

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Opening a new era for high-quality CPR training with realtime feedback device called QCPR Classroom: A cluster randomized control trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026140
Article Type:	Research
Date Submitted by the Author:	25-Aug-2018
Complete List of Authors:	Tanaka, Shota; Kokushikan University, Research Institute of Disaster Management and EMS, Tsukigase, Kyoko; Kokushikan University, Research Institute of Disaster Management and EMS, Hara, Takahiro; Kokushikan University, Graduate School of EMS System Sagisaka, Ryo; Kokushikan University, Graduate School of EMS System Myklebust, Helge; Laerdal Medical Cooperation Birkenes, Tonje; Laerdal Medical Cooperation Takahashi, Hiroyuki; Kokushikan University, Research Institute of Disaster Management and EMS, Iwata, Ayana; Kokushikan University, Research Institute of Disaster Management and EMS, Kidokoro, Yutaro; Kokushikan University, Research Institute of Disaster Management and EMS, Kidokoro, Yutaro; Kokushikan University, Research Institute of Disaster Management and EMS, Vamada, Momoyo; Kokushikan University, Research Institute of Disaster Management and EMS, Ueta, Hiroki; Meiji University of Integrative Medicine, Faculty of Emergency Medical Science Takyu, Hiroshi; Kokushikan University, Graduate School of EMS System Tanaka, Hideharu; Kokushikan University, Graduate School of EMS System; Kokushikan University, Research Institute of Disaster Management and EMS,
Keywords:	bystander, cardiac arrest, CPR training, resuscitation, Mass CPR training

SCHOLARONE[™] Manuscripts

BMJ Open

1		
2 3		
4	1	
5	2	
6 7	Z	
8	3	Title: Opening a new era for high-quality CPR training with real-time feedback device called
9		
10 11	4	QCPR Classroom: A cluster randomized control trial
12	-	
13 14	5	
15	6	Shota Tanaka ¹⁾ , Kyoko Tsukigase ¹⁾ , Takahiro Hara ²⁾ , Ryo Sagisaka ²⁾ , Helge Myklebust ³⁾ ,
16	7	Tonje S. Birkenes ³⁾ , Hiroyuki Takahashi ¹⁾⁴⁾ , Ayana Iwata ¹⁾ , Yutaro Kidokoro ¹⁾ , Momoyo
17 18	8	Yamada ¹⁾ , Hiroki Ueta ⁵⁾ , Hiroshi Takyu ²⁾ , Hideharu Tanaka ¹⁾²⁾
19	9	Tunidu , Tiloki Oota , Tiloshi Tukyu , Tiloharu Tunidka
20		
21 22	10	1) Research Institute of Disaster Management and EMS, Kokushikan University
23	11	2) Graduate School of EMS System, Kokushikan University
24 25	12	3) Laerdal Medical, Stavanger, Norway
26	13	4) Department of Sports Medicine, Kokushikan University, Japan
27	14	5) Faculty of Emergency Medical Science, Meiji University of Integrative Medicine
28 29	15	
30	15	
31 32	16	Correspondence author: SHOTA TANAKA
33		
34	17	Kokushikan University, 7-3-1, Nagayama, Tama City, Tokyo, JAPAN
35 36	10	
37	18	E-mail: tanakamedical24@gmail.com
38 39	19	TEL/FAX: +81-42-339-7197
40		
41	20	
42 43	• •	
44	21	Keywords: cardiac arrest, bystander, CPR training, resuscitation, Mass CPR training
45 46	22	Word Count: 3637
47		
48		
49 50		
51		
52		
53 54		
55		
56 57		
57 58		
59		

ω

~
2
_
Open:
σ
Φ
2
-
=
Š
-
۲
F
≚
S
2
æ
<u>u</u>
g
S
-
0
<u> </u>
_
ω
o
\geq
¥
⊇.
ō
Ō
Φ
shed as 10.1136/bmjopen-2
-2018-026140 on 11 June
õ
1
ω
Ĩ
2
5
5
7
T
Ξ
g
2
-
-
<u> </u>
Ξ
∍
ō
•
č
Ξ
ø
•
õ
õ
own
ownlo
ownloa
2019. Downloac
ownloade
ownloaded
B
ownloaded fro
ownloaded fron
ownloaded from
ownloaded from h
ownloaded from htt
ownloaded from http
from http:/
ownloaded from http://bmjopen.br
from http:/
from http://bmjopen.bmj.com/ on April 1
from http:/
from http://bmjopen.bmj.com/ on April 1

1	Abstract
2	Objectives "Quality Cardiopulmonary Resuscitation (QCPR)-Classroom" device has
3	recently introduced to provide a higher quality of CPR training. The aim of this study was to
4	examine whether QCPR-Classroom training can lead to higher chest compression quality
5	than ordinary CPR training.
6	Setting Layperson CPR training
7	Design A cluster randomized control trial was conducted to compare standard CPR training
8	(control) and QCPR-Classroom (intervention) groups.
9	Participants A total of 642 people were recruited from among CPR trainees.
10	Interventions CPR performance data in both groups was blindly captured on instrumented
11	Little Anne prototypes for one minute pre- and post-training.
12	Primary and secondary outcome measures The primary outcome was compression depth
13	(mm), rate (compressions per minute [cpm]), \geq 90% adequate depth (%), and recoil (%). The
14	scores from the survey were considered as a secondary outcome.
15	Results There were 259 people in the control group and 238 people in the QCPR-Classroom
16	group who were eligible for analysis. After training, the mean compression depth and rate
17	were 56.1±9.8mm and 119.2±7.3 compressions per minute (cpm) in the control group and
18	59.5±7.9mm and 116.8±5.5cpm in the QCPR-Classroom group, respectively. The
19	QCPR-Classroom group showed a significantly higher rate of achieving \geq 90% adequate
20	depth than the control group ($p=0.001$). The difference between pre- and post-training of
21	achieving \geq 90% recoil was 1.5% in the control group (95% CI, -6.9-1.0; pre 40.2% vs. post
22	41.7%; <i>p</i> =0.72) and 27.7% in the QCPR-Classroom group (95% CI, 19.0-36.0; pre 44.5% vs.

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

35		BMJ Open
	1	post 72.3%; $p < 0.0001$). The sound from a metronome set at 110 beats per minute had a
	2	positive influence on the CPR performance.
	3	Conclusion Regardless of the lack of the subjective assessment by instructors, the
	4	QCPR-Classroom concept helped students achieve high-quality CPR training, especially for
	5	proper compression depth and full recoil. As an advantage of QCPR-Classroom, good
	6	educational achievement with fewer instructors can be seen.
	7	
	8	

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Article Summary The paper describes the use a novel "QCPR classroom" technique to educate laypeople in CPR. A large classroom in which learners could see their CPR performance both on a mannequin and on a big screen at the front of the class was used. Students were randomized into a control group and a QCPR classroom group. They were assessed on their ability to perform 1 minute of chest compression-only CPR. The QCPR group had a higher rate of achieving > 90% depth than the control group and a higher rate of achieving > 90% recoil. However, there was no difference in average depth or rate between the two groups. The American Heart Association recommends use of audiovisual feedback device during CPR education. Benefits of audiovisual feedback devices are well accepted and agreed. QCPR classroom concept is a fancy new idea for mass-CPR training. Strengths and limitations of this study

14 - Benefit of mass CPR training over QCPR Classroom, an audiovisual feedback device, is

15 good educational achievement with fewer instructors.

16 - Arranging objective real-time feedback on big screen in front of everyone to visible to both

17 instructor and students made significantly improve CPR quality.

18 - No retention measurement was taken and the measurements were all students together

BMJ Open

1	Introduction
2	The burden of cardiovascular diseases and the increasing cases of out-of-hospital
3	cardiac arrest (OHCA) remain a global concern [1]. Performing bystander cardiopulmonary
4	resuscitation (CPR) is one factor that can increase the survival rate of OHCA [2-7]. The
5	survival rate may be directly linked to the number of bystanders trained in CPR [2]. The
6	Global Resuscitation Alliance (GRA) was recently established to improve OHCA survival,
7	and high-performance CPR was highlighted: a push depth of 5-6 cm, rate of 100-120
8	compressions per minute (cpm), full recoil, and minimized fraction time (less than 10
9	seconds) [8]. In the GRA consensus, mandatory School and Community CPR was listed as
10	one of the 10 steps to increase OHCA survival [8]. This type of CPR training is the best way
11	to increase the number of people trained in CPR in a short time, but the quality assurance is
12	questionable. On Aug 15, 2017, the American Heart Association (AHA) announced that
13	AHA instructors will be required to use a feedback device during AHA CPR training [9].
14	Healthcare professionals were found to perform incomplete compression recoil in
15	46% of all cases and in 23.4% of cases involving paediatric patients [10-11]. However,
16	performing full recoil is emphasized in the GRA consensus, along with the use of a feedback
17	device during CPR training [8]. Incomplete recoil leads to insufficient time for blood to fill
18	into the heart, which eventually leads to less blood flow to the brain [12]. Coronary and
19	cerebral perfusion pressure can deteriorate due to incomplete decompression [13]. Full recoil
20	is one of the most important concepts for ensuring high-quality CPR [8,14-15]. However,
21	teaching the concept of recoil has been difficult for non-healthcare professionals, for which
22	little is known about what the best teaching method is. Key points during CPR training are

Page 6 of 35

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

1	teaching to compress the chest 5 cm deep and allowing for full chest recoil, but these two
2	components are hard to achieve during training without a feedback device.
3	We are currently facing a period of transition to a new style of CPR training. Many
4	companies have introduced feedback devices, and research supports their effectiveness
5	[16-25]. However, most of them cannot monitor recoil, or they are unavailable for CPR
6	training that targets a large population. According to previous studies, the CPRcard (Laerdal
7	Medical, Stavanger, Norway) could be a promising device to ensure CPR quality during
8	large-scale CPR training [23-26]. Laerdal Medical (Stavanger, Norway) also recently
9	launched the "QCPR Classroom" concept, which provides real-time visual feedback for a
10	greater number of participants at once. The effectiveness of the QCPR Classroom device was
11	recently demonstrated by Kong et al. [27]. The purpose of this study is to examine the
12	effectiveness of CPR skills delivered by QCPR Classroom training in comparison to ordinary
13	CPR training. The hypothesis of the study was that QCPR Classroom would generate higher
14	achievement in CPR skill regardless of instructors' teaching skill. We aimed to determine
15	whether QCPR Classroom could be the best practical model for CPR training.
16	
17	

BMJ Open

ikan
oral informed
enrolment.
were focused
vere enrolled
tember 2017.
esence of
sional who is
MTs),
atus and
n criteria.
ED) training.
ssions per
nts were
ne survey
ml

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1	Methods
2	The study was approved by the Institutional Review Board at Kokushikan
3	University. A cluster randomized controlled trial (cRCT) was used [17,28], and oral informed
4	consent was obtained from all participants prior to the CPR training and study enrolment.
5	
6	Patient and Public Involvement
7	Patients and/or public were not involved this study. Study population were focuse
8	on CPR trainees.
9	
10	Study population
11	A total of 642 people were recruited from among CPR trainees who were enrolled
12	in the Heart Saver Japan CPR training, which was held between March and September 2017
13	The inclusion criteria was age over 15 years. The exclusion criterion was the presence of
14	upper extremity injury within the past 6 months, working as a healthcare professional who is
15	regularly involved in resuscitation, such as Emergency Medical Technicians (EMTs),
16	paramedics, and emergency room physician or nurses. Previous CPR training status and
17	quantity and timing of previous trainings were not used as inclusion or exclusion criteria.
18	
19	Measurements
20	Participants enrolled in the CPR+automated external defibrillator (AED) training.
21	The primary outcome was compression depth (mm), compression rate (compressions per
22	minute [cpm]), adequate depth (%), and adequate recoil (%). These measurements were
23	blindly measured both pre- and post-training for one minute. The scores from the survey
	7

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

1	conducted after the training were considered as a secondary outcome. For data analysis, we
2	used a cutoff of 90 % compliance with depth > 5 cm.
3	
4	Study procedure
5	We randomly selected which CPR training would be given (ordinary or QCPR
6	Classroom). Four lead instructors who have worked as healthcare professionals and have had
7	over 5 years of experience in teaching CPR were selected from the Heart Saver Japan
8	organization. All of them are well experienced in teaching CPR and have trained over 5,000
9	people. The data collection took place during the Heart Saver Japan CPR+AED training
10	sessions. Statistician generated a randomization list and each session was randomly assigned
11	to the intervention. A total of 18 CPR training sessions were studied, with 9 ordinary CPR
12	training (control group) and 9 QCPR Classroom sessions (Figure 1).
13	In the control group, participants received only subjective feedback from the
14	instructor. In the QCPR Classroom group, participants received subjective and objective
15	feedback from the instructor based on real-time feedback through the mannequin, and
16	participants were able to correct themselves from feedback displayed on the screen of the
17	device (Figure 2).
18	To measure the effect of CPR training, one minute of chest compression was
19	measured without any feedback given as a pre-test. Similarly to the pre-test, one minute of
20	chest compression was also measured after the training as a post-test. Although one minute of
21	measurement may not be sufficient duration for CPR performance in real life, we focused on
22	the initial CPR performance by a single rescuer situation. A survey and baseline
23	characteristics, such as weight, height, and CPR training experience (Table 1), were also
	8
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 collected after the post-training measurement. A metronome was set at 110 beats per minute

2 (bpm) and used for every instance of hands-on practice during the QCPR Classroom session,

3 but no metronome was used during the ordinary CPR training.

Table 1. Demographic Characteristics

	Control $(n = 259)$	QCPR Classroom ($n = 238$)	<i>p</i> value
Age, mean±SD	22.4 ± 9.0	19.4 ± 5.6	<.0001 *
median (IQR)	19 (17-23.5)	17 (16-21)	<.0001 *
Male, (%)	130 (50.2)	101 (42.4)	0.08
height, mean	164.5 ± 14.3	164.2 ± 8.2	0.47
weight, mean	57.9 ± 12.1	56.0 ± 9.6	0.06
BMI, mean	21.1 ± 3.1	20.7 ± 2.6	0.07
CPR training, (%)	203 (78.4)	170 (71.4)	0.07
CPR training within 1 year, (%)	89 (41.2)	63 (36.4)	0.34

CPR: cardiopulmonary resuscitation; SD: standard deviation; IQR; interquartile range; BMI: body mass index

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

* p < .05 significant

7 Instrumentation

8 Compression data was captured using the Laerdal QCPR Classroom mannequin 9 system (Laerdal Medical, Stavanger, Norway), as shown in Figure 2. This prototype system 10 for community CPR training provides real-time visual feedback from 42 mannequins, where 11 icons representing CPR performance from each mannequin are visualized on an iPad tablet. 12 We mirrored the iPad screen on a laptop using the application Reflector 2 (Squirrels[®], North 13 Canton, OH, United States) in order to present real-time feedback on a large screen at the 14 front of the classroom (Figure 3). QCPR Classroom uses Laerdal Little Anne mannequins,

2	
3	
3 4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
18	
19	
20	
20 21 22 23 24 25 26 27 28 29	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32 22	
32 33 34 35 36 37 38	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56	
57 58	
58 59	
60	

1

1	and each one is instrumented with an optical compression sensor and microcontroller. The
2	microcontroller analyses the signal from the compression sensor and calculates the number of
3	compressions, compression depth, rate, and incomplete release. A compression score is
4	calculated using the rate, depth, and release. Each sensor was checked for depth accuracy
5	using a calibrated compression machine with $\pm 15\%$ considered as acceptable error.
6	The microcontroller also compares the compression performance with guidelines
7	from the 2015 AHA requirements. Deviations from the guidelines are reported as "too
8	shallow", "incomplete release", "too fast", or "too slow", and deviation in each factor is
9	presented as yellow icons on the tablet. If the compression performance is good, a green
10	"Everything OK" icon is presented. Data from the tablet is sent to a Microsoft Azure cloud
11	service and made available as downloadable .csv files, which include the following
12	parameters from each mannequin and CPR session: the number of compressions, average
13	compression rate, average compression depth, number of compressions with adequate depth,
14	number of compressions with acceptable release, compression score, time, and location of
15	use.
16	
17	Statistical analysis
18	The rate and depth measurements are shown as the mean and standard deviation.
19	Normal distributions and homogeneity of variance were confirmed by a Q-Q plot. The
20	difference between pre- and post-training measurements within the groups were analysed
21	using a paired t-test and McNemar test. Group comparison for both pre- and post-training
22	was conducted using Welch's t-test and the chi-square test. For the analysis, the rates of
23	achievement of \geq 90% adequate depth and recoil were calculated as percentages and

10

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	considered as indexes of high competency. Analysing the percentage variables to compare
2	the numerical value using a parametric test, such as a t-test, would neglect the upper limit of
3	100 %, so we set a criterion of \geq 90% for their high-quality performance. The differences
4	and 95% confidence intervals are shown in tables. The medians and interquartile ranges are
5	presented for ordinal data. We compared the groups using the Wilcoxon single-rank test for
6	continuous variables. The data was analysed using JMP (V.11.2.0, the SAS Institute Inc.),
7	and p-values less than 0.05 were considered as significant.
8	
9	Results
10	Demographic characteristics
11	A total of 642 people participated in this study. As shown in Figure 1, 145
12	participants were excluded due to incomplete data ($n = 135$), age under 15 years ($n = 8$), and
13	paramedics (n = 2). Significant age difference between the groups was found (22.4 ± 9.0 vs.
14	19.4 \pm 5.6; <i>p</i> =<.0001). After the CPR training, 497 participants were eligible for analysis,
15	with 259 people in the control group and 238 people in the QCPR Classroom group. The
16	demographic characteristics are shown in Table 1.
17	
18	Primary outcome
19	All chest compression parameters at pre-training and post-training are shown in
20	Table 2. After the training, the mean compression depth of each student was 56.1±9.8 mm in
21	the control group and 59.5±7.9 mm in the QCPR Classroom group. Significantly more
22	participants in the QCPR Classroom group achieved \geq 90% of the adequate depth compared
23	to the control group ($p = 0.001$; Table 3). In the QCPR Classroom group, there was an
	11
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

improvement of 39.1% (95% CI, 5.1-21.0) in achieving \geq 90% of the adequate depth (37.8%

 Page 12 of 35

6	2 at pre-training vs. 76.9% at post-training). In the control group, the improvement was 29.7%										
7 8 3 (95% CI, 21.3-37.7) in achieving \geq 90% of the adequate depth (34.0% at pre-training at 9									1		
10 11	4	63.7	63.7% at post-training; <i>p</i> < 0.0001; Table 2).								
12 13	5	Both groups demonstrated average compression rates of 100-120 cpm (Table 2). A									
 statistically significant difference was found between groups in terms of recoil (<i>p</i> 							ecoil (<i>p</i> < 0.000	1;			
17 18	7	Tab	le 2). The cont	trol group demo	onstrated a 1	5% (95% CI, -	-6.9-1.0) incre	ase in the			
19 20 21	8	perc	centage of achi	eving $\geq 90\%$ r	ecoil (40.2%	% pre-training v	s. 41.7% post-	training; $p = 0$.	72).		
21 22 23	9	The	QCPR Classre	oom group dem	nonstrated a	27.7% (95% C	I, 19.0-36.0) ii	ncrease in the			
24 25	10	perc	centage of achi	eving $\geq 90\%$ r	ecoil (44.5%	% pre-training v	s. 72.3% post-	training; <i>p</i> <			
26 27 28	11	0.00	001; Table 2).								
28 29 30		-		R performance	e competen	cy between					
31	pre- and po	ost-tr	aining in each	groups							
32 33	Control $(n = 259)$			QCPR Classroom ($n = 238$)							
34						Difference				Differe	
35 36			Pre-training	Post-training	<i>p</i> value	(95% CI)	Pre-training	Post-training	p value	(95%)	
						0.0 (1.0	115.7±			1.1 (-1.4	
37 38			121.4			-2.3 (-4.2 -	$113.7 \pm$				
38 39	rate (cpm) ⁺	÷	121.4 ±15.5	119.2 ± 7.3	0.02 *	-2.3 (-4.2 -	113.7 ± 19.0	116.8 ± 5.5	0.39	3.6)	
38 39 40	rate (cpm) ⁺	÷		119.2 ± 7.3	0.02 * <0.0001			116.8 ± 5.5	0.39 <0.0001	3.6)	
38 39			±15.5			-0.3) 4.6 (3.5 —	19.0	116.8 ± 5.5 59.5 ± 7.9		3.6) 11.3 (9	
38 39 40 41 42 43	depth (mm)	+			< 0.0001	-0.3) 4.6 (3.5 - 5.8)			< 0.0001	3.6) 11.3 (9 - 12	
38 39 40 41 42 43 44 45	depth (mm) adequate de	+	±15.5 51.4±11.6	56.1 ±9.8	<0.0001 *	-0.3) 4.6 (3.5 - 5.8) 29.7 (21.3	19.0 48.2 ± 14.7	59.5 ± 7.9	<0.0001 *	3.6) 11.3 (9 - 12 39.1 (3	
38 39 40 41 42 43 44 45 46	depth (mm)	+	±15.5		<0.0001 * <0.0001	$\begin{array}{r} -0.3) \\ 4.6 (3.5 - \\ 5.8) \\ 29.7 (21.3 - 37.7) \end{array}$	19.0		<0.0001 * <0.0001 *	3.6) 11.3 (9 - 12 39.1 (3 - 46	
38 39 40 41 42 43 44 45	depth (mm) adequate de	o † epth	±15.5 51.4±11.6	56.1 ±9.8	<0.0001 * <0.0001	-0.3) 4.6 (3.5 - 5.8) 29.7 (21.3	19.0 48.2 ± 14.7	59.5 ± 7.9	<0.0001 * <0.0001	3.6) 11.3 (9 - 12 39.1 (3	
38 39 40 41 42 43 44 45 46 47 48 49 50	depth (mm) adequate de $\geq 90\%$ ⁺⁺ recoil $\geq 90\%$	9 + epth % ++	±15.5 51.4±11.6 88 (34.0) 104 (40.2)	56.1 ±9.8 165 (63.7)	<0.0001 * <0.0001 * 0.72	$\begin{array}{r} -0.3) \\ 4.6 (3.5 - \\ 5.8) \\ 29.7 (21.3 - 37.7) \\ 1.5 (-6.9 - \end{array}$	19.0 48.2 ± 14.7 90 (37.8)	59.5 ± 7.9 183 (76.9)	<0.0001 * <0.0001 * <0.0001	3.6) 11.3 (9 - 12 39.1 (3 - 46 27.7 (1	
38 39 40 41 42 43 44 45 46 47 48 49 50 51	depth (mm) adequate de $\geq 90\%$ ⁺⁺ recoil $\geq 90\%$ paired-t test	9 + epth % ++ t and 1	±15.5 51.4±11.6 88 (34.0) 104 (40.2)	56.1 ±9.8 165 (63.7) 108 (41.7) ; CPR: cardiopu	<0.0001 * <0.0001 * 0.72	$\begin{array}{r} -0.3) \\ 4.6 (3.5 - \\ 5.8) \\ 29.7 (21.3 - 37.7) \\ 1.5 (-6.9 - \end{array}$	19.0 48.2 ± 14.7 90 (37.8)	59.5 ± 7.9 183 (76.9)	<0.0001 * <0.0001 * <0.0001	3.6) 11.3 (9 - 12 39.1 (3 - 46 27.7 (1	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	depth (mm) adequate de $\geq 90\%$ ⁺⁺ recoil $\geq 90\%$ paired-t test resuscitation) + epth % ++ t and 1 n; CI:	±15.5 51.4±11.6 88 (34.0) 104 (40.2) McNemar test;	56.1 ±9.8 165 (63.7) 108 (41.7) ; CPR: cardiopu terval	<0.0001 * <0.0001 * 0.72	$\begin{array}{r} -0.3) \\ 4.6 (3.5 - \\ 5.8) \\ 29.7 (21.3 - 37.7) \\ 1.5 (-6.9 - \end{array}$	19.0 48.2 ± 14.7 90 (37.8)	59.5 ± 7.9 183 (76.9)	<0.0001 * <0.0001 * <0.0001	3.6) 11.3 (9 - 12 39.1 (3 - 46 27.7 (1	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	depth (mm) adequate de $\geq 90\%$ ⁺⁺ recoil $\geq 90\%$ paired-t test resuscitation) + epth % ++ t and 1 n; CI: stand	±15.5 51.4±11.6 88 (34.0) 104 (40.2) McNemar test; confidence in lard deviation	56.1 ±9.8 165 (63.7) 108 (41.7) ; CPR: cardiopu terval	<0.0001 * <0.0001 * 0.72	$\begin{array}{r} -0.3) \\ 4.6 (3.5 - \\ 5.8) \\ 29.7 (21.3 - 37.7) \\ 1.5 (-6.9 - \end{array}$	19.0 48.2 ± 14.7 90 (37.8)	59.5 ± 7.9 183 (76.9)	<0.0001 * <0.0001 * <0.0001	3.6) 11.3 (9 - 12 39.1 (3 - 46 27.7 (1	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	depth (mm) adequate de $\geq 90\%$ ⁺⁺ recoil $\geq 90\%$ paired-t test resuscitation ⁺ Mean and) + epth % ++ t and 1 n; CI: stand	±15.5 51.4±11.6 88 (34.0) 104 (40.2) McNemar test; confidence in lard deviation	56.1 ±9.8 165 (63.7) 108 (41.7) ; CPR: cardiopu terval	<0.0001 * <0.0001 * 0.72	$\begin{array}{r} -0.3) \\ 4.6 (3.5 - \\ 5.8) \\ 29.7 (21.3 - 37.7) \\ 1.5 (-6.9 - \end{array}$	19.0 48.2 ± 14.7 90 (37.8)	59.5 ± 7.9 183 (76.9)	<0.0001 * <0.0001 * <0.0001	3.6) 11.3 (9 - 12 39.1 (3 - 46 27.7 (1	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	depth (mm) adequate de $\geq 90\%$ ⁺⁺ recoil $\geq 90\%$ paired-t test resuscitation ⁺ Mean and) + epth % ++ t and 1 n; CI: stand	±15.5 51.4±11.6 88 (34.0) 104 (40.2) McNemar test; confidence in lard deviation	56.1 ±9.8 165 (63.7) 108 (41.7) ; CPR: cardiopu terval	<0.0001 * <0.0001 * 0.72	$\begin{array}{r} -0.3) \\ 4.6 (3.5 - 5.8) \\ 29.7 (21.3 - 37.7) \\ 1.5 (-6.9 - 1.0) \end{array}$	19.0 48.2 ± 14.7 90 (37.8)	59.5 ± 7.9 183 (76.9)	<0.0001 * <0.0001 * <0.0001	3.6) 11.3 (9 - 12 39.1 (3 - 46 27.7 (1	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	depth (mm) adequate de $\geq 90\%$ ⁺⁺ recoil $\geq 90\%$ paired-t test resuscitation ⁺ Mean and) + epth % ++ t and 1 n; CI: stand	±15.5 51.4±11.6 88 (34.0) 104 (40.2) McNemar test; confidence in lard deviation f	56.1 ±9.8 165 (63.7) 108 (41.7) ; CPR: cardiopu terval for rate nad	<0.0001 * <0.0001 * 0.72 almonary	$\begin{array}{r} -0.3) \\ 4.6 (3.5 - \\ 5.8) \\ 29.7 (21.3 - 37.7) \\ 1.5 (-6.9 - \end{array}$	19.0 48.2 ± 14.7 $90 (37.8)$ $106 (44.5)$	59.5 ± 7.9 183 (76.9) 172 (72.3)	<0.0001 * <0.0001 * <0.0001	3.6) 11.3 (9 - 12 39.1 (3 - 46 27.7 (1	

