BMJ Open

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Time trend of cardiovascular disease risk factors over a 10year period in the office-working population in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025915
Article Type:	Research
Date Submitted by the Author:	15-Aug-2018
Complete List of Authors:	Cheng, Yang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Hongli; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Zheng, Hui; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Donghua; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Gang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Ying, Shanping; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Li, Xiaohong; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Dai, Hui; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Zhao, Lvkun; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Shen, Chong; Jiangsu Province Institute of Geriatrics, Division of Clinical Epidemiology; School of Public Health, Nanjing Medical University, Department of Epidemiology Shen, Zhixiang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Gu, Liubao; Jiangsu Province Institute of Geriatrics, Division of Clinical Epidemiology
	Ten-year period, cardiovascular risk factors, office-working population
Keywords:	Ten

SCHOLARONE ${ }^{\text {" }}$
Manuscripts

Time trend of cardiovascular disease risk factors over a 10-year period in the office-working population in China

Yang Cheng ${ }^{1}$, Hongli Yin ${ }^{1}$, Hui Zheng ${ }^{1}$, Donghua Yin ${ }^{1}$, Gang Yin ${ }^{1}$, Shanping Ying ${ }^{1}$, Xiaohong Li ${ }^{1}$, Hui Dai ${ }^{1}$, Lvkun Zhao ${ }^{1}$, Chong Shen ${ }^{2,3}$, Zhixiang Shen ${ }^{1}$, Liubao Gu ${ }^{2}$
${ }^{1}$ Center for Health Managenent, Jiangsu Province Institute of Geriatrics, Nanjing, China
${ }^{2}$ Division of Clinical Epidemiology, Jiangsu Province Institute of Geriatrics, Nanjing, China
${ }^{3}$ Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing,

China

Correspondence to Zhixiang Shen; email: 13913000003@126.com.

Zhixiang Shen and Liubao Gu contributed equally to this paper.

Yang Cheng and Hongli Yin contributed equally to this paper.

Abstract

Objectives: Recent dramatic increases in cardiovascular disease (CVD) mortality in China can be mostly explained by adverse changes in major cardiovascular risk factors (CVRFs). Our study aimed to assess the trend of CVRFs by a ten-year lag in Nanjing, China. Methods: 8017 and 9379 subjects from multiple work units of Nanjing were included in the present study, who attended the routine health examination in 2008 and 2017 seperately. The trends of three medical conditions of hypertension, dyslipidemia and diabetes were analyzed. Results: From 2008 to 2017, the prevalence of hypertension declined, while the prevalence of dyslipidemia and diabetes increased. Besides, we found that the population in 2008 and 2017 had an average of 0.66 and 0.78 risk factors, respectively. And number of CVD risk factors increased with age. Conclusion: CVRFs are common in office-working people in Nanjing, China. Effective interventions and treatment against risk factors should be adopted in the high risk population.

Strength and limitations of this study

- We used the two independent large health check-up population with approximately 10,000 sample sizes, most of whom are office-working population to assess trends in cardiovascular risk factors over a 10-year period.
- The exposure distribution of all risk factors was estimated on the basis of original data.
- We only considered 4 factors (blood pressure, LDL, glucose and BMI), without considering any dietary factors and smoking, because of the lack of these parameters.
- The definitions of these conditions are continuously changing and may also be stratified.

Keywords: Ten-year period; cardiovascular risk factors; office-working population

Introduction

Cardiovascular disease (CVD) is highly prevalent and remains the predominant cause of premature mortality worldwide[1]. In China, estimated annual death due to CVD had increased to 2.7 million, which accounts for about 40% of all-cause mortality per year[2]. There are various of cardiovascular risk factors (CVRFs), known to increase the risk of CVD [3-8], including diabetes, hypertension, dyslipidemia, obesity and smoking. Data from the National Health Interview Survey (NHIS) found that approximately 26% of US adults had multiple (≥ 2) CVRFs[9]. Robust evidence supports that the presence of any form of combination of diabetes, hypertension and dyslipidemia, has an even higher risk for the development of cardiovascular diseases than each condition alone[10].

In recently years, a substantial increase was seen in the prevalence of overweight and diabetes mellitus worldwide[11, 12], whereas the prevalence of hypertension was reported to be stable over time[13-15] and the prevalence of hypercholesterolemia remained at almost epidemic levels[16-18]. In China, with the huge economic development and changes of lifestyles including higher calorie and cholesterol intake and reduced physical activities, the frequencies and profiles of CVRFs have changed even more dramatically. Given that fact that the ongoing deterioration of the CVRFs seems to be the major reason that induces the surge of CVD in China, CVRFs screening may detect and attenuate these modifiable factors earlier and thereby improve patients' life expectancy and functional status by reduction of CVD risks. However, to data, little was known about the time trend of CVRFs in China.

The present study aims to investigate the long-term trends of CVRFs in China by a 10 years time from 2008 and 2017 in the office-working population using a large health administrative database in Jiangsu, China.

Methods

Participants

This was an observational study for the office-working population conducted at the health manage center in Jiangsu Province Official Hospital (Nanjing, China). All the participants took a health check-up including a routine medical examination, anthropometric
measurements, and information on medical history in the year 2008 and 2017. After excluding those under 18 years or with missing information on diagnosis, a total of 8017 participants in 2008 and 9379 participants in 2017 were included for the final analysis. The study was approved by the Ethics Committee of Jiangsu Province Institute of Geriatrics. Written informed consent was obtained from all participants.

Clinical assessment

Demographic characteristics including age and sex were collected from all participants by trained nurses. Personal medical histories, including hypertension, diabetes and dyslipidemia, were reported by all participants. Body weight, height and blood pressure were measured using standard instruments and protocols by trained staff [19]. Body mass index (BMI) was calculated as weight in kilograms divided by the height in meters squared. Low-density lipoprotein cholesterol (LDL-C) and fasting plasma glucose (FPG) measured during an overnight fast of more than 8 hours. We defined the four CVD risk factors as the following (also see Supplementary Table 1): 1) Obesity: BMI $\geqq 28 \mathrm{~kg} / \mathrm{m}^{2}$; 2) Hypertension: Blood pressure $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$ and/or self-reported history of hypertension; 3) Dyslipidemia: LDL-C $\geq 4.14 \mathrm{mmol} / \mathrm{L}$ and $/$ or self-reported dyslipidemia; 4) Diabetes: $\mathrm{FPG} \geq 7.0 \mathrm{mmol} / \mathrm{L}$ and/or self-reported diabetes.

Statistical analysis

Comparisons between different years were conducted using Student's T-test for continuous variables and Chi-squared test for categorical variables. The standard prevalent rates were standardized by age and sex using the population composition from the 2010 Chinese census population. Data analyses were carried out by R software (Version 3.0.2, 2013-09-25; R Foundation for Statistical Computing, http://www.cran.r-project.org/). The significance level was set at $P<0.05$ and P values were given for two-sided tests.

Patient and public involvement
The participants of this study represent a large office-working population in China. They were not involved neither in the study design, nor in the conduct of the study. However, they were informed that their physical examination data (including blood pressure, cholesterol levels,
blood glucose, etc) and baseline information may be in scientific study. And all scientific study results are continuously communicated to the participants by phone.

Results

The characteristics of the study population were shown in Supplementary Table 2. A total of 8017 and 9397 subjects were included in the analysis in 2008 and 2017. There was no significant difference in the distribution of sex. Compared to those of 2008, the percentage of older (age ≥ 60), overweight and obese subjects increased by $9.89 \%, 2.42 \%$ and 3.26% separately in 2017. In addition, in 2017, more subjects had the history of the three medical conditions (systolic blood pressure, LDL-C and blood glucose).

The crude prevalence of hypertension, dyslipidemia and diabetes were all increased over the study period, from $37.87,10.84$ and 8.57% in 2008 to $39.14,14.20$ and 12.17% in 2017
(Table 1). Interestingly, we found that after standardized by age and sex, the trend for hypertension was reversed with a decline in 2017. In age groups, a downward trend of hypertension was identified among subjects younger than 69 years old, after which a more rapid increase was observed in 2017 (Figure 1A). As expected, a significant increase was confirmed for dyslipidemia and diabetes in 2017 even adjusted for age and sex $(P<0.001$, Table 1). Besides, the age-specific analysis showed that the prevalent rates were higher in 2017 for these two conditions (Figure 1B and C). The overall prevalence for three medical factors were similar when stratified by gender and age (Figure $\mathbf{2 A}$ and \mathbf{B}) for patients identified by examination or self-reported alone (Supplementary Table 3).

The distribution of CVRFs for 2008 and 2017 are displayed in Table 2. We found that $47.46 \%, 15.14 \%$ and 3.32% of the subjects had $\geq 1, \geq 2$ and ≥ 3 risk factors in 2008 . In contrast, there was a gain in the percentage of risk factors in 2017 with $54.00 \%, 19.70 \%$ and 3.75%, respectively. The average numbers of CVD risk factors in 2008 and 2017 were 0.66 and 0.78 and increased with age (Supplementary Figure 1).

Discussion

To our knowledge, only a few previous studies have estimated future CVD burden in China before $2010[20,21]$. In the present study, we examined the prevalence of hypertension,
dyslipidemia and diabetes and the potential impact by a ten-year period in Nanjing, China. As the sampling frame covers almost all the government departments of Jiangsu, this study is a good reflect of office-working populations.

In the past 10 years, the percentage of overweight and obesity showed an upward trend, which is consistent with the result from 2010 China Chronic Disease Monitoring Program[22]. It has been reported that the worldwide ranking of obese populations in China has moved to second in 2014[23]. In addition to diets, changes in lifestyle have taken place. Chinese have become more sedentary, especially for working population in the agency [24]. Meanwhile, around 61% of rural households owned a motorcycle, and 19% of urban households owned a car in 2011.

Hypertension was reported to the most prominent CVRF among Chinese. From 1988 to 2008, there was an increasing trend of hypertension prevalence in Americans aged 40 years and older [25]; however, the prevalence of hypertension in Japan[26], Germany[27], Italy[28] and Korea [29] decreased. In our study, we found a significant decline in the prevalence trend for hypertension among Chinese adults in 2017 compared with 2008. As we all known, higher socioeconomic status could positively improve the awareness and control of hypertension, and people would also have a better compliance of medicine treatment. According to a survey in 13 provinces from 2009 to 2010 , among 50,171 subjects aged at least 18 years, the awareness, treatment, and control rates as well as the treatment-control rate of hypertension were $42.6,34.1,9.3$, and 27.4%, respectively, also higher than those in $2002(30.2,24.7,6.1$, and 25.0%, respectively)[30].

