2008; 79 :149-59.
36 37	406	27	Frank LD, Sallis JF, Saelens BE, et al. The development of a walkability index: application to the
38 39 40	407	Neight	porhood Quality of Life Study. British journal of sports medicine 2010;44:924-33.
41 42	408	28	Salmond CE, Crampton P. Development of New Zealand's deprivation index (NZDep) and its
43 44	409	Uptake	e as a national policy tool. Canadian Journal of Public Health 2012;103:S7-S11.
45 46	410	29	Statistics New Zealand. IDI Data Dictionary: Chronic condition/significant health event cohort.
47 48 49	411	Wellin	gton, New Zealand: Statistics New Zealand 2015:14.
50 51	412	30	Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. Philadelphia, PA: Wolters Kluwer
52 53	413	2008.	
54 55			
56			
57 58			24
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00			


1 2			
2 3 4	414	31	Wong CW, Kwok CS, Narain A, et al. Marital status and risk of cardiovascular diseases: a
5 6	415	system	natic review and meta-analysis. <i>Heart</i> 2018; 104 :1937-48.
7 8	416	32	Kennedy DM, Stratford PW, Hanna SE, et al. Modeling early recovery of physical function
9 10 11	417	follow	ing hip and knee arthroplasty. BMC musculoskeletal disorders 2006;7:100.
12 13	418	33	Troy A, Grove JM. Property values, parks, and crime: a hedonic analysis in Baltimore, MD.
14 15	419	Landso	cape and Urban Planning 2008; 87 :233-45.
16 17	420	34	Li D, Sullivan WC. Impact of views to school landscapes on recovery from stress and mental
18 19 20	421	fatigue	e. Landscape and Urban Planning 2016; 148 :149-58.
21 22	422	35	Takayama N, Korpela K, Lee J, et al. Emotional, restorative and vitalizing effects of forest and
23 24	423	urban	environments at four sites in Japan. International journal of environmental research and public
25 26	424	health	2014; 11 :7207-30.
27 28 29	425	36	Kivimäki M, Leino-Arjas P, Luukkonen R, et al. Work stress and risk of cardiovascular mortality:
30 31	426	prospe	ective cohort study of industrial employees. <i>BMJ</i> 2002; 325 :857.
32 33	427	37	Sinha R. The role of stress in addiction relapse. <i>Current psychiatry reports</i> 2007; 9 :388-95.
34 35	428	38	Ulmer JM, Wolf KL, Backman DR, et al. Multiple health benefits of urban tree canopy: The
36 37 38	429	mount	ting evidence for a green prescription. <i>Health Place</i> 2016; 42 :54-62.
39 40	430	39	Deroche Vr, Piazza PV, Moal ML, et al. Social isolation-induced enhancement of the
41 42	431	psycho	omotor effects of morphine depends on corticosterone secretion. <i>Brain Research</i> 1994; 640 :136-9.
43 44	432	40	Steptoe A, Shankar A, Demakakos P, et al. Social isolation, loneliness, and all-cause mortality in
45 46 47	433	older i	men and women. Proceedings of the National Academy of Sciences of the United States of America
48 49	434	2013;1	110 :5797-801.
50 51	435	41	Hanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and
52 53 54	436	allergy	are interrelated. Proceedings of the National Academy of Sciences 2012;109:8334-9.
55 56			
57 58			25
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	437	42 Donovan GH, Gatziolis D, Longley I, et al. Vegetation diversity protects against childhood
5 6	438	asthma: results from a large New Zealand birth cohort. <i>Nature plants</i> 2018; 4 :358-64.
7 8	439	43 Gaudillière B, Fragiadakis GK, Bruggner RV, et al. Clinical recovery from surgery correlates with
9 10 11	440	single-cell immune signatures. Science translational medicine 2014;6:255ra131-255ra131.
12 13	441	Lei M, Hua L, Wang D. The effect of probiotic treatment on elderly patients with distal radius
14 15	442	fracture: a prospective double-blind, placebo-controlled randomised clinical trial. Beneficial microbes
16 17	443	2016; 7 :631-7.
18 19 20	444	2016;7:631-7.
21 22		
23 24		
25 26 27		
28 29		
30 31		
32 33 34		
35 36		
37 38		
39 40 41		
42 43		
44 45		
46 47 48		
49 50		
51 52		
53 54		
55 56 57		
58 59		26
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1763x1282mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1763x1282mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	2
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4-5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5-9
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5-6
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	5-6
I	-	methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-9
v artables	/	and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-8
	0	of assessment (measurement). Describe comparability of assessment	0-0
measurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	N/.
	10	Explain how the study size was arrived at	5
Study size		* · · ·	6-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	0-5
Statistical matheda	10		8-9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8-5
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	N/2
		(<i>d</i>) <i>Cohort study</i> —If applicable, explain how loss to follow-up was	N/2
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	

Continued on next page

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 (\underline{e}) Describe any sensitivity analyses

For peer terier only

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	14
		eligible, examined for eligibility, confirmed eligible, included in the study,	16
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	14
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	6
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	15
		their precision (eg, 95% confidence interval). Make clear which confounders were	17
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
			12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	12
		imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	11
		multiplicity of analyses, results from similar studies, and other relevant evidence	12
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	3

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The relationship between exposure to the natural environment and recovery from hip or knee arthroplasty: a New Zealand retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029522.R2
Article Type:	Original research
Date Submitted by the Author:	22-Aug-2019
Complete List of Authors:	Donovan, Geoffrey; USDA Forest Service, PNW Research Station Gatziolis, Demetrios; USDA Forest Service Pacific Northwest Research Station Douwes, Jeroen; Massey University, Centre for Public Health Research
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, Hip < ORTHOPAEDIC & TRAUMA SURGERY, Knee < ORTHOPAEDIC & TRAUMA SURGERY

1		
2		
3 4	1	The relationship between exposure to the natural environment and recovery from hip or knee
5		
6	2	arthroplasty: a New Zealand retrospective cohort study
7		
8	3	Geoffrey H. Donovan, ^{a,*,1} Demetrios Gatziolis, ^b and Jeroen Douwes ^a
9	5	
10	4	^a Center for Public Health Research, Massey University, PO Box 756, Wellington 6140, New Zealand
11	5	^b USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, Oregon, USA
12 13	6	*Corresponding author ORCID: 0000-0002-1624-3440
13 14	7	
15	8	Word count: 3,000
16	9	
17	10	
18		
19		
20	11	
21		
22		
23 24		
24 25		
26		
27		
28		
29		
30		Word count: 3,000
31		
32		
33 34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 45		
43 46		
40 47		
48		
49		
50		
51		
52		
53		
54		
55		¹ Permanent address: USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR 97205,
56 57		USA +1 503-808-2043, geoffrey.donovan@usda.gov
57 58		1
59		±

12 ABSTRACT

Objectives: Determine whether patients who live in greener and more walkable neighborhoods live
 longer, and take fewer opioids, following hip or knee arthroplasty.