1	
2	
3	⁺⁺ Numbers (percentage) for \geq 90% of the
4	
5	adequate depth and recoil achieved
б	* p < .05
7	1

significant

Table 3. The difference of CPR perofrmance competency between the control group andQCPR Classroom group at pre- and post-training

		Control (n =	QCPR Classroom (n =	р	Difference
		259)	238)	value	(95% CI)
Pre-traini	ng test				
				< 0.001	-5.7 (-8.7 -
	rate (cpm) +	121.4 ± 15.5	115.7 ± 19.0	*	-2.6)
				0.008	-3.2 (-5.5
	depth (mm) +	51.4±11.6	48.2 ± 14.7	*	-0.85)
	adequate depth \geq				3.8 (-4.6 -
90% ++		88 (34.0)	90 (37.8)	0.37	12.2)
					4.4 (-4.3 -
	recoil \ge 90% ⁺⁺	104 (40.2)	106 (44.5)	0.32	13.1)
Post-train	ing test				
				< 0.001	-2.3 (-3.5
	rate (cpm) +	119.2 ± 7.3	116.8 ± 5.5	*	-1.2)
				< 0.001	3.5 (1.9 -
	depth (mm) +	56.1 ±9.8	59.5 ± 7.9	*	5.1)
	adequate depth \geq			0.001	13.2 (5.1 -
90% **		165 (63.7)	183 (76.9)	*	21.0)
				< 0.001	30.6 (22.1
	recoil \geq 90% ⁺⁺	108 (41.7)	172 (72.3)	*	38.6)

resuscitation; CI: confidence interval

⁺ Mean and standard deviation for rate nad

depth measurement

⁺⁺ Numbers (percentage) for \geq 90% of the adequate depth and recoil

achieved

* p < .05 significant

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Secondary outcome							
The survey asked about particip	ants' confidence le	vels before and after traini	ing				
			-				
regarding three parameters (rate, depth, ar	nd recoil) using the	following question: "On a	ı scale				
of 1-10, with 1 being not confident and 10) being very confide	ent, how much confidence	do				
you have to perform chest compressions?	"The confidence le	vel toward CPR performa	nce				
was not different between the two groups.	The question "how	v easy to understand the					
instructor?" was asked to address the ease	of understanding.	In terms of rate, the QCPR	κ.				
Classroom training group (10.0[9.0-10.0])) showed higher sco	ores, compared to the contra	rol				
group (10.0[8.5-10.0]; <i>p</i> =0.01; Table 4).							
		before and after trainin	g				
	Control (n =	QCPR Classroom (n =	р				
Question	259)	238)	value				
How much confidence do you have to							
perform							
chest compressions before training?							
rate	5.0 (3.0-8.0)	5.0 (3.0-7.0)	0.33				
depth	5.0 (3.0-7.5)	5.0 (3.0-7.0)	0.27				
recoil	5.0 (3.0-7.0)	5.0 (3.0-7.0)	0.37				
How much confidence do you have to							
perform							
chest compressions after training?							
rate	8.0 (7.0-9.0)	8.0 (7.0-9.0)	0.98				
depth	8.0 (7.0-9.0)	8.0 (7.0-9.0)	0.96				
recoil	8.0 (7.0-9.0)	8.0 (7.0-9.0)	0.76				
How easy to understand the feedback from instructor?							
10.0							
	The survey asked about particip regarding three parameters (rate, depth, ar of 1-10, with 1 being not confident and 10 you have to perform chest compressions? was not different between the two groups. instructor?" was asked to address the ease Classroom training group (10.0[9.0-10.0]) group (10.0[8.5-10.0]; p=0.01; Table 4). Table 4. Survey ragarding participants regarding three parameters (rate, depth regarding three parameters (rate, depth necoil How much confidence do you have to perform chest compressions before training? rate depth recoil How much confidence do you have to perform chest compressions after training? rate depth recoil	The survey asked about participants' confidence letregarding three parameters (rate, depth, and recoil) using theof 1-10, with 1 being not confident and 10 being very confidenceyou have to perform chest compressions?" The confidence letwas not different between the two groups. The question "howinstructor?" was asked to address the ease of understanding. IfClassroom training group (10.0[9.0-10.0]) showed higher secgroup (10.0[8.5-10.0]; $p=0.01$; Table 4).Table 4. Survey ragarding participants' confidence levelsregarding three parameters (rate, depth, and recoil)Control (n =Question259)How much confidence do you have toperformchest compressions before training?rate5.0 (3.0-7.0)How much confidence do you have toperformchest compressions after training?rate8.0 (7.0-9.0)depth8.0 (7.0-9.0)depth8.0 (7.0-9.0)recoil8.0 (7.0-9.0)rec	The survey asked about participants' confidence levels before and after trainregarding three parameters (rate, depth, and recoil) using the following question: "On aof 1-10, with 1 being not confident and 10 being very confident, how much confidenceyou have to perform chest compressions?" The confidence level toward CPR performativewas not different between the two groups. The question "how easy to understand theinstructor?" was asked to address the ease of understanding. In terms of rate, the QCPFClassroom training group (10.0[9.0-10.0]) showed higher scores, compared to the context group (10.0[8.5-10.0]; $p=0.01$; Table 4).Table 4. Survey ragarding participants' confidence levels before and after trainin regarding three parameters (rate, depth, and recoil)Control (n = QCPR Classroom (n =Question 259238)How much confidence do you have toperformchest compressions before training?rate5.0 (3.0-7.0)5.0 (3.0-7.0)5.0 (3.0-7.0)5.0 (3.0-7.0)chest compressions after training?rate8.0 (7.0-9.0)8.0 (7.0-9.0)8.0 (7.0-9.0)8.0 (7.0-9.0)8.0 (7.0-9.0)8.0 (7.0-9.0)8.0 (7.0-9.0)8.0 (7.0-9.0)8.0 (7.0-9.0)8.0 (7.0-9.0)<				

	10.0		
depth	(8.0-10.0)	10.0 (9.0-10.0)	0.08
	10.0		
recoil	(8.0-10.0)	10.0 (9.0-10.0)	0.12

Wilcoxon test, Median (IQR)

Survey were rated "On a scale of 1-10, with 1 being not confident and 10 being very confident, how easy was it to understand the instructor?"

Discussion

The 2015 AHA Guidelines recommend the implementation of audio-visual feedback during CPR training, and previous studies indicate that it significantly increases CPR quality [16-25]. CPR quality was significantly higher in the QCPR Classroom group than in the control group. There was a significant increase in achieving $\geq 90\%$ adequate depth and recoil in the QCPR Classroom training group (27.7% increase in recoil and 39.1% increase in adequate depth). However, there was only a 1.5% increase in adequate recoil and a 29.7% increase in adequate depth in the control group. Skorning et al. found 27.9% higher achievement of correct compression depth with a feedback device compared to results obtained without one [20]. Various types of mannequins have been used for CPR training, but the quality of CPR training is dependent on the instructor, and little is known about the training quality. The GRA has highlighted the importance of high-performance CPR, and knowledge in the general population is needed. Significant age difference was found, but the previous studies indicated that chest compression delivered by the 13-14 year olds group was similar to what the adult performed and the researchers concluded the performance was depended on weight, age [29], as well as height, BMI, and sex [30]. In our study, the median and IQR for each group was 19(17-23)

Page 16 of 35

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

1	and 17(16-21), so there is no height and weight difference between two groups and both
2	groups included over 15 years old, so we considered that the age difference was clinically
3	negligible to perform adequate CPR performance.
4	In our study, 72.3% of the participants in the QCPR Classroom group achieved
5	\geq 90% adequate recoil in post-training. Healthcare professionals were previously found to
6	perform incomplete chest recoil in 46% of cases [10]. Teaching the concept of recoil is not
7	easy, and we found that only 1.5% of participants achieved \geq 90% adequate recoil in the
8	control group. Contri et al. stated that instruction about recoil must be modified according to
9	the participants' physical characteristics [30]. However, during ordinary community CPR
10	training, the instructor cannot spend much time on each individual and find out who needs to
11	correct their performance.
12	This was the study to examine the effect of using "QCPR Classroom" training. As
13	Kong et al. concluded, overall CPR quality was improved through QCPR-Classroom based
14	training [27]. The QCPR Classroom group showed significant improvement in CPR skills
15	between post-training and pre-training, which demonstrates the advantages of the concept.
16	The control group also demonstrated significant improvements between post-training and
17	pre-training for rate, depth, and \geq 90% adequate depth (Table 2). As shown in Table 3, the
18	QCPR Classroom group was 13.2% higher on \geq 90% adequate depth than those in the
19	control group (<i>p</i> =0.001). The QCPR Classroom group was 30.6% higher on \geq 90% adequate
20	recoil than those in the control group ($p = < 0.001$). Higher adequate depth and recoil are the
21	significant advantages of the QCPR Classroom. This real-time visual in-action feedback
22	system has been provided a significant impact on CPR performance throughout the CPR
23	practice. The purpose of QCPR Classroom is to make it easy to objectively measure and

1	improve CPR performance in community CPR classes. In a large classroom, learners could
2	see their CPR performance on a big screen at the front of the class. Kong et al. randomized
3	the groups and the instructor only visible the feedback icon on iPad [27]. Students only
4	received objective feedback directly from instructor. Our study randomized the groups and
5	both students and instructor were visible the feedback icon on iPad by arranging on big
6	screen in front of the classroom.
7	While there is sufficient evidence supporting the benefits of CPR feedback devices
8	during training, this novel "QCPR Classroom" is a unique real-time feedback system that 42
9	mannequins provide feedback at the same time in the large group training setting, including
10	the quality of recoil. Only one study has examined how "QCPR Classroom" training affects
11	CPR performance improvement of laypeople in the large group setting [27]. One of
12	advantages of QCPR Classroom was to be able to provide student feedback. This is able to
13	make that good educational achievement with fewer instructors. Our model can be given
14	students to have real-time feedback by themselves. Providing high quality CPR training with
15	the lead-instructor:manikin:students ratio of 1:42:84 can be possible.
16	CPR training has been studied for decades by observing participants and comparing
17	their performance to guidelines. The findings show that training does not provide sufficient
18	practice [31,32], it does not include DA-CPR [33], participants lack preparedness for real
19	situations [32,34-35], and objective student feedback and assessment are not performed [36].
20	In 1991, Kaye et al. reported that instructors made CPR courses by themselves and included
21	only 10 minutes of practical training [31]. The instructors also performed subjective
22	assessments of the students to let the students pass the course, even though the students

would not have passed according to objective measurements or evaluation by researchers

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

2	[31].
3	The need for standardized training, more relevant training, and objective
4	assessment has been known since the early 1990s, but most training teaches laypeople to
5	perform CPR alone without dispatcher assistance, and they practice CPR without feedback or
6	performance assessment. We generally do not know what quality of CPR participants will
7	perform during training, but we know that good-quality bystander CPR has positively
8	reflected in survival [37-40]. It is possible to make training for laypeople more relevant and
9	effective by focusing on the most important learning objectives, prioritizing practical training,
10	training people to work in teams with dispatchers, using objective feedback to stimulate good
11	performance, and documenting the results for quality improvement and cultivating a culture
12	of excellence. QCPR Classroom can provide objective feedback on the quality and quantity
13	of CPR.
14	Abella et al. suggested the use of feedback in a hospital setting [16], and Hostler et
14 15	Abella et al. suggested the use of feedback in a hospital setting [16], and Hostler et al. suggested the use of feedback devices in the EMS field [17]. Tanaka et al. also suggested
15	al. suggested the use of feedback devices in the EMS field [17]. Tanaka et al. also suggested
15 16	al. suggested the use of feedback devices in the EMS field [17]. Tanaka et al. also suggested the implementation of feedback devices in athletic training [41]. It is also highly
15 16 17	al. suggested the use of feedback devices in the EMS field [17]. Tanaka et al. also suggested the implementation of feedback devices in athletic training [41]. It is also highly recommended for even healthcare professionals to use such a device. Laypeople who may
15 16 17 18	al. suggested the use of feedback devices in the EMS field [17]. Tanaka et al. also suggested the implementation of feedback devices in athletic training [41]. It is also highly recommended for even healthcare professionals to use such a device. Laypeople who may encounter situations of cardiac arrest rarely would need to use a feedback device in order to
15 16 17 18 19	al. suggested the use of feedback devices in the EMS field [17]. Tanaka et al. also suggested the implementation of feedback devices in athletic training [41]. It is also highly recommended for even healthcare professionals to use such a device. Laypeople who may encounter situations of cardiac arrest rarely would need to use a feedback device in order to deliver high-quality CPR, which may be directly linked to the chances for survival. An AED
15 16 17 18 19 20	al. suggested the use of feedback devices in the EMS field [17]. Tanaka et al. also suggested the implementation of feedback devices in athletic training [41]. It is also highly recommended for even healthcare professionals to use such a device. Laypeople who may encounter situations of cardiac arrest rarely would need to use a feedback device in order to deliver high-quality CPR, which may be directly linked to the chances for survival. An AED with a feedback device is the best method for citizens to deliver higher-quality CPR. We

Page 19 of 35

BMJ Open

 in CPR training by January 2019 [9]. Many companies have launched various types of feedback devices [16-25]. In our examination of effectiveness of the QCPR Classroom training, the CPR performance was significantly increased, especially in recoil and adequate depth. In our opinion, recoil is the most difficult part for participants to perform within such a short time, especially for those who are training in CPR for the first time. The confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same as for depth and rate in both groups. The hands are off the sternum when teaching full recoil, and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity 		
 feedback devices [16-25]. In our examination of effectiveness of the QCPR Classroom training, the CPR performance was significantly increased, especially in recoil and adequate depth. In our opinion, recoil is the most difficult part for participants to perform within such a short time, especially for those who are training in CPR for the first time. The confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same as for depth and rate in both groups. The hands are off the sternum when teaching full recoil, and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	1	The AHA recently announced that the use of a feedback device would be mandated
4training, the CPR performance was significantly increased, especially in recoil and adequate5depth.6In our opinion, recoil is the most difficult part for participants to perform within7such a short time, especially for those who are training in CPR for the first time. The8confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same9as for depth and rate in both groups. The hands are off the sternum when teaching full recoil,10and incomplete release would occur if the recoil concept was not mentioned. In our opinion,11instructors prioritize teaching the concepts of depth and rate rather than recoil because12feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that13the main focus of participants tends to be compressing harder; therefore, participants easily14forget recoil and neglect to perform it. Our results showed a significantly increase in adequate15depth and no change in recoil in ordinary CPR training, which supports our hypothesis.16QCPR Classroom significantly improved the recoil performance, although it did not17influence the confidence level.18The definition of high-quality CPR highlights the importance of depth, rate, and19recoil. Performing good chest compression with these three factors leads to favourable20outcomes. However, CPR instructors must understand the difficulty of achieving appropriate21depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity22of high-quality CPR performance by not	2	in CPR training by January 2019 [9]. Many companies have launched various types of
5 depth. 6 In our opinion, recoil is the most difficult part for participants to perform within 7 such a short time, especially for those who are training in CPR for the first time. The 8 confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same 9 as for depth and rate in both groups. The hands are off the sternum when teaching full recoil, 10 and incomplete release would occur if the recoil concept was not mentioned. In our opinion, 11 instructors prioritize teaching the concepts of depth and rate rather than recoil because 12 feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that 13 the main focus of participants tends to be compressing harder; therefore, participants easily 14 forget recoil and neglect to perform it. Our results showed a significantly increase in adequate 15 depth and no change in recoil in ordinary CPR training, which supports our hypothesis. 16 QCPR Classroom significantly improved the recoil performance, although it did not 17 influence the confidence level. 18 The definition of high-quality CPR highlights the importance of depth, rate, and 19 recoil. Performing good chest compression with these three factors leads to favourable 10 outcomes. However,	3	feedback devices [16-25]. In our examination of effectiveness of the QCPR Classroom
In our opinion, recoil is the most difficult part for participants to perform within such a short time, especially for those who are training in CPR for the first time. The confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same as for depth and rate in both groups. The hands are off the sternum when teaching full recoil, and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42]	4	training, the CPR performance was significantly increased, especially in recoil and adequate
such a short time, especially for those who are training in CPR for the first time. The confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same as for depth and rate in both groups. The hands are off the sternum when teaching full recoil, and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42]	5	depth.
 confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same as for depth and rate in both groups. The hands are off the sternum when teaching full recoil, and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	6	In our opinion, recoil is the most difficult part for participants to perform within
 as for depth and rate in both groups. The hands are off the sternum when teaching full recoil, and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	7	such a short time, especially for those who are training in CPR for the first time. The
 and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	8	confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same
 instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	9	as for depth and rate in both groups. The hands are off the sternum when teaching full recoil,
feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42]	10	and incomplete release would occur if the recoil concept was not mentioned. In our opinion,
 the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	11	instructors prioritize teaching the concepts of depth and rate rather than recoil because
 forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	12	feedback on recoil cannot be given as subjectively. In ordinary CPR training, we assume that
 depth and no change in recoil in ordinary CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	13	the main focus of participants tends to be compressing harder; therefore, participants easily
QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42]	14	forget recoil and neglect to perform it. Our results showed a significantly increase in adequate
 influence the confidence level. The definition of high-quality CPR highlights the importance of depth, rate, and recoil. Performing good chest compression with these three factors leads to favourable outcomes. However, CPR instructors must understand the difficulty of achieving appropriate depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	15	depth and no change in recoil in ordinary CPR training, which supports our hypothesis.
18 The definition of high-quality CPR highlights the importance of depth, rate, and 19 recoil. Performing good chest compression with these three factors leads to favourable 20 outcomes. However, CPR instructors must understand the difficulty of achieving appropriate 21 depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity 22 of high-quality CPR performance by not only EMTs or first responders, but also citizens [42]	16	QCPR Classroom significantly improved the recoil performance, although it did not
19 recoil. Performing good chest compression with these three factors leads to favourable 20 outcomes. However, CPR instructors must understand the difficulty of achieving appropriate 21 depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity 22 of high-quality CPR performance by not only EMTs or first responders, but also citizens [42]	17	influence the confidence level.
20 outcomes. However, CPR instructors must understand the difficulty of achieving appropriate 21 depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity 22 of high-quality CPR performance by not only EMTs or first responders, but also citizens [42]	18	The definition of high-quality CPR highlights the importance of depth, rate, and
 depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only EMTs or first responders, but also citizens [42] 	19	recoil. Performing good chest compression with these three factors leads to favourable
22 of high-quality CPR performance by not only EMTs or first responders, but also citizens [42]	20	outcomes. However, CPR instructors must understand the difficulty of achieving appropriate
	21	depth, rate, and recoil [42]. Moreover, recent guidelines increasingly emphasize the necessity
23 School training in CPR is the most certain method of implementing high-quality CPR	22	of high-quality CPR performance by not only EMTs or first responders, but also citizens [42].
	23	School training in CPR is the most certain method of implementing high-quality CPR

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

2
_
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
35
36
37
38
39
40
41
. –
43
44
45
46
47
48
49
50
50 51
52
53
54
55
56
57
58
58 59
60

1

1	training in the general population. However, school teachers are not professional CPR
2	instructors or trained in teaching CPR, so there is no guarantee of the teaching quality. QCPR
3	Classroom can deliver sufficient feedback even when school teachers do not have CPR
4	instruction skills. Future studies should examine the effect of QCPR Classroom training
5	conducted by school teachers who have no background in CPR instruction.
6	With the highlighted importance of objective feedback during CPR training, we
7	hope this pilot study on QCPR Classroom training could be considered as a model for future
8	CPR training. The role of instructors is to emphasize the importance of bystander CPR and
9	Public Access Defibrillation. Therefore, instead of focusing too much on the recoil or another
10	part of high-quality CPR, the importance of immediate initiation of CPR without hesitating
11	should be highlighted during the training. It is still very important to determine how to design
12	these environments and prioritize emergency action plans, such as contacting EMS personnel
13	and summoning other people.
14	
15	Study limitations

15 Study limitations

16 Our study has several limitations. First, the mannequin's chest is not as hard as the 17 human body, so it is not the same in real life. Second, this study was conducted using CPR 18 training that targeted a large amount of lay people, who all performed CPR together. Since 19 chest compression was tested in this environment, the rate measurement may have been 20 influenced by other participants. The metronome was used in the QCPR Classroom group 21 only, but no metronome was used in the control group. Third, the instructors' knowledge may 22 have been questionable since the instructors were learning about the device as the training 23 proceeded. Finally, the study was only measured short-term improvement, not the retention.

