

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Short-term postoperative outcomes of colorectal cancer among patients with chronic liver disease: a national population-based study

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020511
Article Type:	Research
Date Submitted by the Author:	08-Nov-2017
Complete List of Authors:	Lee, Ko-Chao; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Chung, Kuan-Chih ; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Department of Anesthesiology Chen, Hong-Hwa; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Cheng, Kung-Chuan ; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Wu, Kuen-Lin; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Uu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Lu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Lu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Gastroenterology and hepatology, Infectious diseases, Nutrition and metabolism, Surgery
Keywords:	Colorectal cancer, short-term morbidity, mortality, chronic liver disease, National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP)

SCHOLARONE[™] Manuscripts

BMJ Open

Short-term postoperative outcomes of colorectal cancer among patients with chronic liver disease: a national population-based study Running title: CRC surgery with liver disease

Ko-Chao Lee, MD^{1*#}, Kuan-Chih Chung, MD^{2#}, Hong-Hwa Chen, MD¹, Kung-Chuan Cheng,

MD¹, Kuen-Lin Wu, MD¹, Chien-Chang Lu, MD¹

¹Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital -Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan ²Department of Anesthesiology, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan

[#]The first two authors contributed equally to this work

*Corresponding author:

Ko-Chao Lee, MD

Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital -

Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan

Phone: +886-7-7317123 Fax: +886-7-7318762

E-mail: kochaolee@medsub.cn

Abstract

Objectives: Colorectal carcinoma (CRC) patients with pre-existing chronic liver disease (CLD) had a significantly higher 30-day mortality after CRC surgery compared to healthy controls. This study investigated the factors associated with postoperative complications and in-hospital mortality in CRC patients with co-existing CLD who underwent colorectal surgery. **Design:** A retrospective obaservational population-based study.

Setting: The data was from the National Inpatient Sample (NIS) database, a part of the Healthcare Cost and Utilization Project (HCUP).

Participants: This study analyzed a total of 7,463 inpatients with CRC who underwent colorectal surgery at admission.

Primary and secondary outcome measures: The primary endpoint of this study was the prevalence of postoperative complications, and the secondary endpoint was in-hospital mortality.

Results: In the CLD group, 36.27% of patients had chronic hepatitis C, 28.36% had nonalcoholic fatty liver disease, and 31.19% had other types of chronic liver diseases. Length of hospital stay was significantly associated with postoperative complications (aOR= 1.13, 95% CI= 1.12-1.15, p < 0.001). CRC inpatients with CLD had a significantly higher risk of inhospital mortality compared to patients without CLD (aOR= 1.98, 95% CI= 1.39-2.82, p < 0.001). Length of hospital stay was also significantly associated with in-hospital mortality (aOR= 1.06, 95% CI= 1.04-1.08, p < 0.001). However, inpatients with hyperlipidemia had a significantly lower risk of mortality (aOR= 0.46, 95% CI= 0.28-0.75, p = 0.002) compared to inpatients without hyperlipidemia.

Conclusions: Status of the chronic liver disease in our population-based study make it possible to correlate peri- or post-operative complications and mortality in CRC patients, and can help improve clinical management and outcomes in these patients.

BMJ Open

Keywords: Colorectal cancer, short-term morbidity, mortality, chronic liver disease, National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP).

Strengths and limitations of this study

- Data for this study were collected from a large, comprehensive, and national representative database.
- A large multi-ethnic population sample allowed us to explore the racial/ethnic heterogeneity
- The cross-sectional design of this study can only demonstrate association, therefore, causality could not be determined.

Introduction

Colorectal cancer (CRC) is the most common gastrointestinal malignancy, and the second leading cause of cancer-related deaths in developed countries, accounting for 51,690 deaths in 2012.^{1,2} The 5-year survival rates range from 90% for cancers detected at the localized stage, 70% for regional tumors, and 10% for distant metastatic tumors.³ The major risk factors of CRC include age and hereditary factors, the presence of inflammatory bowel disease, and environmental factors such as nutritional practices, physical activity/obesity, cigarette smoking, and alcohol consumption.⁴ The implementation of population-based screening for average-risk, asymptomatic individuals beginning at 50 years of age has resulted in a significant decrease in CRC incidence among individuals > 50 years old. However, there has been an increase in CRC incidence and mortality among individuals < 50 years old, for whom screening is limited, and who typically present at a late stage of the disease.⁵ CRC patients who present at an early stage usually receive curative surgical resection, whereas patients who present with metastatic disease receive palliative systemic chemotherapy or treatment with novel biologic agents.⁶

CRC has been reported to result from an accumulation of genetic changes in key regulatory genes/signaling pathways including the RAS/MAPK pathway involving the KRAS, NRAS and BRAF genes, and the Wnt and PI3K pathways.⁷ However, there is a growing awareness that epigenetic changes such as microsatellite instability, histone modifications, DNA methylation, and chromatin remodeling may play an important role in CRC initiation and progression.⁸

Chronic liver disease (CLD) represents a major health concern worldwide and accounts for approximately 1 million deaths per year.⁹ The major risk factors for CLD include chronic viral hepatitis infection, chronic exposure to toxins (including excessive alcohol consumption), and autoimmune injury, which all contribute towards progression of hepatic

fibrosis and development of cirrhosis via the production and deposition of extracellular matrix components.¹⁰ CLD also includes liver damage mediated by lipid accumulation in hepatocytes. The spectrum of obesity-related liver disease such as NAFLD (non-alcoholic fatty liver disease) can range from non-alcoholic steatohepatitis (NASH) with inflammation and fibrosis, and end in cirrhosis.¹¹

Patients with liver disease who had CRC frequently require surgery and anesthesia, and are at increased risk of perioperative complications and postoperative morbidity and mortality. This could be due to complications associated with liver disease, including hepatic encephalopathy, ascites, sepsis, and hemorrhage.¹² Patients with mild to moderate chronic liver disease without cirrhosis usually tolerate surgery well, whereas acute liver failure (previously termed fulminant hepatic failure) and acute viral or alcoholic hepatitis are considered contraindications to elective surgery.¹³ Additionally, it has been reported that the location of the surgical procedure is an important risk factor for postoperative liver failure in patients with the pre-existing liver disease. Cardiac surgery, abdominal surgery, and hepatic resection are all associated with higher rates of perioperative complications, and higher rates of morbidity and mortality compared to more peripheral surgery, presumably due to greater reductions in hepatic blood flow.^{13, 14}

A recent meta-analysis of 50 studies reported that patients with CLD had a significantly higher risk of CRC, which persisted after liver transplantation, compared to the general population.¹⁵ CRC patients with the pre-existing liver disease were shown to have a significantly higher 30-day mortality after CRC surgery compared to CRC patients with non-cirrhotic liver disease and healthy controls.¹⁶ Other data showed that colectomy of any kind was associated with a significant risk of postoperative morbidity and mortality in cirrhotic patients,¹⁷ and this was thought to be related to increased intraoperative and early postoperative bleeding.¹⁸ Additionally, although fatty liver has been shown to be an important

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

risk factor of CRC,¹⁹ the presence of NAFLD is thought to play a protective role in the overall survival of CRC patients.²⁰

The aim of our present study was to identify risk factors for postoperative complications and mortality in CRC patients with co-existing CLD who underwent colorectal surgery. Our clinical data were sourced from a national and comprehensive database, which made it possible to minimize discrepancies and biases.

Methods

Data source

Our data were sourced from the National Inpatient Sample (NIS) database, which is part of the Healthcare Cost and Utilization Project (HCUP), samples approximately 20% of discharges from all HCUP-participating community hospitals, and is the largest publicly available inpatient database in the United States [www.hcup-us.ahrq.gov/nisoverview.jsp]. The NIS is representative of approximately 95% of the US population (http://www.cdc.gov/nchs/nhanes/). All of the HCUP-NIS data are de-identified and analysis of the data does not require IRB approval or informed consent by all subjects.

Study population

This study extracted data of inpatients diagnosed with primary CRC based on specific International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes (153, 154), who underwent surgical intervention at admission. Surgical interventions included open and partial or subtotal colectomy (ICD-9-CM: 45.7), pull-through resection of rectum (ICD-9-CM: 48.40, 48.41, 48.43, 48.49, abdominoperineal resection of rectum / complete proctectomy (ICD-9-CM: 48.50, 48.52, 48.59), and other resections of rectum / partial proctectomy / rectosigmoidectomy (ICD-9-CM: 48.6x). Patients with missing data for

BMJ Open

demographics, patients diagnosed with liver cirrhosis, and patients with co-existing other primary malignancies were excluded.

Study Variables

The primary endpoint of this study was the prevalence of post-operative complications, including post-operative infection (ICD-9-CM=998.5), post-operative shock (ICD-9-CM=998.0), post-operative bleeding (ICD-9-CM=998.1), disruption of wound (ICD-9-CM=998.3), non-healing surgical wound (ICD-9-CM=998.83), nervous system complications (ICD-9-CM=997.0x), cardiac arrest/heart failure (ICD-9-CM=997.1), phlebitis/thrombophlebitis (ICD-9-CM=997.2), respiratory complications (ICD-9-CM=997.3x), digestive system complications (ICD-9-CM=997.4). urinary complications (ICD-9-CM=997.5), vascular complications (ICD-9-CM=997.7x), and unspecified complications (ICD-9-CM=998.9). The secondary endpoint was in-hospital mortality, which reflected the severity of the disease.

The independent variables included the presence of chronic liver disease. Although there were several etiologies of chronic liver disease, we only focused on specific etiologies found in higher percentages in our study population, such as chronic hepatitis B (ICD-9-CM=070.22, 070.32), chronic hepatitis C (ICD-9-CM=070.44, 070.54, 070.7x), non-alcoholic fatty liver disease (ICD-9-CM=571.8, 571.9), and other minor causes.

The relative variables obtained for each record included patient demographics (age, gender, race/ethnicity), socioeconomic status (household income), severity of CRC (locoregional involvement, distant metastasis), co-morbidity (hyperlipidemia, obesity), place of hospitalization, type of admission (elective, non-elective), and length of hospital stay.

Socioeconomic Status – household income

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

This categorical variable provides a quartile classification of the estimated median household income of residents in the patient's ZIP Code. The quartiles are identified by values of 1 to 4, indicating the poorest to wealthiest populations. These values are derived from ZIP Code-demographic data obtained from Claritas. Since these estimates are updated annually, the value ranges for these categories vary by year.

Comorbidities

For matching criteria between case and control groups, a number of co-morbid conditions were included, such as diabetes, hypertension, cardiovascular disease, congestive heart failure, cerebrovascular disease, Alzheimer's disease and other cognitive impairment, AIDS, alcohol abuse, chronic blood loss anemia, chronic pulmonary disease, coagulopathy, drug abuse, hypothyroidism, other neurological disorders, peripheral vascular disorders, pulmonary circulation disorders, renal failure, valvular diseases, and weight loss.

For relative variables, two comorbid conditions (hyperlipidemia and obesity) were selected to be incorporated into analysis. These two conditions were inter-correlated and were selected considering the difficulty of operation in obese patients, which could cause a series of postoperative complications.

Statistical analysis

Simple matching was used to match inpatients who had chronic liver diseases with those who did not have chronic liver diseases by age, gender, the severity of CRC, and comorbidities. Selected cases were matched with controls by 1:4 matching. Continuous variables were expressed as mean \pm standard deviation, and categorical data were shown as counts and percentages. Conditional logistic regression method was performed after matching, and a univariate logistic regression model was performed to determine the independent risk

BMJ Open

factors of postoperative complications or mortality. Multiple logistic regression analysis was performed on variables with an unadjusted effect and a p-value < 0.05 on univariate logistic regression analysis. Statistical significance was defined by a p-value < 0.05. Statistical analyses were performed using the SAS software version 9.4 (SAS Institute Inc., Cary, NC, USA).

Results

Patient demographics and clinical characteristics

Analysis of the HCUP-NIS database for the period 2005-2014 showed that 152,625 inpatients diagnosed with CRC had undergone surgical treatment. After excluding patients with liver cirrhosis, patients with co-existing other primary malignancies, and patients with missing data for age and gender, a total of 129,958 inpatients were enrolled in this study. The study population comprised 1,555 patients with CLD (case group) and 128,403 patients without CLD (control group). Due to the small sample size of the case group, simple matching was used to balance the case and control groups. After matching, a total of 7,463 inpatients were enrolled in the final study population. Of these patients, 5,908 patients (79.16%) had no CLD and 1,555 patients (20.84%) had CLD. A majority of patients in the CLD group had chronic hepatitis C (n = 564, 36.27%), while 441 patients (28.36%) had the non-alcoholic fatty liver disease, and 485 patients (31.19%) patients had other types of chronic liver diseases.

Baseline demographics and clinical characteristics of study patients are described in Table 1. The mean age of the inpatients was 62.53 years old, and the mean length of hospital stay was 8.96 days. A majority of the inpatients (57.39%) was male, and 60.78% were white. A total of 1993 patients (26.71%) were classified in the first quartile of median household income, and almost half the patients (49.99%) were operated upon in urban teaching hospitals.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Analysis of the whole study population showed that 1,633 inpatients (21.88%) had postoperative complications, the most frequent of which was digestive system complications (n = 675, 41.33%). A total of 1839 patients (24.64%) had hyperlipidemia, and 907 patients (12.15%) were obese. Length of hospital stay was 8.61 ± 6.49 days for non-CLD patients and 10.26 ± 9.46 for CLD patients. In-hospital mortality was recorded for 162 inpatients (2.17%).

Associating factors for postoperative complications in CRC inpatients with underlying CLD

Univariate and multivariate logistic regression analyses were performed to assess risk factors significantly associated with postoperative complications (Table 2). Although univariate analysis showed that hyperlipidemia and length of hospital stay were both significant associating factors of postoperative complications, length of hospital stay was the only variable significantly associated with postoperative complications by multivariate analysis (aOR= 1.13, 95% CI= 1.12-1.15, p < 0.001). The presence of underlying CLD was not significantly associated with the occurrence of postoperative complications (aOR=0.91, 95% CI= 0.78-1.05, p=0.192).