Design: Retrospective cohort study.

Setting: Residential environment following surgery at one of 54 New Zealand hospitals.

Participants: All people who received a total hip or knee arthroplasty at a publicly-funded hospital in
New Zealand in 2006 and 2007 (7,449 hip arthroplasties and 6,558 knee arthroplasties).

Primary and secondary outcome measure: Time to all-cause mortality and number of post-surgical
opioid prescriptions.

Results: Patients who lived in greener neighborhoods, as measured by the normalized difference vegetation index (NDVI), lived longer following hip or knee arthroplasty (standardized OR: 0.95 95% CI: 0.92-0.99). However, when we estimated separate hip-arthroplasty-only and knee-arthroplasty-only models, greenness was only significantly associated with greater longevity following hip arthroplasty. Similarly, patients who lived in greener neighborhoods took fewer opioids in the 12 months following hip or knee arthroplasty (standardized OR: 0.97 95% CI: 0.95-0.99), but in separate hip-arthroplasty-only and knee-arthroplasty-only models, greenness was only significantly associated with lower opioid use following hip arthroplasty. Walkability was not significantly associated with post-surgical opioid use or post-surgical longevity. All odds ratios were adjusted for sex, ethnicity, age, pre-surgical chronic health conditions, pre-surgical opioid use, social deprivation, and length of hospital stay.

Conclusions: Consistent with the literature on enhanced-recovery programs, people who lived in
 greener neighborhoods took fewer opioids, and lived longer, following hip arthroplasty. Improving

1 2		
2 3 4	33	access to the natural environment may therefore be an effective component of post-surgical recovery
5 6	34	programs.
7 8 9	35	Keywords: Normalized difference vegetation index, natural environment, surgical recovery, orthopedic
10 11	36	
12 13		
14 15 16		
17 18		
19 20		
21 22 23		
24 25		
26 27		
28 29 30		
30 31 32		
33 34		
35 36 37		
38 39		
40 41		
42 43 44		
45 46		
47 48		
49 50 51		
52 53		
54 55		
56 57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

37	STRENGTHS AND LIMITATIONS OF THIS STUDY
38	• First study to examine the relationship between natural environment and surgical recovery
39	outside of a hospital setting
40	Large cohort followed longitudinally for 9+ years
41	• Observational study, so a causal link between the natural environment and surgical recovery
42	couldn't be established
43	Exposure was based on residential meshblock not residential address
44	Competing interests: None declared
45	Funding: No external funding was received
46	Data availability statement: De-identified data are not publicly available but may be obtained from
47	Statistics New Zealand after gaining ethics approval and submitting a research proposal (contact:
48	access2microdata@stats.govt.nz). Note that, even with these approvals, data must be accessed via a
49	secure data lab in New Zealand. Exposure data, and code used for statistical analysis, are freely available
50	from the authors.
51	4
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	 38 39 40 41 42 43 44 45 46 47 48 49 50

BMJ Open

52 INTRODUCTION	ON
-----------------	----

Rates of hip and knee arthroplasty are rising globally. For example, in Organization for Economic Cooperation and Development (OECD) countries, the incidence of hip arthroplasty rose from 140/100,000 people in 2005 to 164/100,000 in 2011 [1]. Similarly, the incidence of knee arthroplasty in OECD countries rose from 114/100,000 in 2005 to 150/100,000 in 2011 [2]. Increases in life expectancy and obesity rates suggest that this trend is likely to continue [3]. Given this increased demand, and constrained healthcare budgets, research has focused on identifying approaches that improve post-surgical health outcomes, shorten length of stay, and reduce costs. For example, enhanced-recovery programs that emphasize rapid mobilization and rehabilitation following hip or knee arthroplasty can reduce length of hospital stay [4] and decrease mortality [5]. However, no research has focused on the effect of patients' residential environments, despite the well-established link between exposure to the natural environment and increased physical activity [6-9], and research showing that passively viewing a natural scene while recovering from surgery can reduce both length of hospital stay and post-surgical opioid use [10]. We address this gap in the literature by evaluating the relationship between exposure to the built and natural environment and recovery from hip or knee arthroplasty in a large New Zealand cohort.

68 Literature review

Numerous studies have examined how different elements of enhanced-recovery programs affect postoperative outcomes (also known as fast-track or rapid-recovery programs). These programs use
coordinated multimodal techniques to reduce recovery times and improve post-operative outcomes [3].
For example, pre-operative education can shorten hospital stays [11] and reduce post-operative pain
[12]. Several studies have found that pre-emptive analgesia allows more rapid mobilization and return
of function [13, 14]. Multiple studies have found that rapid mobilization on the day of surgery (typically

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2-6 hours after surgery) reduces length of stay and improves function [15-17]. Similarly, aggressive physical therapy (extending beyond the day of surgery) can reduce length of stay and improve function [18-20]. Finally, in a prospective study of 4,500 patients in the UK, enhanced recovery was associated with improved two-year survival rates when compared to traditional post-surgical protocols, which suggests that post-operative mobility may have long-term benefits [5]. Several studies have found that exposure to the natural environment is associated with increased physical activity. For example, using survey data in Chicago (n=1,544), Fan et al. [21] found that respondents with a greater area of public parks within 0.5 miles of their home were more likely to engage in physical activity. A survey of 1,895 people in Adelaide, Australia [9] found that respondents who perceived their neighborhoods as greener were more likely to engage in recreational walking. Similarly, a study in 1,803 people in Perth, Australia [22] found that people who lived nearer to recreational amenities, including public parks, were more likely to meet minimum physical-activity requirements. Passive exposure to the natural environment can also produce health benefits. In particular, several studies have found that greenness exposure can reduce perceived pain in a range of settings. Specifically, a RCT of 46 healthy volunteers [23] found that participants who had just watched a video of a natural scene had significantly higher pain threshold and tolerance than participants who had watched a blank screen. Similarly, a RCT of adults undergoing flexible bronchoscopy found that participants who viewed a natural scene reported significantly less pain [24]. Finally, an RCT of a two-day forestry-therapy program in Korea found that participants in the program (n=33) had significantly lower levels of pain and depression than controls (n=25). In addition, participants had significantly higher heart-rate variability and natural-killer cell activity. **METHODS**

