

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

TROG 18.01 Phase III Randomized Clinical Trial of the Novel Integration of New prostate radiation schedules with adJuvant Androgen Deprivation - NINJA

	244.0
Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030731
Article Type:	Protocol
Date Submitted by the Author:	01-Apr-2019
Complete List of Authors:	Martin, Jarad; Calvary Mater Newcastle, Department of Radiation Oncology; University of Newcastle, School of Medicine and Public Health Keall, Paul; University of Sydney, Radiation Physics Laboratory Siva, Shankar; University of Melbourne, Sir Peter MacCallum Department of Oncology Greer, Peter; Calvary Mater Newcastle, Department of Radiation Oncology; University of Newcastle, School of Mathematical and Physical Sciences Christie, David; Genesis Care Moore, Kevin; University of California San Diego, Medical Physics Dowling, Jason; CSIRO, The Australian e-Health Research Centre Pryor, David; Princess Alexandra Hospital Health Service District, Department of Radiation Oncology Chong, Peter; John Hunter Hospital, Department of Urology McLeod, Nicholas; John Hunter Hospital, Department of Urology Raman, Avi; John Hunter Hospital, Department of Urology Lynam, James; University of Newcastle, School of Medicine and Public Health Smart, Joanne; Calvary Mater Newcastle, Department of Radiation Oncology Oldmeadow, Christopher; Hunter Medical Research Institute Tang, Colin; Sir Charles Gairdner Hospital, Department of Radiation Oncology Murphy, Declan; Peter MacCallum Cancer Centre, Urological Service Team Millar, Jerremy; Alfred Hospital, Radiation Oncology Tai, Keen Hun; University of Melbourne, Sir Peter MacCallum Department of Oncology Holloway, Lois; Liverpool Hospital, Department of Radiation Oncology Reeves, Penny; University of Newcastle Hunter Medical Research Institute, Health Research Economics; University of Newcastle, School of Medicine and Public Health Hayden, Amy; Westmead Hospital, Department of Radiation Oncology Lim, Tee; Genesis Care Holt, Tanya; Radiation Oncology Princess Alexandra Raymond Terrace Sidhom, Mark; Liverpool Hospital, Department of Radiation Oncology
Keywords:	Prostate disease < UROLOGY, RADIOTHERAPY, Radiation oncology < RADIOLOGY & IMAGING, ONCOLOGY, Clinical trials < THERAPEUTICS

1 2	
3	
4 5	
6	
7	SCHOLARONE [™]
8	Manuscripts
9 10	
11	
12	
13 14	
14	
16	
17	
18 19	
20	
21	
22	
23 24	
25	
26	
27	
28 29	
30	
31	
32 33	
34	
35	
36	
37 38	
39	
40	
41 42	
43	
44	
45	
46 47	
48	
49	
50 51	
52	
53	
54	
55 56	
57	
58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	. er peer erten omjenten grouppen angepen angeben angeben aber aber aber aber aber aber aber aber

1 TROG 18.01 Phase III Randomized Clinical Trial of the <u>N</u>ovel <u>Integration of New</u>

2 prostate radiation schedules with adJuvant Androgen Deprivation - NINJA

9			
10 11	4	Jarad M. Martin ^{1,2}	Jarad.martin@calvarymater.org.au
12 13	5	Paul Keall ³	paul.keall@sydney.edu.au
14 15 16	6	Shankar Siva ⁴	shankar.siva@petermac.org
10 17 18	7	Peter Greer ^{1,5}	Peter.Greer@newcastle.edu.au
19 20	8	David Christie ⁶	David.Christie@genesiscare.com.au
21 22	9	Kevin Moore ⁷	kevinmoore@ucsd.edu
23 24 25	10	Jason Dowling ⁸	Jason.Dowling@csiro.au
26 27	11	David Pryor ⁹	david.pryor@health.qld.gov.au
28 29	12	Peter Chong ¹⁰	petergchong@gmail.com
30 31 32	13	Nicholas McLeod ¹⁰	drnicholasmcleod@gmail.com
33 34	14	Avi Raman ¹⁰	reception@ramanurology.com.au
35 36	15	James Lynam ²	James.Lynam@calvarymater.org.au
37 38	16	Joanne Smart ¹	Joanne.Smart@calvarymater.org.au
39 40 41	17	Christopher Oldmeadow ¹¹	Christopher.Oldmeadow@hmri.org.au
42 43	18	Colin Tang ¹²	colin.tang@health.wa.gov.au
44 45	19	Declan Murphy ^{4,13}	Declan.Murphy@petermac.org
46 47 48	20	Jeremy Millar ¹⁴	jeremy.millar@monash.edu
49 50	21	Keen Hun Tai⁴	keenhun.tai@petermac.org
51 52	22	Lois Holloway ¹⁵	Lois.Holloway@health.nsw.gov.au
53 54	23	Penny Reeves ²	Penny.Reeves@hmri.org.au
55 56 57	24	Amy Hayden ¹⁶	Amy.Hayden@health.nsw.gov.au
58 59	25	Tee Lim ¹⁷	Tee.Lim@genesiscancercare.com.au
60			

Page 3 of 46

BMJ Open

1 2				
3 4	26	Tanya Holt ¹⁸	Tanya.Holt@health.qld.gov.au	
5 6	27	Mark Sidhom ¹⁴	Mark.Sidhom@health.nsw.gov.au	
7 8 9	28			
9 10 11	29	¹ Department of Radiation	Oncology, Calvary Mater Newcastle, Newcastle, New	
12 13	30	South Wales, Australia.		
14 15 16	31	² School of Medicine and P	ublic Health, University of Newcastle, Newcastle, New	
17 18	32	South Wales, Australia		
19 20	33	³ Radiation Physics Labora	tory, Sydney Medical School, University of Sydney,	
21 22 22	34	Sydney, New South Wales	s, Australia	
23 24 25	35	⁴ Sir Peter MacCallum Dep	artment of Oncology, The University of Melbourne,	
26 27	36	Parkville, Victoria, 3010		
28 29	37	⁵ School of Mathematical a	nd Physical Sciences, University of Newcastle, Newcastle,	
30 31 32	38	New South Wales, Australia		
33 34	39	⁶ Genesis Care, Southport,	Gold Coast, Queensland, Australia	
35 36	40	⁷ University of California, S	an Diego, California, United States of America	
37 38 39	41	⁸ The Australian e-Health F	Research Centre, CSIRO, Brisbane, Queensland, Australia	
40 41	42	⁹ Department of Radiation	Oncology, Princess Alexandra Hospital, Brisbane,	
42 43	43	Queensland, Australia		
44 45	44	¹⁰ Department of Urology,	John Hunter Hospital, Newcastle, New South Wales,	
46 47 48	45	Australia		
49 50	46	¹¹ Clinical Research Desigr	n, IT and Statistical Support (CReDITSS), Hunter Medical	
51 52	47	Research Institute, Newca	stle, New South Wales, Australia	
53 54 55	48	¹² Sir Charles Gairdner Hos	spital, Perth, Western Australia, Australia	
56 57	49	¹³ Division of Cancer Surge	ery, Peter MacCallum Cancer Centre, Melbourne, Victoria	
58 59 60	50	3000		

51	¹⁴ Alfred Hospital, Melbourne, Victoria, Australia
52	¹⁵ Department of Radiation Oncology, Liverpool Hospital, Sydney, New South Wales,
53	Australia
54	¹⁶ Westmead Hospital, Sydney, New South Wales, Australia
55	¹⁷ Genesis Care, Perth, Western Australia, Australia
56	¹⁸ Radiation Oncology Princess Alexandra Raymond Terrace, Brisbane, Queensland,
57	Australia
58	
59	Corresponding Author Details:
60	Conjoint Professor Jarad Martin
61	Calvary Mater Newcastle
62	Newcastle
63	New South Wales
64	Australia
65	Fax: +61 2 4014 3631
66	Ph: +61 2 4014 3169
67	e-mail: jarad.martin@calvarymater.org.au
68	
69	Trial Sponsor:
70	Trans-Tasman Radiation Oncology Group (TROG)
71	e-mail: trials@trog.com.au
72	
73	Word Count:
74	3853 words
	 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

BMJ Open

1 2		
3 4	75	Abstract
5 6	76	Introduction:
7 8 9	77	Stereotactic Body Radiotherapy (SBRT) is a non-invasive alternative to surgery for
9 10 11	78	the treatment of non-metastatic prostate cancer (PC). The objectives of the NINJA
12 13	79	clinical trial are to compare two emerging SBRT regimens for efficacy with technical
14 15	80	sub-studies focussing on MRI only planning and the use of Knowledge Based
16 17 18	81	Planning (KBP) to assess radiotherapy plan quality.
19 20	82	
21 22	83	Methods and Analysis:
23 24 25	84	Eligible patients must have biopsy proven unfavourable intermediate or favourable
26 27	85	high risk PC, have an ECOG performance status 0-1, and provide written informed
28 29	86	consent. All patients will receive six months in total of Androgen Deprivation
30 31 32	87	Therapy (ADT). Patients will be randomized to one of two SBRT regimens. The first
33 34	88	will be 40 Gy in 5 fractions given on alternating days (SBRT monotherapy). The
35 36	89	second will be 20 Gy in 2 fractions given one week apart followed 2 weeks later by
37 38	90	36 Gy in 12 fractions given 5 times per week (Virtual High Dose Rate Boost [HDRB]).
39 40 41	91	The primary efficacy outcome will be Biochemical Clinical Control (BCC) at five
42 43	92	years. Secondary endpoints look at the transition of centres towards MRI only
44 45	93	planning and the impact of KBP on real time plan assessment. Total accrual to 472
46 47 48	94	patients is planned.
49 50	95	
51 52	96	Ethics and Dissemination:
53 54 55	97	NINJA is a multicentre cooperative clinical trial comparing two SBRT regimens for
56 57	98	men with PC with novel technical substudies. It builds on promising results from
58 59 60	99	several single armed studies, and explores radiation dose escalation in the Virtual

1 2		
2 3 4	100	HDRB arm. It has HREC approval, and findings will be reported in the peer reviewed
5 6 7	101	literature.
7 8 9	102	
10 11	103	Trial Registration:
12 13	104	Australia New Zealand Clinical Trial Registry – ANZCTN 12615000223538.
14 15 16	105	Registered prior to opening to accrual 6 November 2018.
17 18	106	Full WHO Trial Registration Data Set available on-line via
19 20	107	https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375560
21 22 23	108	
24 25	109	Article Summary
26 27 28	110	Strengths and Limitations of this Study
28 29 30	111	• For men with newly diagnosed prostate cancer, will provide data on outcomes for
31 32	112	two emerging approaches to treatment with stereotactic radiotherapy
33 34	113	Will prospectively explore the implementation of MRI only radiotherapy planning
35 36 37	114	• Will seek to validate the additional value of automated knowledge based planning
38 39	115	 Incorporates novel staging imaging including PSMA-PET and MRI
40 41	116	
42 43 44	117	Keywords:
45 46	118	Computer Assisted Radiotherapy Planning
47 48	119	Image Guided Radiotherapy
49 50 51	120	Intensity Modulated Radiotherapy
52 53	121	Prostatic Neoplasms
54 55	122	Radiotherapy
56 57	123	Radiotherapy Dose Hypofractionation
58 59 60	124	Stereotactic Body Radiotherapy

Introduction

1 2 BMJ Open

2 3 4	125
5 6	126
7 8 9	127
9 10 11	128
12 13	129
14 15	130
16 17 18	131
19 20	132
21 22	133
23 24 25	134
26 27	135
28 29	136
30 31 32	137
33 34	138
35 36	139
37 38 39	140
39 40 41	141
42 43	142
44 45	143
46 47 48	144
49 50	145
51 52	146
53 54 55	147
56 57	148
58 59 60	149
60	

126	
127	Stereotactic Body Radiotherapy for Prostate Cancer
128	
129	Prostate cancer has a major impact on the Australian population with 3500
130	deaths projected in 2018 and treatment costs to patients and the health system
131	exceeding \$500 million by 2025.[1 2] The question at the heart of NINJA is to
132	compare two emerging and practice-changing schedules of radiotherapy that
133	leverage state-of-the-art technology developments and our Australian clinical trial
134	experience to make treatments safer, highly efficient and more convenient for
135	patients. The first schedule is a 5 fraction Stereotactic Body Radiotherapy (SBRT
136	monotherapy) approach.[3] The alternative regimen is 'Virtual High Dose Rate Boost'
137	(HDRB), non-invasively delivering brachytherapy-type doses.[4] Superiority of the
138	latter schedule would validate the utility of dose escalation to improve outcomes.
139	Similarity of outcomes in the former schedule would allow for major cost savings and
140	reduced patient burden with reduction of treatment sessions from 40 to 5 (see
141	Figure 1).
142	Figure 1).
143	Conventional radiotherapy regimens for prostate cancer are given 5 times per week
144	for up to 9 consecutive weeks.[5] Recent results from large non-inferiority studies

for up to 9 consecutive weeks.[5] Recent results from large non-inferiority studies
including substantial Australian input has helped establish a 4-week moderately
hypofractionated schedule as an alternative approach.[6-8] Building on this, large
series are showing excellent outcomes with regimens giving as few as 5
radiotherapy fractions, using higher daily doses of radiotherapy.[9 10] A 477 patient
series with median follow-up of seven years showed 89.6% biochemical disease

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 8 of 46

1 2	
3 4	150
5 6	151
7 8	152
9 10 11	153
11 12 13	154
14 15	155
16 17	156
18 19	157
20 21	158
22 23	
24 25	159
26 27 28	160
28 29 30	161
31 32	162
33 34	163
35 36	164
37 38	165
39 40 41	166
41 42 43	167
44 45	168
46 47	169
48 49	170
50 51	171
52 53 54	172
54 55 56	
57 58	173
59 60	174

control with late grade 2 and 3 genitourinary (GU) toxicity low at 9% and 1.7% respectively.[11 12] Grade 2 gastrointestinal (GI) toxicity was similarly favourable at 4.1%. Our SPARK phase 2 study used a 5-fraction prostate SBRT monotherapy in conjunction with intrafraction motion management to assess the dosimetric impact of increasing the accuracy of radiotherapy dose delivery.[3] Following on from this experience, several randomized studies are currently underway exploring similar stereotactic regimens, where much higher daily doses of radiotherapy are given in between 5 and 7 visits (Table 1). The Scandinavian HYPO-RT-PC study completed accrual in 2015, and presented early toxicity data in 2016 showing no significant differences between the control and SBRT arms.[13 14] Initial efficacy results from this study were presented in 2018, showing no differences between the two arms. Recent guidelines from ASTRO, AUA and ASCO have incorporated prostate SBRT monotherapy as a treatment option for centres experienced in this technique. [15] A 2142 patient SBRT monotherapy experience has also shown excellent efficacy, and low toxicity.[16] Bringing this together, SBRT monotherapy is an emerging standard treatment option. Strong evidence exists for superior disease control through the use of a brachytherapy boost compared with conventional radiotherapy.[17 18] Despite this, the use of brachytherapy continues to decline, partly due to concerns regarding higher risks of significant late GU toxicity.[19] Also, the lack of evidence for improved disease control translating to improved survival has limited uptake, although the poor sensitivity of conventional staging investigations may contribute to superior local

174 control being overwhelmed by undiagnosed micro-metastatic disease. The

Page 9 of 46

1

BMJ Open

1 2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
 7 8 9 10 11 12 13 14 15 16 17 18 	
18 19	
19 20	
20 21	
20 21 22 23	
23	
24	
25	
24 25 26 27	
27	
28 29	
30	
31	
32	
33	
34 35 36 37	
35	
36 37	
38	
39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50	
51 52	
52 53	
55 54	
55	
56	
57	
58 50	
59 60	
00	

emergence of PSMA-PET as a more sensitive and specific staging modality makes 175 revisiting the radiotherapy dose-escalation guestion highly relevant. [20 21] An 176 177 alternative approach to brachytherapy is a 'virtual HDR boost' where 2-3 large doses designed to mimic HDRB are delivered via stereotactic techniques with an additional 178 fractionated External Beam Radiation Therapy (EBRT) component. Relatively small 179 virtual HDRB series with nearly 4 years follow up have shown this approach to be 180 181 feasible, although often using specialised equipment such as the Cyberknife platform.[22 23] Virtual HDRB has also been proven feasible in the setting of 182 183 multicentre phase 2 trial in Australia, with 135 men enrolled on the PROMETHEUS trial (ACTRN12615000223538) where 2 fractions of 9.5-10Gy are followed by an 184 EBRT component of either 46Gy in 23 or 36Gy in 12 fractions. Early data from 185 PROMETHEUS shows no grade 2-3 late GI toxicity after 24 months and grade 2 late 186 GU toxicity prevalence rates of <7% out to 3 years.[24] Promising efficacy signals 187 are also becoming evident, with almost ablative PSA levels being observed 188 consistent with excellent disease response. 189 190 Virtual HDRB may represent a significant biological dose escalation compared with 191 SBRT monotherapy. Assuming prostate cancer has an alpha beta ratio of 1.5 Gy, 192 40 Gy in 5 fractions and virtual HDRB would be equivalent to 110 and 120 Gy in 2 193 Gy equivalent fractions respectively. Modelling of RCT data suggests that each 194 extra Gray in dose translates to $\sim 2\%$ improvement in disease control.[25] 195 Alternatively, the virtual HDRB approach potentials allows for some variation in 196

fraction size sensitivity within and between tumours. A reasonable question would
be whether the excellent results seen with HDR brachytherapy boost could be safely