BMJ Open

1	
2	Conclusion
3	The use of a novel "QCPR Classroom" technique to educate a large group of
4	laypeople with real-time visual CPR feedback has been described. We assessed the impact of
5	real-time visual feedback in the context of classroom-based CPR training on CPR quality pre
6	and post-training. The QCPR group had a higher rate of achieving \geq 90% adequate depth
7	than the control group and a higher rate of achieving \geq 90% adequate recoil. The two groups
8	presented within the suggested range in average depth or rate. From the results, "QCPR
9	Classroom" training could provide significantly higher quality CPR training than ordinary
10	training with subjective assessment by instructors, especially in recoil. The metronome
11	seemed to be offering benefits to the QCPR Classroom group performance. During in-action
12	CPR practice, displaying all student's feedback on the big screen significantly provided
13	accurate real-time visual feedback to achieve two important components together:
14	compressing the chest with the depth over 5 cm and minimizing the incomplete release the
15	chest. Teaching CPR to larger group laypeople with a real-time feedback system, a novel
16	"QCPR Classroom" could be a great model for the next generation of CPR training.
17	
18	Acknowledgments
19	The authors wish to thank all staff members at the Research Institute of Disaster
20	Management and EMS at Kokushikan University for their assistance in this study. The
21	authors also thank Laerdal Medical for their assistance in using QCPR Classroom.
22	
23	Author Contributions
	21

ΒM
٤
0
en
 ⊐î
rst
pq
ublisl
2
Ő.
ed as 10
0
1
36/
bmj
ijop
en-
1-20
2018
-2018-026140 on 11 June 2019. Do
0261
140
0 n
л Ц
č
Jun
Ð
201
.9
0
Ň
л С
oaded
ă
Q
n h
nttp://
/bmjopen
ę
en.
bn
j.c
R
o /mo
t no /mo
om/ on Apr
om/ on April 1
om/ on April 17, :
, 20
N
, 20
, 2024 by gu
, 2024 by gues
, 2024 by guest. P
, 2024 by guest. Prot
, 2024 by guest. Pr
, 2024 by guest. Prote

1	All authors were involved in the study design. ST carried out all the studies,
2	participated in the sequence alignment, and drafted the manuscript. ST, KT, TH, and HT
3	contributed to the study implementation. HM and TB developed the concept and contributed to
4	technological support. ST, KT, TH, HT, AI, HU, YK, MY and HT were involved in the data
5	collection. RS conducted statistical analysis. ST, RS, and HT performed data analysis. HM and
6	TB revised the manuscript. HT also revised and approved the final manuscript. All authors read
7	and approved the final submission.
8	
9	Funding
10	None
11	
12	Conflict of Interests
13	Tonje Søraas Birkenes and Helge Myklebust are employees of Laerdal Medical.
14	They contributed the QCPR Classroom prototype, study design, and critical revision of the
15	manuscript, but had no role in data collection, analysis of the results, or decision to publish.
16	
17	Ethical Approval
18	The study was approved by the Institutional Review Board at Kokushikan
19	University, Japan.
20	
21	Data statement
22	All relevant data are within the paper and its Supporting Information files.
23	
	22
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	is perioden only inteprioring contract, about guidelines. And

1		
2		
3 4	1	
4 5		
6	2	
7		
8	3	Figure legends
9		
10 11	4	Figure 1. Flow chart of the study
11		
13	5	Figure 2. Image of QCPR Classroom feedback system
14		
15	6	Figure 3. Image of actual display on the front screen
16		
17	7	
18 19		
20		
21		
22		
23		
24 25		
25 26		
27		
28		
29		
30		Figure 3. Image of actual display on the front screen
31 32		
33		
34		
35		
36		
37		
38 39		
40		
41		
42		
43		
44 45		
45 46		
47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		
58 59		23
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		References
2	1.	Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016
3		update: a report from the American Heart Association. Circulation. 2015;133:e38-e360.
4	2.	Hasselqvist-Ax I, Riva G, Herlitz J, Rosenqvist M, Hollenberg J, Nordberg P, Ringh M,
5		Jonsson M, Axelsson C, Lindqvist J, Karlsson T, Svensson L. Early cardiopulmonary
6		resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015;372:2307-2315.
7	3.	Wissenberg M, Lippert FK, Folke F, Weeke P, Hansen CM, Christensen EF, Jans H,
8		Hansen PA, Lang-Jensen T, Olesen JB, Lindhardsen J, Fosbol EL, Nielsen SL, Gislason
9		GH, Kober L, Torp-Pedersen C. Association of national initiatives to improve cardiac
0		arrest management with rates of bystander intervention and patient survival after
1		out-of-hospital cardiac arrest. JAMA. 2013;310:1377-1384.
2	4.	Hansen CM, Kragholm K, Pearson DA, et al. Association of bystander and first-responder
3		intervention with survival after out-of-hospital cardiac arrest in North Carolina, 2010-
ļ		2013. JAMA. 2015;314:255-264.
15	5.	Iwami T, Kawamura T, Hiraide A, et al. Effectiveness of bystander-initiated cardiac-only
16		resuscitation for patients with out-of-hospital cardiac arrest. Circulation.
7		2007;116:2900-2907.
18	6.	Takahashi H, Sagisaka R, Natsume Y, Tanaka S, Takyu H, Tanaka H. Does
9		Dispatcher-Assisted CPR generate the same outcomes as spontaneously delivered
20		Bystander CPR in Japan? Am J Emerg Med. (In Press).
21	7.	Nakahara S, Tomio J, Ichikawa M, Nakamura F, Nishida M, Takahashi H, Morimura N,
		Sakamoto T. Association of bystander interventions with neurologically intact survival

BMJ Open

M
ð
en: fi
irst p
bubli
she
das
10.
113
5/brr
ijop∈
₽n-2
018-
026
140
n,
BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.br
Jne
2019
9. D
luwo
oad
ed fr
om
http:
//bm
jope
n.br
nj.cc
) m
on A
pril 1
17, 2024 by gu
024
by g
Jes
t. Protected by co
oteci
ted b
у со
pyri
ght.

1	among patients with bystander-witnessed out-of-hospital cardiac arrest in Japan. JAMA.
2	2015;314:247-54.
3	8. Global Resuscitation Alliance. Improving Survival from Out-of-Hospital Cardiac Arrest:
4	A Call to Establish a Global Resuscitation Alliance. (Accessed 2 December 2017, at
5	http://www.laerdalevents.com/gra/wp-content/pdf/call_to_establish.pdf)
6	9. American Heart Association. AHA requirement on Use of feedback devices in adult CPR
7	training courses. (Accessed 1 September 2017, at
8	http://ahainstructornetwork.americanheart.org/idc/groups/ahaecc-public/@wcm/@ecc/doc
9	uments/downloadable/ucm_495639.pdf.)
10	10. Aufderheide TP, Pirrallo RG, Yannopoulos D, et al. Incomplete chest wall decompression:
11	a clinical evaluation of CPR performance by EMS personnel and assessment of
12	alternative manual chest compression-decompression techniques. Resuscitation.
13	2005;64:353-362.
14	11. Sutton RM, Niles D, Nysaether J, et al. Quantitative Analysis of CPR Quality During
15	In-Hospital Resuscitation of Older Children and Adolescents. Pediatrics.
16	2009;124(2):494-9.
17	12. American Heart Association. Highlights of the 2015 American Heart Association
18	guidelines update for CPR and ECC. Texas, American Heart Association, 2015.
19	(Accessed 1 September 2017, at
20	https://eccguidelines.heart.org/wp-content/uploads/2015/10/2015-AHA-Guidelines-Highli
21	<u>ghts-English.pdf)</u>
22	13. Yannopoulos S, McKnite S, Aufderheide TP, Sigurdsson G, Pirrallo RG, Benditt D, Lurie
23	KG. Effect of incomplete chest wall decompression during cardiopulmonary resuscitation
	25

Page 26 of 35

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

1

2

1	on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest.
2	Resuscitation. 2005;64:363-72.
3	14. Neumar RW, Shuster M, Callaway CW, et al. 2015 American Heart Association
4	Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular
5	Care, Part 1: Executive Summary. Circulation. 2015;132:S315-67.
6	15. Perkins GD, Handley AJ, Koster RW, et al. European Resuscitation Council Guidelines
7	for Resuscitation 2015 Section 2. Adult basic life support and automated external
8	defibrillation. Resuscitation. 2015;95:81-99.
9	16. Abella BS, Edelson DP, Kim S, et al. CPR quality improvement during in-hospital cardiac
10	arrest using a real-time audiovisual feedback system. Resuscitation. 2007;73(1):54-61.
11	17. Hostler D, Everson-Stewart S, Rea TD, et al; Effect of real-time feedback during
12	cardiopulmonary resuscitation outside hospital: prospective, cluster-randomised trial.
13	BMJ 2011;342(d512):1-10.
14	18. Buleon C, Delaunay J, Parienti JJ., Halbout L., Arrot X, Gerard JL., Hanouz JL.
15	Impact of a feedback device on chest compression quality during extended manikin CPR:
16	a randomized crossover study. Am J Emerg Med. 2016;34:1754-1760.
17	19. Bobrow BJ, Vadeboncoeur TF, Stolz U, et al. The influence of scenario-based training
18	and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation
19	quality and survival from out-of-hospital cardiac arrest. Ann Emrg Med.
20	2013;62(1):47-56.
21	20. Skorning M, Beckers SK, Brokmann JC, et al. New visual feedback device improves
22	performance of chest compressions by professionals in simulated cardiac arrest.
23	Resusciation. 2010;81:53-58.
	26

4

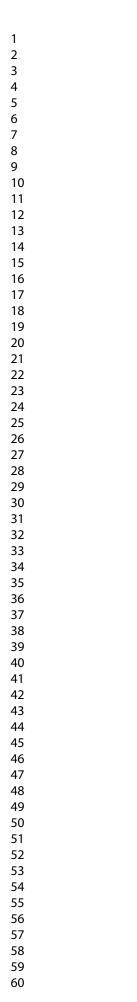
6

BMJ Open

1	21. Buleon C, Parienti J-J, Halbout L, et al. Improvement in chest compression quality using
2	a feedback device (CPRmeter): a stimulation randomized crossover study. Am J Emerg
3	Med. 2013;31:1457-1461.
4	22. Kramer-Johansen J, Myklebust H, Wik L, et al. Quality of out-of-hospital
5	cardiopulmonary resuscitation with real time automated feedback: a prospective
6	interventional study. Resuscitation. 2006;71:283-292.
7	23. Cheng A, Brown LL, Duff JP, et al.; International Network for Simulation-Based
8	Pediatric Innovation, Research, & Education (INSPIRE) CPR Investigators. Improving
9	cardiopulmonary resuscitation with a CPR feedback device and refresher simulations
10	(CPR CARES Study): a randomized clinical trial. JAMA Pediatr. 2015; 169:137-44.
11	24. Cheng A, Overly F, Kessler D, et al.; International Network for Simulation-Based
12	Pediatric Innovation, Research, & Education (INSPIRE) CPR Investigators. Perception of
13	CPR quality: Influence of CPR feedback, Just-in-Time CPR training and provider role.
14	Resuscitation 2015;87:44-50.
15	25. White AE, Ng HX, Ng WY, Ng EKX, Fook-Chong S, Kua PHJ, Ong MEH. Measuring
16	the effectiveness of a novel CPRcard TM feedback device during stimulated chest
17	compressions by non-healthcare workers. Singapore Med J 2017:58:438-445.
18	26. Tanaka S, White AE, Sagisaka R, et al. Comparison of quality of chest compressions
19	during training of laypersons using Push Heart and Little Anne manikins using blinded
20	CPRcards. Int Emerg Med. 2017;10(1):20.
21	27. Kong SY, Shin SD, Song KJ, et al. Effect of instructor's real-time feedback using
22	QCPR-classroom device during layperson cardiopulmonary resuscitation (CPR) training
	27
	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

Page 28 of 35

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.


BMJ Open

2	
2	
5	
4	
3 4 5 6 7 8 9 10	
6	
7	
8	
õ	
9	
10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
17	
18	
19	
20	
21	
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 	
22	
23	
24	
25	
26	
27	
28	
29	
20	
20	
31	
32	
33 34	
34	
35	
36	
27	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

1	on quality of CPR Performances: A prospective cluster-randomised trial. BMJ Open.
2	2018;8:doi:10.1136/bmjopen-2018-EMS.25.
3	28. Hernández-Padilla JM, Suthers F, Granero-Molina J, Fernández-Sola C. Effects of two
4	retraining strategies on nursing students' acquisition and retention of BLS/AED skills: A
5	cluster randomised trial. Resuscitation. 2015;93:27-34.
6	29. Jones I, Whitefield R, Colquhoun M, Chamberlain D, Vetter N, Newcombe R, et al. At
7	what age can schoolchildren provide effective chest compressions? AN observational
8	study from the Heartstart UK schools training programme. BMJ. 2007;334:1201.
9	30. Contri E, Cornara S, Somaschini A, et al.Complete chest recoil during laypersons' CPR:
10	Is it a matter of weight? Am J Emerg Med. 2017;35:1266-1268.
11	31. Kaye W, Rallis SF, Mancini ME, et al. The problem of poor retention of cardiopulmonary
12	resuscitation skills may lie with the instructor, not the learner or the curriculum.
13	Resuscitation. 1991;21:67-87.
14	32. Parnell MM, Larsen PD. Poor quality teaching in lay person CPR courses. Resuscitation.
15	2007;73:271-278.
16	33. Wagner P, Lingemann C, Arntz HR, Breckwoldt J. Official lay basic life support courses
17	in Germany: is delivered content up to date with the guidelines? An observational study.
18	Emerg Med J. 2015;32(7):547-52.
19	34. Møller TP, Hansen CM, Fjordholt M, Pedersen BD, Østergaard D, Lippert FK. Debriefing
20	bystanders of out-of-hospital cardiac arrest is valuable. Resuscitation.
21	2014;85:1504-1511.
	28

BMJ Open

 35. Hirose T, Iwami T, Ogura H, et al. Effectiveness of a simplified cardiopulmonary resuscitation training program for the non-medical staff of a university hospital. Scand J Trauma Resusc Emerg Med. 2014;22(31):1-7. 36. Lynch B, Einspruch EL, Nichol G, Aufderheide TP. Assessment of BLS skills: optimizing use of instructor and manikin measures. Resuscitation. 2008;76:233-243. 37. Wik L, Steen PA, Bircher NG. Quality of bystander cardiopulmonary resuscitation
 Trauma Resusc Emerg Med. 2014;22(31):1-7. 36. Lynch B, Einspruch EL, Nichol G, Aufderheide TP. Assessment of BLS skills: optimizing use of instructor and manikin measures. Resuscitation. 2008;76:233-243.
 4 36. Lynch B, Einspruch EL, Nichol G, Aufderheide TP. Assessment of BLS skills: optimizing 5 use of instructor and manikin measures. Resuscitation. 2008;76:233-243.
5 use of instructor and manikin measures. Resuscitation. 2008;76:233-243.
6 37. Wik L, Steen PA, Bircher NG. Quality of bystander cardiopulmonary resuscitation
7 influences outcome after prehospital cardiac arrest. Resuscitation. 1994;28:195-203.
8 38. Van Hoeyweghen RJ, Bossaert LL, Mullie A, et al. Quality and efficiency of bystander
9 CPR. Resuscitation. 1993;26:47-52. Emerg Med J. 2014;0:1-6.
10 39. Gallagher EJ, Lombardi G, Gennis P. Effectiveness of bystander cardiopulmonary
11 resuscitation and survival following out-of-hospital cardiac arrest. JAMA.
12 1995;274:1992-1925.
13 40. Takei Y, Nishi T, Matsubara H, Hashimoto M, Inaba H. Factors associated with quality of
14 bystander CPR: the presence of multiple rescuers and bystander-initiated CPR without
15 instruction. Resuscitation. 2014;85:492-498.
16 41. Tanaka S, Rodrigues W, Sotir S, Sagisaka R, Tanaka H. CPR Performance in the Presence
17 of Audiovisual Feedback or Football Shoulder Pads. BMJ Open Sport Exerc Med.
18 2017;3(1):e000208.
19 42. Japan Resuscitation Council. Chapter 8 ETI: Education, Implementation, and Teams.
20 (Accessed 2 December 2017, at
21 <u>http://www.japanresuscitationcouncil.org/wp-content/uploads/2016/04/b7b5b647189bc07</u>
22 <u>f38f6fecf014cf5d9.pdf)</u> .
23
29
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

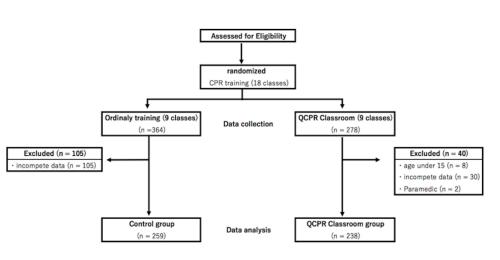


Fig 1. Flow chart of the study

Flow chart of the study

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Image of QCPR Classroom feedback system

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Fig 3. Image of actual display on the front screen

Image of actual display on the front screen

Reporting checklist for qualitative study.

Based on the SRQR guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the SRQR reporting guidelines, and cite them as:

O'Brien BC, Harris IB, Beckman TJ, Reed DA, Cook DA. Standards for reporting qualitative research: a synthesis of recommendations. Acad Med. 2014;89(9):1245-1251.

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

28 29 30	Reporting Item			
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 		#1	Concise description of the nature and topic of the study identifying the study as qualitative or indicating the approach (e.g. ethnography, grounded theory) or data collection methods (e.g. interview, focus group) is recommended	1
		#2	Summary of the key elements of the study using the abstract format of the intended publication; typically includes background, purpose, methods, results and conclusions	2-3
	Problem formulation	#3	Description and signifcance of the problem / phenomenon studied: review of relevant theory and empirical work; problem statement	5-6
	Purpose or research question	#4	Purpose of the study and specific objectives or questions	6
	Qualitative approach and research paradigm For pe	#5 er revie	Qualitative approach (e.g. ethnography, grounded theory, case study, phenomenolgy, narrative research) and w only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\17\\8\\9\\20\\1\\22\\3\\4\\5\\6\\7\\28\\29\\30\\1\\22\\33\\4\\5\\6\\7\\8\\9\\0\\1\\42\\43\\4\\45\\6\\7\\8\\9\\0\\1\\52\\5\\5\\6\\7\\8\\9\\0\end{array}$			guiding theory if appropriate; identifying the research paradigm (e.g. postpositivist, constructivist / interpretivist) is also recommended; rationale. The rationale should briefly discuss the justification for choosing that theory, approach, method or technique rather than other options available; the assumptions and limitations implicit in those choices and how those choices influence study conclusions and transferability. As appropriate the rationale for several items might be discussed together.	
	Researcher characteristics and reflexivity	#6	Researchers' characteristics that may influence the research, including personal attributes, qualifications / experience, relationship with participants, assumptions and / or presuppositions; potential or actual interaction between researchers' characteristics and the research questions, approach, methods, results and / or transferability	7
	Context	#7	Setting / site and salient contextual factors; rationale	8
	Sampling strategy	#8	How and why research participants, documents, or events were selected; criteria for deciding when no further sampling was necessary (e.g. sampling saturation); rationale	n/a
	Ethical issues pertaining to human subjects	#9	Documentation of approval by an appropriate ethics review board and participant consent, or explanation for lack thereof; other confidentiality and data security issues	7
	Data collection methods	#10	Types of data collected; details of data collection procedures including (as appropriate) start and stop dates of data collection and analysis, iterative process, triangulation of sources / methods, and modification of procedures in response to evolving study findings; rationale	7-8
	Data collection instruments and technologies	#11	Description of instruments (e.g. interview guides, questionnaires) and devices (e.g. audio recorders) used for data collection; if / how the instruments(s) changed over the course of the study	9-10
	Units of study For pe	#12	Number and relevant characteristics of participants, documents, or events included in the study; level of w only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	8

Page 35 of 35 BMJ Open				
1			participation (could be reported in results)	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Data processing	#13	Methods for processing data prior to and during analysis, including transcription, data entry, data management and security, verification of data integrity, data coding, and anonymisation / deidentification of excerpts	9-10
	Data analysis	#14	Process by which inferences, themes, etc. were identified and developed, including the researchers involved in data analysis; usually references a specific paradigm or approach; rationale	10
	Techniques to enhance trustworthiness	#15	Techniques to enhance trustworthiness and credibility of data analysis (e.g. member checking, audit trail, triangulation); rationale	10-11
	Syntheses and interpretation	#16	Main findings (e.g. interpretations, inferences, and themes); might include development of a theory or model, or integration with prior research or theory	11-14
	Links to empirical data	#17	Evidence (e.g. quotes, field notes, text excerpts, photographs) to substantiate analytic findings	n/a
	Intergration with prior work, implications, transferability and contribution(s) to the field	#18	Short summary of main findings; explanation of how findings and conclusions connect to, support, elaborate on, or challenge conclusions of earlier scholarship; discussion of scope of application / generalizability; identification of unique contributions(s) to scholarship in a discipline or field	15-20
39 40 41	Limitations	#19	Trustworthiness and limitations of findings	20
42 43 44 45 46 47 48 49 50	Conflicts of interest	#20	Potential sources of influence of perceived influence on study conduct and conclusions; how these were managed	22
	Funding	#21	Sources of funding and other support; role of funders in data collection, interpretation and reporting	22
51 52 53 54 55 56 57 58	American Medical College	s. Thi	ed with permission of Wolters Kluwer © 2014 by the Associations checklist was completed on 19. August 2018 using bool made by the <u>EQUATOR Network</u> in collaboration with <u>Pen</u>	
58 59 60	For pe	er revie	w only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Effect of real-time visual device QCPR Classroom with a metronome sound in a layperson CPR training: A cluster randomized control trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026140.R1
Article Type:	Research
Date Submitted by the Author:	09-Feb-2019
Complete List of Authors:	Tanaka, Shota; Kokushikan University, Research Institute of Disaster Management and EMS, Tsukigase, Kyoko; Kokushikan University, Research Institute of Disaster Management and EMS, Hara, Takahiro; Kokushikan University, Graduate School of EMS System Sagisaka, Ryo; Kokushikan University, Graduate School of EMS System Myklebust, Helge; Laerdal Medical Cooperation Birkenes, Tonje; Laerdal Medical Cooperation Takahashi, Hiroyuki; Kokushikan University, Research Institute of Disaster Management and EMS, Iwata, Ayana; Kokushikan University, Research Institute of Disaster Management and EMS, Kidokoro, Yutaro; Kokushikan University, Research Institute of Disaster Management and EMS, Kidokoro, Yutaro; Kokushikan University, Research Institute of Disaster Management and EMS, Ueta, Hiroki; Meiji University of Integrative Medicine, Faculty of Emergency Medical Science Takyu, Hiroshi; Kokushikan University, Graduate School of EMS System Tanaka, Hideharu; Kokushikan University, Graduate School of EMS System Tanaka, Hideharu; Kokushikan University, Graduate School of EMS System; Kokushikan University, Research Institute of Disaster Management and EMS,
Primary Subject Heading :	Medical education and training
Secondary Subject Heading:	Emergency medicine, Medical education and training
Keywords:	bystander, cardiac arrest, CPR training, resuscitation, Mass CPR training

SCHOLARONE[™] Manuscripts

1 2		
2 3 4	1	
5 6	2	
7 8	Z	
9 10	3	Title: Effect of real-time visual device QCPR Classroom with a metronome sound in a
11 12	4	layperson CPR training: A cluster randomized control trial
13 14 15	5	
16	6	Shota Tanaka ¹⁾ , Kyoko Tsukigase ¹⁾ , Takahiro Hara ²⁾ , Ryo Sagisaka ²⁾ , Helge Myklebust ³⁾ ,
17 18	7	Tonje S. Birkenes ³⁾ , Hiroyuki Takahashi ¹⁾⁴⁾ , Ayana Iwata ¹⁾ , Yutaro Kidokoro ¹⁾ , Momoyo
19 20	8	Yamada ¹⁾ , Hiroki Ueta ⁵⁾ , Hiroshi Takyu ²⁾ , Hideharu Tanaka ^{1) 2)}
21	9	
22 23	10	1) Research Institute of Disaster Management and EMS, Kokushikan University
24 25	11	2) Graduate School of EMS System, Kokushikan University
26	12	3) Laerdal Medical, Stavanger, Norway
27 28	13	4) Department of Sports Medicine, Kokushikan University, Japan
29 30	14	5) Faculty of Emergency Medical Science, Meiji University of Integrative Medicine
31 32	15	
33 34 35	16	Correspondence author: SHOTA TANAKA
36 37	17	Kokushikan University, 7-3-1, Nagayama, Tama City, Tokyo, JAPAN
38 39 40	18	E-mail: tanakamedical24@gmail.com
41 42	19	TEL/FAX: +81-42-339-7197
43 44 45	20	
46 47	21	Keywords: cardiac arrest, bystander, CPR training, resuscitation, Mass CPR training
48 49 50	22	Word Count: 4133
51 52 53		
54 55		
56 57		
58		
59 60		

2 3		
4 5	1	Abstract
6 7	2	Objectives "Quality Cardiopulmonary Resuscitation (QCPR)-Classroom" device has
8 9 10	3	recently introduced to provide a higher quality of CPR training. The aim of this study was to
11 12	4	examine whether novel QCPR-Classroom training can lead to higher chest compression
13 14 15	5	quality than standard CPR training.
16 17	6	Setting Layperson CPR training
18 19 20	7	Design A cluster randomized control trial was conducted to compare standard CPR training
21 22	8	(control) and QCPR-Classroom (intervention) groups.
23 24 25	9	Participants A total of 642 people age over 15 years were recruited from among CPR
26 27	10	trainees.
28 29 30	11	Interventions CPR performance data in both groups was registered without any feedback on
31 32	12	instrumented Little Anne prototypes for one minute pre- and post-training.
33 34 35	13	Primary and secondary outcome measures The primary outcome was compression depth
36 37	14	(mm), rate (compressions per minute [cpm]), percentage of adequate depth (%), and recoil
38 39 40	15	(%). The scores from the survey were considered as a secondary outcome. The survey
41 42	16	included about the participants' confidence level about the rate, depth, and recoil on pre- and
43 44 45	17	post-training, as well as the ease of understanding feedback from instructor.
46 47	18	Results There were 259 people in the control group and 238 people in the QCPR-Classroom
48 49 50	19	group who were eligible for analysis. After training, the mean compression depth and rate
51 52	20	were 56.1±9.8mm and 119.2±7.3 cpm in the control group and 59.5±7.9mm and
53 54 55	21	116.8±5.5cpm in the QCPR-Classroom group, respectively. The QCPR-Classroom group
56 57	22	showed a significantly higher percentage of adequate depth than the control group ($p=0.001$).
58 59 60	23	The difference between pre- and post-training of adequate recoil was 2.7% in the control

on the CPR performance.

training model.