Page 7 of 31

1		
2 3 4	98	Study sample
5 6 7	99	Our sample consisted of all people who received a total hip or knee arthroplasty at a publicly-funded
, 8 9	100	hospital in New Zealand in 2006 and 2007 (7,449 hip arthroplasties and 6,558 knee arthroplasties). We
10 11	101	obtained individual-level hospital and pharmaceutical records via Statistics New Zealand's Integrated
12 13	102	Data Infrastructure (IDI), which is a large database of routinely-collected individual-level data [25]. The
14 15 16	103	IDI is structured around a central spine designed to identify all New Zealand residents. Datasets
17 18	104	describing health, education, benefits, criminal justice, population (births, deaths, and immigration),
19 20	105	income and work, and housing are linked to this central spine.
21 22	106	As this study was based on routinely-collected health data, and did not involve contacting individual
23 24		
25 26	107	patients, the study was classified as minimal risk by the New Zealand Health and Disabilities Ethics
27 28	108	Committee and was approved by Statistics New Zealand (MAA-2017-57). Before we were granted
29 30	109	access, all data were anonymized by Statistics New Zealand. In addition, our research conformed to the
31 32 33	110	Declaration of Helsinki guidelines.
34 35	111	Patient and Public Involvement statement: Neither patients, nor the public, were involved in the design
36 37	112	or conduct of this study.
38 39 40 41	113	Outcomes
42 43	114	We used two outcomes to measure recovery: time to all-cause mortality and number of opioid
44 45	115	prescriptions 3, 12, and 24 months post-surgery. We chose these outcomes as they are important
46 47	116	metrics of post-surgical recovery. In addition, previous research has shown that rapid mobilization and
48 49 50	117	rehabilitation can reduce two-year mortality rates following hip or knee arthroplasty [26], and exposure
51 52	118	to the natural environment, in a hospital setting, is associated with reduced perioperative use of opioids
53 54 55	119	[10].
56		
57 58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	120	By the end of 2016, 2,263 (30.0%) of the 7,449 people who had received a hip arthroplasty had died as
5 6 7	121	had 1,741 (26.5%) of the 6,558 people who received knee arthroplasties.
8 9	122	The number of opioid prescriptions received was calculated by linkage to pharmacy records. We did not
10 11 12	123	include prescriptions for methadone or buprenorphine, as in New Zealand these are primarily used to
12 13 14	124	treat addiction. To control for pre-surgical pain, we calculated the number of opioid prescriptions each
15 16	125	participant received in the 12 months before surgery. Finally, to account for opioid potency, we
17 18	126	categorized each opioid prescription as either strong (potency equal to or greater than morphine) or
19 20	127	weak (potency less than morphine). On average, study participants received 3.04 (SD=9.38) opioid
21 22 23	128	prescriptions in the 12 months before surgery (0.68 strong and 2.36 weak) and 2.72 (SD=7.06) opioid
24 25	129	prescriptions in the 12 months after surgery (0.75 strong and 1.98 weak).
26 27 28	130	Exposures
29 30 31	131	All exposures are based on a participant's residential meshblock, which is the smallest geographic unit at
32 33	132	which Statistics New Zealand reports data. On average, 95 people live in a meshblock.
34 35 36	133	Linking to address history in the IDI allowed us to estimate exposures for each year of the study (2005-
37 38	134	2016). From these annual values, we calculated mean post-surgical exposure, which we defined as the
39 40	135	mean exposure from the year of surgery to death or 2016, whichever came first.
41 42 43	136	We had no information on participants' pre- or post-surgical physical activity. Therefore, exposure
44 45	137	metrics describe the physical environment that a participant is exposed to, but they do not describe how
46 47 48	138	a participant physically interacts with different environments.
49 50 51	139	Walkability
52 53	140	We used a previously validated walkability index [27] with three components: number of households per
54 55 56	141	hectare (data source: 2006 New Zealand Census), number of road intersections per square kilometer
57 58		8
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

(data source: Land Information New Zealand), and land-use mix (data source: 2008 New Zealand Land
Cover Database v4.1). In all three cases, we used the version of each data source that was closest to
baseline. Land-cover data were available from 2001, 2008, and 2012. However, the classification
schemes were not consistent across the three years. In addition, when we compared 2008 and 2012
data, we found that the net area of New Zealand that changed from one land class to another was only
0.903%. Therefore, we used 2008 data for our analysis.

148 Land-use mix is defined as:

Land – use mix = $\frac{\sum_{i=1}^{n} (LC_i * ln(LC_i))}{ln(N)}$

Where *LC_i* denotes the proportion of each meshblock that is covered by the *i*th land-cover type and *N*denotes the total number of land-cover types. Following Frank et al., we standardized household
density, intersection density, and land-use mix (by subtracting the mean and dividing by the standard
deviation), and summed the three standardized scores into a single walkability index.

154 Greenness

We used two measures of exposure to the natural environment: land-cover data (see above) and the
Normalized Difference Vegetation Index (NDVI), which is a greenness index derived from satellite
imagery. Specifically, for each year from 2005 to 2016, we used maximum annual NDVI derived from
30m-resolution Landsat imagery that was calculated at the top of the atmosphere, which normalized all
atmospheric effects. We standardized NDVI values to make regression coefficients easier to interpret.
From these annual values, we calculated mean post-surgical greenness exposure. **Covariates**

2	
2 3 4	162
5	163
6 7	
8 9	164
10 11	165
12 13	166
14 15	167
16 17	168
18 19	169
20 21	17(
22 23	
24 25	172
26 27	172
28 29	173
30 31	17
32	174
33 34	175
35 36	176
37 38	177
39 40	178
41 42	
43 44	179
45 46	18(
47 48	182
49 50	182
51	
52 53	183
54 55	4.0
55 56	184
57	
58 59	
60	

1

2 Using data from the IDI, we controlled for sex, ethnicity, and age. In addition, we controlled for 3 neighborhood deprivation using the New Zealand Deprivation Index (NZDep), which is a well-validated 4 index calculated from nine census variables [28]. NZDep ranges from 1 to 10 with higher values denoting 5 higher levels of social deprivation. Finally, we controlled for eight chronic conditions at time of surgery: 6 coronary heart disease, gout, chronic obstructive pulmonary disease (COPD), diabetes, cancer, stroke, 7 acute myocardial infarction, and traumatic brain injury. We chose to account for these conditions as 8 they are major health outcomes that could affect surgical recovery, and they were pre-defined by 9 Statistics New Zealand based on hospital-admissions and pharmacy data [29]. Note that we did not have 0 access to data on physical activity, BMI, or diet.

171 Statistical analysis

We analyzed time-to-death data using a frailty model that included hospital-level random effects. We
were particularly careful to account for the hospital where the surgery was performed, because smaller
hospitals that may not be able to provide the specialist care of a larger hospital are more likely to be in
rural areas that are greener. We evaluated five different functional forms for the survival function
(Weibull, exponential, log-logistic, log-normal, and gamma) and chose between them using the Akaike
information criterion. We analyzed the number of post-operative opioid scripts using a mixed negativebinomial regression that included hospital-level random effects.