1 2		
3 4	199	translated into the stereotactic setting on the basis of this increase in biological dose
5 6 7	200	delivery. This is the fundamental question which drives NINJA.
7 8 9	201	
10 11	202	Knowledge Based Planning
12 13	203	
14 15 16	204	Knowledge-Based Planning (KBP) has the potential to simultaneously improve and
17 18	205	automate the radiotherapy planning process. KBP uses previous cases to build a
19 20	206	model of an optimal treatment plan which can then be applied to the current patient.
21 22	207	Previous work suggests that KBP can provide faster and frequently better plans,[26]
23 24 25	208	but this has not been prospectively assessed in a multicentre fashion. NINJA
26 27	209	provides an ideal opportunity for this.
28 29	210	
30 31 32	211	Radiotherapy plan quality is critically important in achieving optimal treatment
33 34	212	outcomes. The Australia-led TROG 02-02 study for patients with locally advanced
35 36	213	head and neck cancer showed that non-protocol compliant plans had a locoregional
37 38 39	214	control and overall survival decrement of 24% and 20% respectively.[27] Via TROG,
40 41	215	Australia has become leaders in the use of approaches such as stringent
42 43	216	credentialing and real time review (RTR) of RT contours and plans, with work in
44 45	217	prostate cancer subsequently showing very low rates of protocol deviations both in
46 47 48	218	the definitive prostate and post-prostatectomy irradiation scenarios.[28 29]
49 50	219	
51 52	220	An issue with the current RTR process is that although a plan can be deemed
53 54 55	221	satisfactory, it is difficult to determine whether it could be improved. As treatment
56 57	222	techniques evolve, satisfying the dose constraints in clinical trial protocols can
58 59	223	become progressively easier. Knowledge-Based Planning (KBP) has emerged as a
60		

Page 11 of 46

BMJ Open

promising approach to assess and improve plan quality. In KBP, a model is developed using a range of patient anatomies and target volumes. This can then be rapidly applied to a new case to either generate a plan de novo, or to compare with a conventional plan. The Radiation Therapy Oncology Group (RTOG) 0126 prostate cohort was selected to study treatment plan quality variations. This work examined the high-dose Intensity Modulated Radiation Therapy (IMRT) patients using a KBP model to identify the plans that best met the dosimetric aims of the protocol.[30] Focusing on Grade 2+ late rectal toxicities with an outcomes-validated normal tissue complication probability (NTCP) model, the high-dose arm of RTOG 0126 patients treated with IMRT patients had a 15.1% cumulative incidence of Grade 2+ rectal complications.[31] KBP plans were predicted to lead to a 4.7% risk reduction in this rate, which therefore may have cut this incidence by a third. The observed quality variations in RTOG 0126 give the strongest evidence yet that suboptimal planning is a critical problem in multi-institutional radiotherapy clinical trials and in the wider practice of radiotherapy. KBP has yet to be robustly assessed in a multicentre fashion, where the heterogeneity of planning systems and personnel would be expected to be greatest.

242 MRI Radiotherapy Planning

7 243

Computerised Tomography (CT) is widely used for radiotherapy dosimetry
calculation because of the ability to directly measure electron density. Our team has
validated the use of Magnetic Resonance Imaging (MRI) to create a substitute CT
(sCT) which can then be used for accurate dose calculation.[32] The superior soft
tissue resolution of MRI, absence of radiation dose, and reduction in image artefacts

means that if the dose calculation problem could be solved, standard CT based planning would be rendered obsolete.[33]

Many centres now acquire both a CT and a MRI scan for each patient, but coregistration of these datasets introduces significant error mostly under the influence of bladder filling and varying rectal distension. An attractive alternative would be to create a substitute CT (sCT) from the MRI dataset to allow RT dose calculation. Our team has developed a hybrid atlas-voxel based technique of sCT generation which

showed high agreement in both mean monitor units (0.3%+/- sd 0.8%) and dose delivery (3-dimensional gamma pass rate at 2 mm/2% level of 100% +/- sd 0%.[32] A group of Swedish centres have shown similar findings in a retrospective, multicentre study,[34] and our group is prospectively evaluating this approach in 2 centres (HIPSTER study - ACTRN12616001653459). Given the advantages of MRI for prostate cancer, and the improving access to MRI in Australia (including radiotherapy departments with dedicated planning MRI facilities), this is another area

ripe for wider assessment, implementation and eventual broader application.

Summary

NINJA is a combined phase 3 multicentre study of 472 men randomized to two novel radiotherapy schedules. The hypotheses are that NINJA will advance 1) Biochemical Clinical Control (BCC) of prostate cancer, 2) treatment planning via automation and 3) planning imaging methodology.

2 3 4	272
5 6	273
7 8	274
9 10 11	275
12 13	276
14 15	277
16 17	
18 19 20	
20 21 22	
23 24	
25 26	
27 28	
29 30	
31 32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47 48	
40 49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

Aim 1: Radiobiological Dose Escalation: The escalated radiation dose delivered

using a virtual HDRB approach achieves superior disease control compared with a 3

SBRT monotherapy alternative. 1

- Aim 2: KBP Advantage: The treatment plans using KBP will be dosimetrically 5
- superior to traditional manual planning approaches. 5

Aim 3: MRI only Planning: MRI will give dosimetry similar to standard CT planning.

2					
3 4	278	Methods/Design			
5 6	279				
7 8 9	280	Study Design:			
10 11	281				
12 13	282	The study design is a prospective randomised phase 3 trial available in Australian			
14 15	283	academic and community Radiation Oncology centres (sites available via Trans-			
16 17 18	284	Tasman Radiation Oncology Group) which conforms to the SPIRIT guidelines.			
19 20	285	Protocol v2.0 is dated November 2018.			
21 22	286				
23 24 25	287	Key Trial Eligibility Criteria			
26 27	288				
28 29	289	Unfavourable intermediate or favourable high risk prostate cancer (any combination			
30 31 32	290	of ISUP 3-5 and/or cT2b/T2c/T3aN0 and/or PSA 10-20 in the absence of other high			
32 33 34	291	risk factors ie T3b/T4, PSA>20). For high-risk patients, PSMA PET staging prior to			
35 36	study entry showing N0M0 disease. Accruing centres will proactively so				
37 38	293	potentially eligible patients.			
39 40 41	294				
42 43	295	Pre-Treatment			
44 45	296				
46 47 48	297	All patients will receive a total of six months of Androgen Deprivation Therapy			
49 50	298	(ADT).[35] Both CT and MRI planning scans will be performed for the first 10			
51 52	299	patients at each centre and phasing out CT for centres involved in MRI planning			
53 54 55	300	aspect of NINJA. Rectal displacement (eg SpaceOAR, Rectafix, Rectal Balloon) is			
56 57	301	encouraged, but not mandated.[36] Urethral visualization via temporary			
58 59 60	302	catheterization or equivalent approaches will be performed. Erectile sparing RT			

1

Page 15 of 46

1

BMJ Open

1 2		
3 4	303	plans for men with adequate baseline IIEF and desire to maintain erectile function
5 6	304	can be used.[37] Centres will be credentialed for MRI planning via their first 5
7 8 9	305	patients being primarily planned off the CT, but with sCT generation and confirmation
9 10 11	306	of accurate dosimetry. The next ten patients will have planning performed on sCT
12 13	307	and confirmed on planning CT. Subsequent patients will omit a planning CT, be
14 15	308	planned on sCT, and have confirmation of accurate dosimetry on treatment using a
16 17	309	centrally approved approach eg EPID dosimetry[38] or in vivo dosimetry.[39]
18 19 20	310	
21 22	311	Time-dose-fractionation planning details
23 24	312	
25 26 27	313	SBRT Monotherapy arm: 40 Gy in five fractions delivered 2-3 times per week,
27 28 29	314	prescribed to CTV D95%.
30		Virtual HDRB Boost Arm: 20 Gy in two fractions prescribed to CTV D95% delivered
32 33	316	once a week followed by a two week break and then 36 Gy in 12 fractions delivered
34 35 36	317	5 times per week prescribed to PTV D95%. See tables 2a-c for dose constraints,
37 38	318	and Figure 2 for an example of the SBRT dosimetry.
39 40	319	
41 42 43	320	Quality Assurance
43 44 45	321	
46 47	322	Centre credentialing will include submission of a 'Virtual HDRB Boost' treatment plan
48 49	323	for a patient to ensure accurate contouring and protocol compliant dose delivery. The
50 51 52	324	initial KBP model will be generated from phase 2 SPARK and PROMETHEUS trials,
53 54	325	but will be updated as NINJA proceeds. All cases will be submitted for KBP
55 56	326	comparison, and an automated report to be returned within 24 hours. Real-time
57 58 59	327	review will occur for all patients on trial.
60		

1 2					
3 4	328				
5 6 7	329	Treatment Delivery			
7 8 9	330				
10 11	331	All patients require intra-prostatic markers, and both inter- as well as intra-fraction			
12 13	332	motion management strategies to ensure accurate treatment delivery. For intra-			
14 15 16	333	fraction motion assessment, numerous 'real time' approaches are acceptable (eg			
17 18	334	KIM, Calypso, Cyber-knife). In all instances, translational movements to be			
19 20	335	corrected to 0mm threshold prior to commencing treatment.			
21 22	336				
23 24 25	337	Outcome Reporting			
26 27	338				
28 29 30 31 32 33 34	339	Indicators of feasibility, accuracy, impact on replanning, and other qualitative and			
	340	quantitative markers of KBP and MRI planning will be collected. Patient reported			
	341	outcomes to include baseline and serial patient reported outcomes (IIEF, EPIC),			
35 36	342	physician toxicity grading (CTC AE v5), PSA and any sites of confirmed disease			
37 38 39	343	relapse or death due to any cause. Participants will have unique identifiers which			
40 41	344	will protect their confidentiality, and only summary data will be presented after			
42 43	345	analysis. Participants will be requested to provide this information even if without			
44 45	346	from study treatment. Any Serious Adverse Events will be reported to the central			
46 47 48	347	HREC within 1 working day. Data will be securely electronically stored for at least 15			
49 50	348	years, and audited to ensure data quality. Any protocol amendments will be			
51 52	349	reviewed by the HREC, and communicated to all participating centres, investigators			
53 54 55	350	and participants. If the prevalence of CTC AE grade 3 GI or GU toxicities exceeds			
55 56 57 58 59 60	351	10% at any stage, the trial will be halted for safety assessment. This oversight will be			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

provided by the TROG Independent Data Monitoring Committee. A SPIRIT flowchart
 is presented in Table 3.

355 Statistical Considerations

The statistical justification required to achieve the primary efficacy endpoint (Aim 1) is as follows. BCC is a hybrid of biochemical failure via the nadir plus two definition, deployment of salvage treatments, or the detection of local, regional or metastatic relapse via imaging. Using a similar endpoint as well as a short course of ADT, the CHHiP study 60 Gy arm had 90.2% and 84.2% BCC for intermediate and high risk patients respectively.[40] The ASCENDE-RT study also included intermediate and high risk men, managed with 12 months of ADT, and the experimental arm delivered 46 Gy in 23 fractions of EBRT alongside a LDR Brachytherapy boost.[18] At 5 years, the BCC was 89% in the brachytherapy boost cohort, although with a higher risk patient mix than we are going to accrue on this protocol. Allowing for differences in inter-trial comparisons, we estimate BCC ~86% in the standard SBRT arm. Similar data has been reported for single arm SBRT monotherapy series.[12] For a superiority RCT design, we will aim for a hazard ratio of 0.5 in 5-yr BCC for the virtual HDR arm ie 93%. An HR of 0.5 is chosen because this translates to an absolute improvement of 7%, and any improvements less than this are unlikely to be clinically significant. With alpha 0.05, power of 80%, and drop out of 2% the required phase 3 sample size is 472 men.

⁵⁶ 375 Computer generated randomization will be performed with stratification by centre
 ⁵⁸ 376 and risk grouping via centralized database at the Trial Coordinating Centre in
 ⁶⁰

2 3 4	377	Newcastle and concealed until intervention assigned. Randomization performed by
5 6	378	Data Manager independent of Trial Coordinators who assign interventions and
7 8	379	Investigators who enrol participants. Assignment is unblinded, and selected aspects
9 10 11	380	of the dataset will only be available to appropriately qualified individuals for the
12 13	381	relevant analyses.
14 15	382	
16 17 18	383	For KBP (Aim 2), we hypothesize that a replanning rate of >15% would be clinically
19 20	384	significant. Assuming an error rate of +/-6%, at an alpha of 5%, 136 patients are
21 22	385	required. Allow 10% drop-out due to technical issues with a new planning paradigm:
23 24 25	386	total of 150 cases. For MRI planning (Aim 3), having ≥50% of centres involved in
25 26 27	387	this aspect of NINJA completely transition to MRI only planning will be deemed a
28 29	388	success.
30 31 32	389	
32 33 34	390	Patient and Public Involvement
35 36	391	
37 38	392	Three patients who had been treated on the phase 2 precursor studies to NINJA
39 40 41	393	were involved as Associate Investigators in the grant application, and subsequent
42 43	394	study design through engagement via teleconferences and review of documentation.
44 45	395	Given their exposure to the two treatment approaches, they were ideally informed
46 47 48	396	about the potential burden of treatment. These consumers will continue to provide
49 50	397	guidance on study recruitment and conduct throughout the duration of the trial.
51 52	398	Study participants will continue with follow-up following treatment, and hence will be
53 54	399	able to be informed about outcomes from the research.
55 56 57	400	
58 59 60	401	Endpoints NINJA Aim 1 – Radiobiological Dose Escalation

1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3 4	402
5 6	403
7 8 9	404
) 10 11	405
12 13	406
14 15	407
16 17 18	408
19 20	409
21 22	410
23 24 25	411
26 27	412
28 29	413
30 31 32	414
32 33 34	415
35 36	416
37 38	417
39 40 41	418
42 43	419
44 45	420
46 47 48	421
49 50	422
51 52	423
53 54 55	424
55 56 57	425
58 59	426
60	

102	
403	For each patient visit, prostate-specific antigen (PSA), GU and GI RTOG physician
404	graded toxicity and patient reported outcomes using the Expanded Prostate Cancer
405	Index Composite (EPIC) instrument will be recorded. The acute toxicity will be
406	measured each week of treatment, and two weeks after treatment completion. As
407	severe acute toxicity is a surrogate for late toxicity, this will be the primary physician
408	reported toxicity outcome for this 3-year study. Patient reported outcomes will be at
409	baseline, then 1, 3 and 5 year marks. Biochemical control will be assessed with PSA
410	testing at baseline, then every six months, with failure defined by the nadir plus 2
411	Phoenix definition. Clinical control consists of any evidence of relapse on imaging,
412	or the initiation of salvage treatments. Biochemical Clinical Control (BCC) is the
413	combination of either biochemical or clinical events. BCC at 5 years will be the
414	primary endpoint for aim 1.
415	
416	Endpoint NIN IA Aim 2 KBB Advantage

416 Endpoint NINJA Aim 2 – KBP Advantage

KBP models will initially be developed for the SBRT monotherapy and virtual HDRB 18 arms. The training sample for the NINJA KBP model will come from the SPARK and 19 20 PROMETHEUS cohorts, and will be continuously improved during the NINJA trial. 21 As new cases are accepted to the trial they will be incorporated into the knowledgebased dose prediction models to broaden the geometric experience and improve 22 future prediction accuracy. The NINJA KBP automated planning routines' 23 performance will be validated on an independent validation sample of cases (holding 24 back 20% of SPARK/PROMETHEUS cases) to ensure that the final KBP plans are 25 effecting plans that match the dosimetric goals of the NINJA protocol. 26

Page 20 of 46

2	
3 4	427
5 6	428
7 8 9	429
9 10 11	430
12 13	431
14 15	432
16 17	433
18 19 20	434
21 22	435
23 24	436
25 26 27	437
27 28 29	438
30 31	439
32 33	440
34 35 36	441
37 38	442
39 40	443
41 42 43	444
43 44 45	445
46 47	446
48 49	447
50 51 52	448
52 53 54	449
55 56	450
57 58	451
59 60	TJ1

1

All NINJA patients will have a plan generated as per local standard of care by the 428 treating centre. If sites are capable of utilizing KBP locally, they will be provided with 429 the NINJA KBP routine. All plans will then be uploaded to TROG to be compared 430 with a KBP generated plan. If the site was submitting a manually generated plan, an 431 automated report will be returned to the treating centre within 24 hours, at which time 432 433 they can decide whether to proceed with their original manual plan or to replan based on the KBP recommendations. If the site utilizes the NINJA KBP routine, a 434 435 central quality check will be performed to ensure proper use of the model, but no further recommendation will be made to the submitting site. The utility of KBP will be 436 assessed by recording the rate of replanning following receipt of the KBP plan. 437