Associating factors for in-hospital mortality in CRC inpatients with underlying CLD

Univariate and multivariate logistic regression analyses were performed to assess risk factors significantly associated with in-hospital mortality (Table 3). Compared with patients without CLD, inpatients who had CLD had a significantly higher risk of in-hospital mortality events (aOR= 1.98, 95% CI= 1.39-2.82, p < 0.001). Patients in Quartile 2 of median household income had a significantly higher risk of in-hospital mortality by multivariate analysis. Multivariate analysis also showed that the length of hospital stay was significantly associated with in-hospital mortality events (aOR= 1.06, 95% CI= 1.04-1.08, p < 0.001).

BMJ Open

Discussion

This study investigated factors significantly associated with postoperative complications and in-hospital mortality in CRC patients with co-existing CLD who underwent colorectal surgery. Approximately 20% of our study population comprised patients with CLD. Our data showed that patients with CLD had a significantly longer duration of hospital stay compared to patients without CLD. Duration of hospital stay was significantly associated with the prevalence of postoperative complications as well as the occurrence of in-hospital mortality. Additionally, inpatients with hyperlipidemia had a significantly lower association with inhospital mortality compared to inpatients without hyperlipidemia.

Data for this study were extracted from the HCUP-NIS database, which is the largest publicly available collection of longitudinal hospital care clinical data in the United States beginning in 1988. We were, therefore, able to perform analysis of trends over time and make national estimates of health care utilization, access, charges, quality, and outcomes. The NIS sampling frame has grown from 8 States in 1988, to 22 States in 1998, to 46 States in 2011, and currently, covers 97% of the U.S. population.

Studies evaluating operative risk in patients with liver disease found that operative risk was correlated with severity of the underlying liver disease and the nature of the surgical procedure. The increased perioperative risk among patients with the underlying liver disease could be due to impairment of hepatic functions such as drug metabolism, detoxification of endogenous or exogenous toxins, and production of plasma proteins.¹³ Assessment of Child-Pugh classification and the Model for End-Stage Liver Disease (MELD) score, in

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

combination with careful pre- and post-operative monitoring has been shown to be crucial for improving outcomes.^{13, 21, 22} Additionally, some investigators have described the development of risk indices to distinguish low-risk and high-risk subgroups for predicting postoperative mortality in cirrhotic and CRC patients.^{17, 23}

Patients with CLD who undergo CRC surgery have previously been shown to have a significantly higher risk of postoperative mortality compared to patients without CLD. ^{17, 24, 25, 26} Data from a previous population-based study showed that CLD patients had a 6.5-fold higher risk of mortality after colorectal surgery, as well as significantly higher rates of postoperative complications compared to non-CLD patients.²⁷ These data suggested that identification of risk factors associated with postoperative complications and mortality in these patients could be critical to improving the clinical outcome.

The majority of CLD patients in our study had chronic hepatitis C infection, followed by NAFLD. Our data were consistent with previous studies showing that patients with chronic hepatitis C and NAFLD had a significantly higher incidence of colorectal adenomas and advanced neoplasms compared to healthy controls.^{19, 28, 29} Interestingly, our data showed that the presence of underlying CLD was not significantly associated with the rate of postoperative complications, although it was significantly associated with postoperative mortality.

Our data showing that CRC patients with CLD had a significantly longer hospital stay compared to patients without CLD, could possibly be due to a higher rate of postoperative complications and in-hospital mortality in these patients, which was evident in our multivariate regression analysis. Previous results showed that although mortality rates were higher in patients who were emergently admitted compared to patients with elective admission, there was no significant difference in the adjusted relative risk of mortality between the two groups.¹⁶ Our data showed that the type of admission (emergent vs. elective)

BMJ Open

was not significantly associated with either the risk of postoperative complications or risk of mortality among inpatients with CRC who had co-existing CLD.

It has been reported that a low socio-economic status was significantly associated with a high incidence of CRC, regardless of individual-level CRC risk factors.³⁰ Our multivariate analysis showed that patients in Quartile 2 of median household income had a significantly higher risk of in-hospital mortality compared to patients in Quartiles 3 and 4, suggesting that low socioeconomic status (SES) was significantly associated with a higher risk of in-hospital mortality in CRC patients with CLD. This could be a reflection of poorer access to, and lower utilization of health care services among patients with low SES.

Our data showed that the presence of hyperlipidemia was significantly less associated with postoperative in-hospital mortality. Hyperlipidemia is known to be associated with increased risk of CVD events and increased all-cause mortality. Our present findings could be due to the fact that patients with a diagnosis of hyperlipidemia were prescribed statins, and had a good compliance. Statin monotherapy has previously been shown to exert a protective effect and decreasing the rate of colorectal cancer mortality.³¹ Statin use has been shown to be an independent predictor of longer cancer-specific survival, and overall survival in patients with curatively resected CRC.³² Additionally, since the levels of adiponectin and leptin are significantly decreased and increased, respectively, in NAFLD and CRC patients,^{33, 34} it will be interesting to evaluate whether changes in adiponectin/leptin ratios in these patients are associated with clinical outcomes.

Based on our data source, the major strengths of our study are 1) the sample size is large enough to determine fairly precise prevalence measures at the national level, 2) a large multi-ethnic population sample which allowed us to explore the racial/ethnic heterogeneity, 3) the analysis was conducted in a nationally representative sample; therefore, our results may be generalized to the entire U.S. adult population. The major limitations of this study were 1) this BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

was a cross-sectional analysis, and the unit of this database was the individual medical record. Our study, therefore, could not make any inferences regarding causality, 2) it is possible that the number of hospital discharges recorded could include an undetermined number of repeat hospital stays for the same patient, 3) NIS is a US inpatient data (including representative proportions of people of different ethnicity) and should be validated in other countries. To the best of our knowledge, this is the first population-based, cross-sectional study of hospitalized patients evaluating the factors associated with postoperative complications and mortality in CRC patients with co-existing CLD.

Conclusion

Our study showed that the postoperative complications among CRC patients with underlying CLD was positively associated with length of hospital stay, but was not associated with the presence of CLD. The presence of CLD and duration of hospital stay were positively associated with the occurrence of in-hospital mortality, whereas the presence of hyperlipidemia was a protective factor. The associating factors identified in our populationbased study make it possible to correlate peri- or post-operative complications and mortality in CRC patients with underlying CLD, and can help to improve clinical management and outcomes in this group of CRC patients.

Data Sharing Statement

All data can be available in the text.

Acknowledgement

None

Funding

BMJ Open

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest

The authors declare no conflict of interest.

Statement of Author Contribution

Ko-Chao Lee: Conception and design; Acquisition of data; Analysis and interpretation of data; Drafting of the manuscript; Critical revision of the manuscript; guarantor of integrity of the entire study; definition of intellectual content; Administrative, technical or material support; Supervision

Kuan-Chih Chung: Conception and design; Acquisition of data; Analysis and interpretation of data; Drafting of the manuscript; Critical revision of the manuscript; guarantor of integrity of the entire study; definition of intellectual content; Administrative, technical or material support; Supervision

Hong-Hwa Chen: Acquisition of data; Analysis and interpretation of data; Critical revision of the manuscript; statistical analysis; Administrative, technical or material support

Kung-Chuan Cheng: Analysis and interpretation of data; Critical revision of the manuscript; statistical analysis; clinical studies

Kuen-Lin Wu: Analysis and interpretation of data; Critical revision of the manuscript; statistical analysis; clinical studies

Chien-Chang Lu: Analysis and interpretation of data; Critical revision of the manuscript; literature research; clinical studies

All authors have read and approved the submitted version.

References

 Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. *CA Cancer J Clin* 2012;62:10-29.

Jemal A, Bray F, Center MM, *et al.* Global cancer statistics. *CA Cancer J Clin* 2011;61:69-90.

3. Jemal A, Clegg LX, Ward E, *et al.* Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival. *Cancer* 2004;**101**:3-27.

4. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. *Clin Colon Rectal Surg* 2009;**22**:191-7.

5. Ahnen DJ, Wade SW, Jones WF, *et al.* The increasing incidence of young-onset colorectal cancer: a call to action. *Mayo Clin Proc* 2014;**89**:216-24.

6. Noel MS. Biologics in bowel cancer. *J Gastrointest Oncol* 2017;**8**:449-56.

7. Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer. Lancet 2010;375:1030-47.

8. Lao VV, Grady WM. Epigenetics and colorectal cancer. *Nat Rev Gastroenterol*

Hepatol 2011;**8**:686-700.

9. Fernandez-Iglesias A, Gracia-Sancho J. How to Face Chronic Liver Disease: The Sinusoidal Perspective. *Front Med (Lausanne)* 2017;**4**:7.

Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655 69.

 Goyal NP, Schwimmer JB. The Progression and Natural History of Pediatric Nonalcoholic Fatty Liver Disease. *Clin Liver Dis* 2016;20:325-38.

12. Aranha GV, Sontag SJ, Greenlee HB. Cholecystectomy in cirrhotic patients: a formidable operation. *Am J Surg* 1982;**143**:55-60.

 Hanje AJ, Patel T. Preoperative evaluation of patients with liver disease. *Nat Clin Pract Gastroenterol Hepatol* 2007;4:266-76.

BMJ Open

2
3
3
4
5
ē
0
7
8
õ
9
10
11
10
2 3 4 5 6 7 8 9 10 1 12 13 4 5 6 7 8 9 10 1 12 13 4 5 6 7 8 9 10 1 12 13 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 3 3 1 2 3 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 2 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
13
14
45
15
16
17
10
18
19
20
20
21
22
23
20
24
25
26
20
27
28
20
29
30
31
30
52
33
34
2 F
33
36
37
20
30
39
40
41
42
43
44
45
46
47
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60

14. Friedman LS. The risk of surgery in patients with liver disease. *Hepatology* 1999;29:1617-23.

15. Komaki Y, Komaki F, Micic D, *et al.* Risk of colorectal cancer in chronic liver diseases: a systematic review and meta-analysis. *Gastrointest Endosc* 2017;**86**:93-104 e5.

16. Montomoli J, Erichsen R, Christiansen CF, *et al.* Liver disease and 30-day mortality after colorectal cancer surgery: a Danish population-based cohort study. *BMC Gastroenterol* 2013;13:66.

17. Metcalf AM, Dozois RR, Wolff BG, *et al.* The surgical risk of colectomy in patients with cirrhosis. *Dis Colon Rectum* 1987;**30**:529-31.

Schwartz SI. Biliary tract surgery and cirrhosis: a critical combination. *Surgery* 1981;90:577-583.

19. Sorensen HT, Mellemkjaer L, Jepsen P, *et al.* Risk of cancer in patients hospitalized with fatty liver: a Danish cohort study. *J Clin Gastroenterol* 2003;**36**:356-9.

20. You J, Huang S, Huang GQ, *et al.* Nonalcoholic fatty liver disease: a negative risk factor for colorectal cancer prognosis. *Medicine (Baltimore)* 2015;**94**:e479.

21. Friedman LS. Surgery in the patient with liver disease. *Trans Am Clin Climatol Assoc* 2010;**121**:192-204; discussion 5.

22. Patel T. Surgery in the patient with liver disease. *Mayo Clin Proc* 1999;74:593-9.

23. Hippisley-Cox J, Coupland C. Development and validation of risk prediction equations to estimate survival in patients with colorectal cancer: cohort study. *BMJ* 2017;**357**:j2497.

24. Gervaz P, Pak-art R, Nivatvongs S, *et al*. Colorectal adenocarcinoma in cirrhotic patients. *J Am Coll Surg* 2003;**196**:874-9.

25. Meunier K, Mucci S, Quentin V, *et al.* Colorectal surgery in cirrhotic patients: assessment of operative morbidity and mortality. *Dis Colon Rectum* 2008;**51**:1225-31.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

26. Nguyen GC, Correia AJ, Thuluvath PJ. The impact of cirrhosis and portal hypertension on mortality following colorectal surgery: a nationwide, population-based study. *Dis Colon Rectum* 2009;**52**:1367-74.

27. Ghaferi AA, Mathur AK, Sonnenday CJ, *et al.* Adverse outcomes in patients with chronic liver disease undergoing colorectal surgery. *Ann Surg* 2010;**252**:345-50.

28. Rustagi T, Zarookian EI, Qasba O, *et al.* Chronic hepatitis C as a risk factor for colorectal adenoma. *Int J Colorectal Dis* 2014;**29**:75-80.

29. Wong VW, Wong GL, Tsang SW, *et al.* High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. *Gut* 2011;**60**:829-36.

30. Doubeni CA, Laiyemo AO, Major JM, *et al.* Socioeconomic status and the risk of colorectal cancer: an analysis of more than a half million adults in the National Institutes of Health-AARP Diet and Health Study. *Cancer* 2012;**118**:3636-44.

31. Yokomichi H, Nagai A, Hirata M, *et al.* Statin use and all-cause and cancer mortality:BioBank Japan cohort. *J Epidemiol* 2017;27:S84-91.

32. Shao YY, Hsu CH, Yeh KH, *et al.* Statin Use Is Associated With Improved Prognosis of Colorectal Cancer in Taiwan. *Clin Colorectal Cancer* 2015;**14**:177-84 e4.

33. Ferroni P, Palmirotta R, Spila A, *et al.* Prognostic significance of adiponectin levels in non-metastatic colorectal cancer. *Anticancer Res* 2007;**27**:483-9.

34. Guadagni F, Roselli M, Martini F, *et al.* Prognostic significance of serum adipokine levels in colorectal cancer patients. *Anticancer Res* 2009;**29**:3321-7.