1 2

group (95% CI, -1.7-7.1; pre 64.2±36.5% vs. post 66.9±34.6%; *p*=0.23) and 22.6% in the

p < 0.0001). The sound from a metronome set at 110 beats per minute had a positive influence

training, especially for proper compression depth and full recoil. To reach a good educational

achievement, a novel QCPR Classroom with a metronome sound is a recommended CPR

QCPR-Classroom group (95% CI, 17.8-27.3; pre 64.8±37.5% vs. post 87.4±22.9%;

Conclusion The QCPR-Classroom concept helped students achieve high-quality CPR

3 4 5	1
4 5 6 7 8 9	2
8 9	3
10 11 12	4
13 14	5
15 16 17	6
18 19	7
20 21 22	8
21 22 23 24 25 26 27 28	9
25 26	10
27 28	10
29	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40 41	
42	
43 44	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
54 55	
56	
57 58	
58 59	
60	

vel QCPR Classroom with a metronome sound is a recomn

.

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55
74
55
56
57
58
50 59
60

1

1

Article Summary

2	The paper describes the use a novel "QCPR classroom" technique with a metronome sound to
3	educate laypeople in CPR. A large classroom in which learners could see their CPR
4	performance on a big screen at the front of the class was used. Students were randomized into
5	a control group and a QCPR classroom group. They were assessed on their ability to perform
6	1 minute of chest compression-only CPR. Post training results showed that the QCPR group
7	had 13.6% better adequate depth and 20.5% better adequate recoil than the control group.
8	However, there was no difference in average depth or rate between the two groups. The
9	American Heart Association recommends use of audiovisual feedback device during CPR
10	education. Benefits of visual feedback devices are well accepted and agreed. QCPR
11	classroom concept is a fancy new idea for mass-CPR training.
12	
10	Steven - the and limits times of this sterily
13	Strengths and limitations of this study
13	- One of the advantages of CPR training carried by QCPR Classroom concept is a good
14	- One of the advantages of CPR training carried by QCPR Classroom concept is a good
14 15	- One of the advantages of CPR training carried by QCPR Classroom concept is a good educational achievement with fewer instructors.
14 15 16	 One of the advantages of CPR training carried by QCPR Classroom concept is a good educational achievement with fewer instructors. Arranging objective real-time feedback on big screen in front of everyone to visible to both
14 15 16 17	 One of the advantages of CPR training carried by QCPR Classroom concept is a good educational achievement with fewer instructors. Arranging objective real-time feedback on big screen in front of everyone to visible to both instructor and students made significantly improve CPR quality.
14 15 16 17 18	 One of the advantages of CPR training carried by QCPR Classroom concept is a good educational achievement with fewer instructors. Arranging objective real-time feedback on big screen in front of everyone to visible to both instructor and students made significantly improve CPR quality.
14 15 16 17 18 19	 One of the advantages of CPR training carried by QCPR Classroom concept is a good educational achievement with fewer instructors. Arranging objective real-time feedback on big screen in front of everyone to visible to both instructor and students made significantly improve CPR quality.
14 15 16 17 18 19	 One of the advantages of CPR training carried by QCPR Classroom concept is a good educational achievement with fewer instructors. Arranging objective real-time feedback on big screen in front of everyone to visible to both instructor and students made significantly improve CPR quality.
14 15 16 17 18 19	 One of the advantages of CPR training carried by QCPR Classroom concept is a good educational achievement with fewer instructors. Arranging objective real-time feedback on big screen in front of everyone to visible to both instructor and students made significantly improve CPR quality.

BMJ Open

2	The burden of cardiovascular diseases and the increasing cases of out-of-hospital
3	cardiac arrest (OHCA) remain a global concern [1]. Performing bystander cardiopulmonary
4	resuscitation (CPR) is one factor that can increase the survival rate of OHCA [2-7]. The
5	survival rate may be directly linked to the number of bystanders trained in CPR [2]. As a
6	complement to the 2015 American Heart Association (AHA) and Japan Resuscitation
7	Council (JRC) Guideline, the Global Resuscitation Alliance (GRA) was recently established
8	to improve OHCA survival, and high-performance CPR was highlighted: a push depth of 5-6
9	cm, rate of 100-120 compressions per minute (cpm), full recoil, and minimizing interruptions
10	for chest compressions (less than 10 seconds) [8-10]. In the GRA consensus, mandatory
11	School and Community CPR was listed as one of the 10 steps to increase OHCA survival [8].
12	Healthcare professionals were found to perform incomplete compression recoil in
13	46% of all cases and in 23.4% of cases involving paediatric patients [11-12]. However,
14	performing full recoil is emphasized in the GRA consensus, along with the use of a feedback
15	device during CPR training [10]. Incomplete recoil leads to insufficient time for blood to fill
16	into the heart, which eventually leads to less blood flow to the brain [8]. Coronary and
17	cerebral perfusion pressure can deteriorate due to incomplete decompression [13]. Full recoil
18	is one of the most important concepts for ensuring high-quality CPR [10,14,15]. Key points
19	during CPR training are teaching to compress the chest 5 cm deep and allowing for full chest
20	recoil, but these two components are hard to achieve during training without a feedback
21	device.
22	We are currently facing a period of transition to CPR training with a feedback

We are currently facing a period of transition to CPR training with a feedback
device, as various feedback devices were introduced, and research supported their

effectiveness [16-28]. However, they are unavailable for CPR training that targets a large population. Laerdal Medical (Stavanger, Norway) launched the "QCPR Classroom" concept, which provides real-time visual feedback for a greater number of participants at once. The effectiveness of the QCPR Classroom device was recently demonstrated by Kong et al. [29]. The purpose of this study is to examine the effectiveness of CPR skills delivered by QCPR Classroom feedback in training in compared to standard CPR training. The hypothesis of the study was that QCPR Classroom would generate higher achievement in CPR skill regardless of instructors' teaching skill. We aimed to determine whether QCPR Classroom could be the best practical model for CPR training.

BMJ Open

ods
ods

2 Study population and design

Prior to the CPR training and study enrolment, oral informed consent was obtained from all participants. The study was approved by the Institutional Review Board at Kokushikan University. Sample size calculation was based on adequate depth from our pilot trial that we compared the effect of the QCPR Classroom. We calculated sample size of 232, with 90% power to detect a percentage of adequate compression depth between two groups $(\alpha = 0.05)$. To reach a power of 90%, 41 was needed per group in parallel, and design effect was 5.66. 15% was detected as a deficit due to a mechanical issue, so 272 per group was calculated as a sample size. A total of 642 people were recruited from among CPR trainees who were enrolled in the Heart Saver Japan CPR training, which was held between March and September 2017. The inclusion criteria was age over 15 years. The exclusion criteria was the presence of upper extremity injury within the past 6 months, working as a healthcare professional who is regularly involved in resuscitation, such as Emergency Medical Technicians (EMTs), paramedics, and emergency room physician or nurses. Previous CPR training status and quantity and timing of previous trainings were not used as inclusion or exclusion criteria.

19 Measurements

20 Participants enrolled in the CPR+automated external defibrillator (AED) training.
21 The primary outcome was compression depth (mm), compression rate (compressions per
22 minute [cpm]), adequate depth (%), and adequate recoil (%). These measurements were
23 carried out without any feedback for the trainees on both pre- and post-training for one

> minute on the basis that the bystander should change every one minute during chest compression-only CPR [30]. The scores from a survey conducted after the training were considered as a secondary outcome. The survey included about the participants' confidence level about the rate, depth, and recoil on pre- and post-training, as well as the ease of understanding feedback from instructor. The survey was rated "On a scale of 1-10, with 1 being very difficult and 10 being very easy, how do you rate the ease of understanding the feedback from instructor." and "On a scale of 1-10, with 1 being not confident and 10 being very confident, how much confidence do you have to perform chest compression before and after training." The survey is able to be accessed in Appendix. *Study procedure* A cluster randomized controlled trial (cRCT) was used (allocation ratio 1:1). A researcher (R.S) generated a randomization list and block-two randomized was performed. R.S. was not involved in the data collection and worked on statistics independently. Each session was randomly assigned to the intervention (standard or QCPR Classroom). Four lead instructors who have worked as healthcare professionals and have had over 5 years of experience in teaching CPR were selected from the Heart Saver Japan organization. The data collection took place during the Heart Saver Japan CPR+AED training sessions. The training focused on Basic Life Support, including CPR skills and AED according to the JRC 2015 Guideline. Students were not medical personnel, so we instructed compression-only CPR. No pre-assignment or e-learning was given. The training was started with a power point presentation-based instructor-led lecture followed by psychomotor practice. Psychomotor practice focused on chest-compression CPR. The sequence of the psychomotor practice is as

BMJ Open

1	follows: 1) Keys of compression: depth, rate, recoil, 2) single rescuer chest compression-only
2	CPR, 3) two bystander chest compression-only CPR, focusing on minimizing interruptions,
3	4) check respiration, 5) scene safety, check consciousness, and call for help 6) the use of
4	AED, 7) practice from" scene safety" to "resume chest compression after giving a shock", 8)
5	scenario-based training. A total of 18 CPR training sessions were studied, with 9 standard
6	CPR training (control group) and 9 QCPR Classroom sessions (Figure 1).
7	In the QCPR Classroom group, participants received subjective and objective
8	feedback from the instructor based on real-time feedback through the manikin, and
9	participants were able to correct themselves from feedback displayed on the screen of the
10	device (Figure 2). The control group was given only instructor's subjective feedback, so
11	metronome sound was not used, which hand clap was allowed to give based on instructor's
12	experience. As the AHA made the statement, audio-visual feedback is mandated to use [31].
13	QCPR Classroom only provides visual feedback, so we used sound as an auditory aid for
14	instruction in the QCPR Classroom group.
15	To measure the effect of CPR training, one minute of chest compression was
16	measured without any feedback given as a pre-test. Similarly to the pre-test, one minute of
17	chest compression was also measured after the training as a post-test. Although one minute of
18	measurement may not be sufficient duration for CPR performance in real life, we focused on
19	the initial CPR performance by a single rescuer situation. A survey and baseline
20	characteristics, such as weight, height, and CPR training experience (Table 1), were also
21	collected after the post-training measurement. The metronome was set at 110 beats per
22	minute (bpm) and used for every instance of hands-on practice during the QCPR Classroom
23	session, but no metronome was used during the standard CPR training.

	Control $(n = 259)$	QCPR Classroom (n =	<i>p</i> value
		238)	
Age, mean±SD	22.4 ± 9.0	19.4 ± 5.6	<.0001 *
median	19 (17-23.5)	17 (16-21)	<.0001 *
(IQR)			
Male, (%)	130 (50.2)	101 (42.4)	0.08
height, mean	164.5 ± 14.3	164.2 ± 8.2	0.47
weight, mean	57.9 ± 12.1	56.0 ± 9.6	0.06
BMI, mean	21.1 ± 3.1	20.7 ± 2.6	0.07
CPR training, (%)	203 (78.4)	170 (71.4)	0.07
CPR training within 1	89 (41.2)	63 (36.4)	0.34
year, (%)			

CPR: cardiopulmonary resuscitation; SD: standard deviation; IQR; interquartile range; BMI: body mass index

J.C

* p < .05 significant

3 Instrumentation

Compression data was registered using the Laerdal QCPR Classroom manikin system (Laerdal Medical, Stavanger, Norway), as shown in Figure 2. This prototype system for community CPR training provides real-time visual feedback from 42 manikins, where icons representing CPR performance from each manikin are visualized on an iPad tablet. We mirrored the iPad screen on a laptop using the application Reflector 2 (Squirrels[®], North Canton, OH, United States) in order to present real-time feedback on a large screen at the front of the classroom (Figure 3). QCPR Classroom uses Laerdal Little Anne manikin, and each one is instrumented with an optical compression sensor and microcontroller. The microcontroller analyses the signal from the compression sensor and calculates the number of Page 11 of 41

BMJ Open

compressions, compression depth, rate, and incomplete release. A compression score is calculated using the rate, depth, and release. Each sensor was checked for depth accuracy using a calibrated compression machine with $\pm 15\%$ considered as acceptable error. The microcontroller also compares the compression performance with guidelines from the 2015 AHA requirements. Deviations from the guidelines are reported as "too shallow", "incomplete release", "too fast", or "too slow", and deviation in each factor is presented as yellow icons on the tablet. If the compression performance is good, a green "Everything OK" icon is presented. Data from the tablet is sent to a Microsoft Azure cloud service and made available as downloadable .csv files, which include the following parameters from each manikin and CPR session: the number of compressions, average compression rate, average compression depth, number of compressions with adequate depth, number of compressions with acceptable release, compression score, time, and location of use. The control group also used the same Laerdal Little Anne manikins. However, we did not use a screen to show students an objective feedback. During the training in the control group, lead-instructor were not allowed to access iPad, so they only gave subjective feedback to the students.

Statistical analysis

The rate and depth measurements are shown as the mean and standard deviation.
Normal distributions and homogeneity of variance were confirmed by a Q-Q plot. The
differences and 95% confidence intervals are shown in tables. The adequate depth and recoil
were calculated as percentages. Analysing the percentage variables to compare the numerical
value using a parametric test, such as a t-test. The difference between pre- and post-training

measurements within the groups were analysed using a paired t-test and McNemar test. Group comparison for both pre- and post-training was conducted using Welch's t-test and the chi-square test. The medians and interquartile ranges are presented for ordinal data. We compared the groups using the Wilcoxon single-rank test. The data was analysed using JMP (V.11.2.0, the SAS Institute Inc.), and *p*-values less than 0.05 were considered as significant.

- Results
- Demographic characteristics

A total of 642 people participated in this study. As shown in Figure 1, 145 participants were excluded due to incomplete data (n = 135), age under 15 years (n = 8), and paramedics (n = 2). Significant age difference between the groups was found $(22.4 \pm 9.0 \text{ vs.})$ 19.4 ± 5.6 ; p=<.0001). A statistical difference in age among individuals in clusters, yet the standard deviation and IRQ ranges overlap. The age variation was not clinically significant due to overlap of precision measured. After the CPR training, 497 participants were eligible for analysis, with 259 people in the control group and 238 people in the QCPR Classroom group. The demographic characteristics are shown in Table 1.

Primary outcome

All chest compression parameters at pre-training and post-training are shown in Table 2. After the training, the mean compression depth of each student was 56.1±9.8 mm in the control group and 59.5±7.9 mm in the QCPR Classroom group. Significantly more participants in the QCPR Classroom group achieved higher adequate depth compared to the control group (p < 0.001; Table 3). In the QCPR Classroom group, there was an improvement

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	-
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
55	

59	
60	

1	of 39.0% (95% CI, 33.8-44.2) in the percentage of the adequate depth (48.3±44.2% at pre-
2	training vs. 87.3±24.8% at post-training). In the control group, the improvement was 20.0%
3	(95% CI, 15.4-24.7) in the percentage of the adequate depth (53.6±38.9% at pre-training vs.
4	73.7±37.3% at post-training; <i>p</i> < 0.0001; Table 2).
5	Both groups demonstrated average compression rates of 100-120 cpm (Table 2). A
6	statistically significant difference was found between groups in terms of recoil ($p < 0.001$;
7	Table 3). The control group demonstrated a 2.7% (95% CI, -1.7-7.1) increase in the
8	percentage of recoil (64.2 \pm 36.5% pre-training vs. 66.9 \pm 34.6% post-training; $p = 0.23$). The
9	QCPR Classroom group demonstrated a 22.6% (95% CI, 17.8-27.3) increase in the
10	percentage of recoil (64.8±37.5% pre-training vs. 87.4±22.9% post-training; $p < 0.0001$;
11	Table 2).
Table	2. Comparison in CPR performance

competency between pre- and post-training in

each groups

	55				1			
		Contro	l(n = 259))	QQ	CPR Class	sroom (n =	= 238)
	Pre-	Post-		Differenc	Pre-	Post-		Differenc
	trainin	trainin	р	e (95%	trainin	trainin	р	e (95%
	g	g	value	CI)	g	g	value	CI)
				-2.3 (-4.2				1.1 (-1.4
rate	121.4	119.2		0.2)	115.7	116.8		2.0
(cpm) *	±15.5	±7.3	0.02 *	0.3)	± 19.0	± 5.5	0.39	- 3.6)
				4.6 (3.5				11.3 (9.8
depth	51.4	56.1	< 0.000	5.0)	48.2 ±	$59.5 \pm$	< 0.000	12 0
(mm) *	±11.6	±9.8	1 *	- 5.8)	14.7	7.9	1 *	- 12.8)
adequate				20.0				39.0
depth (%)	53.6	73.7	< 0.000	(15.4 —	48.3 ±	87.3 ±	< 0.000	(33.8 -
++	±38.9	±37.3	1 *	24.7)	44.2	24.8	1 *	44.2)

1 2									
3 4	adequat	e						22.	6
5	recoil	64.2	66.9	2.7 (-1.7	64.8 ±	87.4	< 0.000	(17.8	
6 7	(%) ++	±36.5		0.23 - 7.1)	37.5	±22.9	1 *	27.	
8 9	paired-t	test and Mc	Nemar test; C	PR:					
10	cardiop	ulmonary re	suscitation; Cl	I:					
11 12	confide	nce interval							
13 14	+ Mean	and standard	d						
15	deviatio	on for rate an	nd depth						
16 17	measure	ement							
18 19	++ Num	bers (percen	tage) for						
20	the adec	juate depth a	and						
21 22	recoil								
23 24	* p < .0.	5							
25	significa	an							
26 27	t								
28 29									
30									
31 32									
33									
34 35	4								
36 37	1								
38				ce of CPR perfor			y between	n the co	ntrol group
39 40		and QCPF	R Classroom g	group at pre- and	d post-tra	ining			
41 42				Control (r	n = QCP	PR Classro	oom (n =	р	Difference
43				259)		238)		value	(95% CI)
44 45		D (· · ·							
46 47		Pre-training	giesi						
48 49								<0.00	-5.7 (-8.7 -
50 51			rate (cpm) *	121.4 ± 15	5.5	115.7 ± 1	9.0	1 *	2.6)
52 53 54								0.008	-3.2 (-5.5 -
55 56			depth (mm)	+ 51.4±11.	6	48.2 ± 14	4.7	*	0.85)
56 57			depth (mm) adequate dep		6	48.2 ± 14	4.7		0.85) -5.3 (-12.7 -
56		(%) **				48.2 ± 14 48.3 ± 44			<i>,</i>

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2							
3 4			adequate recoil			3	8.3 (-5.9 -
4 5		(0/) ++		(12 + 2)(5)	(10 + 27.5)		`
6		(%) **		64.2 ± 36.5	64.8 ± 37.5	0.84	7.2)
7							
8		Post-train	ing test				
9 10							
10						-2	.3 (-3.5
12						< 0.00	× ·
13			rate (cpm) ⁺	119.2 ± 7.3	116.8 ± 5.5	1 *	1.2)
14							,
15 16						,	3.5 (1.9 -
10						<0.00	5.5 (1.)
18			depth (mm) ⁺	56.1 ±9.8	59.5 ± 7.9	1 *	5.1)
19				50.1 ± 7.0	57.5 ± 7.5		<i>,</i>
20			adequate depth			<0.00 1	3.6 (8.0 -
21 22		(%) ++		73.7 ± 37.3	87.3 ± 24.8	1 *	19.2)
23			adequate recoil			< 0.00 20	0.5(15.3) -
24 25		(%) ++	adequate recon	66.9 ± 34.6	87.4 ±22.9	<0.00 20 1 *	25.7)
26						-	
27		Welch's t	test and Chi-Square	test; CPR: cardiop	ulmonary		
28 29		resuscitati	ion; CI: confidence in	nterval			
30 31		+ Mean ar	nd standard deviation	for rate and			
32		depth mea	asurement				
33 34		++ Numbe	ers (percentage) for th	ne adequate			
35 36		depth and	recoil				
30 37							
38		* p < .05	significant				
39 40	1						
41							
42	0	Secondar					
43	2	Secondary	ouicome				
44 45	3		The survey included	about participants	' confidence levels l	before and a	fter training
46 47			-	1 1			C
47 48	4	regarding	three parameters (rat	e, depth, and recoi	il) using the following	ng question:	"On a scale
49 50	5	of 1 10 m	ith 1 haing not confi	dant and 10 hains	ware confident how	much confi	lanaa da yay
51	5	0J 1-10, W	ith 1 being not confid	ieni ana 10 being	very confident, now	much conjic	ience do you
52 53	6	have to pe	erform chest compres	sions?" The confid	dence level toward (CPR perform	nance was
54 55	7					1	
56	7	not differe	ent between the two g	groups. The question	on now ao you raie	ine ease of	
57 58	8	understan	ding the feedback fro	om instructor?" wa	s asked to address the	he ease of	
59	-			1: 00		0 11	
60	9	understan	ding. A significance	difference was see	n regarding the rate	teedback fro	om

compared to the control group (10							
Table 4. Survey regarding theconfidence levels before and at	0						
Question	Control ($n = 259$)	$\frac{1}{\text{QCPR Classroom (n = 238)}}$	p				
* How much confidence do you	× /						
rate	5.0 (3.0-8.0)	5.0 (3.0-7.0)					
depth	5.0 (3.0-7.5)	5.0 (3.0-7.0)					
recoil	5.0 (3.0-7.0)	5.0 (3.0-7.0)					
* How much confidence do you	u have to perform chest com	pressions after training?					
rate	8.0 (7.0-9.0)	8.0 (7.0-9.0)					
depth	8.0 (7.0-9.0)	8.0 (7.0-9.0)					
recoil	8.0 (7.0-9.0)	8.0 (7.0-9.0)					
** How do you rate the ease of understanding the feedback from instructor?							
rate	10.0 (8.5-10.0)	10.0 (9.0-10.0)					
depth	10.0 (8.0-10.0)	10.0 (9.0-10.0)					
recoil	10.0 (8.0-10.0)	10.0 (9.0-10.0)					
Wilcoxon test, Median (IQR)							
* The survey was rated on "On c	ı scale 1 to 10, with 1 being n	ot confident and 10 being very con	fide				
how much confidence	e do you have to perform ches	t compression before and after tra	inin				
** The survey was rated on "On	a scale 1 to 10, with 1 being	very difficult and 10 being very eas	;у,				
how do you rate the e	ease of understanding the feed	lback from instructor?"					
Discussion							
The 2015 AHA Guideli	ines recommend and the AHA	announced in 2017 that use					
of audio-visual feedback would b	e mandated in all CPR trainin	g [8,14,31], and previous					
studies indicate that the use of fee	edback for CPR performance	significantly improve CPR					
quality [16-28]. CPR quality was	significantly better in the QC	PR Classroom group than in					