A backwards-selection procedure was used for all model selection: variables were dropped from the
 analysis using progressively smaller p-value thresholds (final threshold: p<0.1). Insignificant variables can
 still be confounders [30], so we systematically re-introduced dropped variables and retained them if the
 coefficients on variables of interest changed by more than 10%.

183 To avoid including highly collinear combinations of variables, we estimated ordinary least squares
 ⁵ 184 versions of each model (results not shown), which allowed us to calculate variance-inflation factors for

1		
2 3 4	185	each independent variable. If any variable had a variance-inflation factor over two, we dropped it from
5 6	186	the regression model. When choosing between two collinear variables, we included the variable with
7 8 9	187	the lowest p-value when individually regressed against the dependent variable.
10 11 12	188	We also conducted stratified analyses to see whether the relationship between the natural environment
13 14	189	and health outcomes was the same across different strata of the sample. Analyses were conducted for
15 16 17	190	hip and knee arthroplasty combined as well as for each outcome separately.
18 19	191	RESULTS
20 21 22	192	Table 1 provides descriptive statistics for our sample.
23 24 25	193	In the frailty model, specifying the survival function using a Weibull distribution gave the best model fit.
26 27	194	Being older, male, European New Zealander, or Māori (the indigenous people of New Zealand) were all
28 29	195	mortality risk factors (Table 2) (The reference ethnic group was Pacific, Asian, MELAA, or other).
30 31	196	Similarly, people who received more pre-surgery opioids, or had a longer hospital stay, were at greater
32 33 34	197	risk of mortality. Six chronic conditions were risk factors as was higher neighborhood deprivation,
35 36	198	although this relationship was only significant for hip arthroplasty.
37 38 39	199	People who lived in greener neighborhoods (defined as mean post-surgical NDVI) were at lower risk of
40 41	200	mortality, although this relationship was only significant in the hip-and-knee arthroplasty and hip-
42 43	201	arthroplasty-only models (Table 2). To better elucidate the dose-response function linking NDVI and
44 45	202	mortality, we re-estimated the hip-and-knee-arthroplasty frailty model splitting NDVI into quartiles
46 47 48	203	(Table 3). Only the highest quartile was statistically significant, in the combined and hip-only models,
49 50	204	although NDVI remained protective in the second and third quartiles. In the knee-only model, the
51 52	205	second quartile of NDVI was protective although only at the 10% level. In addition, the third and fourth
53 54 55	206	quartiles of NDVI did not show a consistent protective effect.
56 57		
58 50		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1 shows the odds ratio for mean lifetime NDVI for different strata of the sample. Stratifying the sample resulted in some loss of significance, due to lower numbers in each stratum. Notably, the protective effect of NDVI was higher for men than women. The protective effect of NDVI was also modestly higher for people who lived in higher SES neighborhoods (NZDep 1-5) compared to lower SES neighborhoods (NZDep 6-10). Similarly, NDVI was somewhat more protective for people who were younger than average (mean age at surgery=68).

In the opioid model (Table 4), women, European New Zealanders, and people who were prescribed more pre-surgery opioid prescriptions received significantly more post-surgical opioid scripts in all three time periods with the exception of European New Zealanders in the 24 months post-surgery model (Table 4). Those who received a knee arthroplasty (as opposed to a hip arthroplasty) or stayed longer in hospital also received more post-surgical opioids, as did people who had COPD, coronary heart disease, or traumatic brain injury. In contrast, older people received fewer opioid prescriptions, although the significance of this relationship varied across the three time periods. Separating opioids into weak and strong was not revealing and reduced the significance of variables of interest (data not shown). Mean post-surgical greenness was associated with significantly fewer post-surgical opioid prescriptions in all three time periods (Table 4). Living in a rural area and land cover were not significantly associated with the number of post-surgical opioid prescriptions or time to all-cause mortality (data not shown). In addition, walkability was not significantly associated with either opioid use or mortality. For example, the odds ratio on walkability in the 3-month post-surgical opioid model was 1.043 (95% CI: 0.966-1.127), and the odds ratio in the hip-only frailty model was 1.035 (95% CI: 0.971-1.104). Even when the analysis was restricted to only-hip or only-knee arthroplasties, the relationship between walkability and mortality or opioid use remained insignificant.