BMJ Open

		Chronic liver diseases			
	Total sample $N = 7463$	No N = 5908	Yes N = 1555	p-valu	
Type of chronic liver diseases					
None	5908 (79.16)	5908 (100.00)	0 (0.00)		
Chronic hepatitis B	65 (0.87)	0 (0.00)	65 (4.18)		
Chronic hepatitis C	564 (7.56)	0 (0.00)	564 (36.27)		
Non-alcoholic fatty liver disease	441 (5.91)	0 (0.00)	441 (28.36)		
Other types	485 (6.50)	0 (0.00)	485 (31.19)		
Postoperative complications				0.228	
No	5830 (78.12)	4633 (78.42)	1197 (76.98)		
Yes	1633 (21.88)	1275 (21.58)	358 (23.02)		
Postoperative infection	360 (22.05)	276 (21.65)	84 (23.46)		
Postoperative shock	23 (1.41)	15 (1.18)	8 (2.23)		
Postoperative bleeding	149 (9.12)	104 (8.16)	45 (12.57)		
Disruption of wound	73 (4.47)	55 (4.31)	18 (5.03)		
Non-healing surgical wound	4 (0.24)	4 (0.31)	0 (0.00)		
Nervous system complications	17 (1.04)	16 (1.25)	1 (0.28)		
Cardiac arrest/heart failure	125 (7.65)	102 (8.00)	23 (6.42)		
Phlebitis/thrombophlebitis	5 (0.31)	3 (0.24)	2 (0.56)		
Respiratory complications	141 (8.63)	121 (9.49)	20 (5.59)		
Digestive system complications	675 (41.33)	529 (41.49)	146 (40.78)		
Urinary complications	60 (3.67)	49 (3.84)	11 (3.07)		
Unspecified complications	1 (0.06)	1 (0.08)	0 (0.00)		
In-Hospital Mortality				< 0.00	
No	7301 (97.83)	5806 (98.28)	1495 (96.14)		
Yes	162 (2.17)	102 (1.73)	60 (3.86)	0.00	
Age				0.984	
Mean \pm SD	62.53 ± 12.17	62.53 ± 12.16	62.52 ± 12.17	0.700	
Gender	1002 (57.20)	2204 (57.20)	000 (57.01)	0.708	
Male	4283 (57.39)	3384 (57.28)	899 (57.81)		
Female	3180 (42.61)	2524 (42.72)	656 (42.19)	< 0.00	
Race	452(((0.70)	2570 ((0.42)	0(((2.12)	< 0.00	
White	4536 (60.78)	3570 (60.43)	966 (62.12)		
Black	810 (10.85)	614 (10.39)	196 (12.60)		
Hispanic	359 (4.81)	266 (4.50)	93 (5.98)		
Asian or Pacific Islander	154 (2.06)	108 (1.83) 19 (0.32)	46 (2.96) 5 (0.32)		

Other/Missing	1580 (21.17)	1331 (22.53)	249 (16.01)	
Median household income				< 0.001
Quartile 1	1993 (26.71)	1564 (26.47)	429 (27.59)	
Quartile 2	1902 (25.49)	1489 (25.20)	413 (26.56)	
Quartile 3	1757 (23.54)	1386 (23.46)	371 (23.86)	
Quartile 4	1646 (22.06)	1354 (22.92)	292 (18.78)	
Others	165 (2.21)	115 (1.95)	50 (3.22)	
Location of hospital				< 0.001
Rural	984 (13.19)	833 (14.10)	151 (9.71)	
Urban non-teaching	2711 (36.33)	2152 (36.43)	559 (35.95)	
Urban teaching	3731 (49.99)	2894 (48.98)	837 (53.83)	
Others	37 (0.50)	29 (0.49)	8 (0.51)	
Types of admission				0.006
Non-elective	2323 (31.13)	1789 (30.28)	534 (34.34)	
Elective	5122 (68.63)	4103 (69.45)	1019 (65.53)	
Others	18 (0.24)	16 (0.27)	2 (0.13)	
Severity of CRC				0.987
None	4889 (65.51)	3868 (65.47)	1021 (65.66)	
Lymph node metastasis	1823 (24.43)	1444 (24.44)	379 (24.37)	
Distant metastasis	751 (10.06)	596 (10.09)	155 (9.97)	
Length of hospital stay (day)				< 0.001
Mean \pm SD	8.96 ± 7.24	8.61 ± 6.49	10.26 ± 9.46	
– Hyperlipidemia	_	_	_	< 0.001
No	5624 (75.36)	4382 (74.17)	1242 (79.87)	
Yes	1839 (24.64)	1526 (25.83)	313 (20.13)	
Obesity			()	0.827
•	6556 (87.85)	5187 (87.80)	1369 (88.04)	
No			186 (11.96)	

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		
49 50 51 52		

Table 2. Univariate and multivariate logistic regression analyses to identify factors associated with postoperative complications among inpatients diagnosed with colorectal cancer		

	enivaria	•	1.14101.04110	
	OR (95% CI)	p value	aOR (95% CI)	p value
Chronic liver diseases				
No	reference		reference	
Yes	1.08 (0.94, 1.23)	0.292	0.91 (0.78, 1.05)	0.192
Race				
White	reference			
Black	1.01 (0.83, 1.23)	0.842		
Hispanic	1.03 (0.79, 1.35)	0.767		
Asian or Pacific islander	0.85 (0.54, 1.34)	0.486		
Native American	1.10 (0.42, 2.92)	0.792		
Other/Missing	0.95 (0.81, 1.10)	0.686		
Median household income	0.95 (0.01, 1.10)	0.000		
Quartile 1	reference			
Quartile 2	1.16 (0.99, 1.36)	0.074		
Quartile 3	0.93 (0.79, 1.10)	0.127		
Quartile 4	1.02 (0.86, 1.21)	0.127		
Others	1.02 (0.80, 1.21)	0.867		
Location of hospital	1.00 (0.71, 1.39)	0.807		
Rural	reference			
Urban non-teaching	1.09 (0.90, 1.32)	0.996		
Urban teaching	1.04 (0.87, 1.25)	0.647		
Others	1.25 (0.57, 2.75)	0.642		
Types of admission				
Non-elective	reference			
Elective	0.95 (0.83, 1.08)	0.937		
Others	0.85 (0.24, 3.03)	0.835		
Length of hospital stay	1.13 (1.12, 1.14)	<0.001	1.13 (1.12, 1.15)	<0.001
Hyperlipidemia	1.13 (1.12, 1.14)	-0.001	1.15 (1.12, 1.15)	~0.001
71 1	C			
No	reference		reference	
Yes	0.77 (0.67, 0.89)	<0.001	0.97 (0.83, 1.12)	0.671
Obesity				
No	reference			
Yes	1.09 (0.91, 1.30)	0.353		
D + 0.05 1 1.110				

P < 0.05 were shown in boldface.

	Univariat	Univariate		Multivariate	
	OR (95% CI)	p value	aOR (95% CI)	p value	
Chronic liver diseases					
No	reference		reference		
Yes	2.33 (1.68, 3.23)	<0.001	1.98 (1.39, 2.82)	<0.001	
Race					
White	reference				
Black	1.31 (0.76, 2.27)	0.992			
Hispanic	0.93 (0.42, 2.06)	0.992			
Asian or Pacific Islander	NA	NA			
Native American	NA	NA			
Other/Missing	0.86 (0.55, 1.35)	0.992			
Median household income					
Quartile 1	reference		reference		
Quartile 2	1.28 (0.83, 1.96)	0.114	1.45 (0.92, 2.29)	0.03	
Quartile 3	0.58 (0.35, 0.99)	0.016	0.67 (0.39, 1.16)	0.092	
Quartile 4	0.68 (0.40, 1.15)	0.083	0.69 (0.39, 1.22)	0.128	
Others	1.72 (0.59, 4.96)	0.178	1.31 (0.40, 4.29)	0.534	
Location of hospital					
Rural	reference				
Urban non-teaching	0.65 (0.40, 1.04)	0.146			
Urban teaching	0.59 (0.37, 0.94)	0.074			
Others	2.87 (0.29, 28.13)	0.233			
Types of admission					
Non-elective	reference				
Elective	0.37 (0.26, 0.52)	0.984			
Others	NA	NA			
Length of hospital stay	1.07 (1.05, 1.09)	<0.001	1.06 (1.04, 1.08)	<0.001	
Hyperlipidemia					
No	reference		reference		
Yes	0.39 (0.25, 0.63)	<0.001	0.46 (0.28, 0.75)	0.002	
Obesity	(<i>'</i> , <i>'</i> ,				
No	reference				
Yes	0.56 (0.29, 1.08)	0.084			

Table 3. Univariate and multivariate logistic regression analyses to identify factors associated with in-hospital mortality among inpatients diagnosed with colorectal cancer.

Abbreviation: NA, not applicable

BMJ Open

Short-term postoperative outcomes of colorectal cancer among patients with chronic liver disease: a national population-based study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020511.R1
Article Type:	Research
Date Submitted by the Author:	11-Feb-2018
Complete List of Authors:	Lee, Ko-Chao; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Chung, Kuan-Chih ; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Department of Anesthesiology Chen, Hong-Hwa; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Cheng, Kung-Chuan ; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Wu, Kuen-Lin; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Lu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Lu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Lu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Gastroenterology and hepatology, Infectious diseases, Nutrition and metabolism, Surgery
Keywords:	Colorectal cancer, short-term morbidity, mortality, chronic liver disease, National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP)

SCHOLARONE[™] Manuscripts

BMJ Open

Short-term postoperative outcomes of colorectal cancer among patients with chronic liver disease: a national population-based study Running title: CRC surgery with liver disease

Ko-Chao Lee,MD^{1*#}, Kuan-Chih Chung, MD^{2#}, Hong-Hwa Chen, MD¹, Kung-Chuan Cheng,

MD¹, Kuen-Lin Wu, MD¹, Chien-Chang Lu, MD¹

¹Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital -Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan ²Department of Anesthesiology, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan

[#]The first two authors contributed equally to this work

*Corresponding author:

Ko-Chao Lee, MD

Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital -

erie

Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan

Phone: +886-7-7317123 Fax: +886-7-7318762

E-mail: kmch4329@gmail.com

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Abstract

Objectives: Colorectal carcinoma (CRC) patients with pre-existing chronic liver disease (CLD) had a significantly higher 30-day mortality after CRC surgery compared to healthy controls. This study investigated the factors associated with postoperative complications and in-hospital mortality in CRC patients with co-existing CLD (excluding cirrhosis) who underwent colorectal surgery.

Design: A retrospective observational population-based study.

Setting: Data were sourced from the National Inpatient Sample (NIS) database, a part of the Healthcare Cost and Utilization Project (HCUP).

Participants: This study analyzed a total of 7,463 inpatients with CRC who underwent colorectal surgery at admission between 2005 and 2014.

Primary and secondary outcome measures: The primary endpoint of this study was the prevalence of postoperative complications, and the secondary endpoint was in-hospital mortality.

Results: In the CLD group, 36.27% of patients had chronic hepatitis C, 28.36% had nonalcoholic fatty liver disease, and 31.19% had other types of chronic liver diseases. Length of hospital stay was significantly associated with postoperative infection (aOR= 1.13, 95% CI= 1.11-1.15, p < 0.001), postoperative bleeding (aOR= 1.02, 95% CI= 1.01-1.04, p = 0.013), respiratory complications (aOR= 1.04, 95% CI= 1.02-1.07, p < 0.001), and digestive complications (aOR= 1.05, 95% CI= 1.04-1.06, p < 0.00). Presence of CLD was significantly associated with higher risk of postoperative bleeding (aOR= 1.64, 95% CI= 1.15-2.34, p =0.007). Presence of CLD (aOR= 1.98, 95% CI= 1.39-2.82, p < 0.001), and length of hospital stay (aOR= 1.06, 95% CI= 1.04-1.08, p < 0.001) were significantly associated with higher risk of in-hospital mortality. However, hyperlipidemia was associated with a significantly lower risk of mortality (aOR= 0.46, 95% CI= 0.28-0.75, p = 0.002).

BMJ Open

Conclusions: Identification of factors associated with postoperative complications, and mortality in CRC patients with underlying CLD can help to improve clinical management and outcomes in this group of CRC patients.

Keywords: Colorectal cancer, short-term morbidity, mortality, chronic liver disease, National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP).

Strengths and limitations of this study

- Data for this study were collected from a large, comprehensive, and national representative database.
- A large multi-ethnic population sample allowed us to explore the racial/ethnic heterogeneity
- The cross-sectional design of this study can only demonstrate association, therefore, causality could not be determined.