High blood LDL cholesterol was the second leading risk factor for CVD. In agreement with previous Swiss[31], French[32] and German[33] studies, the prevalence of hypercholesterolemia increased significantly between 2008 and 2017. Diabetes is a growing epidemic in China, occurring at a relatively young age[34]. In the 1980s, diabetes was rare in China, with an estimated prevalence of 0.67%. In subsequent national surveys conducted in 1994[35], 2000 to 2001 [36], 2007 to 2008[37], and 2010 to 2011 [38], the prevalence was $2.5 \%, 5.5 \%, 9.7 \%$ and 11.6%, respectively. In this study, we found that the crude prevalence increased from 8.57% in 2008 to 12.17% in 2017. Those data imply that CVD events associated with high LDL and glucose will continue to increase in the further.

The main strength of this study was the use of the two independent large health check-up population with approximately 10,000 sample sizes. All measurements and data were collected with standardized methods over time. Secondly, the exposure distribution of all risk factors was estimated on the basis of original data. Previous disease-burden projects were on the basis of pooling exposure distributions from different studies. The original data-based estimation allowed us to account for potential residual confounding, although it could not be completely eliminated.

The findings in the present study are subject to several limitations. First, the definitions of these conditions are continuously changing and may also be stratified. For example, hypertension could be defined as $\mathrm{BP} \geq 130 / 80 \mathrm{mmHg}$ for diabetic subjects [39]. Secondly, we only considered 4 factors (blood pressure, LDL, glucose and BMI), without considering any dietary factors and smoking, because of the lack of these parameters.

In conclusion, high blood pressure stills remains the leading factor among CVRFs in China, despite of a significant decline by a ten-year period. Besides, increasing dyslipidemia and diabetes were also important in CVRFs. More intensive treatment regimens are needed for patients with the three medical conditions, in order to curb the cardiovascular endpoints expected in the near future.

Acknowledgements

The authors thank all participants, researchers and support staffs who have contributed to this studies.

Contributors

YC completed the analyses and led the writing. ZX-S and LB-G initiated, conceived and supervised the study. HL-Y assisted with the study and analyses. HZ participated in the data collation. XH-L and GY managed the physical examination. LK-Z and HD participated in the implementation of physical examination. SP-Y and DH-Y checked the results of physical examination.

Funding

This research was supported by grants 71373132 from National Natural Science Foundation of China, BK20151591 from Natural Science Foundation of Jiangsu, and 201605063 from Nanjing Science and Technology Development Project.

Competing interests No potential conflicts of interest relevant to this article were reported.

Patient consent Not required.

Ethics approval The study was approved by the Ethics Committee of Jiangsu Province Institute of Geriatrics.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All available data are included in this manuscript.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

References

1. Mathers CD, Loncar D, Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3:e442.
2. DALYs GBD, Collaborators H, Murray CJ ,et al., Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 2015; 386:2145-2191.
3. Yusuf S, Hawken S, Ounpuu S ,et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364:937-952.
4. Almdal T, Scharling H, Jensen JS ,et al., The independent effect of type 2 diabetes mellitus on
ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 2004; 164:1422-1426.
5. Lewington S, Clarke R, Qizilbash N ,et al., Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903-1913.
6. Eckel RH, York DA, Rossner S ,et al., Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: executive summary. Circulation 2004; 110:2968-2975.
7. Bogers RP, Bemelmans WJ, Hoogenveen RT ,et al., Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300000 persons. Arch Intern Med 2007; 167:1720-1728.
8. Prescott E, Hippe M, Schnohr P ,et al., Smoking and risk of myocardial infarction in women and men: longitudinal population study. BMJ 1998; 316:1043-1047.
9. Ward BW, Schiller JS, Prevalence of multiple chronic conditions among US adults: estimates from the National Health Interview Survey, 2010. Preventing chronic disease 2013; 10:E65.
10. Neaton JD, Wentworth D, Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316,099 white men. Multiple Risk Factor Intervention Trial Research Group. Arch Intern Med 1992; 152:56-64.
11. Danaei G, Finucane MM, Lu Y ,et al., National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011; 378:31-40.
12. Finucane MM, Stevens GA, Cowan MJ ,et al., National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011; 377:557-567.
13. Wolf-Maier K, Cooper RS, Banegas JR ,et al., Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003; 289:2363-2369.
14. Hajjar I, Kotchen TA, Trends in prevalence, awareness, treatment, and control of hypertension
in the United States, 1988-2000. JAMA 2003; 290:199-206.
15. Guo F, He D, Zhang W ,et al., Trends in prevalence, awareness, management, and control of hypertension among United States adults, 1999 to 2010. J Am Coll Cardiol 2012; 60:599-606.
16. Carroll MD, Lacher DA, Sorlie PD ,et al., Trends in serum lipids and lipoproteins of adults, 1960-2002. JAMA 2005; 294:1773-1781.
17. Toth PP, Potter D, Ming EE, Prevalence of lipid abnormalities in the United States: the National Health and Nutrition Examination Survey 2003-2006. J Clin Lipidol 2012; 6:325-330.
18. Ford ES, Li C, Pearson WS ,et al., Trends in hypercholesterolemia, treatment and control among United States adults. Int J Cardiol 2010; 140:226-235.
19. Chen Z, Lee L, Chen J ,et al., Cohort profile: the Kadoorie Study of Chronic Disease in China (KSCDC). International journal of epidemiology 2005; 34:1243-1249.
20. Moran A, Gu D, Zhao D ,et al., Future cardiovascular disease in china: markov model and risk factor scenario projections from the coronary heart disease policy model-china. Circ Cardiovasc Qual Outcomes 2010; 3:243-252.
21. Li Y, Wang DD, Ley SH ,et al., Potential Impact of Time Trend of Life-Style Factors on Cardiovascular Disease Burden in China. J Am Coll Cardiol 2016; 68:818-833.
22. Weiwei C, Runlin G, Lisheng L ,et al., Outline of the report on cardiovascular diseases in China, 2014. European heart journal supplements : journal of the European Society of Cardiology 2016; 18:F2-F11.
23. Collaboration NCDRF, Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016; 387:1377-1396.
24. Ng SW, Howard AG, Wang HJ ,et al., The physical activity transition among adults in China: 1991-2011. Obes Rev 2014; 15 Suppl 1:27-36.
25. Egan BM, Zhao Y, Axon RN, US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA 2010; 303:2043-2050.
26. Hata J, Ninomiya T, Hirakawa Y ,et al., Secular trends in cardiovascular disease and its risk factors in Japanese: half-century data from the Hisayama Study (1961-2009). Circulation 2013; 128:1198-1205.
27. Neuhauser HK, Adler C, Rosario AS ,et al., Hypertension prevalence, awareness, treatment and control in Germany 1998 and 2008-11. J Hum Hypertens 2015; 29:247-253.
28. Di Lonardo A, Donfrancesco C, Palmieri L ,et al., Time Trends of High Blood Pressure Prevalence, Awareness and Control in the Italian General Population : Surveys of the National Institute of Health. High Blood Press Cardiovasc Prev 2017; 24:193-200.
29. Kim HJ, Kim Y, Cho Y ,et al., Trends in the prevalence of major cardiovascular disease risk factors among Korean adults: results from the Korea National Health and Nutrition Examination Survey, 1998-2012. Int J Cardiol 2014; 174:64-72.
30. Wang J, Zhang L, Wang F , et al., Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey. Am J Hypertens 2014; 27:1355-1361.
31. Galobardes B, Costanza MC, Bernstein MS ,et al., Trends in risk factors for the major "lifestyle-related diseases" in Geneva, Switzerland, 1993-2000. Annals of epidemiology 2003; 13:537-540.
32. Marques-Vidal P, Ruidavets JB, Amouyel P ,et al., Change in cardiovascular risk factors in France, 1985-1997. Eur J Epidemiol 2004; 19:25-32.
33. Laaser U, Breckenkamp J, Trends in risk factor control in Germany 1984-1998: high blood pressure and total cholesterol. European journal of public health 2006; 16:217-222.
34. Chan JC, Malik V, Jia W ,et al., Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009; 301:2129-2140.
35. Pan XR, Yang WY, Li GW ,et al., Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes Care 1997; 20:1664-1669.
36. Gu D, Reynolds K, Duan X ,et al., Prevalence of diabetes and impaired fasting glucose in the Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). Diabetologia 2003; 46:1190-1198.
37. Yang W, Lu J, Weng J ,et al., Prevalence of diabetes among men and women in China. The New England journal of medicine 2010; 362:1090-1101.
38. Xu Y, Wang L, He J ,et al., Prevalence and control of diabetes in Chinese adults. Jama 2013; 310:948-959.
39. Wong ND, Lopez V, Tang S , et al., Prevalence, treatment, and control of combined
hypertension and hypercholesterolemia in the United States. Am J Cardiol 2006; 98:204-208.

Table 1. The prevalence rates of hypertension, dyslipidemia and diabetes in 2008 and 2017 year based on the examination test and self-reported.

${ }^{\text {a }}$ Standardized prevalence; the prevalence rates were standardized by age and sex based on the 2010 Chinese census population.
${ }^{\text {b }} P$ value for standard prevalence between 2008 and 2017

Table 2. Details of the CVD risk factors among the check-up Chinese subjects in 2008 and 2017 years.

CVD risk factors	2008		2017		P
	N	\%	N	\%	
Obesity					
$\mathrm{BMI} \geq 28 \mathrm{~kg} / \mathrm{m}^{2}$	725	9.04	1154	12.3	<0.001
Hypertension	3036	37.87	3671	39.14	0.09
Dyslipidemia	869	10.84	1332	14.2	<0.001
Diabetes	687	8.57	1141	12.17	<0.001
CVD risk factors					
≥ 1 risk factor	3805	47.46	5065	54	<0.001
≥ 2 risk factor	1214	15.14	1848	19.7	<0.001
≥ 3 risk factor	266	3.32	352	3.75	0.13

Figure legends

Figure 1. Age-specific prevalence in (A) hypertension, (B) hypercholesterolemia and (C) diabetes in 2008 and 2017.

Figure 2. The age-standardized prevalence rates of the three cardiovascular disease factors in males (A) and females (B) in 2008 and 2017.