Page 17 of 41

BMJ Open

recoil in the QCPR Classroom training group (39.0% increase in adequate depth and 22.6% increase in recoil). However, there was 20.0% increase in adequate depth and 2.7% increase in adequate recoil in the control group. Skorning et al. found 73.1 % of participant who used a feedback device achieved correct depth and 45.2% of participant who did not use a feedback device achieved correct depth [20]. Cartigiani et al. tested a QCPR Skillreporter feedback model where school children were allowed to practice two-minute compression only sessions CPR while receiving real time feedback on a computer screen, aiming at a 60% overall compression score [32]. Following the practice, the students received overall performance feedback from the computer. This model used equipment designed for smaller groups. While QCPR Classroom can handle 42 mannikins simultaneously and feedback is given on only one parameter at the time, Cartigiani et al. used a system that can handle 6 mannikins simultaneously which give feedback on depth, rate and leaning simultaneously [32]. From our study, the compression depth was 59.5±7.9 mm in the QCPR Classroom group and 56.1±9.8 mm in the control group on post-training. The number of subjects who compressed greater than 60mm is 105 in the QCPR Classroom and 90 in the control group. None of the subjects in the QCPR Classroom group performed below 50mm on post-test, however, 64 subjects in the control group still did not reach 50mm on post-test. Various types of manikins have been used for CPR training, but the quality of CPR

training is dependent on the instructor, and little is known about the training quality. The
GRA has highlighted the importance of high-performance CPR, and knowledge in the
general population is needed. Significant age difference was found, but the previous studies
indicated that chest compression delivered by the 13-14 year olds group was similar to what
the adult performed and the researchers concluded the performance was depended on weight,

	1	age [33], as well as height, BMI, and sex [34]. In our study, the median and IQR for each
	2	group was 19(17-23) and 17(16-21), so there is no height and weight difference between two
)	3	groups and both groups included over 15 years old, so we considered that the age difference
	4	was clinically negligible to perform adequate CPR performance.
- -	5	Healthcare professionals were previously found to perform incomplete chest recoil
•	6	in 46% of cases [11]. Teaching the concept of recoil is not easy, as we found that only 2.7%
	7	increase in the control group. Contri et al. stated that instruction about recoil must be
	8	modified according to the participants' physical characteristics [34]. However, during
	9	standard community CPR training, the instructor cannot spend much time on each individual
, 1	10	and find out who needs to correct their performance.
;) 1)	11	This novel "QCPR Classroom" is a unique real-time visual in-action feedback
1	12	system has been provided a significant impact on CPR performance that 42 manikins provide
; . 1 ;	13	feedback at the same time in the large group training setting. As Kong et al. concluded,
, 1	14	overall CPR quality was improved through QCPR-Classroom based training [29]. The QCPR
;) 1)	15	Classroom group showed significant improvement in CPR skills between post-training and
1	16	pre-training, especially in the percentage of adequate depth and recoil. The purpose of QCPR
; . 1 ;	17	Classroom is to make it easy to objectively measure and improve CPR performance in
, 1	18	community CPR classes. In a large classroom, learners could see their CPR performance on a
; • 1	19	big screen at the front of the class. Kong et al. randomized the groups and the instructor only
2	20	visible the feedback icon on iPad and has examined how "QCPR Classroom" training affects
- 2	21	CPR performance improvement of laypeople in the large group setting [29]. Students only
2	22	received objective feedback directly from instructor. Our study randomized the groups and
2	23	both students and instructor were visible the feedback icon on iPad by arranging on big

BMJ Open

screen in front of the classroom, which would be given students to have real-time feedback
 by themselves. Providing high quality CPR training with the lead-instructor:manikin:students
 ratio of 1:42:84 can be possible. This is able to make that good educational achievement with
 fewer instructors.

CPR training has been studied for decades by observing participants and comparing their performance to guidelines. The findings show that training does not provide sufficient practice [35,36], it does not include DA-CPR [37], participants lack preparedness for real situations [36,38,39], and objective student feedback and assessment are not performed [40]. In 1991, Kaye et al. reported that instructors made CPR courses by themselves and included only 10 minutes of practical training [35]. The instructors also performed subjective assessments of the students to let the students pass the course, even though the students would not have passed according to objective measurements or evaluation by researchers [35].

The need for standardized training, more relevant training, and objective assessment has been known since the early 1990s, but most training teaches laypeople to perform CPR alone without dispatcher assistance, and they practice CPR without feedback or performance assessment. We generally do not know what quality of CPR participants will perform during resuscitation, but we know that good-quality bystander CPR has positively reflected in survival [41-44]. It is possible to make training for laypeople more relevant and effective by focusing on the most important learning objectives, prioritizing practical training, training people to work in teams with dispatchers, using objective feedback to stimulate good performance, and documenting the results for quality improvement and

> cultivating a culture of excellence. QCPR Classroom can provide objective feedback on the quality and quantity of CPR. The use of feedback in a hospital setting was suggested [16], as well as in the EMS field [17]. Tanaka et al. also suggested the implementation of feedback devices in athletic training [45]. The use such a device is also highly recommended for even healthcare professionals to use such a device. Laypeople who may encounter situations of cardiac arrest rarely would need to use a feedback device in order to deliver high-quality CPR, which may be directly linked to the chances for survival. An AED with a feedback device is the best method for citizens to deliver higher-quality CPR. We believe that the combination of training with QCPR Classroom and performing CPR with a feedback device in the field would have a positive impact on survival rates.

In our opinion, recoil is the most difficult part for participants to perform within such a short time, especially for those who are training in CPR for the first time. The confidence level that learners had toward recoil was 8.0/10.0 in our study, which is the same as for depth and rate in both groups. The hands are off the sternum when teaching full recoil, and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In standard CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. Our results showed a significantly increase in adequate depth and no change in recoil in standard CPR training, which supports our hypothesis. QCPR Classroom significantly improved the recoil performance, although it did not influence the confidence level.

Page 21 of 41

BMJ Open

The definition of high-quality CPR highlights the importance of depth, rate, and
 recoil. Performing good chest compression with these three factors leads to favourable
 outcomes. However, CPR instructors must understand the difficulty of achieving appropriate
 depth, rate, and recoil [46]. Moreover, recent guidelines increasingly emphasize the necessity
 of high-quality CPR performance by not only EMTs or first responders, but also citizens
 [46].

With the highlighted importance of objective feedback during CPR training, we hope this pilot study on QCPR Classroom training could be considered as a model for future CPR training. The role of instructors is to emphasize the importance of bystander CPR and Public Access Defibrillation. Therefore, instead of focusing too much on the recoil or another part of high-quality CPR, the importance of immediate initiation of CPR without hesitating should be highlighted during the training. It is still very important to determine how to design these environments and prioritize emergency action plans, such as contacting EMS personnel and summoning other people.

16 Study limitations

In this study, strength was Arranging objective real-time feedback on big screen in front of everyone to visible to both instructor and students made significantly improve CPR quality. Our study has several limitations. First, the manikins' chest is not as hard as the human body, so it is not the same in real life. Second, this study was conducted using CPR training that targeted a large amount of lay people, who all performed CPR together. Since chest compression was tested in this environment, the rate measurement may have been influenced by other participants. The metronome was used in the QCPR Classroom group

only, but no metronome was used in the control group. Third, the instructors' knowledge may have been questionable since the instructors were learning about the device as the training proceeded. Fourth, the survey has been collected post-course including questions about how the participants felt about their confidence prior to the training which may add a large element of recall bias. Fifth, the potential lack of generalizability since the quality of instructors and the standards of training may vary compared to other settings. Sixth, loss of participants due to lack of data. This was occurred because of mechanical issue and CPR skill data was not well registered on cloud. Finally, the study was only measured short-term improvement, not the retention. Conclusion The use of a novel "QCPR Classroom" prototype to educate a large group of laypeople with real-time visual CPR feedback has been described and the effectiveness of training was assessed. The QCPR Classroom training achieved a higher percentage of adequate depth and recoil than the standard training with subjective assessment by instructors group and a higher percentage of adequate recoil. During in-action "QCPR Classroom" training with a metronome sound, displaying all student's feedback on the big screen significantly provided accurate real-time visual feedback to achieve two important components together: compressing the chest with the depth over 5 cm and minimizing the incomplete release the chest. Teaching CPR to larger group laypeople with a real-time feedback system, a novel QCPR Classroom with a metronome sound is a recommended CPR training model.

2

3

4

5

1

BMJ Open

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
22 23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30 37	
38 30	
59	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	

60

Acknowledgments

The authors wish to thank all staff members at the Research Institute of Disaster Management and EMS at Kokushikan University for their assistance in this study. The authors also thank Laerdal Medical for their assistance in using QCPR Classroom.

6 Author Contributions

7 ST carried out all the studies, participated in the sequence alignment, and drafted 8 the manuscript. ST, KT, TH, RS, HM, TB, HTaky, and HTana were involved in the study 9 design. ST, KT, TH, and HTana contributed to the study implementation. HM and TB 10 developed the concept and contributed to technological support. ST, KT, TH, HTaka, AI, 11 HU, YK, MY and HTana were involved in the data collection. RS conducted statistical 12 analysis. ST, RS, and HTana performed data analysis. HTaky, HM, and TB contributed 13 critical revisions to the manuscript. HTana also revised and approved the final manuscript. 14 All authors read and approved the final submission. 15 16 Funding 17 None 18 19 **Conflict of Interests** 20 Tonje Søraas Birkenes and Helge Myklebust are employees of Laerdal Medical. 21 They contributed the QCPR Classroom prototype, study design, and critical revision of the

22 manuscript, but had no role in data collection, analysis of the results, or decision to publish.

23 Other authors did not receive any payment, gift or anything from Laerdal Medical.

2		
3	1	
4 5	1	
6 7	2	Ethical Approval
8 9 10	3	The study was approved by the Institutional Review Board at Kokushikan
11 12	4	University, Japan under the registration number 16-RI002 on February 23rd, 2017.
13 14 15	5	
16 17	6	Data Availability Statement
18 19 20	7	All relevant data are within the paper and its data are available from corresponding
21 22	8	author, ST, upon request.
23 24 25	9	
26 27	10	
28 29 30	11	Figure legends
31 32	12	Figure 1. Flow chart of the study
33 34 35	13	Figure 2. Image of QCPR Classroom feedback system
36 37 38	14	Figure 3. Image of actual display on the front screen
39 40 41		
42 43 44		
45 46		
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
58		
59		
60		

BMJ Open

2			
3 4	1		References
5			
6 7	2	1.	Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016
8 9 10	3		update: a report from the American Heart Association. Circulation. 2015;133:e38-e360.
11 12	4	2.	Hasselqvist-Ax I, Riva G, Herlitz J, Rosenqvist M, Hollenberg J, Nordberg P, Ringh M,
13 14 15	5		Jonsson M, Axelsson C, Lindqvist J, Karlsson T, Svensson L. Early cardiopulmonary
16 17 18	6		resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015;372:2307-2315.
19 20	7	3.	Wissenberg M, Lippert FK, Folke F, Weeke P, Hansen CM, Christensen EF, Jans H,
21 22 23	8		Hansen PA, Lang-Jensen T, Olesen JB, Lindhardsen J, Fosbol EL, Nielsen SL, Gislason
23 24 25	9		GH, Kober L, Torp-Pedersen C. Association of national initiatives to improve cardiac
26 27 28	10		arrest management with rates of bystander intervention and patient survival after out-of-
20 29 30	11		hospital cardiac arrest. JAMA. 2013;310:1377-1384.
31 32 33	12	4.	Hansen CM, Kragholm K, Pearson DA, et al. Association of bystander and first-responder
34 35	13		intervention with survival after out-of-hospital cardiac arrest in North Carolina, 2010-
36 37 38	14		2013. JAMA. 2015;314:255-264.
39 40	15	5.	Iwami T, Kawamura T, Hiraide A, et al. Effectiveness of bystander-initiated cardiac-only
41 42 43	16		resuscitation for patients with out-of-hospital cardiac arrest. Circulation. 2007;116:2900-
44 45	17		2907.
46 47 48	18	6.	Takahashi H, Sagisaka R, Natsume Y, Tanaka S, Takyu H, Tanaka H. Does Dispatcher-
49 50	19		Assisted CPR generate the same outcomes as spontaneously delivered Bystander CPR in
51 52 53	20		Japan? Am J Emerg Med. 2018;36(3):384-391.
54 55	21	7.	Nakahara S, Tomio J, Ichikawa M, Nakamura F, Nishida M, Takahashi H, Morimura N,
56 57 58 59 60	22		Sakamoto T. Association of bystander interventions with neurologically intact survival

2 3			
4 5	1		among patients with bystander-witnessed out-of-hospital cardiac arrest in Japan. JAMA.
6 7	2		2015;314:247-54.
8 9 10	3	8.	American Heart Association. Highlights of the 2015 American Heart Association
11 12	4		guidelines update for CPR and ECC. Texas, American Heart Association, 2015.
13 14 15	5		(Accessed 1 September 2017, at https://eccguidelines.heart.org/wp-
16 17	6		content/uploads/2015/10/2015-AHA-Guidelines-Highlights-English.pdf)
18 19 20	7	9.	Japan Resuscitation Council. Chapter 1 BLS: Basic Life Support. (Accessed 3 February
20 21 22	8		2019, at https://www.japanresuscitationcouncil.org/wp-
23 24 25	9		content/uploads/2016/04/1327fc7d4e9a5dcd73732eb04c159a7b.pdf).
26 27	10	10	. Global Resuscitation Alliance. Improving Survival from Out-of-Hospital Cardiac Arrest:
28 29 30	11		A Call to Establish a Global Resuscitation Alliance. (Accessed 2 December 2017, at
31 32	12		http://www.laerdalevents.com/gra/wp-content/pdf/call_to_establish.pdf)
33 34 35	13	11	. Aufderheide TP, Pirrallo RG, Yannopoulos D, et al. Incomplete chest wall
36 37	14		decompression: a clinical evaluation of CPR performance by EMS personnel and
38 39 40	15		assessment of alternative manual chest compression-decompression techniques.
41 42	16		Resuscitation. 2005;64:353-362.
43 44 45	17	12	. Sutton RM, Niles D, Nysaether J, et al. Quantitative Analysis of CPR Quality During In-
46 47	18		Hospital Resuscitation of Older Children and Adolescents. Pediatrics. 2009;124(2):494-9.
48 49 50	19	13	. Yannopoulos S, McKnite S, Aufderheide TP, Sigurdsson G, Pirrallo RG, Benditt D, Lurie
51 52	20		KG. Effect of incomplete chest wall decompression during cardiopulmonary resuscitation
53 54 55	21		on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest.
56 57	22		Resuscitation. 2005;64:363-72.
58 59 60			

Page 27 of 41

1

BMJ Open

2		
3 4 5	1	14. Neumar RW, Shuster M, Callaway CW, et al. 2015 American Heart Association
6 7	2	Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular
8 9 10	3	Care, Part 1: Executive Summary. Circulation. 2015;132:S315-67.
10 11 12	4	15. Perkins GD, Handley AJ, Koster RW, et al. European Resuscitation Council Guidelines
13 14	5	for Resuscitation 2015 Section 2. Adult basic life support and automated external
15 16 17	6	defibrillation. Resuscitation. 2015;95:81-99.
18 19 20	7	16. Abella BS, Edelson DP, Kim S, et al. CPR quality improvement during in-hospital
20 21 22	8	cardiac arrest using a real-time audiovisual feedback system. Resuscitation.
23 24 25	9	2007;73(1):54–61.
25 26 27	10	17. Hostler D, Everson-Stewart S, Rea TD, et al; Effect of real-time feedback during
28 29 30	11	cardiopulmonary resuscitation outside hospital: prospective, cluster-randomised trial.
30 31 32	12	BMJ 2011;342(d512):1-10.
33 34 35	13	18. Buleon C, Delaunay J, Parienti JJ., Halbout L., Arrot X, Gerard JL., Hanouz JL.
36 37	14	Impact of a feedback device on chest compression quality during extended manikin CPR:
38 39 40	15	a randomized crossover study. Am J Emerg Med. 2016;34:1754-1760.
40 41 42	16	19. Bobrow BJ, Vadeboncoeur TF, Stolz U, et al. The influence of scenario-based training
43 44 45	17	and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation
46 47	18	quality and survival from out-of-hospital cardiac arrest. Ann Emrg Med. 2013;62(1):47-
48 49 50	19	56.
50 51 52	20	20. Skorning M, Beckers SK, Brokmann JC, et al. New visual feedback device improves
53 54 55	21	performance of chest compressions by professionals in simulated cardiac arrest.
56 57	22	Resusciation. 2010;81:53-58.
58 59 60		

2 3		
4 5	1	21. Buleon C, Parienti J-J, Halbout L, et al. Improvement in chest compression quality using
6 7	2	a feedback device (CPRmeter): a stimulation randomized crossover study. Am J Emerg
8 9 10	3	Med. 2013;31:1457-1461.
11 12	4	22. Kramer-Johansen J, Myklebust H, Wik L, et al. Quality of out-of-hospital
13 14 15	5	cardiopulmonary resuscitation with real time automated feedback: a prospective
16 17 18 19 20	6	interventional study. Resuscitation. 2006;71:283-292.
	7	23. Cheng A, Brown LL, Duff JP, et al.; International Network for Simulation-Based
21 22	8	Pediatric Innovation, Research, & Education (INSPIRE) CPR Investigators. Improving
23 24 25	9	cardiopulmonary resuscitation with a CPR feedback device and refresher simulations
26 27 28 29 30 31 32 33 34 35 36 37	10	(CPR CARES Study): a randomized clinical trial. JAMA Pediatr. 2015; 169:137-44.
	11	24. Cheng A, Overly F, Kessler D, et al.; International Network for Simulation-Based
	12	Pediatric Innovation, Research, & Education (INSPIRE) CPR Investigators. Perception of
	13	CPR quality: Influence of CPR feedback, Just-in-Time CPR training and provider role.
	14	Resuscitation 2015;87:44-50.
38 39 40	15	25. White AE, Ng HX, Ng WY, Ng EKX, Fook-Chong S, Kua PHJ, Ong MEH. Measuring
41 42	16	the effectiveness of a novel CPRcard TM feedback device during stimulated chest
43 44 45	17	compressions by non-healthcare workers. Singapore Med J 2017:58:438-445.
46 47	18	26. Tanaka S, White AE, Sagisaka R, et al. Comparison of quality of chest compressions
48 49 50	19	during training of laypersons using Push Heart and Little Anne manikins using blinded
51 52	20	CPRcards. Int Emerg Med. 2017;10(1):20.
53 54 55 56 57	21	27. Baldi E, Cornara S, Contri E, et al. Real-time visual feedback during training improves
	22	layperson's CPR quality: a randomized controlled manikin study. CJEM. 2017;19(6):480-
58 59 60	23	487.

Page 29 of 41

1 2

BMJ Open

3 4 5	1	28. Yeung J, Meeks R, Edelson D, Gao F, Soar J, Perkins G. The use of CPR
6 7	2	feedback/prompt devices during training and CPR performance: A systematic review.
8 9 10	3	Resuscitation. 2009;80:743-751.
11 12 12	4	29. Kong SY, Shin SD, Song KJ, et al. Effect of instructor's real-time feedback using QCPR-
13 14 15	5	classroom device during layperson cardiopulmonary resuscitation (CPR) training on
16 17 18	6	quality of CPR Performances: A prospective cluster-randomised trial. BMJ Open.
19 20	7	2018;8:doi:10.1136/bmjopen-2018-EMS.25.
21 22 23	8	30. Nishiyama C, Iwami T, Kawamura T, Ando M, Yonemoto N, Hiraide A, Nonogi H.
24 25	9	Quality of chest compressions during continuous CPR; comparison between chest
26 27 28	10	compression-only CPR and conventional CPR. Resuscitation. 2010;81:1152-1155.
29 30	11	31. American Heart Association. AHA requirement on Use of feedback devices in adult CPR
31 32 33	12	training courses. (Accessed 1 September 2017, at
34 35	13	http://ahainstructornetwork.americanheart.org/idc/groups/ahaecc-
36 37 38	14	public/@wcm/@ecc/documents/downloadable/ucm_495639.pdf.).
39 40	15	32. Cortegiani A, Russotto V, Montalto F, Iozzo P, Meschis R, Pugliesi M, et al. (2017) Use
41 42 43	16	of a Real-Time Training Software (Laerdal QCPR®) Compared to Instructor-Based
44 45	17	Feedback for High-Quality Chest Compressions Acquisition in Secondary School
46 47 48	18	Students: A Randomized Trial. PLoS ONE 12(1): e0169591.
49 50	19	33. Jones I, Whitefield R, Colquhoun M, Chamberlain D, Vetter N, Newcombe R, et al. At
51 52 53	20	what age can schoolchildren provide effective chest compressions? AN observational
54 55	21	study from the Heartstart UK schools training programme. BMJ. 2007;334:1201.
56 57 58	22	34. Contri E, Cornara S, Somaschini A, et al.Complete chest recoil during laypersons' CPR:
59 60	23	Is it a matter of weight? Am J Emerg Med. 2017;35:1266-1268.

35. Kaye W, Rallis SF, Mancini ME, et al. The problem of poor retention of cardiopulmonary

36. Parnell MM, Larsen PD. Poor quality teaching in lay person CPR courses. Resuscitation.

resuscitation skills may lie with the instructor, not the learner or the curriculum.

Resuscitation. 1991;21:67-87.

2	
3 4	1
5 6 7	2
8 9	3
10 11	4
12 13 14	5
15 16	6
17 18 19	7
20 21	
22 23	8
24 25	9
26 27	10
28 29 30	11
31 32	12
33 34	13
35 36 37	14
38 39	15
40 41 42	16
43 44	17
45 46 47	18
48 49	19
50 51	20
52 53 54	21
55 56	
57 58	22
59 60	23

	2007;73:271-278.
37.	Wagner P, Lingemann C, Arntz HR, Breckwoldt J. Official lay basic life support courses
	in Germany: is delivered content up to date with the guidelines? An observational study.
	Emerg Med J. 2015;32(7):547-52.
38.	Møller TP, Hansen CM, Fjordholt M, Pedersen BD, Østergaard D, Lippert FK.
	Debriefing bystanders of out-of-hospital cardiac arrest is valuable. Resuscitation.
	2014;85:1504-1511.
39.	Hirose T, Iwami T, Ogura H, et al. Effectiveness of a simplified cardiopulmonary
	resuscitation training program for the non-medical staff of a university hospital. Scand J
	Trauma Resusc Emerg Med. 2014;22(31):1-7.
40.	Lynch B, Einspruch EL, Nichol G, Aufderheide TP. Assessment of BLS skills:
	optimizing use of instructor and manikin measures. Resuscitation. 2008;76:233-243.
41.	Wik L, Steen PA, Bircher NG. Quality of bystander cardiopulmonary resuscitation
	influences outcome after prehospital cardiac arrest. Resuscitation. 1994;28:195-203.
42.	Van Hoeyweghen RJ, Bossaert LL, Mullie A, et al. Quality and efficiency of bystander
	CPR. Resuscitation. 1993;26:47-52. Emerg Med J. 2014;0:1-6.
43.	Gallagher EJ, Lombardi G, Gennis P. Effectiveness of bystander cardiopulmonary
	resuscitation and survival following out-of-hospital cardiac arrest. JAMA.