Endpoint NINJA Aim 3 – MRI Planning Validation 439

This sub-study will be for centres with access to MRI scanning with appropriate 441 accessories such as a flat top couch. Patients will have a CT and a MRI performed 442 in the planning position. Clinicians will contour all target volumes and organs at risk 443 on the MRI. Sites who have not been validated for MRI based planning will go 444 through a credentialing phase, where the first 5 patients will have the planning 445 processes assessed.[32] Following credentialing (or evidence of previously fulfilling 446 this requirement), the MRI will be exported for remote generation of a sCT. A plan 447 will then be created on the sCT, and copied onto the planning CT. The dosimetry of 448 these will be compared at points within both the target volume and critical structures. 449 If the isocentre dose is within 2% and 3D Gamma comparison at 2%/2mm criteria > 450 90% pass-rate for the entire scanned volume, then the sCT plan will be deemed 451

BMJ Open

2 3	452	accurate and used for patient treatment. After ten such patients, centres will have			
4 5 6	453	the option of no longer performing a routine planning scan, but instead using in vivo			
7 8	454	dosimetry to confirm accurate dose delivery with the same criteria as for the sCT			
9		dosinetry to commin accurate dose delivery with the same chilena as for the SCT			
10 11	455	and planning CT comparison. The utility of MRI planning will be assessed via:			
12 13	456	 Accuracy – The proportion of plans where both the isocentre dose and 			
14 15 16	457	Gamma comparison are within the stated constraints. Deemed accurate if			
17 18	458	>95%.			
19 20	459	 Feasibility – The proportion of sites who commence accrual who 			
21 22	460	subsequently a) Achieve credentialing and b) Move successfully			
23 24 25	461	completely to MR only planning. Deemed feasible is ≥50% of sites.			
25 26 27	462				
28 29	463				
30 31	464	Other Sub-studies			
32 33	465				
34 35	466	 Patient reported outcomes using the IJEE and EPIC questionnaire 			
36 37	400	 Patient reported outcomes using the IIEF and EPIC questionnaire 			
38 39	467	 Physician-reported toxicity using the CTCAE v5 scale 			
40 41	468	 Health economics - the cost effectiveness profiles of the technologies being 			
42 43	469	compared will be assessed in a cost consequence analysis. Resource use			
44 45	470	implications and impacts have utility both for decision makers and for informing			
46 47 48	471	the phase 3 trial-based economic evaluation.			
49 50	472	\circ Erectile sparing RT (neurovascular bundles, pudendal arteries, penile bulb) and			
51 52	473	impact on patient reported outcomes			
53 54	474	 Performance comparison between intrafraction motion management strategies 			
55 56	475				
57 59	47J				
58 59					
60					

1 2		
3 4 5	476	Ethics and Dissemination
6 7	477	
8 9	478	This study has received Ethical approval from the South West Sydney Local Health
10 11	479	District Human Research Ethics Committee (approval number
12 13	480	HREC/18/LPOOL/420). After invitation by a credentialed local Investigator, all
14 15	481	patients will sign a Participant Information Consent Form prior to being randomized
16 17 18	482	and treated on this study. Participants are free to withdraw from the study at any
19 20	483	time. Results will be published in peer reviewed literature, presented at professional
21 22	484	meetings, and disseminated through patient facing avenues such as local media.
23 24	485	
25 26 27	486	Prostate SBRT, KBP and MRI planning are all highly promising approaches with the
27 28 29	487	potential to transform patient care far beyond the specific indication of definitive
30 31	488	prostate cancer management. A large array of sub-studies will create new scientific
32 33	489	knowledge and further inform best practice prostate cancer radiotherapy. The study
34 35	490	plan seeks to assess and validate all of these approaches. More importantly, we aim
36 37 38	491	to increase the capabilities of centres to perform such leading edge treatments. If
39 40	492	validated, these approaches can be seamlessly integrated into routine clinical
41 42		
43 44	493	practice.
45 46	494	
47 48	495	Conventional prostate cancer radiotherapy currently takes between 20 and 40
49 50	496	outpatient visits, so reducing this to between 5 and 14 will assist with access for
51 52	497	patients as well as improve resource utilisation. Semi-automation of the planning
53 54 55	498	process via KBP will both streamline processes and reduce variable plan quality.
55 56 57 58 59 60	499	NINJA has been deliberately designed to facilitate treatment at small and larger

1 2		
- 3 4	500	institutes, crossing the divide between public and private as well as metropolitan and
5 6	501	regional.
7 8		
9 10		
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38 39		
39 40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

ADT	Androgen Deprivation Therapy
ASCO	American Society of Clinical Oncology
ASTRO	American Society for Therapeutic Radiation Oncology
AUA	American Urological Association
BCC	Biochemical Clinical Control
СТ	Computerised Tomography
CTC AE	Common Toxicity Criteria Adverse Event
EBRT	External Beam Radiation Therapy
ECOG	Eastern Cooperative Oncology Group
EPIC	Expanded Prostate cancer Index Composite
EPID	Electronic Portal Image Device
GI	Gastrointestinal
GU	Genitourinary
HDRB	High Dose Rate Boost
HREC	Human Research Ethics Committee
IIEF	International Index of Erectile Function
IMRT	Intensity Modulated Radiotherapy
ISUP	International Society of Uropathology
KBP	Knowledge Based Planning
KIM	Kilovoltage Intrafraction Monitoring
MRI	Magnetic Resonance Imaging
	Novel Integration of New prostate radiation schedules with
NINJA	adJuvant Androgen deprivation

1 ว			
2 3 4		PC	Prostate Cancer
5 6		PSA	Prostate Specific Antigen
7 8 9			Prostate Specific Membrane Antigen Positron Emission
9 10 11		PSMA-PET	Tomography
12 13		RCT	Randomized Controlled Trial
14 15		RT	Radiation Therapy
16 17 18		RTOG	Radiation Therapy Oncology Group
19 20		RTR	Real Time Review
21 22		SBRT	Stereotactic Body Radiotherapy
24		sCT	Substitute Computerised Tomography
26 27			Stereotactic Prostate Adaptive Radiotherapy utilising
28 29		SPARK	Kilovoltage intrafraction monitoring
25 26 27 28		TROG	Trans Tasman Radiation Oncology Group
	504		

2		
3 4	505	Declarations
5 6	506	
7 8 9	507	Consent for Publication
10 11	508	
12 13	509	Not applicable, as this manuscript does not include patient information. Trial results,
14 15 16	510	when available, will be widely disseminated via academic meetings, journals, social
17 18	511	media and traditional media.
19 20 21	512	
21 22 23	513	Availability of Data and Materials
24 25	514	
26 27 20	515	The datasets used and/or analysed during the current study are available from the
28 29 30	516	corresponding author on reasonable request.
31 32	517	
33 34 25	518	Competing Interests
35 36 37	519	
38 39	520	No competing interests are relevant to the submitted work. J Martin has acted on
40 41	521	Advisory Boards for Ferring pharmaceuticals and Janssen, as well as having paid
42 43 44	522	employment with the commercial provider GenesisCare. DC and TL also are
45 46	523	employed by Genesis Care. PK is the inventor of a KIM-related patent that has been
47 48	524	licensed to Varian Medical Systems by Stanford University and an MLC tracking
49 50	525	patent licensed to Leo Cancer Care by the University of Sydney. PK founded Leo but
51 52 53	526	has no ownership interest. PK is the inventor of additional unlicensed KIM-related
54 55	527	patents. Other interests include founding and shareholding in Opus Medical and
56 57	528	SeeTreat, unlicensed patents, licenses to Leo Cancer Care, Opus Medical, Standard
58 59 60	529	Imaging and Varian Medical Systems and research agreements with Siemens

Page 27 of 46

1 2

BMJ Open

2	
3	5
4 5	
6	5
7	
8	5
9	
10	5
11 12	
13	5
14	
15	5
16	
17 18	5
19	_
20	5
21	_
22	5
23	_
24 25	5
26	F
27	5
28	5
29	5
30 31	5
32	
33	5
34	0
35	5
36 37	_
38	5
39	
40	5
41	
42 43	5
44	
45	5
46	
47	5
48 49	
5 0	5
51	_
52	5
53	_
54 55	5
55 56	5
57	5
58	5
59	5
60	

Healthineers and Varian Medical Systems. SS reports grants from Varian Industries, 30 outside the submitted work. KM reports grants from Agency for Healthcare Research 31 32 and Quality, grants from Padres Pedal the Cause, grants from UC San Diego Office of Innovation, grants, personal fees and non-financial support from Varian Medical 33 Systems; In addition, KM has a patent Knowledge-based prediction of three-34 dimensional dose distributions with royalties paid to Varian Medical Systems, and a 35 patent Developing Predictive DoseVolume Relationships for a Radiotherapy 36 Treatment licensed to Varian Medical Systems. DM reports personal fees from 37 38 Ferring, Ipsen, Astra Zeneca, Astellas, and Janssen. CT is an owner of 5D Clinics. Remaining co-authors have no potential competing interests to declare. 39 40 Funding 41 42 This study underwent competitive peer review by the National Health and Medical 43 Research Council (NHMRC) and was awarded governmental Cancer Australia 44 funding (APP1158455). Additional seed funding was provided by mundipharma. 45 Neither funder has input into elements of study design, conduct or publication. 46 47 Author Contributions 48 49 JM and MS conceived of the study. JM, MS, JS and DP were responsible for 50 protocol drafting and data management plan. All authors were involved in the study 51 design, acquisition of competitive grant funding and helped to draft this manuscript. 52 All authors read and approved the final manuscript. No professional writer has been 53 used. 54

1 2		
2 3 4	555	
5 6	556	Acknowledgements
7 8 9	557	
10 11	558	The study sponsor is the Trans-Tasman Radiation Oncology Group (TROG) who will
12 13 14 15	559	have input into study conduct. The full protocol is available through TROG. The trial
	560	coordination centre activities are shared between the Radiation Oncology Clinical
16 17 18	561	Trial Coordination units at the Calvary Mater Newcastle and Liverpool Hospitals. We
19 20	562	appreciate and value the contributions from our consumers: Stefan McClusky, John
21 22	563	Tillot and Russell Flank.
23 24 25 26 27 28 29 30 31 23 34 35 36 37 38 9 40 41 42 43 445 46 7 8 9 0 1 22 34 55 57 89 60	564	Tillot and Russell Flank.

1 2		
3 4	565	References
5 6 7	566	
8	567	1. Australia C. Prostate Cancer Statistics: Prostate cancer in Australia. Secondary Prostate Cancer
9 10	568	Statistics: Prostate cancer in Australia. https://prostate-
10	569	cancer.canceraustralia.gov.au/statistics.
12	570 571	 Economics CfAH. Economic Modelling of Healthcare Services for Prostate Cancer: Prostate Cancer Foundation of Australia, 2016.
13	572	3. Keall P, Nguyen DT, O'Brien R, et al. Stereotactic prostate adaptive radiotherapy utilising
14	573	kilovoltage intrafraction monitoring: the TROG 15.01 SPARK trial. BMC cancer
15 16	574	2017; 17 (1):180 doi: 10.1186/s12885-017-3164-1[published Online First: Epub Date].
17	575	4. Richardson M, Sidhom M, Gallagher S, et al. PROstate Multicentre External beam radioTHErapy
18	576	Using a Stereotactic boost: the PROMETHEUS study protocol. BMC cancer 2018;18(1):588
19	577	5. Martin JM, Bayley A, Bristow R, et al. Image guided dose escalated prostate radiotherapy: still
20	578	room to improve. Radiation oncology 2009;4(1):50
21 22	579	6. Catton CN, Lukka H, Gu C-S, et al. Randomized trial of a hypofractionated radiation regimen for
23	580	the treatment of localized prostate cancer. Journal of Clinical Oncology 2017; 35 (17):1884-90
24	581	7. Martin JM, Supiot S, Keall PJ, Catton CN. Moderately hypofractionated prostate external beam
25	582	radiotherapy: an emerging standard. The British journal of radiology 2018:20170807
26 27	583 584	 Pryor DI, Turner SL, Tai KH, et al. Moderate hypofractionation for prostate cancer: A user's guide. Journal of medical imaging and radiation oncology 2018;62(2):232-39
27 28	585	9. King CR, Collins S, Fuller D, et al. Health-Related Quality of Life After Stereotactic Body Radiation
29	586	Therapy for Localized Prostate Cancer: Results From a Multi-institutional Consortium of
30	587	Prospective Trials. International Journal of Radiation Oncology*Biology*Physics
31	588	2013; 87 (5):939-45 doi: https://doi.org/10.1016/j.ijrobp.2013.08.019[published Online First:
32	589	Epub Date] .
33 34	590	10. King CR, Freeman D, Kaplan I, et al. Stereotactic body radiotherapy for localized prostate cancer:
35	591	Pooled analysis from a multi-institutional consortium of prospective phase II trials.
36	592	Radiotherapy and Oncology; 109 (2):217-21 doi: 10.1016/j.radonc.2013.08.030[published
37	593	Online First: Epub Date] .
38 39	594	11. Katz AJ, Kang J. Quality of Life and Toxicity after SBRT for Organ-Confined Prostate Cancer, a 7-
40	595	Year Study. Frontiers in oncology 2014; 4 :301 doi: 10.3389/fonc.2014.00301[published
41	596 597	Online First: Epub Date] . 12. Katz AJ, Kang J. Stereotactic body radiotherapy as treatment for organ confined low- and
42	598	intermediate-risk prostate carcinoma, a 7-year study. Frontiers in oncology 2014; 4 :240 doi:
43	599	10.3389/fonc.2014.00240[published Online First: Epub Date]].
44 45	600	13. Widmark A, Gunnlaugsson A, Beckman L, et al. Extreme Hypofractionation versus Conventionally
46	601	Fractionated Radiotherapy for Intermediate Risk Prostate Cancer: Early Toxicity Results from
47	602	the Scandinavian Randomized Phase III Trial "HYPO-RT-PC". International Journal of
48	603	Radiation Oncology • Biology • Physics; 96 (5):938-39 doi:
49 50	604	10.1016/j.ijrobp.2016.09.049[published Online First: Epub Date] .
50 51	605	14. Widmark A, Gunnlaugsson A, Beckman L, et al. OC-0599: Ultrahypofractionation for prostate
52	606	cancer: Outcome from the Scandinavian phase 3 HYPO-RT-PC trial. Radiotherapy and
53	607	Oncology 2018; 127 :S314 doi: 10.1016/S0167-8140(18)30909-5[published Online First: Epub
54	608	Date] .
55 56	609 610	15. Morgan SC, Hoffman K, Loblaw DA, et al. Hypofractionated Radiation Therapy for Localized
56 57	610 611	Prostate Cancer: Executive Summary of an ASTRO, ASCO, and AUA Evidence-Based Guideline. Practical radiation oncology 2018; 8 (6):354-60 doi:
58	612	10.1016/j.prro.2018.08.002[published Online First: Epub Date] .
59	512	
60		