Figure 1. Age-specific prevalence in (A) hypertension, (B) hypercholesterolemia and (C) diabetes in 2008 and 2017.
$90 \times 90 \mathrm{~mm}(300 \times 300$ DPI)

Figure 2. The age-standardized prevalence rates of the three cardiovascular disease factors in males (A) and females (B) in 2008 and 2017.
$90 \times 90 \mathrm{~mm}(300 \times 300$ DPI)

Supplementary Table 1. The definitions of the four CVD risk factors of the study.

CVD risk factors	Definition
Obesity	BMI $\geq 28 \mathrm{~kg} / \mathrm{m}^{2}$
Hypertension	Blood pressure $\geq 140 / 90 \mathrm{mmHg}$ and/or self-reported disease
Dyslipidemia	LDL-C $\geq 4.14 \mathrm{mmol} / \mathrm{L}$ and/or self-reported disease
Diabetes	Fasting PG $\geq 7.0 \mathrm{mmol} / \mathrm{L}$ and/or self-reported disease

Supplementary Table 2. Clinical and laboratory characteristics of participants.

Variable	Survey Year		\boldsymbol{P}
	2008 (n, \%)	2017 (n, \%)	
All	8017	9379	
Sex			
ManWomen	5171(64.5)	5947(63.41)	0.14
	2846(35.5)	3432(36.59)	
Age	51.08 ± 15.14	53.69 ± 16.77	<0.001
<30	684(8.53)	836(8.91)	
30-40	1213(15.13)	1477(15.75)	
40-50	2016(25.15)	1354(14.44)	
50-60	1781(22.22)	2067(22.04)	
60-70	1142(14.24)	1832(19.53)	
70+	1181(14.73)	1813(19.33)	
BMI			
Thin (<18.5)	280(3.49)	229(2.44)	
Normal (18.5-24)	3948(49.25)	4184(44.61)	
			<0.001
Overweight (24-28)	3064(38.22)	3812(40.64)	
Obese (≥ 28)	725(9.04)	1154(12.3)	
Examination Index			
Systolic pressure	125.63 ± 18.17	130.01 ± 18.99	<0.001
Diastolic pressure	80.85 ± 10.69	77.11 ± 10.79	<0.001

Supplementary Table 3．The prevalence rates of hypertension，hypercholesterolemia and diabetes in 2008 and $\mathbf{g} 017$ year based on the examination

test and self－reported separately．		N				\qquad	
Disease	Survey year	Examination test					
		No．of cases （n）	Prevalence （\％）	Stand－prevalence $(\%)^{a}$	No．of cases （n）	Preginalence 勇 兹\％）	Stand－prevalence $(\%)^{a}$
Hypertension	2008	2420	30.19	22.31	1632	亳0.36 $\dot{3}$	13.11
	2017	3042	32.43	21.40	1728	\＄8．42	9.48
Dyslipidemia	2008	451	5.63	4.67	488	$\begin{aligned} & \text { 웅 } \\ & \hline 8.09 \end{aligned}$	4.27
	2017	1140	12.15	10.88	220	－2． 35	1.27
Diabetes	2008	486	6.06	3.82	447		3.39
						$\stackrel{\text { ¢ }}{\stackrel{\sim}{*}}$	
	2017	1004	10.7	6.02	494	$\begin{aligned} & \stackrel{\rightharpoonup}{5} .27 \\ & \stackrel{\rightharpoonup}{\dot{\sigma}} \end{aligned}$	2.43
${ }^{\text {a }}$ Stand－prevalence：standardized prevalence；the prevalence rates were standardized by age and sex based on the $2010 \stackrel{\text { D }}{\mathrm{D}}$ ． in ．							

For peer review only－http：／／bmjopen．bmj．com／site／about／guidelines．xhtml

Supplementary Figure 1. Average number of total CVD risk factors by age in 2008 and

 2017 years.

Age at baseline interview (year)

STROBE 2007 (v4) Statement-Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	Item \#	Recommendation	Reported on page \#
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	4
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4
Bias	9	Describe any efforts to address potential sources of bias	4
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	4
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	4
		(b) Describe any methods used to examine subgroups and interactions	4
		(c) Explain how missing data were addressed	4
		(d) If applicable, describe analytical methods taking account of sampling strategy	-
		(e) Describe any sensitivity analyses	-
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	-
		(b) Give reasons for non-participation at each stage	-
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	5
		(b) Indicate number of participants with missing data for each variable of interest	-
Outcome data	15*	Report numbers of outcome events or summary measures	5
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	5
		(b) Report category boundaries when continuous variables were categorized	-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	-
Discussion		-	
Key results	18	Summarise key results with reference to study objectives	5
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	7
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	6
Generalisability	21	Discuss the generalisability (external validity) of the study results	7
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	8

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Time trend of cardio-metabolic risk factors over a 10-year period in the office-working population in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025915.R1
Article Type:	Research
Date Submitted by the Author:	06-Nov-2018
Complete List of Authors:	Cheng, Yang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Hongli; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Zheng, Hui; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Donghua; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Gang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Ying, Shanping; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Li, Xiaohong; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Dai, Hui; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Zhao, Lvkun; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Shen, Chong; Jiangsu Province Institute of Geriatrics, Division of Clinical Epidemiology; School of Public Health, Nanjing Medical University, Department of Epidemiology Shen, Zhixiang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Gu, Liubao; Jiangsu Province Institute of Geriatrics, Division of Clinical Epidemiology
Primary Subject Heading:	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	Ten-year period, cardio-metabolic risk factors, office-working population

Time trend of cardio-metabolic risk factors over a 10-year period in the office-working population in China

Yang Cheng ${ }^{1}$, Hongli Yin ${ }^{1}$, Hui Zheng ${ }^{1}$, Donghua Yin ${ }^{1}$, Gang Yin ${ }^{1}$, Shanping Ying ${ }^{1}$, Xiaohong Li ${ }^{1}$, Hui Dai ${ }^{1}$, Lvkun Zhao ${ }^{1}$, Chong Shen ${ }^{2,3}$, Zhixiang Shen ${ }^{1 *}$, Liubao Gu ${ }^{2 *}$
${ }^{1}$ Center for Health Management, Geriatric Hospital of Nanjing Medical University, Nanjing,

China

${ }^{2}$ Division of Clinical Epidemiology, Geriatric Hospital of Nanjing Medical University, Nanjing, China

3 Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China

Correspondence to Zhixiang Shen; email: 13913000003@126.com; Liubao Gu, email: abobgu@126.com.

Yang Cheng and Hongli Yin contributed equally to this paper.

Abstract

Objectives: Recent dramatic increases in cardiovascular disease mortality in China can be mostly explained by adverse changes in hypertension, dyslipidemia, diabetes and obesity, known as cardio-metabolic risk factors. Our study aimed to assess the trend of these four signatures by a ten-year lag in Nanjing, China. Methods: 8017 subjects attended the routine health examination in 2008 and 9379 subjects in 2017, from multiple work units of Nanjing, were included in the present study. The prevalence and trend of four cardio-metabolic risk factors: hypertension, dyslipidemia, diabetes and obesity were analyzed. Results: From 2008 to 2017, the prevalence of hypertension declined, while the prevalence of dyslipidemia, diabetes and obesity increased. Besides, the population in 2008 and 2017 had an average of 0.66 and 0.78 risk factors, respectively. Conclusion: Cardio-metabolic risk factors are common for the staff in administrative agencies and institutions of Nanjing, China. Effective screening and interventions against these risk factors should be adopted in the high-risk population such as office-working populations in China.

Strength and limitations of this study

- We used the two independent large health check-up population with approximately 10,000 sample sizes, most of whom are office-working population to assess trends in cardiovascular risk factors over a 10-year period.
- The exposure distribution of all risk factors was estimated on the basis of original data.
- We only considered 4 factors (blood pressure, LDL, glucose and BMI), without considering any dietary factors and smoking, because of the lack of these parameters.
- The definitions of these conditions are continuously changing and may also be stratified.

Keywords: Ten-year period; cardio-metabolic risk factors; office-working population

Introduction

Cardiovascular disease (CVD) is highly prevalent and remains the predominant cause of premature mortality worldwide[1]. In China, estimated annual death due to CVD had increased to 2.7 million, which accounts for about 40% of all-cause mortality per year[2]. Obesity, diabetes, hypertension and dyslipidemia are established risk factors of CVD and contribute to the prevalence of $\mathrm{CVD}[3-8]$, which were also known as cardio-metabolic risk factors because of their close link with metabolic disorders, cancers and chronic respiratory diseases $[9,10]$.

In recently years, a substantial increase was seen in the prevalence of overweight and diabetes mellitus worldwide[11, 12], whereas the prevalence of hypertension was reported to be stable over time[13-15] and the prevalence of hypercholesterolemia remained at almost epidemic levels[16-18]. In China, with the huge economic development and changes of lifestyles including higher calorie and cholesterol intake and reduced physical activities, the frequencies and profiles of the four signatures have changed even more dramatically. Given the ongoing deterioration of these cardio-metabolic risk factors in China, which may greatly contribute to the surge of CVD, more understanding to these factors may be quite important. However, to data, little was known about the time trend of these cardio-metabolic risk factors in China.

The present study aims to investigate the long-term trends of cardio-metabolic risk factors in office-working population in China by a 10-year lag from 2008 and 2017, using a large health administrative database in Jiangsu, China. The office-working population has shown to be "high risk group" for metabolic diseases [19] due to their life styles, as most of them perform their daily work mainly in the office with low amount of physical activity.

Methods

Participants

This was an observational study using the health check-up data from the health manage center in Geriatric Hospital of Nanjing Medical University (Nanjing, China). Subjects included in the study came from dozens of work units including government offices, scientific research
institutions, banks and so on in the major urban districts of Nanjing, which is the capital of Jiangsu Province and located in the east of China. Most of them perform their daily work mainly in the office with low amount of physical activity. Totally, 9665 subjects in 2008 and 15200 subjects in 2017 who taking a routine annual health check-up in the health manage center were included, including a medical examination, anthropometric measurements, and information on medical history. Both currently employed and retired individuals were included in our study. There was no difference in the design and recruitment between 2008 and 2017.