1 2		
2 3 4	229	In addition, consistent with the frailty model, NDVI was not significant, when the analysis was restricted
5 6	230	to knee-arthroplasty (results not shown). Finally, when we split NDVI into quartiles, none were
7 8 9	231	significant (results not shown).
10 11 12	232	In the stratified analysis (figure 2), greenness was more protective for men than women, which is
12 13 14	233	consistent with the frailty model.
15 16 17	234	DISCUSSION
18 19	235	In a cohort of people who received a total hip or knee arthroplasty at a publicly-funded hospital in New
20 21 22	236	Zealand in 2006 or 2007, we found that residents of greener neighborhoods received fewer post-surgical
23 24	237	opioid prescriptions and lived longer, with the strongest results for hip arthroplasty. Our results are
25 26	238	consistent with those reported by Ulrich [10], who found that, after gall-bladder surgery, patients
27 28	239	recovered faster and took fewer opioids if they were in a room with a view of a natural scene. Our
29 30	240	results are also consistent with a previous study [5], which found that rapid mobilization following hip or
31 32 33	241	knee arthroplasty was associated with better two-year survival rates. Finally, results suggests that the
34 35 36	242	benefits of exposure to the natural environment extend beyond the immediate post-surgical period.
37 38	243	Greenness was associated with lower post-surgical opioid use, and lower mortality, in people recovering
39 40	244	from hip arthroplasty but not those recovering from knee arthroplasty. This may be because knee
41 42	245	arthroplasty is a more difficult and painful surgery to recover from [31] (post-surgical opioid use was
43 44 45	246	65% higher for knee-arthroplasty patients in our sample), and the protective effect of neighborhood
46 47	247	greenness is insufficient to induce a clinically significant increase in post-surgical mobilization.
48 49 50	248	There was modest evidence that younger people, and those living in less deprived neighborhoods,
51 52	249	derived greater benefit from exposure to greenness. This may be because younger people are more
53 54	250	physically able to engage in outdoor activity, and that greenspace in higher SES neighborhoods may be
55 56 57	251	better maintained and more appealing because of lower crime [32].
58		13
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	252	When we split NDVI into quartiles in the frailty model, we found that only the top quartile was
4 5 6	253	protective at conventional significance levels. This suggests that there may be a minimum threshold
7 8	254	below which greenness offers no health benefits. However, it is important to note that NDVI is a coarse
9 10	255	measure of overall greenness. It does not reveal which elements of the natural environment provide the
11 12 13	256	greatest health benefits. Identifying the most protective elements would help inform the design of
14 15	257	landscapes that are not in the top quartile of NDVI, but nonetheless provide health benefits.
16 17	258	The magnitude of the protective effect of neighborhood greenness is not trivial. For example, in the 3-
18 19	259	months post-surgery model of opioid use, a 2-SD decrease in NDVI is roughly equivalent to the risk of
20 21 22	260	having chronic heart disease at the time of surgery. In the hip-only frailty model, a 2-SD decrease in
23 24	261	NDVI is roughly equivalent to the risk of being two years older.
25 26		
27 28	262	Physical activity is likely not the only mechanism linking greenness and improved post-surgical
29 30	263	outcomes. For example, exposure to the natural environment can reduce short-term markers of stress
31 32	264	such as heart rate, blood pressure, and salivary cortisol [33, 34]. In turn, stress is a well-documented risk
33 34	265	factor for premature mortality [35] and can also trigger opioid cravings [36]. Similarly, exposure to the
35 36 37	266	natural environment is associated with increased social connectivity [37], and social isolation can
38 39	267	increase individual reactivity to opioids [38] as well as being a risk factor for premature mortality [39].
40 41	268	More recently, research suggests that exposure to the natural environment may increase the microbial
42 43	269	diversity of the human microbiome [40], and protect against adverse health outcomes [41] through
44 45 46	270	improved immune function. In addition, improved immune function is associated with improved surgical
40 47 48	271	recovery [42] and better orthopedic outcomes in elderly patients [43].
49 50	272	Our study has several limitations. This is an observational study, so we were not able to establish a
51 52	273	causal relationship between exposure to the natural environment, opioid use, and surgical recovery. In
53 54 55	274	addition, our metrics of exposure to the natural environment were coarse. In particular, meshblock-level
56 57		
58 59		14
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	275	NDVI is an imperfect measure of a person's exposure to the natural environment. This is especially true
5 6	276	in larger, rural meshblocks, where mean NDVI may not optimally represent a person's residential
7 8 9	277	exposure to the natural environment.
10 11 12	278	Conclusions
13 14	279	In a large (n=14,010) cohort of participants who received a hip or knee arthroplasty at a publicly-funded
15 16	280	New Zealand hospital in 2006 or 2007, we found that exposure to the natural environment was
17 18 19	281	associated with fewer post-surgical opioid prescriptions, and increased time to all-cause mortality, in
20 21	282	hip-arthroplasty patients only. Results suggest that clinicians should consider a patient's home
22 23	283	environment when designing post-operative care plans. In particular, clinicians may wish to explicitly
24 25 26	284	incorporate neighborhood greenspace. When a patient doesn't have access to greenspace, additional
26 27 28	285	support may be warranted to encourage at-home mobilization.
29 30 31	286	
32 33		
33 34 35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46 47		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57 58		15
58 59		15
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TABLES

Table 1: Descriptive statistics for study participants who received a hip or knee arthroplasty at a publicly-funded hospital in New Zealand in 2006 or 2007 (hip: n=7,449; knee: n=6,558)¹

		HIP		KNEE	
	Variable	Mean	SD	Mean	SD
	Male (%)	43.2	-	44.9	-
	Race: NZ European (%)	82.0	-	81.1	-
	Race: Māori (%)	9.9	-	6.4	-
	Race: Pacific Islander (%)	0.99	-	3.2	-
	Race: Asian (%)	1.53	-	1.56	-
	Race MELAA ² (%)	2.67	-	2.84	-
	Race: Other/Unspecified (5)	2.91	-	4.9	-
	Chronic condition: COPD (%)	8.8	-	9.8	-
	Chronic condition: acute MI (%)	5.8	-	5.1	-
	Chronic condition: CHD (%)	10.6	-	12.1	-
	Chronic condition: stroke (%)	2.3	-	2.6	-
	Chronic condition: diabetes (%)	12.4	-	15.5	-
	Chronic condition: traumatic brain injury (%)	1.5	-	1.1	-
	Length of hospital stay (days)	6.4	4.5	6.2	3.0
	Opioid scripts (12 month pre-surgery)	3.2	6.8	2.4	5.2
	Opioid scripts (12 month post-surgery)	2.1	4.9	2.8	5.1
	Age on day of surgery	68.2	12.0	69.5	9.9
	Mean post-surgical NDVI	0.527	0.123	0.526	0.12
290	¹ Following IDI protocols, all sample sizes have been round	ed to the neare	st multiple of t	hree	
291	² Aggregate category used by Statistics New Zealand t	to describe Mi	ddle Eastern,	Latin America	an, or

- 292 African ethnicity

BMJ Open

Table 2: Frailty model of time to all-cause mortality (Hip and knee: number of participants=14,010, number of observations= 149,523; hip: number of participants=7,449, number of observations=78,501; knee: number of participants=6,558, number of observations= 71,022)¹. The ethnicity reference group is a composite of all ethnicities other than European NZ or Māori.

	HIP AN	ID KNEE		HIP		KNEE
Variable	HR	95% CI	HR	95% CI	HR	95% CI
Age (years)	1.090***	1.086 - 1.094	1.084***	1.078 - 1.089	1.098***	1.091 - 1.10
Female	0.711***	0.667 - 0.758	0.730***	0.670 - 0.796	0.665***	0.604 - 0.73
Ethnicity: European NZ	1.309***	1.151 - 1.490	1.279***	1.063 - 1.538	1.284***	1.072 - 1.53
Ethnicity: Māori	2.137***	1.806 - 2.528	1.910***	1.516 - 2.406	2.286***	1.778 - 2.9
Mean post-surgical NZDep	1.010*	0.998 - 1.023	1.018**	1.002 - 1.035	0.999	0.980 - 1.0
Chronic condition: COPD	1.448***	1.325 - 1.583	1.410***	1.250 - 1.591	1.478***	1.294 - 1.6
Chronic condition: acute MI	1.442***	1.293 - 1.607	1.384***	1.199 - 1.597	1.476***	1.249 - 1.7
Chronic condition: cancer	1.485***	1.357 - 1.625	1.592***	1.417 - 1.790	1.333***	1.157 - 1.5
Chronic condition: stroke	1.567***	1.346 - 1.825	1.702***	1.394 - 2.078	1.385***	1.094 - 1.7
Chronic condition: diabetes	1.306***	1.203 - 1.417	1.278***	1.142 - 1.430	1.342***	1.191 - 1.5
Chronic condition: traumatic brain injury	1.299*	0.994 - 1.697	1.193	0.835 - 1.703	1.452*	0.968 - 2.1
Opioid scripts 12 months pre-surgery	1.005***	1.004 - 1.006	1.018***	1.014 - 1.022	1.004***	1.002 - 1.0
Mean post-surgical NDVI (standardized)	0.954***	0.922 - 0.987	0.936***	0.895 - 0.979	0.978	0.929 - 1.0
Length of hospital stay	1.034***	1.029 - 1.039	1.030***	1.025 - 1.036	1.052***	1.040 - 1.0
Variance of hospital random effect	0.01404		0.011138	5	0.006208	
Number of hospitals ¹	54		51		51	

Following IDI protocols, all sample sizes (including the number of hospitals) have been rounded to the nearest multiple of three

Table 3: Frailty model of time to all-cause mortality following hip or knee arthroplasty with NDVI quartiles (Hip and knee: number of participants=14,010, number of observations= 149,523; hip: number of participants=7,449, number of observations=78,501; knee: number of participants=6,558, number of observations= 71,022)¹. The ethnicity reference group is a composite of all ethnicities other than European NZ or Māori.