2		
3	613	16. Kishan AU, Dang A, Katz AJ, et al. Long-term Outcomes of Stereotactic Body Radiotherapy for
4	614	Low-Risk and Intermediate-Risk Prostate Cancer. JAMA network open 2019; 2 (2):e188006
5	615	doi: 10.1001/jamanetworkopen.2018.8006[published Online First: Epub Date]].
6	616	17. Spratt DE, Zumsteg ZS, Ghadjar P, et al. Comparison of high-dose (86.4 Gy) IMRT vs combined
7	617	brachytherapy plus IMRT for intermediate-risk prostate cancer. BJU international
8	618	2014; 114 (3):360-7 doi: 10.1111/bju.12514[published Online First: Epub Date] .
9 10	619	18. Morris WJ, Tyldesley S, Rodda S, et al. Androgen Suppression Combined with Elective Nodal and
10	620	
12		Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints
13	621	for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-
14	622	Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer.
15	623	International journal of radiation oncology, biology, physics 2017; 98 (2):275-85 doi:
16	624	10.1016/j.ijrobp.2016.11.026[published Online First: Epub Date] .
17	625	19. Rodda S, Tyldesley S, Morris WJ, et al. ASCENDE-RT: An Analysis of Treatment-Related Morbidity
18	626	for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost with a Dose-
19	627	Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer.
20	628	International journal of radiation oncology, biology, physics 2017; 98 (2):286-95 doi:
21	629	10.1016/j.ijrobp.2017.01.008[published Online First: Epub Date] .
22	630	20. Perera M, Papa N, Christidis D, et al. Sensitivity, Specificity, and Predictors of Positive (68)Ga-
23 24	631	Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate
25	632	Cancer: A Systematic Review and Meta-analysis. European urology 2016; 70 (6):926-37 doi:
26	633	10.1016/j.eururo.2016.06.021[published Online First: Epub Date]].
27	634	21. Gupta SK, Watson T, Denham J, et al. Prostate-Specific Membrane Antigen Positron Emission
28	635	Tomography–Computed Tomography for Prostate Cancer: Distribution of Disease and
29	636	Implications for Radiation Therapy Planning. International Journal of Radiation Oncology•
30	637	Biology• Physics 2017; 99 (3):701-09
31	638	22. Pasquier D, Nickers P, Peiffert D, et al. Hypofractionated stereotactic boost in intermediate risk
32	639	prostate carcinoma: Preliminary results of a multicenter phase II trial (CKNO-PRO). PloS one
33	640	2017; 12 (11):e0187794 doi: 10.1371/journal.pone.0187794[published Online First: Epub
34 35	641	Date] .
35 36	642	23. Paydar I, Pepin A, Cyr RA, et al. Intensity-Modulated Radiation Therapy with Stereotactic Body
37	643	Radiation Therapy Boost for Unfavorable Prostate Cancer: A Report on 3-Year Toxicity.
38	644	Frontiers in oncology 2017; 7 :5 doi: 10.3389/fonc.2017.00005[published Online First: Epub
39	645	Date]].
40	646	24. Pryor D, Sidhom M, Arumugam S, et al. Phase 2 Multicentre Study of Gantry-Based Stereotactic
41	647	Radiotherapy Boost for Intermediate and High Risk Prostate Cancer (PROMETHEUS)
42	648	Frontiers in oncology 2019;9(217):1-9 doi: 10.3389/fonc.2019.00217 [published Online First:
43	649	Epub Date]].
44	650	25. Trada Y, Plank A, Martin J. Defining a dose–response relationship for prostate external beam
45	651	radiotherapy. Journal of medical imaging and radiation oncology 2013; 57 (2):237-46
46	652	26. Li N, Carmona R, Sirak I, et al. Highly Efficient Training, Refinement, and Validation of a
47 49		
48 49	653	Knowledge-based Planning Quality-Control System for Radiation Therapy Clinical Trials.
50	654	International journal of radiation oncology, biology, physics 2017; 97 (1):164-72 doi:
51	655	10.1016/j.ijrobp.2016.10.005[published Online First: Epub Date] .
52	656	27. Peters LJ, O'Sullivan B, Giralt J, et al. Critical impact of radiotherapy protocol compliance and
53	657	quality in the treatment of advanced head and neck cancer: results from TROG 02.02.
54	658	Journal of clinical oncology : official journal of the American Society of Clinical Oncology
55	659	2010; 28 (18):2996-3001 doi: 10.1200/jco.2009.27.4498[published Online First: Epub Date]].
56	660	28. Martin J, Frantzis J, Chung P, et al. Prostate radiotherapy clinical trial quality assurance: how real
57	661	should real time review be?(A TROG-OCOG Intergroup Project). Radiotherapy and Oncology
58 50	662	2013; 107 (3):333-38
59 60		
60		

2		
3	663	29. Trada Y, Kneebone A, Paneghel A, et al. Optimizing Radiation Therapy Quality Assurance in
4	664	Clinical Trials: A TROG 08.03 RAVES Substudy. International Journal of Radiation Oncology*
5	665	Biology* Physics 2015; 93 (5):1045-51
6 7	666	30. Moore KL, Schmidt R, Moiseenko V, et al. Quantifying Unnecessary Normal Tissue Complication
	667	Risks due to Suboptimal Planning: A Secondary Study of RTOG 0126. International Journal of
8 9	668	Radiation Oncology* Biology* Physics 2015; 92 (2):228-35
9 10	669	31. Michalski JM, Yan Y, Watkins-Bruner D, et al. Preliminary Toxicity Analysis of 3-Dimensional
11	670	
12		Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy on the High-
13	671	Dose Arm of the Radiation Therapy Oncology Group 0126 Prostate Cancer Trial.
14	672	International Journal of Radiation Oncology* Biology* Physics 2013;87(5):932-38
15	673	32. Dowling JA, Sun J, Pichler P, et al. Automatic substitute computed tomography generation and
16	674	contouring for magnetic resonance imaging (MRI)-Alone external beam radiation therapy
17	675	from standard MRI sequences. International Journal of Radiation Oncology* Biology* Physics
18	676	2015; 93 (5):1144-53
19	677	33. Khoo EL, Schick K, Plank AW, et al. Prostate contouring variation: can it be fixed? International
20	678	Journal of Radiation Oncology* Biology* Physics 2012; 82 (5):1923-29
21	679	34. Persson E, Gustafsson C, Nordström F, et al. MR-OPERA: A Multicenter/Multivendor Validation of
22	680	Magnetic Resonance Imaging–Only Prostate Treatment Planning Using Synthetic Computed
23	681	Tomography Images. International Journal of Radiation Oncology • Biology •
24	682	Physics; 99 (3):692-700 doi: 10.1016/j.ijrobp.2017.06.006[published Online First: Epub Date] .
25 26	683	35. Bolla M, Maingon P, Carrie C, et al. Short Androgen Suppression and Radiation Dose Escalation
26 27	684	for Intermediate- and High-Risk Localized Prostate Cancer: Results of EORTC Trial 22991.
27	685	Journal of clinical oncology : official journal of the American Society of Clinical Oncology
29	686	2016; 34 (15):1748-56 doi: 10.1200/JCO.2015.64.8055[published Online First: Epub Date]].
30	687	36. Wilton L, Richardson M, Keats S, et al. Rectal protection in prostate stereotactic radiotherapy: a
31	688	retrospective exploratory analysis of two rectal displacement devices. Journal of medical
32	689	
33		radiation sciences 2017; 64 (4):266-73 doi: 10.1002/jmrs.238[published Online First: Epub
34	690	Date]].
35	691	37. Spratt DE, Lee JY, Dess RT, et al. Vessel-sparing Radiotherapy for Localized Prostate Cancer to
36	692	Preserve Erectile Function: A Single-arm Phase 2 Trial. European urology 2017; 72 (4):617-24
37	693	doi: 10.1016/j.eururo.2017.02.007[published Online First: Epub Date] .
38	694	38. Woodruff HC, Fuangrod T, Van Uytven E, et al. First Experience With Real-Time EPID-Based
39	695	Delivery Verification During IMRT and VMAT Sessions. International journal of radiation
40	696	oncology, biology, physics 2015; 93 (3):516-22 doi: 10.1016/j.ijrobp.2015.07.2271[published
41 42	697	Online First: Epub Date] .
43	698	39. Legge K, Greer PB, O'Connor DJ, et al. Real-time in vivo rectal wall dosimetry using MOSkin
44	699	detectors during linac based stereotactic radiotherapy with rectal displacement. Radiation
45	700	oncology 2017; 12 (1):41 doi: 10.1186/s13014-017-0781-4[published Online First: Epub
46	701	Date] .
47	702	40. Dearnaley D, Syndikus I, Mossop H, et al. Conventional versus hypofractionated high-dose
48	703	intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised,
49	704	non-inferiority, phase 3 CHHiP trial. The Lancet. Oncology 2016; 17 (8):1047-60 doi:
50	705	10.1016/S1470-2045(16)30102-4[published Online First: Epub Date]].
51	706	
52	707	
53		
54 55		
55 56		
57		
58		
59		
60		

1 2		
3 4	708	Figure 1: NINJA Trial Schema
5 6	709	
7 8	710	Figure 2 – NINJA Dosimetry example showing very conformal nature of high dose
9 10 11	711	treatment to the Planning Target Volume (PTV). [CTV=Clinical Target Volume,
12 13	712	NVB=Neurovascular Bundle, IPA=Internal Pudendal Artery]
	712	NVB=Neurovascular Bundle, IPA=Internal Pudendal Artery]
55		
56 57		
58 59		
60		

713 Table 1: Selected current and pending randomized trials investigating SBRT for

714 prostate cancer

Trial	Control	Experimental	n	Progress
	Arm(s)	Arm		
HYPO-RT-PC	78Gy/39	42.7Gy/7	1400	Results
(ISRCTN45905321)				presented 2018
PACE (NCT01584258)	78Gy/39 or	36.25Gy/5	858	Completed
	62Gy/20			accrual
HEAT (NCT01794403)	70.2Gy/26	36.25Gy/5	456	Accruing
NRG GU005	70Gy/28	36.25Gy/5	622	Accruing
(NCT03367702)	Ċ,			

reziez onz

Table 2a: Target Volume Objectives and Organs at Risk Constraints – 40 Gy in 5#

Objective	Protocol	Minor Variation	Major Variation
CTVp D95%	≥40.0	38 - <40 Gy	<38 Gy
PTV_4000 D95%	≥36 Gy	34.44 - <36 Gy	<34.44 Gy
PTV_4000 D98%	≥34.44 Gy (95% of 36.25 Gy)	32.72 - <34.44 Gy	<32.72 Gy
PTV_4000 D2%	≤42 Gy	42 – 42.8 Gy	>42.8 Gy
Dmax (0.1cc)	≤42.8 Gy	42.8 – 44 Gy	>44 Gy
Dmax (0.1cc)	Not in OAR	NA	In OAR

718

Constraint	Protocol	Minor Variation	Major Variation
RECTUM V40 Gy	≤0.1cc	NA	>0.1cc
RECTUM V36 Gy	≤1cc	>1 - 2cc	>2cc
RECTUM V32 Gy	≤10%	>10 - 20%	>20%
RECTUM V20 Gy	≤40%	>40 - 50%	>50%
URETHRA_PRV V42	≤0.1cc	NA	>0.1cc
Gy	_01100		01100
BLADDER V40 Gy	≤2cc	>2 - 3cc	>3cc
BLADDER V36 Gy	≤10cc	>10 - 20cc	>20cc
BLADDER V32 Gy	≤10%	>5 - 10%	>10%
BLADDER V20 Gy	≤40%	>40 - 50%	>50%
PENILE BULB V36	≤0.1cc	NA	>0.1cc
Gy	-0.100		0.100

1 2								
3 4		Constraint	Protocol	Minor Variation	Major Variation			
5 6 7 8		PENILE BULB V20 Gy	≤3cc	>3 - 5cc	>5cc			
9 10 11		FEM HEAD V30 Gy	≤0.1cc	NA	>0.1cc			
12 13		FEM HEAD V20 Gy	≤10cc	>10 - 15cc	>15cc			
14 15 16		SIGMOID V40 Gy	≤0.1cc	NA	>0.1cc			
17 18		SIGMOID V36 Gy	≤2cc	>2 - 3cc	>3cc			
19 20 21 22		SMALL BOWEL V30 Gy	≤1cc	NA	>1cc			
23 24 25 26 27		SMALL BOWEL V25 Gy	≤20cc	>20 - 40cc	>40cc			
28 29		Conformity index*	≤1.1	>1.1 - 1.2	>1.2			
30 31 32		Int. dose spillage**	≤4	>4 - 5	>5			
33 34		MU/cGy ratio***	≤3	>3 - 4	>4			
35 36 27	719							
37 38 39	720	* Optional - Volume receivi	ng 36.25 Gy/vol	ume of PTV				
40 41	721	** Optional - Ratio of volume receiving 36.25 Gy: 18.13 Gy						
42 43	722	*** Optional - Ratio of MU delivered per fraction divided by 800 (the number of cGy						
44 45 46	723	prescribed/fraction)						
47 48 49 50 51 52 53 54 55 56 57 58 59 60	724							

Table 2b: Target Volume Objectives and Organs at Risk Constraints – Virtual HDRB

Boost, SBRT component 20 Gy in 2 fractions

Objective	Protocol	Minor Variation	Major Variation
CTVp D95%	≥20 Gy	18 - <20 Gy	<18 Gy
PTV_2000 D95%	≥18 Gy	17 – <18 Gy	<17 Gy
PTV_2000 D98%	≥17 Gy	16 - <17 Gy	<16 Gy
PTV_2000 D2%	≤21 Gy	>21 - 21.4 Gy	>21.4 Gy
Dmax (0.1cc)	≤21.4 Gy	>21.4 – 22 Gy	>22 Gy
Dmax (0.1cc)	Not in OAR	NA	In OAR

Constraint	Protocol	Minor Variation	Major Variation
RECTUM V20 Gy	≤0.1cc	NA	>0.1cc
RECTUM V16 Gy	≤1cc	>1 - 2cc	>2cc
RECTUM V14 Gy	≤10%	>10 - 20%	>20%
RECTUM V10 Gy	≤40%	>40 - 50%	>50%
URETHRA_PRV V21	≤0.1cc	NA	>0.1cc
Gy			
BLADDER V20 Gy	≤2cc	>2 - 3cc	>3cc
BLADDER V18 Gy	≤10cc	>10 - 20cc	>20cc
BLADDER V16 Gy	≤10%	>5 - 10%	>10%
BLADDER V10 Gy	≤40%	>40 - 50%	>50%
PENILE BULB V18	≤0.1cc	NA	>0.1cc
Gy	0		

	PENILE BULB V10 Gy	≤3cc	>3 - 5cc	>5cc			
	FEM HEAD V15 Gy	≤0.1cc	NA	>0.1cc			
	FEM HEAD V10 Gy	≤10cc	>10 - 15cc	>15cc			
	SIGMOID V20 Gy	≤0.1cc	NA	>0.1cc			
	SIGMOID V18 Gy	≤2cc	>2 - 3cc	>3cc			
	SMALL BOWEL V15 Gy	≤1cc	NA	>1cc			
S	SMALL BOWEL V10 Gy	≤20cc	>20 - 40cc	>40cc			
	Conformity index*	≤1.1	>1.1 - 1.2	>1.2			
	Int. dose spillage**	≤4	>4 - 5	>5			
	MU/cGy ratio***	≤3	>3 - 4	>4			
29							
 ³⁴ ³⁵ ³⁶ ³⁷ ³⁷ ³⁶ ³⁷ ³⁷ ³⁷ ³⁸ ³⁷ <li< td=""></li<>							
31	** Optional - Ratio of volume receiving 18 Gy: 9 Gy						
32	*** Optional - Ratio of MU delivered per fraction divided by 1000 (the number of cGy						
33	prescribed/fraction)						
34							
	30 31 32 33	Gy FEM HEAD V15 Gy FEM HEAD V10 Gy SIGMOID V20 Gy SIGMOID V18 Gy SMALL BOWEL V15 Gy SMALL BOWEL V10 Gy Conformity index* Int. dose spillage** MU/cGy ratio*** Sig ** Optional - Volume receiving *** Optional - Ratio of MU de mu/cGy ratio*	Gy ≤3cc FEM HEAD V15 Gy ≤0.1cc FEM HEAD V10 Gy ≤10cc SIGMOID V20 Gy ≤0.1cc SIGMOID V20 Gy ≤0.1cc SIGMOID V18 Gy ≤2cc SMALL BOWEL V15 ≤1cc Gy ≤1cc SMALL BOWEL V10 ≤20cc Gy ≤1.1 Int. dose spillage** ≤4 MU/cGy ratio**** ≤3 ** Optional - Volume receiving 18 Gy/volume and the serving 18 Gy/volume and the service of the servi	$\leq 3cc$ $>3 - 5cc$ Gy $\leq 0.1cc$ NAFEM HEAD V15 Gy $\leq 0.1cc$ NAFEM HEAD V10 Gy $\leq 10cc$ $>10 - 15cc$ SIGMOID V20 Gy $\leq 0.1cc$ NASIGMOID V18 Gy $\leq 2cc$ $>2 - 3cc$ SMALL BOWEL V15 $\leq 1cc$ NAGy $\leq 1cc$ NASMALL BOWEL V10 $\leq 20cc$ $>20 - 40cc$ Gy ≤ 1.1 $>1.1 - 1.2$ Int. dose spillage** ≤ 4 $>4 - 5$ MU/cGy ratio*** ≤ 3 $>3 - 4$ 29* Optional - Volume receiving 18 Gy/volume of PTV31*** Optional - Ratio of MU delivered per fraction divided by 1000 (thr33prescribed/fraction)			

BMJ Open

1 2								
2 3 4	735							
5 6	736							
7 8 9	737							
10 11	738							
12 13	¹² 730 Table 2c : Target Volume Objectives and Organs at Rick Constraints							
14 15	740	Boost, EBRT component 3	6 Gy in 12 fracti	ons				
16 17 18	741							
19 20		Objectives	Protocol	Minor Variation	Major Variation			
21 22		PTV_3600 D95%	≥36 Gy	34.2 - <36 Gy	<34.2 Gy			
23 24 25		PTV_3600 D98%	≥34.2 Gy	32.4 - <34.2 Gy	<32.4 Gy			
26 27		PTV_3600 D2%	≤37.8 Gy	>37.8 - 38.5 Gy	>38.5 Gy			
28 29		PTV_3600 (0.1cc)	≤38.5 Gy	>38.5 – 39.6 Gy	>39.6 Gy			
30 31 32	742							
33 34		Constraint	Protocol	Minor Variation	Major Variation			
35 36		Small Bowel Dmax	<36 Gv	>36-38 Gy	>38 Gy			
37 38 39		(0.1cc)	≤36 Gy	200-00 Cy	200 Cy			
40 41		Fem Head Dmax	≤25 Gy	>25-35 Gy	>35 Gy			
42 43		(0.1cc)	<u> </u>	-20-00 Cy	200 Oy			
44 45		Rectum V30 Gy	≤25%	>25%-35%	>35%			
46 47 48		Bladder V32 Gy	≤25%	>25%-35%	>35%			
49 50	743							
51 52 53	744							

745	able 1: Schedule of Assessments as per SPIRIT Guidelines.
745	able 1: Schedule of Assessments as per SPIRIT Guideli

	Pre Treatr	nent		Follow-up			
Assessment	Pre-	Baseline	Treatment	Post	Every 6	24, 60	
	Registration ¹	2		SBRT ³	mths⁴	mths⁴	
Informed	✓						
Consent	×						
Eligibility	✓						
assessment	¥						
Staging							
investigations	✓						
5							
Clinical		✓		~	~		
examination		·		·	·		
Adverse		✓	✓	✓	1		
event		, , , , , , , , , , , , , , , , , , ,	ŕ	ŕ	, , , , , , , , , , , , , , , , , , ,		
PSA		-		✓	•		
PRO EPIC 26				√		1	
+/- IIEF 25				v		v	

- ¹ To be done within 60 days of registration.
- ² To be done no more than 2 weeks post registration and within 4 weeks of starting treatment.
- ³ To be performed between 6 weeks post SBRT treatment completion.
- ⁴ From commencement of ADT.

1 2	
- 3 4	Note that PSMA-PET is mandated for favourable high risk patients. Whole
5	⁵ Body Bone Scan with CT or MRI of the pelvis +/- abdomen are acceptable for
7 8	unfavourable intermediate risk patients.
9 10 74 11	47
12	48
14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31 32	
32 33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

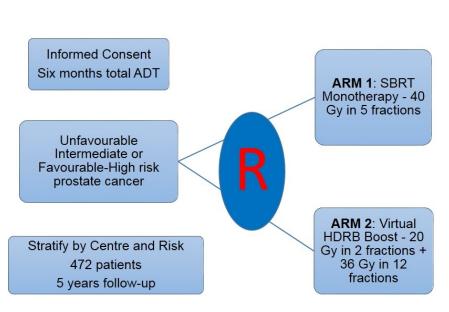
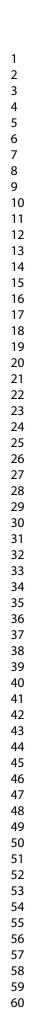



Figure 1: NINJA Trial Schema

161x84mm (150 x 150 DPI)

 Blader

 PTV

 PTV

 CTV

 Vrethra

 spaceOAR

 NVB

 IPA

Figure 2 – NINJA Dosimetry example showing very conformal nature of high dose treatment to the Planning Target Volume (PTV). [CTV=Clinical Target Volume, NVB=Neurovascular Bundle, IPA=Internal Pudendal Artery]

159x123mm (150 x 150 DPI)

BMJ Open

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	ltem No	Description
Administrative in	format	ion
Title	1	Descriptive title identifying the study design, population, interventions and, if applicable, trial acronym p1 Title page Heading
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry p5 Trial Registration
	2b	All items from the World Health Organization Trial Registration Data Set p5 Trial Registration
Protocol version	3	Date and version identifier p13 Methods, Study Design
Funding	4	Sources and types of financial, material, and other support p25 Declarations, Funding
Roles and	5a	Names, affiliations, and roles of protocol contributors p1-2 Title page
esponsibilities	5b	Name and contact information for the trial sponsor p3 Trial Sponsor
	5c	Role of study sponsor and funders, if any, in study design; collection management, analysis, and interpretation of data; writing of the report and the decision to submit the report for publication, including wheth they will have ultimate authority over any of these activities p26 Funding and Acknowledgement sections
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee) p26 Acknowledgements
Introduction		
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention p6-11 Background
	6b	Explanation for choice of comparators p6-11 Background and p16-1 Statistical Considerations

1	
2 3	
4 5	
6 7	
8 9	
10 11	
12 13	
14 15	
16	
18	
20	
22	
23 24	
25 26	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
29 30	
31	
32 33 34 35 36 37	
35 36	
38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

Objectives	7	Specific objectives or hypotheses p11 Final paragraphs of Background
Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory) p11-12 Background, Summary
Methods: Partici	pants,	interventions, and outcomes
Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained p13 Methods/Design, Study Design
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists) p13-14 Key Trial Eligibility Criteria
Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered p14-19 especially sections Pre-treatment, Time-dose-fractionation planning details, Treatment Delivery, Endpoint NINJA Aim 2 – KBP Advantage, Endpoint NINJA Aim 3 – MRI Planning Validation.
	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease) p25 Declarations, Ethics Approval and Consent to Participate
	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests) Not Applicable – it is exceedingly rare for a patient on a Radiation Oncology Clinical trial to not adhere with their cancer treatment
	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial Not Applicable
Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended p17-19 Endpoints NINJA Aim 1-3 and Other Sub-studies
Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure) p40 Table 3

1 2 3 4 5 6	Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations p16-19 Statistical Considerations
7 8 9	Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size p13-14 Key Trial Eligibility Criteria
10 11	Methods: Assign	ment c	of interventions (for controlled trials)
12 13	Allocation:		
14 15 16 17 18 19 20 21	Sequence generation	16a	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions p16-17 Statistical Considerations, 2 nd paragraph
22 23 24 25 26 27	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned p16-17 Statistical Considerations, 2 nd paragraph
28 29 30 31 32	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions p16-17 Statistical Considerations, 2 nd paragraph
33 34 35 36	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how p16-17 Statistical Considerations, 2 nd paragraph
37 38 39 40		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial Not Applicable
41 42	Methods: Data co	llectio	n, management, and analysis
43 44 45 46 47 48 49 50 51 52	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol p15-16 Outcome Reporting
53 54 55 56 57 58 59 60		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols p15-16 Outcome Reporting

Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol p15-16 Outcome Reporting
Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol p16-19 Statistical Considerations
	20b	Methods for any additional analyses (eg, subgroup and adjusted analyses) p16-19 Statistical Considerations
	20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation) p16-19 Statistical Considerations
Methods: Monito	ring	
Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed p15-16 Outcome Reporting
	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial p15-16 Outcome Reporting
Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct p15-16 Outcome Reporting
Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor Not Applicable
Ethics and disse	thics and dissemination	
Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval p25 Declarations, Ethics Approval and Consent to Participate
Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators) p15-16 Outcome Reporting

1 2 3 4 5	Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32) p25 Declarations, Ethics Approval and Consent to Participate	
6 7 8 9		26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable Not applicable	
10 11 12 13 14	Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial p15-16 Outcome Reporting	
15 16 17	Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site p25 Competing Interests	
18 19 20 21	Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators p17 Statistical Considerations, paragraph 2	
22 23 24 25 26	Ancillary and post-trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation Not applicable	
27 28 29 30 31 32 33	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions p25 Consent for Publication	
34 35 36		31b	Authorship eligibility guidelines and any intended use of professional writers p26 Authors Contributions	
37 38 39 40		31c	Plans, if any, for granting public access to the full protocol, participant- level dataset, and statistical code Not Applicable	
41	Appendices			
42 43 44 45 46	Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates Provided as supplementary material	
47 48 49 50	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable Not applicable	
51 52 53 54 55 56 57 58	*It is strongly recommended that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarification on the items. Amendments to the protocol should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons " <u>Attribution-NonCommercial-NoDerivs 3.0 Unported</u> " license.			

BMJ Open

TROG 18.01 Phase III Randomized Clinical Trial of the Novel Integration of New prostate radiation schedules with adJuvant Androgen Deprivation - The NINJA Study Protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030731.R1
Article Type:	Protocol
Date Submitted by the Author:	18-Jun-2019
Complete List of Authors:	Martin, Jarad; Calvary Mater Newcastle, Department of Radiation Oncology; University of Newcastle, School of Medicine and Public Health Keall, Paul; University of Sydney, Radiation Physics Laboratory Siva, Shankar; University of Melbourne, Sir Peter MacCallum Department of Oncology Greer, Peter; Calvary Mater Newcastle, Department of Radiation Oncology; University of Newcastle, School of Mathematical and Physical Sciences Christie, David; Genesis Care Moore, Kevin; University of California San Diego, Medical Physics Dowling, Jason; CSIRO, The Australian e-Health Research Centre Pryor, David; Princess Alexandra Hospital Health Service District, Department of Radiation Oncology Chong, Peter; John Hunter Hospital, Department of Urology McLeod, Nicholas; John Hunter Hospital, Department of Urology Raman, Avi; John Hunter Hospital, Department of Urology Lynam, James; University of Newcastle, School of Medicine and Public Health Smart, Joanne; Calvary Mater Newcastle, Department of Radiation Oncology Oldmeadow, Christopher; Hunter Medical Research Institute Tang, Colin; Sir Charles Gairdner Hospital, Department of Radiation Oncology Murphy, Declan; Peter MacCallum Cancer Centre, Urological Service Team Millar, Jeremy; Alfred Health, Radiation Oncology Tai, Keen Hun; University of Melbourne, Sir Peter MacCallum Department of Oncology Holloway, Lois; Liverpool Hospital, Department of Radiation Oncology Reeves, Penny; University of Newcastle Hunter Medical Research Institute, Health Research Economics; University of Newcastle, School of Medicine and Public Health Hayden, Amy; Westmead Hospital, Department of Radiation Oncology Lim, Tee; Genesis Care Holt, Tanya; Radiation Oncology Princess Alexandra Raymond Terrace Sidhom, Mark; Liverpool Hospital, Department of Radiation Oncology
Primary Subject Heading :	Oncology

Secondary Subject Heading: U	Irology
Keywords:	Prostate disease < UROLOGY, RADIOTHERAPY, Radiation oncology < RADIOLOGY & IMAGING, ONCOLOGY, Clinical trials < THERAPEUTICS
	SCHOLARONE™
	Manuscripts

TROG 18.01 Phase III Randomized Clinical Trial of the <u>N</u>ovel <u>Integration of New</u> prostate radiation schedules with ad<u>J</u>uvant <u>A</u>ndrogen Deprivation – The NINJA Study Protocol

Jarad M. Martin ^{1,2}	Jarad.martin@calvarymater.org.au
Paul Keall ³	paul.keall@sydney.edu.au
Shankar Siva ⁴	shankar.siva@petermac.org
Peter Greer ^{1,5}	Peter.Greer@newcastle.edu.au
David Christie ⁶	David.Christie@genesiscare.com.au
Kevin Moore ⁷	kevinmoore@ucsd.edu
Jason Dowling ⁸	Jason.Dowling@csiro.au
David Pryor ⁹	david.pryor@health.qld.gov.au
Peter Chong ¹⁰	petergchong@gmail.com
Nicholas McLeod ¹⁰	drnicholasmcleod@gmail.com
Avi Raman ¹⁰	reception@ramanurology.com.au
James Lynam ²	James.Lynam@calvarymater.org.au
Joanne Smart ¹	Joanne.Smart@calvarymater.org.au
Christopher Oldmeadow ¹¹	Christopher.Oldmeadow@hmri.org.au
Colin Tang ¹²	colin.tang@health.wa.gov.au
Declan Murphy ^{4,13}	Declan.Murphy@petermac.org
Jeremy Millar ¹⁴	jeremy.millar@monash.edu
Keen Hun Tai⁴	keenhun.tai@petermac.org
Lois Holloway ¹⁵	Lois.Holloway@health.nsw.gov.au
Penny Reeves ²	Penny.Reeves@hmri.org.au
Amy Hayden ¹⁶	Amy.Hayden@health.nsw.gov.au
Tee Lim ¹⁷	Tee.Lim@genesiscancercare.com.au
Tanya Holt ¹⁸	Tanya.Holt@health.qld.gov.au
Mark Sidhom ¹⁴	Mark.Sidhom@health.nsw.gov.au

¹Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia. ²School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia

Page 3 of 41

BMJ Open

1 2 3	³ Dediction Devoice Loboratory, Sydney, Medical School, Liniversity of Sydney,
4 5	³ Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
6 7	⁴ Sir Peter MacCallum Department of Oncology, The University of Melbourne,
8	Parkville, Victoria, 3010
9 10	⁵ School of Mathematical and Physical Sciences, University of Newcastle, Newcastle,
11 12	New South Wales, Australia
13 14	⁶ Genesis Care, Southport, Gold Coast, Queensland, Australia
15	⁷ University of California, San Diego, California, United States of America
16 17	⁸ The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia
18 19	⁹ Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane,
20 21	Queensland, Australia
22 23	¹⁰ Department of Urology, John Hunter Hospital, Newcastle, New South Wales,
24	Australia
25 26	¹¹ Clinical Research Design, IT and Statistical Support (CReDITSS), Hunter Medical
27 28	Research Institute, Newcastle, New South Wales, Australia
29 30	¹² Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
31	¹³ Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria
32 33	3000
34 35	¹⁴ Alfred Hospital, Melbourne, Victoria, Australia
36 37	¹⁵ Department of Radiation Oncology, Liverpool Hospital, Sydney, New South Wales,
38	Australia
39 40	¹⁶ Westmead Hospital, Sydney, New South Wales, Australia
41 42	¹⁷ Genesis Care, Perth, Western Australia, Australia
43 44	¹⁸ Radiation Oncology Princess Alexandra Raymond Terrace, Brisbane, Queensland,
45	Australia
46 47	
48 49	Corresponding Author Details:
50 51	Conjoint Professor Jarad Martin
52	Calvary Mater Newcastle
53 54	Newcastle
55 56	New South Wales
57 58	Australia
59	Fax: +61 2 4014 3631
60	Ph: +61 2 4014 3169

e-mail: jarad.martin@calvarymater.org.au

to peet terien only

Abstract

Introduction:

Stereotactic Body Radiotherapy (SBRT) is a non-invasive alternative to surgery for the treatment of non-metastatic prostate cancer (PC). The objectives of the NINJA clinical trial are to compare two emerging SBRT regimens for efficacy with technical sub-studies focussing on MRI only planning and the use of Knowledge Based Planning (KBP) to assess radiotherapy plan quality.

Methods and Analysis:

Eligible patients must have biopsy proven unfavourable intermediate or favourable high risk PC, have an ECOG performance status 0-1, and provide written informed consent. All patients will receive six months in total of Androgen Deprivation Therapy (ADT). Patients will be randomized to one of two SBRT regimens. The first will be 40 Gy in 5 fractions given on alternating days (SBRT monotherapy). The second will be 20 Gy in 2 fractions given one week apart followed 2 weeks later by 36 Gy in 12 fractions given 5 times per week (Virtual High Dose Rate Boost [HDRB]). The primary efficacy outcome will be Biochemical Clinical Control (BCC) at five years. Secondary endpoints for the initial portion of NINJA look at the transition of centres towards MRI only planning and the impact of KBP on real time plan assessment. The first 150 men will demonstrate accrual feasibility as well as addressing the KBP and MRI planning aims, prior to proceeding with total accrual to 472 patients as a phase 3 randomized controlled trial.

Ethics and Dissemination:

NINJA is a multicentre cooperative clinical trial comparing two SBRT regimens for men with PC. It builds on promising results from several single armed studies, and explores radiation dose escalation in the Virtual HDRB arm. The initial component includes novel technical elements, and will form an important platform set for a definitive phase 3 study.

Trial Registration:

Australia New Zealand Clinical Trial Registry – ANZCTN 12615000223538. Registered prior to opening to accrual 6 November 2018.

Strengths and Limitations:

- Randomized trial comparing two emerging radiotherapy regimens for prostate cancer
- Technological sub-study seeking to implement MRI only planning
- Use of novel approaches such as automated plan assessment to ensure high quality treatment
- Limitation is the use of a biochemical surrogate endpoint at 5 years rather than longer term survival endpoints

Keywords:

Computer Assisted Radiotherapy Planning

- Image Guided Radiotherapy
- Intensity Modulated Radiotherapy
- **Prostatic Neoplasms**
- Radiotherapy
- Radiotherapy Dose Hypofractionation
- Stereotactic Body Radiotherapy

 BMJ Open

Background

Stereotactic Body Radiotherapy for Prostate Cancer

Prostate cancer has a major impact on the Australian population with 3500 deaths projected in 2018 and treatment costs to patients and the health system exceeding \$500 million by 2025.(1, 2) The question at the heart of NINJA is to compare two emerging and practice-changing schedules of radiotherapy that leverage state-of-the-art technology developments and our Australian clinical trial experience to make treatments safer, highly efficient and more convenient for patients. The first schedule is a 5 fraction Stereotactic Body Radiotherapy (SBRT monotherapy) approach.(3) The alternative regimen is 'Virtual High Dose Rate Boost' (HDRB), non-invasively delivering brachytherapy-type doses.(4) Superiority of the latter schedule would validate the utility of dose escalation to improve outcomes. Similarity of outcomes in the former schedule would allow for major cost savings and reduced patient burden with reduction of treatment sessions from 40 to 5 (see **Figure 1**).

Conventional radiotherapy regimens for prostate cancer are given 5 times per week for up to 9 consecutive weeks.(5) Recent results from large non-inferiority studies including substantial Australian input has helped establish a 4-week moderately hypofractionated schedule as an alternative approach.(6-8) Building on this, large series are showing excellent outcomes with regimens giving as few as 5 radiotherapy fractions, using higher daily doses of radiotherapy.(9, 10) A 477 patient series with median follow-up of seven years showed 89.6% biochemical disease control with late grade 2 and 3 genitourinary (GU) toxicity low at 9% and 1.7% respectively.(11, 12) Grade 2 gastrointestinal (GI) toxicity was similarly favourable at 4.1%. Our SPARK phase 2 study used a 5-fraction prostate SBRT monotherapy in conjunction with intrafraction motion management to assess the dosimetric impact of increasing the accuracy of radiotherapy dose delivery.(3)

Following on from this experience, several randomized studies are currently underway exploring similar stereotactic regimens, where much higher daily doses of radiotherapy are given in between 5 and 7 visits (**Table 1**). The Scandinavian HYPO-

RT-PC study completed accrual in 2015, and presented early toxicity data in 2016 showing no significant differences between the control and SBRT arms.(13, 14) Initial efficacy results from this study were presented in 2018, showing no differences between the two arms. Recent guidelines from ASTRO, AUA and ASCO have incorporated prostate SBRT monotherapy as a treatment option for centres experienced in this technique.(15) Bringing this together, although SBRT monotherapy can currently be considered investigational, it is likely to gain wider acceptance as a standard treatment option in the near future. Hence our plan is to commence NINJA as a randomized phase 2 study, but to convert to a fully powered phase 3 study with SBRT monotherapy as the control arm as the evidence base continues to mature.

Strong evidence exists for superior disease control through the use of a brachytherapy boost compared with conventional radiotherapy.(16, 17) Despite this, the use of brachytherapy continues to decline, partly due to concerns regarding higher risks of significant late GU toxicity.(18) Also, the lack of evidence for improved disease control translating to improved survival has limited uptake, although the poor sensitivity of conventional staging investigations may contribute to superior local control being overwhelmed by undiagnosed micro-metastatic disease. The emergence of PSMA-PET as a more sensitive and specific staging modality makes revisiting the radiotherapy dose-escalation question highly relevant. (19, 20) An alternative approach to brachytherapy is a 'virtual HDR boost' where 2-3 large doses designed to mimic HDRB are delivered via stereotactic techniques with an additional fractionated External Beam Radiation Therapy (EBRT) component. Relatively small virtual HDRB series with nearly 4 years follow up have shown this approach to be feasible, although often using specialised equipment such as the Cyberknife platform.(21, 22) Virtual HDRB has also been proven feasible in the setting of multicentre phase 2 trial in Australia, with 135 men enrolled on the PROMETHEUS trial (ACTRN12615000223538) where 2 fractions of 9.5-10Gy are followed by an EBRT component of either 46Gy in 23 or 36Gy in 12 fractions. Early data from PROMETHEUS shows no grade 2-3 late GI toxicity after 24 months and grade 2 late GU toxicity prevalence rates of <7% out to 3 years. Promising efficacy signals are also becoming evident, with almost ablative PSA levels being observed consistent with excellent disease response.(23)

BMJ Open

Virtual HDRB may represent a significant biological dose escalation compared with SBRT monotherapy. Assuming prostate cancer has an alpha beta ratio of 1.5 Gy, 40 Gy in 5 fractions and virtual HDRB would be equivalent to 110 and 120 Gy in 2 Gy equivalent fractions respectively. Modelling of RCT data suggests that each extra Gray in dose translates to ~2% improvement in disease control.(24) The virtual HDRB approach also acknowledges the possibility of heterogeneity in the alpha-beta ratio, and therefore potentially allows for some variation in fraction size sensitivity within and between tumours. A reasonable question would be whether the excellent results seen with HDR brachytherapy boost could be safely translated into the stereotactic setting on the basis of this increase in biological dose delivery. This is the fundamental question which drives NINJA.

Knowledge Based Planning

Knowledge-Based Planning (KBP) has the potential to simultaneously improve and automate the radiotherapy planning process. KBP uses previous cases to build a model of an optimal treatment plan which can then be applied to the current patient. Previous work suggests that KBP can provide faster and frequently better plans,(25) but this has not been prospectively assessed in a multicentre fashion. NINJA provides an ideal opportunity for this.

Radiotherapy plan quality is critically important in achieving optimal treatment outcomes. The Australia-led TROG 02-02 study for patients with locally advanced head and neck cancer showed that non-protocol compliant plans had a locoregional control and overall survival decrement of 24% and 20% respectively.(26) Via TROG, Australia has become leaders in the use of approaches such as stringent credentialing and real time review (RTR) of RT contours and plans, with work in prostate cancer subsequently showing very low rates of protocol deviations both in the definitive prostate and post-prostatectomy irradiation scenarios.(27, 28)

An issue with the current RTR process is that although a plan can be deemed satisfactory, it is difficult to determine whether it could be improved. As treatment techniques evolve, satisfying the dose constraints in clinical trial protocols can

become progressively easier. Knowledge-Based Planning (KBP) has emerged as a promising approach to assess and improve plan quality. In KBP, a model is developed using a range of patient anatomies and target volumes. This can then be rapidly applied to a new case to either generate a plan de novo, or to compare with a conventional plan. The Radiation Therapy Oncology Group (RTOG) 0126 prostate cohort was selected to study treatment plan guality variations. This work examined the high-dose Intensity Modulated Radiation Therapy (IMRT) patients using a KBP model to identify the plans that best met the dosimetric aims of the protocol.(29) Focusing on Grade 2+ late rectal toxicities with an outcomes-validated normal tissue complication probability (NTCP) model, the high-dose arm of RTOG 0126 patients treated with IMRT patients had a 15.1% cumulative incidence of Grade 2+ rectal complications.(30) KBP plans were predicted to lead to a 4.7% risk reduction in this rate, which therefore may have cut this incidence by a third. The observed quality variations in RTOG 0126 give the strongest evidence yet that suboptimal planning is a critical problem in multi-institutional radiotherapy clinical trials and in the wider practice of radiotherapy. KBP has yet to be robustly assessed in a multicentre fashion, where the heterogeneity of planning systems and personnel would be expected to be greatest.

MRI Radiotherapy Planning

Computerised Tomography (CT) is widely used for radiotherapy dosimetry calculation because of the ability to directly measure electron density. Our team has validated the use of Magnetic Resonance Imaging (MRI) to create a substitute CT (sCT) which can then be used for accurate dose calculation.(31) The superior soft tissue resolution of MRI, absence of radiation dose, and reduction in image artefacts means that if the dose calculation problem could be solved, standard CT based planning would be rendered obsolete.(32)

Many centres now acquire both a CT and a MRI scan for each patient, but coregistration of these datasets introduces significant error mostly under the influence of bladder filling and varying rectal distension. An attractive alternative would be to create a substitute CT (sCT) from the MRI dataset to allow RT dose calculation. Our team has developed a hybrid atlas-voxel based technique of sCT generation which

showed high agreement in both mean monitor units (0.3%+/- sd 0.8%) and dose delivery (3-dimensional gamma pass rate at 2 mm/2% level of 100% +/- sd 0%.(31) A group of Swedish centres have shown similar findings in a retrospective, multicentre study,(33) and our group is prospectively evaluating this approach in 2 centres (HIPSTER study - ACTRN12616001653459). Given the advantages of MRI for prostate cancer, and the improving access to MRI in Australia (including radiotherapy departments with dedicated planning MRI facilities), this is another area ripe for wider assessment, implementation and eventual broader application.

Summary

NINJA is a combined phase 2/3 multicentre study of 472 men randomized to two novel radiotherapy schedules. The hypotheses are that NINJA will advance 1) Biochemical Clinical Control (BCC) of prostate cancer, 2) treatment planning via automation and 3) planning imaging methodology.

Aim 1: *Radiobiological Dose Escalation*: The escalated radiation dose delivered using a virtual HDRB approach achieves superior disease control compared with a SBRT monotherapy alternative.

Aim 2: *KBP Advantage*: The treatment plans using KBP will be dosimetrically superior to traditional manual planning approaches.

Aim 3: MRI only Planning: MRI will give dosimetry similar to standard CT planning.

Methods/Design

Study Design:

The study design is a prospective randomised phase 3 trial which conforms to the SPIRIT guidelines. We will initially enrol 150 men to demonstrate accrual feasibility as well as addressing the KBP and MRI planning aims, prior to proceeding with total accrual as a randomized phase 3 controlled trial.

- *Stage one*: Feasibility indicators activate at least 10 centres, and accrue 50 patients within 18 months of central HREC approval.
- Stage two: Accrue total of 150 patients for randomized phase 2 component within 36 months of approval. Analyses of KBP and MRI planning components.
- Stage three: Complete accrual of 472 patients to the two SBRT arms.

Key Trial Eligibility Criteria

Unfavourable intermediate or favourable high risk prostate cancer (any combination of ISUP 3-5 and/or cT2b/T2c/T3aN0 and/or PSA 10-20 in the absence of other high risk factors ie T3b/T4, PSA>20). For high-risk patients, PSMA PET staging prior to study entry showing N0M0 disease. Prostate volume <100cc, and patients can only be randomized after a plan has been generated showing that protocol compliant treatment can be performed.

Pre-Treatment

All patients will receive a total of six months of Androgen Deprivation Therapy (ADT).(34, 35) The use of PSMA PET staging for high risk men, and criteria to exclude very high risk features should minimize any potential additive benefits of longer course ADT in this population. Both CT and MRI planning scans will be performed for the first 10 patients at each centre and phasing out CT for centres involved in MRI planning aspect of NINJA. Rectal displacement (eg SpaceOAR, Rectafix, Rectal Balloon) is encouraged, but not mandated.(36) Urethral positional estimation via temporary catheterization or equivalent approaches such as high-

 resolution sagittal MRI can be performed. Erectile sparing RT plans for men with adequate baseline IIEF and desire to maintain erectile function can be used.(37) Centres will be credentialed for MRI planning via their first 5 patients being primarily planned off the CT, but with sCT generation and confirmation of accurate dosimetry. The next ten patients will have planning performed on sCT and confirmed on planning CT. Subsequent patients will omit a planning CT, be planned on sCT, and have confirmation of accurate dosimetry on treatment using a centrally approved approach eg EPID dosimetry(38) or in vivo dosimetry.(39)

Time-dose-fractionation planning details

Clinical Target Volume (CTV): Entire prostate and proximal 10mm of seminal vesicles. No elective nodal irradiation permitted.

Planning Target Volume (PTV): For SBRT treatments, 3mm uniform expansion from CTV. For Virtual HDRB 36 Gy in 12 fraction component, 7mm uniform expansion from CTV.

SBRT Monotherapy arm: 40 Gy in five fractions delivered 2-3 times per week, prescribed to CTV D95%.

Virtual HDRB Boost Arm: 20 Gy in two fractions prescribed to CTV D95% delivered once a week followed by a two week break and then 36 Gy in 12 fractions delivered 5 times per week prescribed to PTV D95%. See tables 2a-c for dose constraints, and Figure 2 for an example of the SBRT dosimetry.

Quality Assurance

Centre credentialing will include submission of a 'Virtual HDRB Boost' treatment plan for a patient to ensure accurate contouring and protocol compliant dose delivery. The initial KBP model will be generated from phase 2 SPARK and PROMETHEUS trials, but will be updated as NINJA proceeds. All cases will be submitted for KBP comparison, and an automated report to be returned within 24 hours. Real-time review will occur for all patients on trial.

Treatment Delivery

All patients require intra-prostatic markers, and both inter- as well as intra-fraction motion management strategies to ensure accurate treatment delivery. For intra-fraction motion assessment, numerous 'real time' approaches are acceptable (eg KIM, Calypso, Cyber-knife). In all instances, translational movements to be corrected to 0mm threshold prior to commencing treatment. Rotational corrections do not need to be applied due to minimal dosimetric impact from such motion.(40)

Outcome Reporting

 Indicators of feasibility, accuracy, impact on replanning, and other qualitative and quantitative markers of KBP and MRI planning will be collected. Patient reported outcomes to include baseline and serial patient reported outcomes (IIEF, EPIC), physician toxicity grading (CTC AE v5), PSA and any sites of confirmed disease relapse or death due to any cause. If the prevalence of CTC AE grade 3 GI or GU toxicities exceeds 10% at any stage, the trial will be halted for safety assessment. A SPIRIT flowchart is presented in Table 3.

Statistical Considerations

The statistical justification required to achieve the primary efficacy endpoint (Aim 1) is as follows. BCC is a hybrid of biochemical failure via the nadir plus two definition, deployment of salvage treatments, or the detection of local, regional or metastatic relapse via imaging. Using a similar endpoint as well as a short course of ADT, the CHHiP study 60 Gy arm had 90.2% and 84.2% BCC for intermediate and high risk patients respectively.(41) The ASCENDE-RT study also included intermediate and high risk men, managed with 12 months of ADT, and the experimental arm delivered 46 Gy in 23 fractions of EBRT alongside a LDR Brachytherapy boost.(17) At 5 years, the BCC was 89% in the brachytherapy boost cohort, although with a higher risk patient mix than we are going to accrue on this protocol. Allowing for differences in inter-trial comparisons, we estimate BCC ~86% in the standard SBRT arm. Similar data has been reported for single arm SBRT monotherapy series.(12) For a superiority RCT design, we will aim for a hazard ratio of 0.5 in 5-yr BCC for the virtual HDR arm ie 93%. An HR of 0.5 is chosen because this translates to an absolute improvement of 7%, and any improvements less than this are unlikely to be

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

clinically significant. With alpha 0.05, power of 80%, and drop out of 2% the required phase 3 sample size is 472 men.

For KBP (Aim 2), we hypothesize that a replanning rate of >15% would be clinically significant. Assuming an error rate of +/-6%, at an alpha of 5%, 136 patients are required. Allow 10% drop-out due to technical issues with a new planning paradigm: total of 150 cases. For MRI planning (Aim 3), having \geq 50% of centres involved in this aspect of NINJA completely transition to MRI only planning will be deemed a success.

Endpoints NINJA Aim 1 – Radiobiological Dose Escalation

For each patient visit, prostate-specific antigen (PSA), GU and GI RTOG physician graded toxicity and patient reported outcomes using the Expanded Prostate Cancer Index Composite (EPIC) instrument will be recorded. The acute toxicity will be measured each week of treatment, and two weeks after treatment completion. As severe acute toxicity is a surrogate for late toxicity, this will be the primary physician reported toxicity outcome for this 3-year study. Patient reported outcomes will be at baseline, then 1, 3 and 5 year marks. Biochemical control will be assessed with PSA testing at baseline, then every six months, with failure defined by the nadir plus 2 Phoenix definition. Clinical control consists of any evidence of relapse on imaging, or the initiation of salvage treatments. Biochemical Clinical Control (BCC) is the combination of either biochemical or clinical events. BCC at 5 years will be the primary endpoint for aim 1.

Endpoint NINJA Aim 2 – KBP Advantage

KBP models will initially be developed for the SBRT monotherapy and virtual HDRB arms. The training sample for the NINJA KBP model will come from the SPARK and PROMETHEUS cohorts, and will be continuously improved during the NINJA trial. As new cases are accepted to the trial they will be incorporated into the knowledgebased dose prediction models to broaden the geometric experience and improve future prediction accuracy. The NINJA KBP automated planning routines' performance will be validated on an independent validation sample of cases (holding back 20% of SPARK/PROMETHEUS cases) to ensure that the final KBP plans are effecting plans that match the dosimetric goals of the NINJA protocol.

All NINJA patients will have a plan generated as per local standard of care by the treating centre. If sites are capable of utilizing KBP locally, they will be provided with the NINJA KBP routine. All plans will then be uploaded to TROG to be compared with a KBP generated plan. If the site was submitting a manually generated plan, an automated report will be returned to the treating centre within 24 hours, at which time they can decide whether to proceed with their original manual plan or to replan based on the KBP recommendations. If the site utilizes the NINJA KBP routine, a central quality check will be performed to ensure proper use of the model, but no further recommendation will be made to the submitting site. The utility of KBP will be assessed by recording the rate of replanning following receipt of the KBP plan.

Endpoint NINJA Aim 3 – MRI Planning Validation

This sub-study will be for centres with access to MRI scanning with appropriate accessories such as a flat top couch. Patients will have a CT and a MRI performed in the planning position. Clinicians will contour all target volumes and organs at risk on the MRI. Sites who have not been validated for MRI based planning will go through a credentialing phase, where the first 5 patients will have the planning processes assessed.(31) Following credentialing (or evidence of previously fulfilling this requirement), the MRI will be exported for remote generation of a sCT. A plan will then be created on the sCT, and copied onto the planning CT. The dosimetry of these will be compared at points within both the target volume and critical structures. If the isocentre dose is within 2% and 3D Gamma comparison at 2%/2mm criteria > 90% pass-rate for the entire scanned volume, then the sCT plan will be deemed accurate and used for patient treatment. After ten such patients, centres will have the option of no longer performing a routine planning scan, but instead using in vivo dosimetry to confirm accurate dose delivery with the same criteria as for the sCT and planning CT comparison. The utility of MRI planning will be assessed via:

 Accuracy – The proportion of plans where both the isocentre dose and Gamma comparison are within the stated constraints. Deemed accurate if >95%.

 Feasibility – The proportion of sites who commence accrual who subsequently a) Achieve credentialing and b) Move successfully completely to MR only planning. Deemed feasible is ≥50% of sites.

Other Sub-studies

- Patient reported outcomes using the IIEF and EPIC questionnaire
- Physician-reported toxicity using the CTCAE v5 scale
- Health economics the cost effectiveness profiles of the technologies being compared will be assessed in a cost consequence analysis. Resource use implications and impacts have utility both for decision makers and for informing the phase 3 trial-based economic evaluation.
- Erectile sparing RT (neurovascular bundles, pudendal arteries, penile bulb) and impact on patient reported outcomes
- Performance comparison between intrafraction motion management strategies

Patient and Public Involvement

Many of the baseline requirements for NINJA has been informed by consumer feedback. The concept of improved treatment accuracy resonanted with our consumer advisors, and as such is mandated for all patients in NINJA. Improved pretreatment imaging with PSMA PET will help define those most likely to benefit from aggressive management of their primary prostate cancer, an approach which our consumer advisors found essential for men with higher risk disease. Our consumer advisors also prioritise patient reported outcomes (PROs), and as such, PROs are one of our key endpoints. Our focus on assessing shorter, non-invasive radiotherapy treatment regimens which can be delivered on an outpatient basis also resonated with our consumer advisors.

Our consumer advisors will engage with consumer groups through organisations such as TROG (Trans-Tasman Radiation Oncology Group), ANZUP (Australia New Zealand Urogenital Program) and PCFA (Prostate Cancer Foundation of Australia) to ensure broad consumer awareness of NINJA. The Trial Management Committee will continue to include our consumer advisors in ongoing discussions regarding accrual and toxicities to gain their perspective on any changes to the conduct of the trial which might be advisable.

NINJA is designed with numerous potentially practice changing outcomes; consumers will remain critical throughout the trial to maximise integration of these into wider clinical practice. Several of our team are very active on social media, which can make direct connections with consumers about our findings. Many of our Als are regula. clinician CIs and AIs are regular speakers for local prostate cancer support groups.

 BMJ Open

Discussion

Prostate SBRT, KBP and MRI planning are all highly promising approaches with the potential to transform patient care far beyond the specific indication of definitive prostate cancer management. A large array of sub-studies will create new scientific knowledge and further inform best practice prostate cancer radiotherapy. The study plan seeks to assess and validate all of these approaches. More importantly, we aim to increase the capabilities of centres to perform such leading edge treatments. If validated, these approaches can be seamlessly integrated into routine clinical practice.

Conventional prostate cancer radiotherapy currently takes between 20 and 40 outpatient visits, so reducing this to between 5 and 14 will assist with access for patients as well as improve resource utilisation. Semi-automation of the planning process via KBP will both streamline processes and reduce variable plan quality. NINJA has been deliberately designed to facilitate treatment at small and larger institutes, crossing the divide between public and private as well as metropolitan and regional.

NINJA seeks to prospectively assess and validate promising new technologies as part of a randomized study comparing two novel prostate RT regimens. The research pathway established can serve as a template for future attempts to explore promising technological innovations in a cost-effective manner. Beyond the geographic, sector and regional collaborations, NINJA brings together multiple states, as well as disciplines in clinical, technical and research fields.

List of Abbreviations

ADT	Androgen Deprivation Therapy
ASCO	American Society of Clinical Oncology
ASTRO	American Society for Therapeutic Radiation Oncology
AUA	American Urological Association
BCC	Biochemical Clinical Control
СТ	Computerised Tomography
CTC AE	Common Toxicity Criteria Adverse Event
EBRT	External Beam Radiation Therapy
ECOG	Eastern Cooperative Oncology Group
EPIC	Expanded Prostate cancer Index Composite
EPID	Electronic Portal Image Device
GI	Gastrointestinal
GU	Genitourinary
HDRB	High Dose Rate Boost
HREC	Human Research Ethics Committee
IIEF	International Index of Erectile Function
IMRT	Intensity Modulated Radiotherapy
ISUP	International Society of Uropathology
KBP	Knowledge Based Planning
KIM	Kilovoltage Intrafraction Monitoring
MRI	Magnetic Resonance Imaging
	Novel Integration of New prostate radiation schedules with
NINJA	adJuvant Androgen deprivation
PC	Prostate Cancer
PSA	Prostate Specific Antigen
	Prostate Specific Membrane Antigen Positron Emission
PSMA-PET	Tomography
RCT	Randomized Controlled Trial
RT	Radiation Therapy
RTOG	Radiation Therapy Oncology Group
RTR	Real Time Review

1 2 3 4 5 6 7 8 9 10 11 12	SBRT sCT SPARK TROG	Stereotactic Body Radiotherapy Substitute Computerised Tomography Stereotactic Prostate Adaptive Radiotherapy utilising Kilovoltage intrafraction monitoring Trans Tasman Radiation Oncology Group
13 14 15 16 17 18 19 20 21 22 23 24 25		
26 27 28 29 30 31 32 33 34 35 36 37 38		
39 40 41 42 43 44 45 46 47 48 49 50 51 52		
52 53 54 55 56 57 58 59 60		

Declarations

Ethics Approval and Consent to Participate

This study has received Ethical approval from the South West Sydney Local Health District Human Research Ethics Committee (approval number HREC/18/LPOOL/420). All patients will sign a Participant Information Consent Form prior to being randomized and treated on this study.

Consent for Publication

Not applicable, as this manuscript does not include patient information.

Availability of Data and Materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing Interests

The author(s) declare that they have no competing interests

Funding

This study underwent competitive peer review by the National Health and Medical Research Council (NHMRC) and was awarded governmental Cancer Australia funding (APP1158455). Additional seed funding was provided by mundipharma.

Authors Contributions

JM and MS conceived of the study. JM, MS, JS and DP were responsible for protocol drafting and data management plan. JM, PK, SS, PG, DC, KM, JD, DP, PC, NM, AR, JL, JS, CO, CT, DM, JMi, KHT, LH, PR, AH, TL, TH and MS were involved in the study design, acquisition of competitive grant funding and helped to draft this

manuscript. JM, PK, SS, PG, DC, KM, JD, DP, PC, NM, AR, JL, JS, CO, CT, DM, JMi, KHT, LH, PR, AH, TL, TH and MS will remain involved in the conduct and reporting of the study, and have read and approved the final manuscript.

Acknowledgements

The study sponsor is the Trans-Tasman Radiation Oncology Group (TROG). The full protocol is available through TROG. We acknowledge the contributions of our Steve ... consumer advisors Steve McCluskey and Russell Flank for their contributions to this clinical trial design.

References

 1. Australia C. Prostate Cancer Statistics: Prostate cancer in Australia [24 February 2018]. Available from: https://prostate-cancer.canceraustralia.gov.au/statistics.

2. Economics CfAH. Economic Modelling of Healthcare Services for Prostate Cancer: Prostate Cancer Foundation of Australia; 2016.

3. Keall P, Nguyen DT, O'Brien R, Booth J, Greer P, Poulsen P, et al. Stereotactic prostate adaptive radiotherapy utilising kilovoltage intrafraction monitoring: the TROG 15.01 SPARK trial. BMC cancer. 2017 Mar 8;17(1):180. PubMed PMID: 28270121. Pubmed Central PMCID: 5341369.

4. Richardson M, Sidhom M, Gallagher S, Grand M, Pryor D, Bucci J, et al. PROstate Multicentre External beam radioTHErapy Using a Stereotactic boost: the PROMETHEUS study protocol. BMC cancer. 2018;18(1):588.

5. Martin JM, Bayley A, Bristow R, Chung P, Gospodarowicz M, Menard C, et al. Image guided dose escalated prostate radiotherapy: still room to improve. Radiation oncology. 2009;4(1):50.

6. Catton CN, Lukka H, Gu C-S, Martin JM, Supiot S, Chung PW, et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. Journal of Clinical Oncology. 2017;35(17):1884-90.

7. Martin JM, Supiot S, Keall PJ, Catton CN. Moderately hypofractionated prostate external beam radiotherapy: an emerging standard. The British journal of radiology. 2018:20170807.

8. Pryor DI, Turner SL, Tai KH, Tang C, Sasso G, Dreosti M, et al. Moderate hypofractionation for prostate cancer: A user's guide. Journal of medical imaging and radiation oncology. 2018;62(2):232-9.

9. King CR, Collins S, Fuller D, Wang P-C, Kupelian P, Steinberg M, et al. Health-Related Quality of Life After Stereotactic Body Radiation Therapy for Localized Prostate Cancer: Results From a Multi-institutional Consortium of Prospective Trials. International Journal of Radiation Oncology*Biology*Physics. 2013 2013/12/01/;87(5):939-45.

10. King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, et al. Stereotactic body radiotherapy for localized prostate cancer: Pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiotherapy and Oncology.109(2):217-21.

11. Katz AJ, Kang J. Quality of Life and Toxicity after SBRT for Organ-Confined Prostate Cancer, a 7-Year Study. Frontiers in oncology. 2014;4:301. PubMed PMID: 25389521. Pubmed Central PMCID: 4211385.

12. Katz AJ, Kang J. Stereotactic body radiotherapy as treatment for organ confined low- and intermediate-risk prostate carcinoma, a 7-year study. Frontiers in oncology. 2014;4:240. PubMed PMID: 25229051. Pubmed Central PMCID: 4150980.

13. Widmark A, Gunnlaugsson A, Beckman L, Thellenberg-Karlsson C, Hoyer M, Lagerlund M, et al. Extreme Hypofractionation versus Conventionally Fractionated Radiotherapy for Intermediate Risk Prostate Cancer: Early Toxicity Results from the Scandinavian Randomized Phase III Trial "HYPO-RT-PC". International Journal of Radiation Oncology • Biology • Physics.96(5):938-9.

14. Widmark A, Gunnlaugsson A, Beckman L, Thellenberg-Karlsson C, Hoyer M, Lagerlund M, et al. OC-0599: Ultrahypofractionation for prostate cancer: Outcome from the Scandinavian phase 3 HYPO-RT-PC trial. Radiotherapy and Oncology. 2018;127:S314.

15. Morgan SC, Hoffman K, Loblaw DA, Buyyounouski MK, Patton C, Barocas D, et al. Hypofractionated Radiation Therapy for Localized Prostate Cancer: Executive Summary of an ASTRO, ASCO, and AUA Evidence-Based Guideline. Practical radiation oncology. 2018 Nov - Dec;8(6):354-60. PubMed PMID: 30322661.

16. Spratt DE, Zumsteg ZS, Ghadjar P, Kollmeier MA, Pei X, Cohen G, et al. Comparison of highdose (86.4 Gy) IMRT vs combined brachytherapy plus IMRT for intermediate-risk prostate cancer. BJU international. 2014 Sep;114(3):360-7. PubMed PMID: 24447404.

BMJ Open

17. Morris WJ, Tyldesley S, Rodda S, Halperin R, Pai H, McKenzie M, et al. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. International journal of radiation oncology, biology, physics. 2017 Jun 1;98(2):275-85. PubMed PMID: 28262473.

18. Rodda S, Tyldesley S, Morris WJ, Keyes M, Halperin R, Pai H, et al. ASCENDE-RT: An Analysis of Treatment-Related Morbidity for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost with a Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. International journal of radiation oncology, biology, physics. 2017 Jun 1;98(2):286-95. PubMed PMID: 28433432.

19. Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, Specificity, and Predictors of Positive (68)Ga-Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. European urology. 2016 Dec;70(6):926-37. PubMed PMID: 27363387.

20. Gupta SK, Watson T, Denham J, Shakespeare TP, Rutherford N, McLeod N, et al. Prostate-Specific Membrane Antigen Positron Emission Tomography–Computed Tomography for Prostate Cancer: Distribution of Disease and Implications for Radiation Therapy Planning. International Journal of Radiation Oncology• Biology• Physics. 2017;99(3):701-9.

21. Pasquier D, Nickers P, Peiffert D, Maingon P, Pommier P, Lacornerie T, et al. Hypofractionated stereotactic boost in intermediate risk prostate carcinoma: Preliminary results of a multicenter phase II trial (CKNO-PRO). PloS one. 2017;12(11):e0187794. PubMed PMID: 29190707. Pubmed Central PMCID: 5708754.

22. Paydar I, Pepin A, Cyr RA, King J, Yung TM, Bullock EG, et al. Intensity-Modulated Radiation Therapy with Stereotactic Body Radiation Therapy Boost for Unfavorable Prostate Cancer: A Report on 3-Year Toxicity. Frontiers in oncology. 2017;7:5. PubMed PMID: 28224113. Pubmed Central PMCID: 5293802.

23. Pryor D, Sidhom M, Arumugam S, Bucci J, Gallagher S, Smart J, et al. Phase 2 Multicenter Study of Gantry-Based Stereotactic Radiotherapy Boost for Intermediate and High Risk Prostate Cancer (PROMETHEUS). Frontiers in oncology. 2019;9:217. PubMed PMID: 31001481. Pubmed Central PMCID: 6454110.

24. Trada Y, Plank A, Martin J. Defining a dose–response relationship for prostate external beam radiotherapy. Journal of medical imaging and radiation oncology. 2013;57(2):237-46.

25. Li N, Carmona R, Sirak I, Kasaova L, Followill D, Michalski J, et al. Highly Efficient Training, Refinement, and Validation of a Knowledge-based Planning Quality-Control System for Radiation Therapy Clinical Trials. International journal of radiation oncology, biology, physics. 2017 Jan 1;97(1):164-72. PubMed PMID: 27979445. Pubmed Central PMCID: 5175211.

26. Peters LJ, O'Sullivan B, Giralt J, Fitzgerald TJ, Trotti A, Bernier J, et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010 Jun 20;28(18):2996-3001. PubMed PMID: 20479390. Epub 2010/05/19. eng.

27. Martin J, Frantzis J, Chung P, Langah I, Crain M, Cornes D, et al. Prostate radiotherapy clinical trial quality assurance: how real should real time review be?(A TROG-OCOG Intergroup Project). Radiotherapy and Oncology. 2013;107(3):333-8.

28. Trada Y, Kneebone A, Paneghel A, Pearse M, Sidhom M, Tang C, et al. Optimizing Radiation Therapy Quality Assurance in Clinical Trials: A TROG 08.03 RAVES Substudy. International Journal of Radiation Oncology* Biology* Physics. 2015;93(5):1045-51.

29. Moore KL, Schmidt R, Moiseenko V, Olsen LA, Tan J, Xiao Y, et al. Quantifying Unnecessary Normal Tissue Complication Risks due to Suboptimal Planning: A Secondary Study of RTOG 0126. International Journal of Radiation Oncology* Biology* Physics. 2015;92(2):228-35.

BMJ Open

30. Michalski JM, Yan Y, Watkins-Bruner D, Bosch WR, Winter K, Galvin JM, et al. Preliminary Toxicity Analysis of 3-Dimensional Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy on the High-Dose Arm of the Radiation Therapy Oncology Group 0126 Prostate Cancer Trial. International Journal of Radiation Oncology* Biology* Physics. 2013;87(5):932-8.

31. Dowling JA, Sun J, Pichler P, Rivest-Hénault D, Ghose S, Richardson H, et al. Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-Alone external beam radiation therapy from standard MRI sequences. International Journal of Radiation Oncology* Biology* Physics. 2015;93(5):1144-53.

32. Khoo EL, Schick K, Plank AW, Poulsen M, Wong WW, Middleton M, et al. Prostate contouring variation: can it be fixed? International Journal of Radiation Oncology* Biology* Physics. 2012;82(5):1923-9.

33. Persson E, Gustafsson C, Nordström F, Sohlin M, Gunnlaugsson A, Petruson K, et al. MR-OPERA: A Multicenter/Multivendor Validation of Magnetic Resonance Imaging–Only Prostate Treatment Planning Using Synthetic Computed Tomography Images. International Journal of Radiation Oncology • Biology • Physics.99(3):692-700.

34. Bolla M, Maingon P, Carrie C, Villa S, Kitsios P, Poortmans PM, et al. Short Androgen Suppression and Radiation Dose Escalation for Intermediate- and High-Risk Localized Prostate Cancer: Results of EORTC Trial 22991. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016 May 20;34(15):1748-56. PubMed PMID: 26976418.

35. Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3, factorial trial. The Lancet Oncology. 2019 Feb;20(2):267-81. PubMed PMID: 30579763.

36. Wilton L, Richardson M, Keats S, Legge K, Hanlon MC, Arumugam S, et al. Rectal protection in prostate stereotactic radiotherapy: a retrospective exploratory analysis of two rectal displacement devices. Journal of medical radiation sciences. 2017 Dec;64(4):266-73. PubMed PMID: 28786219. Pubmed Central PMCID: 5715268.