Introduction

Colorectal cancer (CRC) is the most common gastrointestinal malignancy, and the second leading cause of cancer-related deaths in developed countries, accounting for 51,690 deaths in the United States in 2012.^{1,2} The 5-year survival rates range from 90% for cancers detected at the localized stage, 70% for regional tumors, and 10% for distant metastatic tumors.³ The major risk factors of CRC include age and hereditary factors, the presence of inflammatory bowel disease, and environmental factors such as nutritional practices, physical activity/obesity, cigarette smoking, and alcohol consumption.⁴The implementation of population-based screening for average-risk, asymptomatic individuals beginning at 50 years of age has resulted in a significant decrease in CRC incidence among individuals > 50 years old. CRC patients who present at an early stage usually receive curative surgical resection, whereas patients who present with metastatic disease receive palliative systemic chemotherapy or treatment with novel biologic agents.⁵

Chronic liver disease (CLD) represents a major health concern and accounts for approximately 1 million deaths per year worldwide.⁶The major risk factors for CLD include chronic viral hepatitis infection, chronic exposure to toxins (including excessive alcohol consumption), and autoimmune injury, which all contribute towards progression of hepatic fibrosis and development of cirrhosis via the production and deposition of extracellular matrix components.⁷CLD also includes liver damage mediated by lipid accumulation in hepatocytes. The spectrum of obesity-related liver disease such as NAFLD (non-alcoholic fatty liver disease) can range from non-alcoholic steatohepatitis (NASH) with inflammation and fibrosis, and end in cirrhosis.⁸

Patients with liver disease who had CRC frequently required surgery and anesthesia, and were shown to have an increased risk of perioperative complications and postoperative morbidity and mortality. This could be due to complications associated with liver disease,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

including hepatic encephalopathy, ascites, sepsis, and hemorrhage.⁹Patients with mild to moderate chronic liver disease without cirrhosis usually tolerate surgery well, whereas acute liver failure (previously termed fulminant hepatic failure) and acute viral or alcoholic hepatitis are considered contraindications to elective surgery.¹⁰Additionally, it has been reported that the location of the surgical procedure is an important risk factor for postoperative liver failure in patients withpre-existing liver disease. Cardiac surgery, abdominal surgery, and hepatic resection are all associated with higher rates of perioperative complications, and higher rates of morbidity and mortality compared to more peripheral surgery, presumably due to greater reductions in hepatic blood flow.^{10, 11}

A recent meta-analysis of 50 studies reported that patients with CLD had a significantly higher risk of CRC, which persisted after liver transplantation, compared to the general population.¹²CRC patients with pre-existing liver disease were shown to have a significantly higher 30-day mortality after CRC surgery compared to CRC patients with noncirrhotic liver disease and healthy controls.¹³ Other data showed that colectomy of any kind was associated with a significant risk of postoperative morbidity and mortality in cirrhotic patients,¹⁴ and this was thought to be related to increased intraoperative and early postoperative bleeding.¹⁵Additionally, although fatty liver has been shown to be an important risk factor of CRC,¹⁶ the presence of NAFLD is thought to play a protective role in the overall survival of CRC patients.¹⁷

The aim of our present study was to identify risk factors associated with postoperative complications and mortality in CRC patients with co-existing CLD who underwent colorectal surgery. Our clinical data were sourced from a national and comprehensive database, which made it possible to minimize discrepancies and biases.

Methods

Data source

In this population-based, cross-sectional study, data were sourced from the National Inpatient Sample (NIS) database, which is part of the Healthcare Cost and Utilization Project (HCUP). The NIS database samples approximately 20% of discharges from all HCUPparticipating community hospitals, and is the largest publicly available inpatient database in the United States[www.hcup-us.ahrq.gov/nisoverview.jsp]. The NIS is representative of approximately 95% of the US population(http://www.cdc.gov/nchs/nhanes/). All of the HCUP-NIS data are de-identified and analysis of the data does not require IRB approval or informed consent by all subjects.

Study population

This study extracted data of inpatients diagnosed with primary CRC based on specific International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes (153, 154), who underwent surgical intervention at admission. Surgical interventions included open and partial or subtotal colectomy (ICD-9-CM: 45.7), pull-through resection of rectum (ICD-9-CM: 48.40, 48.41, 48.43, 48.49, abdominoperineal resection of rectum / complete proctectomy (ICD-9-CM: 48.50, 48.52, 48.59), and other resections of rectum / partial proctectomy / rectosigmoidectomy (ICD-9-CM: 48.6x). Patients with missing data for demographics, patients diagnosed with liver cirrhosis, and patients with co-existing other primary malignancies were excluded.

Study Variables

The primary endpoint of this study was the prevalence of post-operative complications, including post-operative infection (ICD-9-CM=998.5), post-operative shock (ICD-9-

CM=998.0), post-operative bleeding (ICD-9-CM=998.1), disruption of wound (ICD-9-CM=998.3), non-healing surgical wound (ICD-9-CM=998.83), nervous system complications (ICD-9-CM=997.0x), cardiac arrest/heart failure (ICD-9-CM=997.1), phlebitis/thrombophlebitis (ICD-9-CM=997.2), respiratory complications (ICD-9-CM=997.3x), digestive system complications (ICD-9-CM=997.4). urinary complications (ICD-9-CM=997.5), vascular complications (ICD-9-CM=997.7x), and unspecified complications (ICD-9-CM=998.9). The secondary endpoint was in-hospital mortality, which reflected the severity of the disease.

The independent variables included the presence of chronic liver disease. Although there were several etiologies of chronic liver disease, we only focused on specific etiologies found in higher percentages in our study population, such as chronic hepatitis B (ICD-9-CM=070.22, 070.32), chronic hepatitis C (ICD-9-CM=070.44, 070.54, 070.7x), non-alcoholic fatty liver disease (ICD-9-CM=571.8, 571.9), and other minor causes.

The relative variables obtained for each record included patient demographics (age, gender, race/ethnicity), socioeconomic status (household income), severity of CRC (locoregional involvement, distant metastasis), co-morbidity (hyperlipidemia, obesity), place of hospitalization, type of admission (elective, non-elective), and length of hospital stay.

Socioeconomic Status – household income

This categorical variable provides a quartile classification of the estimated median household income of residents in the patient's ZIP Code. The quartiles are identified by values of 1 to 4, indicating the poorest to wealthiest populations. These values are derived from ZIP Code-demographic data obtained from Claritas. Since these estimates are updated annually, the value ranges for these categories vary by year.

Comorbidities

For matching criteria between case and control groups, a number of co-morbid conditions were included, such as diabetes, hypertension, cardiovascular disease, congestive heart failure, cerebrovascular disease, Alzheimer's disease and other cognitive impairment, AIDS, alcohol abuse, chronic blood loss anemia, chronic pulmonary disease, coagulopathy, drug abuse, hypothyroidism, other neurological disorders, peripheral vascular disorders, pulmonary circulation disorders, renal failure, valvular diseases, and weight loss.

For relative variables, two comorbid conditions (hyperlipidemia and obesity) were selected to be incorporated into analysis. These two conditions were inter-correlated and were selected considering the difficulty of operation in obese patients, which could cause a series of postoperative complications.

Statistical analysis

Simple matching was used to match inpatients who had chronic liver diseases with those who did not have chronic liver diseases by age, gender, the severity of CRC, and comorbidities. Selected cases were matched with controls by 1:4 matching. Continuous variables were expressed as mean \pm standard deviation, and categorical data were shown as counts and percentages. Conditional logistic regression method was performed after matching, and a univariate logistic regression model was performed to determine the independent risk factors of postoperative complications or mortality. Multiple logistic regression analysis was performed on variables with an unadjusted effect and a p-value < 0.05 on univariate logistic regression analysis. Statistical significance was defined by a p-value < 0.05. Statistical analyses were performed using the SAS software version 9.4 (SAS Institute Inc., Cary, NC, USA).

BMJ Open

Results

Patient demographics and clinical characteristics

Analysis of the HCUP-NIS database for the period 2005-2014 showed that 152,625 inpatients diagnosed with CRC had undergonesurgical treatment. After excluding patients with liver cirrhosis, patients with co-existing other primary malignancies, and patients with missing data for age and gender, a total of 129,958 inpatients were enrolled in this study. The study population comprised 1,555 patients with CLD (case group) and 128,403 patients without CLD (control group). Due to the small sample size of the case group, simple matching was used to balance the case and control groups. After matching, a total of 7,463 inpatients were enrolled in the final study population. Of these patients, 5,908 patients (79.16%) had no CLD and 1,555 patients (20.84%) had CLD. A majority of patients in the CLD group had chronic hepatitis C (n = 564, 36.27%), while 441 patients (28.36%) had non-alcoholic fatty liver disease, and 485 patients (31.19%) patients had other types of chronic liver diseases.

Baseline demographics and clinical characteristics of study patients are described in Table 1. The mean age of the inpatients was 62.53 years old, and the mean length of hospital stay was 8.96 days. A majority of the inpatients (57.39%) was male, and 60.78% were white. A total of 1993 patients (26.71%) was classified in the first quartile of median household income, and almost half the patients (49.99%) were operated upon in urban teaching hospitals.

Analysis of the whole study population showed that 1,633 inpatients (21.88%) had postoperative complications, the most frequent of which was digestive system complications (n = 675, 41.33%). A total of 1839 patients (24.64%) had hyperlipidemia, and 907 patients (12.15%)were obese. Length of hospital stay was 8.61 ± 6.49 days for non-CLD patients and 10.26 ± 9.46 for CLD patients. In-hospital mortality was recorded for 162 inpatients (2.17%).

Factors associated with postoperative complications in CRC patients with underlying CLD

Univariate and multivariate logistic regression analyses were performed to assess risk factors significantly associated with postoperative complications (Table 2). Although univariate analysis showed that hyperlipidemia and length of hospital stay were both significantly associated with risk of postoperative complications, the length of hospital stay was the only variable significantly associated with risk of post-operative complications by multivariate analysis (aOR= 1.13, 95% CI= 1.12-1.15, p < 0.001). The presence of underlying CLD was not significantly associated with the occurrence of overall postoperative complications (aOR=0.91, 95% CI= 0.78-1.05, p=0.192).

We subsequently used logistic regression analysis to identify factors associated with specific postoperative complications which occurred in > 5% of patients (postoperative infection, postoperative bleeding, cardiac arrest/heart failure, respiratory complications, and digestive system complications; Table 3-1, Table 3-2, and Table 4). Univariate analysis showed that 1) presence of hyperlipidemia, and length of hospital stay were significantly associated with postoperative infection (all P<0.010; Table 3-1); 2) presence of CLD, and length of hospital stay were significantly associated with postoperative bleeding (all P<0.010; Table 3-1); 3) presence of CLD, treatment at an urban teaching hospital, and length of hospital stay were significantly associated with respiratory complications (all P \leq 0.048, Table 3-2); 4) black race and length of hospital stay were both significantly associated with digestive system complications (P<0.05; Table 3-2). None of the factors analyzed was significantly associated with cardiac arrest/heart failure (all P \geq 0.05, Table 3-1).

Our multivariate analysis showed that 1) length of hospital stay was the only factor significantly associated with postoperative infection (aOR= 1.13, 95% CI= 1.11-1.15, p <

BMJ Open

0.001) (Table 4); 2) presence of CLD(aOR= 1.64, 95% CI= 1.15-2.34, p = 0.007), and length of hospital stay (aOR= 1.02, 95% CI= 1.01-1.04, p = 0.013)were both significantly associated with postoperative bleeding; 3) patients with CLD, and patients treated at an urban teaching hospital had a lower risk of respiratory complications (CLD: aOR= 0.58, 95% CI= 0.36-0.95, p = 0.029; Urban teaching hospital: aOR= 0.44, 95% CI= 0.26-0.75, p = 0.002, respectively), while length of hospital stay was positively associated with respiratory complications (aOR= 1.04, 95% CI= 1.02-1.07, p < 0.001); 4) length of hospital stay was the only variable significantly associated with digestive system complications (aOR= 1.05, 95% CI= 1.04-1.06, p < 0.001; Table 4).

Univariate and multivariate logistic regression analyses were performed to assess risk factors significantly associated with in-hospital mortality (Table 5). Compared with patients without CLD, inpatients who had CLD had a significantly higher risk of in-hospital mortality events (aOR= 2.05, 95% CI= 1.43-2.94, p < 0.001). Multivariate analysis also showed that the length of hospital stay was significantly associated with in-hospital mortality events (aOR= 1.06, 95% CI= 1.04-1.08, p < 0.001). However, patients with elective admission (aOR= 0.50, 95% CI= 0.34-0.73, p < 0.001) and inpatients with hyperlipidemia had a significantly lower risk of mortality (aOR= 0.46, 95% CI= 0.28-0.75, p = 0.002) compared to inpatients without hyperlipidemia and inpatients without elective admission, respectively.

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Discussion

This study investigated factors significantly associated with risk of postoperative complications and in-hospital mortality in CRC patients with co-existing CLD who underwent colorectal surgery. Our data showed that 20.84% of our study population comprised patients with CLD. Patients with CLD had a significantly longer duration of hospital stay compared to patients without CLD. Length of hospital stay was significantly associated with risk of postoperative infection, postoperative bleeding, respiratory complications, and digestive complications among CRC patients with underlying CLD. The presence of CLD was significantly associated with a higher risk of postoperative bleeding, and a lower risk of respiratory complications. The presence of CLD and duration of hospital stay were significantly associated with a higher risk of in-hospital mortality, whereas the presence of hyperlipidemia was associated with a lower risk of in-hospital mortality.

Data for this study were extracted from the HCUP-NIS database, which is the largest publicly available collection of longitudinal hospital care clinical data in the United States beginning in 1988. We were, therefore, able to perform analysis of trends over time and make national estimates of health care utilization, access, charges, quality, and outcomes. The NIS sampling frame has grown from 8 States in 1988, to 22 States in 1998, to 46 States in 2011, and currently, covers 97% of the U.S. population.

Studies evaluating operative risk in patients with liver disease found that operative risk was correlated with severity of the underlying liver disease and the nature of the surgical procedure. The increased perioperative risk among patients with underlying liver disease could be due to impairment of hepatic functions such as drug metabolism, detoxification of endogenous or exogenous toxins, and production of plasma proteins.¹⁰Assessment of Child-Pugh classification and the Model for End-Stage Liver Disease (MELD) score, in

BMJ Open

combination with careful pre- and post-operative monitoring has been shown to be crucial for improving outcomes.^{10, 18, 19}Additionally, some investigators have described the development of risk indices to distinguish low-risk and high-risk subgroups for predicting postoperative mortality in cirrhotic and CRC patients.^{14, 20}

Patients with CLD who undergo CRC surgery have previously been shown to have a significantly higher risk of postoperative mortality compared to patients without CLD.^{14, 21, 22, 23} Data from a previous population-based study showed that CLD patients had a 6.5-fold higher risk of mortality after colorectal surgery, as well as significantly higher rates of postoperative complications compared to non-CLD patients.²⁴ These data were consistent with our results which showed that presence of CLD was associated with a higher risk of inhospital mortality, and suggested that identification of risk factors associated with postoperative complications and mortality in these patients could be critical to improving the clinical outcome.

Our data showed that CRC patients with CLD had a significantly longer hospital stay compared to patients without CLD. This could possibly be due to a higher rate of specific postoperative complications. This was evident in our multivariate regression analysis, which showed that the presence of CLD was associated with a higher risk of postoperative bleeding. Although our data showed that the presence of CLD was associated with a lower risk of respiratory complications, we only evaluated surgery-related respiratory complications, and not the most common CLD-related pulmonary complications such as hepatopulmonary syndrome, porto-pulmonary hypertension, and hepatic hydrothorax²⁵.

The majority of CLD patients in our study had chronic hepatitis C infection, followed by NAFLD. Our data were consistent with previous studies showing that patients with chronic hepatitis C and NAFLD had a significantly higher incidence of colorectal adenomas and advanced neoplasms compared to healthy controls.^{16, 26, 27}

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Previous results showed that although mortality rates were higher in patients who were emergently admitted compared to patients with elective admission, there was no significant difference in the adjusted relative risk of mortality between the two groups.¹³ Our data showed that the type of admission (emergent vs. elective) was not significantly associated with the risk of postoperative complications, but was associated with risk of mortality among inpatients with CRC who had co-existing CLD.

It has been reported that a low socio-economic status was significantly associated with a high incidence of CRC, regardless of individual-level CRC risk factors.²⁸ Our multivariate analysis showed that patients in Quartile 2 of median household income had a significantly higher risk of in-hospital mortality compared to patients in Quartiles 3 and 4, suggesting that low socioeconomic status (SES) was significantly associated with a higher risk of in-hospital mortality in CRC patients with CLD. This could be a reflection of poorer access to, and lower utilization of health care services among patients with low SES.

Our data showed that hyperlipidemia was associated with a significantly lower risk of postoperative in-hospital mortality. Hyperlipidemia is known to be associated with increased risk of CVD events and increased all-cause mortality. Our present findings could be due to the fact that patients with a diagnosis of hyperlipidemia were prescribed statins, and had a good compliance. Statin monotherapy has previously been shown to exert a protective effect and decreasing the rate of colorectal cancer mortality.²⁹ Statin use has been shown to be an independent predictor of longer cancer-specific survival, and overall survival in patients with curatively resected CRC.³⁰ Additionally, since the levels of adiponectin and leptin are significantly decreased and increased, respectively, in NAFLD and CRC patients,^{31, 32} it will be interesting to evaluate whether changes in adiponectin/leptin ratios in these patients are associated with clinical outcomes.

BMJ Open

Based on our data source, the major strengths of our study are 1) the sample size is large enough to determine fairly precise prevalence measures at the national level, 2) a large multi-ethnic population sample which allowed us to explore the racial/ethnic heterogeneity, 3) the analysis was conducted in a nationally representative sample; therefore, our results may be generalized to the entire U.S. adult population. The major limitations of this study were 1) this was a cross-sectional analysis, and the unit of this database was the individual medical record. Our study, therefore, could not make any inferences regarding causality, 2) it is possible that the number of hospital discharges recorded could include an undetermined number of repeat hospital stays for the same patient, 3) NIS is a US inpatient data (including representative proportions of people of different ethnicity) and should be validated in other countries, 4) our study used ICD-9 codes to characterize the disease, co-morbidities, and interventions. Validation of ICD-9 codes using parameters such as patient charts, or a combination of patient claims along with Part B Medicare claims is important during the course of epidemiological studies performed using administrative databases such as SEER.^{33, 34} To the best of our knowledge, this is the first population-based, cross-sectional study of hospitalized patients evaluating the factors associated with postoperative complications and mortality in CRC patients with co-existing CLD.

Conclusion

Our study showed that length of hospital stay was significantly associated with postoperative infection, postoperative bleeding, respiratory complications, and digestive complications among CRC patients with underlying CLD. The presence of CLD was significantly associated with a higher risk of postoperative bleeding, and a lower risk of respiratory complications. Our data suggested that postoperative bleeding should be closely monitored in CRC patients with CLD, since it may result in a higher risk of in-hospital

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

mortality in these patients. The presence of CLD and duration of hospital stay were significantly associated with a higher risk of in-hospital mortality, whereas the presence of hyperlipidemia was a protective factor.

Identification of factors associated with peri- or postoperative complications, and mortality in CRC patients with underlying CLD, can help to improve clinical management and outcomes in this group of CRC patients.

Data Sharing Statement

All data can be accessed from the National Inpatient Sample Database.

Acknowledgement

None

Funding

This research received no specific grant from any funding agency in the public, commercial or ich not-for-profit sectors.

Conflict of interest

The authors declare no conflict of interest.

Statement of Author Contribution

Ko-Chao Lee: Conception and design; Acquisition of data; Analysis and interpretation of data; Drafting of the manuscript; Critical revision of the manuscript; guarantor of integrity of the entire study; definition of intellectual content; Administrative, technical or material support; Supervision

Kuan-Chih Chung: Conception and design; Acquisition of data; Analysis and interpretation of data; Drafting of the manuscript; Critical revision of the manuscript; guarantor of integrity of the entire study; definition of intellectual content; Administrative, technical or material support; Supervision

BMJ Open

1	
2	
3	Hong-Hwa Chen: Acquisition of data; Analysis and interpretation of data; Critical revision of
4	the manuscript; statistical analysis; Administrative, technical or material support
5 6	the manuscript, statistical analysis, Administrative, technical of material support
7	Kung-Chuan Cheng: Analysis and interpretation of data; Critical revision of the manuscript;
8	Kung-Chuan Cheng. Analysis and interpretation of data, Critical revision of the manuscript,
9	statistical analysis; clinical studies
10	statistical analysis, enfiled statics
11	Kuen-Lin Wu: Analysis and interpretation of data; Critical revision of the manuscript;
12	reach bhi wa margono ana margono ana manasempo,
13	statistical analysis; clinical studies
14 15	
16	Chien-Chang Lu: Analysis and interpretation of data; Critical revision of the manuscript;
17	
18	literature research; clinical studies
19	
20	All authors have read and approved the submitted version.
21	
22	
23	
24 25	
26	
27	
28	
29	Iterature research; clinical studies All authors have read and approved the submitted version.
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48	
49	
50 51	
51 52	
53	
54	
55	
56	
57	
58	
59	

References

 Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. *CA Cancer J Clin* 2012;62:10-29.

Jemal A, Bray F, Center MM, *et al.* Global cancer statistics. *CA Cancer J Clin* 2011;61:69-90.

3. Jemal A, Clegg LX, Ward E, *et al.* Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival. *Cancer* 2004;**101**:3-27.

4. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. *Clin Colon Rectal Surg* 2009;**22**:191-7.

5. Noel MS. Biologics in bowel cancer. *J Gastrointest Oncol*2017;**8**:449-56.

6. Fernandez-Iglesias A, Gracia-Sancho J. How to Face Chronic Liver Disease: The Sinusoidal Perspective. *Front Med (Lausanne)* 2017;**4**:7.

Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655 69.

8. Goyal NP, Schwimmer JB. The Progression and Natural History of Pediatric Nonalcoholic Fatty Liver Disease. *Clin Liver Dis*2016;**20**:325-38.

9. Aranha GV, Sontag SJ, Greenlee HB. Cholecystectomy in cirrhotic patients: a formidable operation. *Am J Surg* 1982;**143**:55-60.

 Hanje AJ, Patel T. Preoperative evaluation of patients with liver disease. *Nat Clin Pract Gastroenterol Hepatol* 2007;4:266-76.

Friedman LS. The risk of surgery in patients with liver disease. *Hepatology* 1999;29:1617-23.

12. Komaki Y, Komaki F, Micic D, *et al.* Risk of colorectal cancer in chronic liver diseases: a systematic review and meta-analysis. *Gastrointest Endosc* 2017;**86**:93-104 e5.

13. Montomoli J, Erichsen R, Christiansen CF, et al. Liver disease and 30-day mortality

BMJ Open

2013	; 13 :66.
14.	Metcalf AM, Dozois RR, Wolff BG, et al. The surgical risk of colectomy in pa
with	cirrhosis. Dis Colon Rectum 1987;30:529-31.
15.	Schwartz SI. Biliary tract surgery and cirrhosis: a critical combination. Surger
1981	; 90 :577-83.
16.	Sorensen HT, Mellemkjaer L, Jepsen P, et al. Risk of cancer in patients hospita
with	fatty liver: a Danish cohort study. J Clin Gastroenterol 2003;36:356-9.
17.	You J, Huang S, Huang GQ, et al. Nonalcoholic fatty liver disease: a negative
facto	r for colorectal cancer prognosis. Medicine (Baltimore) 2015;94:e479.
18.	Friedman LS. Surgery in the patient with liver disease. Trans Am Clin Climato
2010	; 121 :192-204; discussion 5.
19.	Patel T. Surgery in the patient with liver disease. Mayo Clin Proc 1999;74:593
20.	Hippisley-Cox J, Coupland C. Development and validation of risk prediction
equat	tions to estimate survival in patients with colorectal cancer: cohort study. BMJ
2017	; 357 :j2497.
21.	Gervaz P, Pak-art R, Nivatvongs S, et al. Colorectal adenocarcinoma in cirrhot
patie	nts. J Am Coll Surg 2003; 196 :874-9.
22.	Meunier K, Mucci S, Quentin V, et al. Colorectal surgery in cirrhotic patients:
asses	sment of operative morbidity and mortality. Dis Colon Rectum 2008;51:1225-31
23.	Nguyen GC, Correia AJ, Thuluvath PJ. The impact of cirrhosis and portal
hyper	rtension on mortality following colorectal surgery: a nationwide, population-base
Dis C	Colon Rectum 2009; 52 :1367-74.
24.	Ghaferi AA, Mathur AK, Sonnenday CJ, et al. Adverse outcomes in patients w
chror	nic liver disease undergoing colorectal surgery. Ann Surg 2010;252:345-50.

BMJ Open

25. Surani SR, Mendez Y, Anjum H, et al. Pulmonary complications of hepatic diseases. *World J. Gastroenterol* 2016;**22:**6008-15.

26. Rustagi T, Zarookian EI, Qasba O, *et al*. Chronic hepatitis C as a risk factor for colorectal adenoma. *Int J Colorectal Dis* 2014;**29**:75-80.

27. Wong VW, Wong GL, Tsang SW,*et al.* High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. *Gut* 2011;**60**:829-36.

28. Doubeni CA, Laiyemo AO, Major JM,*et al.* Socioeconomic status and the risk of colorectal cancer: an analysis of more than a half million adults in the National Institutes of Health-AARP Diet and Health Study. *Cancer* 2012;**118**:3636-44.

29. Yokomichi H, Nagai A, Hirata M, *et al.* Statin use and all-cause and cancer mortality:BioBank Japan cohort. *J Epidemiol* 2017;27:S84-91.

30. Shao YY, Hsu CH, Yeh KH,*et al.* Statin Use Is Associated With Improved Prognosis of Colorectal Cancer in Taiwan. *Clin Colorectal Cancer* 2015;**14**:177-84 e4.

31. Ferroni P, Palmirotta R, Spila A, *et al.* Prognostic significance of adiponectin levels in non-metastatic colorectal cancer. *Anticancer Res* 2007;**27**:483-9.

32. Guadagni F, Roselli M, Martini F,*et al.* Prognostic significance of serum adipokine levels in colorectal cancer patients. *Anticancer Res* 2009;**29**:3321-7.

33. Abraha I, Giovanni G, Serraino D, et al. Validity of breast, lung, and colorectal cancer diagnoses in administrative databases: a systematic review protocol. *BMJ Open*2016;6:e010409.

34. Cooper GS, Yuan Z, Stange KC, et al. The sensitivity of Medicare claims data for case ascertainment of six common cancers. *Med Care* 1999;**37**:436-44.

BMJ Open

		Chro	onic liver diseases	5
	Total sample N = 7463	No N = 5908	Yes N = 1555	p-valu
Type of chronic liver diseases				
None	5908 (79.16)	5908 (100.00)	0 (0.00)	
Chronic hepatitis B	65 (0.87)	0 (0.00)	65 (4.18)	
Chronic hepatitis C	564 (7.56)	0 (0.00)	564 (36.27)	
Non-alcoholic fatty liver disease	441 (5.91)	0 (0.00)	441 (28.36)	
Other types	485 (6.50)	0 (0.00)	485 (31.19)	
Postoperative complications				0.228
No	5830 (78.12)	4633 (78.42)	1197 (76.98)	
Yes	1633 (21.88)	1275 (21.58)	358 (23.02)	
Postoperative infection	360 (22.05)	276 (21.65)	84 (23.46)	
Postoperative shock	23 (1.41)	15 (1.18)	8 (2.23)	
Postoperative bleeding	149 (9.12)	104 (8.16)	45 (12.57)	
Disruption of wound	73 (4.47)	55 (4.31)	18 (5.03)	
Non-healing surgical wound	4 (0.24)	4 (0.31)	0 (0.00)	
Nervous system				
complications	17 (1.04)	16 (1.25)	1 (0.28)	
Cardiac arrest/heart failure	125 (7.65)	102 (8.00)	23 (6.42)	
Phlebitis/thrombophlebitis	5 (0.31)	3 (0.24)	2 (0.56)	
Respiratory complications	141 (8.63)	121 (9.49)	20 (5.59)	
Digestive system	675 (41.33)	529 (41.49)	146 (40.78)	
complications	· · · ·		· /	
Urinary complications	60 (3.67)	49 (3.84)	11 (3.07)	
Unspecified complications	1 (0.06)	1 (0.08)	0 (0.00)	0.07
In-Hospital Mortality				< 0.00
No	7301 (97.83)	5806 (98.28)	1495 (96.14)	
Yes	162 (2.17)	102 (1.73)	60 (3.86)	0.00
Age				0.984
Mean \pm SD	62.53 ± 12.17	62.53 ± 12.16	62.52 ± 12.17	0
Gender				0.708
Male	4283 (57.39)	3384 (57.28)	899 (57.81)	
Female	3180 (42.61)	2524 (42.72)	656 (42.19)	-
Race				< 0.00
White	4536 (60.78)	3570 (60.43)	966 (62.12)	
Black	810 (10.85)	614 (10.39)	196 (12.60)	
Hispanic	359 (4.81)	266 (4.50)	93 (5.98)	
Asian or Pacific Islander	154 (2.06)	108 (1.83)	46 (2.96)	
Native American	24 (0.32)	19 (0.32)	5 (0.32)	

Other/Missing	1580 (21.17)	1331 (22.53)	249 (16.01)	
Median household income	1300 (21.17)	1551 (22.55)	249 (10.01)	< 0.00
Quartile 1	1993 (26.71)	1564 (26.47)	429 (27.59)	- 0.00
Quartile 2	1993 (20.71) 1902 (25.49)	1304 (20.47) 1489 (25.20)	429 (27.39) 413 (26.56)	
Quartile 3	1902 (23.49) 1757 (23.54)	1386 (23.46)	413 (20.30) 371 (23.86)	
Quartile 4	1646 (22.06)	1354 (22.92)	292 (18.78)	
Others	165 (2.21)	115 (1.95)	50 (3.22)	
Location of hospital	~ /	· · · · · · · · · · · · · · · · · · ·	~ /	< 0.0
Rural	984 (13.19)	833 (14.10)	151 (9.71)	
Urban non-teaching	2711 (36.33)	2152 (36.43)	559 (35.95)	
Urban teaching	3731 (49.99)	2894 (48.98)	837 (53.83)	
Others	37 (0.50)	29 (0.49)	8 (0.51)	
Types of admission				0.00
Non-elective	2323 (31.13)	1789 (30.28)	534 (34.34)	
Elective	5122 (68.63)	4103 (69.45)	1019 (65.53)	
Others	18 (0.24)	16 (0.27)	2 (0.13)	
Severity of CRC				0.98
None	4889 (65.51)	3868 (65.47)	1021 (65.66)	
Lymph node metastasis	1823 (24.43)	1444 (24.44)	379 (24.37)	
Distant metastasis	751 (10.06)	596 (10.09)	155 (9.97)	
Length of hospital stay (day)				< 0.0
Mean \pm SD	8.96 ± 7.24	8.61 ± 6.49	10.26 ± 9.46	
Hyperlipidemia				< 0.0
No	5624 (75.36)	4382 (74.17)	1242 (79.87)	
Yes	1839 (24.64)	1526 (25.83)	313 (20.13)	
Obesity				0.82
No	6556 (87.85)	5187 (87.80)	1369 (88.04)	
	907 (12.15)	721 (12.20)	186 (11.96)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Univariat	e	Multivaria	te
	OR (95% CI)	p value	aOR (95% CI)	p value
Chronic liver diseases				
No	reference		reference	
Yes	1.08 (0.94, 1.23)	0.292	0.91 (0.78, 1.05)	0.192
Race				
White	reference			
Black	1.01 (0.83, 1.23)	0.905		
Hispanic	1.03 (0.79, 1.35)	0.827		
Asian or Pacific islander	0.85 (0.54, 1.34)	0.494		
Native American	1.10 (0.42, 2.92)	0.845		
Other/Missing	0.95 (0.81, 1.10)	0.456		
Median household income				
Quartile 1	reference			
Quartile 2	1.16 (0.99, 1.36)	0.075		
Quartile 3	0.93 (0.79, 1.10)	0.389		
Quartile 4	1.02 (0.86, 1.21)	0.827		
Others	1.06 (0.71, 1.59)	0.785		
Location of hospital				
Rural	reference			
Urban non-teaching	1.09 (0.90, 1.32)	0.355		
Urban teaching	1.04 (0.87, 1.25)	0.667		
Others	1.25 (0.57, 2.75)	0.572		
Types of admission				
Non-elective	reference			
Elective	0.95 (0.83, 1.08)	0.397		
Others	0.85 (0.24, 3.03)	0.802		
Length of hospital stay	1.13 (1.12, 1.14)	<0.001	1.13 (1.12, 1.15)	<0.001
Hyperlipidemia				
No	reference		reference	
Yes	0.77 (0.67, 0.89)	<0.001	0.97 (0.83, 1.12)	0.671
Obesity				
No	reference			
Yes	1.09 (0.91, 1.30)	0.353		

Table 2. Univariate and multivariate logistic regression analyses to identify factors associated

	Postoperative in	fection	Postoperative bl	eeding	Cardiac arrest/hear	rt failure
	OR (95% CI)	p value	OR (95% CI)	p value	OR (95% CI)	p value
Chronic liver diseases						
No	reference		reference		reference	
2 Yes	1.16 (0.90, 1.49)	0.255	1.67 (1.17, 2.38)	0.005	0.82 (0.51, 1.31)	0.404
Race						
White	reference		reference		reference	
5 Black	0.93 (0.64, 1.35)	0.691	0.72 (0.38, 1.34)	0.301	0.86 (0.43, 1.72)	0.664
Hispanic	1.30 (0.81, 2.08)	0.273	0.94 (0.43, 2.06)	0.867	1.39 (0.62, 3.11)	0.428
Asian or Pacific islander	0.96 (0.43, 2.16)	0.924	0.32 (0.04, 2.39)	0.265	1.95 (0.55, 6.92)	0.301
Native American	2.65 (0.66, 10.63)	0.169	NA	NA	1.68 (0.20, 13.93)	0.630
Other/Missing	0.93 (0.70, 1.25)	0.636	0.96 (0.62, 1.48)	0.858	0.79 (0.48, 1.29)	0.314
² Median household income						
Quartile 1	reference		reference		reference	
5 Quartile 2	0.96 (0.71, 1.29)	0.763	1.41 (0.90, 2.19)	0.133	1.32 (0.77, 2.25)	0.314
Quartile 3	0.94 (0.69, 1.28)	0.691	0.74 (0.44, 1.25)	0.260	1.40 (0.81, 2.43)	0.225
⁷ Quartile 4	0.78 (0.56, 1.09)	0.141	0.87 (0.52, 1.45)	0.597	1.23 (0.70, 2.16)	0.479
Others	0.73 (0.30, 1.76)	0.488	0.92 (0.26, 3.21)	0.898	1.82 (0.59, 5.57)	0.296
Location of hospital						
Rural	reference		reference		reference	
Urban non-teaching	1.23 (0.82, 1.84)	0.320	0.94 (0.53, 1.67)	0.833	1.04 (0.57, 1.90)	0.888
Urban teaching	1.45 (0.99, 2.14)	0.058	1.06 (0.61, 1.84)	0.828	1.08 (0.60, 1.96)	0.797
Others	0.52 (0.07, 4.07)	0.536	NA	NA	3.16 (0.60, 16.64)	0.175
Types of admission						
3 Non-elective	reference		reference		reference	
Elective	0.90 (0.71, 1.15)	0.405	1.21 (0.82, 1.78)	0.341	1.01 (0.67, 1.53)	0.959
Others	1.33 (0.16, 11.06)	0.791	NA	NA	NA	NA
2 Length of hospital stay	1.13 (1.11, 1.15)	<0.001	1.03 (1.01, 1.05)	0.010	1.01 (0.98, 1.04)	0.434
³ Hyperlipidemia						
No	reference		reference		reference	
5 Yes	0.64 (0.48, 0.85)	0.002	0.88 (0.59, 1.32)	0.544	0.75 (0.49, 1.15)	0.191
' Obesity						
³ No	reference		reference		reference	
Yes	1.30 (0.95, 1.78)	0.098	0.69 (0.38, 1.25)	0.218	1.12 (0.62, 2.02)	0.709
P < 0.05 were shown in boldf	àce.					
Abbreviation: NA, not availa	ıble					
Abbreviation: NA, not availa						
· ·						
) /						

⊿ Table 3-1. Univariate logistic regression analyses to identify risk factors for specific postoperative

	Respiratory compl	lications	Digestive system con	nplications
	OR (95% CI)	p value	OR (95% CI)	p value
Chronic liver diseases				
No	reference		reference	
Yes	0.62 (0.38, 1.00)	0.048	1.04 (0.86, 1.26)	0.697
Race				
White	reference		reference	
Black	0.60 (0.30, 1.18)	0.139	1.32 (1.02, 1.72)	0.034
Hispanic	0.61 (0.23, 1.59)	0.312	0.70 (0.45, 1.08)	0.106
Asian or Pacific islander	NA	NA	1.14 (0.63, 2.08)	0.668
Native American	NA	NA	0.47 (0.06, 3.67)	0.474
Other/Missing	1.06 (0.69, 1.63)	0.776	0.99 (0.81, 1.23)	0.957
Median household income				
Quartile 1	reference		reference	
Quartile 2	1.15 (0.71, 1.86)	0.577	1.05 (0.83, 1.32)	0.706
Quartile 3	0.84 (0.50, 1.39)	0.492	1.00 (0.78, 1.27)	0.990
Quartile 4	1.05 (0.63, 1.74)	0.857	1.21 (0.96, 1.54)	0.112
Others	0.96 (0.27, 3.44)	0.953	1.24 (0.71, 2.18)	0.454
Location of hospital				
Rural	reference		reference	
Urban non-teaching	0.91 (0.55, 1.48)	0.694	1.08 (0.82, 1.40)	0.588
Urban teaching	0.46 (0.27, 0.76)	0.003	0.95 (0.73, 1.24)	0.710
Others	NA	NA	2.16 (0.82, 5.69)	0.120
Types of admission				
Non-elective	reference		reference	
Elective	1.06 (0.72, 1.56)	0.777	1.01 (0.84, 1.22)	0.879
Others	NA	NA	0.98 (0.21, 4.46)	0.977
Length of hospital stay	1.04 (1.02, 1.06)	0.001	1.05 (1.04, 1.06)	< 0.00
Hyperlipidemia				
No	reference		reference	
Yes	0.74 (0.48, 1.15)	0.183	1.01 (0.83, 1.22)	0.948
Obesity				
No	reference		reference	
Yes	1.24 (0.72, 2.14)	0.441	1.14 (0.88, 1.48)	0.328

Table 3-2. Univariate logistic regression analyses to identify risk factors for specific postoperative complications among inpatients diagnosed with colorectal cancer

Abbreviation:NA, not available

Chronic liver diseases No Yes Race	aOR (95% CI) reference	p value	aOR (95% CI)	p value	Respiratory complications			
No Yes				p value	aOR (95% CI)	p value	aOR (95% CI)	p value
Yes								
	0.00 (0.67, 1.20)		reference		reference		reference	
lace	0.90 (0.67, 1.20)	0.459	1.64 (1.15, 2.34)	0.007	0.58 (0.36, 0.95)	0.029	0.97 (0.80, 1.18)	0.768
White							reference	
Black							1.26 (0.97, 1.65)	0.081
Hispanic							0.65 (0.41, 1.01)	0.056
Asian or Pacific slander							1.17 (0.64, 2.14)	0.600
Native American							0.52 (0.07, 4.05)	0.534
Other/Missing								
Median household ncome					0.58 (0.36, 0.95)			
Quartile 1								
Quartile 2								
Quartile 3								
Quartile 4								
Others								
location of hospital								
Rural					reference			
Urban non-teaching					0.89 (0.54, 1.46)	0.640		
Urban teaching					0.44 (0.26, 0.75)	0.002		
Others					NA	NA		
Types of admission								
								26

Table 4. Multivariate logistic regression analyses to identify risk factors forspecific postoperative complications among inpatients

BMJ Open

Non-elective									
Elective									
Others									
Length of hospital stay	1 13 (1 11 1 15)	<0.001	1.02 (1.01, 1.04)	0.013	1 04 (1 02	1.07) < 0.001	1 1 05	(1.04, 1.06)	<
Hyperlipidemia	1.15 (1.11, 1.15)	-0.001	1.02 (1.01, 1.04)	0.015	1.07 (1.02,	1.07) < 0.001	1 1.05	(1.04, 1.00)	
No	reference								
Yes	0.81 (0.59, 1.12)	0.202							
Obesity	0.01 (0.07, 1.12)	0.202							
No									
Yes									
			667.6						
									2*

	Univariat	e	Multivaria	te
	OR (95% CI)	p value	aOR (95% CI)	p value
Chronic liver diseases				
No	reference		reference	
Yes	2.33 (1.68, 3.23)	<0.001	2.05 (1.43, 2.94)	<0.001
Race				
White	reference			
Black	1.31 (0.76, 2.27)	0.332		
Hispanic	0.93 (0.42, 2.06)	0.864		
Asian or Pacific Islander	NA	NA		
Native American	NA	NA		
Other/Missing	0.86 (0.55, 1.35)	0.512		
Median household income				
Quartile 1	reference		reference	
Quartile 2	1.28 (0.83, 1.96)	0.268	1.51(0.95, 2.40)	0.083
Quartile 3	0.58 (0.35, 0.99)	0.046	0.71(0.41, 1.26)	0.247
Quartile 4	0.68 (0.40, 1.15)	0.152	0.77(0.42, 1.39)	0.384
Others	1.72 (0.59, 4.96)	0.320	1.17(0.35, 3.83)	0.800
Location of hospital				
Rural	reference		reference	
Urban non-teaching	0.65 (0.40, 1.04)	0.073	0.63 (0.37, 1.08)	0.094
Urban teaching	0.59 (0.37, 0.94)	0.025	0.63 (0.37, 1.06)	0.084
Others	2.87 (0.29, 28.13)	0.365	4.54 (0.43, 48.16)	0.209
Types of admission				
Non-elective	reference		reference	
Elective	0.37 (0.26, 0.52)	<0.001	0.50 (0.34, 0.73)	<0.001
Others	NA	NA	NA	NA
Length of hospital stay	1.07 (1.05, 1.09)	<0.001	1.06 (1.04, 1.08)	<0.001

Table 5. Univariate and multivariate logistic regression analyses to identifyfactors associated with in-hospital mortality among inpatients diagnosed with colorectal cancer.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Hyperlipidemia						
No	reference		reference			
Yes	0.39 (0.25, 0.63)	<0.001	0.46 (0.28, 0.75)	0.002		
Obesity						
No	reference					
Yes	0.56 (0.29, 1.08)	0.084				
Abbreviation: NA, not	reference 0.56 (0.29, 1.08) boldface. applicable					
						29
	For neer review only.	http://bmione	n.bmj.com/site/about/gu	idelines xhtml		29
by guest. Protected by copyric	19, 2024, on April 19, 2024	d <mark>//:dtth</mark> mort bet	solnwoD .8102 ylul 71 no	112020-7102-n9qojm	n: first published as 10.1136/br	əqO

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	9
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	9
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10-11
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10-11
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and 15 magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-15
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on 16 which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Short-term postoperative outcomes of colorectal cancer among patients with chronic liver disease: a national population-based study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020511.R2
Article Type:	Research
Date Submitted by the Author:	23-May-2018
Complete List of Authors:	Lee, Ko-Chao; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Chung, Kuan-Chih ; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Department of Anesthesiology Chen, Hong-Hwa; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Cheng, Kung-Chuan ; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Wu, Kuen-Lin; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Lu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Lu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery Lu, Chien-Chang; Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Division of Colorectal Surgery, Department of Surgery
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Gastroenterology and hepatology, Infectious diseases, Nutrition and metabolism, Surgery
Keywords:	Colorectal cancer, short-term morbidity, mortality, chronic liver disease, National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP)

SCHOLARONE[™] Manuscripts

BMJ Open

Short-term postoperative outcomes of colorectal cancer among patients with chronic liver disease: a national population-based study Running title: CRC surgery with liver disease

Ko-Chao Lee,MD^{1*#}, Kuan-Chih Chung, MD^{2#}, Hong-Hwa Chen, MD¹, Kung-Chuan Cheng,

MD¹, Kuen-Lin Wu, MD¹, Chien-Chang Lu, MD¹

¹Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital -Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan ²Department of Anesthesiology, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan

[#]The first two authors contributed equally to this work

*Corresponding author:

Ko-Chao Lee, MD

Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital -

erie

Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan

Phone: +886-7-7317123 Fax: +886-7-7318762

E-mail: kmch4329@gmail.com

Abstract

Objectives: Colorectal carcinoma (CRC) patients with pre-existing chronic liver disease (CLD) had a significantly higher 30-day mortality after CRC surgery compared to healthy controls. This study investigated the factors associated with postoperative complications and in-hospital mortality in CRC patients with co-existing CLD (excluding cirrhosis) who underwent colorectal surgery.

Design: A retrospective observational population-based study.

Setting: Data were sourced from the National Inpatient Sample (NIS) database, a part of the Healthcare Cost and Utilization Project (HCUP).

Participants: This study analyzed 7,463 inpatients with CRC who underwent colorectal surgery at admission between 2005 and 2014.

Primary and secondary outcome measures: The primary endpoint of this study was the prevalence of postoperative complications, and the secondary endpoint was in-hospital mortality.

Results: In the CLD group, 36.27% of patients had chronic hepatitis C, 28.36% had nonalcoholic fatty liver disease, and 31.19% had other types of chronic liver diseases. The median hospital stay was 7.0(5.0, 10.0) days in patients with no postoperative complications versus 17.0 (10.0, 26.0) days, 8.0 (6.0, 12.0) days, 8.0 (6.0, 17.0) days, 9.0 (8.0, 14.0) days, and 10.5 (7.0, 17.0) days for patients with postoperative infection, postoperative bleeding, cardiac arrest/heart failure, respiratory complications, and digestive complications, respectively (all p < 0.05). Presence of CLD was significantly associated with higher risk of postoperative bleeding(aOR= 1.64, 95% CI= 1.15-2.34, p = 0.007). Presence of CLD (aOR= 1.98, 95% CI= 1.39-2.82, p < 0.001), and length of hospital stay(aOR= 1.06, 95% CI= 1.04-1.08, p < 0.001) were significantly associated with higher risk of in-hospital mortality. However, hyperlipidemia was associated with a significantly lower risk of mortality (aOR= 0.46, 95%

BMJ Open

CI= 0.28-0.75, p = 0.002).

Conclusions: Postoperative complications prolonged the length of hospital stay. Presence of CLD and hyperlipidemia were important factors impacting postoperative complications and in-hospital mortality in CRC patients with underlying CLD.

Keywords: Colorectal cancer, short-term morbidity, mortality, chronic liver disease, National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP).

Strengths and limitations of this study

- Data for this study were collected from a large, comprehensive, and national representative database.
- A large multi-ethnic population sample allowed us to explore the racial/ethnic heterogeneity
- The cross-sectional design of this study can only demonstrate association, therefore, causality could not be determined.

Introduction

Colorectal cancer (CRC) is the most common gastrointestinal malignancy, and the second leading cause of cancer-related deaths in developed countries, accounting for 51,690 deaths in the United States in 2012.^{1,2} The 5-year survival rates range from 90% for cancers detected at the localized stage, 70% for regional tumors, and 10% for distant metastatic tumors.³ The major risk factors of CRC include age and hereditary factors, the presence of inflammatory bowel disease, and environmental factors such as nutritional practices, physical activity/obesity, cigarette smoking, and alcohol consumption.⁴The implementation of population-based screening for average-risk, asymptomatic individuals beginning at 50 years of age has resulted in a significant decrease in CRC incidence among individuals > 50 years old. CRC patients who present at an early stage usually receive curative surgical resection, whereas patients who present with metastatic disease receive palliative systemic chemotherapy or treatment with novel biologic agents.⁵

Chronic liver disease (CLD) represents a major health concern and accounts for approximately 1 million deaths per year worldwide.⁶The major risk factors for CLD include chronic viral hepatitis infection, chronic exposure to toxins (including excessive alcohol consumption), and autoimmune injury, which all contribute towards progression of hepatic fibrosis and development of cirrhosis via the production and deposition of extracellular matrix components.⁷CLD also includes liver damage mediated by lipid accumulation in hepatocytes. The spectrum of obesity-related liver disease such as NAFLD (non-alcoholic fatty liver disease) can range from non-alcoholic steatohepatitis (NASH) with inflammation and fibrosis, and end in cirrhosis.⁸

Patients with liver disease who had CRC frequently required surgery and anesthesia, and were shown to have an increased risk of perioperative complications and postoperative morbidity and mortality. This could be due to complications associated with liver disease,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

including hepatic encephalopathy, ascites, sepsis, and hemorrhage.⁹Patients with mild to moderate chronic liver disease without cirrhosis usually tolerate surgery well, whereas acute liver failure (previously termed fulminant hepatic failure) and acute viral or alcoholic hepatitis are considered contraindications to elective surgery.¹⁰Additionally, it has been reported that the location of the surgical procedure is an important risk factor for postoperative liver failure in patients with pre-existing liver disease. Cardiac surgery, abdominal surgery, and hepatic resection are all associated with higher rates of perioperative complications, and higher rates of morbidity and mortality compared to more peripheral surgery, presumably due to greater reductions in hepatic blood flow.^{10, 11}

A recent meta-analysis of 50 studies reported that patients with CLD had a significantly higher risk of CRC, which persisted after liver transplantation, compared to the general population.¹²CRC patients with pre-existing liver disease were shown to have a significantly higher 30-day mortality after CRC surgery compared to CRC patients with noncirrhotic liver disease and healthy controls.¹³ Other data showed that colectomy of any kind was associated with a significant risk of postoperative morbidity and mortality in cirrhotic patients,¹⁴ and this was thought to be related to increased intraoperative and early postoperative bleeding.¹⁵Additionally, although fatty liver has been shown to be an important risk factor of CRC,¹⁶ the presence of NAFLD is thought to play a protective role in the overall survival of CRC patients.¹⁷

The aim of our present study was to identify risk factors associated with postoperative complications and mortality in CRC patients with co-existing CLD who underwent colorectal surgery. Our clinical data were sourced from a national and comprehensive database, which made it possible to minimize discrepancies and biases.

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Methods

Data source

In this population-based, cross-sectional study, data were sourced from the National Inpatient Sample (NIS) database, which is part of the Healthcare Cost and Utilization Project (HCUP). The NIS database samples approximately 20% of discharges from all HCUPparticipating community hospitals, and is the largest publicly available inpatient database in the United States [www.hcup-us.ahrq.gov/nisoverview.jsp]. The NIS is representative of approximately 95% of the US population (http://www.cdc.gov/nchs/nhanes/). All of the HCUP-NIS data are de-identified and analysis of the data does not require IRB approval or informed consent by all subjects.

Study population

This study extracted data of inpatients diagnosed with primary CRC based on specific International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes (153, 154), who underwent surgical intervention at admission. Surgical interventions included open and partial or subtotal colectomy (ICD-9-CM: 45.7), pull-through resection of rectum (ICD-9-CM: 48.40, 48.41, 48.43, 48.49, abdominoperineal resection of rectum / complete proctectomy (ICD-9-CM: 48.50, 48.52, 48.59), and other resections of rectum / partial proctectomy / rectosigmoidectomy (ICD-9-CM: 48.6x). Patients with missing data for demographics, patients diagnosed with liver cirrhosis, and patients with co-existing other primary malignancies were excluded.

Study Variables

The primary endpoint of this study was the prevalence of post-operative complications, including post-operative infection (ICD-9-CM=998.5), post-operative shock (ICD-9-

BMJ Open

CM=998.0), post-operative bleeding (ICD-9-CM=998.1), disruption of wound (ICD-9-CM=998.3), non-healing surgical wound (ICD-9-CM=998.83), nervous system complications (ICD-9-CM=997.0x), cardiac arrest/heart failure (ICD-9-CM=997.1), phlebitis/thrombophlebitis (ICD-9-CM=997.2), respiratory complications (ICD-9-CM=997.3x), digestive system complications (ICD-9-CM=997.4), urinary complications (ICD-9-CM=997.5), vascular complications (ICD-9-CM=997.7x), and unspecified complications (ICD-9-CM=998.9). The secondary endpoint was in-hospital mortality, which reflected the severity of the disease.

The independent variables included the presence of chronic liver disease. Although there were several etiologies of chronic liver disease, we only focused on specific etiologies found in higher percentages in our study population, such as chronic hepatitis B (ICD-9-CM=070.22, 070.32), chronic hepatitis C (ICD-9-CM=070.44, 070.54, 070.7x), non-alcoholic fatty liver disease (ICD-9-CM=571.8, 571.9), and other minor causes.

The relative variables obtained for each record included patient demographics (age, gender, race/ethnicity), socioeconomic status (household income), severity of CRC (locoregional involvement, distant metastasis), co-morbidity (hyperlipidemia, obesity), place of hospitalization, type of admission (elective, non-elective), and length of hospital stay.

Socioeconomic Status – household income

This categorical variable provides a quartile classification of the estimated median household income of residents in the patient's ZIP Code. The quartiles are identified by values of 1 to 4, indicating the poorest to wealthiest populations. These values are derived from ZIP Code-demographic data obtained from Claritas. Since these estimates are updated annually, the value ranges for these categories vary by year.

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Comorbidities

For matching criteria between case and control groups, a number of co-morbid conditions were included, such as diabetes, hypertension, cardiovascular disease, congestive heart failure, cerebrovascular disease, Alzheimer's disease and other cognitive impairment, AIDS, alcohol abuse, chronic blood loss anemia, chronic pulmonary disease, coagulopathy, drug abuse, hypothyroidism, other neurological disorders, peripheral vascular disorders, pulmonary circulation disorders, renal failure, valvular diseases, and weight loss.

For relative variables, two comorbid conditions (hyperlipidemia and obesity) were selected to be incorporated into analysis. These two conditions were inter-correlated and were selected considering the difficulty of operation in obese patients, which could cause a series of postoperative complications.

Patient and Public Involvement

Since the present study utilized the NIS database that is the largest publicly available inpatient health care database in the United States, no patient and public involvement in the present study.

Statistical analysis

Simple matching was used to match inpatients who had chronic liver diseases with those who did not have chronic liver diseases by age, gender, the severity of CRC, and comorbidities. Selected cases were matched with controls by 1:4 matching. Continuous variables were expressed as mean± standard deviation, and categorical data were shown as counts and percentages. Conditional logistic regression method was performed after matching, and a univariate logistic regression model was performed to determine the independent risk factors of postoperative complications or mortality. Multiple logistic regression analysis was

BMJ Open

performed on variables with an unadjusted effect and a p-value < 0.05 on univariate logistic regression analysis. Statistical significance was defined by a p-value < 0.05. Statistical analyses were performed using the SAS software version 9.4 (SAS Institute Inc., Cary, NC, USA).

Results

Patient demographics and clinical characteristics

Analysis of the HCUP-NIS database for the period 2005-2014 showed that 152,625 inpatients diagnosed with CRC had undergonesurgical treatment. After excluding patients with liver cirrhosis, patients with co-existing other primary malignancies, and patients with missing data for age and gender, a total of 129,958 inpatients were enrolled in this study. The study population comprised 1,555 patients with CLD (case group) and 128,403 patients without CLD (control group). Due to the small sample size of the case group, simple matching was used to balance the case and control groups. After matching, a total of 7,463 inpatients were enrolled in the final study population. Of these patients, 5,908 patients (79.16%) had no CLD and 1,555 patients (20.84%) had CLD. A majority of patients in the CLD group had chronic hepatitis C (n = 564, 36.27%), while 441 patients (28.36%) had non-alcoholic fatty liver disease, and 485 patients (31.19%) patients had other types of chronic liver diseases.

Baseline demographics and clinical characteristics of study patients are described in Table 1. The mean age of the inpatients was 62.53 years old, and the mean length of hospital stay was 8.96 days. A majority of the inpatients (57.39%) was male, and 60.78% were white. A total of 1993 patients (26.71%) was classified in the first quartile of median household income, and almost half the patients (49.99%) were operated upon in urban teaching hospitals. Analysis of the whole study population showed that 1,633 inpatients (21.88%) had post-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

operative complications, the most frequent of which was digestive system complications (n = 675, 41.33%). A total of 1839 patients (24.64%) had hyperlipidemia, and 907 patients (12.15%) were obese. Length of hospital stay was 8.61 ± 6.49 days for non-CLD patients and 10.26 ± 9.46 for CLD patients. In-hospital mortality was recorded for 162 inpatients (2.17%).