1995;274:1992-1925.

Page 31 of 41

1 2 BMJ Open

3 4 5	1	44. Takei Y, Nishi T, Matsubara H, Hashimoto M, Inaba H. Factors associated with quality
6 7	2	of bystander CPR: the presence of multiple rescuers and bystander-initiated CPR without
8 9 10	3	instruction. Resuscitation. 2014;85:492-498.
11 12 13	4	45. Tanaka S, Rodrigues W, Sotir S, Sagisaka R, Tanaka H. CPR Performance in the
13 14 15	5	Presence of Audiovisual Feedback or Football Shoulder Pads. BMJ Open Sport Exerc
16 17	6	Med. 2017;3(1):e000208.
18 19 20	7	46. Japan Resuscitation Council. Chapter 8 ETI: Education, Implementation, and Teams.
21 22	8	(Accessed 2 December 2017, at http://www.japanresuscitationcouncil.org/wp-
23 24 25	9	content/uploads/2016/04/b7b5b647189bc07f38f6fecf014cf5d9.pdf).
26 27 28	10	
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	11	
54 55 56 57 58 59 60		

Image of QCPR Classroom feedback system

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Fig 3. Image of actual display on the front screen

Image of actual display on the front screen

BMJ Open

Date: / /

Research Institute of Disaster Management and EMS, Kokushikan University

Survey

We conduct this survey for those who had a CPR training. Thank you for your cooperation to take part in this survey. The result will only use for a research purpose and will be kept in the strictest confidentiality. Please make a circle (o) or fill in the blank.

1. Number of mann	ikin:				2. Sex: male	/ female
3. Age:	_ years old	height: _		cm	weight:	kg
4. Have you ever tal	ken CPR traini	ng course?	Yes / No			

5. if "Yes" on question 4, did you take within a year? Yes / No

Question 6: On a scale 1 to 10, with 1 being very difficult and 10 being very easy, ...

6. How do you rate the ease of understanding the feedback from instructor?

(1) rate	(1 = very difficult)	1	2	3	4	5	6	7	8	9	10	(10 = very easy)
(2) depth	(1 = very difficult)	1	2	3	4	5	6	7	8	9	10	(10 = very easy)
(3) recoil	(1 = very difficult)	1	2	3	4	5	6	7	8	9	10	(10 = very easy)

Question 7 & 8: On a scale 1 to 10, with 1 being not confident and 10 being very confident, ...

7. How much confidence do you have to perform chest compression before training?

(1) rate	(1 = not confident)	1	2	3	4	5	6	7	8	9	10 (10 = very confident)
(2) depth	(1 = not confident)	1	2	3	4	5	6	7	8	9	10 (10 = very confident)
(3) recoil	(1 = not confident)	1	2	3	4	5	6	7	8	9	10 (10 = very confident)

8. How much confidence do you have to perform chest compression after training?

(1) rate	(1 = not confident)	1	2	3	4	5	6	7	8	9	10	(10 = very confident)
(2) depth	(1 = not confident)	1	2	3	4	5	6	7	8	9	10	(10 = very confident)
(3) recoil	(1 = not confident)	1	2	3	4	5	6	7	8	9	10	(10 = very confident)

9. Please feel free to comments

Section/Topic	Item No	Standard Checklist item	Extension for cluster designs	Page No *
Title and abstract				
	1a	Identification as a randomised trial in the title	Identification as a cluster randomised trial in the title	1
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts) ^{1,2}	See table 2	2
Introduction		Z		
Background and objectives	2a	Scientific background and explanation of rationale	Rationale for using a cluster design	5-6
	2b	Specific objectives or hypotheses	Whether objectives pertain to the the cluster level, the individual participant level or both	6
Methods				
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	Definition of cluster and description of how the design features apply to the clusters	8
	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons		n/a
Participants	4a	Eligibility criteria for participants	Eligibility criteria for clusters	7
	4b	Settings and locations where the data were collected		7
Interventions	5	The interventions for each group with sufficient details to allow replication, including how	Whether interventions pertain to the cluster level, the individual participant level or both	7-8

Table 1: CONSORT 2010 checklist of information to include when reporting a cluster randomised trial

1 2 3 4	
5 6 7 8 9	
8 9 10 11 12 13 14 15 16 17 18 19	
16 17 18 19 20	
20 21 22 23 24 25	
26 27 28 29 30	
31 32 33 34 35	
36 37 38 39 40	
41 42 43 44 45	
46 47 48 49 50	
51 52 53 54 55	
56 57 58 59 60	

		and when they were actually administered		
Outcomes	ба	Completely defined pre- specified primary and secondary outcome measures, including how and when they were assessed	Whether outcome measures pertain to the cluster level, the individual participant level or both	7-8
	6b	Any changes to trial outcomes after the trial commenced, with reasons		n/a
Sample size	7a	How sample size was determined	Method of calculation, number of clusters(s) (and whether equal or unequal cluster sizes are assumed), cluster size, a coefficient of intracluster correlation (ICC or k), and an indication of its uncertainty	7
	7b	When applicable, explanation of any interim analyses and stopping guidelines		n/a
Randomisation:				
Sequence generation	8a	Method used to generate the random allocation sequence	Z	8
	8b	Type of randomisation; details of any restriction (such as blocking and block size)	Details of stratification or matching if used	8
Allocation concealment mechanism	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	Specification that allocation was based on clusters rather than individuals and whether allocation concealment (if any) was at the cluster level, the individual participant level or both	n/a
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who	Replace by 10a, 10b and 10c	8

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
10	
16 17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
20	
57	
58	
59	

		assigned participants to interventions		
	10a		Who generated the random allocation sequence, who enrolled clusters, and who assigned clusters to interventions	8
	10b		Mechanism by which individual participants were included in clusters for the purposes of the trial (such as complete enumeration, random sampling)	8
	10c	Peer Ke	From whom consent was sought (representatives of the cluster, or individual cluster members, or both), and whether consent was sought before or after randomisation	7
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and how	participants	7-8
	11b	If relevant, description of the similarity of interventions		n/a
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	How clustering was taken into account	11-12
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses		n/a
Results				

1
2
3
4
5 6
7
8
8 9 10
10 11
12
13
13 14 15
15 16
16 17
18
19
20
20 21 22 23 24 25 26 27 28 29
23
24
25
26 27
27 28
29
30
31
32 33
34
34 35
36
37 38
30 39
40
41
42 43
43 44
45
46
47
48 49
49 50
51
52
53 54
54 55
56
57
58
59

Participant flow	13a	For each group, the	For each group, the numbers	12, Fig 1
(a diagram is strongly recommended)		numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome	of clusters that were randomly assigned, received intended treatment, and were analysed for the primary outcome	
	13b	For each group, losses and exclusions after randomisation, together with reasons	For each group, losses and exclusions for both clusters and individual cluster members	12, Fig 1
Recruitment	14a	Dates defining the periods of recruitment and follow-up		7
	14b	Why the trial ended or was stopped		n/a
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	Baseline characteristics for the individual and cluster levels as applicable for each group	10, Table 1
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	For each group, number of clusters included in each analysis	12
Outcomes and estimation	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval)	Results at the individual or cluster level as applicable and a coefficient of intracluster correlation (ICC or k) for each primary outcome	12-16
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended		n/a
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing		n/a

2	
_	
3	
4	
5	
6	
7	
8	
9	
10	
10 11	
12	
13	
14	
15 16 17 18	
16	
17	
18	
19	
20	
21	
22	
21 22 23 24 25 26 27 28 29 30	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
34 35 36 37 38	
26	
20	
3/	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
72	

1

		pre-specified from		
		exploratory		
	10	4 11 • 1		
Harms	19	All important harms or		n/a
		unintended effects in		
		each group (for specific		
		guidance see CONSORT		
		for harms ³)		
Discussion				
Limitations	20	Trial limitations,		21-22
		addressing sources of		
		potential bias,		
		imprecision, and, if		
		relevant, multiplicity of		
		analyses		
Generalisability	21	Generalisability (external	Generalisability to clusters	16-21
		validity, applicability) of	and/or individual participants	
		the trial findings	(as relevant)	
Interpretation	22	Interpretation consistent		n/a
		with results, balancing		,
		benefits and harms, and		
		considering other relevant		
		evidence		
Other information				
Registration	23	Registration number and		n/a
		name of trial registry		
Protocol	24	Where the full trial		n/a
1.00000		protocol can be accessed,		, u
		if available		
Funding	25	Sources of funding and		23
		other support (such as		
		supply of drugs), role of		
		funders		

Note: page numbers optional depending on journal requirements

- Hopewell S, Clarke M, Moher D, Wager E, Middleton P, Altman DG, et al. CONSORT for reporting randomised trials in journal and conference abstracts. *Lancet* 2008, 371:281-283
- ² Hopewell S, Clarke M, Moher D, Wager E, Middleton P, Altman DG at al (2008) CONSORT for reporting randomized controlled trials in journal and conference abstracts: explanation and elaboration. *PLoS Med* 5(1): e20
- Ioannidis JP, Evans SJ, Gotzsche PC, O'Neill RT, Altman DG, Schulz K, Moher D. Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann rms .. J4; 141(10): / .. Intern Med 2004; 141(10):781-788.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Effect of real-time visual feedback device "Quality Cardiopulmonary Resuscitation (QCPR) Classroom" with a metronome sound on layperson CPR training in Japan: A cluster randomized control trial

Journal:	BMJ Open			
Manuscript ID	bmjopen-2018-026140.R2			
Article Type:	Research			
Date Submitted by the Author:	01-Mar-2019			
Complete List of Authors:	Tanaka, Shota; Kokushikan University, Research Institute of Disaster Management and EMS, Tsukigase, Kyoko; Kokushikan University, Research Institute of Disaster Management and EMS, Hara, Takahiro; Kokushikan University, Graduate School of EMS System Sagisaka, Ryo; Kokushikan University, Graduate School of EMS System Myklebust, Helge; Laerdal Medical Cooperation Birkenes, Tonje; Laerdal Medical Cooperation Takahashi, Hiroyuki; Kokushikan University, Research Institute of Disaster Management and EMS, Iwata, Ayana; Kokushikan University, Research Institute of Disaster Management and EMS, Kidokoro, Yutaro; Kokushikan University, Research Institute of Disaster Management and EMS, Vamada, Momoyo; Kokushikan University, Research Institute of Disaster Management and EMS, Ueta, Hiroki; Meiji University of Integrative Medicine, Faculty of Emergency Medical Science Takyu, Hiroshi; Kokushikan University, Graduate School of EMS System Tanaka, Hideharu; Kokushikan University, Graduate School of EMS System; Kokushikan University, Research Institute of Disaster Management and EMS,			
Primary Subject Heading :	Medical education and training			
Secondary Subject Heading:	Emergency medicine, Medical education and training			
Keywords:	bystander, cardiac arrest, CPR training, resuscitation, Mass CPR training			

SCHOLARONE[™] Manuscripts

1		
2 3		
4	1	
5		
6 7	2	
8		
9 10	3	Title: Effect of real-time visual feedback device "Quality Cardiopulmonary Resuscitation
11 12	4	(QCPR) Classroom" with a metronome sound on layperson CPR training in Japan: A cluster
13 14	5	randomized control trial
15 16		
16 17	6	
18	7	Shota Tanaka ¹), Kyoko Tsukigase ¹), Takahiro Hara ²), Ryo Sagisaka ²), Helge Myklebust ³),
19 20		
20	8	Tonje S. Birkenes ³⁾ , Hiroyuki Takahashi ¹⁾⁴⁾ , Ayana Iwata ¹⁾ , Yutaro Kidokoro ¹⁾ , Momoyo
22	9	Yamada ¹⁾ , Hiroki Ueta ⁵⁾ , Hiroshi Takyu ²⁾ , Hideharu Tanaka ¹⁾²⁾
23 24	10	
25	11	1) Research Institute of Disaster Management and EMS, Kokushikan University
26 27	12	2) Graduate School of EMS System, Kokushikan University
28	13	3) Laerdal Medical, Stavanger, Norway
29 30		
31	14	4) Department of Sports Medicine, Kokushikan University, Japan
32 33	15	5) Faculty of Emergency Medical Science, Meiji University of Integrative Medicine
34	16	
35		
36 37	17	Correspondence author: SHOTA TANAKA
38		
39 40	18	Kokushikan University, 7-3-1, Nagayama, Tama City, Tokyo, JAPAN
41	19	E-mail: tanakamedical24@gmail.com
42 43	10	E-mail: tanakamedical24@gmail.com TEL/FAX: +81-42-339-7197
44	20	TEL/FAX: +81-42-339-7197
45		
46 47	21	
48		
49 50	22	Keywords: cardiac arrest, bystander, CPR training, resuscitation, Mass CPR training
51	23	Word Count: 4223
52	23	word Count. 4225
53 54		
55		
56 57		
57 58		
59		
60		

2		
3	4	Abstract
4 5	1	Abstract
6 7	2	Objectives "Quality Cardiopulmonary Resuscitation (QCPR)-Classroom" was recently
8 9 10	3	introduced to provide higher-quality CPR training. This study aimed to examine whether
11 12	4	novel QCPR-Classroom training can lead to higher chest-compression quality than standard
13 14 15	5	CPR training.
16 17	6	Design A cluster randomized controlled trial was conducted to compare standard CPR
18 19 20	7	training (control) and QCPR-Classroom (intervention).
21 22 23	8	Setting Layperson CPR training in Japan
23 24 25	9	Participants Six hundred forty-two people aged over 15 years were recruited from among
26 27 28	10	CPR trainees.
29 30	11	Interventions CPR performance data were registered without feedback on instrumented
31 32 33	12	Little Anne prototypes for one minute pre- and post-training. A large classroom was used in
34 35	13	which QCPR-Classroom participants could see their CPR performance on a big screen at the
36 37 38	14	front; the control group only received instructor's subjective feedback.
39 40	15	Primary and secondary outcome measures The primary outcomes were compression depth
41 42 43	16	(mm), rate (compressions per minute [cpm]), percentage of adequate depth (%), and recoil
44 45	17	(%). Survey scores were a secondary outcome. The survey included participants' confidence
46 47 48	18	regarding CPR parameters and ease of understanding instructor feedback.
49 50	19	Results In total, 259 and 238 people in the control and QCPR-Classroom groups,
51 52 53	20	respectively, were eligible for analysis. After training, the mean compression depth and rate
54 55	21	were 56.1 \pm 9.8 mm and 119.2 \pm 7.3 cpm in the control group and 59.5 \pm 7.9 mm and 116.8 \pm
56 57 58	22	5.5 cpm in the QCPR-Classroom group. The QCPR-Classroom group showed significantly
58 59 60	23	more adequate depth than the control group ($p = 0.001$). There were 39.0% (95% CI, 33.8–

BMJ Open

1	44.2; <i>p</i> < 0.0001) and 20.0% improvements (95% CI, 15.4–24.7; <i>p</i> < 0.0001) in the QCPR-
2	Classroom and control groups, respectively. The difference in adequate recoil between pre-
3	and post-training was 2.7% (95% CI, $-1.7-7.1$; pre 64.2 ± 36.5% vs. post 66.9 ± 34.6%; $p =$
4	0.23) and 22.6% in the control and QCPR-Classroom groups (95% CI, 17.8–27.3; pre 64.8 \pm
5	37.5% vs. post 87.4 \pm 22.9%; $p < 0.0001$), respectively.
6	Conclusions QCPR-Classroom helped students achieve high-quality CPR training, especially
7	for proper compression depth and full recoil. For good educational achievement, a novel
8	QCPR-Classroom with a metronome sound is recommended.
9	QCPR-Classroom with a metronome sound is recommended.
10	

Strengths and limitations of this study

- - One of the advantages of CPR training using the QCPR-Classroom concept is good
- educational achievement with fewer instructors.
- Arranging objective real-time feedback on a big screen in front of everyone, visible to both
- instructor and students, significantly improved CPR quality.
- - The QCPR-Classroom group had 13.6% better adequate depth and 20.5% better adequate
- recoil than the control group.
- - No retention measurement was taken, and the measurements were of all students together.
- - This was manikin-based training, so it was not the same as in real life since the chest was
- not as hard as the human body.

BMJ Open

INTRODUCTION

2	The burden of cardiovascular diseases and the increasing number of out-of-hospital
3	cardiac arrest (OHCA) cases remain a global concern.[1] Performing bystander
4	cardiopulmonary resuscitation (CPR) is one factor that can increase the survival rate of
5	OHCA.[2–7] The survival rate may be directly linked to the number of bystanders trained in
6	CPR.[2] As a complement to the 2015 American Heart Association (AHA) and Japan
7	Resuscitation Council Guideline, the Global Resuscitation Alliance (GRA) was recently
8	established to improve OHCA survival, and high-performance CPR was highlighted: a push
9	depth of 5–6 cm, rate of 100–120 compressions per minute (cpm), full recoil, and minimizing
10	interruptions for chest compressions (less than 10 seconds).[8–10] In the GRA consensus,
11	mandatory School and Community CPR was listed as one of the 10 steps to increase OHCA
12	survival.[8]
13	Healthcare professionals were found to perform incomplete compression recoil in
13 14	Healthcare professionals were found to perform incomplete compression recoil in 46% of all cases and in 23.4% of cases involving pediatric patients.[11–12] Incomplete recoil
14	46% of all cases and in 23.4% of cases involving pediatric patients.[11–12] Incomplete recoil
14 15	46% of all cases and in 23.4% of cases involving pediatric patients.[11–12] Incomplete recoil leads to less blood flow to the brain,[8] which causes coronary and cerebral perfusion
14 15 16	46% of all cases and in 23.4% of cases involving pediatric patients.[11–12] Incomplete recoil leads to less blood flow to the brain,[8] which causes coronary and cerebral perfusion pressure to deteriorate.[13] Full recoil is one of the most important concepts for ensuring
14 15 16 17	46% of all cases and in 23.4% of cases involving pediatric patients.[11–12] Incomplete recoil leads to less blood flow to the brain,[8] which causes coronary and cerebral perfusion pressure to deteriorate.[13] Full recoil is one of the most important concepts for ensuring high-quality CPR.[10,14,15] Teaching individuals to compress the chest 5 cm deep and allow
14 15 16 17 18	46% of all cases and in 23.4% of cases involving pediatric patients.[11–12] Incomplete recoil leads to less blood flow to the brain,[8] which causes coronary and cerebral perfusion pressure to deteriorate.[13] Full recoil is one of the most important concepts for ensuring high-quality CPR.[10,14,15] Teaching individuals to compress the chest 5 cm deep and allow for full chest recoil is difficult during training without a feedback device.
14 15 16 17 18 19	46% of all cases and in 23.4% of cases involving pediatric patients.[11–12] Incomplete recoil leads to less blood flow to the brain,[8] which causes coronary and cerebral perfusion pressure to deteriorate.[13] Full recoil is one of the most important concepts for ensuring high-quality CPR.[10,14,15] Teaching individuals to compress the chest 5 cm deep and allow for full chest recoil is difficult during training without a feedback device. We are currently facing a period of transition to CPR training with a feedback
14 15 16 17 18 19 20	46% of all cases and in 23.4% of cases involving pediatric patients.[11–12] Incomplete recoil leads to less blood flow to the brain,[8] which causes coronary and cerebral perfusion pressure to deteriorate.[13] Full recoil is one of the most important concepts for ensuring high-quality CPR.[10,14,15] Teaching individuals to compress the chest 5 cm deep and allow for full chest recoil is difficult during training without a feedback device. We are currently facing a period of transition to CPR training with a feedback device as various feedback devices have been introduced, and research has supported their

effectiveness of the QCPR-Classroom device was recently demonstrated by Kong et al.[29] This study aims to examine the effectiveness of CPR skills delivered with QCPR-Classroom feedback compared to standard CPR training. The hypothesis was that QCPR Classroom would generate higher achievement in CPR skill regardless of instructors' teaching skill. We aimed to determine whether QCPR Classroom could be the best practical model for CPR

to peer teries only

training.

1 METHODS

2 Patient and public involvement

Patients and/or the public were not involved in this study. The study population was focused on CPR trainees.

6 Study population and design

Prior to CPR training and study enrollment, oral informed consent was obtained from all participants. The study was approved by the Institutional Review Board at Kokushikan University. Sample size calculation was based on adequate depth from our pilot trial in which we examined the effect of the QCPR Classroom. We calculated a sample size of 232 with 90% power to detect a percentage of adequate compression depth between two groups ($\alpha = 0.05$). To reach a power of 90%, 41 participants were needed per group in parallel, and the design effect was 5.66; 15% was detected as a deficit due to a mechanical issue, so 272 per group was calculated as a sample size. A total of 642 people were recruited from among CPR trainees enrolled in the Heart Saver Japan CPR training, which was held between March and September 2017. The inclusion criterion was age over 15 years. The exclusion criteria were the presence of upper extremity injury within the past 6 months and working as a healthcare professional regularly involved in resuscitation, such as Emergency Medical Technicians, paramedics, and emergency room physicians or nurses. Previous CPR training status and quantity and timing of previous trainings were not used as inclusion or exclusion criteria.

23 Measurements

> The primary outcome was compression depth (mm), compression rate (cpm), adequate depth (%), and adequate recoil (%). These measurements were obtained both pre-and immediately post-training. No feedback was provided to the participants. The measurement duration was one minute as the bystander should change every minute during chest compression-only CPR.[30] This was because the quality of chest compression-only CPR was demonstrated to decrease due to fatigue, and this can alter the results. The scores from a survey conducted after the training were considered a secondary outcome. The survey included the participants' confidence about the rate, depth, and recoil pre- and post-training as well as the ease of understanding feedback from the instructor. The survey is available in the Appendix. **Study procedure** A cluster randomized controlled trial was used (allocation ratio 1:1). A researcher (R.S) generated a randomization list, and block-two randomization was performed. R.S. was not involved in the data collection and worked on statistics independently. Each session was randomly assigned to the intervention (standard or QCPR Classroom). Four lead instructors who had worked as healthcare professionals and had over five years of experience teaching CPR were selected from the Heart Saver Japan organization. Data were collected during the Heart Saver Japan CPR + Automated External Defibrillator (AED) training sessions. The training focused on Basic Life Support, including CPR skills and AED, according to the Japan Resuscitation Council 2015 Guideline. Students were not medical personnel, so we instructed compression-only CPR. No pre-assignment or e-learning was given. The training started with a PowerPoint presentation-based instructor-led lecture followed by psychomotor

BMJ Open

1	practice. Psychomotor practice focused on chest-compression CPR. The sequence of the
2	psychomotor practice is as follows: 1) Keys of compression: depth, rate, recoil; 2) single-
3	rescuer chest compression-only CPR; 3) two-bystander chest compression-only CPR
4	focusing on minimizing interruptions; 4) check respiration; 5) scene safety, check
5	consciousness, and call for help; 6) use of AED; 7) practice from "scene safety" to "resume
6	chest compression after giving a shock"; and 8) scenario-based training. A total of 18 CPR
7	training sessions were studied with 9 standard CPR training (control group) and 9 QCPR-
8	Classroom sessions (Figure 1).
9	In the QCPR-Classroom group, participants received subjective and objective
10	feedback from the instructor based on real-time feedback through the manikin, and
11	participants were able to correct themselves based on feedback displayed on the screen of the
12	device (Figure 2). The control group received instructor's subjective feedback, so a hand clap
13	was used based on the instructor's experience instead of using a metronome sound. As the
14	AHA stated, audio-visual feedback is mandated for use.[31] QCPR Classroom only provides
15	visual feedback, so we used sound as an auditory aid for instruction in the QCPR-Classroom
16	group.
17	To measure the effect of CPR training, one minute of chest compression was
10	

measured without any feedback given as a pre-test. Similarly, one minute of chest
compression was also measured after the training as a post-test. Although one minute of
measurement may not be sufficient for CPR performance in real life, we focused on the
initial CPR performance in a single-rescuer situation. A survey and baseline characteristics,
such as weight, height, and CPR training experience (Table 1), were also collected after the
post-training measurement. The metronome was set at 110 beats per minute and used for

1 every instance of hands-on practice during the QCPR-Classroom session, but no metronome

- 2 was used during the standard CPR training.