37. Spratt DE, Lee JY, Dess RT, Narayana V, Evans C, Liss A, et al. Vessel-sparing Radiotherapy for Localized Prostate Cancer to Preserve Erectile Function: A Single-arm Phase 2 Trial. European urology. 2017 Oct;72(4):617-24. PubMed PMID: 28233591.

38. Woodruff HC, Fuangrod T, Van Uytven E, McCurdy BM, van Beek T, Bhatia S, et al. First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions. International journal of radiation oncology, biology, physics. 2015 Nov 1;93(3):516-22. PubMed PMID: 26460993.

39. Legge K, Greer PB, O'Connor DJ, Wilton L, Richardson M, Hunter P, et al. Real-time in vivo rectal wall dosimetry using MOSkin detectors during linac based stereotactic radiotherapy with rectal displacement. Radiation oncology. 2017 Feb 27;12(1):41. PubMed PMID: 28241841. Pubmed Central PMCID: 5327549.

40. Wolf J, Nicholls J, Hunter P, Nguyen DT, Keall P, Martin J. Dosimetric impact of intrafraction rotations in stereotactic prostate radiotherapy: A subset analysis of the TROG 15.01 SPARK trial. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 2019 Apr 19;136:143-7. PubMed PMID: 31015116.

41. Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. The Lancet Oncology. 2016 Aug;17(8):1047-60. PubMed PMID: 27339115. Pubmed Central PMCID: 4961874.

Figure Captions:

Figure 1: NINJA Trial Schema

Figure 2 – NINJA Dosimetry example showing very conformal nature of high dose treatment to the Planning Target Volume (PTV). [CTV=Clinical Target Volume, NVB=Neurovascular Bundle, IPA=Internal Pudendal Artery]

to beet terien only

Table 1: Selected current and pending randomized trials investigating SBRT for

 prostate cancer

Trial	Control	Experimental	n	Progress	
	Arm(s)	Arm			
HYPO-RT-PC	78Gy/39	42.7Gy/7	1400	Results	
(ISRCTN45905321)				presented 2018	
PACE (NCT01584258)	78Gy/39 or	36.25Gy/5	858	Completed	
	62Gy/20			accrual	
HEAT (NCT01794403)	70.2Gy/26	36.25Gy/5	456	Accruing	
NRG GU005	70Gy/28	36.25Gy/5	622	Accruing	
(NCT03367702)					

Table 2a: Target Volume Objectives and Organs at Risk Constraints – 40 Gy in 5#

Objective	Protocol	Minor Variation	Major Variation	
CTVp D95%	≥40.0	38 - <40 Gy	<38 Gy	
PTV_4000 D95%	≥36 Gy	34.44 - <36 Gy	<34.44 Gy	
PTV_4000 D98% ≥34.44 Gy (95% of 36.25 Gy)		32.72 - <34.44 Gy	<32.72 Gy	
PTV_4000 D2% 🕓	≤42 Gy	42 – 42.8 Gy	>42.8 Gy	
Dmax (0.1cc)	≤42.8 Gy	42.8 – 44 Gy	>44 Gy	
Dmax (0.1cc)	Not in OAR	NA	In OAR	

Protocol	Minor Variation	Major Variation
≤0.1cc	NA	>0.1cc
≤1cc	>1 - 2cc	>2cc
≤10%	>10 - 20%	>20%
≤40%	>40 - 50%	>50%
≤0.1cc	NA	>0.1cc
≤2cc	>2 - 3cc	>3cc
≤10cc	>10 - 20cc	>20cc
≤10%	>5 - 10%	>10%
≤40%	>40 - 50%	>50%
≤0.1cc	NA	>0.1cc
≤3cc	>3 - 5cc	>5cc
≤0.1cc	NA	>0.1cc
≤10cc	>10 - 15cc	>15cc
≤0.1cc	NA	>0.1cc
≤2cc	>2 - 3cc	>3cc
	≤0.1cc ≤1cc ≤10% ≤40% ≤0.1cc ≤2cc ≤10cc ≤10cc ≤40% ≤40% ≤0.1cc ≤3cc ≤0.1cc ≤10cc ≤0.1cc ≤0.1cc ≤0.1cc ≤0.1cc ≤0.1cc ≤0.1cc ≤0.1cc ≤0.1cc	$\leq 0.1cc$ NA $\leq 1cc$ >1 - 2cc $\leq 10\%$ >10 - 20\% $\leq 40\%$ >40 - 50\% $\leq 0.1cc$ NA $\leq 2cc$ >2 - 3cc $\leq 10cc$ >10 - 20cc $\leq 10\%$ >5 - 10% $\leq 40\%$ >40 - 50% $\leq 0.1cc$ NA $\leq 3cc$ >3 - 5cc $\leq 0.1cc$ NA $\leq 10cc$ >10 - 15cc $\leq 0.1cc$ NA $\leq 0.1cc$ NA $\leq 0.1cc$ NA

Constraint	Protocol	Minor Variation	Major Variation
SMALL BOWEL V30	≤1cc	NA	>1cc
Gy			
SMALL BOWEL V25	≤20cc	>20 - 40cc	>40cc
Gy			
Conformity index*	≤1.1	>1.1 - 1.2	>1.2
Int. dose spillage**	≤4	>4 - 5	>5
MU/cGy ratio***	≤3	>3 - 4	>4

* Optional - Volume receiving 36.25 Gy/volume of PTV

** Optional - Ratio of volume receiving 36.25 Gy: 18.13 Gy

*** Optional - Ratio of MU delivered per fraction divided by 800 (the number of cGy prescribed/fraction)

Table 2b: Target Volume Objectives and Organs at Risk Constraints – Virtual HDRBBoost, SBRT component 20 Gy in 2 fractions

Objective	Protocol	Minor Variation	Major Variation
CTVp D95%	≥20 Gy	18 - <20 Gy	<18 Gy
PTV_2000 D95%	≥18 Gy	17 – <18 Gy	<17 Gy
PTV_2000 D98%	≥17 Gy	16 - <17 Gy	<16 Gy
PTV_2000 D2%	≤21 Gy	>21 - 21.4 Gy	>21.4 Gy
Dmax (0.1cc)	≤21.4 Gy	>21.4 – 22 Gy	>22 Gy
Dmax (0.1cc)	Not in OAR	NA	In OAR

Dmax (0.1cc)	Not in OAR NA		In OAR	
*				
Constraint	Protocol	Minor Variation	Major Variation	
RECTUM V20 Gy	≤0.1cc	NA	>0.1cc	
RECTUM V16 Gy	≤1cc	>1 - 2cc	>2cc	
RECTUM V14 Gy	≤10%	>10 - 20%	>20%	
RECTUM V10 Gy	≤40%	>40 - 50%	>50%	
URETHRA_PRV V21 Gy	≤0.1cc	NA	>0.1cc	
BLADDER V20 Gy	≤2cc	>2 - 3cc	>3cc	
BLADDER V18 Gy	≤10cc	>10 - 20cc	>20cc	
BLADDER V16 Gy	≤10%	>5 - 10%	>10%	
BLADDER V10 Gy	≤40%	>40 - 50%	>50%	
PENILE BULB V18 Gy	≤0.1cc	NA	>0.1cc	
PENILE BULB V10 Gy	≤3cc	>3 - 5cc	>5cc	
FEM HEAD V15 Gy	≤0.1cc	NA	>0.1cc	
FEM HEAD V10 Gy	≤10cc	>10 - 15cc	>15cc	
SIGMOID V20 Gy	≤0.1cc	NA	>0.1cc	
SIGMOID V18 Gy	≤2cc	>2 - 3cc	>3cc	
SMALL BOWEL V15 Gy	≤1cc	NA	>1cc	

SMALL BOWEL V10 Gy	≤20cc	>20 - 40cc	>40cc
Conformity index*	≤1.1	>1.1 - 1.2	>1.2
Int. dose spillage**	≤4	>4 - 5	>5
MU/cGy ratio***	≤3	>3 - 4	>4

* Optional - Volume receiving 18 Gy/volume of PTV

** Optional - Ratio of volume receiving 18 Gy: 9 Gy

*** Optional - Ratio of MU delivered per fraction divided by 1000 (the number of cGy prescribed/fraction)

Table 2c: Target Volume Objectives and Organs at Risk Constraints – Virtual HDRBBoost, EBRT component 36 Gy in 12 fractions

Objectives	Protocol	Minor Variation	Major Variation
PTV_3600 D95%	≥36 Gy	34.2 - <36 Gy	<34.2 Gy
PTV_3600 D98%	≥34.2 Gy	32.4 - <34.2 Gy	<32.4 Gy
PTV_3600 D2%	≤37.8 Gy	>37.8 - 38.5 Gy	>38.5 Gy
PTV_3600 (0.1cc)	≤38.5 Gy	>38.5 – 39.6 Gy	>39.6 Gy

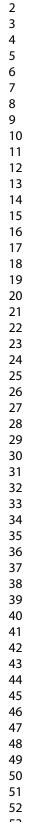
Constraint	Protocol	Minor Variation	Major Variation
Small Bowel Dmax	≤36 Gy	>36-38 Gy	>38 Gy
(0.1cc)	200 Cy	200 00 Cy	200 Cy
Fem Head Dmax	≤25 Gy	>25-35 Gy	>35 Gy
(0.1cc)	≤25 Gy	~25-35 Gy	~55 Gy
Rectum V30 Gy	≤25%	>25%-35%	>35%
Bladder V32 Gy	≤25%	>25%-35%	>35%

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
-
55
55 56
56 57
56

1 2

Table 1: Schedule of Assessments as per SPIRIT Guidelines.


	Pre Treatr	nent		Follow-up		
Assessment	Pre-	Baseline	Treatment	Post	Every 6	24, 60
	Registration ¹	2		SBRT ³	mths⁴	mths⁴
Informed	✓					
Consent	ŕ					
Eligibility	√					
assessment	ŕ					
Staging						
investigations	✓					
5						
Clinical		1		1	1	
examination		ŕ				
Adverse		1	1	1	1	
event						
PSA		~		√	~	
PRO EPIC 26		✓		1		1
+/- IIEF 25						

- ¹ To be done within 60 days of registration.
- ² To be done no more than 2 weeks post registration and within 4 weeks of starting treatment.
- ³ To be performed between 6 weeks post SBRT treatment completion.
- From commencement of ADT.
 Note that PSMA-PET is mandated for high risk patients. Whole Body Bone
- ⁵ Scan with CT or MRI of the pelvis +/- abdomen are acceptable for unfavourable intermediate risk patients.

3	
3 4 5 6 7 8 9 10	
6 7	
8	
10	
11 12	
13	
14 15	
16	
17 18	
19 20	
21	
22 23	
24	
25 26	
27 28	
29	
30 31	
32	
33 34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45	
46 47	
48 49	
49	

BMJ Open: first published as 10.1136/bmjopen-2019-030731 on 20 August 2019. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright.

BMJ Open

1

58 59

60

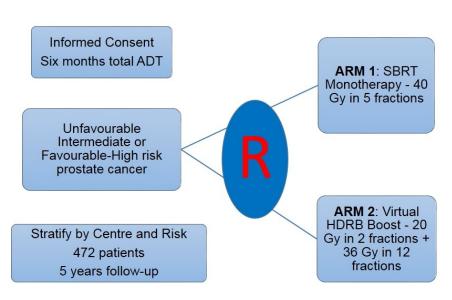


Figure 1: NINJA Trial Schema

161x84mm (150 x 150 DPI)

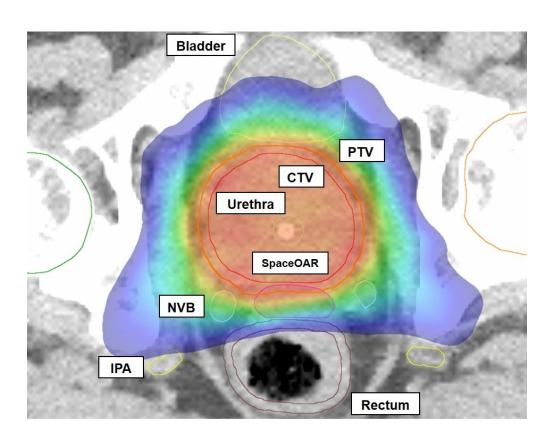


Figure 2 – NINJA Dosimetry example showing very conformal nature of high dose treatment to the Planning Target Volume (PTV). [CTV=Clinical Target Volume, NVB=Neurovascular Bundle, IPA=Internal Pudendal Artery]

159x123mm (150 x 150 DPI)

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	ltem No	Description
Administrative in	format	ion
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym p1 Title page Heading
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry p5 Trial Registration
	2b	All items from the World Health Organization Trial Registration Data Set p5 Trial Registration
Protocol version	3	Date and version identifier p13 Methods, Study Design
Funding	4	Sources and types of financial, material, and other support p25 Declarations, Funding
Roles and	5a	Names, affiliations, and roles of protocol contributors p1-2 Title page
responsibilities	5b	Name and contact information for the trial sponsor p3 Trial Sponsor
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities p26 Funding and Acknowledgement sections
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee) p26 Acknowledgements
Introduction		
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention p6-11 Background
	6b	Explanation for choice of comparators p6-11 Background and p16-19 Statistical Considerations

2 3 4	Objectives	7	Specific objectives or hypotheses p11 Final paragraphs of Background
5 6 7 8 9 10	Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory) p11-12 Background, Summary
11 12	Methods: Particip	ants, i	nterventions, and outcomes
13 14 15 16	Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained p13 Methods/Design, Study Design
17 18 19 20 21 22	Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists) p13-14 Key Trial Eligibility Criteria
23 24 25 26 27 28 29	Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered p14-19 especially sections Pre-treatment, Time-dose-fractionation planning details, Treatment Delivery, Endpoint NINJA Aim 2 – KBP Advantage, Endpoint NINJA Aim 3 – MRI Planning Validation.
30 31 32 33 34 35		11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease) p25 Declarations, Ethics Approval and Consent to Participate
36 37 38 39 40 41		11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests) Not Applicable – it is exceedingly rare for a patient on a Radiation Oncology Clinical trial to not adhere with their cancer treatment
42 43 44 45		11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial Not Applicable
46 47 48 49 50 51 52 53 54	Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended p17-19 Endpoints NINJA Aim 1-3 and Other Sub-studies
55 56 57 58 59 60	Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure) p40 Table 3

1			
1 2 3 4 5 6	Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations p16-19 Statistical Considerations
7 8 9	Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size p13-14 Key Trial Eligibility Criteria
10 11	Methods: Assigni	ment o	of interventions (for controlled trials)
12 13	Allocation:		
14 15 16 17 18 19 20 21	Sequence generation	16a	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions p16-17 Statistical Considerations, 2 nd paragraph
22 23 24 25 26 27	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned p16-17 Statistical Considerations, 2 nd paragraph
28 29 30 31 32	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions p16-17 Statistical Considerations, 2 nd paragraph
32 33 34 35 36	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how p16-17 Statistical Considerations, 2 nd paragraph
37 38 39 40		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial Not Applicable
41 42	Methods: Data co	llectio	on, management, and analysis
43 44 45 46 47 48 49 50 51 52	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol p15-16 Outcome Reporting
53 54 55 56 57 58 59 60		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols p15-16 Outcome Reporting

1 2 3 4 5 6 7	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol p15-16 Outcome Reporting
8 9 10 11 12	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol p16-19 Statistical Considerations
13 14 15		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses) p16-19 Statistical Considerations
16 17 18 19 20 21		20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation) p16-19 Statistical Considerations
22	Methods: Monito	ring	
23 24 25 26 27 28 29 30 31	Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed p15-16 Outcome Reporting
32 33 34 35		21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial p15-16 Outcome Reporting
36 37 38 39 40	Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct p15-16 Outcome Reporting
41 42 43 44	Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor Not Applicable
45 46	Ethics and disse	minatio	on
47 48 49 50 51	Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval p25 Declarations, Ethics Approval and Consent to Participate
52 53 54 55 56 57 58 59 60	Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators) p15-16 Outcome Reporting

Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32) p25 Declarations, Ethics Approval and Consent to Participate
	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable Not applicable
Confidentiality	27	How personal information about potential and enrolled participants wi be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial p15-16 Outcome Reporting
Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site p25 Competing Interests
Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators p17 Statistical Considerations, paragraph 2
Ancillary and post-trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation Not applicable
Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions p28 Consent for Publication
	31b	Authorship eligibility guidelines and any intended use of professional writers p26 Authors Contributions
	31c	Plans, if any, for granting public access to the full protocol, participan level dataset, and statistical code Not Applicable
Appendices		
Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates Provided as supplementary material
Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable Not applicable
Explanation & Elab protocol should be	oration tracked	ed that this checklist be read in conjunction with the SPIRIT 2013 of for important clarification on the items. Amendments to the d and dated. The SPIRIT checklist is copyrighted by the SPIRIT Commons " <u>Attribution-NonCommercial-NoDerivs 3.0 Unported</u> "