	HIP A	AND KNEE	I	HIP		KNEE
Variables	HR	95% CI	OR	95% CI	OR	95% C
Age (years)	1.090***	1.086 - 1.094	1.083***	1.078-1.089	1.098***	1.091-1.105
Female	0.714***	0.670 - 0.761	0.735***	0.674-0.801	0.666***	0.605-0.734
Ethnicity: European NZ	1.305***	1.147 - 1.484	1.272**	1.058-1.529	1.277***	1.066-1.53
Ethnicity: Māori	2.124***	1.796 - 2.513	1.895***	1.504-2.386	2.276***	1.771-2.926
NZDep	1.012*	1.000 - 1.024	1.021**	1.005-1.038	0.998	0.98-1.016
Chronic condition: COPD	1.448***	1.325 - 1.583	1.41***	1.249-1.591	1.476***	1.292-1.686
Chronic condition: acute MI	1.443***	1.295 - 1.608	1.383***	1.199-1.596	1.476***	1.249-1.744
Chronic condition: cancer	1.489***	1.361 - 1.629	1.602***	1.425-1.8	1.33***	1.154-1.532
Chronic condition: stroke	1.568***	1.347 - 1.826	1.702***	1.394-2.079	1.384***	1.092-1.753
Chronic condition: diabetes	1.307***	1.204 - 1.418	1.275***	1.139-1.427	1.348***	1.196-1.519
Chronic condition: traumatic brain injury	1.300*	0.995 - 1.699	1.194	0.836-1.705	1.464*	0.976-2.195
Opioid scripts 12 months pre-surgery	1.005***	1.004 - 1.006	1.018***	1.014-1.023	1.004***	1.002-1.006
NDVI (standardized) quartile 2	0.933	0.856 - 1.017	0.988	0.881-1.107	0.852*	0.747-0.971
NDVI (standardized) quartile 3	0.953	0.873 - 1.041	0.926	0.823-1.042	0.974	0.854-1.111
NDVI (standardized) quartile 4	0.884**	0.804 - 0.971	0.863**	0.762-0.978	0.902	0.784-1.038
Length of hospital stay	1.034***	1.029 - 1.039	1.03	1.024-1.035	1.052***	1.041-1.064
***p<0.01, **p<0.05, *p<0.1						

¹ Following IDI protocols, all sample sizes (including the number of hospitals) have been rounded to the nearest multiple of three

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

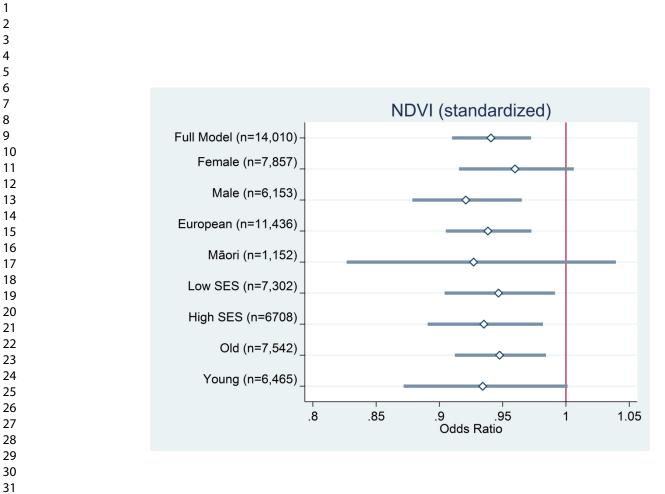
		3 MONTH	IS POST SURGERY	12 MONT	HS POST SURGERY	24 MON	THS POST SURGERY
		HR	95% CI	HR	95% CI	HR	95% CI
	Opioid scripts 12 months pre-surgery	1.083***	1.079 - 1.087	1.136***	1.130 - 1.141	1.147***	1.141 - 1.154
	Female	1.124***	1.072 - 1.177	1.177***	1.121 - 1.237	1.195***	1.134 - 1.259
	Ethnicity: European NZ	1.247***	1.171 - 1.329	1.121***	1.051 - 1.196	1.01	0.944 - 1.080
	Age	0.994***	0.992 - 0.996	0.998	0.996 - 1.001	0.998*	0.995 - 1.000
	Mean post-surgical NDVI (standardized)	0.969***	0.947 - 0.992	0.971**	0.947 - 0.995	0.969**	0.944 - 0.994
	Knee	1.653***	1.578 - 1.731	1.594***	1.519 - 1.673	1.547***	1.471 - 1.627
	COPD	1.219***	1.133 - 1.311	1.272***	1.175 - 1.378	1.374***	1.262 - 1.496
	CHD	1.133***	1.057 - 1.214	1.091**	1.012 - 1.175	1.069*	0.988 - 1.157
	Traumatic brain Injury	1.197*	0.992 - 1.444	1.335***	1.088 - 1.637	1.448***	1.166 - 1.799
	Days in hospital	1.015***	1.009 - 1.022	1.035***	1.027 - 1.043	1.037***	1.029 - 1.045
	Variance of hospital random effect	1.164***	1.064 - 1.272	1.072***	1.020 - 1.127	1.071**	1.009 - 1.137
313 314	***p<0.01, **p<0.05, *p<0.1 ¹ Following IDI protocols, all sample sizes have			ultiple of three	2		
312 313 314 315	***p<0.01, **p<0.05, *p<0.1			ultiple of three			
313 314	***p<0.01, **p<0.05, *p<0.1			ultiple of three	2		
313 314	***p<0.01, **p<0.05, *p<0.1			ultiple of three	2		
313 314	***p<0.01, **p<0.05, *p<0.1			ultiple of three	2		
313 314	***p<0.01, **p<0.05, *p<0.1			ultiple of three	2		
313 314	***p<0.01, **p<0.05, *p<0.1			ultiple of three	2		