After excluding those participants with missing data on height ($\mathrm{n}=450$), systolic pressure $(\mathrm{n}=29)$, low-density lipoprotein cholesterol (LDL-C) $(\mathrm{n}=938)$ or information of prior history of hypertension, dyslipidemia and diabetes $(\mathrm{n}=231), 8017$ individuals were eligible for analysis as baseline in 2008. Similarly, a population of 9379 individuals was remained for analysis in 2017 after excluding those who under 18 years old ($\mathrm{n}=21$), or with missing data on height $(\mathrm{n}=1476)$, systolic pressure $(\mathrm{n}=128)$, blood glucose $(\mathrm{n}=312)$, LDL-C $(\mathrm{n}=3001)$ or information of prior history of hypertension, dyslipidemia and diabetes ($\mathrm{n}=883$). The study was approved by the Ethics Committee of Geriatric Hospital of Nanjing Medical University. Written informed consent was obtained from all participants.

Clinical assessment

Demographic characteristics including age and sex were collected from all participants by trained nurses. Personal medical histories, including hypertension, diabetes and dyslipidemia, were reported by all participants. Body weight, height and blood pressure were measured using standard instruments and protocols by trained staff [20]. Body mass index (BMI) was calculated as weight in kilograms divided by the height in meters squared. Low-density lipoprotein cholesterol (LDL-C) and fasting plasma glucose (FPG) measured during an overnight fast of more than 11 hours. We defined the four cardio-metabolic risk factors as the following, same in both 2008 and 2017(also see Supplementary Table 1): 1)Obesity: $\left.\mathrm{BMI} \geq 28 \mathrm{~kg} / \mathrm{m}^{2}[21-23] ; 2\right) H y p e r t e n s i o n:$ Blood pressure $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$ and/or self-reported history of hypertension[24]; 3) Dyslipidemia: LDL-C $\geq 4.14 \mathrm{mmol} / \mathrm{L}$ and/or self-reported dyslipidemia[25]; 4)Diabetes: $\mathrm{FPG} \geq 7.0 \mathrm{mmol} / \mathrm{L}$ and/or self-reported diabetes [26].

Statistical analysis

Comparisons between different years were conducted using Student's T-test for continuous variables and Chi-squared test for categorical variables. Comparison between prevalence data of 2008 and 2017 was performed on the basis of standardized mortality rate (SMR) calculations and by applying the indirect standardization technique, using reference-specific prevalent rates of hypertension, dyslipidemia and diabetes by age and gender using the population composition from the Chinese census population (aged from 19 to 96 years) [27]. Data analyses were carried out by R software (Version 3.0.2, 2013-09-25; R Foundation for Statistical Computing, http://www.cran.r-project.org/). The significance level was set at $P<$ 0.05 and P values were given for two-sided tests.

Patient and public involvement
The participants of this study represent a large office-working population in China. They were not involved neither in the study design, nor in the conduct of the study. However, they were informed that their physical examination data (including blood pressure, cholesterol levels, blood glucose, etc) and baseline information may be in scientific study. And all scientific study results are continuously communicated to the participants by phone.

Results

The characteristics of the study population were shown in Supplementary Table 2. A total of 8017 and 9397 subjects were included in the analysis in 2008 and 2017. There was no significant difference in the distribution of sex. Compared to those of 2008, the percentage of older (age ≥ 60), overweight and obese subjects increased by $9.89 \%, 2.42 \%$ and 3.26% separately in 2017. In addition, in 2017, more subjects had the history of the three medical conditions (systolic blood pressure, LDL-C and blood glucose).

The crude prevalence of hypertension, dyslipidemia, diabetes and obesity were all increased over the study period, from $37.87,10.84,8.57 \%$ and 9.04% in 2008 to $39.14,14.20$, 12.17% and 12.30% in 2017 (Table 1). As expected, a significant increase was confirmed for dyslipidemia, diabetes and obesity in 2017 even standardized by age and sex (dyslipidemia: 8.25% in 2008 and 11.95% in $2017, P<0.001$; diabetes: 5.40% in 2008 and 6.68% in 2017 , $P<0.001$; obesity: 7.44% in 2008 and 11.33% in $2017, P<0.001$, Table 1). Interestingly, we
found that after standardized by age and sex, the trend for hypertension was reversed with a slight decline in 2017 from $27.51 \%(26.53 \%-28.49 \%)$ to $25.16 \%(24.28 \%-26.04 \%)$. When subjects were stratified by age, a constant downward trend of hypertension was identified among subjects younger than 70 years old from 2008 to 2017 (Figure 1A). The prevalent rates for dyslipidemia, diabetes and obesity were higher in 2017 in each age subgroups (Figure 1B-D). Especially, the prevalence of obesity in younger groups in 2017 were dramatically increased as compared to those in 2008 (Figure 1D). In contrast, the overall prevalence for the four signatures were similar when stratified by gender (Figure 2A and B) or for patients identified by examination or self-reported alone (Supplementary Table 3).

Changes in the four signatures stratified by gender among different age groups were further analyzed and presented in Figure 3. It shows the prevalence for male or women population was similar in 2008 and 2017 respectively for all but dyslipidemia and obesity (Figure 3). Similar results were seen for patients identified by examination or self-reported alone (Supplementary Table 4).

The distribution and numbers of cardio-metabolic risk factors for 2008 and 2017 are shown in Table 2. We found that $47.46 \%, 15.14 \%$ and 3.32% of the subjects had $\geq 1, \geq 2$ and ≥ 3 risk factors in 2008. In contrast, there was a gain in the percentage of risk factors in 2017 with $54.00 \%, 19.70 \%$ and 3.75%, respectively. The average numbers of cardio-metabolic risk factors in 2008 and 2017 were 0.66 and $0.78(P<0.001)$, respectively. And the number of cardio-metabolic risk factors significantly increased with age (Supplementary Figure 1).

Discussions

To our knowledge, only a few previous studies have estimated cardio-metabolic risk factors and future CVD burden in China before 2010 [28, 29]. In the present study, we examined the prevalence of hypertension, dyslipidemia and diabetes and the potential impact by a ten-year lag in Nanjing, China, in office-working populations.

In the past 10 years, the percentage of overweight and obesity showed an upward trend, which is consistent with the results from 2010 China Chronic Disease Monitoring Program[30]. The worldwide ranking of obese populations of China has moved to the second in 2014[31]. During the last decades, Chinese have become more sedentary, especially for
working population in the agency [32].
Hypertension was reported to the most prominent cardio-metabolic risk factors among Chinese [33, 34]. From 1988 to 2008, there was an increasing trend of hypertension prevalence in Americans aged 40 years and older [35]; however, the prevalence of hypertension in Japan[36], Germany[37], Italy[38] and Korea[39] decreased. In our study, we found a significant decline in the prevalence trend for hypertension among Chinese adults in 2017 compared with 2008. As we all known, higher socioeconomic status could positively improve the awareness and control of hypertension, and people would also have a better compliance of medicine treatment. According to a survey in 13 provinces from 2009 to 2010, among 50,171 subjects aged at least 18 years, the awareness, treatment, and control rates as well as the treatment-control rate of hypertension were $42.6,34.1,9.3$, and 27.4%, respectively, also higher than those in 2002 (30.2,24.7, 6.1, and 25.0%, respectively)[40].

High blood LDL cholesterol was the second leading risk factor for CVD. In agreement with previous Swiss[41], French[42] and German[43] studies, the prevalence of hypercholesterolemia increased significantly between 2008 and 2017. Diabetes is a growing epidemic in China, occurring at a relatively young age[44]. In the 1980s, diabetes was rare in China, with an estimated prevalence of 0.67%. In subsequent national surveys conducted in 1994[45], 2000 to 2001[46], 2007 to 2008[47], and 2010 to 2011[48], the prevalence was $2.5 \%, 5.5 \%, 9.7 \%$ and 11.6%, respectively. In this study, we found that the crude prevalence increased from 8.57% in 2008 to 12.17% in 2017. Those data imply that CVD events associated with high LDL and glucose will continue to increase in the further.

The main strength of this study was the use of the two independent large health check-up population with approximately 10,000 sample size. All measurements and data were collected with standardized methods over time. Secondly, the exposure distribution of all risk factors was estimated on the basis of original data. The original data-based estimation allowed us to account for potential residual confounding, although it could not be completely eliminated.

The findings in the present study are subject to several limitations. First, we only considered 4 factors (blood pressure, LDL, glucose and BMI), without considering any dietary factors and smoking, because of the lack of these parameters. Secondly, this study was carried out in cohorts only comprises Chinese individuals from office-working units in

Nanjing. Our results may not be generalizable to the entire populations. More studies are expected to confirm our finding.

In conclusion, high blood pressure remains the leading factor among cardio-metabolic risk factors in China, although a slight downward trend of this condition was observed from 2008 to 2017 after standardized by age and sex. However, significant increases dyslipidemia, diabetes and obesity in 2017 were confirmed in the present study. More intensive screening and treatment regimens are needed for patients with these conditions, in order to curb the cardiovascular endpoints expected in the near future.

Acknowledgements

The authors thank all participants, researchers and support staffs who have contributed to this studies.

Contributors

YC completed the analyses and led the writing. ZX-S and LB-G initiated, conceived and supervised the study. SC guided the analysis and modified the article. HL-Y assisted with the study and analyses. HZ participated in the data collation. XH-L and GY managed the physical examination. LK-Z and HD participated in the implementation of physical examination. SP-Y and DH-Y checked the results of physical examination.

Funding

This research was supported by grants 71373132 from National Natural Science Foundation of China, BK20151591 from Natural Science Foundation of Jiangsu, and 201605063 from Nanjing Science and Technology Development Project.

Competing interests No potential conflicts of interest relevant to this article were reported.

Patient consent Not required.

Ethics approval The study was approved by the Ethics Committee of Geriatric Hospital of Nanjing Medical University.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All available data are included in this manuscript.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

References

1. Mathers CD, Loncar D, Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3:e442.
2. DALYs GBD, Collaborators H, Murray CJ ,et al., Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 2015; 386:2145-2191.
3. Yusuf S, Hawken S, Ounpuu S ,et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364:937-952.
4. Almdal T, Scharling H, Jensen JS ,et al., The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 2004; 164:1422-1426.
5. Lewington S, Clarke R, Qizilbash N, et al., Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903-1913.
6. Eckel RH, York DA, Rossner S ,et al., Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: executive summary. Circulation 2004; 110:2968-2975.
7. Bogers RP, Bemelmans WJ, Hoogenveen RT , et al., Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a
meta-analysis of 21 cohort studies including more than 300000 persons. Arch Intern Med 2007; 167:1720-1728.
8. Prescott E, Hippe M, Schnohr P ,et al., Smoking and risk of myocardial infarction in women and men: longitudinal population study. BMJ 1998; 316:1043-1047.
9. Zimmet PZ, Alberti KG, Introduction: Globalization and the non-communicable disease epidemic. Obesity 2006; 14:1-3.
10. Maire B, Lioret S, Gartner A ,et al., [Nutritional transition and non-communicable diet-related chronic diseases in developing countries]. Sante 2002; 12:45-55.
11. Danaei G, Finucane MM, Lu Y ,et al., National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011; 378:31-40.
12. Finucane MM, Stevens GA, Cowan MJ ,et al., National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011; 377:557-567.
13. Wolf-Maier K, Cooper RS, Banegas JR ,et al., Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003; 289:2363-2369.
14. Hajjar I, Kotchen TA, Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988-2000. JAMA 2003; 290:199-206.
15. Guo F, He D, Zhang W, et al., Trends in prevalence, awareness, management, and control of hypertension among United States adults, 1999 to 2010. J Am Coll Cardiol 2012; 60:599-606.
16. Carroll MD, Lacher DA, Sorlie PD ,et al., Trends in serum lipids and lipoproteins of adults, 1960-2002. JAMA 2005; 294:1773-1781.
17. Toth PP, Potter D, Ming EE, Prevalence of lipid abnormalities in the United States: the National Health and Nutrition Examination Survey 2003-2006. J Clin Lipidol 2012; 6:325-330.
18. Ford ES, Li C, Pearson WS ,et al., Trends in hypercholesterolemia, treatment and control among United States adults. Int J Cardiol 2010; 140:226-235.
19. Hu FB, Li TY, Colditz GA ,et al., Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. Jama 2003; 289:1785-1791.
20. Chen Z, Lee L, Chen J ,et al., Cohort profile: the Kadoorie Study of Chronic Disease in China (KSCDC). International journal of epidemiology 2005; 34:1243-1249.
21. Chen CM, Overview of obesity in Mainland China. Obesity reviews : an official journal of the International Association for the Study of Obesity 2008; 9 Suppl 1:14-21.
22. Wang Y, Mi J, Shan XY ,et al., Is China facing an obesity epidemic and the consequences? The trends in obesity and chronic disease in China. International journal of obesity 2007; 31:177-188.
23. Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in C, Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomedical and environmental sciences : BES 2002; 15:83-96.
24. Vivanco-Hidalgo RM, Elosua R, Gomez Gonzalez A ,et al., People with epilepsy receive more statins than the general population but have no higher cardiovascular risk: results from a cross-sectional study. European journal of neurology 2017; 24:419-426.
25. Rosenson RS, Colesevelam HCl reduces LDL particle number and increases LDL size in hypercholesterolemia. Atherosclerosis 2006; 185:327-330.
26. American Diabetes A, (2) Classification and diagnosis of diabetes. Diabetes care 2015; 38 Suppl:S8-S16.
27. Asci G, Marcelli D, Celtik A ,et al., Comparison of Turkish and US haemodialysis patient mortality rates: an observational cohort study. Clinical kidney journal 2016; 9:476-480.
28. Moran A, Gu D, Zhao D ,et al., Future cardiovascular disease in china: markov model and risk factor scenario projections from the coronary heart disease policy model-china. Circ Cardiovasc Qual Outcomes 2010; 3:243-252.
29. Li Y, Wang DD, Ley SH ,et al., Potential Impact of Time Trend of Life-Style Factors on Cardiovascular Disease Burden in China. J Am Coll Cardiol 2016; 68:818-833.
30. Weiwei C, Runlin G, Lisheng L, et al., Outline of the report on cardiovascular diseases in China, 2014. European heart journal supplements : journal of the European Society of Cardiology 2016; 18:F2-F11.
31. Collaboration NCDRF, Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016; 387:1377-1396.
32. Ng SW, Howard AG, Wang HJ ,et al., The physical activity transition among adults in China: 1991-2011. Obes Rev 2014; 15 Suppl 1:27-36.
33. Yao C, Wu Z, Wu Y, The changing pattern of cardiovascular diseases in China. World health statistics quarterly Rapport trimestriel de statistiques sanitaires mondiales 1993; 46:113-118.
34. Yusuf S, Reddy S, Ounpuu S ,et al., Global burden of cardiovascular diseases: Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation 2001; 104:2855-2864.
35. Egan BM, Zhao Y, Axon RN, US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA 2010; 303:2043-2050.
36. Hata J, Ninomiya T, Hirakawa Y ,et al., Secular trends in cardiovascular disease and its risk factors in Japanese: half-century data from the Hisayama Study (1961-2009). Circulation 2013; 128:1198-1205.
37. Neuhauser HK, Adler C, Rosario AS ,et al., Hypertension prevalence, awareness, treatment and control in Germany 1998 and 2008-11. J Hum Hypertens 2015; 29:247-253.
38. Di Lonardo A, Donfrancesco C, Palmieri L ,et al., Time Trends of High Blood Pressure Prevalence, Awareness and Control in the Italian General Population : Surveys of the National Institute of Health. High Blood Press Cardiovasc Prev 2017; 24:193-200.
39. Kim HJ, Kim Y, Cho Y ,et al., Trends in the prevalence of major cardiovascular disease risk factors among Korean adults: results from the Korea National Health and Nutrition Examination Survey, 1998-2012. Int J Cardiol 2014; 174:64-72.
40. Wang J, Zhang L, Wang F ,et al., Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey. Am J Hypertens 2014; 27:1355-1361.
41. Galobardes B, Costanza MC, Bernstein MS ,et al., Trends in risk factors for the major "lifestyle-related diseases" in Geneva, Switzerland, 1993-2000. Annals of epidemiology 2003; 13:537-540.
42. Marques-Vidal P, Ruidavets JB, Amouyel P ,et al., Change in cardiovascular risk factors in France, 1985-1997. Eur J Epidemiol 2004; 19:25-32.
43. Laaser U, Breckenkamp J, Trends in risk factor control in Germany 1984-1998: high blood pressure and total cholesterol. European journal of public health 2006; 16:217-222.
44. Chan JC, Malik V, Jia W ,et al., Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009; 301:2129-2140.
45. Pan XR, Yang WY, Li GW ,et al., Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes Care 1997; 20:1664-1669.
46. Gu D, Reynolds K, Duan X ,et al., Prevalence of diabetes and impaired fasting glucose in the Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). Diabetologia 2003; 46:1190-1198.
47. Yang W, Lu J, Weng J ,et al., Prevalence of diabetes among men and women in China. The New England journal of medicine 2010; 362:1090-1101.
48. Xu Y, Wang L, He J ,et al., Prevalence and control of diabetes in Chinese adults. Jama 2013; 310:948-959.

Table 1. The prevalence rates of hypertension, dyslipidemia, diabetes and obesity in 2008 and 2017 year

[^0]Table 2. Details of the cardio-metabolic risk factors among the check-up Chinese subjects in 2008 and 2017 years.

Cardio-metabolic risk factors	2008 (8017)		2017 (9379)		P
	N	\%	N	\%	
Obesity					
$\mathrm{BMI} \geq 28 \mathrm{~kg} / \mathrm{m}^{2}$	725	9.04	1154	12.3	<0.001
Hypertension	3036	37.87	3671	39.14	0.09
Dyslipidemia	869	10.84	1332	14.2	<0.001
Diabetes	687	8.57	1141	12.17	<0.001
Cardio-metabolic risk					
factors					
≥ 1 risk factor	3805	47.46	5065	54	<0.001
≥ 2 risk factor	1214	15.14	1848	19.7	<0.001
≥ 3 risk factor	266	3.32	352	3.75	0.13

Figure legends

Figure 1. Age-specific prevalence in (A) hypertension, (B) dyslipidemia, (C) diabetes and (D) obesity in 2008 and 2017.

Figure 2. The age-standardized prevalence rates of the three cardiovascular disease factors in males (A) and females (B) in 2008 and 2017.

Figure 3. Age-specific prevalence among males and females in (A) hypertension, (B) dyslipidemia, (C) diabetes and (D) obesity in 2008 and 2017.

Figure 1. Age-specific prevalence in (A) hypertension, (B) dyslipidemia, (C) diabetes and (D) obesity in 2008 and 2017.

```
90x90mm (300 x 300 DPI)
```


Figure 2. The age-standardized prevalence rates of the three cardiovascular disease factors in males (A) and females (B) in 2008 and 2017.

$$
90 \times 29 \mathrm{~mm}(300 \times 300 \text { DPI })
$$

Figure 3. Age-specific prevalence among males and females in (A) hypertension, (B) dyslipidemia, (C) diabetes and (D) obesity in 2008 and 2017.
$90 \times 69 \mathrm{~mm}(300 \times 300$ DPI)

Supplementary Table 1. The definitions of the four cardio-metabolic risk factors of the study.

Cardio-metabolic risk factors	Definition
Obesity	$\mathrm{BMI} \geq 28 \mathrm{~kg} / \mathrm{m}^{2}$
Hypertension	Blood pressure $\geq 140 / 90 \mathrm{mmHg}$ and/or self-reported disease
Dyslipidemia	LDL-C $\geq 4.14 \mathrm{mmol} / \mathrm{L}$ and/or self-reported disease
Diabetes	Fasting $\mathrm{PG} \geq 7.0 \mathrm{mmol} / \mathrm{L}$ and/or self-reported disease

Supplementary Table 2. Clinical and laboratory characteristics of participants.

Supplementary Table 3．The prevalence rates of hypertension，hypercholesterolemia and diabetes in 2008 and 9017 year based on the examination

test and self－reported separately．							
Disease	Survey year	Examination test					
		No．of cases （n）	Prevalence （\％）	Stand－prevalence $(\%)^{\mathbf{a}}$	No．of cases （n）	含Prevalence	Stand－prevalence $(\%)^{\mathbf{a}}$
Hypertension	2008	2420	30．19（29．19－31．19）	$22.31(21.40-23.22)$	1632		13．11（12．37－13．85）
	2017	3042	32．43（31．48－33．38）	21．4（20．57－22．23）	1728	18家2（17．64－19．20）	9．48（8．89－10．07）
Dyslipidemia	2008	451	5．63（5．13－6．13）	4．67（4．21－5．13）	488		4．27（3．83－4．71）
	2017	1140	12．15（11．49－12．81）	10．88（10．25－11．51）	220		1．27（1．04－1．50）
Diabetes	2008	486	6．06（5．53－6．58）	3．82（5．54－6．58）	447	$\text { 家 } 58(5.08-6.08)$	3．39（2．99－3．79）
	2017	1004	10．70（10．07－11．33）	6．02（5．54－6．50）	494		2．43（2．12－2．74）
${ }^{\text {a }}$ Stand－prevalence：standardized prevalence；the prevalence rates were standardized by age and sex based on the $2010 \stackrel{\circ}{\text { ® }}$ ．hinese census population．							

For peer review only－http：／／bmjopen．bmj．com／site／about／guidelines．xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 30

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 30

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Figure 1. Average number of total cardio-metabolic risk factors by age in 2008 and 2017 years.

Age at baseline interview (year)

STROBE 2007 （v4）Statement－Checklist of items that should be included in reports of cross－

Section／Topic	Item \＃	Recommendation	Reported on page \＃
Title and abstract	1	（a）Indicate the study＇s design with a commonly used term in the title or the abstract	2
		（b）Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background／rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives，including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	collection	4
Participants	6	（a）Give the eligibility criteria，and the sources and methods of selection of participants	4
Variables	7	Clearly define all outcomes，exposures，predictors，potential confounders，and effect modifiers．Givé diagnostic criteria，if applicable	4
Data sources／ measurement	8＊	For each variable of interest，give sources of data and details of methods of assessment（measurement．Describe comparability of assessment methods if there is more than one group	4
Bias	9	Describe any efforts to address potential sources of bias	4
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses．If applicable，describe which grou $\stackrel{\rightharpoonup}{\dot{\rightharpoonup}} \mathrm{ings}$ were chosen and why	4
Statistical methods	12	（a）Describe all statistical methods，including those used to control for confounding $\stackrel{\ominus}{\circ}$	4
		（b）Describe any methods used to examine subgroups and interactions	4
		（c）Explain how missing data were addressed	4
		（d）If applicable，describe analytical methods taking account of sampling strategy	－
		（e）Describe any sensitivity analyses	－
Results		¢ิ⿳亠丷冖甲	

For peer review only－http：／／bmjopen．bmj．com／site／about／guidelines．xhtml

BMJ Open

Time trend of cardio-metabolic risk factors over a 10-year period in the office-working population in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025915.R2
Article Type:	Research
Date Submitted by the	21-Feb-2019
Complete List of Authors:	Cheng, Yang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Hongli; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Zheng, Hui; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Donghua; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Yin, Gang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Ying, Shanping; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Li, Xiaohong; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Dai, Hui; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Zhao, Lvkun; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Shen, Chong; Jiangsu Province Institute of Geriatrics, Division of Clinical Epidemiology; School of Public Health, Nanjing Medical University, Department of Epidemiology Shen, Zhixiang; Jiangsu Province Institute of Geriatrics, Center for Health Managenent Gu, Liubao; Jiangsu Province Institute of Geriatrics, Division of Clinical Epidemiology
Keywords:	Ten-year period, cardio-metabolic risk factors, office-working population
Secondary Subject Heading:	Epidemiology
Heading:	Public health
Lbimary Subjet	

Time trend of cardio-metabolic risk factors over a 10-year period in the office-working population in China

Yang Cheng ${ }^{1}$, Hongli Yin ${ }^{1}$, Hui Zheng ${ }^{1}$, Donghua Yin ${ }^{1}$, Gang Yin ${ }^{1}$, Shanping Ying ${ }^{1}$, Xiaohong Li ${ }^{1}$, Hui Dai ${ }^{1}$, Lvkun Zhao ${ }^{1}$, Chong Shen ${ }^{2,3}$, Zhixiang Shen ${ }^{1 *}$, Liubao Gu ${ }^{2 *}$
${ }^{1}$ Center for Health Management, Geriatric Hospital of Nanjing Medical University, Nanjing,

China

${ }^{2}$ Division of Clinical Epidemiology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
${ }^{3}$ Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China

Correspondence to Zhixiang Shen; email: 13913000003@126.com.

Zhixiang Shen and Liubao Gu contributed equally to this paper.

Yang Cheng and Hongli Yin contributed equally to this paper.

Abstract

Objectives: Recent dramatic increases in cardiovascular disease mortality in China can be mostly explained by adverse changes in hypertension, dyslipidemia, diabetes and obesity, known as cardio-metabolic risk factors. Our study aimed to assess the trend of these four signatures by a ten-year lag in Nanjing, China. Methods: 8017 subjects attended the routine health examination in 2008 and 9379 subjects in 2017, from multiple work units of Nanjing, were included in the present study. The prevalence and trend of four cardio-metabolic risk factors: hypertension, dyslipidemia, diabetes and obesity were analyzed. Results: From 2008 to 2017, the prevalence of hypertension declined, while the prevalence of dyslipidemia, diabetes and obesity increased. Besides, the population in 2008 and 2017 had an average of 0.66 and 0.78 risk factors, respectively. Conclusion: Cardio-metabolic risk factors are common for the staff in administrative agencies and institutions of Nanjing, China. Effective screening and interventions against these risk factors should be adopted in the high-risk population such as office-working populations in China.

Strength and limitations of this study

- We used the two independent large health check-up population with approximately 10,000 sample sizes, most of whom are office-working population to assess trends in cardiovascular risk factors over a 10-year period.
- The exposure distribution of all risk factors was estimated on the basis of original data.
- We only considered 4 factors (blood pressure, LDL, glucose and BMI), without considering any dietary factors and smoking, because of the lack of these parameters.
- The definitions of these conditions are continuously changing and may also be stratified.

Keywords: Ten-year period; cardio-metabolic risk factors; office-working population

Introduction

Cardiovascular disease (CVD) is highly prevalent and remains the predominant cause of premature mortality worldwide[1]. In China, estimated annual death due to CVD had increased to 2.7 million, which accounts for about 40% of all-cause mortality per year[2]. Obesity, diabetes, hypertension and dyslipidemia are established risk factors of CVD and contribute to the prevalence of $\mathrm{CVD}[3-8]$, which were also known as cardio-metabolic risk factors because of their close link with metabolic disorders, cancers and chronic respiratory diseases $[9,10]$.

In recently years, a substantial increase was seen in the prevalence of overweight and diabetes mellitus worldwide[11, 12], whereas the prevalence of hypertension was reported to be stable over time[13-15] and the prevalence of hypercholesterolemia remained at almost epidemic levels[16-18]. In China, with the huge economic development and changes of lifestyles including higher calorie and cholesterol intake and reduced physical activities, the frequencies and profiles of the four signatures such as obesity, diabetes, hypertension and dyslipidemia have changed even more dramatically. Given the ongoing deterioration of these cardio-metabolic risk factors in China, which may greatly contribute to the surge of CVD, more understanding to these factors may be quite important. However, to data, little was known about the time trend of these cardio-metabolic risk factors in China.

The present study aims to investigate the long-term trends of cardio-metabolic risk factors in office-working population in China by a 10-year lag from 2008 and 2017, using a large health administrative database in Jiangsu, China. The office-working population has shown to be "high risk group" for metabolic diseases [19] due to their life styles, as most of them perform their daily work mainly in the office with low amount of physical activity.

Methods

Participants

This was an observational study using the health check-up data from the health manage center in Geriatric Hospital of Nanjing Medical University (Nanjing, China). Subjects included in the study came from dozens of work units including government offices, scientific research
institutions, banks and so on in the major urban districts of Nanjing, which is the capital of Jiangsu Province and located in the east of China. Most of them perform their daily work mainly in the office with low amount of physical activity. And also we included both currently employed and retired individuals in our study. Totally, 9665 subjects in 2008 and 15200 subjects in 2017 who taking a routine annual health check-up in the health manage center were included, including a medical examination, anthropometric measurements, and information on medical history. There was no difference in the design and recruitment between 2008 and 2017.

After excluding those participants with missing data on height ($\mathrm{n}=450$), systolic pressure $(\mathrm{n}=29)$, low-density lipoprotein cholesterol (LDL-C) $(\mathrm{n}=938)$ or information of prior history of hypertension, dyslipidemia and diabetes $(\mathrm{n}=231), 8017$ individuals were eligible for analysis as baseline in 2008. Similarly, a population of 9379 individuals was remained for analysis in 2017 after excluding those who under 18 years old ($\mathrm{n}=21$), or with missing data on height ($\mathrm{n}=1476$), systolic pressure $(\mathrm{n}=128)$, blood glucose $(\mathrm{n}=312)$, LDL-C $(\mathrm{n}=3001)$ or information of prior history of hypertension, dyslipidemia and diabetes $(\mathrm{n}=883)$. The study was approved by the Ethics Committee of Geriatric Hospital of Nanjing Medical University. Written informed consent was obtained from all participants.

Clinical assessment

Demographic characteristics including age and sex were collected from all participants by trained nurses. Personal medical histories, including hypertension, diabetes and dyslipidemia, were reported by all participants. Body weight, height and blood pressure were measured using standard instruments and protocols by trained staff [20]. Body mass index (BMI) was calculated as weight in kilograms divided by the height in meters squared. Low-density lipoprotein cholesterol (LDL-C) and fasting plasma glucose (FPG) measured during an overnight fast of more than 11 hours. We defined the four signature for cardio-metabolic as the following, same in both 2008 and 2017(also see Supplementary Table 1): 1)Obesity: $\mathrm{BMI} \geq 28 \mathrm{~kg} / \mathrm{m}^{2}[21-23] ; 2$ Hypertension: Blood pressure $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$ and/or self-reported history of hypertension[24]; 3) Dyslipidemia: LDL-C $\geq 4.14 \mathrm{mmol} / \mathrm{L}$ and/or self-reported dyslipidemia[25]; 4)Diabetes: $\mathrm{FPG} \geq 7.0 \mathrm{mmol} / \mathrm{L}$ and/or self-reported diabetes [26].

Statistical analysis

Comparisons between different years were conducted using Student's T-test for continuous variables and Chi-squared test for categorical variables. Comparison between prevalence data of 2008 and 2017 was performed on the basis of standardized mortality rate (SMR) calculations and by applying the indirect standardization technique, using reference-specific prevalent rates of hypertension, dyslipidemia and diabetes by age and gender using the population composition from the Chinese census population (aged from 19 to 96 years) [27]. Data analyses were carried out by R software (Version 3.0.2, 2013-09-25; R Foundation for Statistical Computing, http://www.cran.r-project.org/). The significance level was set at $P<$ 0.05 and P values were given for two-sided tests.