Table 1. Demographic Characteristics

	Control $(n = 259)$	QCPR Classroom (n =	<i>p</i> value
		238)	
Age, mean±SD	22.4 ± 9.0	19.4 ± 5.6	<.0001 *
median	19 (17-23.5)	17 (16-21)	<.0001 *
(IQR)			
Male, (%)	130 (50.2)	101 (42.4)	0.08
height, mean	164.5 ± 14.3	164.2 ± 8.2	0.47
weight, mean	57.9 ± 12.1	56.0 ± 9.6	0.06
BMI, mean	21.1 ± 3.1	20.7 ± 2.6	0.07
CPR training, (%)	203 (78.4)	170 (71.4)	0.07
CPR training within 1	89 (41.2)	63 (36.4)	0.34
year, (%)			

CPR: cardiopulmonary resuscitation; SD: standard deviation; IQR; interquartile range; BMI: body mass index

* p < .05 significant

5 Instrumentation

Compression data were registered using the Laerdal QCPR-Classroom manikin
system (Laerdal Medical, Stavanger, Norway), as shown in Figure 2. This prototype system
for community CPR training provides real-time visual feedback from 42 manikins while
icons representing CPR performance from each manikin are visualized on an iPad tablet. We
mirrored the iPad screen on a laptop using the application Reflector 2 (Squirrels[®], North
Canton, OH, United States) to present real-time feedback on a large screen at the front of the
classroom (Figure 3). QCPR Classroom uses Laerdal Little Anne manikins, and each is

Page 11 of 40

1 2

BMJ Open

3
4
5
6
0 7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
56
57
58
59

1 instrumented with an optical compression sensor and microcontroller. The microcontroller 2 analyses the signal from the compression sensor and calculates the number, depth, and rate of 3 compressions and incomplete release. A compression score is calculated using the rate, depth, 4 and release. Each sensor was checked for depth accuracy using a calibrated compression 5 machine with $\pm 15\%$ considered to indicate acceptable error. 6 The microcontroller also compares the compression performance with guidelines 7 from the 2015 AHA requirements. Deviations from the guidelines are reported as "too 8 shallow," "incomplete release," "too fast," or "too slow," and deviation in each factor is 9 presented as yellow icons on the tablet. If the compression performance is good, a green 10 "Everything OK" icon is presented. Data from the tablet is sent to a Microsoft Azure cloud 11 service and made available as downloadable .csv files, which include the following 12 parameters from each manikin and CPR session: the number of compressions, average 13 compression rate, average compression depth, number of compressions with adequate depth, 14 number of compressions with acceptable release, compression score, time, and location of 15 use. The control group also used the same Laerdal Little Anne manikins. However, we did 16 not use a screen to show students objective feedback. During the training in the control

17 group, lead-instructors were not allowed to access iPad, so they only gave subjective18 feedback to the students.

19

60

20 Statistical analysis

The rate and depth measurements are shown as the mean and standard deviation.
Normal distributions and homogeneity of variance were confirmed by a Q-Q plot. The
differences and 95% confidence intervals are shown in tables. The adequate depth and recoil

were calculated as percentages. The difference between pre- and post-training measurements within the groups were analyzed using a paired t-test and McNemar test. Group comparison for both pre- and post-training was conducted using Welch's t-test and chi-square test. The medians and interquartile ranges are presented for ordinal data. We compared the groups using the Wilcoxon single-rank test. The data were analyzed using JMP (V.11.2.0, the SAS Institute Inc.), and *p*-values less than 0.05 were considered significant. **RESULTS Demographic characteristics** A total of 642 people participated in this study. As shown in Figure 1, 145 participants were excluded due to incomplete data (n = 135), age under 15 years (n = 8), and being paramedics (n = 2). Significant age difference between the groups was found (p \leq .0001). A statistical difference was found in age among individuals in clusters, but the standard deviation and interguartile range overlapped. The age variation was not clinically significant due to overlap of precision measured. After the CPR training, 497 participants

16 were eligible for analysis with 259 in the control group and 238 in the QCPR-Classroom

17 group. The demographic characteristics are shown in Table 1.

19 Primary outcome

All chest-compression parameters at pre- and post-training are shown in Table 2.
After the training, the mean compression depth of each student was 56.1 ± 9.8 mm in the
control group and 59.5 ± 7.9 mm in the QCPR-Classroom group. Significantly more
participants in the QCPR-Classroom group achieved higher adequate depth compared to the

2										
3										
4	1	control group ($p < 0.001$; Table 3). In the QCPR-Classroom group, there was an								
5										
6 7	2	improvement of 39.0% (95% CI, 33.8-44.2) in the percentage of adequate depth. In the								
8										
9	3	control group, the impr	rovement was 20.09	% (95% CI, 15.4–24.7	; $p < 0.0001$; Table 2).					
10										
11 12	4	Both groups	demonstrated avera	age compression rates	of 100–120 cpm (Table 2). A					
13										
14	5	statistically significant	difference was fou	nd between groups in	terms of recoil ($p < 0.001$;					
15										
16 17	6	Table 3). The control group demonstrated a 2.7% (95% CI, -1.7-7.1) increase in the								
18										
19	7	percentage of recoil ($p = 0.23$). The QCPR-Classroom group demonstrated a 22.6% (95% CI,								
20 21										
21	8	17.8–27.3) increase in the percentage of recoil ($p < 0.0001$; Table 2).								
23	Tabla 1	Commoniaon in CDD								
24	Table 2.	•	-							
25 26	²⁵ competency between pre- and post-training in									
	each gro	ups								
28 ⁻	0		- 250)	O CDD. CI	(
29		Control (n = 259) QCPR Classroom (n = 238)								
30 31		Pre- Post- Differenc Pre- Post- Differenc								
32										

29		Contro	l(n = 259))	QC	CPR Class	sroom (n =	= 238)
30 31	Pre-	Post-		Differenc	Pre-	Post-		Differenc
32 33	trainin	trainin	p	e (95%	trainin	trainin	р	e (95%
34	g	g	value	CI)	g	g	value	CI)
35 36				-2.3 (-4.2				1.1 (-1.4
³⁷ rate	121.4	119.2		0.3)	115.7	116.8		- 26)
³⁹ (cpm) ⁺	±15.5	±7.3	0.02 *	0.3)	± 19.0	± 5.5	0.39	- 3.6)
40 41				4.6 (3.5				11.3 (9.8
$\frac{42}{43}$ depth	51.4	56.1	< 0.000	- 5.8)	$48.2 \pm$	$59.5 \pm$	< 0.000	- 12.8)
44 (mm) ⁺ 45	±11.6	± 9.8	1 *	- 5.8)	14.7	7.9	1 *	- 12.8)
45 46 adequate				20.0				39.0
⁴⁷ ₄₈ depth (%)	53.6	73.7	< 0.000	(15.4 —	$48.3 \pm$	$87.3 \pm$	< 0.000	(33.8 –
49 ++	±38.9	±37.3	1 *	24.7)	44.2	24.8	1 *	44.2)
50 51 adequate								22.6
⁵² recoil	64.2	66.9		2.7 (-1.7	$64.8 \pm$	87.4	< 0.000	(17.8 —
54 (%) ++	±36.5	±34.6	0.23	- 7.1)	37.5	±22.9	1 *	27.3)
55								

56 paired-t test and McNemar test; CPR:

⁵⁷ cardiopulmonary resuscitation; CI:

⁵⁹ confidence interval

2	
3 4	* Mean and standard
5 6	deviation for rate and depth
7	measurement
8 9	** Numbers (percentage) for
10 11	the adequate depth and
	recoil
13 14	* p < .05
	significan
17	
18	
19	
20 21	
22	
23	
24	
25 26	1
20 27	
28	
29	
30	1 2 Table 3. The difference of CPR performance competency between the control group
31	
32	Table 3. The difference of CPR performance competency between the control group
33	

and QCPR Classroom group at pre- and post-training

		Control (n =	QCPR Classroom (n =	р	Difference
		259)	238)	value	(95% CI)
Pre-trainir	ng test				
				<0.00	-5.7 (-8.7 –
	rate (cpm) +	121.4 ±15.5	115.7 ± 19.0	1 *	2.6)
				0.008	-3.2 (-5.5 –
	depth (mm) +	51.4±11.6	48.2 ± 14.7	*	0.85)
	adequate depth				-5.3 (-12.7 -
(%) ++		53.6 ± 38.9	48.3 ± 44.2	0.15	2.0)
	adequate recoil				3.3 (-5.9 -
(%) **		64.2 ± 36.5	64.8 ± 37.5	0.84	7.2)

Post-training test

2							
3 4 5						<0.00 -2	.3 (-3.5 – -
6 7 8			rate (cpm) *	119.2 ± 7.3	116.8 ± 5.5	1 *	1.2)
9 10 11						< 0.00	3.5 (1.9 -
12			depth (mm) *	56.1 ±9.8	59.5 ± 7.9	1 *	5.1)
13 14			adequate depth			< 0.00	13.6 (8.0 -
15 16		(%) ++		73.7 ± 37.3	87.3 ± 24.8	1 *	19.2)
17			adequate recoil			<0.00 2	0.5 (15.3 –
18 19		(%) ++		66.9 ± 34.6	87.4 ±22.9	1 *	25.7)
20 21		Welch's t t	est and Chi-Square	test; CPR: cardiop	ulmonary		
22 23		resuscitatio	on; CI: confidence i	nterval			
24		+ Mean and	d standard deviation	n for rate and			
25 26		depth meas	surement				
27		++ Number	rs (percentage) for t	he adequate			
28 29		depth and	recoil				
30 31							
32 33		* p < .05 s	ignificant				
34	1						
35 36	0	C					
37 38	2	Secondary	y outcome				
39	3]	The survey included	l participants' confi	dence levels before	and after tra	aining
40 41	٨	no condin o d	lhass a susan store (as	to douth and mood	1) using the fallowin		"On a scale
42 43	4	regarding i	intee parameters (ra	ite, deptil, and lecol	l) using the following	ig question.	On a scale
44	5	of 1–10, w	ith 1 being not conf	ident and 10 being	very confident, how	much confi	dence do you
45 46	6	have to pa	ufarm aleast a amaria	agiona?" Confidence	a recording CDD no	rformonoo	lid not diffor
47 48	6	nave to per	rjorm cnesi compre.	ssions? Confidence	e regarding CPR pe	riormance (and not differ
48 49 50	7	between gr	roups. The question	"How do you rate	the ease of understa	nding the fe	redback from
51 52	8	the instruc	tor?" was asked to	address the ease of	understanding. A si	gnificance of	difference
53 54 55	9	was seen re	egarding the rate of	feedback from the	instructor; the QCP	R-Classroo	m training
56 57	10	group (10.	0[9.0–10.0]) showe	d higher scores that	n the control group ((10.0[8.5–1	0.0]; <i>p</i> =
58 59 60	11	0.01; Table	e 4).				

Question	Control $(n = 259)$	QCPR Classroom ($n = 238$)	<i>p</i> value
* How much confidence do yo	ou have to perform chest com	pressions before training?	
rate	5.0 (3.0-8.0)	5.0 (3.0-7.0)	0.33
depth	5.0 (3.0-7.5)	5.0 (3.0-7.0)	0.27
recoil	5.0 (3.0-7.0)	5.0 (3.0-7.0)	0.37
* How much confidence do yo	ou have to perform chest com	pressions after training?	
rate	8.0 (7.0-9.0)	8.0 (7.0-9.0)	0.98
depth	8.0 (7.0-9.0)	8.0 (7.0-9.0)	0.96
recoil	8.0 (7.0-9.0)	8.0 (7.0-9.0)	0.76
** How do you rate the ease o	of understanding the feedbac	k from instructor?	
rate	10.0 (8.5-10.0)	10.0 (9.0-10.0)	0.01*
depth	10.0 (8.0-10.0)	10.0 (9.0-10.0)	0.08
recoil	10.0 (8.0-10.0)	10.0 (9.0-10.0)	0.12

Table 4. Survey regarding the ease of understanding the feedback from instructor and confidence levels before and after training on three parameters (rate, depth, and recoil)

Wilcoxon test, Median (IQR)

* The survey was rated on "On a scale 1 to 10, with 1 being not confident and 10 being very confident, how much confidence do you have to perform chest compression before and after training?"

** The survey was rated on "On a scale 1 to 10, with 1 being very difficult and 10 being very easy,

how do you rate the ease of understanding the feedback from instructor?"

DISCUSSION

The 2015 AHA Guidelines recommend and the AHA mandated in 2017 use of
audiovisual feedback in all CPR training.[8,14,31] Previous studies indicate that use of
feedback for CPR performance significantly improves CPR quality.[16–28] In our study,
CPR quality was significantly better in the QCPR-Classroom than in the control group. The
compression depth was 59.5 ± 7.9 mm in the QCPR-Classroom group and 56.1 ± 9.8 mm in
the control group post-training. One hundred five and 90 participants in the QCPR-Classroom
and control groups, respectively, compressed greater than 60 mm. None in the QCPR-

BMJ Open

Classroom group performed below 50 mm in the post-test, but 64 in the control group still
did not reach 50 mm.

Skorning et al. found that correct depth was achieved in 73.1% of participants who used a feedback device and 45.2% of those who did not [20] Cortegiani et al. tested a OCPR-Skillreporter feedback model where school children were allowed to practice two-minute compression-only CPR sessions while receiving real-time feedback on a computer screen, aiming for a 60% overall compression score.[32] Following practice, the students received overall performance feedback from the computer. This model used equipment designed for smaller groups. While QCPR-Classroom can handle 42 mannikins simultaneously and feedback is given on only one parameter at the time, Cortegiani et al. used a system that can handle 6 mannikins simultaneously, giving feedback on depth, rate, and leaning simultaneously.[32] Various types of manikins have been used for CPR training, but the quality of CPR training depends on the instructor, and little is known about training quality. The GRA has highlighted the importance of high-performance CPR, and knowledge is needed in the general population. Significant age difference was found, but previous studies indicated that chest compression delivered by 13–14-year-olds was similar to adult performance, and the researchers concluded that the performance depended on weight, age, [33] height, BMI, and sex.[34] In our study, the median and interquartile range for each group were 19 (17–23) and 17 (16–21), there was no height or weight difference between groups, and both groups included participants over 15 years old, so we considered that the age difference was clinically negligible for adequate CPR performance.

Healthcare professionals were previously found to perform incomplete chest recoil in 46% of cases.[11] Teaching the concept of recoil is not easy; we found only a 2.7% increase in the control group. Contri et al. stated that instruction about recoil must be modified according to the participants' physical characteristics.[34] However, during standard community CPR training, the instructor cannot spend much time on each individual to correct their performance.

This novel "QCPR Classroom" is a unique real-time visual in-action feedback system that has significantly impacted CPR performance with 42 manikins providing feedback simultaneously in a large group-training setting. As Kong et al. concluded, overall CPR quality was improved through QCPR-Classroom-based training.[29] The QCPR-Classroom group showed significant improvement in CPR skills between post- and pre-training, especially in the percentage of adequate depth and recoil. The purpose of QCPR Classroom is to make it easy to objectively measure and improve CPR performance in community CPR classes. In a large classroom, learners could see their CPR performance on a big screen at the front of the class. Kong et al. randomized the groups, and only the instructor saw the feedback icon on the iPad; they examined how "QCPR Classroom" training affects CPR performance improvement of laypeople in the large group setting.[29] Students only received objective feedback directly from the instructor. Our study randomized the groups, and both students and instructor were able to see the feedback icon on the iPad by arranging them on a big screen at the front of the classroom, allowing students to have real-time feedback. It is possible to provide high-quality CPR training with a lead-instructor:manikin:students ratio of 1:42:84, enabling good educational achievement with fewer instructors.

Page 19 of 40

BMJ Open

CPR training has been studied for decades by observing participants and comparing their performance to guidelines. The findings show that training does not provide sufficient practice,[35,36] it does not include DA-CPR,[37] participants lack preparedness for real situations, [36,38,39] and objective student feedback and assessment are not performed. [40] In 1991, Kaye et al. reported that instructors made CPR courses by themselves and included only 10 minutes of practical training.[35] The instructors also performed subjective assessments of the students to let the students pass the course even though the students would not have passed according to objective measurements or evaluation by researchers.[35] The need for standardized training, more relevant training, and objective assessment has been known since the early 1990s, but most training teaches laypeople to perform CPR alone without dispatcher assistance, and they practice CPR without feedback or performance assessment. We generally do not know what quality of CPR participants will perform during resuscitation, but we know that good-quality bystander CPR is positively reflected in survival.[41–44] It is possible to make training for laypeople more relevant and effective by focusing on the most important learning objectives, prioritizing practical training, training people to work in teams with dispatchers, using objective feedback to stimulate good performance, and documenting the results for quality improvement and cultivating a culture of excellence. QCPR Classroom can provide objective feedback on the quality and quantity of CPR. The use of feedback in a hospital setting [16] as well as in the Emergency Medical Services field was suggested.[17] Tanaka et al. also suggested the implementation of

22 feedback devices in athletic training.[45] The use of such a device is also highly

recommended even for healthcare professionals. Laypeople who may encounter situations of

cardiac arrest rarely need to use a feedback device to deliver high-quality CPR, which may be directly linked to the chances of survival. An AED with a feedback device is the best method for citizens to deliver higher-quality CPR. We believe that the combination of training with QCPR Classroom and performing CPR with a feedback device in the field would have a positive impact on survival rates. Recoil is the most difficult part for participants to perform within such a short time, especially for those training in CPR for the first time. The confidence level of learners toward recoil was 8.0/10.0 in our study. The hands are off the sternum when teaching full recoil, and incomplete release would occur if the recoil concept was not mentioned. In our opinion, instructors prioritize teaching the concepts of depth and rate rather than recoil because feedback on recoil cannot be given as subjectively. In standard CPR training, we assume that the main focus of participants tends to be compressing harder; therefore, participants easily forget recoil and neglect to perform it. QCPR Classroom significantly improved recoil performance, although it did not influence the confidence level. With achieving appropriate depth, rate, and recoil, performing good chest compression leads to favorable outcomes. Recent guidelines increasingly emphasize the necessity of high-quality CPR performance by not only Emergency Medical Technicians or first responders but also citizens.[46] With the highlighted importance of objective feedback during CPR training, we hope this pilot study on QCPR-Classroom training could be considered as a model for future

CPR training. The role of instructors is to emphasize the importance of bystander CPR and

part of high-quality CPR, the importance of immediate initiation of CPR without hesitating

should be highlighted during the training. It is still very important to determine how to design

Public Access Defibrillation. Therefore, instead of focusing too much on the recoil or another

BMJ Open

1	these environments and prioritize emergency action plans, such as contacting Emergency
2	Medical Services personnel and summoning other people.
3	
4	Study limitations
5	A strength of this study was that arranging objective real-time feedback on a big
6	screen in front of everyone, visible to both instructor and students, significantly improved
7	CPR quality. Our study has several limitations. First, the manikins' chest is not as hard as the
8	human body, so chest compressions are not the same as in real life. Second, this study was
9	conducted using CPR training that targeted a large amount of laypeople, who all performed
10	CPR together. Since chest compression was tested in this environment, the rate measurement
11	may have been influenced by other participants. The metronome was used in the QCPR-
12	Classroom group only; no metronome was used in the control group. Third, the instructors'
13	knowledge may have been questionable since the instructors were learning about the device
14	as the training proceeded. Fourth, the survey was collected post-course including questions
15	about the participants' confidence prior to the training, which may add a large element of
16	recall bias. Fifth, there is a potential lack of generalizability since the quality of instructors
17	and the standards of training may vary in other settings. Sixth, participants were lost due to
18	lack of data. This occurred because of a mechanical issue, and CPR skill data were not well
19	registered on the cloud. Finally, the study only measured short-term improvement, not
20	retention.
21	
22	CONCLUSION

1 2
2 3
4 5
6
7
8
9
10
7 8 9 10 11 12
12
13 14 15
14
15 16 17
16 17
17 10
18 19 20 21 22 23 24 25 26 27 28 29 30
20
21
22
23
24
25
26
27
28
29
30
31 32
32 33
37
34 35
36
36 37
38
39
40
41
42
43
44 45
45 46
46 47
47 48
40 49
50
51
52
53
54
55
56
57
58
59
60

1	The use of a novel "QCPR Classroom" prototype to educate a large group of
2	laypeople with real-time visual CPR feedback has been described, and the effectiveness of
3	training was assessed. The QCPR-Classroom training achieved a higher percentage of
4	adequate depth and recoil than the standard training with subjective assessment by instructors
5	and a higher percentage of adequate recoil. During in-action "QCPR Classroom" training
6	with a metronome sound, displaying all students' feedback on the big screen significantly
7	provided accurate real-time visual feedback to achieve two important components together:
8	compressing the chest with a depth over 5 cm and minimizing the incomplete release of the
9	chest. Teaching CPR to larger groups of laypeople with a real-time feedback system, a novel
10	QCPR Classroom with a metronome sound, is a recommended CPR training model.
11	
12	Acknowledgements
13	The authors wish to thank all staff members at the Research Institute of Disaster
14	Management and EMS at Kokushikan University for their assistance in this study. The
15	authors also thank Laerdal Medical for their assistance in using QCPR Classroom.
16	Competing Interests
17	Tonje Søraas Birkenes and Helge Myklebust are employees of Laerdal Medical.
18	They contributed the QCPR Classroom prototype, study design, and critical revision of the
19	manuscript, but had no role in data collection, analysis of the results, or decision to publish.
20	Other authors did not receive any payment, gift or anything from Laerdal Medical.
21	

None

⁵⁹ 25 Author Contributions

Funding

Page 23 of 40

BMJ Open

1	ST corried out all the studies participated in the sequence alignment and drafted
1	ST carried out all the studies, participated in the sequence alignment, and drafted
2	the manuscript. ST, KT, TH, RS, HM, TB, HTaky, and HTana were involved in the study
3	design. ST, KT, TH, and HTana contributed to the study implementation. HM and TB
4	developed the concept and contributed to technological support. ST, KT, TH, HTaka, AI,
5	HU, YK, MY and HTana were involved in the data collection. RS conducted statistical
6	analysis. ST, RS, and HTana performed data analysis. HTaky, HM, and TB contributed
7	critical revisions to the manuscript. HTana also revised and approved the final manuscript.
8	All authors read and approved the final submission.
9	
10	Ethical Approval
11	
	The study was approved by the Institutional Review Board at Kokushikan
12	University, Japan under the registration number 16-RI002 on February 23rd, 2017.
13	
14	Data Availability Statement
15	All relevant data are within the paper and its data are available from corresponding
16	author, ST, upon request.
17	author, ST, upon request.
18	
19	Figure legends
20	Figure 1. Flow chart of the study
21	Figure 2. Image of QCPR Classroom feedback system
22	Figure 3. Image of actual display on the front screen
23 24	

2		
3 4 5	1	References
6 7	2	1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016
8 9 10	3	update: a report from the American Heart Association. Circulation. 2015;133:e38-e360.
11 12	4	2. Hasselqvist-Ax I, Riva G, Herlitz J, Rosenqvist M, Hollenberg J, Nordberg P, Ringh M,
13 14 15	5	Jonsson M, Axelsson C, Lindqvist J, Karlsson T, Svensson L. Early cardiopulmonary
16 17	6	resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015;372:2307-2315.
18 19 20	7	3. Wissenberg M, Lippert FK, Folke F, Weeke P, Hansen CM, Christensen EF, Jans H,
21 22	8	Hansen PA, Lang-Jensen T, Olesen JB, Lindhardsen J, Fosbol EL, Nielsen SL, Gislason
23 24 25	9	GH, Kober L, Torp-Pedersen C. Association of national initiatives to improve cardiac
26 27	10	arrest management with rates of bystander intervention and patient survival after out-of-
28 29 30	11	hospital cardiac arrest. JAMA. 2013;310:1377-1384.
31 32	12	4. Hansen CM, Kragholm K, Pearson DA, et al. Association of bystander and first-responder
33 34 35	13	intervention with survival after out-of-hospital cardiac arrest in North Carolina, 2010-
36 37	14	2013. JAMA. 2015;314:255-264.
38 39 40	15	5. Iwami T, Kawamura T, Hiraide A, et al. Effectiveness of bystander-initiated cardiac-only
41 42	16	resuscitation for patients with out-of-hospital cardiac arrest. Circulation. 2007;116:2900-
43 44 45	17	2907.
46 47	18	6. Takahashi H, Sagisaka R, Natsume Y, Tanaka S, Takyu H, Tanaka H. Does Dispatcher-
48 49 50	19	Assisted CPR generate the same outcomes as spontaneously delivered Bystander CPR in
51 52	20	Japan? Am J Emerg Med. 2018;36(3):384-391.
53 54 55	21	7. Nakahara S, Tomio J, Ichikawa M, Nakamura F, Nishida M, Takahashi H, Morimura N,
56 57 58 59 60	22	Sakamoto T. Association of bystander interventions with neurologically intact survival

Page 25 of 40

BMJ Open

1 2			
3 4 5	1		among patients with bystander-witnessed out-of-hospital cardiac arrest in Japan. JAMA.
6 7	2		2015;314:247-54.
8 9 10	3	8.	American Heart Association. Highlights of the 2015 American Heart Association
11 12	4		guidelines update for CPR and ECC. Texas, American Heart Association, 2015.
13 14 15	5		(Accessed 1 September 2017, at https://eccguidelines.heart.org/wp-
16 17	6		content/uploads/2015/10/2015-AHA-Guidelines-Highlights-English.pdf)
18 19 20	7	9.	Japan Resuscitation Council. Chapter 1 BLS: Basic Life Support. (Accessed 3 February
21 22	8		2019, at https://www.japanresuscitationcouncil.org/wp-
23 24 25	9		content/uploads/2016/04/1327fc7d4e9a5dcd73732eb04c159a7b.pdf).
26 27 28	10	10.	Global Resuscitation Alliance. Improving Survival from Out-of-Hospital Cardiac Arrest:
28 29 30	11		A Call to Establish a Global Resuscitation Alliance. (Accessed 2 December 2017, at
31 32	12		http://www.laerdalevents.com/gra/wp-content/pdf/call_to_establish.pdf)
33 34 35	13	11.	Aufderheide TP, Pirrallo RG, Yannopoulos D, et al. Incomplete chest wall
36 37	14		decompression: a clinical evaluation of CPR performance by EMS personnel and
38 39 40	15		assessment of alternative manual chest compression-decompression techniques.
41 42 42	16		Resuscitation. 2005;64:353-362.
43 44 45	17	12.	Sutton RM, Niles D, Nysaether J, et al. Quantitative Analysis of CPR Quality During In-
46 47 48	18		Hospital Resuscitation of Older Children and Adolescents. Pediatrics. 2009;124(2):494-9.
48 49 50	19	13.	Yannopoulos S, McKnite S, Aufderheide TP, Sigurdsson G, Pirrallo RG, Benditt D, Lurie
51 52	20		KG. Effect of incomplete chest wall decompression during cardiopulmonary resuscitation
53 54 55	21		on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest.
56 57 58 59 60	22		Resuscitation. 2005;64:363-72.

