

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association between Serum Magnesium Concentration with Metabolic Syndrome, Diabetes, Hypertension and Hyperuricemia in Knee Osteoarthritis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019159
Article Type:	Research
Date Submitted by the Author: 14-Aug-2017	
Complete List of Authors:	 Wang, Yi-lun; Xiangya Hospital Central South University, Orthopaedics Wei, Jie; Xiangya Hospital Central South University, Health Management Center Zeng, Chao; Xiangya Hospital Central South University, Orthopaedics Yang, Tuo; Xiangya Hospital Central South University, Orthopaedics Li, Hui; Xiangya Hospital Central South University, Orthopaedics Cui, Yang; Xiangya Hospital Central South University, International Medical Center Xie, Dong-xing; Xiangya Hospital, Central South University, Orthopaedics Xu, Bei; Xiangya Hospital Central South University, Orthopaedics Liu, Zhi-chen; Xiangya Hospital Central South University, Orthopaedics Liu, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Jiang, Shi-de; Xiangya Hospital Central South University Linguanghua; Xiangya Hospital, Orthopaedics
Keywords:	osteoarthritis, magnesium, metabolic syndrome, diabetes, Hypertension < CARDIOLOGY, hyperuricemia
	·

SCHOLARONE[™] Manuscripts Page 1 of 35

BMJ Open

1		
2 3		
4	1	Association between Serum Magnesium Concentration with Metabolic
5	2	Syndrome, Diabetes, Hypertension and Hyperuricemia in Knee Osteoarthritis
6	-	Synarolic, Diusees, Hypertension and Hypertensenia in Thee Osteour and this
7		
8	3	
9		
10	4	Yi-lun Wang ¹ , Jie Wei ² , Chao Zeng ¹ , Tuo Yang ¹ , Hui Li ¹ , Yang Cui ³ , Dong-xing Xie ¹ ,
11 12	_	
13	5	Bei Xu ¹ , Zhi-chen Liu ¹ , Jia-tian Li ¹ , Shi-de Jiang ¹ , Guang-hua Lei ^{1*}
14		
15	6	
16		
17	7	¹ Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha,
18	,	Department of offiniopaedies, Mangja Hospital, Central South Oniversity, Changsha,
19	8	Hunan Province, China, 410008;
20		
21 22	9	² Health Management Center, Xiangya Hospital, Central South University, Changsha,
23	5	Treatur istanagement center, ritangya riospital, central south emitersity, changsha,
24	10	Hunan Province, China. 410008;
25		
26	11	³ International Medical Center, Xiangya Hospital, Central South University, Changsha,
27		
28	12	Hunan Province, China. 410008;
29		
30 31	13	
32		
33	1.4	Yi-lun Wang and Jie Wei contributed equally to this article.
34	14	11-iun wang and the wer contributed equally to this article.
35		
36	15	
37		
38 39	16	*Correspondence to: Guang-hua Lei, MD, PhD, Department of Orthopaedics,
40		
41	17	Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, Hunan,
42	18	China, 410008. E-mail: lgh9640@sina.cn. Tel. 0731-84327326
43	10	-
44		
45	19	
46		
47 48	20	
49		
50	21	
51		
52		
53	22	
54		
55 56		1
50		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

23 Abstract

Objectives: This cross-sectional study aimed to examine associations between serum magnesium (Mg) concentration with the prevalence of metabolic syndrome (MetS), diabetes (DM), hypertension (HP) and hyperuricemia (HU) in radiographic knee osteoarthritis (OA) patients. It was hypothesized that serum Mg concentration was inversely associated with these diseases.

Methods: The present study was conducted at the Health Management Center of
Xiangya Hospital. Radiographic OA was evaluated in patients aged over than 40 years
with basic characteristics and blood biochemical assessment.

Results: A total of 962 radiographic knee OA patients were included. The multivariable-adjusted OR (95% CI) showed a significant lower prevalence of MetS in the second (OR=0.58, 0.36-0.94, P=0.026) and highest quintile (OR=0.56, 95CI%) 0.34-0.93, P=0.024) compared with the reference quintile of serum Mg. Meanwhile, a significant lower prevalence of DM was observed in the second (OR=0.38, 0.22-0.67, P=0.001), third (OR=0.35, 0.19-0.64, P=0.001), fourth (OR=0.27, 0.14-0.53, P<0.001) and highest quintile (OR=0.21, 95CI% 0.10-0.41, P<0.001). A significant lower prevalence of HU was observed in the third (OR=0.36, 0.20-0.63, P<0.001), fourth (OR=0.54, 0.31-0.93, P=0.026) and highest quintile (OR=0.39, 95CI% 0.22-0.68, P=0.001). However, there was no significant association between serum Mg and HP in OA patients.

43 Conclusions: The present study indicated that the serum Mg concentration was
44 inversely associated with the prevalence of MetS, DM and HU in radiographic knee
45 OA patients. Thus, elevating serum Mg level is more likely to be associated with the
46 decreasing prevalence of MetS, DM and HU among subjects with knee OA.

48 Level of Evidence: Level III, cross-sectional study.

1		
2		
3	49	Key words: osteoarthritis, magnesium, metabolic syndrome, diabetes, hypertension,
4	45	Rey words: osteourunnis, magnesium, metabone synatome, elabetes, nypertension,
5	50	hyperuricemia
6		
7	51	
8 9	51	
10		
11	52	
12		
13	53	
14		
15	54	
16	51	
17 18		
19	55	
20		
21	56	
22		
23	57	
24	57	
25		
26 27	58	
27 28		
29	59	
30		
31	60	
32	00	
33		
34	61	
35 36		
37	62	
38		
39	63	
40	00	
41		
42	64	
43		
44 45	65	
46		
47	66	
48		
49	C7	
50	67	
51		
52	68	
53 54		
54 55		
56		3
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

1 2 3 4 5 6 7	
8 9 10 11 12 13 14	
15 16 17 18 19 20 21 22	
23 24 25 26 27 28 29	
30 31 32 33 34 35 36	
37 38 39 40 41 42 43	
44 45 46 47 48 49 50	
51 52 53 54 55 56 57	
58 59 60	

69 Strengths and limitations of this study

This is the first study examining the associations between serum magnesium (Mg)
 and the prevalence of metabolic syndrome, diabetes mellitus, hypertension and
 hyperuricemia in radiographic knee osteoarthritis patients.

73 2. The multivariable logistical regression models in this study were adjusted by a
74 considerable number of potential confounding factors, which greatly improved the
75 reliability of the results.

3. Kidney is the key organ in maintaining Mg homeostasis. This study conducted a
sensitivity analysis by adding estimated glomerular filtration rate into
multivariable logistic regression models, and the reverse associations remained
significant.

4. This study adopted cross-sectional design which precluded causal correlations.

5. Serum Mg concentration was adopted as the indicator of body Mg content in thisstudy which was not the best indicator of body status.

- 83
- 84
- 85

86

87

- 88
- 89
- 90
- 91

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

92 Introduction

The association between metabolic diseases, especially metabolic syndrome (MetS)¹² and diabetes mellitus (DM),³⁻⁵ with osteoarthritis (OA) has drawn increasing attention in the past few years, and OA has also been classified into three specific phenotypes including metabolic OA, age-related OA and injure-related OA.⁶ A large number of researches have indicated that the prevalence of MetS,⁷⁻⁹ DM¹⁰⁻¹⁸ and hypertension (HP)^{7 9-13 19 20} are either higher in OA patients or associated with OA. In addition, some other studies reported that MetS,^{21 22} DM^{23 24} and HP^{21 22} are the risk factors of OA progression. Thus, it appears necessary to pay more attention to the high prevalence of metabolic diseases in OA patients and even take measures to reduce their prevalence, which also seems to be beneficial in delaying OA progression.

Serum magnesium (Mg), one of the most important micronutrients for human health, has been reported to be negatively associated with MetS,²⁵⁻²⁹ DM³⁰⁻³⁸ and HP^{30 39-41} by lots of studies. Furthermore, our previous study showed an inverse association between serum Mg with hyperuricemia (HU).⁴² However, to our best knowledge, there is not yet a study examined the association between the serum Mg concentration with the aforementioned metabolic diseases (MetS, DM, HP and HU) in OA patients. In addition, another study of ours indicated that the serum Mg concentration may be inversely associated with radiographic knee OA.⁴³ Therefore, it is reasonably speculated that the prevalence of MetS, DM, HP and HU in OA patients may be reduced by elevating the level of serum Mg, which can in turn delay OA progression. Thus, the objective of the present study was to examine the associations between the serum Mg concentration with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. It was hypothesized that serum Mg concentration was inversely associated with these diseases.

118 Methods

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Study population

The present study was conducted at the Health Management Center of Xiangya Hospital between October 2013 and November 2014. The study design has been published previously.⁴²⁻⁴⁶ The protocol of this study was reviewed and approved by the local Ethics and Research Committee, and the methods were carried out in "accordance" with the approved guidelines. Also the study population gave informed consent. Registered nurses interviewed all participants during the examination using a standard questionnaire, with the purpose to collect information on demographic characteristics and health-related habits. Participants were selected according to the following inclusion criteria: 1) 40 years old or above; 2) undergoing weight-bearing bilateral anteroposterior radiography of the knee, and diagnosed with knee OA according to Kellgren-Lawrence (K-L) radiographic atlas (knee joint was graded K-L 2 or above); 3) availability of all basic characteristics, including age, gender, body mass index (BMI) and blood pressure; 4) availability of biochemical test results, including serum Mg concentration; 5) availability of information related to the living habits, including education background, activity level, smoking, drinking and medication status. Initially, this cross-sectional study included 1820 radiographic knee OA patients aged over than 40 years with sound basic characteristics and needed blood biochemical assessment (including serum Mg concentration). Among them, 962 patients offered demographic characteristics and health-related habits and they were finally included in this study.

141 Blood biochemistry

All blood samples were drawn after a 12-hour overnight fast and were kept at 4°C
until analysis. All blood test were undertaken using a Beckman Coulter AU 5800
(Beckman Coulter Inc., Brea, CA, USA). The inter- and intra-assay coefficients of
variation were tested by low concentrations (2.5 mmol/L for glucose, 118 μmol/L for

uric acid and 0.60 mmol/L for serum Mg) and high concentrations (6.7 mmol/L for glucose, 472 µmol/L for uric acid and 1.00 mmol/L for serum Mg) of standard human samples. The intra-assay coefficients of variation were 0.98% (2.5 mmol/L) and 1.72% (6.7 mmol/L) for glucose, 1.39% (118 µmol/L) and 0.41% (472 µmol/L) for uric acid, and 1.86% (0.60 mmol/L) and 1.65% (1.00 mmol/L) for serum Mg. The inter-assay coefficients of variation were 2.45% (2.5 mmol/L) and 1.46% (6.7 mmol/L) for glucose, 1.40% (118 µmol/L) and 1.23% (472 µmol/L) for uric acid, and 1.87% (0.60 mmol/L) and 1.70% (1.00 mmol/L) for serum Mg.

155 Assessment of other exposures

Blood pressure was measured by an electronic sphygmomanometer. The weight and height of each subjects was measured respectively to calculate the BMI. Participants were asked about their average frequency of physical activity (never, one to two times per week, three to four times per week, five times and above per week) and average duration of physical activity (within half an hour, half an hour to one hour, one to two hours, more than two hours). The smoking, alcohol drinking and medication status were asked face to face. BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

164 Assessment of MetS, DM, HP and HU

165 MetS was diagnosed according to the Chinese Diabetes Society (CDS) criteria.⁴⁷⁻⁴⁹ 166 CDS criteria for metabolic syndrome requires 3 items or all the four items: (1) BMI 167 \geq 25 kg/m2; (2) Fasting plasma glucose (FPG) \geq 6.1 mmol/L, or diagnosed DM; (3) 168 Systolic blood pressure (BP) \geq 140 mmHg or diastolic BP \geq 90 mmHg, or treatment of 169 previously diagnosed HP; (4) Triglycerides \geq 1.7 mmol/L and/or HDL-cholesterol 170 <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid 171 abnormality. Subjects with the fasting glucose \geq 7.0 mmol/L or currently undergoing

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

172drug treatment for blood glucose control were regarded as DM patients, and subjects173with the systolic blood pressure \geq 140 mm Hg or diastolic blood pressure \geq 90 mm Hg174or currently using antihypertensive medication were regarded as HP patients. HU was175defined as uric acid \geq 416 µmol/L for male and \geq 360 µmol/L for female or currently176undergoing drug treatment for uric acid control.

178 Statistical analysis

The continuous data are expressed as mean (standard deviation), and the category data are expressed in percentage. Differences in continuous data were evaluated by one-way classification ANOVA (normally distributed data) or Kruskal-Wallis H test (non-normally distributed data), while differences in category data were assessed by the χ^2 test. The serum Mg was classified into five categories based on the quintile distribution: ≤0.85, 0.86-0.89, 0.90-0.92, 0.93-0.96 and ≥0.97 mmol/L. Logistic regression was conducted in two models in order to calculate the adjusted ORs with 95% CIs for the associations of serum Mg with MetS, DM, HP and HU. Three models were adjusted for the association. Model 1 were adjusted for age and sex. Then, model 2, a multivariable model was adopted. Covariates were chosen based on previous similar studies.^{27 33 50 51} Model 2 for the association between serum Mg and MetS was adjusted by age (continuous data), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data) and alcohol drinking status (yes, no). Model 2 for the association between serum Mg and diabetes was adjusted by age (continuous data), BMI (≥25 kg/m2, <25 kg/m2), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), HP (yes, no), and dyslipidemia (yes, no). Dyslipidemia was defined by triglycerides \geq 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality.

Model 2 for the association between serum Mg and hypertension was adjusted by age (continuous data), BMI (\geq 25 kg/m2, <25 kg/m2), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), diabetes (yes, no), and dyslipidemia (yes, no). Model 2 for the association between serum Mg and HU was adjusted by age (continuous data), BMI (≥25 kg/m2, <25 kg/m2), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), HP (yes, no), DM (yes, no) and dyslipidemia (yes, no). Model 3 for all associations were adjusted based on model 2, with additional factor of estimated glomerular filtration rate (eGFR). eGFR was calculated by serum creatinine (Scr), sex, and patients' age. The calculation formula was: $186 \times \text{SCr}-1.154 \times \text{age}-0.203 \times 1.210$ (if black) $\times 0.742$ (if female).⁵² Tests for linear trends were conducted based on logistic regression using a median variable of Mg concentration in each category. All data analyses were performed using SPSS 17.0; $P \le 0.05$ was considered to be statistically significant. All test were two tailed. ier

Results

A total of 962 subjects were included in the present cross-sectional study. The characteristics of the study population according to quintiles of serum Mg were illustrated in Table 1. The mean age of the subjects was 54.9±7.6 years old, and there were 377 females (39.2%). The overall prevalence of MetS, DM, HP and HU in OA patients were 21.4%, 12.0%, 38.5% and 18.3% respectively. Significant differences were observed across quintiles of serum Mg for fasting glucose, the prevalence of DM and HU.

Outcomes of multivariable adjusted associations between MetS and serum Mg concentration were shown in Table 2. The age-sex adjusted OR values (Model 1)

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

suggested a significant lower prevalence of MetS in the second (OR=0.61, 95CI%) 0.38-0.97, P=0.038) and highest quintile (OR=0.59, 95CI% 0.36-0.96, P=0.035) compared with the reference quintile of serum Mg in OA patients, and the P for trend was 0.090. The multivariable adjusted OR values (Model 2) showed similar outcomes (OR=0.60, 95CI% 0.37-0.96, P=0.035 in the second quintile; OR=0.61, 95CI% 0.37-0.99, P=0.047 in the fifth quintile), and the P for trend was 0.120. The sensitivity analysis, by adding eGFR into model 2, also reached similar outcomes - a significant lower prevalence of MetS in the second (OR=0.58, 0.36-0.94, P=0.026) and highest quintile (OR=0.56, 95CI% 0.34-0.93, P=0.024) compared with the reference quintile of serum Mg, and the P for trend was 0.066.

Table 3 indicated the multivariable adjusted relations of serum Mg and DM in OA patients. Both age-sex adjusted OR values (Model 1) and multivariable adjusted OR values (Model 2) suggested a strong inverse association between serum Mg and diabetes. The age-sex adjusted ORs for the prevalence of diabetes were 0.38 (95CI% 0.22-0.66, P=0.001), 0.34 (95CI% 0.19-0.61, P<0.001), 0.29 (95CI% 0.15-0.55, P<0.001), and 0.20 (95CI% 0.10-0.40, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was smaller than 0.0001. The multivariable adjusted ORs for the prevalence of diabetes were 0.38 (95CI% 0.22-0.66, P=0.001), 0.34 (95CI% 0.19-0.62, P<0.001), 0.27 (95CI% 0.14-0.52, P<0.001), and 0.20 (95CI% 0.10-0.40, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was smaller than 0.0001. The sensitivity analysis, by adding eGFR into model 2, showed similar outcomes - a significant lower prevalence of DM in the second (OR=0.38, 0.22-0.67, P=0.001), third (OR=0.35, 0.19-0.64, P=0.001), fourth (OR=0.27, 0.14-0.53, P<0.001), and highest quintile (OR=0.21, 95CI% 0.10-0.41, P<0.001) compared with the reference quintile of serum Mg, and the P for trend was <0.001.

The multivariable-adjusted relations between serum Mg and HP in OA patients were listed in Table 4. According to the age-sex adjusted ORs (Model 1) and multivariable

BMJ Open

adjusted ORs (Model 2), there was no significant association between serum Mg and
hypertension, and the P for trend was 0.929 and 0.423, respectively. The sensitivity
analysis, by adding eGFR into model 2, showed the same results.

The multivariable-adjusted relations of serum Mg and HU in OA patients were illustrated in Table 5. Both the age-sex adjusted OR values (Model 1) and the multivariable adjusted OR values (Model 2) suggested significant decreased prevalence of HU in the third quintile (age-sex adjusted OR=0.44, 95CI% 0.26-0.75, P=0.002; multivariable adjusted OR=0.42, 95CI% 0.24-0.73, P=0.002) and fifth quintile (age-sex adjusted OR=0.51, 95CI% 0.30-0.85, P=0.010; multivariable adjusted OR=0.50, 95CI% 0.29-0.86, P=0.012) compared with the lowest quintile of serum Mg, and the P for trend was 0.008 and 0.007, respectively. The sensitivity analysis, by adding eGFR into model 2, showed similar outcomes - a significant lower prevalence of HU in the third (OR=0.36, 0.20-0.63, P<0.001), fourth (OR=0.54, 0.31-0.93, P=0.026), and highest quintile (OR=0.39, 95CI% 0.22-0.68, P=0.001) compared with the reference quintile of serum Mg, and the P for trend was <0.001.

270 Discussion

The results of this study suggested that the serum Mg concentration was negatively associated with the prevalence of MetS, DM and HU in subjects with radiographic knee OA. In order to control potential confounders, several covariates such as characteristics, living habits and underlying diseases were selected, and even the eGFR was added into the multivariable logistic regression models to eliminate the influence of renal function on Mg excretion. The reverse associations mentioned above remained significant after adjustments of confounders. However, such negative association between serum Mg and the prevalence of HP was not observed in radiographic knee OA patients.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Mg, the fourth most abundant cation in human body and the second most profuse intracellular cation, is a metallic cofactor for over 300 enzymatic reactions. It appears to play an important role in glucose metabolism and insulin homeostasis, which are highly correlated with metabolic diseases, especially MetS and DM. The mechanisms involved in the Mg deficiency with MetS, DM and HU are probably multifactorial. The most important one may be insulin resistance, as Mg is essential for insulin action and is a critical cofactor for several enzymes in carbohydrate metabolism, which is important for phosphorylation reactions of tyrosine-kinase in the insulin receptor.³¹ ⁵³⁻⁵⁷ Incidentally, our previous prospective study involving 62897 person-years of follow-up showed that hematocrit was independently associated with the incidence of HU through, with a high possibility, the insulin resistance mechanism.⁵⁸ Other calcium homeostasis,⁵⁴ glucose included cellular potential mechanisms transportation,⁵⁶ oxidative stress⁵⁶ and inflammatory cytokines.⁵⁹⁻⁶¹ Of course, it is necessary to highlight the fact that insulin can also induce Mg excretion⁶² and produce a significant decline of plasma Mg through ion exchange.⁶³ Thus, there seems to be a vicious circle between Mg deficiency and insulin resistance.

MetS^{21 22} and DM^{4 23 24} were reported to be the risk factors of OA progression. It seems that OA progression may be delayed by elevating the serum Mg level through decreasing the prevalence of MetS and DM. Some other studies proved that the serum Mg level was significantly associated with the high-sensitive C-reactive protein (CRP) concentration,^{27 64-66} and higher CRP might serve as a prediction factor for OA progression.^{67 68} Thus, OA progression may also be delayed by elevating the serum Mg level through decreasing the level of CRP. Above all, the present study indicated that elevating serum Mg level has the potential to reduce the prevalence of MetS. DM and HU in knee OA patients and may delay the progression of knee OA (Figure 1). However, the specific mechanism needs to be further explored.

The present study has several strengths. Firstly, this is the first study examining the associations between serum Mg and the prevalence of MetS, DM, HP and HU in

radiographic knee OA patients. The results of this study will provide a new insight
into the treatment of knee OA. Secondly, the multivariable logistical regression
models were adjusted by a considerable number of potential confounding factors,
which greatly improved the reliability of the results. Thirdly, kidney is the key organ
in maintaining Mg homeostasis. This study conducted a sensitivity analysis by adding
eGFR into multivariable logistic regression models, and the reverse associations
remained significant.

Limitations of the present study should also be admitted. The cross-sectional design precludes causal correlations, so further prospective studies and intervention trials should be undertaken to establish a causal association between serum Mg with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. Since no previous research investigated such associations in knee OA patients, the value of this study should not be blotted out by the cross-sectional nature. Another limitation of this study lies in the relatively small sample size, and thus, extensive high-quality researches based on a larger sample are needed. Last but not the least, it is important to highlight that Mg is an intracellular ion; therefore, the serum Mg concentration must be considered as a poor indicator of body magnesium content,⁶⁹ even though this parameter has been used in many studies. However, blood magnesium level is the second best indicator of body status.⁷⁰

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

328 Conclusions

The present study indicated that the serum Mg concentration was inversely associated with the prevalence of MetS, DM and HU in radiographic knee OA patients. Thus, elevating serum Mg level is more likely to be associated with the decreasing prevalence of MetS, DM and HU among subjects with knee OA.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

334 Contributors

All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. GHL, YLW and JW conceived the study. GHL, YLW and JW were responsible for conception and design of the study and drafted the manuscript. CZ, TY, HL, YC and DXX contributed to data collection. WJ contributed to preparation and data analysis. BX, ZCL, JTL, and SDJ contributed to study retrieval. GHL contributed to revision of the manuscript. All the authors contributed to the interpretation of the data and critically reviewed the manuscript for publication.

344 Funding

This work was supported by the Postdoctoral Science Foundation of Central South University (182130), the Innovation Foundation of the Central South University for Postgraduate (2016zzts511), the National Natural Science Foundation of China (No. 81201420, 81272034, 81472130, 81501923), the Provincial Science Foundation of Hunan (No. 14JJ3032), the Scientific Research Project of the Development and Reform Commission of Hunan Province ([2013]1199), the Scientific Research Project of Science and Technology Office of Hunan Province (2013SK2018), the Doctoral Scientific Fund Project of the Ministry of Education of China (20120162110036).

354 Competing interests

355 The authors declare that they have no conflict of interest.

357 Ethics approval

358 The protocol of this study was reviewed and approved by the Ethics Committee at

359 Xiangya Hospital.

361 Data sharing statement

- 362 The datasets during the current study available from the corresponding author on
- 363 reasonable request.

REFERENCES

- 1. Zhuo Q, Yang W, Chen J, *et al.* Metabolic syndrome meets osteoarthritis. *Nat Rev Rheumatol* 2012;8:729-37.
- 2. Katz JD, Agrawal S, Velasquez M. Getting to the heart of the matter: osteoarthritis takes its place as part of the metabolic syndrome. *Curr Opin Rheumatol* 2010;22:512-9.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

- 3. Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. *Ann Rheum Dis* 2011;70:1354-6.
- 4. King KB, Rosenthal AK. The adverse effects of diabetes on osteoarthritis: update on clinical evidence and molecular mechanisms. *Osteoarthritis Cartilage* 2015;23:841-50.
- 5. Kirkman MS. Osteoarthritis progression: is diabetes a culprit? *Osteoarthritis Cartilage* 2015;23:839-40.
- 6. Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine 2013;80:568-73.
- 7. Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. *Postgrad Med* 2009;121:9-20.
- Shin D. Association between metabolic syndrome, radiographic knee osteoarthritis, and intensity of knee pain: results of a national survey. *J Clin Endocrinol Metab* 2014;99:3177-83.
- 9. Calvet J, Orellana C, Larrosa M, *et al.* High prevalence of cardiovascular co-morbidities in patients with symptomatic knee or hand osteoarthritis. *Scand J Rheumatol* 2015;1-4.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

10. Rahman MM, Kopec JA, Cibere J, *et al.* The relationship between osteoarthritis and cardiovascular disease in a population health survey: a cross-sectional study. *BMJ Open* 2013;3:

- Inoue R, Ishibashi Y, Tsuda E, *et al.* Medical problems and risk factors of metabolic syndrome among radiographic knee osteoarthritis patients in the Japanese general population. *J Orthop Sci* 2011;16:704-9.
- Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee osteoarthritis in women: the Chingford Study. *J Rheumatol* 1995;22:1118-23.
- Jungmann PM, Kraus MS, Alizai H, *et al.* Association of metabolic risk factors with cartilage degradation assessed by T2 relaxation time at the knee: data from the osteoarthritis initiative. *Arthritis Care Res (Hoboken)* 2013;65:1942-50.
- Anagnostopoulos I, Zinzaras E, Alexiou I, *et al.* The prevalence of rheumatic diseases in central Greece: a population survey. *BMC Musculoskelet Disord* 2010;11:98.
- 15. Massengale M, Reichmann WM, Losina E, *et al.* The relationship between hand osteoarthritis and serum leptin concentration in participants of the Third National Health and Nutrition Examination Survey. *Arthritis Res Ther* 2012;14:R132.
- Nieves-Plaza M, Castro-Santana LE, Font YM, *et al.* Association of hand or knee osteoarthritis with diabetes mellitus in a population of Hispanics from Puerto Rico. *J Clin Rheumatol* 2013;19:1-6.
- Greiver M, Williamson T, Barber D, *et al.* Prevalence and epidemiology of diabetes in Canadian primary care practices: a report from the Canadian Primary Care Sentinel Surveillance Network. *Can J Diabetes* 2014;38:179-85.
- Rahman MM, Cibere J, Anis AH, *et al.* Risk of Type 2 Diabetes among Osteoarthritis Patients in a Prospective Longitudinal Study. *Int J Rheumatol* 2014;2014:620920.
- Reid JL, Morton DJ, Wingard DL, *et al.* Obesity and other cardiovascular disease risk factors and their association with osteoarthritis in Southern California American Indians, 2002-2006. *Ethn Dis* 2010;20:416-22.
- Birtwhistle R, Morkem R, Peat G, *et al.* Prevalence and management of osteoarthritis in primary care: an epidemiologic cohort study from the Canadian Primary Care Sentinel Surveillance Network. *CMAJ Open* 2015;3:E270-5.
- 21. Yoshimura N, Muraki S, Oka H, *et al*. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and

BMJ Open

	progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. <i>Osteoarthritis Cartilage</i> 2012;20:1217-26.
22.	Monira HS, Wang Y, Cicuttini FM, <i>et al.</i> Incidence of total knee and hip replacement for osteoarthritis in relation to the metabolic syndrome and its components: a prospective cohort study. <i>Semin Arthritis Rheum</i> 2014;43:429-36.
23.	Schett G, Kleyer A, Perricone C, <i>et al.</i> Diabetes is an independent predictor for severe osteoarthritis results from a longitudinal cohort study. <i>Diabetes Care</i> 2013;36:403-9.
24.	Eymard F, Parsons C, Edwards MH, <i>et al.</i> Diabetes is a risk factor for knee osteoarthritis progression. <i>Osteoarthritis Cartilage</i> 2015;23:851-9.
25.	Guerrero-Romero F, Rodriguez-Moran M. Low serum magnesium levels and metabolic syndrome. <i>Acta Diabetol</i> 2002;39:209-13.
26.	Guerrero-Romero F, Rodriguez-Moran M. Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. <i>Diabetes Metab Res Rev</i> 2006;22:471-6.
27.	Evangelopoulos AA, Vallianou NG, Panagiotakos DB, <i>et al.</i> An inverse relationship between cumulating components of the metabolic syndrome and serum magnesium levels. <i>Nutr Res</i> 2008;28:659-63.
28.	Hjelmesaeth J, Hofso D, Aasheim ET, <i>et al.</i> Parathyroid hormone, but not vitamin D, is associated with the metabolic syndrome in morbidly obese women and men: a cross-sectional study. <i>Cardiovasc Diabetol</i> 2009;8:7.
29.	Lima ML, Cruz T, Rodrigues LE, <i>et al.</i> Serum and intracellular magnesium deficiency in patients with metabolic syndromeevidences for its relation to insulin resistance. <i>Diabetes Res Clin Pract</i> 2009;83:257-62.
30.	Ma J, Folsom AR, Melnick SL, <i>et al.</i> Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in Communities Study. <i>J Clin Epidemiol</i> 1995;48:927-40.
31.	Kao WH, Folsom AR, Nieto FJ, <i>et al.</i> Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. <i>Arch Intern Med</i> 1999;159:2151-9.
32.	Wang JL, Shaw NS, Yeh HY, <i>et al.</i> Magnesium status and association with diabetes in the Taiwanese elderly. <i>Asia Pac J Clin Nutr</i> 2005;14:263-9.
33.	Chambers EC, Heshka S, Gallagher D, et al. Serum magnesium and type-2 diabetes in African 17
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Americans and Hispanics: a New York cohort. J Am Coll Nutr 2006;25:509-13.

- 34. Simmons D, Joshi S, Shaw J. Hypomagnesaemia is associated with diabetes: Not pre-diabetes, obesity or the metabolic syndrome. *Diabetes Res Clin Pract* 2010;87:261-6.
- 35. Sales CH, Pedrosa LF, Lima JG, *et al.* Influence of magnesium status and magnesium intake on the blood glucose control in patients with type 2 diabetes. *Clin Nutr* 2011;30:359-64.
- Lecube A, Baena-Fustegueras JA, Fort JM, et al. Diabetes is the main factor accounting for hypomagnesemia in obese subjects. PLoS One 2012;7:e30599.
- 37. Xu J, Xu W, Yao H, *et al.* Associations of serum and urinary magnesium with the pre-diabetes, diabetes and diabetic complications in the Chinese Northeast population. *PLoS One* 2013;8:e56750.
- 38. Yang SJ, Hwang SY, Baik SH, et al. Serum magnesium level is associated with type 2 diabetes in women with a history of gestational diabetes mellitus: the Korea National Diabetes Program study. J Korean Med Sci 2014;29:84-9.
- Singh RB, Rastogi V, Niaz MA, et al. Epidemiological study of magnesium status and risk of hypertension in a rural population of north India. *Magnes Res* 1996;9:173-81.
- Peacock JM, Folsom AR, Arnett DK, *et al.* Relationship of serum and dietary magnesium to incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. *Ann Epidemiol* 1999;9:159-65.
- Guerrero-Romero F, Rodriguez-Moran M, Hernandez-Ronquillo G, *et al.* Low Serum Magnesium Levels and Its Association with High Blood Pressure in Children. *J Pediatr* 2016;168:93-8.
- 42. Zeng C, Wang YL, Wei J, *et al.* Association between low serum magnesium concentration and hyperuricemia. *Magnes Res* 2015;28:56-63.
- Zeng C, Wei J, Li H, *et al.* Relationship between Serum Magnesium Concentration and Radiographic Knee Osteoarthritis. *J Rheumatol* 2015;42:1231-6.
- Wei J, Zeng C, Gong QY, *et al.* Associations between Dietary Antioxidant Intake and Metabolic Syndrome. *PLoS One* 2015;10:e130876.
- 45. Xie DX, Xiong YL, Zeng C, *et al.* Association between low dietary zinc and hyperuricaemia in middle-aged and older males in China: a cross-sectional study. *BMJ Open* 2015;5:e8637.
- 46. Wei J, Zeng C, Gong QY, *et al.* The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults. *Nutr J* 2015;14:18.