Patient and public involvement

The participants of this study represent a large office-working population in China. They were not involved neither in the study design, nor in the conduct of the study. However, they were informed that their physical examination data (including blood pressure, cholesterol levels, blood glucose, etc) and baseline information may be in scientific study. And all scientific study results are continuously communicated to the participants by phone.

Results

The characteristics of the study population were shown in Supplementary Table 2. A total of 8017 and 9397 subjects were included in the analysis in 2008 and 2017. There was no significant difference in the distribution of sex. Compared to those of 2008, the percentage of older (age ≥ 60), overweight and obese subjects increased by $9.89 \%, 2.42 \%$ and 3.26% separately in 2017. In addition, in 2017, more subjects had the history of the three medical conditions (systolic blood pressure, LDL-C and blood glucose).

The crude prevalence of hypertension, dyslipidemia, diabetes and obesity were all increased over the study period, from $37.87,10.84,8.57 \%$ and 9.04% in 2008 to $39.14,14.20$, 12.17% and 12.30% in 2017 (Table 1). As expected, a significant increase was confirmed for dyslipidemia, diabetes and obesity in 2017 even standardized by age and sex (dyslipidemia:
8.25% in 2008 and 11.95% in $2017, P<0.001$; diabetes: 5.40% in 2008 and 6.68% in 2017 , $P<0.001$; obesity: 7.44% in 2008 and 11.33% in $2017, P<0.001$, Table 1). Interestingly, we found that after standardized by age and sex, the trend for hypertension was reversed with a slight decline in 2017 from $27.51 \%(26.53 \%-28.49 \%)$ to $25.16 \%(24.28 \%-26.04 \%)$. When subjects were stratified by age, a constant downward trend of hypertension was identified among subjects younger than 70 years old from 2008 to 2017 (Figure 1A). The prevalent rates for dyslipidemia, diabetes and obesity were higher in 2017 in each age subgroups (Figure 1B-D). Especially, the prevalence of obesity in younger groups in 2017 were dramatically increased as compared to those in 2008 (Figure 1D). In contrast, the overall prevalence for the four signatures were similar when stratified by gender (Figure 2A and B) or for patients identified by examination or self-reported alone (Supplementary Table 3).

Changes in the four signatures stratified by gender among different age groups were further analyzed and presented in Figure 3. It shows the prevalence for male or women population was similar in 2008 and 2017 respectively for all but dyslipidemia and obesity (Figure 3). Similar results were seen for patients identified by examination or self-reported alone (Supplementary Table 4).

The distribution and numbers of cardio-metabolic risk factors for 2008 and 2017 are shown in Table 2. We found that $47.46 \%, 15.14 \%$ and 3.32% of the subjects had $\geq 1, \geq 2$ and ≥ 3 risk factors in 2008. In contrast, there was a gain in the percentage of risk factors in 2017 with $54.00 \%, 19.70 \%$ and 3.75%, respectively. The average numbers of cardio-metabolic risk factors in 2008 and 2017 were 0.66 and $0.78(P<0.001)$, respectively. And the number of cardio-metabolic risk factors significantly increased with age (Supplementary Figure 1).

Discussions

To our knowledge, only a few previous studies have estimated cardio-metabolic risk factors and future CVD burden in China before 2010 [28, 29]. In the present study, we examined the prevalence of hypertension, dyslipidemia and diabetes and the potential impact by a ten-year lag in Nanjing, China, in office-working populations.

In the past 10 years, the percentage of overweight and obesity showed an upward trend, which is consistent with the results from 2010 China Chronic Disease Monitoring

Program[30]. The worldwide ranking of obese populations of China has moved to the second in 2014[31]. During the last decades, Chinese have become more sedentary, especially for working population in the agency or retired from the agency, who always maintained the state at work [32].

Hypertension was reported to the most prominent cardio-metabolic risk factors among Chinese [33, 34]. From 1988 to 2008, there was an increasing trend of hypertension prevalence in Americans aged 40 years and older [35]; however, the prevalence of hypertension in Japan[36], Germany[37], Italy[38] and Korea[39] decreased. In our study, we found a significant decline in the prevalence trend for hypertension among Chinese adults in 2017 compared with 2008 . As we all known, higher socioeconomic status could positively improve the awareness and control of hypertension, and people would also have a better compliance of medicine treatment. According to a survey in 13 provinces from 2009 to 2010, among 50,171 subjects aged at least 18 years, the awareness, treatment, and control rates as well as the treatment-control rate of hypertension were $42.6,34.1,9.3$, and 27.4%, respectively, also higher than those in 2002 (30.2,24.7, 6.1, and 25.0%, respectively)[40].

High blood LDL cholesterol was the second leading risk factor for CVD. In agreement with previous Swiss[41], French[42] and German[43] studies, the prevalence of hypercholesterolemia increased significantly between 2008 and 2017. Diabetes is a growing epidemic in China, occurring at a relatively young age[44]. In the 1980s, diabetes was rare in China, with an estimated prevalence of 0.67%. In subsequent national surveys conducted in 1994[45], 2000 to 2001[46], 2007 to 2008[47], and 2010 to 2011[48], the prevalence was $2.5 \%, 5.5 \%, 9.7 \%$ and 11.6%, respectively. In this study, we found that the crude prevalence increased from 8.57% in 2008 to 12.17% in 2017. Those data imply that CVD events associated with high LDL and glucose will continue to increase in the further.

The main strength of this study was the use of the two independent large health check-up population with approximately 10,000 sample size. All measurements and data were collected with standardized methods over time. Secondly, the exposure distribution of all risk factors was estimated on the basis of original data. The original data-based estimation allowed us to account for potential residual confounding, although it could not be completely eliminated.

The findings in the present study are subject to several limitations. First, we only
considered 4 factors (blood pressure, LDL, glucose and BMI), without considering any dietary factors and smoking, because of the lack of these parameters. Secondly, this study was carried out in cohorts only comprises Chinese individuals from office-working units in Nanjing. Our results may not be generalizable to the entire populations. More studies are expected to confirm our finding.

In conclusion, high blood pressure remains the leading factor among cardio-metabolic risk factors in China, although a slight downward trend of this condition was observed from 2008 to 2017 after standardized by age and sex. However, significant increases dyslipidemia, diabetes and obesity in 2017 were confirmed in the present study. More intensive screening and treatment regimens are needed for patients with these conditions, in order to curb the cardiovascular endpoints expected in the near future.

Acknowledgements

The authors thank all participants, researchers and support staffs who have contributed to this studies.

Contributors

YC completed the analyses and led the writing. ZX-S and LB-G initiated, conceived and supervised the study. SC guided the analysis and modified the article. HL-Y assisted with the study and analyses. HZ participated in the data collation. XH-L and GY managed the physical examination. LK-Z and HD participated in the implementation of physical examination. SP-Y and $\mathrm{DH}-\mathrm{Y}$ checked the results of physical examination.

Funding

This research was supported by grants 71373132 from National Natural Science Foundation of China, BK20151591 from Natural Science Foundation of Jiangsu, and 201605063 from Nanjing Science and Technology Development Project.

Competing interests No potential conflicts of interest relevant to this article were reported.

Patient consent Not required.

Ethics approval The study was approved by the Ethics Committee of Geriatric Hospital of Nanjing Medical University.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All available data are included in this manuscript.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

References

1. Mathers CD, Loncar D, Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3:e442.
2. DALYs GBD, Collaborators H, Murray CJ ,et al., Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 2015; 386:2145-2191.
3. Yusuf S, Hawken S, Ounpuu S ,et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364:937-952.
4. Almdal T, Scharling H, Jensen JS ,et al., The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 2004; 164:1422-1426.
5. Lewington S, Clarke R, Qizilbash N ,et al., Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903-1913.
6. Eckel RH, York DA, Rossner S ,et al., Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: executive summary. Circulation 2004; 110:2968-2975.
7. Bogers RP, Bemelmans WJ, Hoogenveen RT ,et al., Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300000 persons. Arch Intern Med 2007; 167:1720-1728.
8. Prescott E, Hippe M, Schnohr P ,et al., Smoking and risk of myocardial infarction in women and men: longitudinal population study. BMJ 1998; 316:1043-1047.
9. Zimmet PZ, Alberti KG, Introduction: Globalization and the non-communicable disease epidemic. Obesity 2006; 14:1-3.
10. Maire B, Lioret S, Gartner A ,et al., [Nutritional transition and non-communicable diet-related chronic diseases in developing countries]. Sante 2002; 12:45-55.
11. Danaei G, Finucane MM, Lu Y ,et al., National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011; 378:31-40.
12. Finucane MM, Stevens GA, Cowan MJ ,et al., National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011; 377:557-567.
13. Wolf-Maier K, Cooper RS, Banegas JR ,et al., Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003; 289:2363-2369.
14. Hajjar I, Kotchen TA, Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988-2000. JAMA 2003; 290:199-206.
15. Guo F, He D, Zhang W ,et al., Trends in prevalence, awareness, management, and control of hypertension among United States adults, 1999 to 2010. J Am Coll Cardiol 2012; 60:599-606.
16. Carroll MD, Lacher DA, Sorlie PD ,et al., Trends in serum lipids and lipoproteins of adults, 1960-2002. JAMA 2005; 294:1773-1781.
17. Toth PP, Potter D, Ming EE, Prevalence of lipid abnormalities in the United States: the National Health and Nutrition Examination Survey 2003-2006. J Clin Lipidol 2012; 6:325-330.
18. Ford ES, Li C, Pearson WS ,et al., Trends in hypercholesterolemia, treatment and control among United States adults. Int J Cardiol 2010; 140:226-235.
19. Hu FB, Li TY, Colditz GA ,et al., Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. Jama 2003; 289:1785-1791.
20. Chen Z, Lee L, Chen J ,et al., Cohort profile: the Kadoorie Study of Chronic Disease in China (KSCDC). International journal of epidemiology 2005; 34:1243-1249.
21. Chen CM, Overview of obesity in Mainland China. Obesity reviews : an official journal of the International Association for the Study of Obesity 2008; 9 Suppl 1:14-21.
22. Wang Y, Mi J, Shan XY ,et al., Is China facing an obesity epidemic and the consequences? The trends in obesity and chronic disease in China. International journal of obesity 2007; 31:177-188.
23. Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in C, Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomedical and environmental sciences : BES 2002; 15:83-96.
24. Vivanco-Hidalgo RM, Elosua R, Gomez Gonzalez A ,et al., People with epilepsy receive more statins than the general population but have no higher cardiovascular risk: results from a cross-sectional study. European journal of neurology 2017; 24:419-426.
25. Rosenson RS, Colesevelam HCl reduces LDL particle number and increases LDL size in hypercholesterolemia. Atherosclerosis 2006; 185:327-330.
26. American Diabetes A, (2) Classification and diagnosis of diabetes. Diabetes care 2015; 38 Suppl:S8-S16.
27. Asci G, Marcelli D, Celtik A ,et al., Comparison of Turkish and US haemodialysis patient mortality rates: an observational cohort study. Clinical kidney journal 2016; 9:476-480.
28. Moran A, Gu D, Zhao D ,et al., Future cardiovascular disease in china: markov model and risk factor scenario projections from the coronary heart disease policy model-china. Circ Cardiovasc Qual Outcomes 2010; 3:243-252.
29. Li Y, Wang DD, Ley SH ,et al., Potential Impact of Time Trend of Life-Style Factors on Cardiovascular Disease Burden in China. J Am Coll Cardiol 2016; 68:818-833.
30. Weiwei C, Runlin G, Lisheng L ,et al., Outline of the report on cardiovascular diseases in China, 2014. European heart journal supplements : journal of the European Society of Cardiology 2016; 18:F2-F11.
31. Collaboration NCDRF, Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016; 387:1377-1396.
32. Ng SW, Howard AG, Wang HJ ,et al., The physical activity transition among adults in China: 1991-2011. Obes Rev 2014; 15 Suppl 1:27-36.
33. Yao C, Wu Z, Wu Y, The changing pattern of cardiovascular diseases in China. World health statistics quarterly Rapport trimestriel de statistiques sanitaires mondiales 1993; 46:113-118.
34. Yusuf S, Reddy S, Ounpuu S ,et al., Global burden of cardiovascular diseases: Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation 2001; 104:2855-2864.
35. Egan BM, Zhao Y, Axon RN, US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA 2010; 303:2043-2050.
36. Hata J, Ninomiya T, Hirakawa Y ,et al., Secular trends in cardiovascular disease and its risk factors in Japanese: half-century data from the Hisayama Study (1961-2009). Circulation 2013; 128:1198-1205.
37. Neuhauser HK, Adler C, Rosario AS ,et al., Hypertension prevalence, awareness, treatment and control in Germany 1998 and 2008-11. J Hum Hypertens 2015; 29:247-253.
38. Di Lonardo A, Donfrancesco C, Palmieri L ,et al., Time Trends of High Blood Pressure Prevalence, Awareness and Control in the Italian General Population : Surveys of the National Institute of Health. High Blood Press Cardiovasc Prev 2017; 24:193-200.
39. Kim HJ, Kim Y, Cho Y ,et al., Trends in the prevalence of major cardiovascular disease risk factors among Korean adults: results from the Korea National Health and Nutrition Examination Survey, 1998-2012. Int J Cardiol 2014; 174:64-72.
40. Wang J, Zhang L, Wang F ,et al., Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey. Am J Hypertens 2014; 27:1355-1361.
41. Galobardes B, Costanza MC, Bernstein MS ,et al., Trends in risk factors for the major "lifestyle-related diseases" in Geneva, Switzerland, 1993-2000. Annals of epidemiology 2003; 13:537-540.
42. Marques-Vidal P, Ruidavets JB, Amouyel P ,et al., Change in cardiovascular risk factors in France, 1985-1997. Eur J Epidemiol 2004; 19:25-32.
43. Laaser U, Breckenkamp J, Trends in risk factor control in Germany 1984-1998: high blood pressure and total cholesterol. European journal of public health 2006; 16:217-222.
44. Chan JC, Malik V, Jia W, et al., Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009; 301:2129-2140.
45. Pan XR, Yang WY, Li GW ,et al., Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes Care 1997; 20:1664-1669.
46. Gu D, Reynolds K, Duan X ,et al., Prevalence of diabetes and impaired fasting glucose in the Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). Diabetologia 2003; 46:1190-1198.
47. Yang W, Lu J, Weng J ,et al., Prevalence of diabetes among men and women in China. The New England journal of medicine 2010; 362:1090-1101.
48. Xu Y, Wang L, He J ,et al., Prevalence and control of diabetes in Chinese adults. Jama 2013; 310:948-959.

Table 1. The prevalence rates of hypertension, dyslipidemia, diabetes and obesity in 2008 and 2017 yearobased on the examination test and

[^1]Table 2. Details of the cardio-metabolic risk factors among the check-up Chinese subjects in 2008 and 2017 years.

Cardio-metabolic risk factors	2008 (8017)		2017 (9379)		P
	N	\%	N	\%	
Obesity					
$\mathrm{BMI} \geq 28 \mathrm{~kg} / \mathrm{m}^{2}$	725	9.04	1154	12.3	<0.001
Hypertension	3036	37.87	3671	39.14	0.09
Dyslipidemia	869	10.84	1332	14.2	<0.001
Diabetes	687	8.57	1141	12.17	<0.001
Cardio-metabolic risk					
factors					
≥ 1 risk factor	3805	47.46	5065	54	<0.001
≥ 2 risk factor	1214	15.14	1848	19.7	<0.001
≥ 3 risk factor	266	3.32	352	3.75	0.13

Figure legends

Figure 1. Age-specific prevalence in (A) hypertension, (B) dyslipidemia, (C) diabetes and (D) obesity in 2008 and 2017.

Figure 2. The age-standardized prevalence rates of the three cardiovascular disease factors in males (A) and females (B) in 2008 and 2017.

Figure 3. Age-specific prevalence among males and females in (A) hypertension, (B) dyslipidemia, (C) diabetes and (D) obesity in 2008 and 2017.

Figure 1. Age-specific prevalence in (A) hypertension, (B) dyslipidemia, (C) diabetes and (D) obesity in 2008 and 2017.

```
90x90mm (300 x 300 DPI)
```


Figure 2. The age-standardized prevalence rates of the three cardiovascular disease factors in males (A) and females (B) in 2008 and 2017.

$$
90 \times 29 \mathrm{~mm}(300 \times 300 \text { DPI })
$$

Figure 3. Age-specific prevalence among males and females in (A) hypertension, (B) dyslipidemia, (C) diabetes and (D) obesity in 2008 and 2017.
$90 \times 69 \mathrm{~mm}(300 \times 300$ DPI)

Supplementary Table 1. The definitions of the four cardio-metabolic risk factors of the study.

Cardio-metabolic risk factors	Definition
Obesity	BMI $\geq 28 \mathrm{~kg} / \mathrm{m}^{2}$
Hypertension	Blood pressure $\geq 140 / 90 \mathrm{mmHg}$ and/or self-reported disease
Dyslipidemia	LDL-C $\geq 4.14 \mathrm{mmol} / \mathrm{L}$ and/or self-reported disease
Diabetes	Fasting PG $\geq 7.0 \mathrm{mmol} / \mathrm{L}$ and/or self-reported disease

Supplementary Table 2. Clinical and laboratory characteristics of participants.

Variable	Survey Year		\boldsymbol{P}
	2008 (n, \%)	2017 (n, \%)	
All	8017	9379	
Sex			
Man	5171(64.5)	5947(63.41)	
Women	2846(35.5)	3432(36.59)	
Age	51.08 ± 15.14	53.69 ± 16.77	<0.001
<30	684(8.53)	836(8.91)	
30-40	1213(15.13)	1477(15.75)	
40-50	2016(25.15)	1354(14.44)	
50-60	1781(22.22)	2067(22.04)	
60-70	1142(14.24)	1832(19.53)	
70+	1181(14.73)	1813(19.33)	
BMI			
Thin (<18.5)	280(3.49)	229(2.44)	
Normal (18.5-24)	3948(49.25)	4184(44.61)	
Overweight (24-28)	3064(38.22)	3812(40.64)	
Obese (≥ 28)	725(9.04)	1154(12.3)	
Examination Index			
Systolic pressure	125.63 ± 18.17	130.01 ± 18.99	<0.001
Diastolic pressure	80.85 ± 10.69	77.11 ± 10.79	<0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table 4. The prevalence rates of hypertension, dyslipidemia and diabetes in 2008 and 2017 yeaff stratified by age and gender based on the examination test and self-reported separately.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Figure 1. Average number of total cardio-metabolic risk factors by age in 2008 and 2017 years.

Age at baseline interview (year)

STROBE 2007 (v4) Statement-Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	$\begin{aligned} & \text { Item } \\ & \# \\ & \hline \end{aligned}$		Reported on page \#
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	collection	4
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	4
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Givé diagnostic criteria, if applicable	4
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4
Bias	9	Describe any efforts to address potential sources of bias	4
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grou erings were chosen and why	4
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	4
		(b) Describe any methods used to examine subgroups and interactions	4
		(c) Explain how missing data were addressed	4
		(d) If applicable, describe analytical methods taking account of sampling strategy	-
		(e) Describe any sensitivity analyses	-
Results		¢ ¢	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examine ${ }^{\text {offor }}$ eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	-
		(b) Give reasons for non-participation at each stage or	-
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on ex \ddagger osures and potential confounders	5
		(b) Indicate number of participants with missing data for each variable of interest	-
Outcome data	15*	Report numbers of outcome events or summary measures	5
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision interval). Make clear which confounders were adjusted for and why they were included 일	5
		(b) Report category boundaries when continuous variables were categorized	-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	-
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses $\overline{\text { 亏 }}$	-
Discussion		$\frac{0}{3}$	
Key results	18	Summarise key results with reference to study objectives	5
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discussoth direction and magnitude of any potential bias	7
Interpretation	20	similar studies, and other relevant evidence	6
Generalisability	21	Discuss the generalisability (external validity) of the study results	7
Other information		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{ }$	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for thise original study on which the present article is based	8

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cerenh and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan? checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine ${ }^{\infty} \mathrm{rg} /$, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.s듕obe-statement.org.

[^0]: ${ }^{\text {a }}$ Standardized prevalence; the prevalence rates were standardized by age and sex based on the 2010 Chinese census population.
 ${ }^{\mathrm{b}} P$ value for standard prevalence between 2008 and 2017.

[^1]: ${ }^{\text {a }}$ Standardized prevalence; the prevalence rates were standardized by age and sex based on the 2010 Chinese census population.
 ${ }^{\mathrm{b}} P$ value for standard prevalence between 2008 and 2017.

