

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Use of an individual-patient database for analysing caesarean section practices according to the WHO Manual for Robson classification and for developing quality improvement recommendations: a study in Sri Lanka

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027317
Article Type:	Research
Date Submitted by the Author:	16-Oct-2018
Complete List of Authors:	Senanayake, H.; University of Colombo, Obstetrics & Gynaecology Piccoli, Monica ; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Valente, Emanuelle; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Businelli, Caterina; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Mohamed , Rishard ; University Obstetrics Unit, De Soysa Hospital for Women, Colombo, Sri Lanka; Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo Fernando , Roshini; Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo Sakalasuriya , Anshumalie; Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo Ihsan , Fathima Reshma; Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo Covi, Benedetta; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Wanzira, Humphey; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Lazzerini, Marzia; Institute for Maternal and Child Health IRCCS Burlo Garofolo, WHO Collaborating Centre for Maternal and Child Health;
Keywords:	Quality of Care, Health Information System, Robson clasification, Caesarean Section

SCHOLARONE[™] Manuscripts

Use of an individual-patient database for analysing caesarean section practices according to the WHO Manual for Robson classification and for developing quality improvement recommendations: a study in Sri Lanka

Short title: Use of a prospective database for the Robson classification in Sri Lanka

Hemantha Senanayake,^{1,2} Monica Piccoli,³ Emanuelle Pessa Valente,³ Caterina Businelli,³ Rishard Mohamed,^{1,2} Roshini Fernando,² Anshumalie Sakalasuriya,² Fathima Reshma Ihsan,² Benedetta Covi,³ Humphrey Wanzira,³ Marzia Lazzerini.³

¹ University Obstetrics Unit, De Soysa Hospital for Women, Colombo, Sri Lanka

² Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo, Colombo, Sri Lanka
 ³ Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" - WHO Collaborating Centre for Maternal and Child Health, Trieste, Italy

Authors' e-mail contacts

HS: senanayakeh@gmail.com
MP: monica.piccoli@burlo.trieste.it
EPV: emanuelle.pessavalente@burlo.trieste.it
CB: caterina.businelli@burlo.trieste.it
RM: mrishard@obg.cmb.ac.lk
RF: ragynobs2009@gmail.com
AS: sakalasuriyasaritha43@gmail.com
FRI: resh.ihsan798@gmail.com
BC: benedetta.covi@burlo.trieste.it
HW: humphey.wanzira@burlo.trieste.it
ML: marzia.lazzerini@burlo.trieste.it
Corresponding author
Emanuelle Pessa Valente MD, MSc, PhD
WHO Collaborating Centre for Maternal and Child Health

Institute for Maternal and Child Health - IRCCS "Burlo Garofolo"

Via dell'Istria 65/1, 34137, Trieste, Italy.

emanuelle.pessavalente@burlo.trieste.it

Article summary: strengths and limitations of this study

- Despite being a single-centre study, this is the first study from a setting with limited resources reporting on the use of a prospective individual-patient database for analysing practices on caesarean section.

- This is also the first report on the use of WHO Implementation Manual for Robson Classification in a project aiming at quality improvement. The paper describes how the WHO manual can be used in an action-oriented manner for developing recommendations for improving the quality of maternal health care, and the quality of data collected.

- This pilot experience can be of interests of both researchers and policymakers, providing a model on how different types of variables can inform the Robson classification, and how findings from the Robson classification can be used proactively for decision-making.

Keywords

Quality of care; Health Information system; Robson classification; Caesarean Section

List of abbreviations

- APH= Antepartum haemorrhage
- BMI= Body mass index
- CS= Caesarean section
- CPD= Cephalopelvic disproportion
- CTG= Cardiotocography
- ECV= External cephalic version
- Hb= Haemoglobin
- IOL= Induction of labour
- 47 IUGR= Intrauterine growth restriction
 48
- 49 QI= Quality improvement
 - QoC= Quality of Care
- 52 SMART= Specific, Measurable, Achievable, Realistic, Time-bound
- 54 SOP= Standards operating procedures
- SQUIRE= Standards for Quality Improvement Reporting Excellence
 SQUIRE= Standards for Quality Improvement Reporting Excellence
- 57 UK= United Kingdom

1 2 3 4 5 6 7 8 9 10 11	USA= United States of America WHO= World Health Organization WHO MCS= WHO Multi country Survey on Maternal and Newborn Health
12 13 14 15 16 17 18 19 20 21 22 23 24 25	
26 27 28 29 30 31 32 33 34 35 36 37	
38 39 40 41 42 43 44 45 46 47 48 49 50	
51 52 53 54 55 56 57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

ABSTRACT

Objectives. This study aimed at describing the use of a prospective individual patient database on hospital deliveries for analyzing caesarian section (CS) practices according to the WHO Manual for Robson classification, and for developing recommendations for improving the quality of maternal hospital care (QoC).

Design Observational study

Setting De Soysa Teaching Hospital for Women, the largest maternity unit in Sri Lanka.

Data collection and analysis For each case of hospital delivery 150 variables were routinely collected in a standardised form and entered in a database. Data was routinely monitored for ensuring adequate quality. Information on deliveries occurring from July 2015 to June 2017 were analysed according the WHO Robson Classification Manual. Findings were discussed internally to develop quality improvement recommendations.

Results 7504 women delivered in the hospital during the study period and at least one maternal or foetal pathological condition were reported in 2845 (37.9%). Overall CS rate was 30.0%, with 11.9% CS performed pre-labour. According to the Robson classification, Group 3 and Group 1 were the most represented groups (27.0% and 23.1% of population, respectively). The major contributors to the CS rate were Group 5 (29.6%), Group 1 (14.0%), 2a (13.3%) and Group 10 (11.5%). Data on indication to CS suggested potentially inappropriate care, with high frequency of CS performed for abnormal cardiotocography (CTG)/suspected foetal distress, past CS and failed progress of labour or failed induction. Overall 16 recommendations were agreed. Beside updating protocols and hands-on training, activities agreed included monitoring and supervision, criterion-based audits, risk management meetings and appropriate information for patients. Recommendations to further improve the quality of data were also agreed.

Conclusions This study provides an example on how the WHO Manual for Robson classification can be used in an action-oriented manner for developing recommendations for improving the QoC, and the quality of data collected.

INTRODUCTION

Improving the appropriate use of caesarean section (CS) is a major global concern.[1, 2] While globally CS rates at population level are increasing, major disparities exist among countries, with both under-use and over-use of this procedure.[1, 2] Although there is no debate about the need to increase access to safe CS, there is also common agreement that CS should be performed only for medically indicated reasons.[1, 2]

Interventions to reduce unnecessary CSs have shown little success.[2] In the last few years, the World Health Organization (WHO) has endorsed the use of the Robson classification system,[3] and a manual for supporting its implementation was published in 2017.[4] The WHO Robson Classification Manual guide through the implementation of the Robson classification, and provide practical tools for analyzing CS practice in a standardized, reliable, consistent and action-oriented manner.[4] However, still there little published experience on the practical utilization of the WHO Robson Classification Manual,[4] and no concrete experience has been reported so far on how to use the manual in an action-oriented manner.

A rising trend in the national CS rate has been reported in Sri Lanka (33.2% in 2015), with large heterogeneity among different facilities,[5,6] and wide-spread diffusion of inappropriate indications to CS.[7] Nevertheless, few studies have analysed CS practices in a standardised manner [7,8] and no study used findings of such analyses for developing recommendations to improve the quality of maternal health care and the quality of data collected.

Since year 2015 we implemented a prospective individual patient database at the De Soysa Hospital for Women, Colombo, the largest maternity hospital in Sri Lanka. For each case of delivery, about 150 variables were collected and routinely entered in an electronic database.[9] The objective of this study was to describe the use of the information provided by this database to analyse CS practices according to the WHO Robson Classification Manual [4] in an action-oriented manner, with the aim of developing recommendations for improving the quality of maternal hospital care.

METHODS

Study design

The study was designed as an observational study aiming at analysing practices related to CS, and at developing recommendations for improving the quality of hospital care. The results section of this paper reports the findings of the Robson analysis [4] and how such findings were internally discussed and used.

Population and setting

Detailed methods of data collection have been previously reported.[9] Briefly, 150 variables (ie, maternal sociodemographic characteristics, risk factors, process indicators, maternal and neonatal outcomes) were collected for each individual birth using a standardised two-page form, and entered in real time in an electronic database. Data quality assurance procedures included detailed case definitions, standards operating procedures (SOP), regular random checks, and 137 automatic validation rules aiming at minimising data entry errors.[9]

The present paper reports findings relevant to CS practices, on births occurring in the period from July 2015 to June 2017. Missing cases for the variables of interest were overall $\leq 0.7\%$, except for trial of labour in previous CS, where missing variables were 1.2% (**Supplementary Table 1**).

Data analysis

Data was analysed according the recommendations of the WHO Robson Classification Manual [4] and synthesized according to the standardized reporting tables provided by the Manual (**Supplementary tables 3-5**).[4] According to the WHO methodology,[4] the analysis should follow the following key steps. First, each case of birth was classified into one of the Robson groups (**Box 1**), using six key variables (parity, previous CS, onset of labour, number of foetus, gestational age, foetal lie presentation). Secondly, data were assessed for: 1) quality, 2) type of population, 3) CS rates. As recommended in the WHO Manual,[4] relevant additional information provided by the local data collection system [9] were used as complementary information to allow an in-depth interpretation of CS practices. Specifically, the following types of variables collected by the local individual-patient database were used: maternal age,

BMJ Open

gestational age, maternal pathological conditions (such as diabetes, hypertensive disorders and others), foetal pathological conditions, CS indications. For each step, findings were compared to the suggested two sources of interpretation in the WHO manual:[4] 1) the reference ranges and interpretation by Michael Robson;[3,13] 2) the findings of the WHO Multi country Survey on Maternal and Newborn Health (MCS, provided by the WHO Manual as an additional example for possible comparison (this is population characterised by relatively low CS rates and, at the same time, good outcomes of labour and childbirth).

Before starting the data analysis, the information in the database were cleaned. Specifically, the open text category called "other" under "indication for CS" (which already included 18 predefined categories [9] were thoroughly checked by two experienced obstetricians and classified, as more appropriate, in one of the predefined categories, or in a new category.

Box 1. The 10 groups of the Robson classification [4]

Group 1: Nulliparous women with a single cephalic pregnancy, \geq 37 weeks gestation in spontaneous labour Group 2: Nulliparous women with a single cephalic pregnancy, \geq 37 weeks gestation who had labour induced or were delivered by caesarean section before labour

2a Labour induced

2b Pre-labour caesarean section

Group 3: Multiparous women without a previous caesarean section, with a single cephalic pregnancy, ≥37 weeks gestation in spontaneous labour

Group 4: Multiparous women without a previous caesarean section, with a single cephalic pregnancy, ≥37

weeks gestation who had labour induced or were delivered by caesarean section before labour

4a Labour induced

4b Pre-labour caesarean section

Group 5: All multiparous women with at least one previous caesarean section, with a single cephalic pregnancy, ≥37 weeks gestation

Group 6: All nulliparous women with a single breech pregnancy

Group 7: All multiparous women with a single breech pregnancy including women with previous caesarean section(s)

Group 8: All women with multiple pregnancies including women with previous caesarean section(s)

Group 9: All women with a single pregnancy with a transverse or oblique lie, including women with previous caesarean section(s)

Group 10: All women with a single cephalic pregnancy < 37 weeks gestation, including women with previous caesarean section(s)

Data use for developing recommendation for improving the quality of care

The findings of the analysis were presented during two dedicated workshops, with key hospital staff of different levels (ie, senior obstetricians, neonatologist, registrars, nurses, midwifes and other staff). The meetings were led by local staff (HS, RM), in dialogue with the WHO Collaboration Centre, Trieste, Italy.

The workshops had the following objectives: discussing hospital practices related to CS, identifying possible gaps in quality of care (QoC) provided, identifying possible gaps in data quality and/or in data collection procedures, selecting priorities for action, developing and agreeing recommendations for improving the QoC related to CS and, if needed, the quality of data. Secondary objectives included improving the knowledge of the Robson classification and of the WHO manual,[4] supporting a culture of Quality Improvement (QI), and fostering team work.

During the workshops data were presented and discussed using the standardised reporting tables suggested by the WHO manual (**Supplementary table 2-4**), which included the following subsequent evaluations: 1) Robson classification, 2) data quality, 3) type of population, 4) CS rates. Additionally, the other characteristics of the population identified as informative for the discussion of CS practices (ie, maternal age, gestational age, maternal and foetal pathological conditions, indications to CS were tabulated and discussed. The sources of comparison provided by the WHO manual were also made explicit in the tables. Relevant international literature [1,13-16] were made available to further interpret data.

A pre-defined template for identifying possible QI recommendations was distributed to each participant at the beginning of the workshops (**Supplementary table 5**). It was emphasized that the proposed actions for had to be SMART (Specific, Measurable, Achievable, Realistic, Timebound).[17] An action-oriented, non-blaming, problem-solving, proactive and participatory attitude was used, for building ownership and commitment to changes among attenders, and for allowing a wide involvement of all type of staff.

Proposed recommendations were discussed and agreed in plenary until consensus was reached. Recommendations are presented in the result section.

Ethical considerations

The study, including data collection and its use for QI purposes, was approved by the Ethics Review Committee of the Faculty of Medicine, University of Colombo. Confidentiality was maintained by de-identifying all files before database entry. Human subjects were not directly involved in the study.

RESULTS

The following paragraphs reports on the result of the Robson analysis as for the WHO manual,[4] and on the related data discussion and development of a list of actions for improving the quality of hospital practices, agreed during the workshops.

Characteristics of the population

A total of 7504 women delivered in the hospital during the study period. Detailed characteristics of the population, with a specific focus on the variables relevant to the analysis of CS practices and the Robson classification are reported in **Supplementary Table 6**. Overall CS rate in the study population was 30.0%, with about a third (11.9%) of the total CS performed pre-labour. Induction of labour (IOL) occurred in 24.6% of cases. Preterm deliveries (before 37 weeks) were observed in 9.4% of cases, with 0.5% of the total newborns being extremely preterm (less than 28 weeks) and 1.3% being very preterm (28 weeks to before 32 weeks completed). At least one maternal or foetal pathological condition, potentially contributing to the decision for CS, was reported in 2845 (37.9%) women. Gestational diabetes was the most frequent condition (13.4%), followed by hypertensive disorders of pregnancy (6.7%) and intrauterine growth restriction (IUGR) (6.7%). Overall, 5.9% of the total sample was obese according to the body mass index (BMI) cut-offs suggested for Asian population (BMI > 27.5).[18,19]

Overall the discussion on these general characteristics of the population focused on the following observations: high rate of CS; relatively high rate of IOL; high prevalence of risk factors (which may be explained by the hospital being a tertiary level centre).

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Table 1 presents the Robson classification. Group 3 (multiparous without previous CS, single cephalic at term, in spontaneous labour) and Group 1 (nulliparous, single cephalic at term, in spontaneous labour) were the most represented groups (27.0% and 23.1% respectively). Group 2a (nulliparous, single cephalic at term, with IOL) was the third most represented group (12.8%).

The major contributors to CS were as follows: Group 5 (multiparous with at least one previous CS, single cephalic at term) 29.6%; Group 1 (nulliparous without previous CS, single cephalic at term, in spontaneous labour) 14.0%; Group 2a (nulliparous, single cephalic at term, with IOL) 13.3% and Group 10 (single cephalic, preterm, including previous CS) 11.5%.

Unclassifiable cases accounted for only 42 (0.6%) of total cases. The most prevalent reason was the missing variable previous CS, which was missing in 36 unclassifiable cases (85.7%). Overall the discussion on **Table 1** focused on the following points: again, data suggested a relatively high rate of IOL (Group 2a and 4a); the rate of missing cases (0.6%) was perceived as reassuring, although it was felt that all efforts had to be made to avoid missing information under the variable "previous CS".

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

8 Tabla 4 Tha D)shoon Oloosifisation a		BMJ Open		136/bmjopen-2018-027317	
	Robson Classification re	eport table)18-027	
Setting name:	De Soysa Hospital, Colomb	bo, Sri Lanka			 □ period:]	luly 2015 to June 20
Column 1	Column 2	Column 3	Column 4	Column 5	Coluận 6	Column 7
Group	Number of CS in group	Number of women in group	Group size ¹ (%)	Group CS rate ² (%)	Absolute group contribution to overal CS rate ³ (%)	Relative contributi of group to overal CS rate ⁴ (%)
1	314	1740	23.2	18.0		14.0
2a	300	958	12.8	31.3	4.2 20 4.0 9	13.3
2b	158	158	2.1	100	2.1 Down 1.4 Do 1.1 add 0.7 from 8.9 m	7.0
3	105	2030	27.1	5.2	1.4 5	4.7
4a	81	722	9.6	11.2	1.1 de	3.6
4b	49	49	0.7	100	$0.7 \frac{0}{5}$	2.2
5	666	814	10.9	81.8		29.6
6	114	139	1.9	82.0	1.5 http://bmj 1.2 //bmj 0.8 jop 0.6 en	5.1
7	90	115	1.5	78.3	1.2	4.0
8	63	84	1.1	75.0	0.8 💆	2.8
9	47	65	0.9	72.3	0.6	2.1
10	258	588	7.8	43.9	3.4 5	11.5
Total	Total number of CS=2251	Total number women delivered= 7504	100%	Overall CS rate	Overall CS rate	100%
Unclassifiable: 42 cases (0.6%) [Number unclassifiable cases / (Total Number women delivered classified + unclassified) X 100]			2. Group CS rate (%) = 3. Absolute contributi hospital x 100	n of CS in the group / total N on (%) = n of CS in the group	N women delivered in the ho of women in the group x 100 / total N of women delivered	in the
					uest. Protected by copyright.	
	For	peer review only - http://l	bmjopen.bmj.com/site	/about/guidelines.xhtml	•	

136/bmjopen-2 Table 2, 3 and 4 summarize findings and their interpretation, related to the data quality, the type of population, and the CS rates. Findings different from the Robson comparison and/or from the MCS reference population are highlighted in grey in the tables. on 8

Regarding the quality of data (Table 2), total number of deliveries and size of Group 9 (single pregnan average), transverse or oblique lie, including previous CS), when compared to the Robson interpretation and the MCS example, suggested no major problems in data quality. The CS rate in Group 9 (72.3%), suggested possible misclassification of a few number of cases (about 15 cases). It was felt that the most likely explanation for this finding could have been that women, presenting initially with an oblique/transverse lie, but having a spontaneous version or a successful external cephalic version after admission, were eventually erroneously classified as abnormal lie. rom http://bmjo St ra

Table 2. Assessment of the quality of data

Steps for	Interpretation by	Example:	Our findings	Additional	Final interpretation
interpretation	Robson	MCS		information from	<u>i</u>
		population		database used to	S S
				interpret data	् ९
STEP 1. Total	Should be identical to	NA	Total CS=	- 0,	There are no messing/incorrect data
number of CS and	the numbers provided		2251		년 17
total number of	by official register		Total		, 20
women delivered			deliveries=		20241
			7504		g yc
STEP 2. Size of	<1%	0.4%	0.9%	-	No significant misclassification for this
Group 9 (should be					group accordingto references by Robson
less than 1%)					otec
STEP 3. CS in Group	100%	88.6%	72.3%	-	Misclassificatio
9 (should be 100%					by c
by convention)					öpy
					copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

136/bmjopen-2018-027

 Abbreviation: CS= Caesarean section; MCS= Multi-country survey; NA= data not available.

Table 3 synthetises the assessment of the type of population. Overall, findings on step 1, 4 and 5 were in line with both the Robson references and the MCS example and did not result in major discussion. Findings on step 2, 3 and 6 to 9 (highlighted in grey in the table), were somehow different from both the Robson and MCS comparisons, and where interpreted based also on the additional information provided by the local database (column five in Table 3). Different possible explanations for these findings were identified, including possible misclassifications, case selection (tertiary referral centre in appropriate care, or others (Table 3). Specifically, the following were the key findings of the analysis.

On step 2 and 9, the size of Group 3 (multiparous without previous CS, single cephalic at term, in spontaneous labour) plus Group 4 (multiparous without previous CS, single cephalic at term with IOL or CS before labour) was arger than the Robson comparison (37.3% *versus* about 30%) while the ratio of the size of Group 6 (nulliparous, single breech) *versus* Group 7 (multiparous, single breech, including previous CS) was lower (1.2) than the Robson comparison (ratio of 1.2 instead of 2). On both steps, the observed values were similar to the MCS example. It was felt that these findings could be explained by the relatively high prevalence of multiparous women in the study population (55%).

On step 3, the small size of Group 5 (multiparous with at least one previous CS, single cephalic at term) when compared to the overall CS rate (30.0%) suggested relatively low CS rate in the previous years, or a recently increased rate.

On step 6, Group 10 (single cephalic, preterm, including previous CS) was slightly larger than the Robson comparison (7.8% vs 5%), most likely due to the hospital being a tertiary care centre where women in preterm labour and other conditions that warrant preterm delivery are referred to.

On step 7, the ratio of the size of Group 1 (nulliparous, single cephalic at term, in spontaneous bour) *versus* Group 2 (nulliparous single cephalic, at term with IOL or CS before labour) was lower than the Robson compared on (1.5 vs 2), possibly due to the observed relatively high rate of IOL in nulliparous (Group 2a 12.8%, see **Table 1**) when compared to existing literature.[14,20,21]

Table 3. Assessment of the type of population

able 3. Assessmen	t of the type of popu	lation			136/bmjopen-2018
Steps for interpretation	Interpretation by Robson	Example: MCS population	Our findings	Additional information from database used to interpret data	Final interpretation
STEP 1. Size of Groups 1 + Group 2	35-42%	38.1%	38.1%	-	Rate in line wit both references by Robs and MCS references population
STEP 2. Size of Groups 3+4	30%	46.5%	37.3%	Multiparous in our population 55.0%	Rate higher than Robson references but low than MCS exam Res. This may be explained a high prevalence of multiparous women in c population
STEP 3. Size of Group 5	Half of total CS rate	7.2%	10.9%	-	Lower than half of total CS. This, as suggest by the WHO Magual, may be due to relative low CS rate in the previous years, or to recently increased CS rate
STEP 4. Size of Groups 6+7	3-4%	2.7%	3.4%	-	Rate in line with both Robson references a MCS example.
STEP 5. Size of Group 8	1.5-2%	0.9%	1.1%	Li	Rate in line with MCS examples.
STEP 6. Size of Group 10	< 5%	4.2%	7.8%	Divisions by gestational age in our preterm population	Higher than both comparisons. This may explained by the hospital being a tertiary ca referral centre
STEP 7. Ratio of the size of Group 1 versus Group 2	Ratio 2 or higher	Ratio 3.3	Ratio 1.5	Indication of IOL	Lower than the comparisons. This associat with a large size of Group 2a, suggesting a hi incidence of IOL, This may be explained by: case selection (ertiary care referral centre) inappropriate indication to IOL (deserve further investigation)
STEP 8. Ratio of size of Group 3 versus Group 4	> than 2:1	Ratio 6.3	Ratio 2.6	Indication of IOL	Rate in line with Both Robson references, low than MCS. This may be explained by: misclassification of augmentation as IOL case selection (Refriary care referral centre) inappropriate indication to IOL (deserve further investigation)

 136/bmjopen-

STEP 9. Ratio of size of	usually 2:1	Ratio 0.8	Ratio 1.2	Multiparous	in	our	Rate in line with MCS, but lower than Robson
Group 6 versus Group 7				population 55.0%			references. This may be explained by: 1) high
							number of multiparous in our population.

Abbreviation: CS= Caesarean section; IOL= Induction of labour; MCS reference population: was the population of the WHO MCS with repatively low CS rates and, at the same time, with good outcomes of labour and childbirth.

The assessment of CS rates (see the following **Table 4**) was complemented by an analysis of the indigations to CS using data extracted from the prospective individual patient database (**Supplementary table 7 and 8**). Overall, it was found that main indications to CS were (**Supplementary table 7**): abnormal CTG or suspected foetal distress (27.1%); ast CS (23.9%), failure to progress or failed IOL (11.6%); breech/abnormal presentation (8.2%). The following indications, accounting for a total of 147 (6.5%) cases, were identified as potentially inappropriate (in grey in **Supplementary table 7**): if relabour diagnosis of cephalopelvic disproportion (CPD) (2.5%), history of subfertility/bad obstetric history (2.1%), CS for maternal request (1.9%).

When indications to CS were analysed by Robson groups, some indications were observed at a suspected high or low rate compared to the expected, suggesting potentially inappropriate management. Specifically, abnormation CTG/suspected foetal distress were over-represented as an indication to CS, particularly in Robson groups 1 to 4, suggesting possible gaps in the use/interpretation of CTG (in dark grey in **Supplementary table 8**). On the other hand, dystocia was reported as an indication to CS in less than 8% of total cases (in light grey in **Supplementary table 8**), a rate much lower than what observed in United Kingdom (UK) and the United States of America (USA), where dystocia is an indication for about 20% of CS.[22-24] Internal discussion identified the following possible explanations for this specific finding: difficulty by data collectors in classifying dystocia; missing information in the medical file; peculiar characteristics of the Sri Lanka population **E** sons affecting dystocia rate in UK and USA statistics. Misclassifications were identified in 1.9% of the total indications to **E** (highlighted with an asterisk in **Supplementary table 8**).

BMJ Open Table 4 reports the interpretation of assessment of CS rate. Overall, findings on step 8 and 9 were interpretation both Robson references and MCS examples, and did not resulted in major discussion. Findings from all other steps in Table 4) were somehow different from either the Robson comparison or the MCS example. Details on data interpretation is provided, step by step, in Table 4. February 2019. [

Table 4. Assessment of the CS rates

Steps for	Interpretation by	Example: MCS	Our findings	Additional information from	Final interpretation
interpretation	Robson	population		database used to interpret	oaded
				data	
STEP 1. CS rate in	Under 10% are	9.8%	18.0%	•Abnormal CTG was the	CS rate higher than Robson and MCS. This
Group 1	achievable			indication in 49.4% of cases	may be explained by inappropriate indications
				•Potentially inappropriate CS	(abnormal CT suspected foetal distress)
				indications to CS in 15%.	and/or inapproputite care.
STEP 2. CS rate in	Consistently	39.9%	41.0%	•Abnormal CTG was the	CS rate higher tan Robson and MCS. This
Group 2	around 20-35%			indication in 58.3% of Group 2a	may be possibly due to the high rate of IOL,
				and 30.4% in Group 2b.	which carry increased risk of CS.
				•Potentially inappropriate CS	A A A A A A A A A A A A A A A A A A A
				indications in 25% in 2b.	9
STEP 3. CS rate in	No higher than	3.0%	5.2%	•Abnormal CTG was the	CS rate higher than Robson and MCS. This
Group 3	3.0%.			indication in 57.1%.	may be explained by misclassification (Group 5
					misclassified as group 3) or, most probably, by
					inappropriate ingication to CS (CTG mis-
					interpretation). $\overset{\vee}{\sim}$
STEP 4. CS rate for	It rarely should be	23.7%	16.8%	•Abnormal CTG was the	CS rate higher than Robson. Size of Group 4b
Group 4	higher than 15%			indication in 60.5% in 4a and	suggests low pretabour CS in this group, while
				18.4% in 4b.	the rate of CS in $\vec{\Phi}$ roup 4a was high mainly due
				• failed induction was an	to CTG abnormatives and failed IOL. This may
				indication in 25.9% of 4a.	be explained by misclassification (Group 5
					misclassified as Šroup 4) or, most probably, by
					ругі
					pyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

8			BN	ЛЈ Open	136/bmjopen
					inappropriate indication to CS (CTG n interpretation). ح
STEP 5. CS rate in Group 5	Rates of 50-60% are considered appropriate	74.4%	81.8%	 Abnormal CTG was the indication in 70.1%. Rate of prelabour CS was 62.5%. 	CS rate higher than Robson and MCS. L rate of IOL in this group. The vast majority CS for past section. This may be explained the group size of a policy of scheduling p labour CS (low offer of trial of labour). Al women's preference, based on previo information, for repeating CS may have a ro
STEP 6. CS rate for Group 8	Usually around 60%.	57.7%	80.9%	 Multiple pregnancies was the indication in 58.7%. Elective CS rate in multiple pregnancies was 37.8% 	CS rate higher than Robson and MC Possible tenderey to perform elective CS multiple pregnarries
STEP 7. CS in Group 10	Usually around 30%	25.1%	41.1%	•Maternal/foetal pathological conditions were the indication in 48.1%.	CS rate higher than Robson and MCS. T may be explained by a high-risk population.
STEP 8. Relative contribution of Groups 1, 2 and 5 to the overall CS rate	Normally contribute to 2/3 (66%) of all CS performed in most hospitals	Contributed to 63.7% of all CS	63.9%	ien.	In line with both Bobson and MCS referenc
STEP 9. Absolute contribution of Group 5 to overall CS rate	NA	Responsible for 28.9% of all CS	Absolute contribution: 8.87% Relative contribution: 29.59%	0	Absolute contribution lower than MCS (Robs comparison not provided in the WHO manu Relative contribution in line with MCS (value provided by the WHO Manual as M example refers to the relative contribution).

136/bmjopen-

Abbreviation: CS= Caesarean section; CTG= Cardiotocography; IOL= Induction of labour; TOL= Trial of labour; MCS reference population: was the population of the 8-027317 on 8 WHO MCS with relatively low CS rates and, at the same time, with good outcomes of labour and childbirth; NA= data not available.

Developing of quality improvement recommendations

Table 5 reports the key findings of the analysis, the possible explanations, and the agreed recommendations that emerged from the hospital staff discussion. Overall, 16 recommendations were developed, and three were identified as a priority for action (highlighted with an asterisk in Table 5). Some recommendations, such as the need to train staff on foetal monitoring, emerged from different key findings, and as such were identified as a priority for action. Most recommendations aimed at improving the implementation of evidenced-based indication for CS and IOL. Beside updating protocol and hands-on training, activities agreed included monitoring and supervision, criterion-based audits, risk management meetings and appropriate information for patients. Recommendations to further improve the quality of data were also agreed (recommendations 15 and 16). omjopen.bmj.com

Table 5. Process of development of quality improvement recommendations

		<u> </u>
Key findings	Possible explanations	Agreed recommendations
from the analysis	emerged from hospital staff discussion	for quality improvement
1. High intrapartum CS rate in Group 1, with	1.Possible inappropriate interpretation of foetal	1.Develop a training plan for strengthening capacities
potentially inappropriate indications (main	monitoring	of staff in CTG interpretation*
current indication is CTG abnormality)	2.Possible inappropriate use of oxytocin	2. Hands-on trainings 🖣 instrumental delivery
	3.Possible inappropriate indications to CS	3. Supportive supervision and monitor over time of
		staff skills in CTG interpretation and instrumental
		delivery T
		3.Criterion-based audi
		4. Regular risk management meetings with emphasis
		on diagnosis of foetal destress
		со
		pyright
		ght.
_		

of 48		BMJ Open	136/bmjopen
2.	High rate of IOL and high rate of CS in women undergoing IOL (high contribution of Group 2a to total CS rate and high CS rate in Group 4a)	1.Possible inappropriate indications for IOL2.Possible inappropriate use ofprostaglandin/oxytocin3.Possible Inappropriate CTG interpretation4.Possible misdiagnosis of failed IOL	5.Consultant meeting to update IOL protocols (agreeing on criteria for failed IOL according to recent evidence)* 6. Criterion-based audits on IOL 7.Monitor IOL indigations, complications and abnormal CTG associated to use of prostaglandins or oxytocin
3.	High prevalence of prelabour CS (Group 2b) with more frequent CS indications: abnormal CTG, potentially inappropriate indications 25%, maternal/foetal pathological conditions	1.Inappropriate indications for prelabour CS	8.Update protocols on indications to prelabour CS 9.Criterion-based audie on indications for prelabour CS 10.Review cases of S for abnormal CTG during staff training
4.	High CS rate in Group 3 and 4a (multiparous). More frequent indication is abnormal CTG	 Rate of CS in multiparous suggests suboptimal care in this group of women Inappropriate interpretation of CTG 	Recommendations #1a,3,s 11.Criterion-based audits of offers and unsuccessful cases of TOL
5.	Very high CS rate in Group 5, majority are elective. Past CS is the main indication	3.Low offer of TOLAC	12.Use of a patient education leaflets to inform women of TOL benefits and establishment of a nurse- led TOLAC counselling service* 13. Monitoring the prevalence of TOLAC
6.	Breech is the fourth most common indication for CS	1.Refusal by mothers to accept ECV due to preconceived prejudices	14.Develop an information leaflet on the value of ECV
7. 8.	Low Rate of CS for dystocia with half of CS done in 2nd stage Low CS rate in Group 9	 Possible problems in data quality Possible misclassification of a few number of cases 	15. Training for data collectors and hospital staff on definitions used for the Robson's classification according to WHO manual, stressing also the definition of dystocia , 16. Add few internal collidation rules on database (previous CS, breect, dystocia) and strengthen monitoring on these variables.
9.	High contribution to CS rate from Group10. Majority of indications for maternal/foetal pathological conditions	1.latrogenic indications of IOL/CS in the late preterm period	Recommendation #2 Recommendation #5 tupdate protocols of IOL and elective CS criteria in late preterm and SGA) Recommendation #3 (Criterion-based audits on cases of IOL and elective CS)

<text><text><text>

DISCUSSION

This study reports an experience from a lower middle-income country, where information accumulated in an individual patient database was used locally for conducting an in-depth analysis of CS practices according the WHO manual for Robson classification,[4] and for developing recommendations to improve the quality of care.

In respect to previous literature, this study has three main aspects of novelty, which can be of interest of both researchers and policy makers. First, this is the first study conducted in a lower middle-income country, reporting on the use of a prospective individual-patient database to analyse practices on CS. Prospective individual-patient databases are generally lacking in low resources settings. However, the availability of accurate data is relatively limited even in high-income countries, where most often hospital administrative datasets lack key information - such as maternal risk factors - needed for evaluating the case mix and for interpreting the observed CS rates. To our knowledge, even the few studies in high-income countries which utilised individual patient databases for the Robson classification,[25-27] had available much less information that in this study in Sri Lanka, where a large number of variables were prospectively collected.[9] The availability of many variables , including CS indications by Robson groups, was a valuable contribution for an in-depth understanding of CS practices.

Second and most important, the paper provides a model on how findings of the Robson analysis can be used for internal discussion and for QI purposes. The majority of the published studies using the Robson classification focused on the analysis, rather than on the development of recommendations to improve CS practices. A recent systematic review [16,28] cited only six studies that used the Robson classification in a clinical audit cycle to reduce CS rates. We were able to identify only one study, conducted in Canada, where the local Society of Obstetricians and Gynaecologists has formally supported the use of Robson classification,[29] measuring the effectiveness of the Robson analysis, with a before and after design, on the CS rate.[30]

Third, this is the first report on the use of the WHO Implementation Manual for the Robson Classification.[4] In this study, all steps suggested in the WHO manual were followed. The paper documents an example of how the manual can be used in an action-oriented manner.

As additional findings, this study underscored the lack of specific reference standards for the Robson Classification. Interestingly, in several instances the findings of this analysis were within the range of the values provided by the Robson guideline, but not of those provided by the MCS population, or vice-versa. This is not surprising, given the fact that, as stressed in the WHO manual, none of these two comparisons can be taken as an absolute standard.[4] The WHO Manual underlines that either Robson or MCS references "have not been validated against outcomes and should not be taken as a recommendation" and "it is up to the hospital itself to decide what is appropriate care, based on its results and other available evidence".[4] Being specific for Sri Lanka, this study may help in the future researchers and policymakers in further interpreting data from a similar setting. Meanwhile, more research should be conducted to identify which can be the golden standard for the Robson analysis.

This study did not aim at comparing in detail the findings of the Robson analysis to the international literature, but rather at describing the whole process of how data were internally used to develop recommendations to improve hospital practices. However, few points on key clinical findings can be further discussed here. In most Robson groups, the very high rate of CS performed for abnormal CTG/suspected foetal distress was a reason of concern. Although a similar rate around 25% had been reported in USA [23] the contribution of abnormal CTG In Sri Lanka may highlight a problem unique to countries in economic transition. In these setting, with increasing investment in health infrastructure, CTG machines are becoming increasingly available and, due also to their wide usage in high-income countries, practitioners and policymakers often see them as essential for provision of quality obstetric care. However, the introduction of these technologies not always has been complemented by adequate capacity development. Currently, Sri Lanka does not have mandatory training for staff in CTG interpretation. Further, currently there is a lack of facilities for ancillary tests such as foetal scalp blood sampling and cord blood pH levels, which are important adjuncts in verifying decisions

made based on CTG interpretation. Recently, there have been calls to optimize technical skills of staff on CTG interpretation, by delivering adequate training.[31] Results of this study suggest that improving the quality of CTG interpretation could be an important step in reducing CS rates and increasing appropriateness of care.

The high rate of IOL in our population (24.6%), when compared to existing literature,[14,32,33] is also matter of concern and needs further investigation. IOL should be performed only with a clear medical indication (i.e., when expected benefits outweigh its potential harms).[32] Recent data from high-income settings shows that IOL does not result in increased CS rates,[34,35] while our findings suggest that the high rate of IOL may have contributed to the relatively high rate of CS (group 2a and 4a contributed to 16.9% of the total number of CS, and the two key indications to CS in these groups were abnormal CTG and failed induction, **Table 1** and **Supplementary table 8**). Sri Lanka has the highest rate of IOL in Asia,[32,33] and a better understanding of practices related to IOL may contribute to the current local debate on how to improve quality of maternal care. As recommended by Robson,[36] the Robson classification "provides a common starting point for further analyses for all labour and delivery events and outcomes"; it draws attention to specific groups, where further analysis can be performed to understand the reasons behind the initial observation. We plan to further analyse and report IOL practices in a future paper.

A relevant proportion of CS (6.5%) were performed electively for potentially inappropriate indications (ie, prelabour diagnosis of CPD, history of subfertility, maternal request). However, this is a frequent finding in literature, as documented in studies from USA, Germany, China, Brazil, Argentina, India, Pakistan, and other countries.[37-44] One of the recommendations agreed in this experience was the implementation of the regular auditing of cases of CS without absolute indications, aiming at promoting good practices.

We acknowledge some limitations of this study. The analysis highlighted cases of possible misclassification and missing variable resulting in cases being unclassifiable. However, this

was a rare finding (respectively, 0.5% and 0.6% of total cases, see **Table 1** and **Supplementary table 8**). Data quality was the object of internal discussion, and actions to improve it were within the list of recommendations developed.

Despite not all recommendations developed were SMART,[17] still the process provided the opportunity to discuss clinical practice using objective data, in a constructive, participatory manner, and resulted in a concrete list of actions.

This was a pilot study in one single facility, and will be important to replicate similar experiences in other settings to evaluate generalisability of findings. We believe that the commitment of local staff, a favourable local leadership, and a constructive dialogue with an external partner providing independent technical support, were the three essential favourable elements in succeeding in performing the analysis and most importantly, in using data proactively.

Within the project timelines, it was not possible to follow up the impact of the recommendations developed. Future longer-term studies will be needed to monitor implementation.

CONCLUSIONS

This study provides an example from a setting with limited resources, where information from an individual patient database were used locally for conducting an in-depth analysis of CS practices, following the WHO manual.[4] Further, it was used for developing recommendations to improve the quality of hospital care. Future studies may further explore other aspects of maternal care -such as practices related to IOL- and monitor over time outcomes of the recommendations developed.

Acknowledgments

We would like to thank all the hospitals staff that participated in all phases of the study and specially Mr. HK Dharmasiri, Medical Records Officer of the hospital.

Disclosure of interests

None competing interest

Funding

1	
2	
3	-
4 5	
5 6 7 8	1
7	
8	
9	ŀ
10	ŀ
11	
12 13	ŀ
14	F
15	
16	E
17	A
18 10	
19 20	ľ
21	
22	
23	
24	
25	
26 27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
50	

The implementation of the database was funded for the first year by a grant from the GREAT Network, Canadian Institutes of Health Research, St. Michael's Hospital, Toronto.

Author contributions

- HS, MP and ML conceived the study and procured funds
- HS, MP, CB and ML developed the data collections tools
- RF, AS and FRI collected data
- BC, HW, EPV and ML analysed the data
- All authors interpreted data and contributed to the manuscript
- Ja Intribut, per, all auth. ML wrote the first draft of the paper, all authors contributed to the final version of the paper

REFERENCES

1.World Health Organization. WHO Statement on Caesarean Section Rates. Geneva, 2015. http://apps.who.int/iris/bitstream/10665/161442/1/WHO_RHR_15.02_eng.pdf (accessed 16 October 2018)

2. Boerma T, Ronsmans C, Melesse DY, et al. Global epidemiology of use of and disparities in caesarean sections. *The Lancet* 2018;392(10155):1341–48 [published Online First: 13 October 2018]

3. Robson MS. Classification of caesarean sections. *Fetal and Maternal Medicine Review* 2001;12(1):23-39. doi:10.1017/S0965539501000122

4. World Health Organization. Robson Classification: Implementation Manual. Geneva, 2017. http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/robson-classification/en/ (accessed 16 October 2018)

5. Goonewardene M, Kumara DMA, JathunArachchi DR, et al. The rising trend in caesarean section rates: should we and can we reduce it? *Sri Lanka Journal of Obstetrics and Gynaecology* 2012;34:11-18. doi:10.4038/sljog.v34i1.4816

6. Annual Health Bulletin 2015 Sri Lanka. Medical Statistics Unit Ministry of Health, Nutrition and Indigenous Medicine. ISBN 978-955-702-045-7 (Published in 2017). http://www.health.gov.lk/moh_final/english/others.php?pid=110 (accessed 16 October 2018)

7. Goonewardene M, Peiris M, Kariyawasam S, et al. Analysis of high caesarean section rates: the second step after audits using the Ten Group Classification System. *Ceylon Medical Journal* 2017;62:149-158. doi:10.4038/cmj.v62i3.8518 [published Online First: 25 September 2017]

8. Rannan-Eliya RP, Wijemanne N, Liyanage IK, et al. Quality of inpatient care in public and private hospitals in Sri Lanka. *Health Policy and Planning* 2015;30:i46–i58. doi:10.1093/heapol/czu062.

9. Lazzerini M, Senanayake H, Mohamed R, et al. Implementation of an individual-patient prospective database of hospital births in Sri Lanka and its use for improving quality of care. *BMJ Open* (submitted on April 2018, minore revision requested, resubmitted in Aug 2, currently awaiting response).

10. Ogrinc G, Davies L, Goodman D, et al. SQUIRE 2.0 (Standards for Quality Improvement Reporting Excellence): revised publication guidelines from a detailed consensus process. *BMJ Qual Saf* 2016;25:986–992. doi:10.1136/bmjqs-2015-004411 [published Online First: 25 September 2015].

11. Goodman D, Ogrinc G, Davies L, et al. Explanation and elaboration of the SQUIRE (Standards for Quality Improvement Reporting Excellence) Guidelines, V.2.0: examples of SQUIRE elements in the healthcare improvement literature. *BMJ Qual Saf* 2016;25:e7. doi:10.1136/bmjqs-2015-004480 [published Online First: 27 April 2016].

12. Revised Standards for Quality Improvement Reporting Excellence SQUIRE 2.0. http://www.squirestatement.org/index.cfm?fuseaction=Page.ViewPage&pageId=471 (accessed 16 October 2018).

BMJ Open

13. Robson M, Hartigan L, Murphy M. Methods of achieving and maintaining an appropriate caesarean section rate. *Best Pract Res Clin Obstet Gynaecol* 2013;27:297-308. doi:10.1016/j.bpobgyn.2012.09.004. [published Online First: 3 November 2012].

14. Vogel J P, Betrán A P, Vindevoghel N, et al. Use of the Robson classification to assess caesarean section trends in 21 countries: a secondary analysis of two WHO multicountry surveys. *The Lancet Glob Health* 2015;3: e260–70. doi:10.1016/S2214-109X(15)70094-X. [published Online First: 9 April 2015].

15. Zhang J, Geerts C, Hukkelhoven C, et al. Caesarean section rates in subgroups of women and perinatal outcomes. *BJOG* 2016;123:754–761. doi:10.1111/1471-0528.13520. [published Online First: 22 July 2015].

16. Boatin AA, Cullinane F, Torloni MR, et al. Audit and feedback using the Robson classification to reduce caesarean section rates: a systematic review. *BJOG* 2018;125:36–42. doi:10.1111/1471-0528.14774. [published Online First: 17 July 2017].

17. Doran GT. There's a S.M.A.R.T. Way to Write Management's Goals and Objectives. *Management Review* 1981;70:35–6.

18. WHO Expert Consultation: Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. *The Lancet* 2004;363:157–163. doi:10.1016/S0140-6736(03)15268-3

BMJ Open: first published as 10.1136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

19. National Institute of Health and Care Excellence: Preventing type 2 diabetes risk: identification and interventions for individuals at high risk (2012)

https://www.nice.org.uk/guidance/PH38/chapter/Recommendations#risk-assessment (accessed 16 October 2018)

20. Pyyk€onen A, Gissler M, Løkkegaard E, et al. Cesarean section trends in the Nordic Countries – a comparative analysis with the Robson classification. *Acta Obstet Gynecol Scand* 2017;96:607–616. doi:10.1111/aogs.13108. [published Online First: 24 March 2017].

21. Rossen J, Lucovnik M, Eggebø TM, et al. A method to assess obstetric outcomes using the 10-Group Classification System: a quantitative descriptive study. *BMJ Open* 2017;7:e016192. doi:10.1136/ bmjopen-2017-016192

22. Rhoades JS, Cahill AG. Defining and Managing Normal and Abnormal First Stage of Labor. *Obstet Gynecol Clin N Am* 2017;44:535–545. doi:10.1016/j.ogc.2017.07.001

23. Boyle A, Reddy UM, Landy HJ, et al. Primary Cesarean Delivery in the United States. *Obstet Gynecol* 2013;122(1):33–40. doi:10.1097/AOG.0b013e3182952242

24. J Thomas, S Paranjothy. Royal College of Obstetricians and Gynaecologists. Clinical Effectiveness Support Unit. National Sentinel Caesarean Section Audit Report. RCOG Press; 2001.

BMJ Open

25. Le Ray C, Blondel B, Prunet C, et al. Stabilising the caesarean rate: which target population? *BJOG* 2015;122:690–699 doi:10.1111/1471-0528.13199 [published Online First: 21 November 2014].

26. Robson M, Murphy M, Byrne F. Quality assurance: The 10-Group Classification System (Robson classification), induction of labor, and cesarean delivery. *Int J Gynaecol Obstet* 2015;131:S23–S27. doi:10.1016/j.ijgo.2015.04.026.

27. Triunfo S, Ferrazzani S, Lanzone A, et al. Identification of obstetric targets for reducing cesarean section rate using the Robson Ten Group Classification in a tertiary level hospital. *European Journal of Obstetrics & Gynecology and Reproductive Biology* 2015;189:91–95. doi:10.1016/j.ejogrb.2015.03.030.

 Kacerauskiene J, Bartuseviciene E, Railaite DR, et al. Implementation of the Robson classification in clinical practice: Lithuania's experience. *BMC Pregnancy and Childbirth* 2017;17:432. doi:10.1186/s12884-017-1625-9 [published Online First: 20 December 2017].

29. Farine D, Shepherd D. Classification of caesarean sections in Canada: the modified Robson criteria. *J Obstet Gynaecol Can* 2012;34(10):976–83. doi:10.1016/S1701-2163(16)35412-3.

30. Shoemaker ES, Bourgeault IL, Cameron C, et al. Results of implementation of a hospital-based strategy to reduce cesarean delivery among low-risk women in Canada. *Int J Gynecol Obstet* 2017;139:239–244.s. doi:10.1002/ijgo.12263. [published Online First: 4 August 2017].

31. Ugwumadu A, Steer P, Parer B, et al. Time to optimise and enforce training in interpretation of intrapartum cardiotocograph. *BJOG* 2016;123:866–869. doi:10.1111/1471-0528.13846. [published Online First: 15 January 2016].

32. WHO. WHO recommendations for induction of labour. Geneva: World Health Organization, 2011. Department of Reproductive Health and Research. http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/9789241501156/en/ (accessed 16 October 2018).

33. Vogel JP, Souza JP, Gülmezoglu AM. Patterns and Outcomes of Induction of Labour in Africa and Asia: A Secondary Analysis of the WHO Global Survey on Maternal and Neonatal Health. *PLoS ONE* 2013;8(6): e65612. doi:10.1371/journal.pone.0065612. [published Online First: 3 June 2013]

34. Saccone G, Berghella V. Induction of labor at full term in uncomplicated singleton gestations: a systematic review and metaanalysis of randomized controlled trials. *Am J Obstet Gynecol* 2015;213(5):629-36. doi:10.1016/j.ajog.2015.04.004

35. Grobman WA, Rice MM, Reddy UM, et al. Labor Induction versus Expectant Management in Low-Risk Nulliparous Women. *N Engl J Med* 2018;379:513-23. doi: 10.1056/NEJMoa1800566

36. Robson MS. The 10-Group Classification System-a new way of thinking. *Am J Obstet Gynecol* 2018;219(1):1-4. doi:10.1016/j.ajog.2018.05.026.

Page 29 of 48

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

37. Souza J, Gülmezoglu A, Lumbiganon P, et al. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004–2008 WHO Global Survey on Maternal and Perinatal Health. *BMC Med* 2010;8:71. doi:10.1186/1741-7015-8-71.

38. Lumbiganon P, Laopaiboon M, Gülmezoglu AM, et al. Method of delivery and pregnancy outcomes in Asia: the WHO global survey on maternal and perinatal health 2007–08. *The Lancet* 2010;375:490–99. doi:10.1016/S0140-6736(09)61870-5 [published Online First: 12 January 2010].

39. Venturella R, Quaresima P, Micieli M, et al. Non-obstetrical indications for cesarean section: a stateof-the-art review. *Arch Gynecol Obstet* 2018;298(1):9-16. doi:10.1007/s00404-018-4742-4 [published Online First: 20 March 2018].

40. Gao Y, Xue Q, Chen G, et al. An analysis of the indications for cesarean section in a teaching hospital in China. *European Journal of Obstetrics and Gynecology and Reproductive Biology* 2013;170(2):414-418. doi:10.1016/j.ejogrb.2013.08.009.

41. Adhikari K, McNeil DA, McDonald S, et al. Differences in caesarean rates across women's socioeconomic status by diverse obstetric indications: Cross-sectional study. *Paediatr Perinat Epidemiol* 2018;32(4):309-317. doi:10.1111/ppe.12484. [published Online First: 5 July 2018].

42. Mikolajczyk RT, Schmedt N, Zhang J, et al. Regional variation in caesarean deliveries in Germany and its causes. *BMC Pregnancy and Childbirth* 2013;13:99. doi:10.1186/1471-2393-13-99.

43. Pereira MN, Leal MC, Pereira APE, et al. Use of Robson classification to assess cesarean section rate in Brazil: the role of source of payment for childbirth. *Reproductive Health* 2016;13(3):128. doi:10.1186/s12978-016-0228-7

44. Belizán JM, Minckas N, McClure EM, et al. An approach to identify a minimum and rational proportion of caesarean sections in resource-poor settings: a global network study. *Lancet Glob Health* 2018;6:e894–901. doi:10.1016/S2214-109X(18)30241-9.

BMJ Open: first published as 10.1136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

> Use of an individual-patient database for analysing caesarean section practices according to the WHO Manual for Robson for developing quality classification improvement and recommendations: a study in Sri Lanka

Supplementary file

Supplementary Table 1. Missing cases for the variables of interest	2
Supplementary Table 2. Steps to assess quality of data using the Robson Classification Report Tabl according to WHO implementation manual	
Supplementary Table 3. Steps to assess type of population using the Robson Classification Report Table according to WHO implementation manual	
Supplementary Table 4. Steps to assess caesarean section rates using the Robson Classification Report Table according to WHO implementation manual	7
Supplementary Table 5. Template for agreeing actions at hospital level to improve the quality of care	10
Supplementary Table 6. Characteristics of the population	12
Supplementary Table 7. Main indications to CS	14
Supplementary Table 8. Main indications to CS by Robson group	15

1 2 3 4	
4 5 6 7 8	
8 9 10 11	
12 13 14 15	
9 10 11 12 13 14 15 16 17 18 19 20	
21 22 23	
24 25 26 27 28	
29 30 31 32	
33 34 35 36	
37 38 39 40	
40 41 42 43 44	
44 45 46 47 48	
49 50 51 52	
52 53 54 55 56	
57 58 59 60	

Supplementary Table 1. Missing cases for the variables of interest

Variables	Total	Missing	% Missir
Maternal age	7504	34	0.4
Parity	7504	34	0.4
Gestational age at delivery	7504	47	0.6
Previous caesarean section	7504	38	0.5
If previous caesarean section, trial of labour	7504	91	1.2
Multiple pregnancies	7504	35	0.4
Presentation	7504	43	0.6
Labour onset	7504	36	0.4
Delivery	7504	32	0.4
Delivery mode	7504	37	0.4
If operative delivery, indication	7504	38	0.5
If caesarean section, type	7504	37	0.4
Indication of labour	7504	36	0.4
Mode of induction	7504	42	0.5
Pre-gestational diabetes	7504	35	0.4
Gestational diabetes mellitus in diet	7504	35	0.4
Gestational diabetes mellitus in drug therapy	7504	36	0.4
Pre-gestational hypertension	7504	33	0.4
Gestational hypertension (no proteinuria)	7504	35	0.4
Pre-eclampsia not severe	7504	35	0.4
Pre-eclampsia severe	7504	35	0.4
Eclampsia	7504	34	0.4
BMI	7504	53	0.7
Maternal cardiac disease	7504	34	0.4
Polyhydramnios	7504	36	0.4
Oligohydramnios	7504	38	0.4
IUGR	7504	36	0.4
APH/major placentia previa	7504	37	0.4
Severe anaemia	7504	38	0.5
Chorioamnionitis	7504	36	0.4

Abbreviation: APH= Antepartum haemorrhage; BMI= Body mass index; IUGR= Intrauterine growth restriction.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 377 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 <tr< th=""><th></th></tr<>	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table 2. Steps to assess quality of data using the Robson Classification Report Table according to WHO implementation

manual¹

Step	Interpretation by Robson	Example: MCS population*	Further Interpretation
1. Look at the total numbers of CS and of women delivered in your hospital	These numbers should be identical to the total number of CS and of women delivered in your hospital.	NA	If these numbers do not match, then data is missing or incorrect. Some women may not have been classified in the Robson groups because of missing variables or were incorrectly classified as to type of delivery. Sometimes multiple pregnancies are counted as babies rather than mothers.
2. Look at the size of Group 9. Singletons in transverse or oblique lie	It should be less than 1%.	0.4%	If this is > 1%, it is probable that women with breech (or other) presentations have been misclassified as transverse /oblique lie and allocated to this group. As the classification includes all women who have delivered, if any one group is smaller or bigger, look to the other groups which sometimes will show where the misclassification is.
3. Look at the CS rate of Group 9	It should be 100% by convention.	88.6%	By convention, if the woman gives birth vaginally by internal version, it should be classified as either cephalic or breech. The CS rate in Group 9 should be 100%

Notes: *MCS reference population was the population of the MCS with relatively low CS rates and, at the same time, with good outcomes of labour and childbirth.

Abbreviations: CS= caesarean section; NA= not available.

¹ World Health Organization. Robson Classification: Implementation Manual. Geneva,

2017.http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/robson-classification/en/ (accessed 28 June 2018)

BMJ Open: first published as 10.1136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Supplementary Table 3. Steps to assess type of population using the Robson Classification Report Table according to WHO implementation manual¹

Step	Interpretation by	Example:	Further Interpretation
	Robson	MCS	
		population*	
1. Look at the size of	This usually	38.1%	In settings with high proportion of
Groups 1 + Group 2.	represents 35-42%		women who have only one child rather
Nulliparous women ≥37	of obstetric population		than more than one child, the group of
weeks gestation singleton	of most		nulliparous women i.e. Groups 1 and 2
cephalic	hospitals.		tends to be larger. In settings where the
			opposite is true, the size of Groups 1 +
			Group 2 will be smaller since most of
		6	the population will be represented by
			multiparous women.
2. Look at the size of	This usually	46.5%	In settings with high proportion of
Groups 3 + 4 -Multiparous	represents about 30%	9	women with more than one child rather
women ≥37 weeks	of women.		than only one child, the size of Groups
gestation singleton			3 + Group 4 will be higher than 30%
cephalic, without previous			(provided they have delivered
CS			vaginally). Another reason for a low size
			of Groups 3 and 4 could be that the size
			of Group 5 is very high which would be
			accompanied by a very high overall CS
			rate.
3. Look at the size of Group	It is related to the	7.2%	The size of Group 5 is usually related to
5 - Multiparous women ≥37	overall CS rate. The		the overall CS rate. If the size of this
	size of Group 5 is		group is larger, it means that there has

¹ World Health Organization. Robson Classification: Implementation Manual. Geneva,

^{2017.}http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/robson-classification/en/ (accessed 28 June 2018)

weeks gestation singleton	roughly usually about		been a high CS rate in the past years
cephalic with previous CS	half of the total CS		that hospital and mainly in Groups
	rate. In settings with		and 2. In places with high CS rates, th
	low overall CS rates, it		size of this group could be > 15%.
	is usually under 10%.		
4. Look at the size of	It should be 3-4%	2.7%	If the total is much over 4%, the mo
Groups 6 + 7 Breeches in			common reason is usually a high rate
nulliparous & multiparous			preterm deliveries or a high
women			proportion of nulliparous wome
			Therefore, look at size of Group 10.
			that is over 4-5%, this hypothesis cou
	D.		be true.
5. Look at the size of	It should be 1.5-2%	0.9%	If it is higher, the hospital is probab
Groups 8 - Multiples			tertiary (high risk, referral) or runs
			fertilization program. If lower, probab
			a lot of the twins are referred o
			especially if the remaining twins have
			low caesarean section rate
6. Look at the size of	It should be less than	4.2%	If it is higher, the hospital is probab
Groups 10 - Preterm	5% in most normal risk		tertiary (high risk, referral) or there is
cephalic singletons	settings.		high risk of preterm births in th
			population that the hospital serves. If,
		4	addition, the CS rate is low in th
			group, it could represent
			preponderance of spontaneou
			preterm labour. If the CS rate in the
			group is high, it could suggest mo
			provider-initiated pre-labour CS f
			foetal growth restriction or pr
			eclampsia and other pregnancy
			medical complications.
7. Look at the Ratio of the	It is usually 2:1 or	Ratio 3.3	If it is lower, suspect poor data qualit
size of Group 1 versus	higher		nulliparous women who receive
Group 2 (Divide the size of			oxytocin for augmentation
Group 1 by the size of			(acceleration) of labour (and should b
Group 2) - Nullipara term			in Group 1) may have bee
cephalic singletons			

spontaneous labour /			misclassified as "induction" (and
Nullipara term cephalic			incorrectly classified as Group 2).
singletons induced or pre-			If data collection is correct, a lower ratio
labour CS			may indicate that you have a high
			induction/prelabour CS issue which
			may indicate a high-risk population ir
			nulliparous women and are likely
			therefore to have a high CS rate
			Additional information on pre-labou
			stillbirths would be the next question to
			ask.
			On the contrary, if the ratio is very high
			you may want to look at your pre-labou
			stillbirth rate in this population which
			may indicate that you are not inducing
			enough. Or alternatively you may have
			a very low risk population
8. Look at the Ratio of the	It is always higher than	Ratio 6.3	If it is lower, suspect poor data quality
size of Group 3 versus	the ratio of Group		multiparous women who received
Group 4. (Divide the size of	1/Group 2 in the same		oxytocin for "augmentation" of labou
Group 3 by the size of	institution, i.e, larger		(and should be in Group 3) may have
Group 4): Multipara without	than 2:1. This is very		been misclassified as "induction" (and
previous CS, term cephalic	reliable finding in	4	incorrectly classified as Group 4).
singletons spontaneous	confirming data quality		A low ratio (due to large Group 4b) may
labour / Multipara without	and culture of the		suggest a poor previous materna
previous CS, term cephalic	organization.		experience in vaginal delivery and a
singletons induced or pre-			request for pre-labour CS in
labour CS			multiparous women. Anothe
			explanation may be pre-labour CS done
			to perform tubal ligation (common in
			settings where family planning is no
			easily available).
9. Look at the Ratio of the	It is usually a 2:1	Ratio 0.8	If the ratio is different, suspect eithe
size of Group 6 versus	because breeches are		unusual nullipara/multipara ratio o
Group 7. (Divide the size of	more frequent in		inaccurate data collection.
Group 6 by the size of	nulliparous women		
Group 7) Nullipara breech /	than in multiparous		
Multipara breech	women.		

outcomes of labour and childbirth.

Abbreviation: CS= caesarean section.

Supplementary Table 4. Steps to assess caesarean section rates using the Robson Classification Report Table according to WHO implementation manual

Step	Interpretation by	Example:	Further Interpretation
	Robson	MCS	
		population*	7
1. Look at	Rates under 10%	9.8%	This rate can only be interpreted accurately when you
the CS rate	are achievable		have considered the ratio of the sizes of Groups 1 and
for Group 1			2. In principle, the higher the ratio of size of Groups 1:2,
			the higher the likelihood of both the CS rate in Group 1
			and 2 being individually higher. However, the overall
			CS rate in Groups 1 and 2 combined may still be low
			or the same.
2. Look at	Consistently	39.9%	CS rates in Group 2 reflect the size and rates in 2a and
the CS rate	around 20-35%		2b. If size of Group 2b is large, the overall CS rates in
for Group 2			Group 2 is also going to be large. If Group 2b is
			relatively small, then high rates of CS in Group 2 may

¹ World Health Organization. Robson Classification: Implementation Manual. Geneva,

^{2017.}http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/robson-classification/en/ (accessed 28 June 2018)

BMJ Open: first published as 10.1136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

3. Look at the CS rate for Group 3	Normally, no higher than 3.0%.	3.0%	indicate poor success rates for induction or poor choic of women to induce and consequently a high rate of C3 in Group 2a. Remember the general principle of no interpreting one single subgroup on its own withou knowing what is left out. The interpretation of group 2 requires knowing the relative sizes of Groups 1 and 2b In units with higher CS rates in this group, this may b due to poor data collection. It is possible that wome with previous scars (Group 5) were incorrectl classified as Group 3. Other possible reasons for hig rates could be for example to do tubal ligation i
	0,		settings with poor access to contraception, or materna request.
4. Look at the CS rate for Group 4	It rarely should be higher than 15%	23.7%	CS rates in Group 4 reflect the size and rates in 4a and 4b. If size of Group 4b is large, the overall CS rates is Group 4 is also going to be high. If Group 4b relatively small, then high rates of CS in Group 4 maindicate poor success rates for induction or poor choic of women to induce and consequently a high rate of C in Group 4a. Poor data collection could also be a reason for high C rates in Group 4; for example, due to inclusion of women with previous scars in this group (when the should be in Group 5). Lastly, a high CS rate in Group 4 may reflect a high maternal request for CS even these women have delivered their first pregnand vaginally. This may be because of a previous traumatic or prolonged labour or to do tubal ligation is settings with poor access to contraception.
5.Look at the CS rate for Group 5	Rates of 50-60% are considered appropriate provided you have good maternal and perinatal outcome.	74.4%	If rates are higher, this is possibly due to a large Grou 5.2 (women with 2 or more previous CS). This coul also be due to a policy of scheduling pre-labour CS for all women with 1 previous scar without attempting trial of labour.

6. Look at	It is usually around	57.7%	Variations will depend on the type of twin pregnan
the CS rate	60%.		and the ratio of nulliparous/multiparous with or witho
for Group 8			a previous scar.
7. Look at	In most populations	25.1%	If higher than 30%, it is usually due to many cases
the CS rate	it is usually around		high risk pregnancies (e.g. foetal growth restrictio
in Group 10	30%		preeclampsia) that will need preterm pre-labour CS.
			lower than 30%, it suggests a relatively higher rate
			preterm spontaneous labour and hence a lower over
			CS rate.
8. Look at	These three groups	These	These three groups should be the focus of attention
the relative	combined normally	three	the hospital is trying to lower the overall CS rate. The
contribution	contribute to 2/3	groups	higher the overall CS rate, the greater the focus shou
of Groups 1,	(66%) of all CS	combined	be in Group 1.
2 and 5 to	performed in most	contributed	
the overall	hospitals.	to 63.7% of	
CS rate (add		all CS	
the			
contribution			6
of each of			0
these			
groups)			
9. Look at		This group	If it is very high, this may indicate that in previous year
the absolute		was	CS rates in Groups 1 and 2 have been high and it
contribution		responsible	worth exploring further.
of Group 5 to		for 28.9%	0
the overall		of all CS	
CS rate			

Notes: *MCS reference population was the population of the MCS with relatively low CS rates and, at the same time, with good outcomes of labour and childbirth.

Abbreviation: CS= caesarean section.

Supplementary Table 5. Template for agreeing actions at hospital level

to improve the quality of care

Date:

Group Participants:

Key findings from the analysis	Possible explanations	Agreed recommendations for quality improvement

BMJ Open: first published as 10.1136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1000 CO	
C.	
	4

Instructions:

- Identify a moderator whose duty is to make sure that the pre-defined template is filled in pre-established time (90 minutes total), that everyone has the right to speak and actively participate, and that the final version of the table corresponds to group opinions
- 2. Identify a secretary whose job is to take notes, summarize the opinions of the group in the template, act as a presenter in plenary (15 min maximum), save the template in an electronic file (the results will be attached to final report that will be distributed)

BMJ Open

- 3. Participants are requested to make concise and specific interventions lasting up to 1-2 minutes, leaving the possibility to express their opinions to others. It is required to make proposals with a problem-solving attitude
- 4. We recommend to fill the first column first (key findings) and then the other lines in horizonal
- 5. Is not necessary to identify many priorities, 5-10 are enough. For the same priority it's possible to specify 1 or more actions
- 6. Some examples of different possible actions:

- development of policies and operational plans (for training, quality, work conditions, improve data collection and other aspects of database)
- development of protocols and procedures
- theoretical and practical training (related to EBM clinical practices or quality of care)
- periodical audit (clinical, on indicators) or team meetings
- adopt quality standards and targets and implement a monitoring system with periodic analyzes and discussions of data

teliezoni

Actions should be SMART: Specific, Measurable, Achievable, Realistic, Time-bound in the real context of the hospital.

1 2 3
4 5
6 7
8 9 10 11
12 13
14 15 16
16 17 18 19
20 21
22 23 24
20 21 22 23 24 25 26 27 28 29
30
31 32 33
34 35 36
37 38
39 40 41
42 43 44
45 46 47
48 49 50
50 51 52 53
54 55
56 57 58
59 60

Supplementary Table 6. Characteristics of the population

Population	n (N=7504)	%
Maternal age		
<18 years	95	1.2
18-24 years	1862	24.8
25-34 years	4253	56.6
35-39 years	1036	13.8
>40 years	224	2.9
Parity		
0	3342	44.5
≥1	4128	55.0
Gestational age		
<28 weeks	41	0.5
28-31 weeks	96	1.3
32-36 weeks	571	7.6
>37 weeks	6749	89.9
Previous caesarean section	956	12.7
Cephalic	7122	94.9
Breech	273	3.6
Other	66	0.9
Multiple pregnancies	84	1.1
Labour onset		
Spontaneous	4726	62.9
Induction	1849	24.6
Pre-labour caesarean section	893	11.9
Mode of delivery		
Vaginal spontaneous	4906	65.3
Vaginal operative	310	4.1
Caesarean section	2251	30.0
At least one maternal or foetal pathological conditions	2845	37.9
Pre-gestational diabetes	266	3.5
Gestational diabetes, total	1002	13.4
On diet	417	5.6
On drug therapy	585	7.8
Hypertensive disorders of pregnancy, any	506	6.7

Pre-gestational hypertension	168	2.2
Gestational hypertension	179	2.4
Pre-eclampsia not severe	78	1.0
Pre-eclampsia severe	69	0.9
Eclampsia	12	0.2
Obesity (BMI > 27.5)*	440	5.9
Maternal age > 40 years	224	2.9
Maternal cardiac disease	234	3.1
Oligohydramnios	131	1.8
Polyhydramnios	96	1.3
IUGR**	504	6.7
APH/major placentia previa	112	1.5
Severe anaemia (Hb <7)	40	0.5
Chorioamnionitis	11	0.2

Notes: *as defined on data collection form; **defined as weight < 10 centile of estimated weight for gestational age or < 10 centile for abdominal circumference (Bangladesh growth chart), based on ultrasound.

Abbreviation: APH= Antepartum haemorrhage; BMI= Body mass index; Hb= Haemoglobin; IUGR= Intrauterine growth restriction.

Supplementary Table 7. Main indic	BMJ Open ations to CS	
Main indication	(N=2251) ∞	%
CTG abnormal/suspected foetal distress	610 bruary 2011 9	27.1
Past caesarean section	538 2	23.9
Failure to progress or failed IOL		11.6
Failed IOL	109 Download 77 load 75 dd	4.8
Dystocia 1st stage		3.4
Dystocia 2nd stage		3.3
Breech/abnormal lie	184 g	8.2
Hypertension/preeclampsia/eclampsia	100 🚆	4.4
IUGR	184 from 100 http://bmj 82 mj 68 eg	3.6
APH/major placenta previa	68 8	3.0
Prelabour diagnosis of CPD	57 5	2.5
History of subfertility/bad obstetric history	47 9	2.1
Cardiac disease	45 9	2.0
Maternal request	43 <u>₽</u>	1.9
Multiple pregnancies	40 ,7	1.8
Diabetes	25 25	1.1
Thick meconium	16 نو	0.7
Pre-term		0.4
Other	118 00000000000000000000000000000000000	5.2
Missing	7 8	0.3

Page

BMJ Open

136/bmjopen-2018-

Supplementary Table 8. Main indications to CS by Robson group

Robson group Main indication	1	2a	2b	3	4a	4b	5	6	7	8	9	3-027817 c	Missing	Total
CTG abnormal/suspected foetal distress	155	175	48	60	49	9	49	5	6	3	2*	9 048 F	1	610
Past caesarean section	0	0	0	3*	0	1*	467	6	18	2	7*	eBru	0	538
Failure to progress or failed induction												ary		
Failed induction	0	63	0	0	21	0	15	0	1	1	0	2019.	0	109
Dystocia 1st stage	27	27	2	8	3	3*	3	0	1	0	0	D	0	77
Dystocia 2nd stage	13	16	3*	1	3	0	33	0	0	0	2*	Döwnlöaced from	1	75
Breech/abnormal lie	1*	0	1*	1*	0	0	1*	91	55	7	26	deð fr	0	184
Hypertension/preeclampsia/eclampsia	6	4	9	2	0	4	18	1	0	3	0	- - 152	1	100
IUGR	11	3	9	6	0	3	9	2	4	2	0	http://	1	82
APH/major placenta previa	8	2	6	6	0	1	9	2	2	1	3*	1 7	1	68
Prelabour diagnosis of CPD	25	3	14	0	0	3	7	0	0	2	1*	en2	0	57
History of subfertility/bad obstetric history	14	0	16	0	0	2	0	5	0	0	1*	.bm9 .com7	0	47
Cardiac disease	7	0	9	2	0	7	10	1	1	1	0	öŋ7	0	45
Maternal request	8	0	10	1	0	3	21	0	0	0	0	90	0	43
Multiple pregnancies	0	0	1	0	0	0	1*	0	0	37	0	Ap ĭ II	0	40
Diabetes	5	0	2	2	1	1	7	0	1	0	0	17,2024	0	25
Thick meconium	10	4	1	1	0	0	0	0	0	0	0	02A b	0	16
Pre-term	0	0	3*	0	0	1*	4*	0	0	1	0	by gu	0	10
Other	22	3	23	11	4	10	10	1	1	3	5	eg. 124	1	118
Missing	2	0	1	1	0	1	2	0	0	0	0	Prot	0	7
Total	314	300	158	105	81	49	666	114	90	63	47	258 2058	6	2251

Abbreviation: APH= Antepartum haemorrhage; CPD= Cephalopelvic disproportion; CTG= Cardiotocography; IUGR= Intrauterine growtheestriction.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

7 of 48	BMJ Open
Key findings and comments: Indications for CS in Group 1:	
• Abnormal CTG = 49.4%	
 Potentially inappropriate indication 	ons (antepartum diagnosis of CPD, bad obstetric history, subfertility, maternal request) = 15%
• Dystocia = 12.7%	
Indications for CS in Group 2a:	
• Abnormal CTG = 58.3%	
 Failed induction = 21% 	
• Dystocia = 14.3%	
Indications for CS in Group 2b:	
 Abnormal CTG = 30.4% Potentially inappropriate indication 	ons (antepartum diagnosis of CPD, bad obstetric history, subfertility, maternal request) = 25%
	sits (antepartum diagnosis of or b, bad obstellic instory, subjecting, maternal request) – 23 /
Indications for CS in Group 3:	
• Abnormal CTG = 57.1%	
• Dystocia = 8.5%	
Indications for CS in Group 4a:	
• Abnormal CTG = 60.5%	
 Failed induction = 25.9% 	
• Dystocia = 7.4%	ons (antepartum diagnosis of CPD, bad obstetric history, subfertility, maternal request) = 25%
Indications for CS in Group 4b:	
• Abnormal CTG = 18.4%	
• Maternal/foetal issues = 32.6%	
• Other = 20.4%	
Indications for CS in Group 5:	
• Previous CS = 70.1%	
	For poor review only http://bmiosor.hmi.com/site/about/swidelin-switter/
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

.rdiac diseases/IUGR/APH) 48.1%.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

136/bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Abnormal CTG = 7.4%

• Maternal request = 3.2%

Indications for CS in Group 8:

• Multiple pregnancy = 58.7%

• Breech/abnormal lie = 11.1%

Indications for CS in Group 10:

Abnormal CTG 18.6%

Maternal/fetal issues (preeclampsia/diabetes/maternal cardiac diseases/IUGR/APH) 48.1%

• Dystocia = 5.4%

BMJ Open

BMJ Open

Implementation of the WHO Manual for Robson classification: an example from Sri Lanka using a local database for developing quality improvement recommendations

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027317.R1
Article Type:	Research
Date Submitted by the Author:	17-Dec-2018
Complete List of Authors:	Senanayake, H.; University of Colombo, Obstetrics & Gynaecology Piccoli, Monica ; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Valente, Emanuelle; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Businelli, Caterina; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Mohamed , Rishard ; University Obstetrics Unit, De Soysa Hospital for Women, Colombo, Sri Lanka; Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo Fernando , Roshini; Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo Sakalasuriya , Anshumalie; Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo Ihsan , Fathima Reshma; Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo Covi, Benedetta; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Wanzira, Humphrey; IRCCS materno infantile Burlo Garofolo, WHO Collaborating Center Lazzerini, Marzia; Institute for Maternal and Child Health IRCCS Burlo Garofolo, WHO Collaborating Centre for Maternal and Child Health
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Epidemiology, Evidence based practice, Global health, Health services research
Keywords:	Quality of Care, Health Information System, Robson clasification, Caesarean Section

SCHOLARONE[™] Manuscripts

Implementation of the WHO Manual for Robson classification: an example from Sri Lanka using a local developing for quality database improvement recommendations

Short title: Use of a prospective database for the Robson classification in Sri Lanka

Hemantha Senanayake,^{1,2} Monica Piccoli,³ Emanuelle Pessa Valente,³ Caterina Businelli,³ Rishard Mohamed.^{1,2} Roshini Fernando,² Anshumalie Sakalasuriya,² Fathima Reshma Ihsan,² Benedetta Covi,³ Humphrey Wanzira,³ Marzia Lazzerini.³

¹ University Obstetrics Unit, De Soysa Hospital for Women, Colombo, Sri Lanka

² Faculty of Medicine, Department of Obstetrics & Gynaecology, University of Colombo, Colombo, Sri Lanka ³ Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" - WHO Collaborating Centre for Maternal and Child Health, Trieste, Italy el.eu

Authors' e-mail contacts

HS: senanayakeh@gmail.com MP: monica.piccoli@burlo.trieste.it EPV: emanuelle.pessavalente@burlo.trieste.it CB: caterina.businelli@burlo.trieste.it MR: mrishard@obg.cmb.ac.lk RF: ragynobs2009@gmail.com AS: sakalasuriyasaritha43@gmail.com FRI: resh.ihsan798@gmail.com BC: benedetta.covi@burlo.trieste.it HW: humphey.wanzira@burlo.trieste.it ML: marzia.lazzerini@burlo.trieste.it

Corresponding author

Marzia Lazzerini PhD WHO Collaborating Centre for Maternal and Child Health Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" Via dell'Istria 65/1, 34137, Trieste, Italy.

marzia.lazzerini@burlo.trieste.it

APH= Antepartum haemorrhage

CPD= Cephalopelvic disproportion

ECV= External cephalic version

IUGR= Intrauterine growth restriction

SOP= Standards operating procedures

Keywords

List of abbreviations

BMI= Body mass index CS= Caesarean section

CTG= Cardiotocography

IOL= Induction of labour

QI= Quality improvement

QoC= Quality of Care

UK= United Kingdom

USA= United States of America

WHO= World Health Organization

Hb= Haemoglobin

1

Quality of care; Health Information system; Robson classification; Caesarean Section

2	
3	
4	
5	
6	
7	
7	
8 9 10	
9	
10	
11	
12	
13	
12 13 14 15	
15	
16	
17	
17 18	
10	
20	
∠∪ ⊃1	
21	
19 20 21 22 23 24 25	
23	
24	
25	
26	
)/	
28	
29	
30	
31 32	
32	
33	
34	
24 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59 60 SMART= Specific, Measurable, Achievable, Realistic, Time-bound

SQUIRE= Standards for Quality Improvement Reporting Excellence

WHO MCS= WHO Multi country Survey on Maternal and Newborn Health

Lanka.

Design Observational study

ABSTRACT

Objectives. This study aimed at describing the use of a prospective database on hospital deliveries for analyzing caesarian section (CS) practices according to the WHO Manual for Robson

classification, and for developing recommendations for improving the quality of care (QoC).

Data collection and analysis For each childbirth, 150 variables were routinely collected in a standardised form and entered into a database. Data was routinely monitored for ensuring quality. Information on deliveries occurring from July 2015 to June 2017 were analysed according the WHO Robson Classification Manual. Findings were discussed internally to develop quality improvement recommendations.

Results 7504 women delivered in the hospital during the study period and at least one maternal or foetal pathological condition were reported in 2845 (37.9%). The CS rate was 30.0%, with 11.9% CS being performed pre-labour. According to the Robson classification, Group 3 and Group 1 were the most represented groups (27.0% and 23.1% of population, respectively). The major contributors to the CS rate were Group 5 (29.6%), Group 1 (14.0%), 2a (13.3%) and Group 10 (11.5%). The most commonly reported indications for CS included abnormal cardiotocography (CTG)/suspected foetal distress, past CS and failed progress of labour or failed induction. These suggested the need for further discussion on CS practices. Overall, 18 recommendations were agreed on. Beside updating protocols and hands-on training, activities agreed included monitoring and supervision, criterion-based audits, risk management meetings and appropriate information for patients and recommendations to further improve the quality of data.

Conclusions This study provides an example on how the WHO Manual for Robson classification can be used in an action-oriented manner for developing recommendations for improving the QoC, and the quality of data collected.

Article summary: strengths and limitations of this study

- Despite being a single-centre study, this is the first study from a setting with limited resources reporting on the use of a prospective individual-patient database for analysing practices on caesarean section.

- This is also the first report on the use of WHO Implementation Manual for Robson Classification in a project aiming at quality improvement. The paper describes how the WHO manual can be used in an action-oriented manner for developing recommendations for improving the quality of maternal health care, and the quality of data collected.

- This pilot experience can be of interests of both researchers and policymakers, providing a model on how different types of variables can inform the Robson classification, and how findings from the Robson classification can be used proactively for decision-making.

INTRODUCTION

Improving the appropriate use of caesarean section (CS) is a major global concern. [1, 2] While global CS rates at population level are rising, major disparities exist among countries, with both under and over-use of this procedure.[1, 2] Although there is no debate about the need to increase access to safe CS, there is also common agreement that CS should be performed only for medically indicated reasons.[1, 2]

Interventions to reduce unnecessary CSs have shown little success.[2] In the last few years, the World Health Organization (WHO) has endorsed the use of the Robson classification system,[3] and a manual for supporting its implementation was published in 2017.[4] The WHO Robson Classification Manual guides the implementation of the Robson classification and provides practical tools for analyzing CS practice in a standardized, reliable, consistent and action-oriented manner.[4] However, there is still little published experience on the practical utilization of the WHO Robson Classification Manual,[4] and no concrete experience has been reported so far on how to use the manual in an action-oriented manner.

A rising trend in the national CS rate has been reported in Sri Lanka (33.2% in 2015), with large heterogeneity among different facilities [5,6] and widespread diffusion of inappropriate indications for CS [7] Nevertheless, few studies have analysed CS practices in a standardised manner [7,8] and no study used findings of such analyses for developing recommendations to improve the quality of maternal healthcare and the quality of data collected.

Since year 2015 we implemented a prospective individual patient database at the De Soysa Hospital for Women, Colombo, the largest maternity hospital in Sri Lanka. For each case of delivery, about 150 variables were collected and routinely entered in an electronic database [9] The objective of this study was to describe the use of the information provided by this database to analyse CS practices according to the WHO Robson Classification Manual [4] in an action-oriented manner, with the aim of developing recommendations for improving the quality of maternal hospital care.

METHODS

Study design

The study was designed as an observational study aimed at analysing practices related to CS, and at developing recommendations for improving the quality of hospital care. The results section of this paper reports the findings of the Robson analysis [4] and how such findings were internally discussed and used.

Population and setting

The study was conducted at University Obstetric Unit De Soysa Hospital for Women, the largest maternity unit in Sri Lanka. Detailed methods of data collection have been previously reported. [9] Briefly, 150 variables (ie, maternal sociodemographic characteristics, risk factors, process indicators, maternal and neonatal outcomes) were collected for each individual birth using a standardised two-page form, and entered in real time in an electronic database. Data quality assurance procedures included detailed case definitions, standards operating procedures (SOP), regular random checks, and 137 automatic validation rules aiming at minimising data entry errors.[9]

The present paper reports findings relevant to CS practices on births occurring from July 2015 to June 2017. Missing cases for the variables of interest were overall $\leq 0.7\%$, except for trial of labour in previous CS, where missing variables were 1.2% (**Supplementary Table 1**).

Data analysis

Data was analysed according the recommendations of the WHO Robson Classification Manual [4] and synthesized according to the standardized reporting tables provided by the Manual (**Supplementary tables 2-4**).[4] According to the WHO methodology,[4] the analysis should follow the following key steps. First, each case of birth was classified into one of the Robson groups (**Box 1**), using six key variables (parity, previous CS, onset of labour, number of foetus, gestational age, foetal lie presentation). Secondly, data was assessed for: 1) quality, 2) type of population, 3) CS rates. As recommended in the WHO Manual, [4] relevant additional information provided by the local data collection system [9] was used as complementary information to allow an in-depth interpretation of CS practices. Specifically, the following types of variables collected by the local individual-patient database were used: maternal age, gestational age, maternal pathological conditions (e.g. diabetes, hypertensive disorders and others), foetal pathological conditions, CS indications. For each step, findings

were compared to the suggested two sources of interpretation in the WHO manual [4]: 1) the reference ranges and interpretation by Michael Robson; [3,10] 2) the findings of the WHO Multicountry Survey on Maternal and Newborn Health (MCS, provided by the WHO Manual as an additional example for comparison (this is a population characterised by a combination of relatively low CS rates and good outcomes of labour and childbirth).

Before starting the data analysis, the information in the database was cleaned. Specifically, the open text category called "other" under "indication for CS" (which already included 18 pre-defined categories [9] were thoroughly checked by two experienced obstetricians and classified, as more appropriate, in one of the predefined categories, or in a new category.

Box 1. The 10 groups of the Robson classification [4]

Group 1: Nulliparous women with a single cephalic pregnancy, \geq 37 weeks gestation in spontaneous labour Group 2: Nulliparous women with a single cephalic pregnancy, \geq 37 weeks gestation who had labour induced or were delivered by caesarean section before labour

2a Labour induced

2b Pre-labour caesarean section

Group 3: Multiparous women without a previous caesarean section, with a single cephalic pregnancy, ≥37 weeks gestation in spontaneous labour

Group 4: Multiparous women without a previous caesarean section, with a single cephalic pregnancy, ≥37 weeks gestation who had labour induced or were delivered by caesarean section before labour

4a Labour induced

4b Pre-labour caesarean section

Group 5: All multiparous women with at least one previous caesarean section, with a single cephalic pregnancy, ≥37 weeks gestation

Group 6: All nulliparous women with a single breech pregnancy

Group 7: All multiparous women with a single breech pregnancy including women with previous caesarean section(s)

Group 8: All women with multiple pregnancies including women with previous caesarean section(s)

Group 9: All women with a single pregnancy with a transverse or oblique lie, including women with previous caesarean section(s)

Group 10: All women with a single cephalic pregnancy < 37 weeks gestation, including women with previous caesarean section(s)

Data use for developing recommendation for improving the quality of care

The findings of the analysis were presented during two dedicated workshops with key hospital staff of different levels (ie, senior obstetricians, neonatologist, registrars, nurses, midwifes and other staff). The meetings were led by local staff (HS, MR), in dialogue with the WHO Collaboration Centre, Trieste, Italy.

The workshops had the following objectives: discussing hospital practices related to CS, identifying possible gaps in quality of care (QoC) provided, identifying possible gaps in data quality and/or in data collection procedures, selecting priorities for action, developing and agreeing recommendations for improving the QoC related to CS and, if needed, the quality of data. Secondary objectives included improving the knowledge of the Robson classification and of the WHO manual [4], supporting a culture of Quality Improvement (QI), and fostering team work.

During the workshops data were presented and discussed using the standardised reporting tables suggested by the WHO manual (**Supplementary table 2-4**), which included the following subsequent evaluations: 1) Robson classification, 2) data quality, 3) type of population, 4) CS rates. Additionally, the other characteristics of the population identified as informative for the discussion of CS practices (i.e., maternal age, gestational age, maternal and foetal pathological conditions, indications for CS were tabulated and discussed. The sources of comparison provided by the WHO manual were also made explicit in the tables. Relevant international literature [1,10-13] were made available to further interpret data.

A pre-defined template for identifying possible QI recommendations was distributed to each participant at the beginning of the workshops (**Supplementary table 5**). It was emphasized that the proposed actions had to be SMART (Specific, Measurable, Achievable, Realistic, Time-bound) 14]. An action-oriented, non-blaming, problem-solving, proactive and participatory attitude was used for building ownership and commitment to changes among participants, and for allowing a wide involvement of all type of staff.

Proposed recommendations were discussed and agreed in plenary until consensus was reached. Recommendations are presented in the results section.

Patient and Public Involvement

Patient or public were not directly involved in the study. However, the selection of the variables to be included in the database was informed by patient experience, as reported in literature (1,9). The development of recommendations for improving the quality of care took into account the importance of promoting patient-centered care.

Ethical considerations

The study, including data collection and its use for QI purposes, was approved by the Ethics Review Committee of the Faculty of Medicine, University of Colombo. Confidentiality was maintained by de-identifying all files before database entry. Human subjects were not directly involved in the study.

RESULTS

The following paragraphs reports on the result of the Robson analysis as for the WHO manual [4], and on the related data discussion and development of a list of actions for improving the quality of hospital practices, agreed during the workshops.

Characteristics of the population

A total of 7504 women delivered in the hospital during the study period. Detailed characteristics of the population, with a specific focus on the variables relevant to the analysis of CS practices and the Robson classification are reported in **Supplementary Table 6**. Overall CS rate in the study population was 30.0%, with about a third (11.9%) of the total CS performed pre-labour. Induction of labour (IOL) occurred in 24.6% of cases. Preterm deliveries (before 37 weeks) were observed in 9.4% of cases, with 0.5% of the total newborns being extremely preterm (less than 28 weeks) and 1.3% being very preterm (28 weeks to before 32 weeks completed). At least one maternal or foetal pathological condition, potentially contributing to the decision for CS or IOL, was reported in 2845 (37.9%) women. Gestational diabetes was the most frequent condition (13.4%), followed by hypertensive disorders of pregnancy (6.7%) and intrauterine growth restriction (IUGR) (6.7%). Overall, 5.9% of the total sample was obese according to the body mass index (BMI) cut-offs suggested for Asian population (BMI > 27.5) [15,16].

Overall the discussion on these general characteristics of the population focused on the following observations: high rate of CS; relatively high rate of IOL; high prevalence of risk factors (which may be explained by the hospital being a tertiary level centre).

Analysis by Robson Classification

Table 1 presents the Robson classification (adapted by adding also information on group 2a and 2b, 4a and 4b). Group 3 (multiparous without previous CS, single cephalic at term, in spontaneous labour) and Group 1 (nulliparous, single cephalic at term, in spontaneous labour) were the most represented groups (27.0% and 23.1% respectively). Group 2a (nulliparous, single cephalic at term, with IOL) was the third most represented group (12.8%).

The major contributors to CS were as follows: Group 5 (multiparous with at least one previous CS, single cephalic at term) 29.6%; Group 1 (nulliparous without previous CS, single cephalic at term, in spontaneous labour) 14.0%; Group 2a (nulliparous, single cephalic at term, with IOL) 13.3% and Group 10 (single cephalic, preterm, including previous CS) 11.5%.

Unclassifiable cases accounted for only 42 (0.6%) of total cases. The most prevalent reason was the missing variable previous CS, which was missing in 36 unclassifiable cases (85.7%).

Overall the discussion on **Table 1** focused on the following points: data showed a relatively high rate of IOL (Group 2a and 4a); the rate of missing cases (0.6%) was perceived as reassuring, although it was felt that all efforts had to be made to avoid missing information under the variable "previous CS".

Setting name: Column 1	De Soysa Hospital, Colomb Column 2	Column 3	Colu	ımn 4	Column 5	ດ Beriod: J Coluzin 6	uly 2015 to June 20 Column 7
Group	Number of CS in	Number of women		ıp size ¹	Group CS rate ²	Absolute group	Relative contribut
·	group	in group	(%)		(%)	contribution to overal CS rate ³ (%)	of group to overal CS rate ⁴ (%)
1	314	1740	23.2		18.0	4.2 ^{.0}	14.0
2	458	1116	14.9		41.0	6.1 ⁸	20.3
2a	300	958	12.8		31.3	4.0 ⁿ o	13.3
2b	158	158	2.1		100	4.0 ^{nl} oaded	7.0
3	105	2030	27.1		5.2		4.7
1	130	771	10.3		16.9	1.4 fro 1.7 m 1.1 http://bm 0.7 bm 8.9 jog	5.8
la	81	722	9.6		11.2	1.1	3.6
4b	49	49	0.7		100	0.7	2.2
5	666	814	10.9		81.8	8.9 8	29.6
5	114	139	1.9		82.0	1.5 🚊	5.1
7	90	115	1.5		78.3	1.2 3	4.0
3	63	84	1.1		75.0	0.8 8	2.8
Ð	47	65	0.9		72.3	0.6 2	2.1
10	258	588	7.8		43.9	3.4 <u>></u>	11.5
Γotal	Total number of CS=2251	Total number women delivered= 7504	100	%	Overall CS rate	Overall CS rate 17, 2024	100%
	ises (0.6%) [Number unclassifiabl + unclassified) X 100]	e cases / (Total Number wo	omen	2. Group CS rate (% 3. Absolute contrib	6) = n of CS in the group / to ution (%) = n of CS in the g	total N women delivered in total N women delivered in total N of women in the group roup / total N of women delivered N of CS in the hos	o x 100 vered in the hospital x 1

bmjopen-2018

rom http

Tables 2, 3 and 4 summarize findings and their interpretation, related to the data quality, the type of population, and the CS rates. Findings different from the Robson comparison and/or from the MCS reference population are highlighted in grey in the tables.

Regarding the quality of data (Table 2), total number of deliveries and size of Group 9 (single pregnancy, transverse or oblique lie, including previous CS), when compared to the Robson interpretation and the MCS example, suggested no major problems in data quality. The CS rate in Group 9 (72.3%), suggested possible misclassification of a few number of cases (about 15 cases). It was felt that the most likely explanation for this finding could have been that women, presenting initially with an objique/transverse lie, but having a spontaneous version or a successful external cephalic version after admission, were eventually erron out classified as abnormal lie.

Steps for interpretation	Interpretation by Robson	Example: MCS	Our findings	Additional	Final ingerpretation
		population		information from	pen en
				database used to	ġ
				interpret data	
STEP 1. Total number	Should be identical to	NA	Total CS=		There are no missing/incorrect data
of CS and total number	the numbers provided by		2251		on /
of women delivered	official register		Total		April
			deliveries=		17,
			7504		202
STEP 2. Size of Group	<1%	0.4%	0.9%	-	No significant misclassification for this group
9 (should be less than					accordleg to references by Robson
1%)					est.
STEP 3. CS in Group 9	100%	88.6%	72.3%	-	Misclassification
(should be 100% by					ecte
convention)					a by
Abbreviation: CS= Caesarea	an section; MCS= Multi-country	v survey; NA= data n	ot available.		
					pyright
					yht.

Table 2. Assessment of the quality of data

bmjopen-2018-0273 Table 3 synthetises the assessment of the type of population. Overall, findings on step 1, 4 and 5 were in line with both the Robson references and the MCS example and did not result in major discussion. Findings on step 2, 3 and stop 9 (highlighted in grey in the table), were somehow different from both the Robson and MCS comparisons, and where interpreted based also on the additional information provided by the local database (column five in Table 3). Different possible explanations for these findings were identified, including possible misclassifications, case selection (tertiary referral centre), inappropriate care, or others (Table 3). Specifically, the following were the key findings of the analysis.

On step 2 and 9, the size of Group 3 (multiparous without previous CS, single cephalic at term, in spontaneous labour) plus Group 4 (multiparous without previous CS, single cephalic at term with IOL or CS before labour) was larger that the Robson comparison (37.3%) versus about 30%) while the ratio of the size of Group 6 (nulliparous, single breech) versus Group 7 (multiparous, single breech, including previous CS) was lower (1.2) than the Robson comparison (ratio of 1.2 instead of 2). On both steps, the observed values were similar to the MCS example. It was felt that these findings could be explained by the relatively high prevalence of multiparous women in the study population (55%).

On step 3, the small size of Group 5 (multiparous with at least one previous CS, single cephalic at term) when compared to the overall CS rate (30.0%) suggested relatively low CS rate in the previous years, or a recently increased rate, or misclassification (wrong classification especially in group 3 where the CS rate is unusually high at 5.2%).

On step 6, Group 10 (single cephalic, preterm, including previous CS) was slightly larger than the Rebson comparison (7.8% vs 5%), most likely due to the hospital being a tertiary care, or to possible misclassification (eg, breech presentation misclassified as cephalic) On step 7, the ratio of the size of Group 1 (nulliparous, single cephalic at term, in spontaneous labour) kersus Group 2 (nulliparous single cephalic, at term with IOL or CS before labour) was lower than the Robson comparison (1.5 vs 2), possibly due to the observed relatively high rate of IOL in nulliparous (Group 2a 12.8%, see **Table 1**) when compared to existing literature [1 \$ 17,18].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

oy copyright

Table 3. Assessment of the type of population

3

Steps for interpretation	of the type of population	Example: MCS	Our	Additional information from	bmjopen-2018-0273 Final interpretation
		•			
		population	findings	database used to interpret	о П
	05.40%	00.494	00.40/	data	
STEP 1. Size of Groups 1	35-42%	38.1%	38.1%	-	Rate indine with both references by Robson a
Group 2	000/	40.5%	07.00/		MCS reference population
STEP 2. Size of Groups	30%	46.5%	37.3%	Multiparous in our population	Rate higher than Robson references but lower the
3+4				55.0%	MCS examples. This may be explained by a h
STEP 3. Size of Group 5		7.00/	40.00/		prevalegee of multiparous women in our popula
STEP 3. Size of Group 5	Half of total CS rate	7.2%	10.9%	-	the WHO Manual, may be due to relatively low
					rate indition previous years, or to a rece
					increased CS rate or to misclassification.
STEP 4. Size of Groups	3-4%	2.7%	3.4%	-	Rate in the with both Robson references and M
	5-4 /0	2.1 /0	5.4 /0		example
STEP 5. Size of Group 8	1.5-2%	0.9%	1.1%	-	Rate in an e with MCS examples.
•			,		
STEP 6. Size of Group 10	< 5%	4.2%	7.8%	Divisions by gestational age in	Higher than both comparisons. This may
				our preterm population	explained by the hospital being a tertiary of
					referral centre, or by misclassification.
STEP 7. Ratio of the size	Ratio 2 or higher	Ratio 3.3	Ratio 1.5	Indication of IOL	Lower than the comparisons. This associates
of Group 1 versus Group					a large size of Group 2a, suggesting a
2					incidenet of IOL. This may be explained by
					case section (tertiary care referral centre
					inappropriate indication to IOL (deserving fur
					investigation)
STEP 8. Ratio of size of	> than 2:1	Ratio 6.3	Ratio 2.6	Indication of IOL	Rate ingine with both Robson references, lo
Group 3 versus Group 4					than ᄊંCS. This may be explained by:
					misclas
					selectică (tertiary care referral centre)
					inappropriate indication to IOL (deserving fur investigation)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 bmjopen-201

STEP 9. Ratio of size of Group 6 versus Group 7	usually 2:1	Ratio 0.8	Ratio 1.2	 Rate in Rine with MCS, but lower than Robson references. This may be explained by: 1) high
				number of multiparous in our population.

Abbreviation: CS= Caesarean section; IOL= Induction of labour; MCS reference population: was the population of the WHO MCS with relatively low CS rates and, at the same time, with good outcomes of labour and childbirth.

The assessment of CS rates (see the following **Table 4**) was complemented by an analysis of the indications for CS using data extracted from the patient database (**Supplementary table 7 and 8**). Overall, it was found that the main indications for CS were (**Supplementary table 7**): abnormal CTG or suspected foetal distress (27.1%); past CS (23.9%), failure to progress or failed IOL (11.6%); breech/abnormal presentation (8.2%). The following indications, accounting for a total of 147 (6.5%) cases, were identified as potentially inappropriate (in grey in **Supplementary table 7**): prelabour diagnosis of cephalopelvic disproportion (CPD) (2.5%), history of subfertility/bad obstetric history (2.1%), CS for maternal request (1.9%).

When indications to CS were analysed by Robson groups, some indications were observed at a suspected high or low rate compared to the expected, suggesting potentially inappropriate management. Specifically, abnormal CTG/suspected foetal distress were over-represented as an indication to CS, particularly in Robson groups 1 to 4, suggesting possible gaps in the use/interpretation of CTG (in dark grey in **Supplementary table 8**). On the other hand, dystocia was reported as an indication for CS in less than 8% of total cases (in light grey in **Supplementary table 8**), a rate much lower than what observed in United Kingdom (UK) and the United States of America (USA), where dystocia is an indication for about 20% of CS.[19-21] Internal discussion identified the following possible explanations for this specific finding: difficulty by data collectors in classifying dystocia; missing information in the medical file; peculiar characteristics of the Sri Lanka population enrolled - such as lower BMI, maternal age and parity; better managementer of labour compared to reported statistics, or other reasons affecting dystocia rate in UK and USA statistics. Misclassifications were identified in 1.9% of the total indications to CS (highlighted with an asterisk in **Supplementary table 8**).

BMJ Open

bmjopen-2018-

bruary 2019

 Table 4 reports the interpretation of assessment of CS rate. Overall, findings on step 8 and 9 were in $\frac{1}{2}$ and with both Robson references and MCS examples, and did not resulted in major discussion. Findings from all other steps (in grey in $\frac{1}{2}$ able 4) were somehow different from either the Robson comparison or the MCS example. Details on data interpretation are provided, $\frac{1}{2}$ by step, in Table 4.

Table 4. Assessment of the CS	rates
-------------------------------	-------

Steps for	Interpretation by	Example: MCS	Our findings	Additional information from	Final interpretation
interpretation	Robson	population		database used to interpret data	
STEP 1. CS rate in	Under 10% are	9.8%	18.0%	•Abnormal CTG was the indication	CS rate higher than Robson and MCS. This may
Group 1	achievable			in 49.4% of cases	be explained by inappropriate indications
				•Potentially inappropriate CS	(abnormal CTG/suspected foetal distress) and/or
				indications to CS in 15%.	inapprogriate care.
STEP 2. CS rate in	Consistently around	39.9%	41.0%	•Abnormal CTG was the indication	CS rate higher than Robson and MCS. This may
Group 2	20-35%			in 58.3% of Group 2a and 30.4% in	be posed by due to the high rate of IOL, which carry
				Group 2b.	increased risk of CS.
				•Potentially inappropriate CS	, mj.
				indications in 25% in 2b.	CONT
STEP 3. CS rate in	No higher than 3.0%.	3.0%	5.2%	•Abnormal CTG was the indication	CS rate higher than Robson and MCS. This may
Group 3				in 57.1%.	be expelained by misclassification (Group 5
					misclas dified as Group 3) or, most probably, by
					inappropriate indication to CS (CTG mis-
					interpretation).
STEP 4. CS rate for	It rarely should be	23.7%	16.8%	•Abnormal CTG was the	CS rate higher than Robson. Size of Group 4b
Group 4	higher than 15%			indication in 60.5% in 4a and	sugges low prelabour CS in this group, while the
				18.4% in 4b.	rate of 🖉 in Group 4a was high mainly due to CTG
				• failed induction was an indication	abnormalities and failed IOL. This may be
				in 25.9% of 4a.	explained by misclassification (Group 5
					misclas
					inappropriate indication to CS (CTG mis-
					interpretation).
					rri gr
					ht.

STEP 5. CS rate in	Rates of 50-60% are	74.4%	81.8%	•Abnormal CTG was the indication	CS rategrigher than Robson and MCS. Low ra
Group 5	considered	74.470	01.076	in 70.1%.	IOL in this group. The vast majority are CS for
	appropriate			• Rate of prelabour CS was 62.5%.	section This may be explained by the group
	appropriate				or a policy of scheduling pre-labour CS (low of
					of trial of abour). Also, women's preference, ba
					on pregious information, for repeating CS
					have a tole.
STEP 6. CS rate for	Usually around 60%.	57.7%	00.0%	•Multiple pregnancy was the	CS rate higher than Robson and MCS. Post
Group 8			80.9%	indication in 58.7%.	tenden 🕁 to perform elective CS in mul
				•Elective CS rate in multiple	o pregna≰cies
				pregnancies was 37.8%	lloa
STEP 7. CS in Group	Usually around 30%	25.1%	41.1%	•Maternal/foetal pathological	CS rate higher than Robson and MCS. This
10				conditions were the indication in	be explained by a high-risk population.
				48.1%.	http://
STEP 8. Relative	Normally contribute	Contributed to	63.9%	-	In line weth both Robson and MCS reference.
contribution of	to 2/3 (66%) of all CS	63.7% of all CS		\mathbf{Q}_{1}	
Groups 1, 2 and 5 to	performed in most				en.t
the overall CS rate	hospitals				<u> </u>
STEP 9. Absolute	NA	Responsible for	Absolute		Absolute contribution lower than MCS (Rot
contribution of Group		28.9% of all CS	contribution:		comparies on not provided in the WHO man
5 to overall CS rate			8.87%	O h	Relative contribution in line with MCS (the v
					provided in the WHO Manual as MCS exar
					refers to the relative contribution).
			Relative		024
			contribution:		ьу
			29.59%		2024 by guest.
					st. F
					Protected by
					ecte

BMJ Open

bmjopen-2018-027317 on

Developing of quality improvement recommendations

 Table 5 reports the key findings of the analysis, the possible explanations, and the agreed recommendations that emerged from the hospital staff discussion. Overall, 18 recommendations were developed, and three were identified as priorities for action (highlighted with an asterisk in Table 5). Some recommendations, such as the need to train staff on foetal monitoring, emerged from different key findings and as such were identified as a priority for action. Most recommendations aimed at improving the implementation of evidencedbased indications for CS and IOL. Beside updating protocols and hands-on training, activities agreed included monitoring and supervision, criterion-based audits, risk management meetings and appropriate information for patients. Recommendations to further improve the quality of data were also agreed upon (recommendations 17 and 18). n http://bmjopen.t

Key findings	Possible explanations	Agreed recommendations
from the analysis	emerged from hospital staff discussion	Sefor quality improvement
1. High intrapartum CS rate in Group 1, with	1.Possible inappropriate interpretation of foetal	1.Develop a training plan for strengthening capacities of
potentially inappropriate indications (main	monitoring	staff in CTG interpretation*
current indication was CTG abnormality)	2.Possible inappropriate use of oxytocin	2. Hands-on trainings on instrumental delivery
	3. Possible inappropriate indications to CS	3. Supportive supervision and monitor over time staff skills
		in CTG interpretation and instrumental delivery
		4. Adoption of Robson classification of CS indications (22)
		5.Criterion-based audits of CS indications
		6. Regular risk management meetings with emphasis on
		diagnosis of fogtal distress
2. High rate of IOL and high rates of CS in women	1.Possible inappropriate indications for IOL	7.Consultant meeting to update IOL protocols (agreeing
undergoing IOL (high contribution of Group 2a to	2.Possible inappropriate use of prostaglandin/oxytocin	on criteria for diled IOL according to recent evidence)*
total CS rate and high CS rate in Group 4a)	3. Possible Inappropriate CTG interpretation	8. Criterion-based audits on IOL
	4. Possible misdiagnosis of failed IOL	удс
		right

Table 5. Process of development of quality improvement recommendations

Page	19	of	47
------	----	----	----

 bmjopen-20

			018
			9.Monitor IOLS ndications, complications and abnormal
			CTG associated with use of prostaglandins or oxytocin
3.	High prevalence of prelabour CS (Group 2b) with	1.Inappropriate indications for prelabour CS	10.Update procession on indications for prelabour CS
	more frequent CS indications: abnormal CTG,		11.Criterion-based audits on indications for prelabour CS
	potentially inappropriate indications 25%,		12.Review cases of CS for abnormal CTG during staff
	presence of maternal/foetal pathological		training 🚡
	conditions		× 2
4.	High CS rate in Group 3 and 4a (multiparous).	1.Rate of CS in multiparous suggests suboptimal care in	Recommendations #1,2,3,s
	More frequent indication is abnormal CTG	this group of women	13.Criterion-based audits of offers and unsuccessful
5.	Very high CS rate in Group 5, majority are	2.Inappropriate interpretation of CTG	cases of TOL š
	elective. Past CS is the main indication	3.Low offer of TOLAC	14.Use of a patient education leaflets to inform women of
			TOL benefits and establishment of a nurse-led TOLAC
			counselling segvice*
			15. Monitoring the prevalence of TOLAC
6.	Breech is the fourth most common indication for	1.Refusal by mothers to accept ECV due to preconceived	16.Develop are not formation leaflet on the value of ECV
	CS	prejudices	<u> </u>
7.	Low Rate of CS for dystocia with half of CS done	1.Possible problems in data quality	17.Training for data collectors and hospital staff on
	in 2nd stage	2.Possible misclassification of a few number of cases	definitions use for the Robson's classification according
8.	Low CS rate in Group 9		to WHO manual, stressing also the definition of dystocia
			18.Add few internal validation rules on database (previous
			CS, breech, dystocia) and strengthen monitoring on these
		C	variables.
			Recommendation #2
9.	High contribution to CS rate from Group10.	1. latrogenic indications of IOL/CS in the late preterm	Recommendation #7 (Update protocols of IOL and
	Majority of indications for maternal/foetal	period	elective CS criteria in late preterm and SGA)
	pathological conditions		Recommendation #5 (Criterion-based audits on cases of
			IOL and elective CS)
brevia	tion: CS = Caesarean section; CTG = Cardiotocog	raphy; ECV = External cephalic version; GA = Gestational a	مع: IOL = Induction of labour; SGA = small for gestational
age; TOL = Trial of labour; TOLAC = Trial of labour after caesarean.			
			ect
			ů t
			SY Q
			ected by copyright.
			righ

DISCUSSION

This study reports experience from a lower middle-income country, where information accumulated in an individual patient database was used locally for conducting an in-depth analysis of CS practices according the WHO manual for Robson classification,[4] and for developing recommendations to improve the quality of care.

In respect to previous literature, this study has three main aspects of novelty, which can be of interest of both researchers and policy makers. First, this is the first study conducted in a lower middle-income country, reporting on the use of a prospective individual patient database to analyse practices on CS. Such databases are generally lacking in low resources settings. Furthermore, the availability of accurate data is relatively limited even in high-income countries, where most hospital administrative datasets lack key information such as maternal risk factors. These are needed for evaluating the case mix and for interpreting the observed CS rates. To our knowledge, even the few studies in high-income countries which utilised individual patient databases for the Robson classification,[22-24] had access to much less information that in this study in Sri Lanka, where a large number of variables were collected prospectively[9]. The availability of many variables , including CS indications by Robson groups, was invaluable for an in-depth understanding of CS practices.

Second and most important, the paper provides a model on how findings of the Robson analysis can be used for internal discussion and for QI purposes. Existing literature has reported heterogeneity of practices related to CS and substandard practices have been identified even in "developed countries, such as Australia, France, Italy, and others (25-27). However, the majority of the published studies using the Robson classification focused on the analysis, rather than on the development of recommendations to improve CS practices. A recent systematic review [16,28] cited only six studies that used the Robson classification in a clinical audit cycle to reduce CS rates. We were able to identify only one study, conducted in Canada, where the local Society of Obstetricians and Gynaecologists has formally supported the use of Robson classification and [29], measuring the effect of the Robson analysis on the CS rate, with a before and after design.[30]

BMJ Open

Third, this is the first report on the use of the WHO Implementation Manual for the Robson Classification [4], where, all steps suggested therein were followed. The paper documents an example of how the manual can be used in an action-oriented manner.

As additional findings, this study underscored the lack of specific reference standards for the Robson Classification. Interestingly, in several instances the findings of this analysis were within the range of the values provided by the Robson guideline, but not of those provided by the MCS population, or vice-versa. This is not surprising, given the fact that as stressed in the WHO manual, none of these two comparisons could be taken as an absolute standard.[4] The WHO Manual underlines that neither Robson nor MCS references "have been validated against outcomes and should not be taken as a recommendation" and "it is up to the hospital itself to decide what is appropriate care, based on its results and other available evidence".[4] Being specific for Sri Lanka, this study may help in the future researchers and policymakers in further interpreting data from a similar setting. Meanwhile, more research should be conducted to identify which can be the golden standard for the Robson analysis.

This study did not aim at comparing in detail the findings of the Robson analysis to the international literature, but rather at describing the whole process of how data were internally used to develop recommendations to improve hospital practices. However, few points on key clinical findings can be further discussed here. In most Robson groups, the very high rate of CS performed for abnormal CTG/suspected foetal distress was a reason of concern. Although a similar rate around 25% had been reported in USA [23] the contribution of abnormal CTG In Sri Lanka may highlight a problem unique to countries in economic transition. In these settings, with increasing investment in health infrastructure, CTG machines are becoming increasingly available and, due also to their wide usage in high-income countries, practitioners and policymakers often see them as essential for provision of quality obstetric care. However, the introduction of these technologies not always has been complemented by adequate capacity development. Currently, Sri Lanka does not have mandatory training for staff in CTG interpretation. Further, currently there is a lack of facilities for ancillary tests such as foetal scalp blood sampling and cord blood pH levels, which are important adjuncts in verifying decisions made based on CTG interpretation. Recently, there

have been calls to optimize technical skills of staff on CTG interpretation, by delivering adequate training [31]. Results of this study suggest that improving the quality of CTG interpretation could be an important step towards reducing CS rates and increasing appropriateness of care.

The high rate of IOL in our population (24.6%), when compared to existing literature [14,32,33] is also matter of concern that needs further investigation. IOL should be performed only with a clear medical indication (i.e., when expected benefits outweigh its potential harms).[32] Recent data from high-income settings shows that IOL does not result in increased CS rates,[34,35] while our findings suggest that the high rate of IOL may have contributed to the relatively high rate of CS (group 2a and 4a contributed to 16.9% of the total number of CS, and the two key indications to CS in these groups were abnormal CTG and failed induction, **Table 1** and **Supplementary table 8**). Sri Lanka has the highest rate of IOL in Asia [32,33] and a better understanding of practices related to IOL may contribute to the current local debate on how to improve quality of maternal care. As recommended by Robson [36] the Robson classification "provides a common starting point for further analyses for all labour and delivery events and outcomes"; it draws attention to specific groups, where further analysis can be performed to understand the reasons behind the initial observation. We plan to further analyse and report IOL practices in a future paper.

A relevant proportion of CS (6.5%) was performed electively for potentially inappropriate indications (i.e., prelabour diagnosis of CPD, history of subfertility, maternal request). However, this is a frequent finding in the literature, as documented in studies from USA, Germany, China, Brazil, Argentina, India, Pakistan, and other countries.[37-44] One of the recommendations agreed in this experience was the implementation of the regular auditing of cases of CS without absolute indications, aiming at promoting good practices.

We acknowledge some limitations of this study. The analysis highlighted cases of possible misclassification and missing variable resulting in cases being unclassifiable. However, this was a rare finding (respectively, 0.5% and 0.6% of total cases, see **Table 1** and **Supplementary table 8**). Data quality was the object of internal discussion, and actions to improve it were within the list of recommendations developed.

BMJ Open

Despite not all recommendations developed fitting into the remit of SMART,[17] still the process provided the opportunity to discuss clinical practice using objective data in a constructive, participatory manner, and resulted in a concrete list of actions. Activities agreed aligned both with evidenced-based recommendations on effective interventions for improve health worker performance [45], taking into account also previous experience of the team [46-50].

This was a pilot study in one single facility and it will be important to replicate similar experiences in other settings to evaluate generalisability of findings. We believe that the commitment of local staff, a favourable local leadership and a constructive dialogue with an external partner providing independent technical support, were the three essential favourable elements in succeeding in performing the analysis and most importantly, in using data proactively.

The study does not report perinatal outcomes such as perinatal mortality rates. We have planned two wait some more time to collect a larger sample to be able to have adequate power to analyze and discuss hard (bur relatively rare) outcomes such as perinatal mortality.

Within the project timelines, it was not possible to follow up the impact of the recommendations developed. Future longer-term studies will be needed to monitor implementation.

CONCLUSIONS

This study provides an example from a setting with limited resources where information from an individual patient database were used locally for conducting an in-depth analysis of CS practices, following the WHO manual [4]. Further, it was used for developing recommendations to improve the quality of hospital care. Future studies may further explore other aspects of maternal care, such as practices related to IOL- and monitor over time outcomes of the recommendations developed.

Acknowledgments

We would like to thank all the hospitals staff that participated in all phases of the study and

specially Mr. HK Dharmasiri, Medical Records Officer of the hospital.

Disclosure of interests

None competing interest

Funding

The implementation of the database was funded for the first year by a grant from the GREAT Network, Canadian Institutes of Health Research, St. Michael's Hospital, Toronto.

Author contributions

HS, MP and ML conceived the study and procured funds; HS, MP, CB, RM and ML developed the data collections tools; RF, AS and FRI collected data; BC, HW, EPV and ML analysed the data; all authors interpreted data and contributed to the manuscript; ML wrote the first draft of the paper, all authors contributed to the final version of the paper

Data availability statement

The dataset is available from Benedetta Covi

REFERENCES

1.World Health Organization. WHO Statement on Caesarean Section Rates. Geneva, 2015. http://apps.who.int/iris/bitstream/10665/161442/1/WHO_RHR_15.02_eng.pdf (accessed 16 October 2018)

2. Boerma T, Ronsmans C, Melesse DY, et al. Global epidemiology of use of and disparities in caesarean sections. *The Lancet* 2018;392(10155):1341–48 [published Online First: 13 October 2018]

3. Robson MS. Classification of caesarean sections. *Fetal and Maternal Medicine Review* 2001;12(1):23-39. doi:10.1017/S0965539501000122

4. World Health Organization. Robson Classification: Implementation Manual. Geneva, 2017. http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/robson-

classification/en/ (accessed 16 October 2018)

5. Goonewardene M, Kumara DMA, JathunArachchi DR, et al. The rising trend in caesarean section rates: should we and can we reduce it? *Sri Lanka Journal of Obstetrics and Gynaecology* 2012;34:11-18. doi:10.4038/sljog.v34i1.4816

6. Annual Health Bulletin 2015 Sri Lanka. Medical Statistics Unit Ministry of Health, Nutrition and Indigenous Medicine. ISBN 978-955-702-045-7 (Published in 2017). http://www.health.gov.lk/moh_final/english/others.php?pid=110 (accessed 16 October 2018)

7. Goonewardene M, Peiris M, Kariyawasam S, et al. Analysis of high caesarean section rates: the second step after audits using the Ten Group Classification System. *Ceylon Medical Journal* 2017;62:149-158. doi:10.4038/cmj.v62i3.8518 [published Online First: 25 September 2017]

8. Rannan-Eliya RP, Wijemanne N, Liyanage IK, et al. Quality of inpatient care in public and private hospitals in Sri Lanka. *Health Policy and Planning* 2015;30:i46–i58. doi:10.1093/heapol/czu062.

9. Lazzerini M, Senanayake H, Mohamed R, et al. Implementation of an individual-patient prospective database of hospital births in Sri Lanka and its use for improving quality of care. *BMJ Open* (submitted on April 2018, minore revision requested, resubmitted in Aug 2, currently awaiting response).

10. Robson M, Hartigan L, Murphy M. Methods of achieving and maintaining an appropriate caesarean section rate. *Best Pract Res Clin Obstet Gynaecol* 2013;27:297-308. doi:10.1016/j.bpobgyn.2012.09.004. [published Online First: 3 November 2012].

11. Vogel J P, Betrán A P, Vindevoghel N, et al. Use of the Robson classification to assess caesarean section trends in 21 countries: a secondary analysis of two WHO multicountry surveys. *The Lancet Glob Health* 2015;3: e260–70. doi:10.1016/S2214-109X(15)70094-X. [published Online First: 9 April 2015].

12. Zhang J, Geerts C, Hukkelhoven C, et al. Caesarean section rates in subgroups of women and perinatal outcomes. *BJOG* 2016;123:754–761. doi:10.1111/1471-0528.13520. [published Online First: 22 July 2015].

13. Boatin AA, Cullinane F, Torloni MR, et al. Audit and feedback using the Robson classification to reduce caesarean section rates: a systematic review. *BJOG* 2018;125:36–42. doi:10.1111/1471-0528.14774. [published Online First: 17 July 2017].

14. Doran GT. There's a S.M.A.R.T. Way to Write Management's Goals and Objectives. *Management Review* 1981;70:35–6.

15. WHO Expert Consultation: Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. *The Lancet* 2004;363:157–163. doi:10.1016/S0140-6736(03)15268-3

16. National Institute of Health and Care Excellence: Preventing type 2 diabetes risk: identification and interventions for individuals at high risk (2012)

https://www.nice.org.uk/guidance/PH38/chapter/Recommendations#risk-assessment (accessed 16 October 2018)

17. Pyyk€onen A, Gissler M, Løkkegaard E, et al. Cesarean section trends in the Nordic Countries
– a comparative analysis with the Robson classification. *Acta Obstet Gynecol Scand* 2017;96:607–616. doi:10.1111/aogs.13108. [published Online First: 24 March 2017].

18. Rossen J, Lucovnik M, Eggebø TM, et al. A method to assess obstetric outcomes using the 10-Group Classification System: a quantitative descriptive study. *BMJ Open* 2017;7:e016192.
doi:10.1136/bmjopen-2017-016192

19. Rhoades JS, Cahill AG. Defining and Managing Normal and Abnormal First Stage of Labor. *Obstet Gynecol Clin N Am* 2017;44:535–545. doi:10.1016/j.ogc.2017.07.001

20. Boyle A, Reddy UM, Landy HJ, et al. Primary Cesarean Delivery in the United States. *Obstet Gynecol* 2013;122(1):33–40. doi:10.1097/AOG.0b013e3182952242

J Thomas, S Paranjothy. Royal College of Obstetricians and Gynaecologists. Clinical Effectiveness Support Unit. National Sentinel Caesarean Section Audit Report. RCOG Press; 2001.
 Robson M, Murphy M, Byrne F. Quality assurance: The 10-Group Classification System (Robson classification), induction of labor, and cesarean delivery. *Int J Gynaecol Obstet* 2015;131:S23–S27. doi:10.1016/j.ijgo.2015.04.026.

23. Le Ray C, Blondel B, Prunet C, et al. Stabilising the caesarean rate: which target population? *BJOG* 2015;122:690–699 doi:10.1111/1471-0528.13199 [published Online First: 21 November 2014].

24. Triunfo S, Ferrazzani S, Lanzone A, et al. Identification of obstetric targets for reducing cesarean section rate using the Robson Ten Group Classification in a tertiary level hospital. *European Journal*

of Obstetrics & Gynecology and Reproductive Biology 2015;189:91–95. doi:10.1016/j.ejogrb.2015.03.030.

25. Lafitte AS, Dolley P, Le Coutour X, et all.. Rate of caesarean sections according to the Robson classification: Analysis in a French perinatal network - Interest and limitations of the French medico-administrative data (PMSI*). J Gynecol Obstet Hum Reprod.* 2018 Feb;47:39-44.

BMJ Open

26.Lee YY, Roberts CL, Patterson JA, et all. Unexplained variation in hospital caesarean section rates. Med J Aust. 2013 Sep 2;199:348-53.

27. Maso G, Alberico S, Monasta L, et al., The application of the Ten Group classification system (TGCS) in caesarean delivery case mix adjustment. A multicenter prospective study. PLoS One.
2013 Jun 5;8(6):e62364. doi: 10.1371/journal.pone.0062364. P

28. Kacerauskiene J, Bartuseviciene E, Railaite DR, et al. Implementation of the Robson classification in clinical practice: Lithuania's experience. *BMC Pregnancy and Childbirth* 2017;17:432. doi:10.1186/s12884-017-1625-9 [published Online First: 20 December 2017].

29. Farine D, Shepherd D. Classification of caesarean sections in Canada: the modified Robson criteria. *J Obstet Gynaecol Can* 2012;34(10):976–83. doi:10.1016/S1701-2163(16)35412-3.

30. Shoemaker ES, Bourgeault IL, Cameron C, et al. Results of implementation of a hospital-based strategy to reduce cesarean delivery among low-risk women in Canada. *Int J Gynecol Obstet* 2017;139:239–244.s. doi:10.1002/ijgo.12263. [published Online First: 4 August 2017].

31. Ugwumadu A, Steer P, Parer B, et al. Time to optimise and enforce training in interpretation of intrapartum cardiotocograph. *BJOG* 2016;123:866–869. doi:10.1111/1471-0528.13846. [published Online First: 15 January 2016].

32. WHO. WHO recommendations for induction of labour. Geneva: World Health Organization, 2011.
Department of Reproductive Health and Research.
http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/9789241501156/en/
(accessed 16 October 2018).

33. Vogel JP, Souza JP, Gülmezoglu AM. Patterns and Outcomes of Induction of Labour in Africa and Asia: A Secondary Analysis of the WHO Global Survey on Maternal and Neonatal Health. *PLoS ONE* 2013;8(6): e65612. doi:10.1371/journal.pone.0065612. [published Online First: 3 June 2013]
34. Saccone G, Berghella V. Induction of labor at full term in uncomplicated singleton gestations: a systematic review and metaanalysis of randomized controlled trials. *Am J Obstet Gynecol* 2015;213(5):629-36. doi:10.1016/j.ajog.2015.04.004

35. Grobman WA, Rice MM, Reddy UM, et al. Labor Induction versus Expectant Management in Low-Risk Nulliparous Women. *N Engl J Med* 2018;379:513-23. doi: 10.1056/NEJMoa1800566
36. Robson MS. The 10-Group Classification System-a new way of thinking. *Am J Obstet Gynecol* 2018;219(1):1-4. doi:10.1016/j.ajog.2018.05.026.

37. Souza J, Gülmezoglu A, Lumbiganon P, et al. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004–2008 WHO Global Survey on Maternal and Perinatal Health. *BMC Med* 2010;8:71. doi:10.1186/1741-7015-8-71.

38. Lumbiganon P, Laopaiboon M, Gülmezoglu AM, et al. Method of delivery and pregnancy outcomes in Asia: the WHO global survey on maternal and perinatal health 2007–08. *The Lancet* 2010;375:490–99. doi:10.1016/S0140-6736(09)61870-5 [published Online First: 12 January 2010].

BMJ Open

 39. Venturella R, Quaresima P, Micieli M, et al. Non-obstetrical indications for cesarean section: a state-of-the-art review. *Arch Gynecol Obstet* 2018;298(1):9-16. doi:10.1007/s00404-018-4742-4 [published Online First: 20 March 2018].

40. Gao Y, Xue Q, Chen G, et al. An analysis of the indications for cesarean section in a teaching hospital in China. *European Journal of Obstetrics and Gynecology and Reproductive Biology* 2013;170(2):414-418. doi:10.1016/j.ejogrb.2013.08.009.

41. Adhikari K, McNeil DA, McDonald S, et al. Differences in caesarean rates across women's socioeconomic status by diverse obstetric indications: Cross-sectional study. *Paediatr Perinat Epidemiol* 2018;32(4):309-317. doi:10.1111/ppe.12484. [published Online First: 5 July 2018].

42. Mikolajczyk RT, Schmedt N, Zhang J, et al. Regional variation in caesarean deliveries in Germany and its causes. *BMC Pregnancy and Childbirth* 2013;13:99. doi:10.1186/1471-2393-13-99.

43. Pereira MN, Leal MC, Pereira APE, et al. Use of Robson classification to assess cesarean section rate in Brazil: the role of source of payment for childbirth. *Reproductive Health* 2016;13(3):128. doi:10.1186/s12978-016-0228-7

44. Belizán JM, Minckas N, McClure EM, et al. An approach to identify a minimum and rational proportion of caesarean sections in resource-poor settings: a global network study. *Lancet Glob* Health 2018;6:e894–901. doi:10.1016/S2214-109X(18)30241-9.

45. Rowe AK, Rowe SY, Peters DH, et all Effectiveness of strategies to improve health-care provider practices in low-income and middle-income countries: a systematic review. *Lancet Glob Health*. 2018;6:e1163-e1175.

46. Lazzerini M, Ciuch M, Rusconi S, et all. Facilitators and barriers to the effective implementation of the individual maternal near-miss case reviews in low/middle-income countries: a systematic review of qualitative studies. *BMJ Open.* 2018 Jun 30;8(6):e021281. doi: 10.1136/bmjopen-2017-021281

47. Lazzerini M, Richardson S, Ciardelli V, et all. Effectiveness of the facility-based maternal nearmiss case reviews in improving maternal and newborn quality of care in low-income and middleincome countries: a systematic review. *BMJ Open*. 2018;8:e019787. doi: 10.1136/bmjopen-2017-019787.

48. Lazzerini M, Shukurova V, Davletbaeva M, et all.. Improving the quality of hospital care for children by supportive supervision: a cluster randomized trial, Kyrgyzstan. *Bull World Health Organ.* 2017;95:397-407

49. Bacci A, Hodorogea S, Khachatryan H, et al What is the quality of the maternal near-miss case reviews in WHO European Region? Cross-sectional study in Armenia, Georgia, Latvia, Republic of Moldova and Uzbekistan. *BMJ Open*. 2018;8:e017696.

 50. Senanayake HM, Patabendige M, Ramachandran R. Experience with a context-specific modified WHO safe childbirth checklist at two tertiary care settings in Sri Lanka. *BMC Pregnancy Childbirth.* 2018;18:411.

tor peer teriew only

Use of an individual-patient database for analysing caesarean section practices according to the WHO Manual for Robson classification and for developing quality improvement recommendations: a study in Sri Lanka

Supplementary file

Tabl	e of	Conte	ents
------	------	-------	------

Supplementary Table 1. Missing cases for the variables of interest	2
Supplementary Table 2. Steps to assess quality of data using the Robson Classification Report Table according to WHO implementation manual	3
Supplementary Table 3. Steps to assess type of population using the Robson Classification Report Table according to WHO implementation manual	4
Supplementary Table 4. Steps to assess caesarean section rates using the Robson Classification Report Table according to WHO implementation manual	7
Supplementary Table 5. Template for agreeing actions at hospital level to improve the quality of care	10
Supplementary Table 6. Characteristics of the population	12
Supplementary Table 7. Main indications to CS	14
Supplementary Table 8. Main indications to CS by Robson group	15

1	
2 3	
4 5 6	
0 7	
8	
9 10	
11	
12 13	
14	
15 16	
17	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
19 20	
21	
22 23	
24	
25 26	
27	
28 20	
30	
31	
33	
34	
34 35 36 37	
38 39	
40	
41 42	
43	
44 45	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57	
58	

59 60

Supplementary Table 1. Missing cases for the variables of interest

Variables	Total	Missing	% Missing
Maternal age	7504	34	0.4
Parity	7504	34	0.4
Gestational age at delivery	7504	47	0.6
Previous caesarean section	7504	38	0.5
If previous caesarean section, trial of labour	7504	91	1.2
Multiple pregnancies	7504	35	0.4
Presentation	7504	43	0.6
Labour onset	7504	36	0.4
Delivery	7504	32	0.4
Delivery mode	7504	37	0.4
If operative delivery, indication	7504	38	0.5
If caesarean section, type	7504	37	0.4
Indication of labour	7504	36	0.4
Mode of induction	7504	42	0.5
Pre-gestational diabetes	7504	35	0.4
Gestational diabetes mellitus in diet	7504	35	0.4
Gestational diabetes mellitus in drug therapy	7504	36	0.4
Pre-gestational hypertension	7504	33	0.4
Gestational hypertension (no proteinuria)	7504	35	0.4
Pre-eclampsia not severe	7504	35	0.4
Pre-eclampsia severe	7504	35	0.4
Eclampsia	7504	34	0.4
BMI	7504	53	0.7
Maternal cardiac disease	7504	34	0.4
Polyhydramnios	7504	36	0.4
Oligohydramnios	7504	38	0.4
IUGR	7504	36	0.4
APH/major placentia previa	7504	37	0.4
Severe anaemia	7504	38	0.5
Chorioamnionitis	7504	36	0.4

3
4
-
5
6
7
8
9
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
44
45
46
47
48
49
5 0
51
52
53
54
55
56
57
58
59
60

1 2

Supplementary Table 2. Steps to assess quality of data ¹

Step	Interpretation by	Example:	Further Interpretation
	Robson	MCS	
		population*	
1. Look at the	These numbers	NA	If these numbers do not match, then data is
total numbers of	should be identical to		missing or incorrect. Some women may not have
CS and of	the total number of		been classified in the Robson groups because of
women delivered	CS and of women		missing variables or were incorrectly classified
in your hospital	delivered in your		as to type of delivery. Sometimes multiple
	hospital.		pregnancies are counted as babies rather than
			mothers.
2. Look at the	It should be less than	0.4%	If this is > 1%, it is probable that women with
size of Group 9.	1%.		breech (or other) presentations have been
Singletons in			misclassified as transverse /oblique lie and
transverse or			allocated to this group. As the classification
oblique lie			includes all women who have delivered, if any
			one group is smaller or bigger, look to the other
			groups which sometimes will show where the
			misclassification is.
3. Look at the	It should be 100%	88.6%	By convention, if the woman gives birth vaginally
CS rate of Group	by convention.		by internal version, it should be classified as
9			either cephalic or breech. The CS rate in Group
			9 should be 100%

Notes: *MCS reference population was the population of the MCS with relatively low CS rates and, at the same time, with good outcomes of labour and childbirth.

Abbreviations: CS= caesarean section; NA= not available.