BMJ Open

47.	Expert Panel on Metabolic Syndrome of Chinese Diabetes Society: Recommendations on metabolic
	syndrome of Chinese Diabetes Society (Chinese). Chin J Diabetes 2004;14:156-61.
48.	Pang C, Jia L, Hou X, <i>et al.</i> The significance of screening for microvascular diseases in Chinese community-based subjects with various metabolic abnormalities. <i>PLoS One</i> 2014;9:e97928.
49.	Zhou H, Guo ZR, Yu LG, et al. Evidence on the applicability of the ATPIII, IDF and CDS
	metabolic syndrome diagnostic criteria to identify CVD and T2DM in the Chinese population from
	a 6.3-year cohort study in mid-eastern China. Diabetes Res Clin Pract 2010;90:319-25.
50.	Joosten MM, Gansevoort RT, Mukamal KJ, et al. Urinary magnesium excretion and risk of
	hypertension: the prevention of renal and vascular end-stage disease study. <i>Hypertension</i> 2013;61:1161-7.
51.	Choi MK, Bae YJ. Association of Magnesium Intake with High Blood Pressure in Korean Adults:
	Korea National Health and Nutrition Examination Survey 2007-2009. PLoS One 2015;10:e130405.
52.	K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and
	stratification. Am J Kidney Dis 2002;39:S1-266.
53.	Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome:
	an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement.
	Circulation 2005;112:2735-52.
54.	Barbagallo M, Dominguez LJ, Galioto A, et al. Role of magnesium in insulin action, diabetes and
	cardio-metabolic syndrome X. Mol Aspects Med 2003;24:39-52.
55.	Song Y, Ridker PM, Manson JE, et al. Magnesium intake, C-reactive protein, and the prevalence of
	metabolic syndrome in middle-aged and older U.S. women. <i>Diabetes Care</i> 2005;28:1438-44.
56.	Guerrero-Romero F, Rodriguez-Moran M. Complementary therapies for diabetes: the case for
	chromium, magnesium, and antioxidants. Arch Med Res 2005;36:250-7.
57.	Huerta MG, Roemmich JN, Kington ML, et al. Magnesium deficiency is associated with insulin
	resistance in obese children. Diabetes Care 2005;28:1175-81.
58.	Zeng C, Wei J, Yang T, et al. Higher blood hematocrit predicts hyperuricemia: a prospective study
	of 62,897 person-years of follow-up. Sci Rep 2015;5:13765.
59.	Bonora E, Targher G, Zenere MB, et al. Relationship of uric acid concentration to cardiovascular
	risk factors in young men. Role of obesity and central fat distribution. The Verona Young Men
	Atherosclerosis Risk Factors Study. Int J Obes Relat Metab Disord 1996;20:975-80.
	19

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

2	
3	
4	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1.	
1	3
1.	4
1	
1	6
1	-
1	7
1	8
1	9
2	0
2	1
2	1
2	2
2	3
2	
2	
2	
2	7
2	Q
2	0
2	
3	0
3	1
3	2
	2
3	3
3	4
3	5
	6
2	-
3	/
3	8
3	9
4	
4	
4	2
4	3
4	
4	
4	-
4	7
4	
-	-
4	
5	
5	1
5	2
	_
	3
5	4
5	5
	6
5	
	8
5	9
6	

1

- 60. Lyngdoh T, Marques-Vidal P, Paccaud F, *et al.* Elevated serum uric acid is associated with high circulating inflammatory cytokines in the population-based Colaus study. *PLoS One* 2011;6:e19901.
- 61. Kirilmaz B, Asgun F, Alioglu E, *et al.* High inflammatory activity related to the number of metabolic syndrome components. *J Clin Hypertens (Greenwich)* 2010;12:136-44.
- Djurhuus MS, Skott P, Hother-Nielson O, *et al.* Insulin increases renal magnesium excretion: a possible cause of magnesium depletion in hyperinsulinaemic states. *Diabet Med* 1995;12:664-9.
- 63. Paolisso G, Sgambato S, Passariello N, *et al.* Insulin induces opposite changes in plasma and erythrocyte magnesium concentrations in normal man. *Diabetologia* 1986;29:644-7.
- 64. Chacko SA SYNL. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. *Diabetes Care* 2010;33:304-10.
- 65. Bo S DMGS. Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. *Am J Clin Nutr* 2006;84:1062-9.
- 66. Kim DJ XPLK. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. *Diabetes Care* 2010;33:2604-10.
- Spector TD HDND. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. *Arthritis Rheum* 1997;40:723-7.
- 68. Smith JW MTGE. Significance of C-reactive protein in osteoarthritis and total knee arthroplasty outcomes. *Ther Adv Musculoskelet Dis* 2012;4:315-25.
- 69. Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. *Rev Endocr Metab Disord* 2003;4:195-206.
- 70. Jr. Sabatier M PFAM. A compartmental model of magnesium metabolism in healthy men based on two stable isotope tracers. *Am J Physiol Regul Integr Comp Physiol* 2003;285:R656-63.

BMJ Open

364	Table 1 Basic characteristics of included subjects according to quintiles of serum Mg (n=962)
-----	---

	Quintiles of serum Mg				Р	
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
Age (years)	53.8 (7.3)	54.6 (7.6)	55.2 (7.9)	55.3 (7.1)	56.1 (8.0)	0.062
BMI (kg/m ²)	25.2 (3.2)	24.9 (3.2)	25.0 (3.7)	25.2 (3.4)	24.6 (3.2)	0.464
Female (%)	37.5	42.3	36.8	42.3	37.0	0.627
Smoking (%)	27.5	27.4	21.6	24.4	21.7	0.457
Alcohol drinking (%)	34.5	36.3	40.5	41.1	38.1	0.645
High school diploma (%)	45.0	47.4	45.3	56.5	48.1	0.184
Activity level (h/w)	2.0 (3.5)	2.0 (3.3)	2.3 (3.5)	2.1 (3.1)	2.4 (3.5)	0.457

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Fasting glucose (mmol/l)	6.6 (3.0)	5.7 (1.7)	5.7 (1.4)	5.5 (0.9)	5.5 (1.6)	0.0
Systolic pressure (mm Hg)	129.2 (16.9)	128.3 (17.9)	130.4 (16.2)	128.8 (16.3)	129.6 (17.7)	0.8.
Diastolic pressure (mm Hg)	81.2 (11.8)	79.8 (12.1)	80.7 (11.0)	80.7 (10.7)	80.3 (10.5)	0.65
HDL-cholesterol (mmol/l)	1.5 (0.4)	1.5 (0.4)	1.5 (0.4)	1.5 (0.3)	1.5 (0.4)	0.37
Triglyceride (mmol/l)	2.1 (1.9)	1.8 (1.5)	2.0 (2.1)	1.8 (1.0)	2.3 (2.9)	0.62
Uric acid (μmol/l)	337.3 (101.7)	329.0 (80.7)	321.3 (86.3)	331.5 (78.0)	329.4 (81.7)	0.59
eGFR (ml/min/1.73m ²)	80.2 (14.4)	77.7 (10.7)	76.0 (10.6)	75.8 (10.7)	74.3 (12.0)	<0.0
MetS (%)	26.5	17.7	25.8	19.6	17.5	0.03
DM (%)	23.5	10.7	10.0	8.3	6.3	<0.0
HP (%)	40.0	33.5	37.4	42.3	40.2	0.4
HU (%)	25.5	19.1	13.2	18.5	14.8	0.0

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 35

BMJ Open

1		
2		
3		
4		
5		
6		
7	367	# P values are for test of difference across all quintiles of serum Mg.
8		
9	368	
10	000	
11		
12	369	
13		
14	270	
15	370	
16		
17	371	
18		
19		
20	372	
21		
22	373	
23		
24 25	274	
25 26	374	
20		
28	375	
29		
30	276	
31	376	
32		
33	377	
34		
35		
36	378	
37		
38		23
39		
40		
41		
42		
43		
44 45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
45 46		tor peer review only intep://binjopen.binj.com/site/about/guidennes.kittini
46 47	,right.	BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copy
4/		

79	Table 2 Multivariable-adjusted r	elations of serum Mg and MetS	in OA patients $(n = 962)$
----	----------------------------------	-------------------------------	----------------------------

	Quintiles of serum Mg					
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for tren
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
MS (%)	26.5	17.7	25.8	19.6	17.5	-
Model 1*	1.00 (reference)	0.61 (0.38, 0.97)	0.97 (0.61, 1.52)	0.69 (0.42, 1.14)	0.59 (0.36, 0.96)	0.090
P value	-	0.038	0.881	0.150	0.035	-
Model 2*	1.00 (reference)	0.60 (0.37, 0.96)	1.00 (0.63, 1.57)	0.70 (0.42, 1.15)	0.61 (0.37, 0.99)	0.120
P value	-	0.035	0.99	0.160	0.047	-
Model 3*	1.00 (reference)	0.58 (0.36, 0.94)	0.95 (0.60, 1.50)	0.66 (0.40, 1.10)	0.56 (0.34, 0.93)	0.066
P value	-	0.026	0.818	0.109	0.024	
			24			
	For peer review	only - http://bmjoper	n.bmj.com/site/about	/guidelines.xhtml		

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

380	Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; MetS, metabolic syndrome.
381	*Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), gender (male, female), educational level
382	(high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no); Model 3 was adjusted
383	based on model 2, with additional factor of eGFR (continuous data).
384	(high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).
385	
386	
387	
388	
389	
390	
391	
392	
352	25
	25
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	Open: first published as 10.1136/bmjopen-2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copy

393 Table 3 Multivariable-adjusted relations of serum Mg and diabetes in OA patients (n = 962)

	Quintiles of serum Mg					
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for tren
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
Diabetes (%)	23.5	10.7	10.0	8.3	6.3	-
Model 1*	1.00 (reference)	0.38 (0.22, 0.66)	0.34 (0.19, 0.61)	0.29 (0.15, 0.55)	0.20 (0.10, 0.40)	<0.001
P value	-	0.001	<0.001	<0.001	<0.001	-
Model 2*	1.00 (reference)	0.38 (0.22, 0.66)	0.34 (0.19, 0.62)	0.27 (0.14, 0.52)	0.20 (0.10, 0.40)	<0.001
P value	-	0.001	<0.001	<0.001	<0.001	-
Model 3*	1.00 (reference)	0.38 (0.22, 0.67)	0.35 (0.19, 0.64)	0.27 (0.14, 0.53)	0.21 (0.10, 0.41)	<0.001
P value	-	0.001	0.001	<0.001	<0.001	-
		:	26			
	For peer review	only - http://bmjoper	n.bmj.com/site/about	t/guidelines.xhtml		

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis. .ale, fem. wer than high school), s.. no); Model 3 was adjusted based on mo. *Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (≥25 kg/m², <25 kg/m²), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), hypertension (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

407 Table 4 Multivariable-adjusted relations of serum Mg and hypertension in OA patients (n = 962)

Quintiles of serum Mg					
Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for tren
0.82	0.87	0.91	0.94	0.99	-
200	215	190	168	189	-
40.0	33.5	37.4	42.3	40.2	-
1.00 (reference)	0.71 (0.47, 1.06)	0.83 (0.54, 1.25)	1.00 (0.66, 1.54)	0.89 (0.59, 1.35)	0.929
-	0.095	0.368	0.987	0.582	-
1.00 (reference)	0.78 (0.51, 1.18)	0.92 (0.60, 1.41)	1.16 (0.75, 1.80)	1.03 (0.67, 1.58)	0.423
-	0.242	0.708	0.502	0.896	-
1.00 (reference)	0.77 (0.51, 1.17)	0.90 (0.59, 1.38)	1.13 (0.73, 1.76)	0.99 (0.64, 1.53)	0.524
-	0.218	0.629	0.577	0.978	-
		28			
	0.82 200 40.0 1.00 (reference) - 1.00 (reference) -	0.82 0.87 200 215 40.0 33.5 1.00 (reference) 0.71 (0.47, 1.06) - 0.095 1.00 (reference) 0.78 (0.51, 1.18) - 0.242 1.00 (reference) 0.77 (0.51, 1.17) - 0.218	Q1 (lowest)Q2Q30.820.870.9120021519040.033.537.41.00 (reference)0.71 (0.47, 1.06)0.83 (0.54, 1.25)-0.0950.3681.00 (reference)0.78 (0.51, 1.18)0.92 (0.60, 1.41)-0.2420.7081.00 (reference)0.77 (0.51, 1.17)0.90 (0.59, 1.38)	Q1 (lowest)Q2Q3Q40.820.870.910.9420021519016840.033.537.442.31.00 (reference)0.71 (0.47, 1.06)0.83 (0.54, 1.25)1.00 (0.66, 1.54)-0.0950.3680.9871.00 (reference)0.78 (0.51, 1.18)0.92 (0.60, 1.41)1.16 (0.75, 1.80)-0.2420.7080.5021.00 (reference)0.77 (0.51, 1.17)0.90 (0.59, 1.38)1.13 (0.73, 1.76)-0.2180.6290.577	Q1 (lowest)Q2Q3Q4Q5 (highest)0.820.870.910.940.9920021519016818940.033.537.442.340.21.00 (reference)0.71 (0.47, 1.06)0.83 (0.54, 1.25)1.00 (0.66, 1.54)0.89 (0.59, 1.35)-0.0950.3680.9870.5821.00 (reference)0.78 (0.51, 1.18)0.92 (0.60, 1.41)1.16 (0.75, 1.80)1.03 (0.67, 1.58)-0.2420.7080.5020.8961.00 (reference)0.77 (0.51, 1.17)0.90 (0.59, 1.38)1.13 (0.73, 1.76)0.99 (0.64, 1.53)-0.2180.6290.5770.978

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

408 Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis.

.ale, femau, , er than high school), smu. .dodel 3 was adjusted based on model 2, * Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (\geq 25 kg/m², <25 kg/m²), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

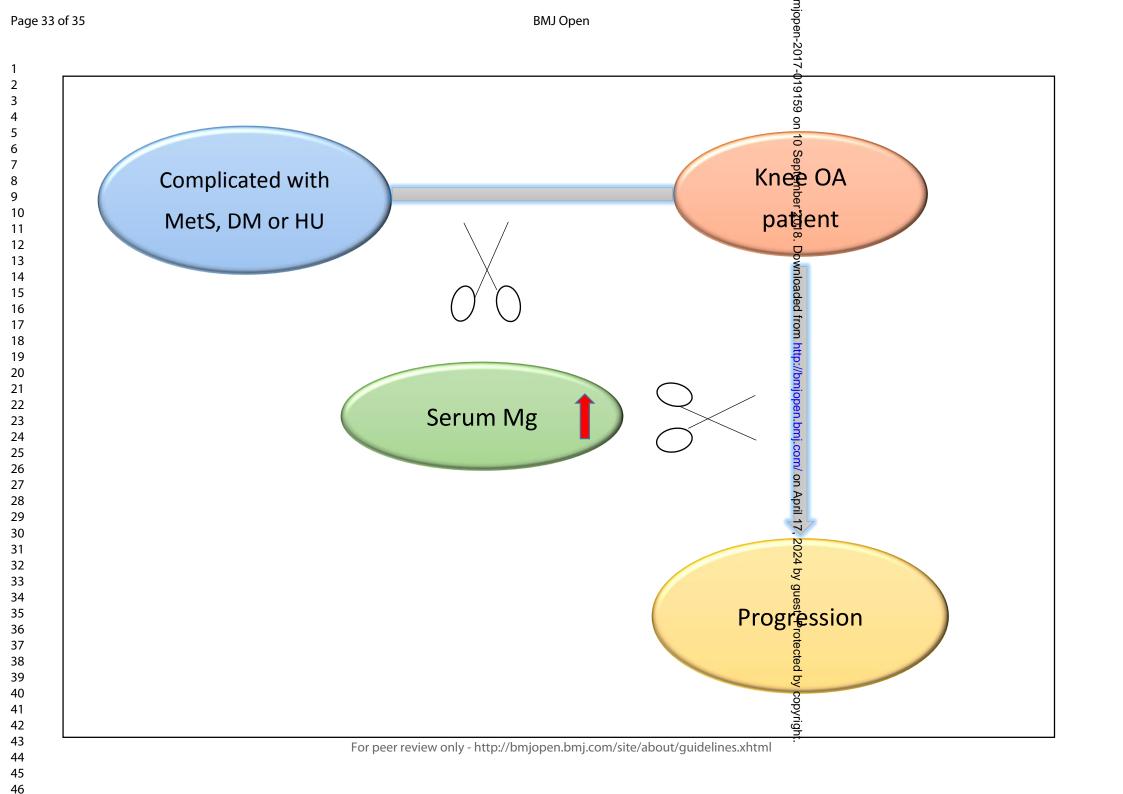
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

421	Table 5 Multivariable-adjusted relations of serum Mg and HU in OA patients (n = 962)
-----	--

Quintiles of serum Mg					
Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for tren
0.82	0.87	0.91	0.94	0.99	-
200	215	190	168	189	-
25.5	19.1	13.2	18.5	14.8	-
1.00 (reference)	0.71 (0.44, 1.14)	0.44 (0.26, 0.75)	0.68 (0.41, 1.14)	0.51 (0.30, 0.85)	0.008
-	0.157	0.002	0.144	0.010	-
1.00 (reference)	0.73 (0.45, 1.19)	0.42 (0.24, 0.73)	0.62 (0.37, 1.06)	0.50 (0.29, 0.86)	0.007
-	0.205	0.002	0.082	0.012	-
1.00 (reference)	0.67 (0.41, 1.11)	0.36 (0.20, 0.63)	0.54 (0.31, 0.93)	0.39 (0.22, 0.68)	<0.001
-	0.119	<0.001	0.026	0.001	-
	3	0			
F		la mi a ma (sita (a la aut			
	0.82 200 25.5 1.00 (reference) - 1.00 (reference) - 1.00 (reference)	0.82 0.87 200 215 25.5 19.1 1.00 (reference) 0.71 (0.44, 1.14) - 0.157 1.00 (reference) 0.73 (0.45, 1.19) - 0.205 1.00 (reference) 0.67 (0.41, 1.11) - 0.119	Q1 (lowest) Q2 Q3 0.82 0.87 0.91 200 215 190 25.5 19.1 13.2 1.00 (reference) 0.71 (0.44, 1.14) 0.44 (0.26, 0.75) - 0.157 0.002 1.00 (reference) 0.73 (0.45, 1.19) 0.42 (0.24, 0.73) - 0.205 0.002 1.00 (reference) 0.67 (0.41, 1.11) 0.36 (0.20, 0.63) - 0.119 <0.001	Q1 (lowest)Q2Q3Q40.820.870.910.9420021519016825.519.113.218.51.00 (reference)0.71 (0.44, 1.14)0.44 (0.26, 0.75)0.68 (0.41, 1.14)-0.1570.0020.1441.00 (reference)0.73 (0.45, 1.19)0.42 (0.24, 0.73)0.62 (0.37, 1.06)-0.2050.0020.0821.00 (reference)0.67 (0.41, 1.11)0.36 (0.20, 0.63)0.54 (0.31, 0.93)-0.119<0.001	Q1 (lowest) Q2 Q3 Q4 Q5 (highest) 0.82 0.87 0.91 0.94 0.99 200 215 190 168 189 25.5 19.1 13.2 18.5 14.8 1.00 (reference) 0.71 (0.44, 1.14) 0.44 (0.26, 0.75) 0.68 (0.41, 1.14) 0.51 (0.30, 0.85) - 0.157 0.002 0.144 0.010 1.00 (reference) 0.73 (0.45, 1.19) 0.42 (0.24, 0.73) 0.62 (0.37, 1.06) 0.50 (0.29, 0.86) - 0.205 0.002 0.082 0.012 1.00 (reference) 0.67 (0.41, 1.11) 0.36 (0.20, 0.63) 0.54 (0.31, 0.93) 0.39 (0.22, 0.68) - 0.119 <0.001

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open


Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; HU, hyperuricemia.

* Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (≥25 kg/m², <25 kg/m²), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), hypertension (yes, no), diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous or beer teriew only data).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.5024 by guest. Protected by copyright. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

3 4 5 4 5 4 6 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 7 17 4 18 Fig 1 Possible clinical significance of the present study indicates that elevating serum Mg level is more likely to be associated with decreasing	
 435 436 436 437 438 438 Fig 1 Possible clinical significance of the present study indicates that elevating serum Mg level is more likely to be associated with decreasing 	
 435 436 437 438 Fig 1 Possible clinical significance of the present study. The present study indicates that elevating serum Mg level is more likely to be associated with decreasing. 	
 7 435 8 9 436 11 12 437 13 14 15 438 16 17 439 Fig 1 Possible clinical significance of the present study indicates that elevating serum Mg level is more likely to be associated with decreasing 	
 436 436 437 438 Fig 1 Possible clinical significance of the present study indicates that elevating serum Mg level is more likely to be associated with decreasing 	
 9 436 11 12 437 13 14 438 16 17 439 Fig 1 Possible clinical significance of the present study indicates that elevating serum Mg level is more likely to be associated with decreasing 	
 436 437 437 438 438 Fig 1 Possible clinical significance of the present study indicates that elevating serum Mg level is more likely to be associated with decreasing 	
11 12 437 13 14 15 438 16 17 439 Fig 1 Possible clinical significance of the present study indicates that elevating serum Mg level is more likely to be associated with decreasing	
 437 438 438 439 Fig 1 Possible clinical significance of the present study indicates that elevating serum Mg level is more likely to be associated with decreasing 	
16 16 17 439 Fig 1 Possible clinical significance of the present study. The present study indicates that elevating serum Mg level is more likely to be associated with decreasing.	
16 16 17 439 Fig 1 Possible clinical significance of the present study. The present study indicates that elevating serum Mg level is more likely to be associated with decreasing.	
16 16 17 439 Fig 1 Possible clinical significance of the present study. The present study indicates that elevating serum Mg level is more likely to be associated with decreasing.	
17 439 Fig 1 Possible clinical significance of the present study. The present study indicates that elevating serum Mg level is more likely to be associated with decreasing	
18	
¹⁹ 440 prevalence of MetS, DM and HU among persons with knee OA. In addition to reduce the high-sensitive C-reactive protein level possibly, elevating serum Mg level	
20 21 AAA muuduluu dalaa da araa liita alaasiira da araa Maraa araa fiftha araa afaa kata araa fiftha araa duu arid	
21 441 may delay the progression of knee OA. It seems like elevating the serum Mg can cut off the connection between the prevalence of MetS, DM and HU with knee OA	
22 442 and delay the progression of OA MetS metabolic syndrome; DM diabetes mellitus; HU hyperuricemia; OA osteoarthritis; Mg magnesium	
24	
25	
26	
23 442 and delay the progression of OAT Metal, metabolic syndrome, DAT, diabetes methods, He, hyperarteenna, OA, oseoardinatis, Mg, magnesiani.	
28	
29	
30	
31	
32	
34	
35 36	
37	
38	
32 32	
40	
41	
42	
43	
44 For peer review only, http://bmienen.hmi.com/cite/about/quidelines.yhtml	
45 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
42 A Copyright. A start published as 10.7136/bmjopen-2015 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.	BW1C

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

	Item No	Recommendation	Reported or Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
abstract		(b) Provide in the abstract an informative and balanced summary of what was	1-2
		done and what was found	1 2
Introduction		done and what was found	
Background/rati	2	Explain the scientific background and rationale for the investigation being	3
onale		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
-		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	4
		selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and methods	
		of case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	-
		exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5-7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	4
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable,	6-7
variables		describe which groupings were chosen and why	
Statistical	12	(a) Describe all statistical methods, including those used to control for	6-7
methods		confounding	
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	4
		Case-control study-If applicable, explain how matching of cases and controls	
		was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(e) Describe any sensitivity analyses	5-6

1 2	
3	
4	
5 6	
7	
8	
9 10	
11	
12	
13	
14 15	
16	
17	
18 19	
20	
21	
22 23	
23 24	
25	
26	
27 28	
29	
30	
31 32	
33	
34	
35 36	
37	
38	
39 40	
41	
42	
43 44	
44 45	
46	
47	
48 49	
50	
51	
52 53	
54	
55	
56 57	
58	
59	
60	

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers	4
		potentially eligible, examined for eligibility, confirmed eligible, included in the	
		study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	4
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	7
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	-
		interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over	-
		time	
		Case-control study—Report numbers in each exposure category, or summary	-
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary	7-9
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	7-9
		and their precision (eg, 95% confidence interval). Make clear which	
		confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk	-
		for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	7-9
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	10
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	9-10
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10-11
Other information	n		
Funding	22	Give the source of funding and the role of the funders for the present study and,	11
-		if applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association between Serum Magnesium Concentration with Metabolic Syndrome, Diabetes, Hypertension and Hyperuricemia in Knee Osteoarthritis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019159.R1
Article Type:	Research
Date Submitted by the Author:	03-Jan-2018
Complete List of Authors:	Wang, Yi-lun; Xiangya Hospital Central South University, Orthopaedics Wei, Jie; Xiangya Hospital Central South University, Health Management Center Zeng, Chao; Xiangya Hospital Central South University, Orthopaedics Yang, Tuo; Xiangya Hospital Central South University, Orthopaedics Li, Hui; Xiangya Hospital Central South University, Orthopaedics Cui, Yang; Xiangya Hospital Central South University, International Medical Center Xie, Dong-xing; Xiangya Hospital, Central South University, Orthopaedics Xu, Bei; Xiangya Hospital Central South University, Orthopaedics Liu, Zhi-chen; Xiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Guanghua; Xiangya Hospital, Orthopaedics
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Rheumatology, Public health, Epidemiology
Keywords:	osteoarthritis, magnesium, metabolic syndrome, diabetes, Hypertension < CARDIOLOGY, hyperuricemia

SCHOLARONE[™] Manuscripts Page 1 of 25

60

BMJ Open

1		
2 3	1	Association between Serum Magnesium Concentration with Metabolic
4 5	2	Syndrome, Diabetes, Hypertension and Hyperuricemia in Knee Osteoarthritis
6 7		Synarolic, Diasocos, Hypercension and Hyperaricellia in Thee Oscourtining
8	3	
9 10	4	Yi-lun Wang ¹ , Jie Wei ² , Chao Zeng ¹ , Tuo Yang ¹ , Hui Li ¹ , Yang Cui ³ , Dong-xing Xie ¹ ,
11	5	Bei Xu ¹ , Zhi-chen Liu ¹ , Jia-tian Li ¹ , Shi-de Jiang ¹ , Guang-hua Lei ^{1*}
12 13	6	
14 15	7	¹ Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha,
16	8	Hunan Province, China, 410008;
17 18	9	² Health Management Center, Xiangya Hospital, Central South University, Changsha,
19 20	10	Hunan Province, China. 410008;
21	11	³ International Medical Center, Xiangya Hospital, Central South University, Changsha,
22 23		
24	12	Hunan Province, China. 410008;
25 26	13	
27 28	14	Yi-lun Wang and Jie Wei contributed equally to this article.
29	15	
30 31	16	*Correspondence to: Guang-hua Lei, MD, PhD, Department of Orthopaedics,
32 33	17	Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, Hunan,
34	18	China, 410008. E-mail: lgh9640@sina.cn. Tel. 0731-84327326
35 36	19	
37 38		
39		
40 41		
42		
43 44		
45		
46		
47 48		
49		
50		
51		
52		
53		
54		
55		
56		
57 58		1
58 59		

20 Abstract

Objectives: To examine the associations between serum magnesium (Mg)
concentration with the prevalence of metabolic syndrome (MetS), diabetes mellitus
(DM), hypertension (HP) and hyperuricemia (HU) in radiographic knee osteoarthritis
(OA) patients.

Methods: The present study was conducted at the Health Management Center of Xiangya Hospital. Radiographic OA was evaluated for patients aged over 40 years with basic characteristics and blood biochemical assessment. Serum Mg concentration was measured using the chemiluminescence method. MetS, DM, HP and HU were diagnosed based on standard protocols. The associations between serum Mg concentration with MetS, DM, HP and HU were evaluated by conducting multivariable adjusted logistic regression.

Results: A total of 962 radiographic knee OA patients were included. Compared with the lowest quintile, the multivariable-adjusted odds ratios (ORs) and related 95% confidence intervals (95%CI) of DM were 0.38 (95%CI 0.22-0.67, P=0.001), 0.35 (95%CI 0.19-0.64, P=0.001), 0.27 (95%CI 0.14-0.53, P<0.001) and 0.21 (95%CI 0.10-0.41, P<0.001) in the second, third, fourth and highest quintiles of serum Mg, respectively (P for trend <0.001); the multivariable-adjusted ORs of HU were 0.36 (95%CI 0.20-0.63, P<0.001), 0.54 (95%CI 0.31-0.93, P=0.026) and 0.39 (95%CI 0.22-0.68, P=0.001) in the third, fourth and highest quintiles of serum Mg respectively (P for trend <0.001); and the multivariable-adjusted ORs of MetS were 0.58 (95%CI 0.36-0.94, P=0.026) in the second and 0.56 (95%CI 0.34-0.93, P=0.024) in the highest quintiles of serum Mg (P for trend =0.066). There was no significant association between serum Mg and HP in OA patients.

44 Conclusions: The serum Mg concentration was inversely associated with the45 prevalence of MetS, DM and HU in radiographic knee OA patients.

46 Level of Evidence: Level III, cross-sectional study.

47 Key words: osteoarthritis, magnesium, metabolic syndrome, diabetes, hypertension,

- 48 hyperuricemia

1. This is the first study examining the associations between serum magnesium (Mg)

hyperuricemia in radiographic knee osteoarthritis patients.

and the prevalence of metabolic syndrome, diabetes mellitus, hypertension and

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

1	
2 3 4 5	
5	
6 7	
7 8	
9	
10	
11 12	
13	
14	
15 16	
17	
18 19	
20 21 22	
22 23	
24	
25 26	
26 27	
28	
29 30	
31	
32	
33 34	
35	
36 37	
38	
39	
40 41	
42	
43 44	
45	
46	
47 48	
49	
50 51	
51 52	
53	
54 55	
55 56	
57	
58	

59

60

 The multivariable logistical regression models in this study were adjusted for a considerable number of potential confounding factors, which greatly improved the reliability of the results.

The kidney is the key organ in maintaining Mg homeostasis. This study conducted
a sensitivity analysis by adding estimated glomerular filtration rate into the
multivariable logistic regression models, and the reverse associations remained
significant.

4. This study adopted cross-sectional design which precluded causal correlations.

5. Serum Mg concentration was adopted as the indicator of body Mg content in thisstudy which may not be the best indicator of body status.

64

50

51

52

53

54

55

56

Strengths and limitations of this study

65 Introduction

The association between osteoarthritis (OA) and metabolic diseases, especially metabolic syndrome (MetS)^{1 2} and diabetes mellitus (DM),³⁻⁵ has drawn increasing attention in the past few years. OA includes three specific phenotypes: metabolic OA, age-related OA and injury-related OA.⁶ A large number of studies have indicated that the prevalence of MetS,⁷⁻⁹ DM¹⁰⁻¹⁸ and hypertension (HP)^{7 9-13 19 20} is either higher in OA patients or associated with OA. In addition, some other studies reported that MetS,^{21 22} DM^{23 24} and HP^{21 22} are risk factors of OA progression. Thus, it appears necessary to pay more attention and adopt appropriate measures to reduce the high prevalence of metabolic diseases in OA patients, which also seems to be beneficial in delaying OA progression.

Serum magnesium (Mg), one of the most important micronutrients for human health, has been reported to be negatively associated with MetS,²⁵⁻²⁹ DM³⁰⁻³⁸ and HP³⁰ ³⁹⁻⁴¹ by lots of studies. Meanwhile, our previous study showed an inverse association between serum Mg and hyperuricemia (HU).⁴² However, to the best knowledge of the authors, there is not yet a study examining the association between the serum Mg concentration and the aforementioned metabolic diseases (MetS, DM, HP and HU) in OA patients. On the other hand, we have previously shown that the serum Mg concentration may be inversely associated with radiographic knee OA.⁴³ Therefore. we speculate that the prevalence of MetS, DM, HP and HU in OA patients may be reduced by elevating the level of serum Mg, which can in turn delay OA progression. Thus, the objective of the present study was to examine the associations between the serum Mg concentration with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. It was hypothesized that serum Mg concentration was inversely associated with these diseases.

91 Methods

92 Study population

93 The present study was conducted at the Health Management Center of Xiangya
94 Hospital between October 2013 and November 2014. The study design has been

published previously.⁴²⁻⁴⁶ The protocol has been reviewed and approved by the Ethics Committee of Xiangya Hospital, Central South University (reference numbers: 201312459), and the methods were developed in "accordance" with the approved guidelines. Informed consent has been obtained from all participants. Registered nurses were engaged to interview all participants during the examination using a standard questionnaire, with the purpose to collect information on demographic characteristics and health-related habits. Participants were selected based on the following inclusion criteria: 1) 40 years old or above; 2) undergoing weight-bearing bilateral anteroposterior radiography of the knee, and diagnosed with knee OA according to the Kellgren-Lawrence (K-L) radiographic atlas (knee joint was graded K-L 2 or above); 3) availability of all basic characteristics, including age, gender, body mass index (BMI) and blood pressure; 4) availability of biochemical test results, including serum Mg concentration; 5) availability of information related to the living habits, including education background, activity level, smoking, drinking and medication status. Initially, the present cross-sectional study retrieved 1820 radiographic knee OA patients aged over 40 years who exhibited sound basic characteristics and required blood biochemical assessment (including serum Mg concentration). Among them, 962 patients offered demographic characteristics and health-related habits and were finally included in this study.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Blood biochemistry

All blood samples were drawn after a 12-hour overnight fast and were kept at 4°C until analysis. Blood tests were undertaken using the Beckman Coulter AU 5800 (Beckman Coulter Inc., Brea, CA, USA). The inter- and intra-assay coefficients of variation were tested at both low concentrations (2.5 mmol/L for glucose, 118 µmol/L for uric acid and 0.60 mmol/L for serum Mg) and high concentrations (6.7 mmol/L for glucose, 472 µmol/L for uric acid and 1.00 mmol/L for serum Mg) of standard human samples. The intra-assay coefficients of variation were 0.98% (2.5 mmol/L) and 1.72% (6.7 mmol/L) for glucose, 1.39% (118 µmol/L) and 0.41% (472 µmol/L) for uric acid, and 1.86% (0.60 mmol/L) and 1.65% (1.00 mmol/L) for serum Mg respectively. The

inter-assay coefficients of variation were 2.45% (2.5 mmol/L) and 1.46% (6.7 mmol/L)
for glucose, 1.40% (118 µmol/L) and 1.23% (472 µmol/L) for uric acid, and 1.87%

127 (0.60 mmol/L) and 1.70% (1.00 mmol/L) for serum Mg respectively.

129 Assessment of other exposures

Blood pressure was measured by an electronic sphygmomanometer. The weight and height of each subjects was measured respectively to calculate the BMI. Information on the average frequency of physical activity (never, one to two times per week, three to four times per week, five times and above per week) and average duration of physical activity (less than half an hour, half an hour to one hour, one to two hours, more than two hours) was collected through survey questionnaire. The smoking, alcohol drinking and medication status were collected during the face-to-face interview.

- 139 Assessment of MetS, DM, HP and HU

MetS was diagnosed based on the Chinese Diabetes Society (CDS) criteria.⁴⁷⁻⁴⁹ which requires meeting at least 3 of the following 4 items: (1) BMI ≥ 25 kg/m²; (2) Fasting plasma glucose (FPG) \geq 6.1 mmol/L, or diagnosed DM; (3) Systolic blood pressure $(BP) \ge 140 \text{ mmHg}$ or diastolic BP $\ge 90 \text{ mmHg}$, or treatment of previously diagnosed HP; (4) Triglycerides \geq 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality. Subjects with the fasting glucose \geq 7.0 mmol/L or currently undergoing drug treatment for blood glucose control were regarded as DM patients, and subjects with the systolic blood pressure \geq 140 mm Hg or diastolic blood pressure \geq 90 mm Hg or currently undertaking antihypertensive medication were regarded as HP patients. HU was defined as uric acid \geq 416 µmol/L for male and \geq 360 µmol/L for female or currently undergoing drug treatment for uric acid control.

153 Statistical analysis

154 The continuous data are expressed as mean (standard deviation), and the category data

Page 7 of 25

BMJ Open

are expressed in percentage. Differences in continuous data were evaluated by one-way classification ANOVA (normally distributed data) or Kruskal-Wallis H test (non-normally distributed data), while differences in category data were assessed by the χ^2 test. The serum Mg was classified into five categories based on the quintile distribution: ≤0.85, 0.86-0.89, 0.90-0.92, 0.93-0.96 and ≥0.97 mmol/L. Logistic regression was conducted in two models in order to calculate the adjusted odds ratios (ORs) with 95% confidence intervals (95%CI) for the associations of serum Mg with MetS, DM, HP and HU. Three models were adjusted for the association. Model 1 were adjusted for age and sex. Then, model 2, a multivariable model was adopted. Covariates were chosen based on previous similar studies.^{27 33 50 51} Model 2 for the association between serum Mg and MetS was adjusted for age (continuous data), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data) and alcohol drinking status (yes, no). Model 2 for the association between serum Mg and DM was adjusted for age (continuous data), BMI (≥ 25 kg/m², <25 kg/m²), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), HP (yes, no), and dyslipidemia (yes, no). Dyslipidemia was defined by triglycerides ≥ 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality. Model 2 for the association between serum Mg and HP was adjusted for age (continuous data), BMI ($\geq 25 \text{ kg/m}^2$, $< 25 \text{ kg/m}^2$), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), DM (yes, no), and dyslipidemia (yes, no). Model 2 for the association between serum Mg and HU was adjusted for age (continuous data), BMI ($\geq 25 \text{ kg/m}^2$, $\leq 25 \text{ kg/m}^2$), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), HP (yes, no), DM (yes, no) and dyslipidemia (yes, no). Model 3 for all associations were adjusted based on model 2, with additional factor of estimated glomerular filtration rate (eGFR). eGFR was calculated by serum creatinine (Scr), sex,

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

and patients' age. The Modification of Diet in Renal Disease (MDRD) of eGFR calculation formula was: $186 \times \text{Scr} - 1.154 \times \text{age} - 0.203 \times 1.210$ (if black)×0.742 (if female).⁵² Tests for linear trends were conducted based on logistic regression using a median variable of Mg concentration in each category. All data analyses were performed using SPSS 17.0; P ≤0.05 was considered to be statistically significant. All tests were two tailed.

Results

A total of 962 subjects (377 females, accounting for 39.2%) were included in the present cross-sectional study. The characteristics of the study population according to quintiles of serum Mg were presented in Table 1. The mean age of the subjects was 54.9 ± 7.6 years old. The overall prevalence of MetS, DM, HP and HU in OA patients were 21.4%, 12.0%, 38.5% and 18.3% respectively. Significant differences were observed across the quintiles of serum Mg for fasting glucose, as well as the prevalence of DM and HU.

The outcomes of multivariable adjusted associations between MetS and serum Mg concentration were shown in Table 2. Compared with the lowest quintile, the age-sex adjusted ORs (Model 1) suggested significant decreased prevalence of MetS in the second (OR=0.61, 95%CI 0.38-0.97, P=0.038) and the highest (OR=0.59, 95%CI 0.36-0.96, P=0.035) quintiles of serum Mg (P for trend =0.090); the multivariable adjusted ORs (Model 2) also suggested significant decreased prevalence of MetS in the second (OR=0.60, 95%CI 0.37-0.96, P=0.035) and the highest (OR=0.61, 95%CI 0.37-0.99, P=0.047) quintiles, and the P for trend was 0.120. The sensitivity analysis, by adding eGFR into model 2, also reached similar results significant lower prevalence of MetS in the second (OR=0.58, 95%CI 0.36-0.94, P=0.026) and the highest quintiles (OR=0.56, 95%CI 0.34-0.93, P=0.024) compared with the reference quintile of serum Mg, and the P for trend was 0.066.

Table 3 illustrated the multivariable adjusted relations between serum Mg and DM in OA patients. Both the age-sex adjusted OR values (Model 1) and the multivariable adjusted OR values (Model 2) suggested a strong inverse association

between serum Mg and DM. The age-sex adjusted ORs for the prevalence of DM were 0.38 (95%CI 0.22-0.66, P=0.001), 0.34 (95%CI 0.19-0.61, P<0.001), 0.29 (95%CI 0.15-0.55, P<0.001), and 0.20 (95%CI 0.10-0.40, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was < 0.001. The multivariable adjusted ORs for the prevalence of DM were 0.38 (95%CI 0.22-0.66, P=0.001), 0.34 (95%CI 0.19-0.62, P<0.001), 0.27 (95%CI 0.14-0.52, P<0.001), and 0.20 (95%CI 0.10-0.40, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was < 0.001. The sensitivity analysis, by adding eGFR into model 2, showed similar results - significant lower prevalence of DM in the second (OR=0.38, 95%CI 0.22-0.67, P=0.001), third (OR=0.35, 95%CI 0.19-0.64, P=0.001), fourth (OR=0.27, 95%CI 0.14-0.53, P<0.001), and highest quintiles (OR=0.21, 95%CI 0.10-0.41, P<0.001) compared with the reference quintile of serum Mg, and the P for trend was <0.001.

The multivariable-adjusted relations between serum Mg and HP in OA patients were illustrated in Table 4. According to both the age-sex adjusted ORs (Model 1) and the multivariable adjusted ORs (Model 2), there was no significant association between serum Mg and HP, and the P for trend were 0.929 and 0.423, respectively. The sensitivity analysis, by adding eGFR into model 2, reached the same results. BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

The multivariable-adjusted relations between serum Mg and HU in OA patients were illustrated in Table 5. Both the age-sex adjusted OR values (Model 1) and the multivariable adjusted OR values (Model 2) suggested significant decreased prevalence of HU in the third quintile (age-sex adjusted OR=0.44, 95%CI 0.26-0.75, P=0.002; multivariable adjusted OR=0.42, 95%CI 0.24-0.73, P=0.002) and fifth quintile (age-sex adjusted OR=0.51, 95%CI 0.30-0.85, P=0.010; multivariable adjusted OR=0.50, 95%CI 0.29-0.86, P=0.012) compared with the lowest quintile of serum Mg, and the P for trend were 0.008 and 0.007, respectively. The sensitivity analysis, by adding eGFR into model 2, showed similar outcomes - significant lower prevalence of HU in the third (OR=0.36, 0.20-0.63, P<0.001), fourth (OR=0.54, 95%CI 0.31-0.93, P=0.026), and highest quintiles (OR=0.39, 95%CI 0.22-0.68, P=0.001) compared with the reference quintile of serum Mg, and the P for trend was

245 <0.001.

247 Discussion

The results of this study suggested that the serum Mg concentration was negatively associated with the prevalence of MetS, DM and HU in subjects with radiographic knee OA. In order to control potential confounders, several covariates including characteristics, living habits and underlying diseases were selected, and even the eGFR was added into the multivariable logistic regression models to eliminate the influence of renal function on Mg excretion. The reverse associations mentioned above remained significant after adjustments of these confounders. However, the negative association between serum Mg and the prevalence of HP was not observed in radiographic knee OA patients. Moreover, the linear associations were only observed between serum Mg with DM and HU, but not between serum Mg and MetS.

Mg, the fourth most abundant cation in human body and the second most profuse intracellular cation, is a metallic cofactor for over 300 enzymatic reactions. It appears to play an important role in glucose metabolism and insulin homeostasis, which are both highly correlated with metabolic diseases, especially MetS and DM. The mechanisms involved in Mg deficiency in patients with MetS, DM and HU are probably multifactorial. The most important factor may be insulin resistance, as Mg is essential for insulin action and is a critical cofactor for several enzymes in carbohydrate metabolism, which is important for the phosphorylation reactions of tyrosine-kinase in the insulin receptor.^{31 53-57} Of course, it is necessary to highlight the fact that insulin can also induce Mg excretion⁵⁸ and produce a significant decline of plasma Mg through ion exchange.⁵⁹ Thus, there seems to be a vicious circle between Mg deficiency and insulin resistance.

Other potential mechanisms include glucose transportation,⁵⁶ oxidative stress⁵⁶ and inflammatory cytokines,⁶⁰⁻⁶² and cellular calcium homeostasis.⁵⁴ Mg is an essential cofactor of the high-energy phosphate-bound enzymatic pathways involved in the modulation of glucose transport across cell membranes.⁵⁶ It also plays a role in the mechanisms of cellular antioxidant defense.⁶³ The oxidative stress, defined as a

persistent imbalance between the excessive production of reactive oxygen species and/or defects in antioxidant defense, has been implicated in the pathogenesis of diabetic complications.⁵⁶ Moreover, low serum Mg levels are strongly related to elevated serum concentrations of both tumor necrosis factor alpha and C-reactive protein (CRP),⁶⁴ suggesting that Mg deficiency may contribute to the development of low-grade chronic inflammation syndrome and the development of glucose metabolic disorders through the former pathway. In addition, lower Mg concentration can enhance calcium-mediated vasoconstriction, blunt cardiac and smooth muscle relaxation, and thus contribute to BP elevation.⁵⁴ However, the decreased serum calcium concentration in radiographic knee OA patients may weaken the association between Mg and HP.65

MetS^{21 22} and DM^{4 23 24} were reported to be the risk factors of OA progression. Moreover, serum Mg level has been proved to be significantly associated with the CRP concentration,^{27 66-68} and higher CRP might serve as a prediction factor for OA progression.^{69 70} Thus, OA progression may be delayed by elevating the serum Mg level through reducing the prevalence of MetS and DM and decreasing the level of CRP. Above all, the present study indicated that the elevation of serum Mg level has the potential to reduce the prevalence of MetS, DM and HU in knee OA patients and thereby may delay the progression of knee OA. However, the specific mechanism needs to be further explored.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

The present study has several strengths. Firstly, this is the first study examining the associations between serum Mg and the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. The results of this study will provide a new insight into the treatment of knee OA. Secondly, the multivariable logistical regression models were adjusted for a considerable number of potential confounding factors, which greatly improved the reliability of the results. Thirdly, the kidney is the key organ in maintaining Mg homeostasis. This study conducted a sensitivity analysis by adding eGFR into multivariable logistic regression models which showed that the reverse associations remained significant.

Limitations of the present study should also be admitted. The cross-sectional

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

design precludes causal correlations, so further prospective studies and intervention trials should be undertaken to establish a causal association between serum Mg with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. Since no previous research investigated such associations in knee OA patients, the value of this study should not be blotted out by the cross-sectional nature. Another limitation of this study lies in the relatively small sample size, and thus, extensive high-quality researches based on a larger sample are needed. Moreover, the dietary intake of Mg in relation to the prevalence of MetS, DM, HP and HU were not assessed in the present study. Last but not the least, it is important to highlight that Mg is an intracellular ion; therefore, the serum Mg concentration must be considered as a poor indicator of body Mg content,⁷¹ even though it has been used in many studies. However, blood Mg level is the second best indicator of body status.⁷²

Conclusions

The present study concluded that the serum Mg concentration was inversely associated with the prevalence of MetS, DM and HU in radiographic knee OA patients.

Contributors

All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. GHL, YLW and JW conceived the study. GHL, YLW and JW were responsible for conception and design of the study and drafted the manuscript. CZ, TY, HL, YC and DXX contributed to data collection. WJ contributed to preparation and data analysis. BX, ZCL, JTL, and SDJ contributed to study retrieval. GHL contributed to revision of the manuscript. All the authors contributed to the interpretation of the data and critically reviewed the manuscript for publication.

333 Funding

This work was supported by the Postdoctoral Science Foundation of Central South University (182130), the Innovation Foundation of the Central South University for Postgraduate (2016zzts511), the National Natural Science Foundation of China (No. 81201420, 81272034, 81472130, 81501923), the Provincial Science Foundation of Hunan (No. 14JJ3032), the Scientific Research Project of the Development and Reform Commission of Hunan Province ([2013]1199), the Scientific Research Project of Science and Technology Office of Hunan Province (2013SK2018), the Doctoral Scientific Fund Project of the Ministry of Education of China (20120162110036).

343 Competing interests

- 344 The authors declare that they have no conflict of interest.

Ethics approval

The protocol of this study was reviewed and approved by the Ethics Committee atXiangya Hospital.

350 Data sharing statement

The datasets during the current study available from the corresponding author on reasonable request.

REFERENCES

- 1. Zhuo Q, Yang W, Chen J, *et al*. Metabolic syndrome meets osteoarthritis. *Nat Rev Rheumatol* 2012;8:729-37.
- 2. Katz JD, Agrawal S, Velasquez M. Getting to the heart of the matter: osteoarthritis takes its place as part of the metabolic syndrome. *Curr Opin Rheumatol* 2010;22:512-9.
- 3. Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. *Ann Rheum Dis* 2011;70:1354-6.
- 4. King KB, Rosenthal AK. The adverse effects of diabetes on osteoarthritis: update on clinical evidence and molecular mechanisms. *Osteoarthritis Cartilage* 2015;23:841-50.
- 5. Kirkman MS. Osteoarthritis progression: is diabetes a culprit? *Osteoarthritis Cartilage* 2015;23:839-40.
- 6. Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine 2013;80:568-73.
- 7. Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. *Postgrad Med* 2009;121:9-20.
- 8. Shin D. Association between metabolic syndrome, radiographic knee osteoarthritis, and intensity of knee pain: results of a national survey. *J Clin Endocrinol Metab* 2014;99:3177-83.
- 9. Calvet J, Orellana C, Larrosa M, *et al.* High prevalence of cardiovascular co-morbidities in patients with symptomatic knee or hand osteoarthritis. *Scand J Rheumatol* 2015;1-4.
- Rahman MM, Kopec JA, Cibere J, et al. The relationship between osteoarthritis and cardiovascular disease in a population health survey: a cross-sectional study. BMJ Open 2013;3:
- Inoue R, Ishibashi Y, Tsuda E, *et al.* Medical problems and risk factors of metabolic syndrome among radiographic knee osteoarthritis patients in the Japanese general population. *J Orthop Sci* 2011;16:704-9.
- Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee osteoarthritis in women: the Chingford Study. *J Rheumatol* 1995;22:1118-23.
- Jungmann PM, Kraus MS, Alizai H, *et al.* Association of metabolic risk factors with cartilage degradation assessed by T2 relaxation time at the knee: data from the osteoarthritis initiative. *Arthritis Care Res (Hoboken)* 2013;65:1942-50.
- 14. Anagnostopoulos I, Zinzaras E, Alexiou I, *et al.* The prevalence of rheumatic diseases in central Greece: a population survey. *BMC Musculoskelet Disord* 2010;11:98.
- 15. Massengale M, Reichmann WM, Losina E, *et al.* The relationship between hand osteoarthritis and serum leptin concentration in participants of the Third National Health and Nutrition Examination Survey. *Arthritis Res Ther* 2012;14:R132.
- Nieves-Plaza M, Castro-Santana LE, Font YM, *et al.* Association of hand or knee osteoarthritis with diabetes mellitus in a population of Hispanics from Puerto Rico. *J Clin Rheumatol* 2013;19:1-6.
- Greiver M, Williamson T, Barber D, *et al.* Prevalence and epidemiology of diabetes in Canadian primary care practices: a report from the Canadian Primary Care Sentinel Surveillance Network. *Can J Diabetes* 2014;38:179-85.
- Rahman MM, Cibere J, Anis AH, et al. Risk of Type 2 Diabetes among Osteoarthritis Patients in a Prospective Longitudinal Study. Int J Rheumatol 2014;2014:620920.
- 19. Reid JL, Morton DJ, Wingard DL, *et al.* Obesity and other cardiovascular disease risk factors and their association with osteoarthritis in Southern California American Indians, 2002-2006. *Ethn Dis* 2010;20:416-22.

BM
Ş
ō
be
<u> </u>
firs
Ť
dub
blis
ĥe
ă
d as 10;
10
3
).1136/b
Ĕ
omjope
ĕ
۲- N-
pen-2017-019159 on 1
17-(
2
91
59
g
ر 1
0
Sep
pte
tember 2018. D
be
r 20
2018
œ
Z
Š
Ы
ad
e
Ŧ
no.
ר h
₫
p://t
//bm
jģ
pen
с. b
Ĕ
0
Ĕ
0
ň,
Ap
Ť: 1
17
202
4 5
ž
gue
est
:+ ₽
ō
ē
ecte
<u>Q</u>
<u>Q</u>
cted b
cted by c
cted by c

	BMJ Open
20	. Birtwhistle R, Morkem R, Peat G, <i>et al.</i> Prevalence and management of osteoarthritis in primary care: an epidemiologic cohort study from the Canadian Primary Care Sentinel Surveillance Network. <i>CMAJ Open</i> 2015;3:E270-5.
21	. Yoshimura N, Muraki S, Oka H, <i>et al</i> . Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. <i>Osteoarthritis Cartilage</i> 2012;20:1217-26.
22	. Monira HS, Wang Y, Cicuttini FM, <i>et al.</i> Incidence of total knee and hip replacement for osteoarthritis in relation to the metabolic syndrome and its components: a prospective cohort study. <i>Semin Arthritis Rheum</i> 2014;43:429-36.
23	. Schett G, Kleyer A, Perricone C, <i>et al</i> . Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. <i>Diabetes Care</i> 2013;36:403-9.
24	. Eymard F, Parsons C, Edwards MH, <i>et al.</i> Diabetes is a risk factor for knee osteoarthritis progression. <i>Osteoarthritis Cartilage</i> 2015;23:851-9.
25	. Guerrero-Romero F, Rodriguez-Moran M. Low serum magnesium levels and metabolic syndrome. <i>Acta Diabetol</i> 2002;39:209-13.
26	. Guerrero-Romero F, Rodriguez-Moran M. Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. <i>Diabetes Metab Res Rev</i> 2006;22:471-6.
27	. Evangelopoulos AA, Vallianou NG, Panagiotakos DB, <i>et al</i> . An inverse relationship between cumulating components of the metabolic syndrome and serum magnesium levels. <i>Nutr Res</i> 2008;28:659-63.
28	. Hjelmesaeth J, Hofso D, Aasheim ET, <i>et al.</i> Parathyroid hormone, but not vitamin D, is associated with the metabolic syndrome in morbidly obese women and men: a cross-sectional study. <i>Cardiovasc Diabetol</i> 2009;8:7.
29	. Lima ML, Cruz T, Rodrigues LE, <i>et al.</i> Serum and intracellular magnesium deficiency in patients with metabolic syndromeevidences for its relation to insulin resistance. <i>Diabetes Res Clin Pract</i> 2009;83:257-62.
30	. Ma J, Folsom AR, Melnick SL, <i>et al.</i> Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in Communities Study. <i>J Clin Epidemiol</i> 1995;48:927-40.
31	. Kao WH, Folsom AR, Nieto FJ, <i>et al.</i> Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. <i>Arch Intern Med</i> 1999;159:2151-9.
32	. Wang JL, Shaw NS, Yeh HY, <i>et al.</i> Magnesium status and association with diabetes in the Taiwanese elderly. <i>Asia Pac J Clin Nutr</i> 2005;14:263-9.
33	. Chambers EC, Heshka S, Gallagher D, <i>et al.</i> Serum magnesium and type-2 diabetes in African Americans and Hispanics: a New York cohort. <i>J Am Coll Nutr</i> 2006;25:509-13.
34	. Simmons D, Joshi S, Shaw J. Hypomagnesaemia is associated with diabetes: Not pre-diabetes, obesity or the metabolic syndrome. <i>Diabetes Res Clin Pract</i> 2010;87:261-6.
35	. Sales CH, Pedrosa LF, Lima JG, <i>et al.</i> Influence of magnesium status and magnesium intake on the blood glucose control in patients with type 2 diabetes. <i>Clin Nutr</i> 2011;30:359-64.
36	. Lecube A, Baena-Fustegueras JA, Fort JM, <i>et al.</i> Diabetes is the main factor accounting for hypomagnesemia in obese subjects. <i>PLoS One</i> 2012;7:e30599.
37	. Xu J, Xu W, Yao H, <i>et al.</i> Associations of serum and urinary magnesium with the pre-diabetes,
	15
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

diabetes and diabetic complications in the Chinese Northeast population. *PLoS One* 2013;8:e56750.

- 38. Yang SJ, Hwang SY, Baik SH, et al. Serum magnesium level is associated with type 2 diabetes in women with a history of gestational diabetes mellitus: the Korea National Diabetes Program study. J Korean Med Sci 2014;29:84-9.
- 39. Singh RB, Rastogi V, Niaz MA, *et al*. Epidemiological study of magnesium status and risk of hypertension in a rural population of north India. *Magnes Res* 1996;9:173-81.
- Peacock JM, Folsom AR, Arnett DK, *et al.* Relationship of serum and dietary magnesium to incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. *Ann Epidemiol* 1999;9:159-65.
- 41. Guerrero-Romero F, Rodriguez-Moran M, Hernandez-Ronquillo G, *et al.* Low Serum Magnesium Levels and Its Association with High Blood Pressure in Children. *J Pediatr* 2016;168:93-8.
- 42. Zeng C, Wang YL, Wei J, *et al.* Association between low serum magnesium concentration and hyperuricemia. *Magnes Res* 2015;28:56-63.
- 43. Zeng C, Wei J, Li H, *et al.* Relationship between Serum Magnesium Concentration and Radiographic Knee Osteoarthritis. *J Rheumatol* 2015;42:1231-6.
- Wei J, Zeng C, Gong QY, *et al.* Associations between Dietary Antioxidant Intake and Metabolic Syndrome. *PLoS One* 2015;10:e130876.
- 45. Xie DX, Xiong YL, Zeng C, *et al.* Association between low dietary zinc and hyperuricaemia in middle-aged and older males in China: a cross-sectional study. *BMJ Open* 2015;5:e8637.
- 46. Wei J, Zeng C, Gong QY, *et al.* The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults. *Nutr J* 2015;14:18.
- 47. Expert Panel on Metabolic Syndrome of Chinese Diabetes Society: Recommendations on metabolic syndrome of Chinese Diabetes Society (Chinese). *Chin J Diabetes* 2004;14:156-61.
- 48. Pang C, Jia L, Hou X, *et al.* The significance of screening for microvascular diseases in Chinese community-based subjects with various metabolic abnormalities. *PLoS One* 2014;9:e97928.
- 49. Zhou H, Guo ZR, Yu LG, *et al.* Evidence on the applicability of the ATPIII, IDF and CDS metabolic syndrome diagnostic criteria to identify CVD and T2DM in the Chinese population from a 6.3-year cohort study in mid-eastern China. *Diabetes Res Clin Pract* 2010;90:319-25.
- Joosten MM, Gansevoort RT, Mukamal KJ, *et al.* Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study. *Hypertension* 2013;61:1161-7.
- Choi MK, Bae YJ. Association of Magnesium Intake with High Blood Pressure in Korean Adults: Korea National Health and Nutrition Examination Survey 2007-2009. *PLoS One* 2015;10:e130405.
- 52. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. *Am J Kidney Dis* 2002;39:S1-266.
- 53. Grundy SM, Cleeman JI, Daniels SR, *et al.* Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. *Circulation* 2005;112:2735-52.
- 54. Barbagallo M, Dominguez LJ, Galioto A, *et al.* Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. *Mol Aspects Med* 2003;24:39-52.
- 55. Song Y, Ridker PM, Manson JE, *et al.* Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. *Diabetes Care* 2005;28:1438-44.
- 56. Guerrero-Romero F, Rodriguez-Moran M. Complementary therapies for diabetes: the case for

BMJ Open

chromium, magnesium, and antioxidants. Arch Med Res 2005;36:250-7.

- 57. Huerta MG, Roemmich JN, Kington ML, *et al.* Magnesium deficiency is associated with insulin resistance in obese children. *Diabetes Care* 2005;28:1175-81.
- Djurhuus MS, Skott P, Hother-Nielson O, *et al.* Insulin increases renal magnesium excretion: a possible cause of magnesium depletion in hyperinsulinaemic states. *Diabet Med* 1995;12:664-9.
- 59. Paolisso G, Sgambato S, Passariello N, *et al.* Insulin induces opposite changes in plasma and erythrocyte magnesium concentrations in normal man. *Diabetologia* 1986;29:644-7.
- 60. Bonora E, Targher G, Zenere MB, *et al.* Relationship of uric acid concentration to cardiovascular risk factors in young men. Role of obesity and central fat distribution. The Verona Young Men Atherosclerosis Risk Factors Study. *Int J Obes Relat Metab Disord* 1996;20:975-80.
- Lyngdoh T, Marques-Vidal P, Paccaud F, *et al.* Elevated serum uric acid is associated with high circulating inflammatory cytokines in the population-based Colaus study. *PLoS One* 2011;6:e19901.
- 62. Kirilmaz B, Asgun F, Alioglu E, *et al.* High inflammatory activity related to the number of metabolic syndrome components. *J Clin Hypertens (Greenwich)* 2010;12:136-44.
- 63. Salmonowicz B, Krzystek-Korpacka M, Noczyńska A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. *Adv Clin Exp Med* 2014;23:259-68.
- 64. Rodri'guez-Mora'n M, Guerrero-Romero F. Elevated serum concentration of tumor necrosis factor-alpha is linked to low serum magnesium levels in the obesity-related inflammatory response. *Magnes Res* 2004;17:189–96.
- 65. Li H, Zeng C, Wei J, *et al.* Serum Calcium Concentration Is Inversely Associated With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. *Medicine (Baltimore)*. 2016;95:e2838.
- 66. Chacko SA SYNL. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. *Diabetes Care* 2010;33:304-10.
- 67. Bo S DMGS. Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. *Am J Clin Nutr* 2006;84:1062-9.
- Kim DJ XPLK. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. *Diabetes Care* 2010;33:2604-10.
- Spector TD HDND. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. *Arthritis Rheum* 1997;40:723-7.
- 71. Smith JW MTGE. Significance of C-reactive protein in osteoarthritis and total knee arthroplasty outcomes. *Ther Adv Musculoskelet Dis* 2012;4:315-25.
- Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. *Rev Endocr Metab Disord* 2003;4:195-206.
- 72. Jr. Sabatier M PFAM. A compartmental model of magnesium metabolism in healthy men based on two stable isotope tracers. *Am J Physiol Regul Integr Comp Physiol* 2003;285:R656-63.

Quintiles of serum Mg

Q3

0.91

190

36.8

21.6

40.5

45.3

2.3 (3.5)

5.7 (1.4)

130.4 (16.2)

80.7 (11.0)

1.5 (0.4)

2.0 (2.1)

55.2 (7.9)

25.0 (3.7)

Q4

0.94

168

42.3

24.4

41.1

56.5

2.1 (3.1)

5.5 (0.9)

128.8 (16.3)

80.7 (10.7)

1.5 (0.3)

1.8 (1.0)

55.3 (7.1)

25.2 (3.4)

Р

0.062

0.464

0.627

0.457

0.645

0.184

0.457

0.009

0.837

0.654

0.374

0.620

Q5 (highest)

0.99

189

37.0

21.7

38.1

48.1

2.4 (3.5)

5.5 (1.6)

129.6 (17.7)

80.3 (10.5)

1.5 (0.4)

2.3 (2.9)

56.1 (8.0)

24.6 (3.2)

4 5 6				
7 8	353	Table 1 Basic characteristics of include	ed subjects according	to quintiles of se
9				
10 11			Q1 (lowest)	Q2
12 13		Median Mg concentration (mmol/L)	0.82	0.87
14 15		Participants (n)	200	215
16		Age (years)	53.8 (7.3)	54.6 (7.6)
17 18		BMI (kg/m^2)	25.2 (3.2)	24.9 (3.2)
19 20		Female (%)	37.5	42.3
21 22		Smoking (%)	27.5	27.4
23 24		Alcohol drinking (%)	34.5	36.3
25		High school diploma (%)	45.0	47.4
26 27		Activity level (h/w)	2.0 (3.5)	2.0 (3.3)
28 29		Fasting glucose (mmol/l)	6.6 (3.0)	5.7 (1.7)
30 31		Systolic pressure (mm Hg)	129.2 (16.9)	128.3 (17.9)
32 33		Diastolic pressure (mm Hg)	81.2 (11.8)	79.8 (12.1)
34		HDL-cholesterol (mmol/l)	1.5 (0.4)	1.5 (0.4)
35 36		Triglyceride (mmol/l)	2.1 (1.9)	1.8 (1.5)
37 38				
39 40				
40 41				
42 43				
44				
45			For peer review	only - http://bm
46 47	,right.	oril 17, 2024 by guest. Protected by copy	ąΑ no ∖moɔ.įmd.n∍qoįr	nd\\:q#d mont be

1 2 3

f serum Mg (n=962)

bmjopen.bmj.com/site/about/guidelines.xhtml BAN Open: first published as 10.136/bmjopen-2017-010159 on 10 September 2018. Downloaded

BMJ Open

1 2								
3 4 5								
6 7		Uric acid (µmol/l)	337.3 (101.7)	329.0 (80.7)	321.3 (86.3)	331.5 (78.0)	329.4 (81.7)	0.590
8 9		eGFR (ml/min/1.73m ²)	80.2 (14.4)	77.7 (10.7)	76.0 (10.6)	75.8 (10.7)	74.3 (12.0)	<0.001
10 11		MetS (%)	26.5	17.7	25.8	19.6	17.5	0.059
12 13		DM (%)	23.5	10.7	10.0	8.3	6.3	<0.001
14 15		HP (%)	40.0	33.5	37.4	42.3	40.2	0.432
16		HU (%)	25.5	19.1	13.2	18.5	14.8	0.018
17 18	354	Data are mean (Standard Deviation),	unless otherwise indic	ated; Mg, magnesiun	n; OA, osteoarthritis; E	3MI, body mass index	x; HDL, high density lij	poprotein; eGFR,
19 20	355	estimated glomerular filtration rate; M	letS, metabolic syndro					
21 22	356	# P values are for test of difference ac	ross all quintiles of ser	rum Mg.				
23 24	357							
25 26								
27 28								
29								
30 31								
32 33								
34 35								
36 37								
38 39								
40					19			
41 42								
43 44								
45 46					n.bmj.com/site/about			
40 47	right.	ril 17, 2024 by guest. Protected by copy	qA no ∖moɔ.imd.nəqoin	noaded from http://bm	eptember 2018. Down	201 no 631610-7102	-nəqoįmd\3611.01 ss b	BMJ Open: first publishe

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	
20	
21	
22	
22	
23 24 25 26 27 28	
24	
25	
20	
27	
28	
29	
30	
31	
32 33	
33	
34	
35	
36	
34 35 36 37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	

47

1

Table 2 Multivariable-adjusted relations of serum Mg and MetS in OA patients (n = 962)

	Quintiles of serum Mg					
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
MetS (%)	26.5	17.7	25.8	19.6	17.5	-
Model 1*	1.00 (reference)	0.61 (0.38, 0.97)	0.97 (0.61, 1.52)	0.69 (0.42, 1.14)	0.59 (0.36, 0.96)	0.090
P value	-	0.038	0.881	0.150	0.035	-
Model 2*	1.00 (reference)	0.60 (0.37, 0.96)	1.00 (0.63, 1.57)	0.70 (0.42, 1.15)	0.61 (0.37, 0.99)	0.120
P value	-	0.035	0.99	0.160	0.047	-
Model 3*	1.00 (reference)	0.58 (0.36, 0.94)	0.95 (0.60, 1.50)	0.66 (0.40, 1.10)	0.56 (0.34, 0.93)	0.066
P value	-	0.026	0.818	0.109	0.024	

359 Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; MetS, metabolic syndrome.

*Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), gender (male, female), educational level
(high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no); Model 3 was adjusted
based on model 2, with additional factor of eGFR (continuous data).

20

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

		Quintiles of serum Mg						
		Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend	
	Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-	
	Participants (n)	200	215	190	168	189	-	
	DM (%)	23.5	10.7	10.0	8.3	6.3	-	
	Model 1*	1.00 (reference)	0.38 (0.22, 0.66)	0.34 (0.19, 0.61)	0.29 (0.15, 0.55)	0.20 (0.10, 0.40)	< 0.001	
	P value	-	0.001	< 0.001	< 0.001	< 0.001	-	
	Model 2*	1.00 (reference)	0.38 (0.22, 0.66)	0.34 (0.19, 0.62)	0.27 (0.14, 0.52)	0.20 (0.10, 0.40)	< 0.001	
	P value	-	0.001	<0.001	< 0.001	< 0.001	-	
	Model 3*	1.00 (reference)	0.38 (0.22, 0.67)	0.35 (0.19, 0.64)	0.27 (0.14, 0.53)	0.21 (0.10, 0.41)	< 0.001	
	P value	-	0.001	0.001	<0.001	< 0.001	-	
365	Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; DM, diabetes mellitus.							
366	*Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (≥25 kg/m ² , <25 kg/m ²), gender							
367	(male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status							
368	(yes, no), hypertension (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).							
369								
			2	1				

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
11 12 13 14 15 16	
17	
18	
19	
20	
21	
22	
23	
23 24 25 26	
27	
25	
20	
27	
28	
29	
30 31 32 33 34 35 36	
31	
32	
33	
34	
35	
36	
37	
37 38	
39	
40	
40 41	
41	
43	
44	
45	
46	
47	

47

1

		Quintiles of serum Mg				
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
HP (%)	40.0	33.5	37.4	42.3	40.2	-
Model 1*	1.00 (reference)	0.71 (0.47, 1.06)	0.83 (0.54, 1.25)	1.00 (0.66, 1.54)	0.89 (0.59, 1.35)	0.929
P value	-	0.095	0.368	0.987	0.582	-
Model 2*	1.00 (reference)	0.78 (0.51, 1.18)	0.92 (0.60, 1.41)	1.16 (0.75, 1.80)	1.03 (0.67, 1.58)	0.423
P value	-	0.242	0.708	0.502	0.896	-
Model 3*	1.00 (reference)	0.77 (0.51, 1.17)	0.90 (0.59, 1.38)	1.13 (0.73, 1.76)	0.99 (0.64, 1.53)	0.524
P value	-	0.218	0.629	0.577	0.978	-

3 sted OR (95% CI), unless otherwise indicated; Mg, number; OA, osteoarthritis; HP, hypertension nagı esium; n, i

* Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (\geq 25 kg/m², <25 kg/m²), gender 372 373 (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data). 374

22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

376	Table 5 Multivariable-adjusted relation	ns of serum Mg and F	HU in OA patients (n = 9)	962) Quintiles of serum N	4~		
		Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
	Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
	Participants (n)	200	215	190	168	189	-
	HU (%)	25.5	19.1	13.2	18.5	14.8	-
	Model 1*	1.00 (reference)	0.71 (0.44, 1.14)	0.44 (0.26, 0.75)	0.68 (0.41, 1.14)	0.51 (0.30, 0.85)	0.008
	P value	-	0.157	0.002	0.144	0.010	-
	Model 2*	1.00 (reference)	0.73 (0.45, 1.19)	0.42 (0.24, 0.73)	0.62 (0.37, 1.06)	0.50 (0.29, 0.86)	0.007
	P value	-	0.205	0.002	0.082	0.012	-
	Model 3*	1.00 (reference)	0.67 (0.41, 1.11)	0.36 (0.20, 0.63)	0.54 (0.31, 0.93)	0.39 (0.22, 0.68)	< 0.001
	P value	-	0.119	<0.001	0.026	0.001	-
377	Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; HU, hyperuricemia.						
378	* Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (≥25 kg/m ² , <25 kg/m ²), gender						
379	(male, female), educational level (hig	h school or above, lo	ower than high school),	smoking status (yes,	no), activity level (co	ontinuous data), alcoho	ol drinking status
380	(yes, no), hypertension (yes, no), diab	etes (yes, no), and dy	rslipidemia (yes, no); M	odel 3 was adjusted b	based on model 2, with	additional factor of e	GFR (continuous
381	data).						
			2	3			

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Reported on Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	2
abstract			2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rati	2	Explain the scientific background and rationale for the investigation being	4
onale		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	4-5
		selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and methods	
		of case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	-
		exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5-6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	4
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable,	6-7
variables		describe which groupings were chosen and why	
Statistical	12	(a) Describe all statistical methods, including those used to control for	6-7
methods		confounding	
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(<i>d</i>) <i>Cohort study</i> —If applicable, explain how loss to follow-up was addressed	4
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls	
		was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<i>e</i>) Describe any sensitivity analyses	5-6

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	4
		potentially eligible, examined for eligibility, confirmed eligible, included in the	
		study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	4
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	8
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	-
		interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over	-
		time	
		Case-control study—Report numbers in each exposure category, or summary	-
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary	8-9
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	8-9
		and their precision (eg, 95% confidence interval). Make clear which	
		confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk	-
		for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	8-9
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9-1(
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	11-1
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	9-10
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-1
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and,	13
		if applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association between Serum Magnesium Concentration with Metabolic Syndrome, Diabetes, Hypertension and Hyperuricemia in Knee Osteoarthritis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019159.R2
Article Type:	Research
Date Submitted by the Author:	27-Apr-2018
Complete List of Authors:	Wang, Yi-lun; Xiangya Hospital Central South University, Orthopaedics Wei, Jie; Xiangya Hospital Central South University, Health Management Center Zeng, Chao; Xiangya Hospital Central South University, Orthopaedics Yang, Tuo; Xiangya Hospital Central South University, Orthopaedics Li, Hui; Xiangya Hospital Central South University, Orthopaedics Cui, Yang; Xiangya Hospital Central South University, International Medical Center Xie, Dong-xing; Xiangya Hospital, Central South University, Orthopaedics Xu, Bei; Xiangya Hospital Central South University, Orthopaedics Liu, Zhi-chen; Xiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Guanghua; Xiangya Hospital, Orthopaedics
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Rheumatology, Public health, Epidemiology
Keywords:	osteoarthritis, magnesium, metabolic syndrome, diabetes, Hypertension < CARDIOLOGY, hyperuricemia

SCHOLARONE[™] Manuscripts Page 1 of 33

BMJ Open

1		
2 3		
4	1	Association between Serum Magnesium Concentration with Metabolic
5 6	2	Syndrome, Diabetes, Hypertension and Hyperuricemia in Knee Osteoarthritis
7	3	
8 9	4	Yi-lun Wang ¹ , Jie Wei ² , Chao Zeng ¹ , Tuo Yang ¹ , Hui Li ¹ , Yang Cui ³ , Dong-xing Xie ¹ ,
10 11	5	Bei Xu ¹ , Zhi-chen Liu ¹ , Jia-tian Li ¹ , Shi-de Jiang ¹ , Guang-hua Lei ^{1*}
12 13	6	
14	7	¹ Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha,
15 16	8	Hunan Province, China, 410008;
17 18	9	² Health Management Center, Xiangya Hospital, Central South University, Changsha,
19 20	10	Hunan Province, China. 410008;
21 22	11	³ International Medical Center, Xiangya Hospital, Central South University, Changsha,
23 24	12	Hunan Province, China. 410008;
25	13	
26 27	14	*Correspondence to: Guang-hua Lei, MD, PhD, Department of Orthopaedics,
28 29	15	Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, Hunan,
30 31	16	China, 410008. E-mail: lei_guanghua@csu.edu.cn. Tel. 0731-84327326
32 33	17	
34 35		
36		
37		
38 39		
40		
41		
42 43		
44		
45		
46		
47 48		
49		
50		
51		
52		
53 54		
55		
56		
57		1
58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

18 Abstract

Objectives: To examine the associations between serum magnesium (Mg) concentration with the prevalence of metabolic syndrome (MetS), diabetes mellitus (DM), hypertension (HP) and hyperuricemia (HU) in radiographic knee osteoarthritis (OA) patients.

Methods: The present study was conducted at the Health Management Center of Xiangya Hospital. Radiographic OA was evaluated for patients aged over 40 years with basic characteristics and blood biochemical assessment. Serum Mg concentration was measured using the chemiluminescence method. MetS, DM, HP and HU were diagnosed based on standard protocols. The associations between serum Mg concentration with MetS, DM, HP and HU were evaluated by conducting multivariable adjusted logistic regression.

Results: A total of 962 radiographic knee OA patients were included. Compared with the lowest quintile, the multivariable-adjusted odds ratios (ORs) and related 95% confidence intervals (95%CI) of DM were 0.40 (95%CI 0.23-0.70, P=0.001), 0.33 (95%CI 0.18-0.60, P<0.001), 0.27 (95%CI 0.14-0.52, P<0.001) and 0.22 (95%CI 0.11-0.44, P<0.001) in the second, third, fourth and highest quintiles of serum Mg, respectively (P for trend <0.001); the multivariable-adjusted ORs of HU were 0.33 (95%CI 0.19-0.59, P<0.001), 0.52 (95%CI 0.30-0.91, P=0.022) and 0.39 (95%CI 0.22-0.70, P=0.001) in the third, fourth and highest quintiles of serum Mg respectively (P for trend <0.001); and the multivariable-adjusted ORs of MetS were 0.59 (95%CI 0.36-0.94, P=0.027) in the second and 0.56 (95%CI 0.34-0.93, P=0.024) in the highest quintiles of serum Mg (P for trend =0.067). There was no significant association between serum Mg and HP in OA patients.

42 Conclusions: The serum Mg concentration was inversely associated with the
43 prevalence of MetS, DM and HU in radiographic knee OA patients.

44 Level of Evidence: Level III, cross-sectional study.

45 Key words: osteoarthritis, magnesium, metabolic syndrome, diabetes, hypertension,

46 hyperuricemia

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

1		
2		
3		
Δ		
2 3 4 5 6 7		
5		
6		
7		
/		
8		
9		
10		
11		
12		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
22		
23		
24		
27		
25		
26		
27		
27		
28		
29		
30		
31		
32		
33		
34		
54		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
45		
46		
47		
48		
49		
50		
51		
52		
52		
53		
54		
54		
55		
56		
57		
58		
59		
59		

60

Strengths and limitations of this study 48

- 49 1. This is the first study examining the associations between serum magnesium (Mg) and the prevalence of metabolic syndrome, diabetes mellitus, hypertension and 50 hyperuricemia in radiographic knee osteoarthritis patients. 51
- 52 2. The multivariable logistical regression models in this study were adjusted for a considerable number of potential confounding factors, which greatly improved the 53 reliability of the results. 54
- 55 3. The kidney is the key organ in maintaining Mg homeostasis. This study conducted 56 a sensitivity analysis by adding estimated glomerular filtration rate into the 57 multivariable logistic regression models, and the reverse associations remained 58 significant.
- 4. This study adopted cross-sectional design which precluded causal correlations. 59
- 5. Serum Mg concentration was adopted as the indicator of body Mg content in this 60 a. Jator of L 61 study which may not be the best indicator of body status.
- 62

3

63 Introduction

The association between osteoarthritis (OA) and metabolic diseases, especially metabolic syndrome (MetS)^{1 2} and diabetes mellitus (DM),³⁻⁵ has drawn increasing attention in the past few years. OA includes three specific phenotypes: metabolic OA, age-related OA and injury-related OA.⁶ A large number of studies have indicated that the prevalence of MetS,⁷⁻⁹ DM¹⁰⁻¹⁸ and hypertension (HP)^{7 9-13 19 20} is either higher in OA patients or associated with OA. In addition, some other studies reported that MetS,^{21 22} DM^{23 24} and HP^{21 22} are risk factors of OA progression. Thus, it appears necessary to pay more attention and adopt appropriate measures to reduce the high prevalence of metabolic diseases in OA patients, which also seems to be beneficial in delaying OA progression.

Serum magnesium (Mg), one of the most important micronutrients for human health, has been reported to be negatively associated with MetS,²⁵⁻²⁹ DM³⁰⁻³⁸ and HP³⁰ ³⁹⁻⁴¹ by lots of studies. Meanwhile, our previous study showed an inverse association between serum Mg and hyperuricemia (HU).⁴² However, to the best knowledge of the authors, there is not yet a study examining the association between the serum Mg concentration and the aforementioned metabolic diseases (MetS, DM, HP and HU) in OA patients. On the other hand, we have previously shown that the serum Mg concentration may be inversely associated with radiographic knee OA.⁴³ Therefore. we speculate that the prevalence of MetS, DM, HP and HU in OA patients may be reduced by elevating the level of serum Mg, which can in turn delay OA progression. Thus, the objective of the present study was to examine the associations between the serum Mg concentration with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. It was hypothesized that serum Mg concentration was inversely associated with these diseases.

89 Methods

90 Study population

91 The present study was conducted at the Health Management Center of Xiangya92 Hospital between October 2013 and November 2014. The study design has been

published previously.⁴²⁻⁴⁶ The protocol has been reviewed and approved by the Ethics Committee of Xiangya Hospital, Central South University (reference numbers: 201312459), and the methods were developed in "accordance" with the approved guidelines. Informed consent has been obtained from all participants. Registered nurses were engaged to interview all participants during the examination using a standard questionnaire, with the purpose to collect information on demographic characteristics and health-related habits. Participants were selected based on the following inclusion criteria: 1) 40 years old or above; 2) undergoing weight-bearing bilateral anteroposterior radiography of the knee, and diagnosed with knee OA according to the Kellgren-Lawrence (K-L) radiographic atlas (knee joint was graded K-L 2 or above); 3) availability of all basic characteristics, including age, gender, body mass index (BMI) and blood pressure; 4) availability of biochemical test results, including serum Mg concentration; 5) availability of information related to the living habits, including education background, activity level, smoking, drinking and medication status. Initially, the present cross-sectional study retrieved 1820 radiographic knee OA patients aged over 40 years who exhibited sound basic characteristics and required blood biochemical assessment (including serum Mg concentration). Among them, 962 patients offered demographic characteristics and health-related habits and were finally included in this study.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Blood biochemistry

All blood samples were drawn after a 12-hour overnight fast and were kept at 4°C until analysis. Blood tests were undertaken using the Beckman Coulter AU 5800 (Beckman Coulter Inc., Brea, CA, USA). The inter- and intra-assay coefficients of variation were tested at both low concentrations (2.5 mmol/L for glucose, 118 µmol/L for uric acid and 0.60 mmol/L for serum Mg) and high concentrations (6.7 mmol/L for glucose, 472 µmol/L for uric acid and 1.00 mmol/L for serum Mg) of standard human samples. The intra-assay coefficients of variation were 0.98% (2.5 mmol/L) and 1.72% (6.7 mmol/L) for glucose, 1.39% (118 µmol/L) and 0.41% (472 µmol/L) for uric acid, and 1.86% (0.60 mmol/L) and 1.65% (1.00 mmol/L) for serum Mg respectively. The

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
าา
23
24
24 25
25
26 27
27
28
28 29 30 31 32 33 34 35 36 37 38 39
30
31
27
5Z
33
34
35
36
37
38
30
40
41
42
43
44
45
46
47
47 48
49
50
51
52
53
54
55
55 56
57
58
59
60

1

inter-assay coefficients of variation were 2.45% (2.5 mmol/L) and 1.46% (6.7 mmol/L)

124 for glucose, 1.40% (118 μmol/L) and 1.23% (472 μmol/L) for uric acid, and 1.87%

125 (0.60 mmol/L) and 1.70% (1.00 mmol/L) for serum Mg respectively.

126

127 Assessment of other exposures

Blood pressure was measured by an electronic sphygmomanometer. The weight and 128 129 height of each subjects was measured respectively to calculate the BMI. Information 130 on the average frequency of physical activity (never, one to two times per week, three 131 to four times per week, five times and above per week) and average duration of 132 physical activity (less than half an hour, half an hour to one hour, one to two hours, 133 more than two hours) was collected through survey questionnaire. The smoking, 134 alcohol drinking and medication status were collected during the face-to-face 135 interview.

136

137 Assessment of MetS, DM, HP and HU

MetS was diagnosed based on the Chinese Diabetes Society (CDS) criteria.⁴⁷⁻⁴⁹ which 138 requires meeting at least 3 of the following 4 items: (1) BMI ≥ 25 kg/m²; (2) Fasting 139 140 plasma glucose (FPG) \geq 6.1 mmol/L, or diagnosed DM; (3) Systolic blood pressure $(BP) \ge 140 \text{ mmHg}$ or diastolic BP $\ge 90 \text{ mmHg}$, or treatment of previously diagnosed 141 142 HP; (4) Triglycerides \geq 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality. Subjects with the 143 fasting glucose \geq 7.0 mmol/L or currently undergoing drug treatment for blood glucose 144 145 control were regarded as DM patients, and subjects with the systolic blood pressure 146 \geq 140 mm Hg or diastolic blood pressure \geq 90 mm Hg or currently undertaking 147 antihypertensive medication were regarded as HP patients. HU was defined as uric 148 acid \geq 416 µmol/L for male and \geq 360 µmol/L for female or currently undergoing drug 149 treatment for uric acid control.

150

151 Statistical analysis

152 The continuous data are expressed as mean with standard deviation, and the category

data are expressed in percentage. Differences in continuous data were evaluated by one-way classification ANOVA (normally distributed data) or Kruskal-Wallis H test (non-normally distributed data), while differences in category data were assessed by the χ 2 test. The serum Mg was classified into five categories based on the quintile distribution: ≤0.85, 0.86-0.89, 0.90-0.92, 0.93-0.96 and ≥0.97 mmol/L. The prevalence of MetS, DM, HP and HU in each quintile of serum Mg in OA patients were assessed by scatter plots.

Logistic regression was conducted to calculate the odds ratios (ORs) with 95% confidence intervals (95%CI) for the associations between serum Mg and MetS, DM, HP and HU. Specifically, model 1 was adjusted by covariates of age (continuous data) and gender (male, female). Then, model 2 was adjusted by additional covariates of BMI (continuous data), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), HP (yes, no), DM (yes, no), and dyslipidemia (yes, no) on the basis of model 1. Dyslipidemia was defined as triglycerides ≥ 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality. Notably, the selection of covariates in model 2 varied slightly for examining different associations (between serum Mg and MetS, DM, HP or HU). For example, BMI, HP and dyslipidemia were adjusted for the association between serum Mg and DM, but not for the association between serum Mg and MetS, simply because MetS was diagnosed based on BMI, HP and dyslipidemia status. Model 3 was established based on model 2, with adjustment of an additional covariate, estimated glomerular filtration rate (eGFR). eGFR (continuous data) was calculated from the Chronic Kidney Disease Epidemiology Collaboration equation.⁵⁰ All covariates in the present study were chosen referring to some of the previous similar studies.^{27 33 51 52} Tests for linear trends were conducted based on logistic regression using a median variable of Mg concentration in each category.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

180 Scatter plots were plotted using R 3.4.4.⁵³ Other data analyses were performed using 181 SPSS 17.0; P ≤ 0.05 was considered to be statistically significant. All tests were two 182 tailed.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
46 47	
47 48	
48 49	
49 50	
50 51	
52	
52 53	
55 54	
55	
56	
57	
58	
59	
60	

1

184 **Patient and public involvement**

185 No patients were involved in setting the research question or the outcome measures,

186 nor were they involved in the design or implementation of the study. There are no

187 plans to disseminate the results of the research to study participants

188

183

189 **Results**

A total of 962 subjects (377 females, accounting for 39.2%) were included in the present cross-sectional study. The characteristics of the study population according to quintiles of serum Mg were presented in Table 1. The mean age of the subjects was 54.9 ± 7.6 years old. The overall prevalence of MetS, DM, HP and HU in OA patients were 21.4%, 12.0%, 38.5% and 18.3% respectively. Significant differences were observed across the quintiles of serum Mg for fasting glucose, as well as the prevalence of DM and HU.

197 The prevalence of MetS in each quintile of serum Mg in OA patients was shown 198 in Figure 1 (A). The outcomes of multivariable adjusted associations between MetS 199 and serum Mg concentration were shown in Table 2. Compared with the lowest 200 quintile, the age-gender adjusted ORs (Model 1) suggested significant decreased 201 prevalence of MetS in the second (OR=0.61, 95%CI 0.38-0.97, P=0.038) and the 202 highest (OR=0.59, 95%CI 0.36-0.96, P=0.035) quintiles of serum Mg (P for trend 203 =0.090); the multivariable adjusted ORs (Model 2) also suggested significant decreased prevalence of MetS in the second (OR=0.60, 95%CI 0.37-0.96, P=0.035) 204 205 and the highest (OR=0.61, 95%CI 0.37-0.99, P=0.047) quintiles, and the P for trend 206 was 0.120. The sensitivity analysis, by adding eGFR into model 2, also reached 207 similar results - significant lower prevalence of MetS in the second (OR=0.59, 95%CI 208 0.36-0.94, P=0.027) and the highest quintiles (OR=0.56, 95%CI 0.34-0.93, P=0.024) 209 compared with the reference quintile of serum Mg, and the P for trend was 0.067.

Figure 1 (B) showed the prevalence of DM in each category of serum Mg in OA patients. Table 3 illustrated the multivariable adjusted relations between serum Mg and DM in OA patients. Both the age-gender adjusted OR values (Model 1) and the

multivariable adjusted OR values (Model 2) suggested a strong inverse association between serum Mg and DM. The age-gender adjusted ORs for the prevalence of DM were 0.38 (95%CI 0.22-0.66, P=0.001), 0.34 (95%CI 0.19-0.61, P<0.001), 0.29 (95%CI 0.15-0.55, P<0.001), and 0.20 (95%CI 0.10-0.40, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was <0.001. The multivariable adjusted ORs for the prevalence of DM were 0.40 (95%CI 0.23-0.70, P=0.001), 0.32 (95%CI 0.18-0.59, P<0.001), 0.26 (95%CI 0.13-0.50, P<0.001), and 0.21 (95%CI 0.11-0.42, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was <0.001. The sensitivity analysis, by adding eGFR into model 2, showed similar results - significant lower prevalence of DM in the second (OR=0.40, 95%CI 0.23-0.70, P=0.001), third (OR=0.33, 95%CI 0.18-0.60, P<0.001), fourth (OR=0.27, 95%CI 0.14-0.52, P<0.001), and highest quintiles (OR=0.22, 95%CI 0.11-0.44, P<0.001) compared with the reference quintile of serum Mg, and the P for trend was <0.001.

The prevalence of HP in each quintile of serum Mg in OA patients was depicted in Figure 1 (C). The multivariable-adjusted relations between serum Mg and HP in OA patients were illustrated in Table 4. According to both the age-gender adjusted ORs (Model 1) and the multivariable adjusted ORs (Model 2), there was no significant association between serum Mg and HP, and the P for trend were 0.929 and 0.377, respectively. The sensitivity analysis, by adding eGFR into model 2, reached the same results. BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

The prevalence of HU in each category of serum Mg in OA patients was shown in Figure 1 (D). The multivariable-adjusted relations between serum Mg and HU in OA patients were illustrated in Table 5. Both the age-gender adjusted OR values (Model 1) and the multivariable adjusted OR values (Model 2) suggested significant decreased prevalence of HU in the third quintile (age-gender adjusted OR=0.44, 95%CI 0.26-0.75, P=0.002; multivariable adjusted OR=0.38, 95%CI 0.22-0.67, P=0.001) and fifth quintile (age-gender adjusted OR=0.51, 95%CI 0.30-0.85, P=0.010; multivariable adjusted OR=0.50, 95%CI 0.29-0.87, P=0.013) compared with the lowest quintile of serum Mg, and the P for trend were 0.008 and 0.006, respectively.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

The sensitivity analysis, by adding eGFR into model 2, showed similar outcomes significant lower prevalence of HU in the third (OR=0.33, 0.19-0.59, P<0.001), fourth (OR=0.52, 95%CI 0.30-0.91, P=0.022), and highest quintiles (OR=0.39, 95%CI 0.22-0.70, P=0.001) compared with the reference quintile of serum Mg, and the P for trend was < 0.001.

Discussion

The results of this study suggested that the serum Mg concentration was negatively associated with the prevalence of MetS, DM and HU in subjects with radiographic knee OA. In order to control potential confounders, several covariates including characteristics, living habits and underlying diseases were selected, and even the eGFR was added into the multivariable logistic regression models to eliminate the influence of renal function on Mg excretion. The reverse associations mentioned above remained significant after adjustments of these confounders. However, the negative association between serum Mg and the prevalence of HP was not observed in radiographic knee OA patients. Moreover, the linear associations were only observed between serum Mg with DM and HU, but not between serum Mg and MetS.

Mg, the fourth most abundant cation in human body and the second most profuse intracellular cation, is a metallic cofactor for over 300 enzymatic reactions. It appears to play an important role in glucose metabolism and insulin homeostasis, which are both highly correlated with metabolic diseases, especially MetS and DM. The mechanisms involved in Mg deficiency in patients with MetS, DM and HU are probably multifactorial. The most important factor may be insulin resistance, as Mg is essential for insulin action and is a critical cofactor for several enzymes in carbohydrate metabolism, which is important for the phosphorylation reactions of tyrosine-kinase in the insulin receptor.^{31 54-58} Of course, it is necessary to highlight the fact that insulin can also induce Mg excretion⁵⁹ and produce a significant decline of plasma Mg through ion exchange.⁶⁰ Thus, there seems to be a vicious circle between Mg deficiency and insulin resistance.

Other potential mechanisms include glucose transportation,⁵⁷ oxidative stress⁵⁷

Page 11 of 33

BMJ Open

and inflammatory cytokines,⁶¹⁻⁶³ and cellular calcium homeostasis.⁵⁵ Mg is an essential cofactor of the high-energy phosphate-bound enzymatic pathways involved in the modulation of glucose transport across cell membranes.⁵⁷ It also plays a role in the mechanisms of cellular antioxidant defense.⁶⁴ The oxidative stress, defined as a persistent imbalance between the excessive production of reactive oxygen species and/or defects in antioxidant defense, has been implicated in the pathogenesis of diabetic complications.⁵⁷ Moreover, low serum Mg levels are strongly related to elevated serum concentrations of both tumor necrosis factor alpha and C-reactive protein (CRP),⁶⁵ suggesting that Mg deficiency may contribute to the development of low-grade chronic inflammation syndrome and the development of glucose metabolic disorders through the former pathway. In addition, lower Mg concentration can enhance calcium-mediated vasoconstriction, blunt cardiac and smooth muscle relaxation, and thus contribute to BP elevation.⁵⁵ However, the decreased serum calcium concentration in radiographic knee OA patients may weaken the association between Mg and HP.⁶⁶

 $MetS^{21 22}$ and $DM^{4 23 24}$ were reported to be the risk factors of OA progression. Moreover, serum Mg level has been proved to be significantly associated with the CRP concentration,^{27 67-69} and higher CRP might serve as a prediction factor for OA progression.^{70 71} Thus, OA progression may be delayed by elevating the serum Mg level through reducing the prevalence of MetS and DM and decreasing the level of CRP. Above all, the present study indicated that the elevation of serum Mg level has the potential to reduce the prevalence of MetS, DM and HU in knee OA patients and thereby may delay the progression of knee OA. However, the specific mechanism needs to be further explored.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

The present study has several strengths. Firstly, this is the first study examining the associations between serum Mg and the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. The results of this study will provide a new insight into the treatment of knee OA. Secondly, the multivariable logistical regression models were adjusted for a considerable number of potential confounding factors, which greatly improved the reliability of the results. Thirdly, the kidney is the key

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

organ in maintaining Mg homeostasis. This study conducted a sensitivity analysis by
 adding eGFR into multivariable logistic regression models which showed that the
 reverse associations remained significant.

Limitations of the present study should also be admitted. The cross-sectional design precludes causal correlations, so further prospective studies and intervention trials should be undertaken to establish a causal association between serum Mg with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. Since no previous research investigated such associations in knee OA patients, the value of this study should not be blotted out by the cross-sectional nature. Another limitation of this study lies in the relatively small sample size, and thus, extensive high-quality researches based on a larger sample are needed. Moreover, the dietary intake of Mg in relation to the prevalence of MetS, DM, HP and HU were not assessed in the present study. Last but not the least, it is important to highlight that Mg is an intracellular ion; therefore, the serum Mg concentration must be considered as a poor indicator of body Mg content,⁷² even though it has been used in many studies. However, blood Mg level is the second best indicator of body status.⁷³

320 Conclusions

The present study concluded that the serum Mg concentration was inversely associated with the prevalence of MetS, DM and HU in radiographic knee OA patients.

Contributors

All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. GHL, YLW and JW conceived the study. GHL, YLW and JW were responsible for conception and design of the study and drafted the manuscript. CZ, TY, HL, YC and DXX contributed to data collection. WJ contributed to preparation and data analysis. BX, ZCL, JTL, and SDJ contributed to study retrieval. GHL and YLW contributed to revision of the manuscript. All the authors contributed to the interpretation of the data and critically reviewed the manuscript for publication.

335 Funding

This work was supported by the Innovation Foundation of the Central South University for Postgraduate (2018zzts045), the Postdoctoral Science Foundation of Central South University (182130), the National Natural Science Foundation of China (No. 81201420, 81272034, 81472130, 81501923), the Provincial Science Foundation of Hunan (No. 14JJ3032), the Scientific Research Project of the Development and Reform Commission of Hunan Province ([2013]1199), the Scientific Research Project of Science and Technology Office of Hunan Province (2013SK2018), the Doctoral Scientific Fund Project of the Ministry of Education of China (20120162110036).

- **Competing interests**
- 346 The authors declare that they have no conflict of interest.

Ethics approval

The protocol of this study was reviewed and approved by the Ethics Committee atXiangya Hospital.

352 Data sharing statement

The datasets during the current study available from the corresponding author on reasonable request.

355 356	RF	FERENCE
350	1	Zhuo Q, Yang W, Chen J, <i>et al.</i> Metabolic syndrome meets osteoarthritis. <i>Nat</i>
358		Rev Rheumatol 2012;8(12):729-37.
359	2	Katz JD, Agrawal S, Velasquez M. Getting to the heart of the matter:
360		osteoarthritis takes its place as part of the metabolic syndrome. Curr Opin
361		Rheumatol 2010;22(5):512-9.
362	3	Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new
363		phenotype. Ann Rheum Dis 2011;70(8):1354-6.
364	4	King KB, Rosenthal AK. The adverse effects of diabetes on osteoarthritis: update
365		on clinical evidence and molecular mechanisms. Osteoarthritis Cartilage
366		2015;23(6):841-50.
367	5	Kirkman MS. Osteoarthritis progression: is diabetes a culprit? Osteoarthritis
368		<i>Cartilage</i> 2015;23(6):839-40.
369	6	Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine
370		2013;80(6):568-73.
371	7	Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in
372		individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med
373		2009;121(6):9-20.
374	8	Shin D. Association between metabolic syndrome, radiographic knee
375		osteoarthritis, and intensity of knee pain: results of a national survey. J Clin
376		Endocrinol Metab 2014;99(9):3177-83.
377	9	Calvet J, Orellana C, Larrosa M, et al. High prevalence of cardiovascular
378		co-morbidities in patients with symptomatic knee or hand osteoarthritis. Scand J
379		<i>Rheumatol</i> 2015:1-4.
380	10	Rahman MM, Kopec JA, Cibere J, et al. The relationship between osteoarthritis
381		and cardiovascular disease in a population health survey: a cross-sectional study.
382		<i>BMJ Open</i> 2013;3(5):e2624.
383	11	Inoue R, Ishibashi Y, Tsuda E, et al. Medical problems and risk factors of
384		metabolic syndrome among radiographic knee osteoarthritis patients in the
		14
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

п
ND OF
oen: fir
st pub
lished
as 10.
1136/t
omjope
n-201
7-0191
159 on
10 Se
ptemb
er 201;
3. Dow
BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://
d from
http://
bmjop
en.bmj
.com/
on Apri
117, 2
r, 2024 by gue
' guest.
. Prote
cted by
у сору
right.

385		Japanese general population. J Orthop Sci 2011;16(6):704-9.
386	12	Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee
387		osteoarthritis in women: the Chingford Study. J Rheumatol 1995;22(6):1118-23.
388	13	Jungmann PM, Kraus MS, Alizai H, et al. Association of metabolic risk factors
389		with cartilage degradation assessed by T2 relaxation time at the knee: data from
390		the osteoarthritis initiative. Arthritis Care Res (Hoboken) 2013;65(12):1942-50.
391	14	Anagnostopoulos I, Zinzaras E, Alexiou I, et al. The prevalence of rheumatic
392		diseases in central Greece: a population survey. BMC Musculoskelet Disord
393		2010;11:98.
394	15	Massengale M, Reichmann WM, Losina E, et al. The relationship between hand
395		osteoarthritis and serum leptin concentration in participants of the Third National
396		Health and Nutrition Examination Survey. Arthritis Res Ther 2012;14(3):R132.
397	16	Nieves-Plaza M, Castro-Santana LE, Font YM, et al. Association of hand or knee
398		osteoarthritis with diabetes mellitus in a population of Hispanics from Puerto
399		Rico. J Clin Rheumatol 2013;19(1):1-6.
400	17	Greiver M, Williamson T, Barber D, et al. Prevalence and epidemiology of
401		diabetes in Canadian primary care practices: a report from the Canadian Primary
402		Care Sentinel Surveillance Network. Can J Diabetes 2014;38(3):179-85.
403	18	Rahman MM, Cibere J, Anis AH, et al. Risk of Type 2 Diabetes among
404		Osteoarthritis Patients in a Prospective Longitudinal Study. Int J Rheumatol
405		2014;2014:620920.
406	19	Reid JL, Morton DJ, Wingard DL, et al. Obesity and other cardiovascular disease
407		risk factors and their association with osteoarthritis in Southern California
408		American Indians, 2002-2006. Ethn Dis 2010;20(4):416-22.
409	20	Birtwhistle R, Morkem R, Peat G, et al. Prevalence and management of
410		osteoarthritis in primary care: an epidemiologic cohort study from the Canadian
411		Primary Care Sentinel Surveillance Network. CMAJ Open 2015;3(3):E270-5.
412	21	Yoshimura N, Muraki S, Oka H, et al. Accumulation of metabolic risk factors
413		such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance
414		raises the risk of occurrence and progression of knee osteoarthritis: a 3-year 15
		Ear pear review only http://bmianen.hmi.com/cite/about/quidelines.yhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

415		follow-up of the ROAD study. Osteoarthritis Cartilage 2012;20(11):1217-26.
416	22	Monira HS, Wang Y, Cicuttini FM, et al. Incidence of total knee and hip
417		replacement for osteoarthritis in relation to the metabolic syndrome and its
418		components: a prospective cohort study. Semin Arthritis Rheum
419		2014;43(4):429-36.
420	23	Schett G, Kleyer A, Perricone C, et al. Diabetes is an independent predictor for
421		severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care
422		2013;36(2):403-9.
423	24	Eymard F, Parsons C, Edwards MH, et al. Diabetes is a risk factor for knee
424		osteoarthritis progression. Osteoarthritis Cartilage 2015;23(6):851-9.
425	25	Guerrero-Romero F, Rodriguez-Moran M. Low serum magnesium levels and
426		metabolic syndrome. Acta Diabetol 2002;39(4):209-13.
427	26	Guerrero-Romero F, Rodriguez-Moran M. Hypomagnesemia, oxidative stress,
428		inflammation, and metabolic syndrome. Diabetes Metab Res Rev
429		2006;22(6):471-6.
430	27	Evangelopoulos AA, Vallianou NG, Panagiotakos DB, et al. An inverse
431		relationship between cumulating components of the metabolic syndrome and
432		serum magnesium levels. Nutr Res 2008;28(10):659-63.
433	28	Hjelmesaeth J, Hofso D, Aasheim ET, et al. Parathyroid hormone, but not
434		vitamin D, is associated with the metabolic syndrome in morbidly obese women
435		and men: a cross-sectional study. Cardiovasc Diabetol 2009;8:7.
436	29	Lima ML, Cruz T, Rodrigues LE, et al. Serum and intracellular magnesium
437		deficiency in patients with metabolic syndromeevidences for its relation to
438		insulin resistance. Diabetes Res Clin Pract 2009;83(2):257-62.
439	30	Ma J, Folsom AR, Melnick SL, et al. Associations of serum and dietary
440		magnesium with cardiovascular disease, hypertension, diabetes, insulin, and
441		carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in
442		Communities Study. J Clin Epidemiol 1995;48(7):927-40.
443	31	Kao WH, Folsom AR, Nieto FJ, et al. Serum and dietary magnesium and the risk
444		for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. 16
		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2			
3 4	445		Arch Intern Med 1999;159(18):2151-9.
5	446	32	Wang JL, Shaw NS, Yeh HY, et al. Magnesium status and association with
6 7	447		diabetes in the Taiwanese elderly. Asia Pac J Clin Nutr 2005;14(3):263-9.
8 9	448	33	Chambers EC, Heshka S, Gallagher D, et al. Serum magnesium and type-2
10 11	449		diabetes in African Americans and Hispanics: a New York cohort. J Am Coll
12 13	450		Nutr 2006;25(6):509-13.
14 15	451	34	Simmons D, Joshi S, Shaw J. Hypomagnesaemia is associated with diabetes: Not
16	452		pre-diabetes, obesity or the metabolic syndrome. Diabetes Res Clin Pract
17 18	453		2010;87(2):261-6.
19 20	454	35	Sales CH, Pedrosa LF, Lima JG, et al. Influence of magnesium status and
21 22	455		magnesium intake on the blood glucose control in patients with type 2 diabetes.
23 24	456		<i>Clin Nutr</i> 2011;30(3):359-64.
25	457	36	Lecube A, Baena-Fustegueras JA, Fort JM, et al. Diabetes is the main factor
26 27	458		accounting for hypomagnesemia in obese subjects. PLoS One 2012;7(1):e30599.
28 29	459	37	Xu J, Xu W, Yao H, et al. Associations of serum and urinary magnesium with the
30 31	460		pre-diabetes, diabetes and diabetic complications in the Chinese Northeast
32 33	461		population. <i>PLoS One</i> 2013;8(2):e56750.
34	462	38	Yang SJ, Hwang SY, Baik SH, et al. Serum magnesium level is associated with
35 36	463		type 2 diabetes in women with a history of gestational diabetes mellitus: the
37 38	464		Korea National Diabetes Program study. J Korean Med Sci 2014;29(1):84-9.
39 40	465	39	Singh RB, Rastogi V, Niaz MA, et al. Epidemiological study of magnesium
41 42	466		status and risk of hypertension in a rural population of north India. Magnes Res
43 44	467		1996;9(3):173-81.
45	468	40	Peacock JM, Folsom AR, Arnett DK, et al. Relationship of serum and dietary
46 47	469		magnesium to incident hypertension: the Atherosclerosis Risk in Communities
48 49	470		(ARIC) Study. Ann Epidemiol 1999;9(3):159-65.
50 51	471	41	Guerrero-Romero F, Rodriguez-Moran M, Hernandez-Ronquillo G, et al. Low
52 53	472		Serum Magnesium Levels and Its Association with High Blood Pressure in
54 55	473		Children. <i>J Pediatr</i> 2016;168:93-8.
56	474	42	Zeng C, Wang YL, Wei J, et al. Association between low serum magnesium
57 58			17
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

475		concentration and hyperuricemia. Magnes Res 2015;28(2):56-63.
476	43	Zeng C, Wei J, Li H, et al. Relationship between Serum Magnesium
477		Concentration and Radiographic Knee Osteoarthritis. J Rheumatol
478		2015;42(7):1231-6.
479	44	Wei J, Zeng C, Gong QY, et al. Associations between Dietary Antioxidant Intake
480		and Metabolic Syndrome. PLoS One 2015;10(6):e130876.
481	45	Xie DX, Xiong YL, Zeng C, et al. Association between low dietary zinc and
482		hyperuricaemia in middle-aged and older males in China: a cross-sectional study.
483		<i>BMJ Open</i> 2015;5(10):e8637.
484	46	Wei J, Zeng C, Gong QY, et al. The association between dietary selenium intake
485		and diabetes: a cross-sectional study among middle-aged and older adults. Nutr J
486		2015;14:18.
487	47	Expert Panel on Metabolic Syndrome of Chinese Diabetes Society:
488		Recommendations on metabolic syndrome of Chinese Diabetes Society (Chinese).
489		<i>Chin J Diabetes</i> 2004;14:156-61.
490	48	Pang C, Jia L, Hou X, et al. The significance of screening for microvascular
491		diseases in Chinese community-based subjects with various metabolic
492		abnormalities. PLoS One 2014;9(5):e97928.
493	49	Zhou H, Guo ZR, Yu LG, et al. Evidence on the applicability of the ATPIII, IDF
494		and CDS metabolic syndrome diagnostic criteria to identify CVD and T2DM in
495		the Chinese population from a 6.3-year cohort study in mid-eastern China.
496		<i>Diabetes Res Clin Pract</i> 2010;90(3):319-25.
497	50	Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular
498		filtration rate. Ann Intern Med 2009;150(9):604-12.
499	51	Joosten MM, Gansevoort RT, Mukamal KJ, et al. Urinary magnesium excretion
500		and risk of hypertension: the prevention of renal and vascular end-stage disease
501		study. Hypertension 2013;61(6):1161-7.
502	52	Choi MK, Bae YJ. Association of Magnesium Intake with High Blood Pressure
503		in Korean Adults: Korea National Health and Nutrition Examination Survey
504		2007-2009. <i>PLoS One</i> 2015;10(6):e130405. 18
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 33

BMJ Open

2			
3 4	505	53	R Development Core Team. R: A Language and Environment for Statistical
5	506		Computing, Vienna, Austria: R Foundation for Statistical Computing. 2016.
7	507	54	Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the
8 9	508		metabolic syndrome: an American Heart Association/National Heart, Lung, and
10 11	509		Blood Institute Scientific Statement. Circulation 2005;112(17):2735-52.
12 13	510	55	Barbagallo M, Dominguez LJ, Galioto A, et al. Role of magnesium in insulin
14 15	511		action, diabetes and cardio-metabolic syndrome X. Mol Aspects Med
16	512		2003;24(1-3):39-52.
17 18	513	56	Song Y, Ridker PM, Manson JE, et al. Magnesium intake, C-reactive protein, and
19 20	514		the prevalence of metabolic syndrome in middle-aged and older U.S. women.
21 22	515		Diabetes Care 2005;28(6):1438-44.
23 24	516	57	Guerrero-Romero F, Rodriguez-Moran M. Complementary therapies for diabetes:
25 26	517		the case for chromium, magnesium, and antioxidants. Arch Med Res
27	518		2005;36(3):250-7.
28 29	519	58	Huerta MG, Roemmich JN, Kington ML, et al. Magnesium deficiency is
30 31	520		associated with insulin resistance in obese children. Diabetes Care
32 33	521		2005;28(5):1175-81.
34 35	522	59	Djurhuus MS, Skott P, Hother-Nielson O, et al. Insulin increases renal
36	523		magnesium excretion: a possible cause of magnesium depletion in
37 38	524		hyperinsulinaemic states. <i>Diabet Med</i> 1995;12(8):664-9.
39 40	525	60	Paolisso G, Sgambato S, Passariello N, et al. Insulin induces opposite changes in
41 42	526		plasma and erythrocyte magnesium concentrations in normal man. Diabetologia
43 44	527		1986;29(9):644-7.
45 46	528	61	Bonora E, Targher G, Zenere MB, et al. Relationship of uric acid concentration to
47	529		cardiovascular risk factors in young men. Role of obesity and central fat
48 49	530		distribution. The Verona Young Men Atherosclerosis Risk Factors Study. Int J
50 51	531		Obes Relat Metab Disord 1996;20(11):975-80.
52 53	532	62	Lyngdoh T, Marques-Vidal P, Paccaud F, et al. Elevated serum uric acid is
54 55	533		associated with high circulating inflammatory cytokines in the population-based
56 57	534		Colaus study. PLoS One 2011;6(5):e19901.
58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 33

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

535	63	Kirilmaz B, Asgun F, Alioglu E, et al. High inflammatory activity related to the
536		number of metabolic syndrome components. J Clin Hypertens (Greenwich)
537		2010;12(2):136-44.
538	64	Salmonowicz B, Krzystek-Korpacka M, Noczynska A. Trace elements,
539		magnesium, and the efficacy of antioxidant systems in children with type 1
540		diabetes mellitus and in their siblings. Adv Clin Exp Med 2014;23(2):259-68.
541	65	M RGN, F G. Elevated serum concentration of tumor necrosis factor-alpha is
542		linked to low serum magnesium levels in the obesity-related inflammatory
543		response. Magnes Res 2004;17:189-96.
544	66	Li H, Zeng C, Wei J, et al. Serum Calcium Concentration Is Inversely Associated
545		With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. Medicine
546		(Baltimore) 2016;95(6):e2838.
547	67	Chacko SA, Song Y, Nathan L, et al. Relations of dietary magnesium intake to
548		biomarkers of inflammation and endothelial dysfunction in an ethnically diverse
549		cohort of postmenopausal women. Diabetes Care 2010;33(2):304-10.
550	68	Bo S, Durazzo M, Guidi S, et al. Dietary magnesium and fiber intakes and
551		inflammatory and metabolic indicators in middle-aged subjects from a
552		population-based cohort. Am J Clin Nutr 2006;84(5):1062-9.
553	69	Kim DJ, Xun P, Liu K, et al. Magnesium intake in relation to systemic
554		inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care
555		2010;33(12):2604-10.
556	70	Spector TD, Hart DJ, Nandra D, et al. Low-level increases in serum C-reactive
557		protein are present in early osteoarthritis of the knee and predict progressive
558		disease. Arthritis Rheum 1997;40(4):723-7.
559	71	Smith JW, Martins TB, Gopez E, et al. Significance of C-reactive protein in
560		osteoarthritis and total knee arthroplasty outcomes. Ther Adv Musculoskelet Dis
561		2012;4(5):315-25.
562	72	Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. Rev Endocr
563		Metab Disord 2003;4(2):195-206.
564	73	Sabatier M, Pont F, Arnaud MJ, <i>et al</i> . A compartmental model of magnesium 20

1		
2 3	ГСГ	matchalism in healthy man based on two stable isotone tracers. Am I Physiol
4	565	metabolism in healthy men based on two stable isotope tracers. Am J Physiol
5	566	Regul Integr Comp Physiol 2003;285(3):R656-63.
6 7	567	
8		
9		
10		
11 12		
12		
14		
15		
16		
17 18		
19		
20		
21 22		
22 23		
24		
25		
26 27		
28		
29		
30		
31 32		
33		
34		
35		
36 37		
38		
39		
40 41		
41		
43		
44		
45 46		
40 47		
48		
49		
50 51		
51 52		
53		
54		
55 56		
56 57		
58		21
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
8	
9	
9	
10	
11	
12	
13	
14	
13 14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40	
41	
43	
44	
45	
46	
47	

		Quintiles of serum Mg						
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)			
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99			
Participants (n)	200	215	190	168	189			
Age (years)	53.8 (7.3)	54.6 (7.6)	55.2 (7.9)	55.3 (7.1)	56.1 (8.0)	0.0		
BMI (kg/m ²)	25.2 (3.2)	24.9 (3.2)	25.0 (3.7)	25.2 (3.4)	24.6 (3.2)	0.4		
Female (%)	37.5	42.3	36.8	42.3	37.0	0.6		
Smoking (%)	27.5	27.4	21.6	24.4	21.7	0.4		
Alcohol drinking (%)	34.5	36.3	40.5	41.1	38.1	0.6		
High school diploma (%)	45.0	47.4	45.3	56.5	48.1	0.1		
Activity level (h/w)	2.0 (3.5)	2.0 (3.3)	2.3 (3.5)	2.1 (3.1)	2.4 (3.5)	0.4		
Fasting glucose (mmol/l)	6.6 (3.0)	5.7 (1.7)	5.7 (1.4)	5.5 (0.9)	5.5 (1.6)	0.0		
Systolic pressure (mm Hg)	129.2 (16.9)	128.3 (17.9)	130.4 (16.2)	128.8 (16.3)	129.6 (17.7)	0.8		
Diastolic pressure (mm Hg)	81.2 (11.8)	79.8 (12.1)	80.7 (11.0)	80.7 (10.7)	80.3 (10.5)	0.6		
HDL-cholesterol (mmol/l)	1.5 (0.4)	1.5 (0.4)	1.5 (0.4)	1.5 (0.3)	1.5 (0.4)	0.3		
Triglyceride (mmol/l)	2.1 (1.9)	1.8 (1.5)	2.0 (2.1)	1.8 (1.0)	2.3 (2.9)	0.6		

22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

	Uric acid (µmol/l)	337.3 (101.7)	329.0 (80.7)	321.3 (86.3)	331.5 (78.0)	329.4 (81.7)	0.590				
	eGFR (ml/min/1.73m ²)	80.2 (14.4)	77.7 (10.7)	76.0 (10.6)	75.8 (10.7)	74.3 (12.0)	<0.001				
	MetS (%)	26.5	17.7	25.8	19.6	17.5	0.059				
	DM (%)	23.5	10.7	10.0	8.3	6.3	< 0.001				
	HP (%)	40.0	33.5	37.4	42.3	40.2	0.432				
	HU (%)	25.5	19.1	13.2	18.5	14.8	0.018				
569	Data are mean (Standard Deviation), u	unless otherwise indica	ated; Mg, magnesium	; OA, osteoarthritis; B	MI, body mass index	; HDL, high density lip	oprotein; eGFR,				
570	estimated glomerular filtration rate; M	letS, metabolic syndro	me; DM, diabetes me	llitus; HP, hypertension	n; HU, hyperuricemia	l.					
571	# P values are for test of difference act	ross all quintiles of ser	rum Mg.								
572											
				23							
		For peer review	only - http://bmjope	n.bmj.com/site/about	t/guidelines.xhtml						
.idbir∖	ril ۲۲, 2024 by guest. Protected by cop					-nəqoįmd\3511.01 ss b	BMJ Open: first publishe				
	570 571 572	eGFR (ml/min/1.73m ²) MetS (%) DM (%) HP (%) HU (%) 569 Data are mean (Standard Deviation), to estimated glomerular filtration rate; M 571 # P values are for test of difference act	eGFR (ml/min/1.73m ²) 80.2 (14.4) MetS (%) 26.5 DM (%) 23.5 HP (%) 40.0 HU (%) 25.5 Data are mean (Standard Deviation), unless otherwise indice estimated glomerular filtration rate; MetS, metabolic syndro # P values are for test of difference across all quintiles of ser 772	eGFR (ml/min/1.73m ²) 80.2 (14.4) 77.7 (10.7) MetS (%) 26.5 17.7 DM (%) 23.5 10.7 HP (%) 40.0 33.5 HU (%) 25.5 19.1 569 Data are mean (Standard Deviation), unless otherwise indicated; Mg, magnesium estimated glomerular filtration rate; MetS, metabolic syndrome; DM, diabetes metabolic syndrom; DM, diabetes meta	eGFR (ml/min/1.73m ²) 80.2 (14.4) 77.7 (10.7) 76.0 (10.6) MetS (%) 26.5 17.7 25.8 DM (%) 23.5 10.7 10.0 HP (%) 40.0 33.5 37.4 HU (%) 25.5 19.1 13.2 Data are mean (Standard Deviation), unless otherwise indicated; Mg, magnesium; OA, osteoarthritis; B estimated glomerular filtration rate; MetS, metabolic syndrome; DM, diabetes mellitus; HP, hypertension # P values are for test of difference across all quintiles of serum Mg. 31.5 31.5 372 24 32.5 32.5 32.5 373 24 32.5 32.5 32.5 374 32.5 32.5 32.5 32.5 375 374 32.5 32.5 32.5 376 ************************************	eGFR (ml/min/1.73m ²) 80.2 (14.4) 77.7 (10.7) 76.0 (10.6) 75.8 (10.7) MetS (%) 26.5 17.7 25.8 19.6 DM (%) 23.5 10.7 10.0 8.3 HP (%) 40.0 33.5 37.4 42.3 HU (%) 25.5 19.1 13.2 18.5 Data are mean (Standard Deviation), unless otherwise indicated; Mg, magnesium; OA, osteoarthritis; BMI, body mass index estimated glomerular filtration rate; MetS, metabolic syndrome; DM, diabetes mellitus; HP, hypertension; HU, hyperuricemia # P values are for test of difference across all quintiles of serum Mg. 70	cdifk (ml/min/1.73m²)80.2 (14.4)77.7 (10.7)60.0 (10.6)75.8 (10.7)74.3 (12.0)MeiS (%)25.510.710.08.36.3IP (%)40.033.537.442.340.2ID (%)25.519.113.218.51.48Particular (Mandard Deviation), unless otherwise indicated; Mg, magnesium; OA, osteoarthritis; BMI, body mass index; HDL, high density lapte estimated glomerular filtration rate; MetS, metabolic syndrome; DM, diabetes mellitus; HP, hypertension; HU, hyperuricemia.* P values are for test of difference across all quintiles of serum Mg.				

, _) and HU (D) in each quintile of serum. Figure 1 The prevalence of MetS (A), DM (B), HP (C) and HU (D) in each quintile of serum Mg in OA patients

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Quintiles of serum Mg

Q4

0.94

Q3

0.91

P for trend

Q5 (highest)

0.99

2 3 4 5 6 7	575	Table 2 Multivariable-adjusted relation	ns of serum Mg
8 9			
9 10 11			Q1 (lowest)
12 13		Median Mg concentration (mmol/L)	0.82
14 15		Participants (n)	200
16		MetS (%)	26.5
17 18		Model 1*	1.00 (referen
19 20		P value	-
21 22		Model 2*	1.00 (referen
23 24		P value	-
25 26		Model 3*	1.00 (referen
27		P value	-
28 29	576	Data are adjusted OR (95% CI), unless	s otherwise indi
30 31	577	*Model 1 was adjusted for age (conti	nuous data) an
32 33	578	level (high school or above, lower th	an high school
34	579	adjusted based on model 2, with additi	onal factor of e
35 36	580		
37 38			
39			
40 41			
42			
43			
44 45			For peer r
46			
47	riaht.	oril 17, 2024 by guest. Protected by copy	iA no \moɔ.imd

m Mg and MetS in OA patients (n = 962)

Participants (n)	200	215	190	168	189	-
MetS (%)	26.5	17.7	25.8	19.6	17.5	-
Model 1*	1.00 (reference)	0.61 (0.38, 0.97)	0.97 (0.61, 1.52)	0.69 (0.42, 1.14)	0.59 (0.36, 0.96)	0.090
P value	-	0.038	0.881	0.150	0.035	-
Model 2*	1.00 (reference)	0.60 (0.37, 0.96)	1.00 (0.63, 1.57)	0.70 (0.42, 1.15)	0.61 (0.37, 0.99)	0.120
P value	-	0.035	0.99	0.160	0.047	-
Model 3*	1.00 (reference)	0.59 (0.36, 0.94)	0.95 (0.60, 1.51)	0.67 (0.40, 1.10)	0.56 (0.34, 0.93)	0.067
P value	-	0.027	0.830	0.114	0.024	

e indicated; Mg, magnesium; n, number; OA, osteoarthritis; MetS, metabolic syndrome.

Q2

0.87

a) and gender (male, female); Model 2 was adjusted for age (continuous data), gender (male, female), educational chool), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no); Model 3 was r of eGFR (continuous data).

25

eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

b.imd.neqoimd/:qfff mort bebsolnwod .8102 nedmetge2 01 no 631010-7102-neqoimd/3611.01 as bedraid tarit :neqO LMB

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25 26	
20 27	
27	
28 29	
29 30	
31	
32	
33	
34	
35 36	
36	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	

			Quintiles of serum Mg				
		Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
_	Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
	Participants (n)	200	215	190	168	189	-
	DM (%)	23.5	10.7	10.0	8.3	6.3	-
	Model 1*	1.00 (reference)	0.38 (0.22, 0.66)	0.34 (0.19, 0.61)	0.29 (0.15, 0.55)	0.20 (0.10, 0.40)	< 0.001
	P value	-	0.001	< 0.001	< 0.001	<0.001	-
	Model 2*	1.00 (reference)	0.40 (0.23, 0.70)	0.32 (0.18, 0.59)	0.26 (0.13, 0.50)	0.21 (0.11, 0.42)	< 0.001
	P value	-	0.001	<0.001	< 0.001	< 0.001	-
	Model 3*	1.00 (reference)	0.40 (0.23, 0.70)	0.33 (0.18, 0.60)	0.27 (0.14, 0.52)	0.22 (0.11, 0.44)	< 0.001
	P value	-	0.001	<0.001	<0.001	< 0.001	-
_	Data are adjusted OR (95% CI), unless *Model 1 was adjusted for age (contir), gender (1
	female), educational level (high schoo	l or above, lower that	n high school), smokin	g status (yes, no), activ	vity level (continuous	data), alcohol drinking	status (yes,
	hypertension (yes, no), and dyslipiden	nia (yes, no); Model 3	was adjusted based or	n model 2, with addition	onal factor of eGFR (co	ontinuous data).	
				26			
				20			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4 5 6	
7	587
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 18	
18	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	588
30	500
31	589
32	590
33 24	000
34 35	591
36	592
37	552
38	
39	
40	
41	
42	
43	
44	
45	
46	Jub

47

		Quintiles of serum Mg				
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
HP (%)	40.0	33.5	37.4	42.3	40.2	-
Model 1*	1.00 (reference)	0.71 (0.47, 1.06)	0.83 (0.54, 1.25)	1.00 (0.66, 1.54)	0.89 (0.59, 1.35)	0.929
P value	-	0.095	0.368	0.987	0.582	-
Model 2*	1.00 (reference)	0.77 (0.50, 1.19)	0.89 (0.57, 1.39)	1.10 (0.70, 1.74)	1.08 (0.69, 1.68)	0.377
P value	-	0.245	0.608	0.686	0.744	-
Model 3*	1.00 (reference)	0.77 (0.50, 1.19)	0.88 (0.56, 1.38)	1.09 (0.68, 1.72)	1.05 (0.67, 1.65)	0.434
P value	-	0.235	0.574	0.727	0.818	-

* Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (continuous data), gender (male,

590 female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no),

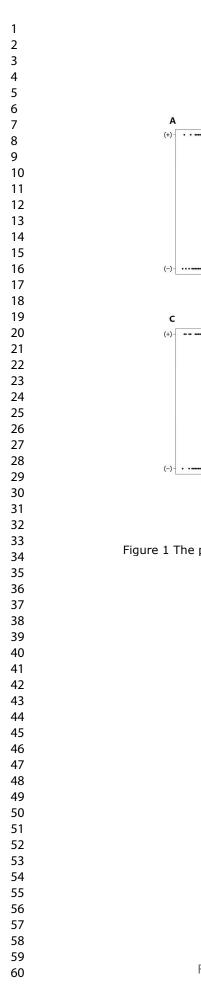
591 diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).

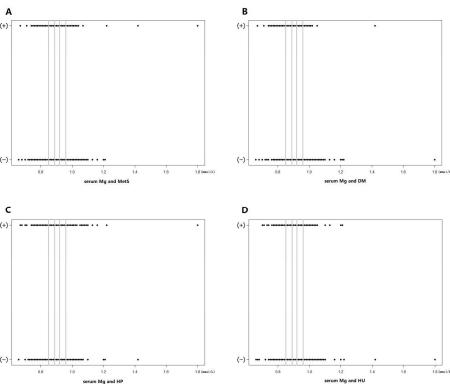
27

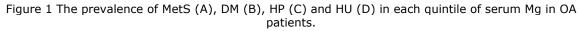
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

י ר
2
3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
10
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
27
2/
38
39
40
41
42
43
44
45
46
40 47
4/

1


			Quintiles of serum M	ſg		
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
HU (%)	25.5	19.1	13.2	18.5	14.8	-
Model 1*	1.00 (reference)	0.71 (0.44, 1.14)	0.44 (0.26, 0.75)	0.68 (0.41, 1.14)	0.51 (0.30, 0.85)	0.008
P value	-	0.157	0.002	0.144	0.010	-
Model 2*	1.00 (reference)	0.73 (0.45, 1.20)	0.38 (0.22, 0.67)	0.59 (0.35, 1.02)	0.50 (0.29, 0.87)	0.006
P value	-	0.210	0.001	0.058	0.013	-
Model 3*	1.00 (reference)	0.68 (0.41, 1.14)	0.33 (0.19, 0.59)	0.52 (0.30, 0.91)	0.39 (0.22, 0.70)	< 0.001
P value	-	0.142	<0.001	0.022	0.001	-


Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; HU, hyperuricemia. 594


* Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (continuous data), gender (male, 595 596 female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), 597 hypertension (yes, no), diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data)

28

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

576x474mm (300 x 300 DPI)

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Reported o Page No
Title and	1	(a) Indicate the study's design with a commonly used term in the title or the	2
abstract		abstract	-
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rati onale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
6		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	4-5
I.		selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods	
		of case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	-
		exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5 4-6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	4 <u>-5</u>
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable,	6-7
variables		describe which groupings were chosen and why	
Statistical	12	(a) Describe all statistical methods, including those used to control for	6-7
methods		confounding	
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	4 <u>-5</u>
		Case-control study—If applicable, explain how matching of cases and controls	
		was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(e) Describe any sensitivity analyses	5- 6 <u>-7</u>

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

2 3	
4 5	
6 7	
8 9	
10 11	
12 13	
14 15	
16 17	
18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
55 55	
55 56 57	
58	
59 60	

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	4 <u>-5</u>
		potentially eligible, examined for eligibility, confirmed eligible, included in the	
		study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	4 <u>-5</u>
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	8
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	-
		interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over	-
		time	
		Case-control study—Report numbers in each exposure category, or summary	-
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary	<u>8-10</u> 8-9
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	<u>8-10</u> 8-9
		and their precision (eg, 95% confidence interval). Make clear which	
		confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	<u>8-10</u> 8-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk	-
		for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	<u>8-10</u> 8-9
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9 -10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	11-12
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	9-10 10-11
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-12
Other information	n		
Funding	22	Give the source of funding and the role of the funders for the present study and,	13
-		if applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Reported or Page No
Title and	1	(a) Indicate the study's design with a commonly used term in the title or the	2
abstract		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rati	2	Explain the scientific background and rationale for the investigation being	4
onale		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	4-5
		selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and methods	
		of case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	-
		exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	4-6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	4-5
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable,	6-7
variables		describe which groupings were chosen and why	
Statistical	12	(a) Describe all statistical methods, including those used to control for	6-7
methods		confounding	
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	4-5
		Case-control study—If applicable, explain how matching of cases and controls	
		was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	6-7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	
50 51 52 53 54 55 56 57 58 59 60	

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	4-5
		(b) Give reasons for non-participation at each stage	4-5
		(c) Consider use of a flow diagram	_
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	-
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	<i>Cohort study</i> —Report numbers of outcome events or summary measures over time	-
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure	-
		Cross-sectional study—Report numbers of outcome events or summary measures	8-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	8-10
		(b) Report category boundaries when continuous variables were categorized	8-10
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8-10
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	11-12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10-11
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-12
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	13

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association between Serum Magnesium Concentration with Metabolic Syndrome, Diabetes, Hypertension and Hyperuricemia in Knee Osteoarthritis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019159.R3
Article Type:	Research
Date Submitted by the Author:	11-Jun-2018
Complete List of Authors:	Wang, Yi-lun; Xiangya Hospital Central South University, Orthopaedics Wei, Jie; Xiangya Hospital Central South University, Health Management Center Zeng, Chao; Xiangya Hospital Central South University, Orthopaedics Yang, Tuo; Xiangya Hospital Central South University, Orthopaedics Li, Hui; Xiangya Hospital Central South University, Orthopaedics Cui, Yang; Xiangya Hospital Central South University, International Medical Center Xie, Dong-xing; Xiangya Hospital, Central South University, Orthopaedics Xu, Bei; Xiangya Hospital Central South University, Orthopaedics Liu, Zhi-chen; Xiangya Hospital Central South University, Orthopaedics Liu, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Jiang, Shi-de; Xiangya Hospital Central South University Lei, Guanghua; Xiangya Hospital, Orthopaedics
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Rheumatology, Public health, Epidemiology
Keywords:	osteoarthritis, magnesium, metabolic syndrome, diabetes, Hypertension < CARDIOLOGY, hyperuricemia

SCHOLARONE[™] Manuscripts Page 1 of 31

BMJ Open

1		
2 3	1	Association between Serum Magnesium Concentration with Metabolic
4 5	2	Syndrome, Diabetes, Hypertension and Hyperuricemia in Knee Osteoarthritis
6		Syndrome, Diabetes, Hypertension and Hypertricemia in Knee Ostebartin his
7 8	3	
9 10	4	Yi-lun Wang ¹ , Jie Wei ² , Chao Zeng ¹ , Tuo Yang ¹ , Hui Li ¹ , Yang Cui ³ , Dong-xing Xie ¹ ,
11	5	Bei Xu ¹ , Zhi-chen Liu ¹ , Jia-tian Li ¹ , Shi-de Jiang ¹ , Guang-hua Lei ^{1*}
12 13	6	
14	7	¹ Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha,
15 16	8	Hunan Province, China, 410008;
17 18	9	² Health Management Center, Xiangya Hospital, Central South University, Changsha,
19	10	Hunan Province, China. 410008;
20 21		
22 23	11	³ International Medical Center, Xiangya Hospital, Central South University, Changsha,
24	12	Hunan Province, China. 410008;
25 26	13	
27	14	*Correspondence to: Guang-hua Lei, MD, PhD, Department of Orthopaedics,
28 29	15	Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, Hunan,
30 31	16	China, 410008. E-mail: lei_guanghua@csu.edu.cn. Tel. 0731-84327326
32	17	
33 34		
35 36		
37		
38 39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56		
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

18 Abstract

Objectives: To examine the associations between serum magnesium (Mg) concentration with the prevalence of metabolic syndrome (MetS), diabetes mellitus (DM), hypertension (HP) and hyperuricemia (HU) in radiographic knee osteoarthritis (OA) patients.

Methods: The present study was conducted at the Health Management Center of Xiangya Hospital. Radiographic OA was evaluated for patients aged over 40 years with basic characteristics and blood biochemical assessment. Serum Mg concentration was measured using the chemiluminescence method. MetS, DM, HP and HU were diagnosed based on standard protocols. The associations between serum Mg concentration with MetS, DM, HP and HU were evaluated by conducting multivariable adjusted logistic regression.

Results: A total of 962 radiographic knee OA patients were included. Compared with the lowest quintile, the multivariable-adjusted odds ratios (ORs) and related 95% confidence intervals (95%CI) of DM were 0.40 (95%CI 0.23-0.70, P=0.001), 0.33 (95%CI 0.18-0.60, P<0.001), 0.27 (95%CI 0.14-0.52, P<0.001) and 0.22 (95%CI 0.11-0.44, P<0.001) in the second, third, fourth and highest quintiles of serum Mg, respectively (P for trend <0.001); the multivariable-adjusted ORs of HU were 0.33 (95%CI 0.19-0.59, P<0.001), 0.52 (95%CI 0.30-0.91, P=0.022) and 0.39 (95%CI 0.22-0.70, P=0.001) in the third, fourth and highest quintiles of serum Mg respectively (P for trend <0.001); and the multivariable-adjusted ORs of MetS were 0.59 (95%CI 0.36-0.94, P=0.027) in the second and 0.56 (95%CI 0.34-0.93, P=0.024) in the highest quintiles of serum Mg. However, the inverse association between serum Mg and the prevalence of MetS was nonlinear (P for trend =0.067). There was no significant association between serum Mg and HP in OA patients.

43 Conclusions: The serum Mg concentration was inversely associated with the
44 prevalence of MetS, DM and HU in radiographic knee OA patients.

45 Level of Evidence: Level III, cross-sectional study.

46 Key words: osteoarthritis, magnesium, metabolic syndrome, diabetes, hypertension,

47 hyperuricemia

1		
1		
2		
3		
4		
5		
6		
7		
8		
2 3 4 5 6 7 8 9		
10		
12		
11 12 13 14		
14		
15		
16		
17		
18		
19 20		
20		
21		
22		
23		
24		
25		
26		
27		
20 21 22 23 24 25 26 27 28		
29		
30 31 32 33 34 35		
31		
32		
33		
34		
35		
36		
37		
38		
39		
39 40		
40 41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		

59

60

Strengths and limitations of this study 48

- 49 1. This is the first study examining the associations between serum magnesium (Mg) and the prevalence of metabolic syndrome, diabetes mellitus, hypertension and 50 hyperuricemia in radiographic knee osteoarthritis patients. 51
- 52 2. The multivariable logistical regression models in this study were adjusted for a considerable number of potential confounding factors, which greatly improved the 53 54 reliability of the results.
- 55 3. The kidney is the key organ in maintaining Mg homeostasis. This study conducted 56 a sensitivity analysis by adding estimated glomerular filtration rate into the 57 multivariable logistic regression models, and the reverse associations remained 58 significant.
- 4. This study adopted cross-sectional design which precluded causal correlations. 59
- 5. Serum Mg concentration was adopted as the indicator of body Mg content in this 60 a. Jator of L 61 study which may not be the best indicator of body status.
- 62

63 Introduction

The association between osteoarthritis (OA) and metabolic diseases, especially metabolic syndrome (MetS)^{1 2} and diabetes mellitus (DM),³⁻⁵ has drawn increasing attention in the past few years. OA includes three specific phenotypes: metabolic OA, age-related OA and injury-related OA.⁶ A large number of studies have indicated that the prevalence of MetS,⁷⁻⁹ DM¹⁰⁻¹⁸ and hypertension (HP)^{7 9-13 19 20} is either higher in OA patients or associated with OA. In addition, some other studies reported that MetS,^{21 22} DM^{23 24} and HP^{21 22} are risk factors of OA progression. Thus, it appears necessary to pay more attention and adopt appropriate measures to reduce the high prevalence of metabolic diseases in OA patients, which also seems to be beneficial in delaying OA progression.

Serum magnesium (Mg), one of the most important micronutrients for human health, has been reported to be negatively associated with MetS,²⁵⁻²⁹ DM³⁰⁻³⁸ and HP³⁰ ³⁹⁻⁴¹ by lots of studies. Meanwhile, our previous study showed an inverse association between serum Mg and hyperuricemia (HU).⁴² However, to the best knowledge of the authors, there is not yet a study examining the association between the serum Mg concentration and the aforementioned metabolic diseases (MetS, DM, HP and HU) in OA patients. On the other hand, we have previously shown that the serum Mg concentration may be inversely associated with radiographic knee OA.⁴³ Therefore. we speculate that the prevalence of MetS, DM, HP and HU in OA patients may be reduced by elevating the level of serum Mg, which can in turn delay OA progression. Thus, the objective of the present study was to examine the associations between the serum Mg concentration with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. It was hypothesized that serum Mg concentration was inversely associated with these diseases.

89 Methods

90 Study population

91 The present study was conducted at the Health Management Center of Xiangya92 Hospital between October 2013 and November 2014. The study design has been

published previously.⁴²⁻⁴⁶ The protocol has been reviewed and approved by the Ethics Committee of Xiangya Hospital, Central South University (reference numbers: 201312459), and the methods were developed in "accordance" with the approved guidelines. Informed consent has been obtained from all participants. Registered nurses were engaged to interview all participants during the examination using a standard questionnaire, with the purpose to collect information on demographic characteristics and health-related habits. Participants were selected based on the following inclusion criteria: 1) 40 years old or above; 2) undergoing weight-bearing bilateral anteroposterior radiography of the knee, and diagnosed with knee OA according to the Kellgren-Lawrence (K-L) radiographic atlas (knee joint was graded K-L 2 or above); 3) availability of all basic characteristics, including age, gender, body mass index (BMI) and blood pressure; 4) availability of biochemical test results, including serum Mg concentration; 5) availability of information related to the living habits, including education background, activity level, smoking, drinking and medication status. Initially, the present cross-sectional study retrieved 1820 radiographic knee OA patients aged over 40 years who exhibited sound basic characteristics and required blood biochemical assessment (including serum Mg concentration). Among them, 962 patients offered demographic characteristics and health-related habits and were finally included in this study.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Blood biochemistry

All blood samples were drawn after a 12-hour overnight fast and were kept at 4°C until analysis. Blood tests were undertaken using the Beckman Coulter AU 5800 (Beckman Coulter Inc., Brea, CA, USA). The inter- and intra-assay coefficients of variation were tested at both low concentrations (2.5 mmol/L for glucose, 118 µmol/L for uric acid and 0.60 mmol/L for serum Mg) and high concentrations (6.7 mmol/L for glucose, 472 µmol/L for uric acid and 1.00 mmol/L for serum Mg) of standard human samples. The intra-assay coefficients of variation were 0.98% (2.5 mmol/L) and 1.72% (6.7 mmol/L) for glucose, 1.39% (118 µmol/L) and 0.41% (472 µmol/L) for uric acid, and 1.86% (0.60 mmol/L) and 1.65% (1.00 mmol/L) for serum Mg respectively. The

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
50	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
22	

1

inter-assay coefficients of variation were 2.45% (2.5 mmol/L) and 1.46% (6.7 mmol/L)

124 for glucose, 1.40% (118 μmol/L) and 1.23% (472 μmol/L) for uric acid, and 1.87%

125 (0.60 mmol/L) and 1.70% (1.00 mmol/L) for serum Mg respectively.

126

127 Assessment of other exposures

Blood pressure was measured by an electronic sphygmomanometer. The weight and 128 129 height of each subject were measured respectively to calculate the BMI. Information 130 on the average frequency of physical activity (never, one to two times per week, three 131 to four times per week, five times and above per week) and average duration of 132 physical activity (less than half an hour, half an hour to one hour, one to two hours, 133 more than two hours) were collected through survey questionnaire. The smoking, 134 alcohol drinking and medication status were collected during the face-to-face 135 interview.

136

137 Assessment of MetS, DM, HP and HU

MetS was diagnosed based on the Chinese Diabetes Society (CDS) criteria.⁴⁷⁻⁴⁹ which 138 requires meeting at least 3 of the following 4 items: (1) BMI ≥ 25 kg/m²; (2) Fasting 139 140 plasma glucose (FPG) \geq 6.1 mmol/L, or diagnosed DM; (3) Systolic blood pressure $(BP) \ge 140 \text{ mmHg}$ or diastolic BP $\ge 90 \text{ mmHg}$, or treatment of previously diagnosed 141 142 HP; (4) Triglycerides \geq 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality. Subjects with the 143 fasting glucose \geq 7.0 mmol/L or currently undergoing drug treatment for blood glucose 144 145 control were regarded as DM patients, and subjects with the systolic blood pressure 146 \geq 140 mm Hg or diastolic blood pressure \geq 90 mm Hg or currently undertaking 147 antihypertensive medication were regarded as HP patients. HU was defined as uric 148 acid \geq 416 µmol/L for male and \geq 360 µmol/L for female or currently undergoing drug 149 treatment for uric acid control.

150

151 Statistical analysis

152 The continuous data were expressed as mean with standard deviation, and the

category data were expressed in percentage. Differences in continuous data were evaluated by one-way classification ANOVA (normally distributed data) or Kruskal-Wallis H test (non-normally distributed data), while differences in category data were assessed by the χ^2 test. The serum Mg was classified into five categories based on the quintile distribution: ≤ 0.85 , 0.86-0.89, 0.90-0.92, 0.93-0.96 and ≥ 0.97 mmol/L. The prevalence of MetS, DM, HP and HU in each quintile of serum Mg in OA patients were assessed by scatter plots.

Logistic regression was conducted to calculate the odds ratios (ORs) with 95% confidence intervals (95%CI) for the associations between serum Mg and MetS, DM, HP and HU. Specifically, model 1 was adjusted by covariates of age (continuous data) and gender (male, female). Then, model 2 was adjusted by additional covariates of BMI (continuous data), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), HP (yes, no), DM (yes, no), and dyslipidemia (yes, no) on the basis of model 1. Dyslipidemia was defined as triglycerides ≥ 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality. Notably, the selection of covariates in model 2 varied slightly for examining different associations (between serum Mg and MetS, DM, HP or HU). For example, BMI, HP and dyslipidemia were adjusted for the association between serum Mg and DM, but not for the association between serum Mg and MetS, simply because MetS was diagnosed based on BMI, HP and dyslipidemia status. Model 3 was established based on model 2, with adjustment of an additional covariate, estimated glomerular filtration rate (eGFR). eGFR (continuous data) was calculated from the Chronic Kidney Disease Epidemiology Collaboration equation.⁵⁰ All covariates in the present study were chosen referring to some of the previous similar studies.^{27 33 51 52} Tests for linear trends were conducted based on logistic regression using a median variable of Mg concentration in each category.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

180 Scatter plots were plotted using R 3.4.4.⁵³ Other data analyses were performed 181 using SPSS 17.0; P \leq 0.05 was considered to be statistically significant. All tests were 182 two tailed.

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
38 39 40 41 42 43 44 45 46 47 48 49 50 51	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
57	38 39 40 41 42 43 44 45 46 47 48 49 50	

184 **Patient and public involvement**

No patients were involved in setting the research question or the outcome measures,
nor were they involved in the design or implementation of the study. There were no
plans to disseminate the results of the research to study participants.

188

183

189 **Results**

A total of 962 subjects (377 females, accounting for 39.2%) were included in the present cross-sectional study. The characteristics of the study population according to quintiles of serum Mg were presented in Table 1. The mean age of the subjects was 54.9 ± 7.6 years old. The overall prevalence of MetS, DM, HP and HU in OA patients were 21.4%, 12.0%, 38.5% and 18.3% respectively. Significant differences were observed across the quintiles of serum Mg for fasting glucose, as well as the prevalence of DM and HU.

197 The prevalence of MetS in each quintile of serum Mg in OA patients was shown 198 in Figure 1 (A). The outcomes of multivariable adjusted associations between MetS 199 and serum Mg concentration were shown in Table 2. Compared with the lowest 200 quintile, the age-gender adjusted ORs (Model 1) suggested significant decreased prevalence of MetS in the second (OR=0.61, 95%CI 0.38-0.97, P=0.038) and the 201 202 highest (OR=0.59, 95%CI 0.36-0.96, P=0.035) quintiles of serum Mg; the 203 multivariable adjusted ORs (Model 2) also suggested significant decreased prevalence 204 of MetS in the second (OR=0.60, 95%CI 0.37-0.96, P=0.035) and the highest 205 (OR=0.61, 95%CI 0.37-0.99, P=0.047) quintiles. The sensitivity analysis, by adding 206 eGFR into model 2, also reached similar results - significant lower prevalence of 207 MetS in the second (OR=0.59, 95%CI 0.36-0.94, P=0.027) and the highest quintiles 208 (OR=0.56, 95%CI 0.34-0.93, P=0.024) compared with the reference quintile of serum 209 Mg. No clear trend was evident in the third and fourth quintiles of serum Mg. The P 210 for trend were 0.090 (Model 1), 0.120 (Model 2), 0.067 (Model 3), respectively.

Figure 1 (B) showed the prevalence of DM in each category of serum Mg in OA patients. Table 3 illustrated the multivariable adjusted relations between serum Mg Page 9 of 31

BMJ Open

and DM in OA patients. Both the age-gender adjusted OR values (Model 1) and the multivariable adjusted OR values (Model 2) suggested a strong inverse association between serum Mg and DM. The age-gender adjusted ORs for the prevalence of DM were 0.38 (95%CI 0.22-0.66, P=0.001), 0.34 (95%CI 0.19-0.61, P<0.001), 0.29 (95%CI 0.15-0.55, P<0.001), and 0.20 (95%CI 0.10-0.40, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was <0.001. The multivariable adjusted ORs for the prevalence of DM were 0.40 (95%CI 0.23-0.70, P=0.001), 0.32 (95%CI 0.18-0.59, P<0.001), 0.26 (95%CI 0.13-0.50, P<0.001), and 0.21 (95%CI 0.11-0.42, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was <0.001. The sensitivity analysis, by adding eGFR into model 2, showed similar results - significant lower prevalence of DM in the second (OR=0.40, 95%CI 0.23-0.70, P=0.001), third (OR=0.33, 95%CI 0.18-0.60, P<0.001), fourth (OR=0.27, 95%CI 0.14-0.52, P<0.001), and highest quintiles (OR=0.22, 95%CI 0.11-0.44, P<0.001) compared with the reference quintile of serum Mg, and the P for trend was <0.001.

The prevalence of HP in each quintile of serum Mg in OA patients was depicted in Figure 1 (C). The multivariable-adjusted relations between serum Mg and HP in OA patients were illustrated in Table 4. According to both the age-gender adjusted ORs (Model 1) and the multivariable adjusted ORs (Model 2), there was no significant association between serum Mg and HP, and the P for trend were 0.929 and 0.377, respectively. The sensitivity analysis, by adding eGFR into model 2, reached the same results. BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

The prevalence of HU in each category of serum Mg in OA patients was shown in Figure 1 (D). The multivariable-adjusted relations between serum Mg and HU in OA patients were illustrated in Table 5. Both the age-gender adjusted OR values (Model 1) and the multivariable adjusted OR values (Model 2) suggested significant decreased prevalence of HU in the third quintile (age-gender adjusted OR=0.44, 95%CI 0.26-0.75, P=0.002; multivariable adjusted OR=0.38, 95%CI 0.22-0.67, P=0.001) and fifth quintile (age-gender adjusted OR=0.51, 95%CI 0.30-0.85, P=0.010; multivariable adjusted OR=0.50, 95%CI 0.29-0.87, P=0.013) compared with the

ŝ

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

lowest quintile of serum Mg, and the P for trend were 0.008 and 0.006, respectively.
The sensitivity analysis, by adding eGFR into model 2, showed similar outcomes significant lower prevalence of HU in the third (OR=0.33, 0.19-0.59, P<0.001), fourth
(OR=0.52, 95%CI 0.30-0.91, P=0.022), and highest quintiles (OR=0.39, 95%CI
0.22-0.70, P=0.001) compared with the reference quintile of serum Mg, and the P for
trend was <0.001.

Discussion

The results of this study suggested that the serum Mg concentration was negatively associated with the prevalence of MetS, DM and HU in subjects with radiographic knee OA. To control potential confounders, several covariates including characteristics, living habits and underlying diseases were selected, and even the eGFR was added into the multivariable logistic regression models to eliminate the influence of renal function on Mg excretion. The reverse associations mentioned above remained significant after adjustments of these confounders. However, the association between serum Mg and the prevalence of MetS was nonlinear, with no clear trend in the third and fourth quintiles of serum Mg. Moreover, the negative association between serum Mg and the prevalence of HP was not observed in radiographic knee OA patients.

Mg, the fourth most abundant cation in human body and the second most profuse intracellular cation, is a metallic cofactor for over 300 enzymatic reactions. It appears to play an important role in glucose metabolism and insulin homeostasis, which are both highly correlated with metabolic diseases, especially MetS and DM. The mechanisms involved in Mg deficiency in patients with MetS, DM and HU are probably multifactorial. The most important factor may be insulin resistance, as Mg is essential for insulin action and is a critical cofactor for several enzymes in carbohydrate metabolism, which is important for the phosphorylation reactions of tyrosine-kinase in the insulin receptor.^{31 54-58} Of course, it is necessary to highlight the fact that insulin can also induce Mg excretion⁵⁹ and produce a significant decline of plasma Mg through ion exchange.⁶⁰ Thus, there seems to be a vicious circle between

Page 11 of 31

BMJ Open

Mg deficiency and insulin resistance.

Other potential mechanisms include glucose transportation.⁵⁷ oxidative stress⁵⁷ and inflammatory cytokines,⁶¹⁻⁶³ and cellular calcium homeostasis.⁵⁵ Mg is an essential cofactor of the high-energy phosphate-bound enzymatic pathways involved in the modulation of glucose transport across cell membranes.⁵⁷ It also plays a role in the mechanisms of cellular antioxidant defense.⁶⁴ The oxidative stress, defined as a persistent imbalance between the excessive production of reactive oxygen species and/or defects in antioxidant defense, has been implicated in the pathogenesis of diabetic complications.⁵⁷ Moreover, low serum Mg levels are strongly related to elevated serum concentrations of both tumor necrosis factor alpha and C-reactive protein (CRP).⁶⁵ suggesting that Mg deficiency may contribute to the development of low-grade chronic inflammation syndrome and the development of glucose metabolic disorders through the former pathway. In addition, lower Mg concentration can enhance calcium-mediated vasoconstriction, blunt cardiac and smooth muscle relaxation, and thus contribute to BP elevation.⁵⁵ However, the decreased serum calcium concentration in radiographic knee OA patients may weaken the association between Mg and HP.66

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

MetS^{21 22} and DM^{4 23 24} were reported to be the risk factors of OA progression. Moreover, serum Mg level has been proved to be significantly associated with the CRP concentration.^{27 67-69} and higher CRP might serve as a prediction factor for OA progression.^{70 71} Thus, OA progression may be delayed by elevating the serum Mg level through reducing the prevalence of MetS and DM and decreasing the level of CRP. Above all, the present study indicated that the elevation of serum Mg level has the potential to reduce the prevalence of MetS, DM and HU in knee OA patients and thereby may delay the progression of knee OA. However, the specific mechanism needs to be further explored.

The present study has several strengths. Firstly, this is the first study examining the associations between serum Mg and the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. The results of this study will provide a new insight into the treatment of knee OA. Secondly, the multivariable logistical regression

Page 12 of 31

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open

models were adjusted for a considerable number of potential confounding factors, which greatly improved the reliability of the results. Thirdly, the kidney is the key organ in maintaining Mg homeostasis. This study conducted a sensitivity analysis by adding eGFR into multivariable logistic regression models which showed that the reverse associations remained significant.

Limitations of the present study should also be admitted. The cross-sectional design precludes causal correlations, so further prospective studies and intervention trials should be undertaken to establish a causal association between serum Mg with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. Since no previous research investigated such associations in knee OA patients, the value of this study should not be blotted out by the cross-sectional nature. Another limitation of this study lies in the relatively small sample size, and thus, extensive high-quality researches based on a larger sample are needed. Moreover, the dietary intake of Mg in relation to the prevalence of MetS, DM, HP and HU were not assessed in the present study. Last but not the least, it is important to highlight that Mg is an intracellular ion; therefore, the serum Mg concentration must be considered as a poor indicator of body Mg content,⁷² even though it has been used in many studies. However, blood Mg level is the second best indicator of body status.⁷³

322 Conclusions

The present study concluded that the serum Mg concentration was inversely associated with the prevalence of MetS, DM and HU in radiographic knee OA patients.

327 Contributors

All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. GHL, YLW and JW conceived the study. GHL, YLW and JW were responsible for conception and design of the study and drafted the manuscript. CZ, TY, HL, YC and DXX contributed to data collection. WJ contributed to preparation and data analysis. BX, ZCL, JTL, and SDJ contributed to study retrieval. GHL and YLW contributed to revision of the manuscript. All the authors contributed to the interpretation of the data and critically reviewed the manuscript for publication.

337 Funding

This work was supported by the Innovation Foundation of the Central South University for Postgraduate (2018zzts045), the Postdoctoral Science Foundation of Central South University (182130), the National Natural Science Foundation of China (No. 81201420, 81272034, 81472130, 81501923), the Provincial Science Foundation of Hunan (No. 14JJ3032), the Scientific Research Project of the Development and Reform Commission of Hunan Province ([2013]1199), the Scientific Research Project of Science and Technology Office of Hunan Province (2013SK2018), the Doctoral Scientific Fund Project of the Ministry of Education of China (20120162110036).

347 Competing interests

- 348 The authors declare that they have no conflict of interest.

350 Ethics approval

The protocol of this study was reviewed and approved by the Ethics Committee atXiangya Hospital.

354 Data sharing statement

The datasets during the current study available from the corresponding author on reasonable request.

	357 358	RE	FERENCE
	359		Zhuo Q, Yang W, Chen J, et al. Metabolic syndrome meets osteoarthritis. Nat
	360		<i>Rev Rheumatol</i> 2012;8(12):729-37.
	361	2	Katz JD, Agrawal S, Velasquez M. Getting to the heart of the matter:
	362		osteoarthritis takes its place as part of the metabolic syndrome. Curr Opin
	363		Rheumatol 2010;22(5):512-9.
:	364	3	Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new
	365		phenotype. Ann Rheum Dis 2011;70(8):1354-6.
	366	4	King KB, Rosenthal AK. The adverse effects of diabetes on osteoarthritis: update
3	367		on clinical evidence and molecular mechanisms. Osteoarthritis Cartilage
3	368		2015;23(6):841-50.
3	369	5	Kirkman MS. Osteoarthritis progression: is diabetes a culprit? Osteoarthritis
:	370		<i>Cartilage</i> 2015;23(6):839-40.
:	371	6	Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine
1	372		2013;80(6):568-73.
1	373	7	Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in
:	374		individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med
3	375		2009;121(6):9-20.
3	376	8	Shin D. Association between metabolic syndrome, radiographic knee
	377		osteoarthritis, and intensity of knee pain: results of a national survey. J Clin
:	378		Endocrinol Metab 2014;99(9):3177-83.
:	379	9	Calvet J, Orellana C, Larrosa M, et al. High prevalence of cardiovascular
:	380		co-morbidities in patients with symptomatic knee or hand osteoarthritis. Scand J
	381		<i>Rheumatol</i> 2015:1-4.
3	382	10	Rahman MM, Kopec JA, Cibere J, et al. The relationship between osteoarthritis
3	383		and cardiovascular disease in a population health survey: a cross-sectional study.
3	384		<i>BMJ Open</i> 2013;3(5):e2624.
	385	11	Inoue R, Ishibashi Y, Tsuda E, et al. Medical problems and risk factors of
	386		metabolic syndrome among radiographic knee osteoarthritis patients in the
			14
			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjop
om http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.
ected by copyright.

387		Japanese general population. J Orthop Sci 2011;16(6):704-9.
388	12	Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knew
389		osteoarthritis in women: the Chingford Study. J Rheumatol 1995;22(6):1118-23.
390	13	Jungmann PM, Kraus MS, Alizai H, et al. Association of metabolic risk factors
391		with cartilage degradation assessed by T2 relaxation time at the knee: data from
392		the osteoarthritis initiative. Arthritis Care Res (Hoboken) 2013;65(12):1942-50.
393	14	Anagnostopoulos I, Zinzaras E, Alexiou I, et al. The prevalence of rheumatic
394		diseases in central Greece: a population survey. BMC Musculoskelet Disord
395		2010;11:98.
396	15	Massengale M, Reichmann WM, Losina E, et al. The relationship between hand
397		osteoarthritis and serum leptin concentration in participants of the Third National
398		Health and Nutrition Examination Survey. Arthritis Res Ther 2012;14(3):R132.
399	16	Nieves-Plaza M, Castro-Santana LE, Font YM, et al. Association of hand or knew
400		osteoarthritis with diabetes mellitus in a population of Hispanics from Puerto
401		Rico. J Clin Rheumatol 2013;19(1):1-6.
402	17	Greiver M, Williamson T, Barber D, et al. Prevalence and epidemiology of
403		diabetes in Canadian primary care practices: a report from the Canadian Primary
404		Care Sentinel Surveillance Network. Can J Diabetes 2014;38(3):179-85.
405	18	Rahman MM, Cibere J, Anis AH, et al. Risk of Type 2 Diabetes among
406		Osteoarthritis Patients in a Prospective Longitudinal Study. Int J Rheumatol
407		2014;2014:620920.
408	19	Reid JL, Morton DJ, Wingard DL, et al. Obesity and other cardiovascular disease
409		risk factors and their association with osteoarthritis in Southern California
410		American Indians, 2002-2006. Ethn Dis 2010;20(4):416-22.
411	20	Birtwhistle R, Morkem R, Peat G, et al. Prevalence and management of
412		osteoarthritis in primary care: an epidemiologic cohort study from the Canadian
413		Primary Care Sentinel Surveillance Network. CMAJ Open 2015;3(3):E270-5.
414	21	Yoshimura N, Muraki S, Oka H, et al. Accumulation of metabolic risk factors
415		such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance
416		raises the risk of occurrence and progression of knee osteoarthritis: a 3-year $\frac{15}{15}$

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

417		follow-up of the ROAD study. Osteoarthritis Cartilage 2012;20(11):1217-26.
418	22	Monira HS, Wang Y, Cicuttini FM, et al. Incidence of total knee and hip
419		replacement for osteoarthritis in relation to the metabolic syndrome and its
420		components: a prospective cohort study. Semin Arthritis Rheum
421		2014;43(4):429-36.
422	23	Schett G, Kleyer A, Perricone C, et al. Diabetes is an independent predictor for
423		severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care
424		2013;36(2):403-9.
425	24	Eymard F, Parsons C, Edwards MH, et al. Diabetes is a risk factor for knee
426		osteoarthritis progression. Osteoarthritis Cartilage 2015;23(6):851-9.
427	25	Guerrero-Romero F, Rodriguez-Moran M. Low serum magnesium levels and
428		metabolic syndrome. Acta Diabetol 2002;39(4):209-13.
429	26	Guerrero-Romero F, Rodriguez-Moran M. Hypomagnesemia, oxidative stress,
430		inflammation, and metabolic syndrome. Diabetes Metab Res Rev
431		2006;22(6):471-6.
432	27	Evangelopoulos AA, Vallianou NG, Panagiotakos DB, et al. An inverse
433		relationship between cumulating components of the metabolic syndrome and
434		serum magnesium levels. Nutr Res 2008;28(10):659-63.
435	28	Hjelmesaeth J, Hofso D, Aasheim ET, et al. Parathyroid hormone, but not
436		vitamin D, is associated with the metabolic syndrome in morbidly obese women
437		and men: a cross-sectional study. Cardiovasc Diabetol 2009;8:7.
438	29	Lima ML, Cruz T, Rodrigues LE, et al. Serum and intracellular magnesium
439		deficiency in patients with metabolic syndromeevidences for its relation to
440		insulin resistance. Diabetes Res Clin Pract 2009;83(2):257-62.
441	30	Ma J, Folsom AR, Melnick SL, et al. Associations of serum and dietary
442		magnesium with cardiovascular disease, hypertension, diabetes, insulin, and
443		carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in
444		Communities Study. J Clin Epidemiol 1995;48(7):927-40.
445	31	Kao WH, Folsom AR, Nieto FJ, et al. Serum and dietary magnesium and the risk
446		for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. 16
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2			
3 4	447		Arch Intern Med 1999;159(18):2151-9.
5	448	32	Wang JL, Shaw NS, Yeh HY, et al. Magnesium status and association with
6 7	449		diabetes in the Taiwanese elderly. Asia Pac J Clin Nutr 2005;14(3):263-9.
8 9	450	33	Chambers EC, Heshka S, Gallagher D, et al. Serum magnesium and type-2
10 11	451		diabetes in African Americans and Hispanics: a New York cohort. J Am Coll
12 13	452		Nutr 2006;25(6):509-13.
14 15	453	34	Simmons D, Joshi S, Shaw J. Hypomagnesaemia is associated with diabetes: Not
16	454		pre-diabetes, obesity or the metabolic syndrome. Diabetes Res Clin Pract
17 18	455		2010;87(2):261-6.
19 20	456	35	Sales CH, Pedrosa LF, Lima JG, et al. Influence of magnesium status and
21 22	457		magnesium intake on the blood glucose control in patients with type 2 diabetes.
23 24	458		Clin Nutr 2011;30(3):359-64.
25 26	459	36	Lecube A, Baena-Fustegueras JA, Fort JM, et al. Diabetes is the main factor
27	460		accounting for hypomagnesemia in obese subjects. PLoS One 2012;7(1):e30599.
28 29	461	37	Xu J, Xu W, Yao H, et al. Associations of serum and urinary magnesium with the
30 31	462		pre-diabetes, diabetes and diabetic complications in the Chinese Northeast
32 33	463		population. <i>PLoS One</i> 2013;8(2):e56750.
34 35	464	38	Yang SJ, Hwang SY, Baik SH, et al. Serum magnesium level is associated with
36	465		type 2 diabetes in women with a history of gestational diabetes mellitus: the
37 38	466		Korea National Diabetes Program study. J Korean Med Sci 2014;29(1):84-9.
39 40	467	39	Singh RB, Rastogi V, Niaz MA, et al. Epidemiological study of magnesium
41 42	468		status and risk of hypertension in a rural population of north India. Magnes Res
43 44	469		1996;9(3):173-81.
45 46	470	40	Peacock JM, Folsom AR, Arnett DK, et al. Relationship of serum and dietary
47	471		magnesium to incident hypertension: the Atherosclerosis Risk in Communities
48 49	472		(ARIC) Study. Ann Epidemiol 1999;9(3):159-65.
50 51	473	41	Guerrero-Romero F, Rodriguez-Moran M, Hernandez-Ronquillo G, et al. Low
52 53	474		Serum Magnesium Levels and Its Association with High Blood Pressure in
54 55	475		Children. J Pediatr 2016;168:93-8.
56 57	476	42	Zeng C, Wang YL, Wei J, et al. Association between low serum magnesium
58			17
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 31

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

477		concentration and hyperuricemia. Magnes Res 2015;28(2):56-63.
478	43	Zeng C, Wei J, Li H, et al. Relationship between Serum Magnesium
479		Concentration and Radiographic Knee Osteoarthritis. J Rheumatol
480		2015;42(7):1231-6.
481	44	Wei J, Zeng C, Gong QY, et al. Associations between Dietary Antioxidant Intake
482		and Metabolic Syndrome. PLoS One 2015;10(6):e130876.
483	45	Xie DX, Xiong YL, Zeng C, et al. Association between low dietary zinc and
484		hyperuricaemia in middle-aged and older males in China: a cross-sectional study.
485		<i>BMJ Open</i> 2015;5(10):e8637.
486	46	Wei J, Zeng C, Gong QY, et al. The association between dietary selenium intake
487		and diabetes: a cross-sectional study among middle-aged and older adults. Nutr J
488		2015;14:18.
489	47	Expert Panel on Metabolic Syndrome of Chinese Diabetes Society:
490		Recommendations on metabolic syndrome of Chinese Diabetes Society (Chinese).
491		<i>Chin J Diabetes</i> 2004;14:156-61.
492	48	Pang C, Jia L, Hou X, et al. The significance of screening for microvascular
493		diseases in Chinese community-based subjects with various metabolic
494		abnormalities. PLoS One 2014;9(5):e97928.
495	49	Zhou H, Guo ZR, Yu LG, et al. Evidence on the applicability of the ATPIII, IDF
496		and CDS metabolic syndrome diagnostic criteria to identify CVD and T2DM in
497		the Chinese population from a 6.3-year cohort study in mid-eastern China.
498		<i>Diabetes Res Clin Pract</i> 2010;90(3):319-25.
499	50	Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular
500		filtration rate. Ann Intern Med 2009;150(9):604-12.
501	51	Joosten MM, Gansevoort RT, Mukamal KJ, et al. Urinary magnesium excretion
502		and risk of hypertension: the prevention of renal and vascular end-stage disease
503		study. <i>Hypertension</i> 2013;61(6):1161-7.
504	52	Choi MK, Bae YJ. Association of Magnesium Intake with High Blood Pressure
505		in Korean Adults: Korea National Health and Nutrition Examination Survey
506		2007-2009. <i>PLoS One</i> 2015;10(6):e130405.
		For peer review only - http://bmiopen.hmi.com/site/about/guidelines.yhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 31

BMJ Open

2			
3 4	507	53	R Development Core Team. R: A Language and Environment for Statistical
5	508		Computing, Vienna, Austria: R Foundation for Statistical Computing. 2016.
7	509	54	Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the
8 9	510		metabolic syndrome: an American Heart Association/National Heart, Lung, and
10 11	511		Blood Institute Scientific Statement. Circulation 2005;112(17):2735-52.
12 13	512	55	Barbagallo M, Dominguez LJ, Galioto A, et al. Role of magnesium in insulin
14 15	513		action, diabetes and cardio-metabolic syndrome X. Mol Aspects Med
16	514		2003;24(1-3):39-52.
17 18	515	56	Song Y, Ridker PM, Manson JE, et al. Magnesium intake, C-reactive protein, and
19 20	516		the prevalence of metabolic syndrome in middle-aged and older U.S. women.
21 22	517		Diabetes Care 2005;28(6):1438-44.
23 24	518	57	Guerrero-Romero F, Rodriguez-Moran M. Complementary therapies for diabetes:
25 26	519		the case for chromium, magnesium, and antioxidants. Arch Med Res
27	520		2005;36(3):250-7.
28 29	521	58	Huerta MG, Roemmich JN, Kington ML, et al. Magnesium deficiency is
30 31	522		associated with insulin resistance in obese children. Diabetes Care
32 33	523		2005;28(5):1175-81.
34 35	524	59	Djurhuus MS, Skott P, Hother-Nielson O, et al. Insulin increases renal
36 37	525		magnesium excretion: a possible cause of magnesium depletion in
38	526		hyperinsulinaemic states. <i>Diabet Med</i> 1995;12(8):664-9.
39 40	527	60	Paolisso G, Sgambato S, Passariello N, et al. Insulin induces opposite changes in
41 42	528		plasma and erythrocyte magnesium concentrations in normal man. Diabetologia
43 44	529		1986;29(9):644-7.
45 46	530	61	Bonora E, Targher G, Zenere MB, et al. Relationship of uric acid concentration to
47	531		cardiovascular risk factors in young men. Role of obesity and central fat
48 49	532		distribution. The Verona Young Men Atherosclerosis Risk Factors Study. Int J
50 51	533		Obes Relat Metab Disord 1996;20(11):975-80.
52 53	534	62	Lyngdoh T, Marques-Vidal P, Paccaud F, et al. Elevated serum uric acid is
54 55	535		associated with high circulating inflammatory cytokines in the population-based
56 57	536		Colaus study. PLoS One 2011;6(5):e19901.
58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 31

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

537	63	Kirilmaz B, Asgun F, Alioglu E, et al. High inflammatory activity related to the
538		number of metabolic syndrome components. J Clin Hypertens (Greenwich)
539		2010;12(2):136-44.
540	64	Salmonowicz B, Krzystek-Korpacka M, Noczynska A. Trace elements,
541		magnesium, and the efficacy of antioxidant systems in children with type 1
542		diabetes mellitus and in their siblings. Adv Clin Exp Med 2014;23(2):259-68.
543	65	Rodríguez-Morán M, Guerrero-Romero F. Elevated serum concentration of
544		tumor necrosis factor-alpha is linked to low serum magnesium levels in the
545		obesity-related inflammatory response. Magnes Res 2004;17:189-96.
546	66	Li H, Zeng C, Wei J, et al. Serum Calcium Concentration Is Inversely Associated
547		With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. Medicine
548		(Baltimore) 2016;95(6):e2838.
549	67	Chacko SA, Song Y, Nathan L, et al. Relations of dietary magnesium intake to
550		biomarkers of inflammation and endothelial dysfunction in an ethnically diverse
551		cohort of postmenopausal women. Diabetes Care 2010;33(2):304-10.
552	68	Bo S, Durazzo M, Guidi S, et al. Dietary magnesium and fiber intakes and
553		inflammatory and metabolic indicators in middle-aged subjects from a
554		population-based cohort. Am J Clin Nutr 2006;84(5):1062-9.
555	69	Kim DJ, Xun P, Liu K, et al. Magnesium intake in relation to systemic
556		inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care
557		2010;33(12):2604-10.
558	70	Spector TD, Hart DJ, Nandra D, et al. Low-level increases in serum C-reactive
559		protein are present in early osteoarthritis of the knee and predict progressive
560		disease. Arthritis Rheum 1997;40(4):723-7.
561	71	Smith JW, Martins TB, Gopez E, et al. Significance of C-reactive protein in
562		osteoarthritis and total knee arthroplasty outcomes. Ther Adv Musculoskelet Dis
563		2012;4(5):315-25.
564	72	Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. Rev Endocr
565		Metab Disord 2003;4(2):195-206.
566	73	Sabatier M, Pont F, Arnaud MJ, et al. A compartmental model of magnesium 20

1		
2 3		
4	567 me	etabolism in healthy men based on two stable isotope tracers. Am J Physiol
5	568 Re	gul Integr Comp Physiol 2003;285(3):R656-63.
6		
7	569	
8		
9 10		
11		
12		
13		
14		
15		
16 17		
18		
19		
20		
21		
22 23		
23 24		
25		
26		
27		
28		
29 30		
31		
32		
33		
34		
35 36		
37		
38		
39		
40		
41 42		
42 43		
44		
45		
46		
47 48		
48 49		
50		
51		
52		
53		
54 55		
56		
57		24
58		21
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		r or peer review only - http://binjopen.binj.com/site/about/guidelines.xntmi

1	
2	
3	
4	
5	
6	
7	
8	
0	
9 10	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	

		Quintiles of serum Mg					
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)		
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99		
Participants (n)	200	215	190	168	189		
Age (years)	53.8 (7.3)	54.6 (7.6)	55.2 (7.9)	55.3 (7.1)	56.1 (8.0)	0.0	
BMI (kg/m ²)	25.2 (3.2)	24.9 (3.2)	25.0 (3.7)	25.2 (3.4)	24.6 (3.2)	0.4	
Female (%)	37.5	42.3	36.8	42.3	37.0	0.	
Smoking (%)	27.5	27.4	21.6	24.4	21.7	0.4	
Alcohol drinking (%)	34.5	36.3	40.5	41.1	38.1	0.0	
High school diploma (%)	45.0	47.4	45.3	56.5	48.1	0.	
Activity level (h/w)	2.0 (3.5)	2.0 (3.3)	2.3 (3.5)	2.1 (3.1)	2.4 (3.5)	0.4	
Fasting glucose (mmol/l)	6.6 (3.0)	5.7 (1.7)	5.7 (1.4)	5.5 (0.9)	5.5 (1.6)	0.0	
Systolic pressure (mm Hg)	129.2 (16.9)	128.3 (17.9)	130.4 (16.2)	128.8 (16.3)	129.6 (17.7)	0.3	
Diastolic pressure (mm Hg)	81.2 (11.8)	79.8 (12.1)	80.7 (11.0)	80.7 (10.7)	80.3 (10.5)	0.0	
HDL-cholesterol (mmol/l)	1.5 (0.4)	1.5 (0.4)	1.5 (0.4)	1.5 (0.3)	1.5 (0.4)	0.	
Triglyceride (mmol/l)	2.1 (1.9)	1.8 (1.5)	2.0 (2.1)	1.8 (1.0)	2.3 (2.9)	0.0	

22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2											
3 4 5											
6 7		Uric acid (µmol/l)	337.3 (101.7)	329.0 (80.7)	321.3 (86.3)	331.5 (78.0)	329.4 (81.7)	0.590			
8 9		eGFR (ml/min/1.73m ²)	80.2 (14.4)	77.7 (10.7)	76.0 (10.6)	75.8 (10.7)	74.3 (12.0)	<0.001			
10 11		MetS (%)	26.5	17.7	25.8	19.6	17.5	0.059			
12 13		DM (%)	23.5	10.7	10.0	8.3	6.3	<0.001			
14 15		HP (%)	40.0	33.5	37.4	42.3	40.2	0.432			
16 17		HU (%)	25.5	19.1	13.2	18.5	14.8	0.018			
18	571	Data are mean (Standard Deviation), unless otherwise indicated; Mg, magnesium; OA, osteoarthritis; BMI, body mass index; HDL, high density lipoprotein; eGFR,									
19 20	572	estimated glomerular filtration rate; N	MetS, metabolic syndro								
21 22	573	# P values are for test of difference ac	cross all quintiles of se	rum Mg.							
23 24	574	 # P values are for test of difference across all quintiles of serum Mg. 574 									
25 26											
27 28											
29 30											
31 32											
33											
34 35											
36 37											
38 39											
40 41					23						
42											
43 44			F			W. S.L.P Louis					
45 46		(doo (a popopo) , yoon6 (a , (en.bmj.com/site/abou						
47	riaht.	BMJ Open: first published as 10.1136/bmjopen-2015.9 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyr									

3		
4		
5		
6 7	575	Figure 1 The prevalence of M
8 9	576	The figures above present th
10 11	577	horizontal axis denotes the s
12 13	578	The solid gray lines represer
14 15	579	diseases at each serum Mg le
16	580	
17		
18		
19		
20		
21 22		
22		
23 24		
25		
26		
27		
28		
29		
30		
31		
32		
33 34		
35		
36		
37		
38		
39		
40		
41		
42		
43 44		
44 45		
45 46	_	
47	,right.	24 by guest. Protected by copy

1 2

MetS (A), DM (B), HP (C) and HU (D) in each quintile of serum Mg in radiographic knee OA patients

he prevalence of MetS (A), DM (B), HP (C) and HU (D) among the 962 OA patients under different quintiles of serum Mg levels. The

serum Mg level, and the vertical axis indicates whether a subject is diagnosed with the specific disease: (+) - disease; (-) - no disease.

nt the boundaries in between the five quintiles of serum Mg levels. The red and black spots represent the prevalence of diseases and no

e five κ, er the color of a spo, evel, respectively. The darker the color of a spot, the more OA patients there are at the corresponding concentration.