1 2		
3	316	FIGURE LEGENDS
4 5 7 8 9 10 11 12	317 318 319 320 321 322	Figure 1: Odds-ratio plot of standardized mean post-surgical NDVI for time to all-cause mortality following hip or knee arthroplasty (number of participants=14,010, number of observations= 149,523) ¹ . Low/high SES denotes participants whose lifetime NZ Deprivation Index is above/below average. Old/young denote participants who are older/younger than the sample mean. The ethnicity reference group is a composite of all ethnicities other than European NZ or Māori (figures 1 and 2 were created with the user-written Stata command COEFPLOT)
13 14 15	323 324 325	¹ Following IDI protocols, all sample sizes have been rounded to the nearest multiple of three
16 17 18	326 327	Figure 2: Odds-ratio plot of standardized mean post-surgical NDVI for number of opioid prescriptions 3 months post-surgery (n=14,010) ¹ . For definitions and reference groups see figure 1.
19 20	328	¹ Following IDI protocols, all sample sizes have been rounded to the nearest multiple of three
21	329	
22 23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38 39		
39 40		
41 42		
42 43		
44 45		
46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	330	Contributorship statement: GHD designed the study, conducted the analysis, and wrote the majority of
5 6	331	the manuscript. DG created the exposure metrics and edited the manuscript. JD wrote parts of the
7 8	332	manuscript and edited multiple drafts.
9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 27 28 29 30 12 23 24 25 27 28 29 30 132 33 435 36 37 89 041 42 43 44 56 77 89 50 51 52 34 55 56 57	333	
58 59		21 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		Tor peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

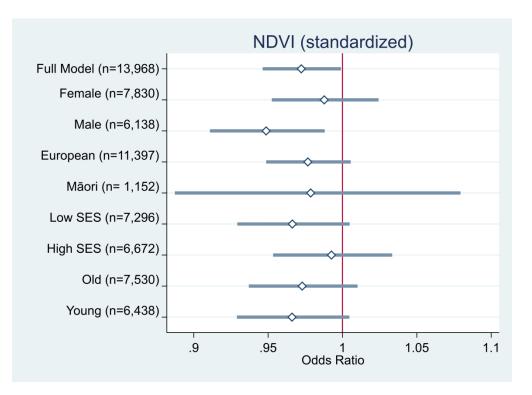
2 3	334	LITERATI	JRE CITED					
4 5 6 7 8 9 10 11 12 13 14 15								
	335	1 P	Pabinger C, Geissler A. Utilization rates of hip arthroplasty in OECD countries. Osteoarthritis					
	336	Cartilage	2014; 22 :734-41.					
	337	2 P	abinger C, Lothaller H, Geissler A. Utilization rates of knee-arthroplasty in OECD countries.					
	338	Osteoarth	hritis and Cartilage 2015; 23 :1664-73.					
	339	3 Ik	brahim M, Twaij H, Giebaly D, et al. Enhanced recovery in total hip replacement. Bone Joint J					
16 17	340	2013; 95 :1587-94.						
18 19	341	4 La	arsen K, Hvass KE, Hansen TB, et al. Effectiveness of accelerated perioperative care and					
20 21	342	rehabilita	ation intervention compared to current intervention after hip and knee arthroplasty. A before-					
22 23 24	343	after trial	l of 247 patients with a 3-month follow-up. BMC musculoskeletal disorders 2008; 9 :59.					
25 26	344	5 S	avaridas T, Serrano-Pedraza I, Khan SK, et al. Reduced medium-term mortality following					
27 28	345	primary t	otal hip and knee arthroplasty with an enhanced recovery program. A study of 4,500					
29 30	346	consecuti	ive procedures. Acta orthopaedica 2013; 84 :40-3.					
31 32 33	347	6 A	Imanza E, Jerrett M, Dunton G, et al. A study of community design, greenness, and physical					
34 35	348	activity in	n children using satellite, GPS and accelerometer data. <i>Health Place</i> 2012; 18 :46-54.					
36 37	349	7 G	Gordon-Larsen P, Nelson MC, Page P, et al. Inequality in the built environment underlies key					
38 39	350	health dis	sparities in physical activity and obesity. <i>Pediatrics</i> 2006; 117 :417-24.					
40 41 42	351	8 H	landy SL, Boarnet MG, Ewing R, et al. How the built environment affects physical activity.					
42 43 44	352	American	a journal of preventive medicine 2002; 23 :64-73.					
45 46	353	9 S	ugiyama T, Leslie E, Giles-Corti B, et al. Associations of neighbourhood greenness with physical					
47 48	354	and ment	tal health: do walking, social coherence and local social interaction explain the relationships?					
49 50	355	Journal oj	f Epidemiology & Community Health 2008; 62 :e9-e.					
51 52 53	356	10 U	Ilrich RS. View through a window may influence recovery from surgery. <i>Science</i> 1984; 224 :420-					
54 55	357	1.						
56 57								
58			22					
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

Page 23 of 31


1

2 3	358	11	Yoon RS, Nellans KW, Geller JA, et al. Patient education before hip or knee arthroplasty lowers		
4 5					
6 7	359	length of stay. The Journal of arthroplasty 2010; 25 :547-51.			
7 8 9	360	12	Siggeirsdottir K, Olafsson Ö, Jonsson Jr H, et al. Short hospital stay augmented with education		
10 11	361	and ho	me-based rehabilitation improves function and quality of life after hip replacement: randomized		
12 13	362	study o	of 50 patients with 6 months of follow-up. <i>Acta orthopaedica</i> 2005; 76 :555-62.		
14 15	363	13	Juliano K, Edwards D, Spinello D, et al. Initiating physical therapy on the day of surgery decreases		
16 17	364	length	of stay without compromising functional outcomes following total hip arthroplasty. HSS journal		
18 19	365	2011; 7	:16-20.		
20 21 22	366	14	Yeap YL, Butterworth JF. Analgesic techniques after total hip arthroplasty. Anesthesia &		
23 24	367	Analge	esia 2011; 113 :687-8.		
25 26	368	15	Chua MJ, Hart AJ, Mittal R, et al. Early mobilisation after total hip or knee arthroplasty: A		
27 28	369	multice	entre prospective observational study. <i>PloS one</i> 2017; 12 :e0179820.		
29 30 31	370	16	Guerra ML, Singh PJ, Taylor NF. Early mobilization of patients who have had a hip or knee joint		
32 33	371	replace	ement reduces length of stay in hospital: a systematic review. Clinical rehabilitation 2015;29:844-		
34 35	372	54.			
36 37	373	17	Husted H, Hansen HC, Holm G, et al. What determines length of stay after total hip and knee		
38 39 40	374	arthroplasty? A nationwide study in Denmark. Archives of orthopaedic and trauma surgery			
40 41 42	375	2010; 1	30 :263.		
43 44	376	18	Freburger JK. An analysis of the relationship between the utilization of physical therapy services		
45 46	377	and ou	tcomes of care for patients after total hip arthroplasty. <i>Physical therapy</i> 2000; 80 :448-58.		
47 48 49	378	19	Hughes K, Kuffner L, Dean B. Effect of weekend physical therapy treatment on postoperative		
50 51	379	length	of stay following total hip and total knee arthroplasty. Physiotherapy Canada Physiotherapie		
52 53	380	Canad	a 1993; 45 :245-9.		
54 55					
56 57					
58 50			23		
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