¹ World Health Organization. Robson Classification: Implementation Manual. Geneva,

^{2017.}http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/robson-classification/en/ (accessed 28 June 2018)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
12 13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
<u> </u>	

60

Supplementary Table 3. Steps to assess type of population ¹

Step	Interpretation by	Example:	Further Interpretation
	Robson	MCS	
		population*	
1. Look at the size of	This usually	38.1%	In settings with high proportion of
Groups 1 + Group 2.	represents 35-42%		women who have only one child rather
Nulliparous women ≥37	of obstetric population		than more than one child, the group of
weeks gestation singleton	of most		nulliparous women i.e. Groups 1 and
cephalic	hospitals.		2 tends to be larger. In settings where
			the opposite is true, the size of
			Groups 1 + Group 2 will be smaller
			since most of the population will be
			represented by multiparous women.
2. Look at the size of	This usually	46.5%	In settings with high proportion of
Groups 3 + 4 -Multiparous	represents about 30%		women with more than one child
women ≥37 weeks	of women.		rather than only one child, the size of
gestation singleton			Groups 3 + Group 4 will be higher
cephalic, without previous			than 30% (provided they have
CS			delivered vaginally). Another reason
			for a low size of Groups 3 and 4 could
	C		be that the size of Group 5 is very
		4.	high which would be accompanied by
			a very high overall CS rate.
3. Look at the size of Group	It is related to the	7.2%	The size of Group 5 is usually related
5 - Multiparous women ≥37	overall CS rate. The	2	to the overall CS rate. If the size of
weeks gestation singleton	size of Group 5 is		this group is larger, it means that there
cephalic with previous CS	roughly usually about	(has been a high CS rate in the past
	half of the total CS		years in that hospital and mainly in
	rate. In settings with		Groups 1 and 2. In places with high
	low overall CS rates, it		CS rates, the size of this group could
	is usually under 10%.		be > 15%.
4. Look at the size of	It should be 3-4%	2.7%	If the total is much over 4%, the most
Groups 6 + 7 Breeches in			common reason is usually a high rate
nulliparous & multiparous			of preterm deliveries or a higher
women			proportion of nulliparous women.
			Therefore, look at size of Group 10. If
			that is over 4-5%, this hypothesis

¹ World Health Organization. Robson Classification: Implementation Manual. Geneva,

^{2017.}http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/robson-classification/en/ (accessed 28 June 2018)

			could be true.
5. Look at the size of	It should be 1.5-2%	0.9%	If it is higher, the hospital is prot
Groups 8 - Multiples			tertiary (high risk, referral) or ru
			fertilization program. If lower, prob
			a lot of the twins are referred
			especially if the remaining twins h
			a low caesarean section rate
6. Look at the size of	It should be less than	4.2%	If it is higher, the hospital is prob
Groups 10 - Preterm	5% in most normal risk		tertiary (high risk, referral) or there
cephalic singletons	settings.		high risk of preterm births in
			population that the hospital serve
			in addition, the CS rate is low in
			group, it could represent
			preponderance of spontane
			preterm labour. If the CS rate in
			group is high, it could suggest n
			provider-initiated pre-labour CS
			foetal growth restriction or
			eclampsia and other pregnancy
			medical complications.
7. Look at the Ratio of the	It is usually 2:1 or	Ratio 3.3	If it is lower, suspect poor data qua
size of Group 1 versus	higher	4.	nulliparous women who rece
Group 2 (Divide the size of			oxytocin for augmenta
Group 1 by the size of			(acceleration) of labour (and sh
Group 2) - Nullipara term		4	be in Group 1) may have b
cephalic singletons			misclassified as "induction"
spontaneous labour /			incorrectly classified as Group 2).
Nullipara term cephalic			If data collection is correct, a lo
singletons induced or pre-			ratio may indicate that you hav
labour CS			high induction/prelabour CS is
			which may indicate a high
			population in nulliparous women
			are likely therefore to have a high
			rate. Additional information on
			labour stillbirths would be the
			question to ask.
			On the contrary, if the ratio is
			high, you may want to look at
			pre-labour stillbirth rate in
			population which may indicate

			you are not inducing enough. Or alternatively you may have a very low risk population
8. Look at the Ratio of the size of Group 3 versus Group 4. (Divide the size of Group 3 by the size of Group 4): Multipara without previous CS, term cephalic singletons spontaneous	It is always higher than the ratio of Group 1/Group 2 in the same institution, i.e, larger than 2:1. This is very reliable finding in confirming data quality	Ratio 6.3	If it is lower, suspect poor data quality: multiparous women who received oxytocin for "augmentation" of labour (and should be in Group 3) may have been misclassified as "induction" (and incorrectly classified as Group 4). A low ratio (due to large Group 4b)
labour / Multipara without previous CS, term cephalic singletons induced or pre- labour CS	and culture of the organization.		may suggest a poor previous maternal experience in vaginal delivery and a request for pre-labour CS in multiparous women. Another explanation may be pre-labour CS done to perform tubal ligation (common in settings where family planning is not easily available).
9. Look at the Ratio of the size of Group 6 versus Group 7. (Divide the size of Group 6 by the size of Group 7) Nullipara breech / Multipara breech	It is usually a 2:1 because breeches are more frequent in nulliparous women than in multiparous women.	Ratio 0.8	If the ratio is different, suspect either unusual nullipara/multipara ratio or inaccurate data collection.

Notes: *MCS reference population was the population of the MCS with relatively low CS rates and, at the same time, with good outcomes of labour and childbirth.

Abbreviation: CS= caesarean section.

Supplementary Table 4. Steps to assess caesarean section rates 1

Step	Interpretation by	Example:	Further Interpretation
	Robson	MCS	
		population*	
1. Look at	Rates under 10%	9.8%	This rate can only be interpreted accurately when you
the CS rate	are achievable		have considered the ratio of the sizes of Groups 1
for Group 1			and 2. In principle, the higher the ratio of size of
			Groups 1:2, the higher the likelihood of both the CS
			rate in Group 1 and 2 being individually higher.
			However, the overall CS rate in Groups 1 and 2
			combined may still be low or the same.
2. Look at	Consistently	39.9%	CS rates in Group 2 reflect the size and rates in 2a
the CS rate	around 20-35%		and 2b. If size of Group 2b is large, the overall CS
for Group 2			rates in Group 2 is also going to be large. If Group 2b
		6	is relatively small, then high rates of CS in Group 2
			may indicate poor success rates for induction or poor
			choice of women to induce and consequently a high
			rate of CS in Group 2a. Remember the general
			principle of not interpreting one single subgroup on its
			own without knowing what is left out. The
			interpretation of group 2a requires knowing the
			relative sizes of Groups 1 and 2b.
3. Look at	Normally, no higher	3.0%	In units with higher CS rates in this group, this may be
the CS rate	than 3.0%.		due to poor data collection. It is possible that women
for Group 3			with previous scars (Group 5) were incorrectly
			classified as Group 3. Other possible reasons for high
			rates could be for example to do tubal ligation in
			settings with poor access to contraception, or
			maternal request.
4. Look at	It rarely should be	23.7%	CS rates in Group 4 reflect the size and rates in 4a
the CS rate	higher than 15%		and 4b. If size of Group 4b is large, the overall CS
for Group 4			rates in Group 4 is also going to be high. If Group 4b
			is relatively small, then high rates of CS in Group 4
			may indicate poor success rates for induction or poor
			choice of women to induce and consequently a high
			rate of CS in Group 4a.
			Poor data collection could also be a reason for high

¹ World Health Organization. Robson Classification: Implementation Manual. Geneva,

^{2017.}http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/robson-classification/en/ (accessed 28 June 2018)

5.Look at the	Rates of 50-60%	74.4%	CS rates in Group 4; for example, due to inclusion women with previous scars in this group (when the should be in Group 5). Lastly, a high CS rate in Group 4 may reflect a high maternal request for CS even these women have delivered their first pregnant vaginally. This may be because of a previous traumatic or prolonged labour or to do tubal ligation settings with poor access to contraception.
CS rate for Group 5	are considered appropriate provided you have good maternal and perinatal outcome.		Group 5.2 (women with 2 or more previous CS). T could also be due to a policy of scheduling pre-lab CS for all women with 1 previous scar with attempting a trial of labour.
6. Look at the CS rate for Group 8	It is usually around 60%.	57.7%	Variations will depend on the type of twin pregna and the ratio of nulliparous/multiparous with or with a previous scar.
7. Look at the CS rate in Group 10	In most populations it is usually around 30%	25.1%	If higher than 30%, it is usually due to many cases high risk pregnancies (e.g. foetal growth restricti preeclampsia) that will need preterm pre-labour CS lower than 30%, it suggests a relatively higher rate preterm spontaneous labour and hence a low overall CS rate.
8. Look at the relative contribution of Groups 1, 2 and 5 to the overall CS rate (add the contribution of each of these groups)	These three groups combined normally contribute to 2/3 (66%) of all CS performed in most hospitals.	These three groups combined contributed to 63.7% of all CS	These three groups should be the focus of attention the hospital is trying to lower the overall CS rate. Thigher the overall CS rate, the greater the for should be in Group 1.
9. Look at the absolute contribution of Group 5 to the overall		This group was responsible for 28.9% of all CS	If it is very high, this may indicate that in previ- years, CS rates in Groups 1 and 2 have been h and it is worth exploring further.

		1			
CS rate					
		he population of	the MCS with relatively	low CS rates and, at the s	same time, with
	s of labour and childbirth.				
Abbreviation: C	S= caesarean section.				

¢

Supplementary Table 5. Template for agreeing actions at hospital level to improve the quality of care

Date:

Group Participants:

Key findings from the analysis	Possible explanations	Agreed recommendations for quality improvement
	0	
	C	
	0	
	4	2
		0
		2/
		1

Instructions:

- 1. Identify a moderator whose duty is to make sure that the pre-defined template is filled in preestablished time (90 minutes total), that everyone has the right to speak and actively participate, and that the final version of the table corresponds to group opinions
- 2. Identify a secretary whose job is to take notes, summarize the opinions of the group in the template, act as a presenter in plenary (15 min maximum), save the template in an electronic file (the results will be attached to final report that will be distributed)
- Participants are requested to make concise and specific interventions lasting up to 1-2 minutes, leaving the possibility to express their opinions to others. It is required to make proposals with a problem-solving attitude
- 4. We recommend to fill the first column first (key findings) and then the other lines in horizonal
- 5. Is not necessary to identify many priorities, 5-10 are enough. For the same priority it's possible to specify 1 or more actions
- 6. Some examples of different possible actions:
 - development of policies and operational plans (for training, quality, work conditions, improve data collection and other aspects of database)
 - development of protocols and procedures
 - theoretical and practical training (related to EBM clinical practices or quality of care)
 - periodical audit (clinical, on indicators) or team meetings
 - adopt quality standards and targets and implement a monitoring system with periodic analyzes and discussions of data

Actions should be **SMART: Specific, Measurable, Achievable, Realistic, Time-bound** in the real context of the hospital.

1 2	
2	
4	
5	
6	
/ 8	
8 9	
10	
11	
12	
13 14	
15	
16 17	
17	
18 19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29 30	
31	
32	
33	
34 35	
36	
37	
38	
39 40	
41	
42	
43	
44 45	
45 46	
47	
48	
49 50	
50 51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

Supplementary Table 6. Characteristics of the population

Population	n	%
	(N=7504)	
Maternal age		
<18 years	95	1.2
18-24 years	1862	24.8
25-34 years	4253	56.6
35-39 years	1036	13.8
>40 years	224	2.9
Parity		
0	3342	44.5
≥1	4128	55.0
Gestational age		
<28 weeks	41	0.5
28-31 weeks	96	1.3
32-36 weeks	571	7.6
>37 weeks	6749	89.9
Previous caesarean section	956	12.7
Cephalic	7122	94.9
Breech	273	3.6
Other	66	0.9
Multiple pregnancies	84	1.1
Labour onset		
Spontaneous	4726	62.9
Induction	1849	24.6
Pre-labour caesarean section	893	11.9
Mode of delivery	6	
Vaginal spontaneous	4906	65.3
Vaginal operative	310	4.1
Caesarean section	2251	30.0
At least one maternal or foetal pathological conditions	2845	37.9
Pre-gestational diabetes	266	3.5
Gestational diabetes, total	1002	13.4
On diet	417	5.6
On drug therapy	585	7.8
Hypertensive disorders of pregnancy, any	506	6.7
Pre-gestational hypertension	168	2.2
Gestational hypertension	179	2.4
Pre-eclampsia not severe	78	1.0
Pre-eclampsia severe	69	0.9

BMJ Open

Eclampsia	12	0.2
Obesity (BMI > 27.5)*	440	5.9
Maternal age > 40 years	224	2.9
Maternal cardiac disease	234	3.1
Oligohydramnios	131	1.8
Polyhydramnios	96	1.3
IUGR**	504	6.7
APH/major placentia previa	112	1.5
Severe anaemia (Hb <7)	40	0.5
Chorioamnionitis	11	0.2

Notes: *as defined on data collection form; **defined as weight < 10 centile of estimated weight for gestational age or < 10 centile for abdominal circumference (Bangladesh growth chart), based on ultrasound.

Abbreviation: APH= Antepartum haemorrhage; BMI= Body mass index; Hb= Haemoglobin; IUGR= Intrauterine growth restriction.

ore terior only

Supplementary	Table 7	. Main	indication	s to CS

47	BMJ Open	omjopen-2	
Supplementary Table 7. Main indica	tions to CS	bmjopen-2018-027317	
Main indication		n ⊴n (N=2251)	%
CTG abnormal/suspected foetal distress		<u>§</u> §10	27.1
Past caesarean section		 §38	23.9
Failure to progress or failed IOL		838 261 261 09 09 02 7 7 75 70 84	11.6
Failed IOL			4.8
Dystocia 1st stage		0 8 7	3.4
Dystocia 2nd stage	Da		3.3
Breech/abnormal lie		¥84	8.2
Hypertension/preeclampsia/eclampsia		1 00	4.4
IUGR	A.		3.6
APH/major placenta previa	Vi		3.0
Prelabour diagnosis of CPD		57 47	2.5
History of subfertility/bad obstetric history		47	2.1
Cardiac disease	•		2.0
Maternal request		1 1 1 1 3	1.9
Multiple pregnancies		1,40	1.8
Diabetes		0n74pr#17,400 455	1.1
Thick meconium		96	0.7
Pre-term		ected by	0.4
Other		<u>e</u> <u>e</u> 18	5.2
Missing		d or	0.3

Supplementary Table 8 Main indications to CS by Robson group

					BMJ	Open					bmjopen-2018-027 <mark>3</mark> 17			
Supplementary Table 8. Mair	n indi	catior	is to C	CS by F	Robso	n gro	up				18-027			
Robson group	1	2a	2b	3	4a	4b	5	6	7	8	317 g	10	Missing	Total
Main indication											on ®			
CTG abnormal/suspected foetal distress	155	175	48	60	49	9	49	5	6	3	문 2 *	48	1	610
Past caesarean section	0	0	0	3*	0	1*	467	6	18	2	ruar	34	0	538
Failure to progress or failed induction											y 20			
Failed induction	0	63	0	0	21	0	15	0	1	1	19. D	8	0	109
Dystocia 1st stage	27	27	2	8	3	3*	3	0	1	0	ownl	3	0	77
Dystocia 2nd stage	13	16	3*	1	3	0	33	0	0	0	2019. Downloade	3	1	75
Breech/abnormal lie	1*	0	1*	1*	0	0	1*	91	55	7	ਰ ਨੂੰ 26	1*	0	184
Hypertension/preeclampsia/eclampsia	6	4	9	2	0	4	18	1	0	3		52	1	100
IUGR	11	3	9	6	0	3	9	2	4	2	0://bn	32	1	82
APH/major placenta previa	8	2	6	6	0	21	9	2	2	1	<u>jo</u> g 3*	27	1	68
Prelabour diagnosis of CPD	25	3	14	0	0	3	7	0	0	2	ñ.bn 1*	2	0	57
History of subfertility/bad obstetric history	14	0	16	0	0	2	0	5	0	0	<u>9</u> . 8 1*	9	0	47
Cardiac disease	7	0	9	2	0	7	10	1	1	1	n/ 0	7	0	45
Maternal request	8	0	10	1	0	3	21	0	0	0	n Apr	0	0	43
Multiple pregnancies	0	0	1	0	0	0	1*	0	0	37	o ril 17	1*	0	40
Diabetes	5	0	2	2	1	1	7	0	1	0	0	6	0	25
Thick meconium	10	4	1	1	0	0	0	0	0	0	04 by	0	0	16
Pre-term	0	0	3*	0	0	1*	4*	0	0	1	gues	1	0	10
Other	22	3	23	11	4	10	10	1	1	3	 Р 5	24	1	118
Missing	2	0	1	1	0	1	2	0	0	0	otec	0	0	7
Total	314	300	158	105	81	49	666	114	90	63	ted 47	258	6	2251

 Note: * Possible groups misclassifications; Abbreviation: APH= Antepartum haemorrhage; CPD= Cephalopelvic disproportion; CTG= Cardiotocography; IUGR= Intrauterine growtherestriction.

Key findings and comments: Indications for CS in Group 1: • Abnormal CTG = 49.4% • Potentially inappropriate indications (antepartum diagnosis of CPD, bad obstetric history, subfertility, maternal request) = 15% • Dystocia = 12.7% Indications for CS in Group 2a: • Abnormal CTG = 58.3% • Failed induction = 21% • Dystocia = 14.3% Indications for CS in Group 2b: • Abnormal CTG = 30.4% • Potentially inappropriate indications (antepartum diagnosis of CPD, bad obstetric history, subfertility, maternal request) = 25% eview on Indications for CS in Group 3: • Abnormal CTG = 57.1% • Dystocia = 8.5% Indications for CS in Group 4a: • Abnormal CTG = 60.5% • Failed induction = 25.9% • Dystocia = 7.4% Indications for CS in Group 4b: • Abnormal CTG = 18.4% • Maternal/foetal issues = 32.6% • Other = 20.4% Indications for CS in Group 5:

bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Page 46 of 47

BMJ Open

• Previous CS = 70.1%	
Abnormal CTG = 7.4%	
• Dystocia = 5.4%	
Maternal request = 3.2%	
Indications for CS in Group 8:	
 Multiple pregnancy = 58.7% 	
Breech/abnormal lie = 11.1%	
Indications for CS in Group 10:	
	iabetes/maternal cardiac diseases/IUGR/APH) 48.1%
• Abnormal CTG 18.6%	er review c

bmjopen-2018-027317 on 8 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Page 47 of 47

Supplementary File.	. STR	BMJ Open BMJ Open OBE Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	
Item No		Recommendation Q	Dese
Title and abstract	1	Recommendation9(a) Indicate the study's design with a commonly used term in the title or the abstract $\stackrel{\infty}{}$	Page Page 4
The and about act	1	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods		OVY T	
Study design	4	Present key elements of study design early in the paper	Page 6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-	Page 6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Page 6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give definition of applicable	Page 6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement) Describe comparability of assessment methods if there is more than one group	Page 7
Bias	9	Describe any efforts to address potential sources of bias	Page 6
Study size	10	Explain how the study size was arrived at	Page 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 6-7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 6
		(b) Describe any methods used to examine subgroups and interactions	Page 6
		(c) Explain how missing data were addressed	Page 6 Supplementar Table 1
		(d) If applicable, describe analytical methods taking account of sampling strategy	NA
			NA
Results		(e) Describe any sensitivity analyses 0	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed Image: Completing follow-up in the study is a compl	Page 9

		BMJ Open 5000000000000000000000000000000000000	Pa
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on expessures and potential confounders	Supplementary Table 6
		(b) Indicate number of participants with missing data for each variable of interest	Supplementary Table 1
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg. 5% confidence interval). Make clear which confounders were adjusted for and why they were included	NA
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Page 9-19 Table 1-5
Discussion		ttp://	
Key results	18	Summarise key results with reference to study objectives	Page 21
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss by th direction and magnitude of any potential bias	Page 23-24
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analysis, results from similar studies, and other relevant evidence	Page 22-23
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 24
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Page 25

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.egg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.stepide-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

copyright.