3 4 5	1	14. Neumar RW, Shuster M, Callaway CW, et al. 2015 American Heart Association
6 7	2	Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular
8 9	3	Care, Part 1: Executive Summary. Circulation. 2015;132:S315-67.
10 11 12	4	15. Perkins GD, Handley AJ, Koster RW, et al. European Resuscitation Council Guidelines
13 14	5	for Resuscitation 2015 Section 2. Adult basic life support and automated external
15 16 17	6	defibrillation. Resuscitation. 2015;95:81-99.
18 19	7	16. Abella BS, Edelson DP, Kim S, et al. CPR quality improvement during in-hospital
20 21 22	8	cardiac arrest using a real-time audiovisual feedback system. Resuscitation.
23 24	9	2007;73(1):54–61.
25 26 27	10	17. Hostler D, Everson-Stewart S, Rea TD, et al; Effect of real-time feedback during
28 29	11	cardiopulmonary resuscitation outside hospital: prospective, cluster-randomised trial.
30 31 32	12	BMJ 2011;342(d512):1-10.
33 34	13	18. Buleon C, Delaunay J, Parienti JJ., Halbout L., Arrot X, Gerard JL., Hanouz JL.
35 36 37	14	Impact of a feedback device on chest compression quality during extended manikin CPR:
38 39	15	a randomized crossover study. Am J Emerg Med. 2016;34:1754-1760.
40 41 42	16	19. Bobrow BJ, Vadeboncoeur TF, Stolz U, et al. The influence of scenario-based training
42 43 44	17	and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation
45 46 47	18	quality and survival from out-of-hospital cardiac arrest. Ann Emrg Med. 2013;62(1):47-
47 48 49	19	56.
50 51	20	20. Skorning M, Beckers SK, Brokmann JC, et al. New visual feedback device improves
52 53 54	21	performance of chest compressions by professionals in simulated cardiac arrest.
55 56	22	Resusciation. 2010;81:53-58.
57 58	LL	Kesuselution. 2010,01.33-30.
59 60		

Page 27 of 40

1

BMJ Open

2			
3 4	1	21	Buleon C, Parienti J-J, Halbout L, et al. Improvement in chest compression quality using
5	•	21.	Bulcon C, Furtenit S S, Hubbat E, et al. Improvement in chest compression quanty using
6	2		a feedback device (CPRmeter): a stimulation randomized crossover study. Am J Emerg
7 8			
9	3		Med. 2013;31:1457-1461.
10			
11 12	4	22.	Kramer-Johansen J, Myklebust H, Wik L, et al. Quality of out-of-hospital
13			
14	5		cardiopulmonary resuscitation with real time automated feedback: a prospective
15 16			
17	6		interventional study. Resuscitation. 2006;71:283-292.
18	_		
19 20	7	23.	Cheng A, Brown LL, Duff JP, et al.; International Network for Simulation-Based
20	•		
22	8		Pediatric Innovation, Research, & Education (INSPIRE) CPR Investigators. Improving
23	0		and in the new power terms with a CDD far thank device and refresher simulations
24 25	9		cardiopulmonary resuscitation with a CPR feedback device and refresher simulations
26	10		(CPR CARES Study): a randomized clinical trial. JAMA Pediatr. 2015; 169:137-44.
27	10		(CERCARES Study): a randomized chinear trai. JAWA Fediati. 2015, 109.157-44.
28 29	11	24	Cheng A, Overly F, Kessler D, et al.; International Network for Simulation-Based
30	••	21.	cheng H, Overly F, Ressier D, et al., international Network for Simulation Dased
31	12		Pediatric Innovation, Research, & Education (INSPIRE) CPR Investigators. Perception of
32 33			
34	13		CPR quality: Influence of CPR feedback, Just-in-Time CPR training and provider role.
35			
36 37	14		Resuscitation 2015;87:44-50.
38			
39	15	25.	White AE, Ng HX, Ng WY, Ng EKX, Fook-Chong S, Kua PHJ, Ong MEH. Measuring
40 41			
42	16		the effectiveness of a novel CPRcard TM feedback device during stimulated chest
43			
44 45	17		compressions by non-healthcare workers. Singapore Med J 2017:58:438-445.
46	10	20	Tanala C. White A.F. Casicala D. et al. Companies of suchta affahast companying
47	18	20.	Tanaka S, White AE, Sagisaka R, et al. Comparison of quality of chest compressions
48 49	19		during training of laypersons using Push Heart and Little Anne manikins using blinded
5 0	13		during training of taypersons using I usit freatt and Entite Affice manikins using officed
51	20		CPRcards. Int Emerg Med. 2017;10(1):20.
52	20		Ci iceards. Int Emerg Wed. 2017;10(1).20.
53 54	21	27.	Baldi E, Cornara S, Contri E, et al. Real-time visual feedback during training improves
55			
56	22		layperson's CPR quality: a randomized controlled manikin study. CJEM. 2017;19(6):480-
57 58			
59	23		487.
60			

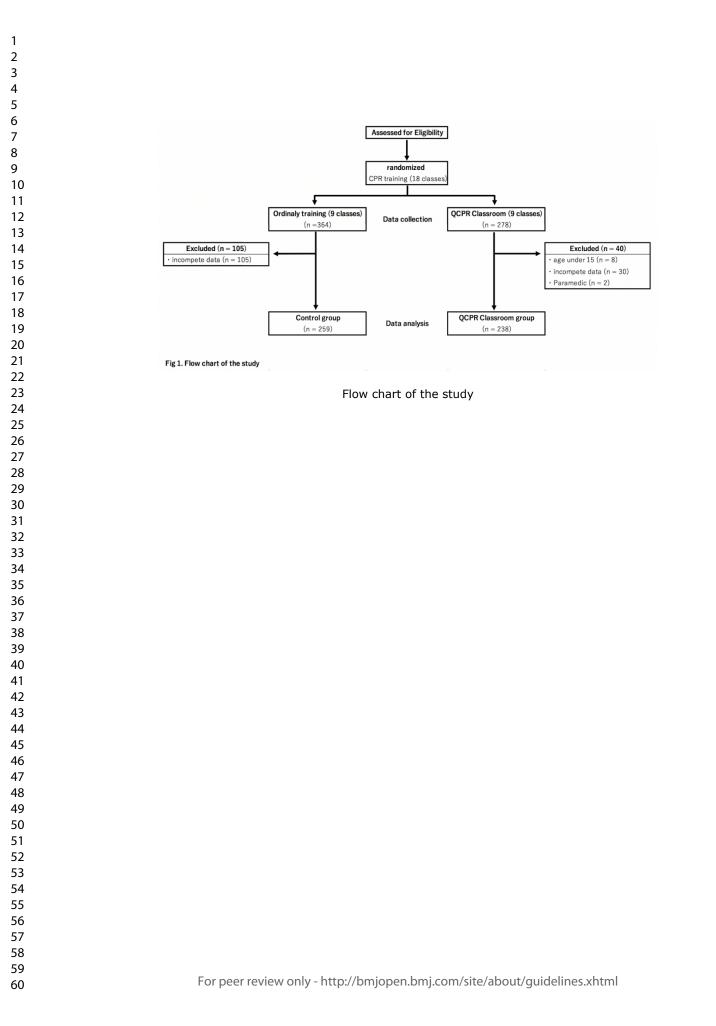
Page 28 of 40

BMJ Open

1	28. Yeung J, Meeks R, Edelson D, Gao F, Soar J, Perkins G. The use of CPR
2	feedback/prompt devices during training and CPR performance: A systematic review.
3	Resuscitation. 2009;80:743-751.
4	29. Kong SY, Shin SD, Song KJ, et al. Effect of instructor's real-time feedback using QCPR-
5	classroom device during layperson cardiopulmonary resuscitation (CPR) training on
6	quality of CPR Performances: A prospective cluster-randomised trial. BMJ Open.
7	2018;8:doi:10.1136/bmjopen-2018-EMS.25.
8	30. Nishiyama C, Iwami T, Kawamura T, Ando M, Yonemoto N, Hiraide A, Nonogi H.
9	Quality of chest compressions during continuous CPR; comparison between chest
10	compression-only CPR and conventional CPR. Resuscitation. 2010;81:1152-1155.
11	31. American Heart Association. AHA requirement on Use of feedback devices in adult CPR
12	training courses. (Accessed 1 September 2017, at
13	http://ahainstructornetwork.americanheart.org/idc/groups/ahaecc-
14	public/@wcm/@ecc/documents/downloadable/ucm_495639.pdf.).
15	32. Cortegiani A, Russotto V, Montalto F, Iozzo P, Meschis R, Pugliesi M, et al. (2017) Use
16	of a Real-Time Training Software (Laerdal QCPR®) Compared to Instructor-Based
17	Feedback for High-Quality Chest Compressions Acquisition in Secondary School
18	Students: A Randomized Trial. PLoS ONE 12(1): e0169591.
19	33. Jones I, Whitefield R, Colquhoun M, Chamberlain D, Vetter N, Newcombe R, et al. At
20	what age can schoolchildren provide effective chest compressions? AN observational
21	study from the Heartstart UK schools training programme. BMJ. 2007;334:1201.
22	34. Contri E, Cornara S, Somaschini A, et al.Complete chest recoil during laypersons' CPR:
23	Is it a matter of weight? Am J Emerg Med. 2017;35:1266-1268.

Page 29 of 40

1 2


BMJ Open

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22 23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	35. Kaye W, Rallis SF, Mancini ME, et al. The problem of poor retention of cardiopulmonary
2	resuscitation skills may lie with the instructor, not the learner or the curriculum.
3	Resuscitation. 1991;21:67-87.
4	36. Parnell MM, Larsen PD. Poor quality teaching in lay person CPR courses. Resuscitation.
5	2007;73:271-278.
6	37. Wagner P, Lingemann C, Arntz HR, Breckwoldt J. Official lay basic life support courses
7	in Germany: is delivered content up to date with the guidelines? An observational study.
8	Emerg Med J. 2015;32(7):547-52.
9	38. Møller TP, Hansen CM, Fjordholt M, Pedersen BD, Østergaard D, Lippert FK.
10	Debriefing bystanders of out-of-hospital cardiac arrest is valuable. Resuscitation.
11	2014;85:1504-1511.
12	39. Hirose T, Iwami T, Ogura H, et al. Effectiveness of a simplified cardiopulmonary
13	resuscitation training program for the non-medical staff of a university hospital. Scand J
14	Trauma Resusc Emerg Med. 2014;22(31):1-7.
15	40. Lynch B, Einspruch EL, Nichol G, Aufderheide TP. Assessment of BLS skills:
16	optimizing use of instructor and manikin measures. Resuscitation. 2008;76:233-243.
17	41. Wik L, Steen PA, Bircher NG. Quality of bystander cardiopulmonary resuscitation
18	influences outcome after prehospital cardiac arrest. Resuscitation. 1994;28:195-203.
19	42. Van Hoeyweghen RJ, Bossaert LL, Mullie A, et al. Quality and efficiency of bystander
20	CPR. Resuscitation. 1993;26:47-52. Emerg Med J. 2014;0:1-6.
21	43. Gallagher EJ, Lombardi G, Gennis P. Effectiveness of bystander cardiopulmonary
22	resuscitation and survival following out-of-hospital cardiac arrest. JAMA.
23	1995;274:1992-1925.

BMJ Open

3 4 5	1	44. Takei Y, Nishi T, Matsubara H, Hashimoto M, Inaba H. Factors associated with quality
6 7	2	of bystander CPR: the presence of multiple rescuers and bystander-initiated CPR without
8 9 10	3	instruction. Resuscitation. 2014;85:492-498.
11 12	4	45. Tanaka S, Rodrigues W, Sotir S, Sagisaka R, Tanaka H. CPR Performance in the
13 14 15	5	Presence of Audiovisual Feedback or Football Shoulder Pads. BMJ Open Sport Exerc
16 17	6	Med. 2017;3(1):e000208.
18 19 20	7	46. Japan Resuscitation Council. Chapter 8 ETI: Education, Implementation, and Teams.
21 22	8	(Accessed 2 December 2017, at http://www.japanresuscitationcouncil.org/wp-
23 24 25	9	content/uploads/2016/04/b7b5b647189bc07f38f6fecf014cf5d9.pdf).
26 27 28	10 11	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54		
55 56 57 58 59 60		

BMJ Open: first published as 10.1136/bmjopen-2018-026140 on 11 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Fig 2. Image of QCPR Classroom feedback system

Image of QCPR Classroom feedback system

P	a
1 2 3 4	
4 5 6	
7 8 9	
1 1	0 1
1 1	2 3 4
1 1	5 6
1 1 1	7 8 9
2 2	0 1
2	2 3 4
2	5 6 7
2 2	8 9
3	0 1 2
3	3 4 5
3 3	6 7
3	8 9 0
4 4 4	2
4	
4	^

Fig 3. Image of actual display on the front screen

Image of actual display on the front screen

Date: / /

Research Institute of Disaster Management and EMS, Kokushikan University

Survey

We conduct this survey for those who had a CPR training. Thank you for your cooperation to take part in this survey. The result will only use for a research purpose and will be kept in the strictest confidentiality. Please make a circle (o) or fill in the blank.

1. Number of ma	nnikin:			2. Sex: male	/ female
3. Age:	years old	height:	cm	weight:	kg
4. Have you ever	taken CPR traini	ng course? Yes	s / No		

5. if "Yes" on question 4, did you take within a year? Yes / No

Question 6: On a scale 1 to 10, with 1 being very difficult and 10 being very easy, ...

6. How do you rate the ease of understanding the feedback from instructor?

(1) rate	(1 = very difficult)	1	2	3	4	5	6	7	8	9	10	(10 = very easy)
(2) depth	(1 = very difficult)	1	2	3	4	5	6	7	8	9	10	(10 = very easy)
(3) recoil	(1 = very difficult)	1	2	3	4	5	6	7	8	9	10	(10 = very easy)

Question 7 & 8: On a scale 1 to 10, with 1 being not confident and 10 being very confident, ...

7. How much confidence do you have to perform chest compression before training?

(1) rate	(1 = not confident)	1	2	3	4	5	6	7	8	9	10 (10 = very confident)
(2) depth	(1 = not confident)	1	2	3	4	5	6	7	8	9	10 (10 = very confident)
(3) recoil	(1 = not confident)	1	2	3	4	5	6	7	8	9	10 (10 = very confident)

8. How much confidence do you have to perform chest compression after training?

(1) rate	(1 = not confident)	1	2	3	4	5	6	7	8	9	10	(10 = very confident)
(2) depth	(1 = not confident)	1	2	3	4	5	6	7	8	9	10	(10 = very confident)
(3) recoil	(1 = not confident)	1	2	3	4	5	6	7	8	9	10	(10 = very confident)

9. Please feel free to comments

Section/Topic	Item No	Standard Checklist item	Extension for cluster designs	Page No *
Title and abstract				
	1a	Identification as a randomised trial in the title	Identification as a cluster randomised trial in the title	1
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts) ^{1,2}	See table 2	2
Introduction		~		
Background and objectives	2a	Scientific background and explanation of rationale	Rationale for using a cluster design	5-6
	2b	Specific objectives or hypotheses	Whether objectives pertain to the the cluster level, the individual participant level or both	6
Methods				
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	Definition of cluster and description of how the design features apply to the clusters	8
	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons		n/a
Participants	4a	Eligibility criteria for participants	Eligibility criteria for clusters	7
	4b	Settings and locations where the data were collected		7
Interventions	5	The interventions for each group with sufficient details to allow replication, including how	Whether interventions pertain to the cluster level, the individual participant level or both	7-8

Table 1: CONSORT 2010 checklist of information to include when reporting a cluster randomised trial

1
2
3
4
5 6
6 7
, 8
9
10
11
12 13
14
15
16
17 18
19
20
21
22
23 24
24 25
26
27
28
29 30
31
32
33
34 35
36
37
38
39
40 41
41 42
43
44
45
46 47
47
49
50
51
52 53
55 54
55
56
57
58 59
29

		and when they were actually administered		
Outcomes	6a	Completely defined pre- specified primary and secondary outcome measures, including how and when they were assessed	Whether outcome measures pertain to the cluster level, the individual participant level or both	7-8
	6b	Any changes to trial outcomes after the trial commenced, with reasons		n/a
Sample size	7a	How sample size was determined	Method of calculation, number of clusters(s) (and whether equal or unequal cluster sizes are assumed), cluster size, a coefficient of intracluster correlation (ICC or <i>k</i>), and an indication of its uncertainty	7
	7b	When applicable, explanation of any interim analyses and stopping guidelines		n/a
Randomisation:				
Sequence generation	8a	Method used to generate the random allocation sequence	2	8
	8b	Type of randomisation; details of any restriction (such as blocking and block size)	Details of stratification or matching if used	8
Allocation concealment mechanism	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	Specification that allocation was based on clusters rather than individuals and whether allocation concealment (if any) was at the cluster level, the individual participant level or both	n/a
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who	Replace by 10a, 10b and 10c	8

1 2 3 4 5 6 7 8 9 10 11 12 13	
14 15 16 17 18	
19 20 21 22 23	
24 25 26 27 28	
29 30 31 32 33	
34 35 36 37	
38 39 40 41 42	
43 44 45 46 47	
48 49 50 51 52	
53 54 55 56 57 58 59 60	

		assigned participants to interventions		
	10a		Who generated the random allocation sequence, who enrolled clusters, and who assigned clusters to interventions	8
	10b		Mechanism by which individual participants were included in clusters for the purposes of the trial (such as complete enumeration, random sampling)	8
	10c	Peer ke	From whom consent was sought (representatives of the cluster, or individual cluster members, or both), and whether consent was sought before or after randomisation	7
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and how	participants	7-8
	11b	If relevant, description of the similarity of interventions		n/a
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	How clustering was taken into account	11-12
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses		n/a
		adjusted analyses		

י ר
2
3
4
5
6
7
8
9
10
11
12
12
17
14
15
10
17
18
19
20
21
22
23
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 9 30 31 32 33 34 35 36 37 38
25
26
27
28
20
20
50 21
31
32
33
34
35
36
37
38
39
40
41
42
43
44
44
45 46
46 47
48
49
50
51
52
53
54
55
56
57
58
59

Participant flow (a diagram is strongly recommended)	13a 13b	For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome For each group, losses	For each group, the numbers of clusters that were randomly assigned, received intended treatment, and were analysed for the primary outcome	12, Fig 1 12, Fig 1
		and exclusions after randomisation, together with reasons	exclusions for both clusters and individual cluster members	,,
Recruitment	14a	Dates defining the periods of recruitment and follow-up		7
	14b	Why the trial ended or was stopped		n/a
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	Baseline characteristics for the individual and cluster levels as applicable for each group	10, Table 1
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	For each group, number of clusters included in each analysis	12
Outcomes and estimation	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval)	Results at the individual or cluster level as applicable and a coefficient of intracluster correlation (ICC or k) for each primary outcome	12-16
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended		n/a
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing		n/a

1 2
- 3 4
5 6
7 8
9 10
11 12 13
13 14 15
16 17 18
19
20 21
22 23
24 25 26
 23 24 25 26 27 28 29 20
30
31 32
33 34 35
35 36 37
38 39
40 41
42 43
44 45 46
40 47 48
49 50
51 52
53 54 55
55 56 57
57 58 59
60

		pre-specified from		
		exploratory		
Harms	19	All important harms or		n/a
		unintended effects in		
		each group (for specific		
		guidance see CONSORT		
		for harms ³)		
Discussion				
Limitations	20	Trial limitations,		21-22
		addressing sources of		
		potential bias,		
		imprecision, and, if		
		relevant, multiplicity of		
		analyses		
~				
Generalisability	21	Generalisability (external	Generalisability to clusters	16-21
		validity, applicability) of	and/or individual participants	
		the trial findings	(as relevant)	
Interpretation	22	Interpretation consistent		n/a
		with results, balancing		
		benefits and harms, and		
		considering other relevant		
		evidence		
Other information				
Registration	23	Registration number and		n/a
		name of trial registry		
Protocol	24	Where the full trial		n/a
		protocol can be accessed,		
		if available		
Funding	25	Sources of funding and		23
		other support (such as		
		supply of drugs), role of		
		funders		

- Hopewell S, Clarke M, Moher D, Wager E, Middleton P, Altman DG, et al. CONSORT for reporting randomised trials in journal and conference abstracts. Lancet 2008, 371:281-283
- Hopewell S. Clarke M, Moher D, Wager E, Middleton P, Altman DG at al (2008) CONSORT for reporting randomized controlled trials in journal and conference abstracts: explanation and elaboration. PLoS Med 5(1): e20
- Ioannidis JP, Evans SJ, Gotzsche PC, O'Neill RT, Altman DG, Schulz K, Moher D. Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann ms ... J4; 141(10):r.. Intern Med 2004; 141(10):781-788.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml