Article Text

Download PDFPDF

Costs of switching to low global warming potential inhalers. An economic and carbon footprint analysis of NHS prescription data in England
  1. Alexander J K Wilkinson1,
  2. Rory Braggins2,
  3. Ingeborg Steinbach3,
  4. James Smith2
  1. 1 Respiratory Department, East and North Hertfordshire NHS Trust, Stevenage, UK
  2. 2 Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
  3. 3 Centre for Sustainable Healthcare, Oxford, UK
  1. Correspondence to Dr Alexander J K Wilkinson; alex.wilkinson2{at}nhs.net

Abstract

Objectives Metered-dose inhalers (MDIs) contain propellants which are potent greenhouse gases. Many agencies propose a switch to alternative, low global warming potential (GWP) inhalers, such as dry powder inhalers (DPIs). We aimed to analyse the impact on greenhouse gas emissions and drug costs of making this switch.

Setting We studied National Health Service prescription data from England in 2017 and collated carbon footprint data on inhalers commonly used in England.

Design Inhalers were separated into different categories according to their mechanisms of action (eg, short-acting beta-agonist). Within each category we identified low and high GWP inhalers and calculated the cost and carbon impact of changing to low GWP inhalers. We modelled scenarios for swapping proportionally according to the current market share of each equivalent DPI (model 1) and switching to the lowest cost pharmaceutically equivalent DPI (model 2). We also reviewed available data on the carbon footprint of inhalers from scientific publications, independently certified reports and patents to provide more accurate carbon footprint information on different types of inhalers.

Results If MDIs using HFA propellant are replaced with the cheapest equivalent DPI, then for every 10% of MDIs changed to DPIs, drug costs decrease by £8.2M annually. However if the brands of DPIs stay the same as 2017 prescribing patterns, for every 10% of MDIs changed to DPIs, drug costs increase by £12.7M annually. Most potential savings are due to less expensive long-acting beta-agonist (LABA)/inhaled corticosteroids (ICS) inhalers. Some reliever inhalers (eg, Ventolin) have a carbon footprint over 25 kg CO2e per inhaler, while others use far less 1,1,1,2-tetrafluoroethane (HFA134a) (eg, Salamol) with a carbon footprint of <10 kg CO2e per inhaler. 1,1,1,2,3,3,3-Heptafluoropropane (HFA227ea) LABA/ICS inhalers (eg, Flutiform) have a carbon footprint over 36 kg CO2e, compared with an equivalent HFA134a combination inhaler (eg, Fostair) at <20 kg CO2e. For every 10% of MDIs changed to DPIs, 58 kt CO2e could be saved annually in England.

Conclusions Switching to DPIs would result in large carbon savings and can be achieved alongside reduced drug costs by using less expensive brands. Substantial carbon savings can be made by using small volume HFA134a MDIs, in preference to large volume HFA134a MDIs, or those containing HFA227ea as a propellant.

  • asthma
  • chronic airways disease
  • respiratory medicine
  • health economics

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

View Full Text

Statistics from Altmetric.com

Footnotes

  • Twitter @DrAlexWilkinson

  • Contributors All authors meet the required criteria for authorship. AJKW: helped design the study, collected and analysed the data and wrote the manuscript. RB: helped design the study, collected and analysed the data and revised the manuscript. IS: helped analyse the data and revise the manuscript. JS: helped design the study, collected and analysed the data and revised the manuscript.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests JS reports personal fees from Trumpington Street Medical Practice, grants and personal fees from NHS England, personal fees from World Health Organization Europe, Better Value Healthcare, Cambridgeshire County Council, University of Cambridge, outside the submitted work; and he is married to a practising general practitioner in Cambridgeshire.

  • Patient consent for publication Not required.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available on reasonable request.

  • Author note All authors meet the required criteria for authorship: substantial contributions to the conception or design of the work; the acquisition, analysis or interpretation of data for the work; drafting the work or revising it critically for important intellectual content; final approval of the version to be published and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.