24

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.5176/mgiopen-2017-0159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 202

BMJ Open

581 Table 2 Multivariable-adjusted relations of serum Mg and MetS in OA patients (n	= 962)
---	--------

		Quintiles of serum Mg				
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
MetS (%)	26.5	17.7	25.8	19.6	17.5	-
Model 1*	1.00 (reference)	0.61 (0.38, 0.97)	0.97 (0.61, 1.52)	0.69 (0.42, 1.14)	0.59 (0.36, 0.96)	0.090
P value	-	0.038	0.881	0.150	0.035	-
Model 2*	1.00 (reference)	0.60 (0.37, 0.96)	1.00 (0.63, 1.57)	0.70 (0.42, 1.15)	0.61 (0.37, 0.99)	0.120
P value	-	0.035	0.99	0.160	0.047	-
Model 3*	1.00 (reference)	0.59 (0.36, 0.94)	0.95 (0.60, 1.51)	0.67 (0.40, 1.10)	0.56 (0.34, 0.93)	0.067
P value	-	0.027	0.830	0.114	0.024	

582 Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; MetS, metabolic syndrome.

*Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

י ר	
2	
3	
4	
5	
6	
/	
8	
9	
10	
11	
9 10 11 12 13 14	
13	
14	
15 16	
16	
17	
18	
19	
20	
21	
22	
23	
24	
23 24 25 26	
26	
27	
28	
29	
30 31	
31	
32	
33	
33 34 35 36	
35	
36	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	

1

	Quintiles of serum Mg						
		Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
	Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
	Participants (n)	200	215	190	168	189	-
	DM (%)	23.5	10.7	10.0	8.3	6.3	-
	Model 1*	1.00 (reference)	0.38 (0.22, 0.66)	0.34 (0.19, 0.61)	0.29 (0.15, 0.55)	0.20 (0.10, 0.40)	< 0.001
	P value	-	0.001	< 0.001	< 0.001	<0.001	-
	Model 2*	1.00 (reference)	0.40 (0.23, 0.70)	0.32 (0.18, 0.59)	0.26 (0.13, 0.50)	0.21 (0.11, 0.42)	< 0.001
	P value	-	0.001	<0.001	<0.001	<0.001	-
	Model 3*	1.00 (reference)	0.40 (0.23, 0.70)	0.33 (0.18, 0.60)	0.27 (0.14, 0.52)	0.22 (0.11, 0.44)	< 0.001
	P value	-	0.001	<0.001	<0.001	<0.001	-
8	Data are adjusted OR (95% CI), unless	s otherwise indicated	; Mg, magnesium; n, nı	umber; OA, osteoarthr	itis; DM, diabetes mel	litus.	
9	*Model 1 was adjusted for age (contin	nuous data) and gende	er (male, female); Mod	el 2 was adjusted for a	age (continuous data),	BMI (continuous data)	, gender (ma
0	female), educational level (high schoo	l or above, lower that	n high school), smokin	g status (yes, no), activ	vity level (continuous	data), alcohol drinking	status (yes, 1
	hypertension (yes, no), and dyslipiden	nia (yes, no); Model 3	was adjusted based or	model 2, with additio	nal factor of eGFR (co	ontinuous data).	
1							
91 92			:	26			
				26			

BMJ Open

2 3 4 5	
6	500
7	593
8	
9	
10	
11	
12	
13 14	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	F04
29 30	594
30 31	595
32	
33	596
34	
35	597
36	598
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40	Зµť.

47

		Quintiles of serum Mg				
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
HP (%)	40.0	33.5	37.4	42.3	40.2	-
Model 1*	1.00 (reference)	0.71 (0.47, 1.06)	0.83 (0.54, 1.25)	1.00 (0.66, 1.54)	0.89 (0.59, 1.35)	0.929
P value	-	0.095	0.368	0.987	0.582	-
Model 2*	1.00 (reference)	0.77 (0.50, 1.19)	0.89 (0.57, 1.39)	1.10 (0.70, 1.74)	1.08 (0.69, 1.68)	0.377
P value	-	0.245	0.608	0.686	0.744	-
Model 3*	1.00 (reference)	0.77 (0.50, 1.19)	0.88 (0.56, 1.38)	1.09 (0.68, 1.72)	1.05 (0.67, 1.65)	0.434
P value	-	0.235	0.574	0.727	0.818	-

Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; HP, hypertension. 594

* Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (continuous data), gender (male, 595 596 female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), 597 diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).

27

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 $\alpha(\alpha)$

י ר
2
3
4
5
6
7
8
9
10
11
17
12
13
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
15
16
17
14 15 16 17 18 19 20
19
20
21
22
22 23
23 24
24 25 26 27 28
25
26
27
28
29
30
31
32
22
34
35
36
34 35 36 37 38
2/ 20
39
40
41
42
43
44
45
46
10

47

1

T11 CM 1.

· 11

1. / 1

			Quintiles of serum M	ſg		
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
HU (%)	25.5	19.1	13.2	18.5	14.8	-
Model 1*	1.00 (reference)	0.71 (0.44, 1.14)	0.44 (0.26, 0.75)	0.68 (0.41, 1.14)	0.51 (0.30, 0.85)	0.008
P value	-	0.157	0.002	0.144	0.010	-
Model 2*	1.00 (reference)	0.73 (0.45, 1.20)	0.38 (0.22, 0.67)	0.59 (0.35, 1.02)	0.50 (0.29, 0.87)	0.006
P value	-	0.210	0.001	0.058	0.013	-
Model 3*	1.00 (reference)	0.68 (0.41, 1.14)	0.33 (0.19, 0.59)	0.52 (0.30, 0.91)	0.39 (0.22, 0.70)	< 0.001
P value	-	0.142	< 0.001	0.022	0.001	-

600 Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; HU, hyperuricemia.

11111. 01

* Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (continuous data), gender (male,
 female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no),

hypertension (yes, no), diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data)

28

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

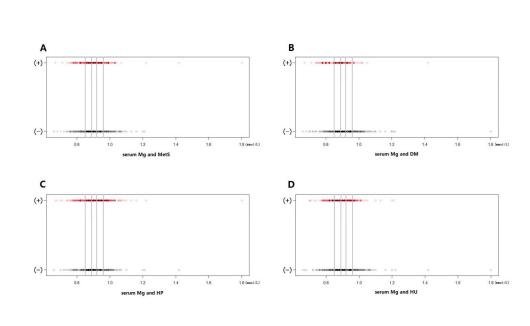


Figure 1 The prevalence of MetS (A), DM (B), HP (C) and HU (D) in each quintile of serum Mg in radiographic knee OA patients

The figures above present the prevalence of MetS (A), DM (B), HP (C) and HU (D) among the 962 OA patients under different quintiles of serum Mg levels. The horizontal axis denotes the serum Mg level, and the vertical axis indicates whether a subject is diagnosed with the specific disease: (+) - disease; (-) - no disease. The solid gray lines represent the boundaries in between the five quintiles of serum Mg levels. The red and black spots represent the prevalence of diseases and no diseases at each serum Mg level, respectively. The darker the color of a spot, the more OA patients there are at the corresponding concentration.

549x304mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Reported o Page No
Title and	1	(a) Indicate the study's design with a commonly used term in the title or the	2
abstract		abstract	
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rati	2	Explain the scientific background and rationale for the investigation being	4
onale		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	4-5
		selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and methods	
		of case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	-
		exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	4-6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	4-5
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable,	6-7
variables		describe which groupings were chosen and why	
Statistical	12	(a) Describe all statistical methods, including those used to control for	6-7
methods		confounding	
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	4-5
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls	
		was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	

1 2 3	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
6 7 8	
9 10	
11 12 13	
14 15	
16 17	
18 19 20	
21 22	
23 24 25	
26 27	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
30 31 32	
33 34	
32 33 34 35 36 37 38	
39	
40 41 42	
43 44	
45 46 47	
47 48 49	
50 51	
52 53 54	
55 56	
57 58 59	
60	

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	4-5
_		potentially eligible, examined for eligibility, confirmed eligible, included in the	
		study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	4-5
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	8
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	-
		interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over	-
		time	
		Case-control study—Report numbers in each exposure category, or summary	-
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary	8-10
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	8-10
		and their precision (eg, 95% confidence interval). Make clear which	
		confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-10
		(c) If relevant, consider translating estimates of relative risk into absolute risk	-
		for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	8-10
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	11-12
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-11
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-12
Other information	n		
Funding	22	Give the source of funding and the role of the funders for the present study and,	13
		if applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association between serum magnesium concentration and metabolic syndrome, diabetes, hypertension and hyperuricemia in knee osteoarthritis: a cross-sectional study in Hunan Province, China

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019159.R4
Article Type:	Research
Date Submitted by the Author:	31-Jul-2018
Complete List of Authors:	 Wang, Yi-lun; Xiangya Hospital Central South University, Orthopaedics Wei, Jie; Xiangya Hospital Central South University, Health Management Center Zeng, Chao; Xiangya Hospital Central South University, Orthopaedics Yang, Tuo; Xiangya Hospital Central South University, Orthopaedics Li, Hui; Xiangya Hospital Central South University, Orthopaedics Cui, Yang; Xiangya Hospital Central South University, International Medical Center Xie, Dong-xing; Xiangya Hospital, Central South University, Orthopaedics Xu, Bei; Xiangya Hospital Central South University, Orthopaedics Liu, Zhi-chen; Xiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Jiangya Hospital Central South University, Orthopaedics Li, Jia-tian; Xiangya Hospital Central South University, Orthopaedics Li, Jiangya Hospital Central South University, Orthopaedics Li, Jiangya Hospital Central South University, Orthopaedics Liangya Hospital Central South University, Orthopaedics
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Rheumatology, Public health, Epidemiology
Keywords:	osteoarthritis, magnesium, metabolic syndrome, diabetes, Hypertension < CARDIOLOGY, hyperuricemia

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 1 of 31

BMJ Open

1		
2 3	1	Association between serum magnesium concentration and metabolic syndrome,
4	T	
5 6	2	diabetes, hypertension and hyperuricemia in knee osteoarthritis: a
7	3	cross-sectional study in Hunan Province, China
8 9	4	
10		Yilun Wang ¹ , Jie Wei ² , Chao Zeng ¹ , Tuo Yang ¹ , Hui Li ¹ , Yang Cui ³ , Dongxing Xie ¹ ,
11	5	
12 13	6	Bei Xu ¹ , Zhichen Liu ¹ , Jiatian Li ¹ , Shide Jiang ¹ , Guanghua Lei ^{1*}
14	7	
15 16	8	¹ Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha,
17 18	9	Hunan Province, China, 410008;
19		² Health Management Center, Xiangya Hospital, Central South University, Changsha,
20 21	10	
22	11	Hunan Province, China. 410008;
23 24	12	³ International Medical Center, Xiangya Hospital, Central South University, Changsha,
25 26	13	Hunan Province, China. 410008;
27 28	14	
29	15	*Correspondence to: Guanghua Lei, MD, PhD, Department of Orthopaedics, Xiangya
30 31	16	Hospital, Central South University, #87 Xiangya Road, Changsha, Hunan, China,
32 33	17	410008. E-mail: lei_guanghua@csu.edu.cn. Tel. 0731-84327326
34 35	18	
36 37		
38		
39 40		
41		
42 43		
43		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55		
56 57		
58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

19 Abstract

Objectives: To examine the associations between serum magnesium (Mg) concentration with the prevalence of metabolic syndrome (MetS), diabetes mellitus (DM), hypertension (HP) and hyperuricemia (HU) in radiographic knee osteoarthritis (OA) patients.

Methods: The present study was conducted at the Health Management Center of Xiangya Hospital. Radiographic OA was evaluated for patients aged over 40 years with basic characteristics and blood biochemical assessment. Serum Mg concentration was measured using the chemiluminescence method. MetS, DM, HP and HU were diagnosed based on standard protocols. The associations between serum Mg concentration with MetS, DM, HP and HU were evaluated by conducting multivariable adjusted logistic regression.

Results: A total of 962 radiographic knee OA patients were included. Compared with the lowest quintile, the multivariable-adjusted odds ratios (ORs) and related 95% confidence intervals (95%CI) of DM were 0.40 (95%CI 0.23-0.70, P=0.001), 0.33 (95%CI 0.18-0.60, P<0.001), 0.27 (95%CI 0.14-0.52, P<0.001) and 0.22 (95%CI 0.11-0.44, P<0.001) in the second, third, fourth and highest quintiles of serum Mg, respectively (P for trend <0.001); the multivariable-adjusted ORs of HU were 0.33 (95%CI 0.19-0.59, P<0.001), 0.52 (95%CI 0.30-0.91, P=0.022) and 0.39 (95%CI 0.22-0.70, P=0.001) in the third, fourth and highest quintiles of serum Mg respectively (P for trend <0.001); and the multivariable-adjusted ORs of MetS were 0.59 (95%CI 0.36-0.94, P=0.027) in the second and 0.56 (95%CI 0.34-0.93, P=0.024) in the highest quintiles of serum Mg. However, the inverse association between serum Mg and the prevalence of MetS was nonlinear (P for trend =0.067). There was no significant association between serum Mg and HP in OA patients.

44 Conclusions: The serum Mg concentration was inversely associated with the
45 prevalence of MetS, DM and HU in radiographic knee OA patients.

46 Level of Evidence: Level III, cross-sectional study.

47 Key words: osteoarthritis, magnesium, metabolic syndrome, diabetes, hypertension,

48 hyperuricemia

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

1 2		
3	49	Strengths and limitations of this study
4 5	50	1. This is the first study examining the associations between serum magnesium (1
6 7	51	and the prevalence of metabolic syndrome, diabetes mellitus, hypertension
8	52	hyperuricemia in radiographic knee osteoarthritis patients.
9 10		
11 12	53	2. The multivariable logistical regression models in this study were adjusted for
13	54	considerable number of potential confounding factors, which greatly improved
14 15	55	reliability of the results.
16	56	3. The kidney is the key organ in maintaining Mg homeostasis. This study conduc
17 18	57	a sensitivity analysis by adding estimated glomerular filtration rate into
19 20	58	multivariable logistic regression models, and the reverse associations remai
21		significant.
22 23	59	
24	60	4. This study adopted cross-sectional design which precluded causal correlations.
25 26	61	5. Serum Mg concentration was adopted as the indicator of body Mg content in
27	62	study which may not be the best indicator of body status.
28 29	63	
30		
31 32		
33 34		
35		study which may not be the best indicator of body status.
36 37		
38		
39 40		
41		
42 43		
44 45		
46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

64 Introduction

The association between osteoarthritis (OA) and metabolic diseases, especially metabolic syndrome (MetS)^{1 2} and diabetes mellitus (DM),³⁻⁵ has drawn increasing attention in the past few years. OA includes three specific phenotypes: metabolic OA, age-related OA and injury-related OA.⁶ A large number of studies have indicated that the prevalence of MetS,⁷⁻⁹ DM¹⁰⁻¹⁸ and hypertension (HP)^{7 9-13 19 20} is either higher in OA patients or associated with OA. In addition, some other studies reported that MetS,^{21 22} DM^{23 24} and HP^{21 22} are risk factors of OA progression. Thus, it appears necessary to pay more attention and adopt appropriate measures to reduce the high prevalence of metabolic diseases in OA patients, which also seems to be beneficial in delaying OA progression.

Serum magnesium (Mg), one of the most important micronutrients for human health, has been reported to be negatively associated with MetS,²⁵⁻²⁹ DM³⁰⁻³⁸ and HP³⁰ ³⁹⁻⁴¹ by lots of studies. Meanwhile, our previous study showed an inverse association between serum Mg and hyperuricemia (HU).⁴² However, to the best knowledge of the authors, there is not yet a study examining the association between the serum Mg concentration and the aforementioned metabolic diseases (MetS, DM, HP and HU) in OA patients. On the other hand, we have previously shown that the serum Mg concentration may be inversely associated with radiographic knee OA.⁴³ Therefore. we speculate that the prevalence of MetS, DM, HP and HU in OA patients may be reduced by elevating the level of serum Mg, which can in turn delay OA progression. Thus, the objective of the present study was to examine the associations between the serum Mg concentration with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. It was hypothesized that serum Mg concentration was inversely associated with these diseases.

90 Methods

91 Study population

92 The present study was conducted at the Health Management Center of Xiangya93 Hospital between October 2013 and November 2014. The study design has been

published previously.⁴²⁻⁴⁶ The protocol has been reviewed and approved by the Ethics Committee of Xiangya Hospital, Central South University (reference numbers: 201312459), and the methods were developed in "accordance" with the approved guidelines. Informed consent has been obtained from all participants. Registered nurses were engaged to interview all participants during the examination using a standard questionnaire, with the purpose to collect information on demographic characteristics and health-related habits. Participants were selected based on the following inclusion criteria: 1) 40 years old or above; 2) undergoing weight-bearing bilateral anteroposterior radiography of the knee, and diagnosed with knee OA according to the Kellgren-Lawrence (K-L) radiographic atlas (knee joint was graded K-L 2 or above); 3) availability of all basic characteristics, including age, gender, body mass index (BMI) and blood pressure; 4) availability of biochemical test results, including serum Mg concentration; 5) availability of information related to the living habits, including education background, activity level, smoking, drinking and medication status. Initially, the present cross-sectional study retrieved 1820 radiographic knee OA patients aged over 40 years who exhibited sound basic characteristics and required blood biochemical assessment (including serum Mg concentration). Among them, 962 patients offered demographic characteristics and health-related habits and were finally included in this study.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Blood biochemistry

All blood samples were drawn after a 12-hour overnight fast and were kept at 4°C until analysis. Blood tests were undertaken using the Beckman Coulter AU 5800 (Beckman Coulter Inc., Brea, CA, USA). The inter- and intra-assay coefficients of variation were tested at both low concentrations (2.5 mmol/L for glucose, 118 µmol/L for uric acid and 0.60 mmol/L for serum Mg) and high concentrations (6.7 mmol/L for glucose, 472 µmol/L for uric acid and 1.00 mmol/L for serum Mg) of standard human samples. The intra-assay coefficients of variation were 0.98% (2.5 mmol/L) and 1.72% (6.7 mmol/L) for glucose, 1.39% (118 µmol/L) and 0.41% (472 µmol/L) for uric acid, and 1.86% (0.60 mmol/L) and 1.65% (1.00 mmol/L) for serum Mg respectively. The

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
50	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	

1

inter-assay coefficients of variation were 2.45% (2.5 mmol/L) and 1.46% (6.7 mmol/L)

125 for glucose, 1.40% (118 μmol/L) and 1.23% (472 μmol/L) for uric acid, and 1.87%

126 (0.60 mmol/L) and 1.70% (1.00 mmol/L) for serum Mg respectively.

127

128 Assessment of other exposures

129 Blood pressure was measured by an electronic sphygmomanometer. The weight and 130 height of each subject were measured respectively to calculate the BMI. Information 131 on the average frequency of physical activity (never, one to two times per week, three 132 to four times per week, five times and above per week) and average duration of 133 physical activity (less than half an hour, half an hour to one hour, one to two hours, 134 more than two hours) were collected through survey questionnaire. The smoking, 135 alcohol drinking and medication status were collected during the face-to-face 136 interview.

137

138 Assessment of MetS, DM, HP and HU

MetS was diagnosed based on the Chinese Diabetes Society (CDS) criteria.⁴⁷⁻⁴⁹ which 139 requires meeting at least 3 of the following 4 items: (1) BMI ≥ 25 kg/m²; (2) Fasting 140 141 plasma glucose (FPG) \geq 6.1 mmol/L, or diagnosed DM; (3) Systolic blood pressure $(BP) \ge 140 \text{ mmHg}$ or diastolic BP $\ge 90 \text{ mmHg}$, or treatment of previously diagnosed 142 143 HP; (4) Triglycerides \geq 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality. Subjects with the 144 fasting glucose \geq 7.0 mmol/L or currently undergoing drug treatment for blood glucose 145 146 control were regarded as DM patients, and subjects with the systolic blood pressure 147 \geq 140 mm Hg or diastolic blood pressure \geq 90 mm Hg or currently undertaking 148 antihypertensive medication were regarded as HP patients. HU was defined as uric 149 acid \geq 416 µmol/L for male and \geq 360 µmol/L for female or currently undergoing drug 150 treatment for uric acid control.

151

152 Statistical analysis

153 The continuous data were expressed as mean with standard deviation, and the

category data were expressed in percentage. Differences in continuous data were evaluated by one-way classification ANOVA (normally distributed data) or Kruskal-Wallis H test (non-normally distributed data), while differences in category data were assessed by the χ^2 test. The serum Mg was classified into five categories based on the quintile distribution: ≤ 0.85 , 0.86-0.89, 0.90-0.92, 0.93-0.96 and ≥ 0.97 mmol/L. The prevalence of MetS, DM, HP and HU in each quintile of serum Mg in OA patients were assessed by scatter plots.

Logistic regression was conducted to calculate the odds ratios (ORs) with 95% confidence intervals (95%CI) for the associations between serum Mg and MetS, DM, HP and HU. Specifically, model 1 was adjusted by covariates of age (continuous data) and gender (male, female). Then, model 2 was adjusted by additional covariates of BMI (continuous data), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), HP (yes, no), DM (yes, no), and dyslipidemia (yes, no) on the basis of model 1. Dyslipidemia was defined as triglycerides ≥ 1.7 mmol/L and/or HDL-cholesterol <0.9 mmol/L in male or <1.0 mmol/L in female, or treatment for this lipid abnormality. Notably, the selection of covariates in model 2 varied slightly for examining different associations (between serum Mg and MetS, DM, HP or HU). For example, BMI, HP and dyslipidemia were adjusted for the association between serum Mg and DM, but not for the association between serum Mg and MetS, simply because MetS was diagnosed based on BMI, HP and dyslipidemia status. Model 3 was established based on model 2, with adjustment of an additional covariate, estimated glomerular filtration rate (eGFR). eGFR (continuous data) was calculated from the Chronic Kidney Disease Epidemiology Collaboration equation.⁵⁰ All covariates in the present study were chosen referring to some of the previous similar studies.^{27 33 51 52} Tests for linear trends were conducted based on logistic regression using a median variable of Mg concentration in each category.

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

181 Scatter plots were plotted using R 3.4.4.⁵³ Other data analyses were performed 182 using SPSS 17.0; P \leq 0.05 was considered to be statistically significant. All tests were 183 two tailed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	
47 48 49 50 51 52 53 54 55 56 57 58 59 60	

185 Patient and public involvement

No patients were involved in setting the research question or the outcome measures, 186 nor were they involved in the design or implementation of the study. There were no 187 188 plans to disseminate the results of the research to study participants.

189

184

190 Results

191 A total of 962 subjects (377 females, accounting for 39.2%) were included in the 192 present cross-sectional study. The characteristics of the study population according to 193 quintiles of serum Mg were presented in Table 1. The mean age of the subjects was 194 54.9±7.6 years old. The overall prevalence of MetS, DM, HP and HU in OA patients 195 were 21.4%, 12.0%, 38.5% and 18.3% respectively. Significant differences were 196 observed across the quintiles of serum Mg for fasting glucose, as well as the 197 prevalence of DM and HU.

198 The prevalence of MetS in each quintile of serum Mg in OA patients was shown 199 in Figure 1 (A). The outcomes of multivariable adjusted associations between MetS 200 and serum Mg concentration were shown in Table 2. Compared with the lowest 201 quintile, the age-gender adjusted ORs (Model 1) suggested significant decreased prevalence of MetS in the second (OR=0.61, 95%CI 0.38-0.97, P=0.038) and the 202 203 highest (OR=0.59, 95%CI 0.36-0.96, P=0.035) quintiles of serum Mg; the 204 multivariable adjusted ORs (Model 2) also suggested significant decreased prevalence 205 of MetS in the second (OR=0.60, 95%CI 0.37-0.96, P=0.035) and the highest 206 (OR=0.61, 95%CI 0.37-0.99, P=0.047) quintiles. The sensitivity analysis, by adding 207 eGFR into model 2, also reached similar results - significant lower prevalence of 208 MetS in the second (OR=0.59, 95%CI 0.36-0.94, P=0.027) and the highest quintiles 209 (OR=0.56, 95%CI 0.34-0.93, P=0.024) compared with the reference quintile of serum 210 Mg. No clear trend was evident in the third and fourth quintiles of serum Mg. The P 211 for trend were 0.090 (Model 1), 0.120 (Model 2), 0.067 (Model 3), respectively.

212 Figure 1 (B) showed the prevalence of DM in each category of serum Mg in OA patients. Table 3 illustrated the multivariable adjusted relations between serum Mg 213

Page 9 of 31

BMJ Open

and DM in OA patients. Both the age-gender adjusted OR values (Model 1) and the multivariable adjusted OR values (Model 2) suggested a strong inverse association between serum Mg and DM. The age-gender adjusted ORs for the prevalence of DM were 0.38 (95%CI 0.22-0.66, P=0.001), 0.34 (95%CI 0.19-0.61, P<0.001), 0.29 (95%CI 0.15-0.55, P<0.001), and 0.20 (95%CI 0.10-0.40, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was <0.001. The multivariable adjusted ORs for the prevalence of DM were 0.40 (95%CI 0.23-0.70, P=0.001), 0.32 (95%CI 0.18-0.59, P<0.001), 0.26 (95%CI 0.13-0.50, P<0.001), and 0.21 (95%CI 0.11-0.42, P<0.001) in the second, third, fourth and fifth quintiles of serum Mg respectively, and the P for trend was <0.001. The sensitivity analysis, by adding eGFR into model 2, showed similar results - significant lower prevalence of DM in the second (OR=0.40, 95%CI 0.23-0.70, P=0.001), third (OR=0.33, 95%CI 0.18-0.60, P<0.001), fourth (OR=0.27, 95%CI 0.14-0.52, P<0.001), and highest quintiles (OR=0.22, 95%CI 0.11-0.44, P<0.001) compared with the reference quintile of serum Mg, and the P for trend was <0.001.

The prevalence of HP in each quintile of serum Mg in OA patients was depicted in Figure 1 (C). The multivariable-adjusted relations between serum Mg and HP in OA patients were illustrated in Table 4. According to both the age-gender adjusted ORs (Model 1) and the multivariable adjusted ORs (Model 2), there was no significant association between serum Mg and HP, and the P for trend were 0.929 and 0.377, respectively. The sensitivity analysis, by adding eGFR into model 2, reached the same results.

The prevalence of HU in each category of serum Mg in OA patients was shown in Figure 1 (D). The multivariable-adjusted relations between serum Mg and HU in OA patients were illustrated in Table 5. Both the age-gender adjusted OR values (Model 1) and the multivariable adjusted OR values (Model 2) suggested significant decreased prevalence of HU in the third quintile (age-gender adjusted OR=0.44, 95%CI 0.26-0.75, P=0.002; multivariable adjusted OR=0.38, 95%CI 0.22-0.67, P=0.001) and fifth quintile (age-gender adjusted OR=0.51, 95%CI 0.30-0.85, P=0.010; multivariable adjusted OR=0.50, 95%CI 0.29-0.87, P=0.013) compared with the

ŝ

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

lowest quintile of serum Mg, and the P for trend were 0.008 and 0.006, respectively.
The sensitivity analysis, by adding eGFR into model 2, showed similar outcomes significant lower prevalence of HU in the third (OR=0.33, 0.19-0.59, P<0.001), fourth
(OR=0.52, 95%CI 0.30-0.91, P=0.022), and highest quintiles (OR=0.39, 95%CI
0.22-0.70, P=0.001) compared with the reference quintile of serum Mg, and the P for
trend was <0.001.

Discussion

The results of this study suggested that the serum Mg concentration was negatively associated with the prevalence of MetS, DM and HU in subjects with radiographic knee OA. To control potential confounders, several covariates including characteristics, living habits and underlying diseases were selected, and even the eGFR was added into the multivariable logistic regression models to eliminate the influence of renal function on Mg excretion. The reverse associations mentioned above remained significant after adjustments of these confounders. However, the association between serum Mg and the prevalence of MetS was nonlinear, with no clear trend in the third and fourth quintiles of serum Mg. Moreover, the negative association between serum Mg and the prevalence of HP was not observed in radiographic knee OA patients.

Mg, the fourth most abundant cation in human body and the second most profuse intracellular cation, is a metallic cofactor for over 300 enzymatic reactions. It appears to play an important role in glucose metabolism and insulin homeostasis, which are both highly correlated with metabolic diseases, especially MetS and DM. The mechanisms involved in Mg deficiency in patients with MetS, DM and HU are probably multifactorial. The most important factor may be insulin resistance, as Mg is essential for insulin action and is a critical cofactor for several enzymes in carbohydrate metabolism, which is important for the phosphorylation reactions of tyrosine-kinase in the insulin receptor.^{31 54-58} Of course, it is necessary to highlight the fact that insulin can also induce Mg excretion⁵⁹ and produce a significant decline of plasma Mg through ion exchange.⁶⁰ Thus, there seems to be a vicious circle between

Page 11 of 31

BMJ Open

Mg deficiency and insulin resistance.

Other potential mechanisms include glucose transportation.⁵⁷ oxidative stress⁵⁷ and inflammatory cytokines,⁶¹⁻⁶³ and cellular calcium homeostasis.⁵⁵ Mg is an essential cofactor of the high-energy phosphate-bound enzymatic pathways involved in the modulation of glucose transport across cell membranes.⁵⁷ It also plays a role in the mechanisms of cellular antioxidant defense.⁶⁴ The oxidative stress, defined as a persistent imbalance between the excessive production of reactive oxygen species and/or defects in antioxidant defense, has been implicated in the pathogenesis of diabetic complications.⁵⁷ Moreover, low serum Mg levels are strongly related to elevated serum concentrations of both tumor necrosis factor alpha and C-reactive protein (CRP).⁶⁵ suggesting that Mg deficiency may contribute to the development of low-grade chronic inflammation syndrome and the development of glucose metabolic disorders through the former pathway. In addition, lower Mg concentration can enhance calcium-mediated vasoconstriction, blunt cardiac and smooth muscle relaxation, and thus contribute to BP elevation.⁵⁵ However, the decreased serum calcium concentration in radiographic knee OA patients may weaken the association between Mg and HP.66

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

MetS^{21 22} and DM^{4 23 24} were reported to be the risk factors of OA progression. Moreover, serum Mg level has been proved to be significantly associated with the CRP concentration.^{27 67-69} and higher CRP might serve as a prediction factor for OA progression.^{70 71} Thus, OA progression may be delayed by elevating the serum Mg level through reducing the prevalence of MetS and DM and decreasing the level of CRP. Above all, the present study indicated that the elevation of serum Mg level has the potential to reduce the prevalence of MetS, DM and HU in knee OA patients and thereby may delay the progression of knee OA. However, the specific mechanism needs to be further explored.

The present study has several strengths. Firstly, this is the first study examining the associations between serum Mg and the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. The results of this study will provide a new insight into the treatment of knee OA. Secondly, the multivariable logistical regression

Page 12 of 31

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open

> models were adjusted for a considerable number of potential confounding factors, which greatly improved the reliability of the results. Thirdly, the kidney is the key organ in maintaining Mg homeostasis. This study conducted a sensitivity analysis by adding eGFR into multivariable logistic regression models which showed that the reverse associations remained significant.

> Limitations of the present study should also be admitted. The cross-sectional design precludes causal correlations, so further prospective studies and intervention trials should be undertaken to establish a causal association between serum Mg with the prevalence of MetS, DM, HP and HU in radiographic knee OA patients. Since no previous research investigated such associations in knee OA patients, the value of this study should not be blotted out by the cross-sectional nature. Another limitation of this study lies in the relatively small sample size, and thus, extensive high-quality researches based on a larger sample are needed. Moreover, the dietary intake of Mg in relation to the prevalence of MetS, DM, HP and HU were not assessed in the present study. Last but not the least, it is important to highlight that Mg is an intracellular ion; therefore, the serum Mg concentration must be considered as a poor indicator of body Mg content,⁷² even though it has been used in many studies. However, blood Mg level is the second best indicator of body status.⁷³

323 Conclusions

The present study concluded that the serum Mg concentration was inversely associated with the prevalence of MetS, DM and HU in radiographic knee OA patients.

Contributors

All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. GHL, YLW and JW conceived the study. GHL, YLW and JW were responsible for conception and design of the study and drafted the manuscript. CZ, TY, HL, YC and DXX contributed to data collection. WJ contributed to preparation and data analysis. BX, ZCL, JTL, and SDJ contributed to study retrieval. GHL and YLW contributed to revision of the manuscript. All the authors contributed to the interpretation of the data and critically reviewed the manuscript for publication.