2						
3 4	381	20	Matheis C, Stöggl T. Strength and mobilization training within the first week following total hip			
5 6	382	arthroplasty. Journal of bodywork and movement therapies 2018;22:519-27.				
7 8	383	21	Fan Y, Das KV, Chen Q. Neighborhood green, social support, physical activity, and stress:			
9 10 11	384	assess	ing the cumulative impact. <i>Health Place</i> 2011; 17 :1202-11.			
12 13	385	22	Giles-Corti B, Donovan RJ. The relative influence of individual, social and physical environment			
14 15	386	detern	ninants of physical activity. Social Science & Medicine 2002;54:1793-812.			
16 17	387	23	Tse MM, Ng JK, Chung JW, et al. The effect of visual stimuli on pain threshold and tolerance.			
18 19	388	Journal of clinical nursing 2002; 11 :462-9.				
20 21 22	389	24	Diette GB, Lechtzin N, Haponik E, et al. Distraction therapy with nature sights and sounds			
22 23 24	390	reduces pain during flexible bronchoscopy: A complementary approach to routine analgesia. Chest				
25 26	391	2003; 123 :941-8.				
27 28 29	392	25	Statistics New Zealand. Integrated Data Infrastructure. 2017.			
30 31	393	26	Larsen K, Sørensen OG, Hansen TB, et al. Accelerated perioperative care and rehabilitation			
32 33	394	intervention for hip and knee replacement is effective: a randomized clinical trial involving 87 patients				
34 35	395	with 3 months of follow-up. Acta orthopaedica 2008; 79 :149-59.				
36 37	396	27	Frank LD, Sallis JF, Saelens BE, et al. The development of a walkability index: application to the			
38 39 40	397	Neight	porhood Quality of Life Study. British journal of sports medicine 2010;44:924-33.			
40 41 42	398	28	Salmond CE, Crampton P. Development of New Zealand's deprivation index (NZDep) and its			
43 44	399	Uptake as a national policy tool. Canadian Journal of Public Health 2012;103:S7-S11.				
45 46	400	29	Statistics New Zealand. IDI Data Dictionary: Chronic condition/significant health event cohort.			
47 48	401	Wellington, New Zealand: Statistics New Zealand 2015:14.				
49 50 51	402	30	Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. Philadelphia, PA: Wolters Kluwer			
52 53	403	2008.				
54 55						
56						
57 58			24			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			


1 2							
2 3 4	404	31	Kennedy DM, Stratford PW, Hanna SE, et al. Modeling early recovery of physical function				
5 6	405	following hip and knee arthroplasty. BMC musculoskeletal disorders 2006; 7 :100.					
7 8	406	32	Troy A, Grove JM. Property values, parks, and crime: a hedonic analysis in Baltimore, MD.				
9 10 11	407	Landsc	cape and Urban Planning 2008; 87 :233-45.				
12 13	408	33	Li D, Sullivan WC. Impact of views to school landscapes on recovery from stress and mental				
14 15	409	fatigue	e. Landscape and Urban Planning 2016; 148 :149-58.				
16 17	410	34	Takayama N, Korpela K, Lee J, et al. Emotional, restorative and vitalizing effects of forest and				
18 19 20	411	urban environments at four sites in Japan. International journal of environmental research ar					
21 22	412	health	2014;11:7207-30.				
23 24	413	35	Kivimäki M, Leino-Arjas P, Luukkonen R, et al. Work stress and risk of cardiovascular mortality:				
25 26	414	prospective cohort study of industrial employees. BMJ 2002; 325 :857.					
27 28 29	415	36	Sinha R. The role of stress in addiction relapse. <i>Current psychiatry reports</i> 2007; 9 :388-95.				
30 31	416	37	Ulmer JM, Wolf KL, Backman DR, et al. Multiple health benefits of urban tree canopy: The				
32 33	417	mount	ing evidence for a green prescription. <i>Health Place</i> 2016; 42 :54-62.				
34 35	418	38	Deroche Vr, Piazza PV, Moal ML, et al. Social isolation-induced enhancement of the				
36 37 38	419	psycho	pmotor effects of morphine depends on corticosterone secretion. <i>Brain Research</i> 1994; 640 :136-9.				
39 40	420	39	Steptoe A, Shankar A, Demakakos P, et al. Social isolation, loneliness, and all-cause mortality in				
41 42	421	older men and women. Proceedings of the National Academy of Sciences of the United States of					
43 44	422	2 2013; 110 :5797-801.					
45 46 47	423	40	Hanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and				
48 49	424	allergy	are interrelated. Proceedings of the National Academy of Sciences 2012;109:8334-9.				
50 51	425	41	Donovan GH, Gatziolis D, Longley I, et al. Vegetation diversity protects against childhood				
52 53 54 55 56	426	asthma	a: results from a large New Zealand birth cohort. <i>Nature plants</i> 2018; 4 :358-64.				
57 58			25				
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

2 3	427	Gaudillière B, Fragiadakis GK, Bruggner RV, et al. Clinical recovery from surgery correlates wi	ith
4 5 6	428	ingle-cell immune signatures. <i>Science translational medicine</i> 2014; 6 :255ra131-255ra131.	
6 7 8	429	Lei M, Hua L, Wang D. The effect of probiotic treatment on elderly patients with distal radius	S
9 10	430	racture: a prospective double-blind, placebo-controlled randomised clinical trial. Beneficial microbes	
11 12	431	2016; 7 :631-7.	5
13 14	431	.010,7.051-7.	
15 15 16 17 18 19 20 21 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 54	432	tor or erection only	
55 56			
57 58		26	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1763x1282mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1763x1282mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or	2
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4-5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5-9
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5-6
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(<i>a</i>) Cohort study—Give the eligibility criteria, and the sources and	5-6
I	-	methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
X 7	7	· · · · · · · · · · · · · · · · · · ·	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-9
	0.4	and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-8
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	N/.
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	6-9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	N/2
		(d) Cohort study—If applicable, explain how loss to follow-up was	N/2
		addressed	
		Case-control study-If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		cross sectional study in applicable, describe analytical methods taking	

Continued on next page

 (\underline{e}) Describe any sensitivity analyses

For peer terien only

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
C	21	Discuss the generalisability (external validity) of the study results	
Generalisability			
Other informati	on		
<u> </u>	on 22	Give the source of funding and the role of the funders for the present study and, if	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.