338 Funding

This work was supported by the Innovation Foundation of the Central South University for Postgraduate (2018zzts045), the Postdoctoral Science Foundation of Central South University (182130), the National Natural Science Foundation of China (No. 81201420, 81272034, 81472130, 81501923), the Provincial Science Foundation of Hunan (No. 14JJ3032), the Scientific Research Project of the Development and Reform Commission of Hunan Province ([2013]1199), the Scientific Research Project of Science and Technology Office of Hunan Province (2013SK2018), the Doctoral Scientific Fund Project of the Ministry of Education of China (20120162110036).

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

348 Competing interests

- 349 The authors declare that they have no conflict of interest.

Ethics approval

The protocol of this study was reviewed and approved by the Ethics Committee at Xiangya Hospital.

355 Data sharing statement

The datasets during the current study available from the corresponding author on reasonable request.

	358 359	RE	FERENCE
	360	1	Zhuo Q, Yang W, Chen J, et al. Metabolic syndrome meets osteoarthritis. Nat
:	361		<i>Rev Rheumatol</i> 2012;8(12):729-37.
:	362	2	Katz JD, Agrawal S, Velasquez M. Getting to the heart of the matter:
:	363		osteoarthritis takes its place as part of the metabolic syndrome. Curr Opin
:	364		Rheumatol 2010;22(5):512-9.
:	365	3	Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new
:	366		phenotype. Ann Rheum Dis 2011;70(8):1354-6.
:	367	4	King KB, Rosenthal AK. The adverse effects of diabetes on osteoarthritis: update
:	368		on clinical evidence and molecular mechanisms. Osteoarthritis Cartilage
:	369		2015;23(6):841-50.
:	370	5	Kirkman MS. Osteoarthritis progression: is diabetes a culprit? Osteoarthritis
:	371		<i>Cartilage</i> 2015;23(6):839-40.
:	372	6	Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine
:	373		2013;80(6):568-73.
:	374	7	Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in
:	375		individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med
:	376		2009;121(6):9-20.
:	377	8	Shin D. Association between metabolic syndrome, radiographic knee
:	378		osteoarthritis, and intensity of knee pain: results of a national survey. J Clin
:	379		Endocrinol Metab 2014;99(9):3177-83.
:	380	9	Calvet J, Orellana C, Larrosa M, et al. High prevalence of cardiovascular
:	381		co-morbidities in patients with symptomatic knee or hand osteoarthritis. Scand J
:	382		<i>Rheumatol</i> 2015:1-4.
:	383	10	Rahman MM, Kopec JA, Cibere J, et al. The relationship between osteoarthritis
:	384		and cardiovascular disease in a population health survey: a cross-sectional study.
:	385		<i>BMJ Open</i> 2013;3(5):e2624.
:	386	11	Inoue R, Ishibashi Y, Tsuda E, et al. Medical problems and risk factors of
:	387		metabolic syndrome among radiographic knee osteoarthritis patients in the
			14
			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open: first published
/J Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http:/
59 on 10 September 2018. Dow
nloaded from http://bmjopen.bm
nj.com/ on April 17, 2024 by (
17, 2024 by guest. Protected by copyright.

388		Japanese general population. J Orthop Sci 2011;16(6):704-9.
389	12	Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee
390		osteoarthritis in women: the Chingford Study. J Rheumatol 1995;22(6):1118-23.
391	13	Jungmann PM, Kraus MS, Alizai H, et al. Association of metabolic risk factors
392		with cartilage degradation assessed by T2 relaxation time at the knee: data from
393		the osteoarthritis initiative. Arthritis Care Res (Hoboken) 2013;65(12):1942-50.
394	14	Anagnostopoulos I, Zinzaras E, Alexiou I, et al. The prevalence of rheumatic
395		diseases in central Greece: a population survey. BMC Musculoskelet Disord
396		2010;11:98.
397	15	Massengale M, Reichmann WM, Losina E, et al. The relationship between hand
398		osteoarthritis and serum leptin concentration in participants of the Third National
399		Health and Nutrition Examination Survey. Arthritis Res Ther 2012;14(3):R132.
400	16	Nieves-Plaza M, Castro-Santana LE, Font YM, et al. Association of hand or knee
401		osteoarthritis with diabetes mellitus in a population of Hispanics from Puerto
402		Rico. J Clin Rheumatol 2013;19(1):1-6.
403	17	Greiver M, Williamson T, Barber D, et al. Prevalence and epidemiology of
404		diabetes in Canadian primary care practices: a report from the Canadian Primary
405		Care Sentinel Surveillance Network. Can J Diabetes 2014;38(3):179-85.
406	18	Rahman MM, Cibere J, Anis AH, et al. Risk of Type 2 Diabetes among
407		Osteoarthritis Patients in a Prospective Longitudinal Study. Int J Rheumatol
408		2014;2014:620920.
409	19	Reid JL, Morton DJ, Wingard DL, et al. Obesity and other cardiovascular disease
410		risk factors and their association with osteoarthritis in Southern California
411		American Indians, 2002-2006. Ethn Dis 2010;20(4):416-22.
412	20	Birtwhistle R, Morkem R, Peat G, et al. Prevalence and management of
413		osteoarthritis in primary care: an epidemiologic cohort study from the Canadian
414		Primary Care Sentinel Surveillance Network. CMAJ Open 2015;3(3):E270-5.
415	21	Yoshimura N, Muraki S, Oka H, et al. Accumulation of metabolic risk factors
416		such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance
417		raises the risk of occurrence and progression of knee osteoarthritis: a 3-year 15

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

418		follow-up of the ROAD study. Osteoarthritis Cartilage 2012;20(11):1217-26.
419	22	Monira HS, Wang Y, Cicuttini FM, et al. Incidence of total knee and hip
420		replacement for osteoarthritis in relation to the metabolic syndrome and its
421		components: a prospective cohort study. Semin Arthritis Rheum
422		2014;43(4):429-36.
423	23	Schett G, Kleyer A, Perricone C, et al. Diabetes is an independent predictor for
424		severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care
425		2013;36(2):403-9.
426	24	Eymard F, Parsons C, Edwards MH, et al. Diabetes is a risk factor for knee
427		osteoarthritis progression. Osteoarthritis Cartilage 2015;23(6):851-9.
428	25	Guerrero-Romero F, Rodriguez-Moran M. Low serum magnesium levels and
429		metabolic syndrome. Acta Diabetol 2002;39(4):209-13.
430	26	Guerrero-Romero F, Rodriguez-Moran M. Hypomagnesemia, oxidative stress,
431		inflammation, and metabolic syndrome. Diabetes Metab Res Rev
432		2006;22(6):471-6.
433	27	Evangelopoulos AA, Vallianou NG, Panagiotakos DB, et al. An inverse
434		relationship between cumulating components of the metabolic syndrome and
435		serum magnesium levels. Nutr Res 2008;28(10):659-63.
436	28	Hjelmesaeth J, Hofso D, Aasheim ET, et al. Parathyroid hormone, but not
437		vitamin D, is associated with the metabolic syndrome in morbidly obese women
438		and men: a cross-sectional study. Cardiovasc Diabetol 2009;8:7.
439	29	Lima ML, Cruz T, Rodrigues LE, et al. Serum and intracellular magnesium
440		deficiency in patients with metabolic syndromeevidences for its relation to
441		insulin resistance. Diabetes Res Clin Pract 2009;83(2):257-62.
442	30	Ma J, Folsom AR, Melnick SL, et al. Associations of serum and dietary
443		magnesium with cardiovascular disease, hypertension, diabetes, insulin, and
444		carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in
445		Communities Study. J Clin Epidemiol 1995;48(7):927-40.
446	31	Kao WH, Folsom AR, Nieto FJ, et al. Serum and dietary magnesium and the risk
447		for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. 16
		For peer review only - http://bmiopen.hmi.com/site/about/quidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	448		Arch Intern Med 1999;159(18):2151-9.
5	449	32	Wang JL, Shaw NS, Yeh HY, et al. Magnesium status and association with
6 7	450		diabetes in the Taiwanese elderly. Asia Pac J Clin Nutr 2005;14(3):263-9.
8 9	451	33	Chambers EC, Heshka S, Gallagher D, et al. Serum magnesium and type-2
10 11	452		diabetes in African Americans and Hispanics: a New York cohort. J Am Coll
12 13	453		Nutr 2006;25(6):509-13.
14 15	454	34	Simmons D, Joshi S, Shaw J. Hypomagnesaemia is associated with diabetes: Not
16	455		pre-diabetes, obesity or the metabolic syndrome. Diabetes Res Clin Pract
17 18	456		2010;87(2):261-6.
19 20	457	35	Sales CH, Pedrosa LF, Lima JG, et al. Influence of magnesium status and
21 22	458		magnesium intake on the blood glucose control in patients with type 2 diabetes.
23 24	459		Clin Nutr 2011;30(3):359-64.
25 26	460	36	Lecube A, Baena-Fustegueras JA, Fort JM, et al. Diabetes is the main factor
27	461		accounting for hypomagnesemia in obese subjects. PLoS One 2012;7(1):e30599.
28 29	462	37	Xu J, Xu W, Yao H, et al. Associations of serum and urinary magnesium with the
30 31	463		pre-diabetes, diabetes and diabetic complications in the Chinese Northeast
32 33	464		population. <i>PLoS One</i> 2013;8(2):e56750.
34 35	465	38	Yang SJ, Hwang SY, Baik SH, et al. Serum magnesium level is associated with
36	466		type 2 diabetes in women with a history of gestational diabetes mellitus: the
37 38	467		Korea National Diabetes Program study. J Korean Med Sci 2014;29(1):84-9.
39 40	468	39	Singh RB, Rastogi V, Niaz MA, et al. Epidemiological study of magnesium
41 42	469		status and risk of hypertension in a rural population of north India. Magnes Res
43 44	470		1996;9(3):173-81.
45	471	40	Peacock JM, Folsom AR, Arnett DK, et al. Relationship of serum and dietary
46 47	472		magnesium to incident hypertension: the Atherosclerosis Risk in Communities
48 49	473		(ARIC) Study. Ann Epidemiol 1999;9(3):159-65.
50 51	474	41	Guerrero-Romero F, Rodriguez-Moran M, Hernandez-Ronquillo G, et al. Low
52 53	475		Serum Magnesium Levels and Its Association with High Blood Pressure in
54 55	476		Children. <i>J Pediatr</i> 2016;168:93-8.
56	477	42	Zeng C, Wang YL, Wei J, et al. Association between low serum magnesium
57 58			17
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 31

BMJ Open

478		concentration and hyperuricemia. Magnes Res 2015;28(2):56-63.
479	43	Zeng C, Wei J, Li H, et al. Relationship between Serum Magnesium
480		Concentration and Radiographic Knee Osteoarthritis. J Rheumatol
481		2015;42(7):1231-6.
482	44	Wei J, Zeng C, Gong QY, et al. Associations between Dietary Antioxidant Intake
483		and Metabolic Syndrome. PLoS One 2015;10(6):e130876.
484	45	Xie DX, Xiong YL, Zeng C, et al. Association between low dietary zinc and
485		hyperuricaemia in middle-aged and older males in China: a cross-sectional study.
486		<i>BMJ Open</i> 2015;5(10):e8637.
487	46	Wei J, Zeng C, Gong QY, et al. The association between dietary selenium intake
488		and diabetes: a cross-sectional study among middle-aged and older adults. Nutr J
489		2015;14:18.
490	47	Expert Panel on Metabolic Syndrome of Chinese Diabetes Society:
491		Recommendations on metabolic syndrome of Chinese Diabetes Society (Chinese).
492		<i>Chin J Diabetes</i> 2004;14:156-61.
493	48	Pang C, Jia L, Hou X, et al. The significance of screening for microvascular
494		diseases in Chinese community-based subjects with various metabolic
495		abnormalities. PLoS One 2014;9(5):e97928.
496	49	Zhou H, Guo ZR, Yu LG, et al. Evidence on the applicability of the ATPIII, IDF
497		and CDS metabolic syndrome diagnostic criteria to identify CVD and T2DM in
498		the Chinese population from a 6.3-year cohort study in mid-eastern China.
499		<i>Diabetes Res Clin Pract</i> 2010;90(3):319-25.
500	50	Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular
501		filtration rate. Ann Intern Med 2009;150(9):604-12.
502	51	Joosten MM, Gansevoort RT, Mukamal KJ, et al. Urinary magnesium excretion
503		and risk of hypertension: the prevention of renal and vascular end-stage disease
504		study. <i>Hypertension</i> 2013;61(6):1161-7.
505	52	Choi MK, Bae YJ. Association of Magnesium Intake with High Blood Pressure
506		in Korean Adults: Korea National Health and Nutrition Examination Survey
507		2007-2009. <i>PLoS One</i> 2015;10(6):e130405.
		For near review only - http://hmionen.hmi.com/site/about/guidelines.yhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 31

1 2			
- 3 4	508	53	R Development Core Team. R: A Language and Environment for Statistical
5	509		Computing, Vienna, Austria: R Foundation for Statistical Computing. 2016.
7	510	54	Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the
8 9	511		metabolic syndrome: an American Heart Association/National Heart, Lung, and
10 11	512		Blood Institute Scientific Statement. Circulation 2005;112(17):2735-52.
12 13	513	55	Barbagallo M, Dominguez LJ, Galioto A, et al. Role of magnesium in insulin
14 15	514		action, diabetes and cardio-metabolic syndrome X. Mol Aspects Med
16 17	515		2003;24(1-3):39-52.
18	516	56	Song Y, Ridker PM, Manson JE, et al. Magnesium intake, C-reactive protein, and
19 20	517		the prevalence of metabolic syndrome in middle-aged and older U.S. women.
21 22	518		Diabetes Care 2005;28(6):1438-44.
23 24	519	57	Guerrero-Romero F, Rodriguez-Moran M. Complementary therapies for diabetes:
25 26	520		the case for chromium, magnesium, and antioxidants. Arch Med Res
27	521		2005;36(3):250-7.
28 29	522	58	Huerta MG, Roemmich JN, Kington ML, et al. Magnesium deficiency is
30 31	523		associated with insulin resistance in obese children. Diabetes Care
32 33	524		2005;28(5):1175-81.
34 35	525	59	Djurhuus MS, Skott P, Hother-Nielson O, et al. Insulin increases renal
36 37	526		magnesium excretion: a possible cause of magnesium depletion in
38	527		hyperinsulinaemic states. <i>Diabet Med</i> 1995;12(8):664-9.
39 40	528	60	Paolisso G, Sgambato S, Passariello N, et al. Insulin induces opposite changes in
41 42	529		plasma and erythrocyte magnesium concentrations in normal man. Diabetologia
43 44	530		1986;29(9):644-7.
45 46	531	61	Bonora E, Targher G, Zenere MB, et al. Relationship of uric acid concentration to
47	532		cardiovascular risk factors in young men. Role of obesity and central fat
48 49	533		distribution. The Verona Young Men Atherosclerosis Risk Factors Study. Int J
50 51	534		Obes Relat Metab Disord 1996;20(11):975-80.
52 53	535	62	Lyngdoh T, Marques-Vidal P, Paccaud F, et al. Elevated serum uric acid is
54 55	536		associated with high circulating inflammatory cytokines in the population-based
56	537		Colaus study. PLoS One 2011;6(5):e19901.
57 58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 31

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

 Kirilmaz B, Asgun F, Alioglu E, <i>et al.</i> High inflammatory activity related to number of metabolic syndrome components. <i>J Clin Hypertens (Greenwich)</i> 2010;12(2):136-44. Salmonowicz B, Krzystek-Korpacka M, Noczynska A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. <i>Adv Clin Exp Med</i> 2014;23(2):259-6 Rodríguez-Morán M, Guerrero-Romero F. Elevated serum concentration of tumor necrosis factor-alpha is linked to low serum magnesium levels in the obesity-related inflammatory response. <i>Magnes Res</i> 2004;17:189-96. Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Asso With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine (Baltimore)</i> 2016;95(6):e2838. Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically di cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. Spector TD, Hart DJ, Nandra D, <i>et al.</i> Low-level increases in serum C-reac 	8.
 2010;12(2):136-44. 64 Salmonowicz B, Krzystek-Korpacka M, Noczynska A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. <i>Adv Clin Exp Med</i> 2014;23(2):259-6 65 Rodríguez-Morán M, Guerrero-Romero F. Elevated serum concentration of tumor necrosis factor-alpha is linked to low serum magnesium levels in the obesity-related inflammatory response. <i>Magnes Res</i> 2004;17:189-96. 66 Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Asso With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> <i>(Baltimore)</i> 2016;95(6):e2838. 67 Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically di cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. 68 Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. 69 Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	8.
 64 Salmonowicz B, Krzystek-Korpacka M, Noczynska A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. <i>Adv Clin Exp Med</i> 2014;23(2):259-6 65 Rodríguez-Morán M, Guerrero-Romero F. Elevated serum concentration of tumor necrosis factor-alpha is linked to low serum magnesium levels in the obesity-related inflammatory response. <i>Magnes Res</i> 2004;17:189-96. 66 Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Asso With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> (<i>Baltimore</i>) 2016;95(6):e2838. 67 Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically di cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. 68 Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. 69 Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	
 magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. <i>Adv Clin Exp Med</i> 2014;23(2):259-6 Rodríguez-Morán M, Guerrero-Romero F. Elevated serum concentration of tumor necrosis factor-alpha is linked to low serum magnesium levels in the obesity-related inflammatory response. <i>Magnes Res</i> 2004;17:189-96. Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Asso With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> <i>(Baltimore)</i> 2016;95(6):e2838. Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically di cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	
 diabetes mellitus and in their siblings. <i>Adv Clin Exp Med</i> 2014;23(2):259-6 Rodríguez-Morán M, Guerrero-Romero F. Elevated serum concentration of tumor necrosis factor-alpha is linked to low serum magnesium levels in the obesity-related inflammatory response. <i>Magnes Res</i> 2004;17:189-96. Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Asso With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> <i>(Baltimore)</i> 2016;95(6):e2838. Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically dir cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	
 65 Rodríguez-Morán M, Guerrero-Romero F. Elevated serum concentration of tumor necrosis factor-alpha is linked to low serum magnesium levels in the obesity-related inflammatory response. <i>Magnes Res</i> 2004;17:189-96. 66 Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Asso With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> <i>(Baltimore)</i> 2016;95(6):e2838. 67 Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically di cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. 68 Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. 69 Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Care</i> 2010;33(12):2604-10. 	
 tumor necrosis factor-alpha is linked to low serum magnesium levels in the obesity-related inflammatory response. <i>Magnes Res</i> 2004;17:189-96. 66 Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Assoce With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> (<i>Baltimore</i>) 2016;95(6):e2838. 67 Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically difference of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. 68 Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. 69 Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Care</i> 2010;33(12):2604-10. 	
 obesity-related inflammatory response. <i>Magnes Res</i> 2004;17:189-96. Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Asso With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> <i>(Baltimore)</i> 2016;95(6):e2838. Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically dir cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Care</i> 2010;33(12):2604-10. 	7 -
 66 Li H, Zeng C, Wei J, <i>et al.</i> Serum Calcium Concentration Is Inversely Asso With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> (<i>Baltimore</i>) 2016;95(6):e2838. 67 Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically dir cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. 68 Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. 69 Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	
 With Radiographic Knee Osteoarthritis: A Cross-Sectional Study. <i>Medicine</i> (<i>Baltimore</i>) 2016;95(6):e2838. Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically dir cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Care</i> 2010;33(12):2604-10. 	
 <i>(Baltimore)</i> 2016;95(6):e2838. Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically di cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	ciated
 67 Chacko SA, Song Y, Nathan L, <i>et al.</i> Relations of dietary magnesium intak biomarkers of inflammation and endothelial dysfunction in an ethnically dir cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. 68 Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. 69 Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	2
 biomarkers of inflammation and endothelial dysfunction in an ethnically dir cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	
 cohort of postmenopausal women. <i>Diabetes Care</i> 2010;33(2):304-10. Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	e to
 68 Bo S, Durazzo M, Guidi S, <i>et al.</i> Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. 69 Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	verse
 inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	
 population-based cohort. <i>Am J Clin Nutr</i> 2006;84(5):1062-9. Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Co</i> 2010;33(12):2604-10. 	
 Kim DJ, Xun P, Liu K, <i>et al.</i> Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Co</i> 2010;33(12):2604-10. 	
 inflammation, insulin resistance, and the incidence of diabetes. <i>Diabetes Ca</i> 2010;33(12):2604-10. 	
558 2010;33(12):2604-10.	
	ire
550 70 Spector TD Hart DI Nandra D et al Low level increases in serum C rose	
559 70 Spector TD, Hart DJ, Nandra D, <i>et al.</i> Low-level increases in serum C-reac	tive
560 protein are present in early osteoarthritis of the knee and predict progressive	9
561 disease. <i>Arthritis Rheum</i> 1997;40(4):723-7.	
562 71 Smith JW, Martins TB, Gopez E, <i>et al.</i> Significance of C-reactive protein in	1
osteoarthritis and total knee arthroplasty outcomes. <i>Ther Adv Musculoskele</i>	t Dis
564 2012;4(5):315-25.	
565 72 Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. <i>Rev Endoc</i>	r
566 <i>Metab Disord</i> 2003;4(2):195-206.	
567 73 Sabatier M, Pont F, Arnaud MJ, <i>et al</i> . A compartmental model of magnesiu	m

1		
2 3		
4	568	metabolism in healthy men based on two stable isotope tracers. Am J Physiol
5	569	Regul Integr Comp Physiol 2003;285(3):R656-63.
6	570	
7	570	
8 9		
10		
11		
12		
13 14		
15		
16		
17		
18 19		
20		
21		
22		
23 24		
25		
26		
27		
28 29		
30		
31		
32		
33 34		
35		
36		
37		
38 39		
40		
41		
42		
43 44		
45		
46		
47		
48 49		
50		
51		
52		
53 54		
55		
56		
57		21
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
т/	

			Quintiles of serum	Mg		
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	
Participants (n)	200	215	190	168	189	
Age (years)	53.8 (7.3)	54.6 (7.6)	55.2 (7.9)	55.3 (7.1)	56.1 (8.0)	0
BMI (kg/m ²)	25.2 (3.2)	24.9 (3.2)	25.0 (3.7)	25.2 (3.4)	24.6 (3.2)	0
Female (%)	37.5	42.3	36.8	42.3	37.0	0
Smoking (%)	27.5	27.4	21.6	24.4	21.7	0
Alcohol drinking (%)	34.5	36.3	40.5	41.1	38.1	0
High school diploma (%)	45.0	47.4	45.3	56.5	48.1	0
Activity level (h/w)	2.0 (3.5)	2.0 (3.3)	2.3 (3.5)	2.1 (3.1)	2.4 (3.5)	0
Fasting glucose (mmol/l)	6.6 (3.0)	5.7 (1.7)	5.7 (1.4)	5.5 (0.9)	5.5 (1.6)	0
Systolic pressure (mm Hg)	129.2 (16.9)	128.3 (17.9)	130.4 (16.2)	128.8 (16.3)	129.6 (17.7)	0
Diastolic pressure (mm Hg)	81.2 (11.8)	79.8 (12.1)	80.7 (11.0)	80.7 (10.7)	80.3 (10.5)	0
HDL-cholesterol (mmol/l)	1.5 (0.4)	1.5 (0.4)	1.5 (0.4)	1.5 (0.3)	1.5 (0.4)	0
Triglyceride (mmol/l)	2.1 (1.9)	1.8 (1.5)	2.0 (2.1)	1.8 (1.0)	2.3 (2.9)	0.

22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3										
4 5										
6 7		Uric acid (µmol/l)	337.3 (101.7)	329.0 (80.7)	321.3 (86.3)	331.5 (78.0)	329.4 (81.7)	0.590		
8 9		eGFR (ml/min/1.73m ²)	80.2 (14.4)	77.7 (10.7)	76.0 (10.6)	75.8 (10.7)	74.3 (12.0)	<0.001		
10 11		MetS (%)	26.5	17.7	25.8	19.6	17.5	0.059		
12 13		DM (%)	23.5	10.7	10.0	8.3	6.3	< 0.001		
14 15		HP (%)	40.0	33.5	37.4	42.3	40.2	0.432		
16		HU (%)	25.5	19.1	13.2	18.5	14.8	0.018		
17 18	572	Data are mean (Standard Deviation),	unless otherwise indic	ated; Mg, magnesium	n; OA, osteoarthritis; B	BMI, body mass index	; HDL, high density lip	oprotein; eGFR,		
19 20	573	estimated glomerular filtration rate; N	MetS, metabolic syndro							
21 22	23 575 24 25									
25 26										
27 28										
29 30										
31										
32 33										
34 35										
36 37										
38 39										
40 41					23					
42										
43 44										
45 46					en.bmj.com/site/abou					
47	right.	ril 17, 2024 by guest. Protected by copy	iaA no \moɔ.imd.nəqoi	nd\\:dtth mont babaol	eptember 2018. Down	S 01 no 931910-7102	2-n9qoimd\3611.01 ss b	BMJ Open: first publishe		

2		
3		
4		
4 5		
6		
7	576	Figure 1 The prevale
8		
9	577	The figures above pr
10		
11	578	horizontal axis denot
12	0	TT1 1'1 1'
13	579	The solid gray lines
14	580	diseases at each serui
15	380	uiscases at each serui
16	581	
17		
18		
19		
20		
20		
22		
23		
23 24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47	.jdpiryo	uest. Protected by cop
.,		

1

ence of MetS (A), DM (B), HP (C) and HU (D) in each quintile of serum Mg in radiographic knee OA patients

resent the prevalence of MetS (A), DM (B), HP (C) and HU (D) among the 962 OA patients under different quintiles of serum Mg levels. The

tes the serum Mg level, and the vertical axis indicates whether a subject is diagnosed with the specific disease: (+) - disease; (-) - no disease.

represent the boundaries in between the five quintiles of serum Mg levels. The red and black spots represent the prevalence of diseases and no

ε five φ. er the color of a spot, . m Mg level, respectively. The darker the color of a spot, the more OA patients there are at the corresponding concentration.

24

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.516/m/.om/open-2015, 01 10 September 2018. Downloaded from http://mojopen.bm/on April 12, 2024 by gu

BMJ Open

Table 2 Multivariable-adjusted relations of serum Mg and MetS in OA patie	its $(n = 962)$
---	-----------------

		Quintiles of serum Mg				
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
MetS (%)	26.5	17.7	25.8	19.6	17.5	-
Model 1*	1.00 (reference)	0.61 (0.38, 0.97)	0.97 (0.61, 1.52)	0.69 (0.42, 1.14)	0.59 (0.36, 0.96)	0.090
P value	-	0.038	0.881	0.150	0.035	-
Model 2*	1.00 (reference)	0.60 (0.37, 0.96)	1.00 (0.63, 1.57)	0.70 (0.42, 1.15)	0.61 (0.37, 0.99)	0.120
P value	-	0.035	0.99	0.160	0.047	-
Model 3*	1.00 (reference)	0.59 (0.36, 0.94)	0.95 (0.60, 1.51)	0.67 (0.40, 1.10)	0.56 (0.34, 0.93)	0.067
P value	-	0.027	0.830	0.114	0.024	

583 Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; MetS, metabolic syndrome.

*Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3	
3 4	
5	
6 7	
8	
9	
10 11	
12	
13 14	
15	
16	
17 18	
19	
20 21	
22	
23	
24 25	
26	
27 28	
29	
30	
31 32	
33	
34 35	
36	
37	
38 39	
40	
41 42	
42 43	
44	
45 46	
40	

				Quintiles of serum M	lg		
		Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
	Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
	Participants (n)	200	215	190	168	189	-
	DM (%)	23.5	10.7	10.0	8.3	6.3	-
	Model 1*	1.00 (reference)	0.38 (0.22, 0.66)	0.34 (0.19, 0.61)	0.29 (0.15, 0.55)	0.20 (0.10, 0.40)	< 0.001
	P value	-	0.001	<0.001	< 0.001	<0.001	-
	Model 2*	1.00 (reference)	0.40 (0.23, 0.70)	0.32 (0.18, 0.59)	0.26 (0.13, 0.50)	0.21 (0.11, 0.42)	< 0.001
	P value	-	0.001	<0.001	< 0.001	<0.001	-
	Model 3*	1.00 (reference)	0.40 (0.23, 0.70)	0.33 (0.18, 0.60)	0.27 (0.14, 0.52)	0.22 (0.11, 0.44)	< 0.001
	P value	-	0.001	<0.001	<0.001	<0.001	-
89	Data are adjusted OR (95% CI), unles	s otherwise indicated	Mg, magnesium; n, n	umber; OA, osteoarthr	itis; DM, diabetes mel	litus.	
90	*Model 1 was adjusted for age (contin	nuous data) and gende	er (male, female); Mod	lel 2 was adjusted for a	age (continuous data),	BMI (continuous data), gender (ma
91	female), educational level (high schoo	I or above, lower that	n high school), smokin	g status (yes, no), activ	vity level (continuous	data), alcohol drinking	status (yes, n
92	hypertension (yes, no), and dyslipiden	nia (yes, no); Model 3	was adjusted based or	n model 2, with additio	nal factor of eGFR (co	ontinuous data).	
~~							
93							
93							
93							
93				26			
93				26			

Table 3 Multivariable-adjusted relations of serum Mg and DM in OA patients (n = 962)

BMJ Open

2 3 4	
4 5	
6	
7	594
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	595
30	596
31	590
32	597
33 34	
34 35	598
36	599
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	Դւրը
47	*4~

47

594	Table 4 Multivariable-adjusted relations	of serum Mg and HP in C	DA patients $(n = 962)$
-----	--	-------------------------	-------------------------

		Quintiles of serum Mg				
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	P for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
HP (%)	40.0	33.5	37.4	42.3	40.2	-
Model 1*	1.00 (reference)	0.71 (0.47, 1.06)	0.83 (0.54, 1.25)	1.00 (0.66, 1.54)	0.89 (0.59, 1.35)	0.929
P value	-	0.095	0.368	0.987	0.582	-
Model 2*	1.00 (reference)	0.77 (0.50, 1.19)	0.89 (0.57, 1.39)	1.10 (0.70, 1.74)	1.08 (0.69, 1.68)	0.377
P value	-	0.245	0.608	0.686	0.744	-
Model 3*	1.00 (reference)	0.77 (0.50, 1.19)	0.88 (0.56, 1.38)	1.09 (0.68, 1.72)	1.05 (0.67, 1.65)	0.434
P value	-	0.235	0.574	0.727	0.818	-

595 Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; HP, hypertension.

* Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (continuous data), gender (male, female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no),
diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data).

27

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
8
9
10
11
12
12
14
3 4 5 6 7 8 9 10 11 12 13 14 15
10
10
1/
12 13 14 15 16 17 18 19 20 21 22
19
20
21
22 23
23
24
23 24 25 26 27 28 29 30
26
27
28
29
30
31
22
J∠ 22
22 24
54 25
35
36
31 32 33 34 35 36 37 38
38
39
40
41
42
43
44
45
46
47

47

1

			Quintiles of serum M	lg		
	Q1 (lowest)	Q2	Q3	Q4	Q5 (highest)	<i>P</i> for trend
Median Mg concentration (mmol/L)	0.82	0.87	0.91	0.94	0.99	-
Participants (n)	200	215	190	168	189	-
HU (%)	25.5	19.1	13.2	18.5	14.8	-
Model 1*	1.00 (reference)	0.71 (0.44, 1.14)	0.44 (0.26, 0.75)	0.68 (0.41, 1.14)	0.51 (0.30, 0.85)	0.008
P value	-	0.157	0.002	0.144	0.010	-
Model 2*	1.00 (reference)	0.73 (0.45, 1.20)	0.38 (0.22, 0.67)	0.59 (0.35, 1.02)	0.50 (0.29, 0.87)	0.006
P value	-	0.210	0.001	0.058	0.013	-
Model 3*	1.00 (reference)	0.68 (0.41, 1.14)	0.33 (0.19, 0.59)	0.52 (0.30, 0.91)	0.39 (0.22, 0.70)	< 0.001
P value	-	0.142	< 0.001	0.022	0.001	-

Data are adjusted OR (95% CI), unless otherwise indicated; Mg, magnesium; n, number; OA, osteoarthritis; HU, hyperuricemia. 601

602 * Model 1 was adjusted for age (continuous data) and gender (male, female); Model 2 was adjusted for age (continuous data), BMI (continuous data), gender (male, 603 female), educational level (high school or above, lower than high school), smoking status (yes, no), activity level (continuous data), alcohol drinking status (yes, no), 604 hypertension (yes, no), diabetes (yes, no), and dyslipidemia (yes, no); Model 3 was adjusted based on model 2, with additional factor of eGFR (continuous data)

28

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

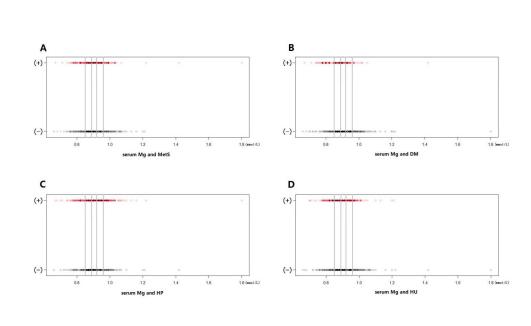


Figure 1 The prevalence of MetS (A), DM (B), HP (C) and HU (D) in each quintile of serum Mg in radiographic knee OA patients

The figures above present the prevalence of MetS (A), DM (B), HP (C) and HU (D) among the 962 OA patients under different quintiles of serum Mg levels. The horizontal axis denotes the serum Mg level, and the vertical axis indicates whether a subject is diagnosed with the specific disease: (+) - disease; (-) - no disease. The solid gray lines represent the boundaries in between the five quintiles of serum Mg levels. The red and black spots represent the prevalence of diseases and no diseases at each serum Mg level, respectively. The darker the color of a spot, the more OA patients there are at the corresponding concentration.

549x304mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-019159 on 10 September 2018. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Reported o Page No
Title and	1	(a) Indicate the study's design with a commonly used term in the title or the	2
abstract		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rati	2	Explain the scientific background and rationale for the investigation being	4
onale		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	4-5
		selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and methods	
		of case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	-
		exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	4-6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	4-5
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable,	6-7
variables		describe which groupings were chosen and why	
Statistical	12	(a) Describe all statistical methods, including those used to control for	6-7
methods		confounding	
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	4-5
		Case-control study—If applicable, explain how matching of cases and controls	
		was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	6-7

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	4-5
_		potentially eligible, examined for eligibility, confirmed eligible, included in the	
		study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	4-5
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	8
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	-
		interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over	-
		time	
		Case-control study—Report numbers in each exposure category, or summary	-
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary	8-10
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	8-10
		and their precision (eg, 95% confidence interval). Make clear which	
		confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-10
		(c) If relevant, consider translating estimates of relative risk into absolute risk	-
		for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	8-10
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	11-12
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-11
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-12
Other information	n		
Funding	22	Give the source of funding and the role of the funders for the present study and,	13
		if applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.