Factors associated with postoperative complications in CRC patients with underlying

CLD

Univariate and multivariate logistic regression analyses were performed to assess risk factors significantly associated with postoperative complications (Table 2). Although univariate analysis showed that hyperlipidemia and length of hospital stay were both significantly associated with risk of postoperative complications, the length of hospital stay was the only variable significantly associated with risk of post-operative complications by multivariate analysis (aOR= 1.13, 95% CI= 1.12-1.15, p < 0.001). The presence of underlying CLD was not significantly associated with the occurrence of overall postoperative complications (aOR=0.91, 95% CI= 0.78-1.05, p=0.192).

We subsequently used logistic regression analysis to identify factors associated with specific postoperative complications which occurred in > 5% of patients (postoperative infection, postoperative bleeding, cardiac arrest/heart failure, respiratory complications, and digestive system complications; Table 3-1, Table 3-2, and Table 4). Univariate analysis showed that 1) presence of hyperlipidemia, and length of hospital stay were significantly associated with postoperative infection (all P<0.010; Table 3-1); 2) presence of CLD, and length of hospital stay were significantly associated with postoperative bleeding (all P<0.010; Table 3-1); 3) presence of CLD, treatment at an urban teaching hospital, and length of hospital stay were significantly associated with respiratory complications (all P \leq 0.048, Table 3-2); 4) black race and length of hospital stay were both

BMJ Open

Our multivariate analysis showed that 1) length of hospital stay was the only factor significantly associated with postoperative infection (aOR= 1.13, 95% CI= 1.11-1.15, p < 0.001) (Table 4); 2) presence of CLD (aOR= 1.64, 95% CI= 1.15-2.34, p = 0.007), and length of hospital stay (aOR= 1.02, 95% CI= 1.01-1.04, p = 0.013) were both significantly associated with postoperative bleeding; 3) patients with CLD, and patients treated at an urban teaching hospital had a lower risk of respiratory complications (CLD: aOR= 0.58, 95% CI= 0.36-0.95, p = 0.029; Urban teaching hospital: aOR= 0.44, 95% CI= 0.26-0.75, p = 0.002, respectively), while length of hospital stay was positively associated with respiratory complications (aOR= 1.04, 95% CI= 1.02-1.07, p < 0.001); 4) length of hospital stay was the only variable significantly associated with digestive system complications (aOR= 1.05, 95% CI= 1.04-1.06, p < 0.001; Table 4).

Factors associated with in-hospital mortality in CRC inpatients with underlying CLD

Univariate and multivariate logistic regression analyses were performed to assess risk factors significantly associated with in-hospital mortality (Table 5). Compared with patients without CLD, inpatients who had CLD had a significantly higher risk of in-hospital mortality events (aOR = 2.05, 95% CI= 1.43-2.94, p < 0.001). Multivariate analysis also showed that the length of hospital stay was significantly associated with in-hospital mortality events (aOR = 1.06, 95% CI= 1.04-1.08, p < 0.001). However, patients with elective admission (aOR = 0.50, 95% CI= 0.34-0.73, p < 0.001) and inpatients with hyperlipidemia had a significantly lower risk of mortality (aOR = 0.46, 95% CI= 0.28-0.75, p = 0.002) compared to inpatients without hyperlipidemia and inpatients without elective admission, respectively.

Postoperative complications were associated with length of hospital stay among CRC patients with underlying CLD

Since our multivariate analysis suggested that the length of hospital stay was correlated with different postoperative complications, we analyzed the length of hospital stay in patients with and without postoperative complications (Table 6). Patients who did not have postoperative complications had a median hospital stay of 7.0 (5.0, 10.0) days. In contrast, the length of hospital stay was 17.0 (10.0, 26.0) days, 8.0 (6.0, 12.0) days, 8.0 (6.0, 17.0) days, 9.0 (8.0, 14.0) days, and 10.5 (7.0, 17.0) days for patients with postoperative infection (p< 0.001), postoperative bleeding (p= 0.009), cardiac arrest/heart failure (p= 0.047), respiratory complications (p= 0.007), and digestive complications, respectively (p< 0.001).

Discussion

This study investigated factors significantly associated with risk of postoperative complications and in-hospital mortality in CRC patients with co-existing CLD who underwent colorectal surgery. Our data showed that 20.84% of our study population comprised patients with CLD. Patients with CLD had a significantly longer duration of hospital stay compared to patients without CLD. Patients with postoperative infection, postoperative bleeding, respiratory complications, and digestive complications had a significantly longer hospital stay compared to patients without postoperative complications. The presence of CLD was significantly associated with a higher risk of postoperative bleeding, and a lower risk of respiratory complications. The presence of CLD and duration of hospital stay were significantly associated with a higher risk of in-hospital mortality, whereas the presence of hyperlipidemia was associated with a lower risk of in-hospital mortality.

Data for this study were extracted from the HCUP-NIS database, which is the largest publicly available collection of longitudinal hospital care clinical data in the United States beginning in 1988. We were, therefore, able to perform analysis of trends over time and make national estimates of health care utilization, access, charges, quality, and outcomes. The NIS sampling frame has grown from 8 States in 1988, to 22 States in 1998, to 46 States in 2011, and currently, covers 97% of the U.S. population.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Studies evaluating operative risk in patients with liver disease found that operative risk was correlated with severity of the underlying liver disease and the nature of the surgical procedure. The increased perioperative risk among patients with underlying liver disease could be due to impairment of hepatic functions such as drug metabolism, detoxification of endogenous or exogenous toxins, and production of plasma proteins.¹⁰Assessment of Child-Pugh classification and the Model for End-Stage Liver Disease (MELD) score, in combination with careful pre- and post-operative monitoring has been shown to be crucial for improving outcomes.^{10, 18, 19}Additionally, some investigators have described the development of risk indices to distinguish low-risk and high-risk subgroups for predicting postoperative mortality in cirrhotic and CRC patients.^{14, 20}

Patients with CLD who undergo CRC surgery have previously been shown to have a significantly higher risk of postoperative mortality compared to patients without CLD.^{14, 21, 22, 23} Data from a previous population-based study showed that CLD patients had a 6.5-fold higher risk of mortality after colorectal surgery, as well as significantly higher rates of postoperative complications compared to non-CLD patients.²⁴ These data were consistent with our results which showed that presence of CLD was associated with a higher risk of inhospital mortality, and suggested that identification of risk factors associated with postoperative complications and mortality in these patients could be critical to improving the clinical outcome.

Our data showed that CRC patients with CLD had a significantly longer hospital stay compared to patients without CLD. This could possibly be due to a higher rate of specific postoperative complications. This was evident in our multivariate regression analysis, which showed that the presence of CLD was associated with a higher risk of postoperative bleeding. Although our data showed that the presence of CLD was associated with a lower risk of respiratory complications, we only evaluated surgery-related respiratory complications, and

BMJ Open

not the most common CLD-related pulmonary complications such as hepatopulmonary syndrome, porto-pulmonary hypertension, and hepatic hydrothorax²⁵. We also analyzed the correlation between length of hospital stay and incidence of postoperative complications. Our data indicated that patients with postoperative complications (including postoperative infection, postoperative bleeding, cardiac arrest/heart failure, respiratory complications, and digestive complications had a significantly longer duration of hospital stay compared to patients without postoperative complications.

The majority of CLD patients in our study had chronic hepatitis C infection, followed by NAFLD. Our data were consistent with previous studies showing that patients with chronic hepatitis C and NAFLD had a significantly higher incidence of colorectal adenomas and advanced neoplasms compared to healthy controls.^{16, 26, 27}

Previous results showed that although mortality rates were higher in patients who were emergently admitted compared to patients with elective admission, there was no significant difference in the adjusted relative risk of mortality between the two groups.¹³ Our data showed that the type of admission (emergent vs. elective) was not significantly associated with the risk of postoperative complications, but was associated with risk of mortality among inpatients with CRC who had co-existing CLD.

It has been reported that a low socio-economic status was significantly associated with a high incidence of CRC, regardless of individual-level CRC risk factors.²⁸ Our multivariate analysis showed that patients in Quartile 2 of median household income had a significantly higher risk of in-hospital mortality compared to patients in Quartiles 3 and 4, suggesting that low socioeconomic status (SES) was significantly associated with a higher risk of in-hospital mortality associated with a higher risk of in-hospital mortality of the patients of poorer access to, and lower utilization of health care services among patients with low SES.

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Our data showed that hyperlipidemia was associated with a significantly lower risk of postoperative in-hospital mortality. Hyperlipidemia is known to be associated with increased risk of CVD events and increased all-cause mortality. Our present findings could be due to the fact that patients with a diagnosis of hyperlipidemia were prescribed statins, and had a good compliance. Statin monotherapy has previously been shown to exert a protective effect and decreasing the rate of colorectal cancer mortality.²⁹ Statin use has been shown to be an independent predictor of longer cancer-specific survival, and overall survival in patients with curatively resected CRC.³⁰ Additionally, since the levels of adiponectin and leptin are significantly decreased and increased, respectively, in NAFLD and CRC patients,^{31, 32} it will be interesting to evaluate whether changes in adiponectin/leptin ratios in these patients are associated with clinical outcomes.

Based on our data source, the major strengths of our study are 1) the sample size is large enough to determine fairly precise prevalence measures at the national level, 2) a large multi-ethnic population sample which allowed us to explore the racial/ethnic heterogeneity, 3) the analysis was conducted in a nationally representative sample; therefore, our results may be generalized to the entire U.S. adult population. The major limitations of this study were 1) this was a cross-sectional analysis, and the unit of this database was the individual medical record. Our study, therefore, could not make any inferences regarding causality, 2) it is possible that the number of hospital discharges recorded could include an undetermined number of repeat hospital stays for the same patient, 3) NIS is a US inpatient data (including representative proportions of people of different ethnicity) and should be validated in other countries, 4) our study used ICD-9 codes to characterize the disease, co-morbidities, and interventions. Validation of ICD-9 codes using parameters such as patient charts, or a combination of patient claims along with Part B Medicare claims is important during the course of epidemiological studies performed using administrative databases such as SEER.^{33, 34}To the best of our

BMJ Open

knowledge, this is the first population-based, cross-sectional study of hospitalized patients evaluating the factors associated with postoperative complications and mortality in CRC patients with co-existing CLD.

Conclusion

Our study showed thatpostoperative infection, postoperative bleeding, respiratory complications, and digestive complications all significantly prolonged the duration of hospital stay among CRC patients with underlying CLD. The presence of CLD was significantly associated with a higher risk of postoperative bleeding, and a lower risk of respiratory complications. Our data suggested that postoperative bleeding should be closely monitored in CRC patients with CLD, since it may result in a higher risk of in-hospital mortality in these patients. The presence of CLD and duration of hospital stay were significantly associated with a higher risk of in-hospital mortality, whereas the presence of hyperlipidemia was a protective factor.

Identification of factors associated with peri- or postoperative complications, and mortality in CRC patients with underlying CLD, can help to improve clinical management and outcomes in this group of CRC patients.

Data Sharing Statement

All data can be accessed from the National Inpatient Sample Database. NIS releases for data years 1988 through 2015 are available for purchase online through the Online HCUP Central Distributor. All HCUP data users, including data purchasers and collaborators, must complete the online HCUP Data Use Agreement Training Tool, and must read and sign the Data Use Agreement for Nationwide Databases. Questions about purchasing databases can be directed to the HCUP Central Distributor:

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Email: HCUPDistributor@AHRQ.gov

Telephone: (866) 556-4287 (toll free)

Fax: (866) 792-5313 (toll free)

Acknowledgement

None

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest

The authors declare no conflict of interest.

Statement of Author Contribution

Ko-Chao Lee: Conception and design; Acquisition of data; Analysis and interpretation of data; Drafting of the manuscript; Critical revision of the manuscript; guarantor of integrity of the entire study; definition of intellectual content; Administrative, technical or material support; Supervision

Kuan-Chih Chung: Conception and design; Acquisition of data; Analysis and interpretation of data; Drafting of the manuscript; Critical revision of the manuscript; guarantor of integrity of the entire study; definition of intellectual content; Administrative, technical or material support; Supervision

Hong-Hwa Chen: Acquisition of data; Analysis and interpretation of data; Critical revision of the manuscript; statistical analysis; Administrative, technical or material support

Kung-Chuan Cheng: Analysis and interpretation of data; Critical revision of the manuscript; statistical analysis; clinical studies

Kuen-Lin Wu: Analysis and interpretation of data; Critical revision of the manuscript; statistical analysis; clinical studies

Chien-Chang Lu: Analysis and interpretation of data; Critical revision of the manuscript;

literature research; clinical studies

All authors have read and approved the submitted version.

to beet eview only

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

References

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. *CA Cancer J Clin* 2012;62:10-29.

Jemal A, Bray F, Center MM, *et al.* Global cancer statistics. *CA Cancer J Clin* 2011;61:69-90.

3. Jemal A, Clegg LX, Ward E, *et al.* Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival.*Cancer* 2004;**101**:3-27.

4. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. *Clin Colon Rectal Surg* 2009;**22**:191-7.

5. Noel MS. Biologics in bowel cancer. *J Gastrointest Oncol*2017;**8**:449-56.

6. Fernandez-Iglesias A, Gracia-Sancho J. How to Face Chronic Liver Disease: The Sinusoidal Perspective. *Front Med (Lausanne)* 2017;**4**:7.

Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655 69.

8. Goyal NP, Schwimmer JB. The Progression and Natural History of Pediatric Nonalcoholic Fatty Liver Disease. *Clin Liver Dis*2016;**20**:325-38.

9. Aranha GV, Sontag SJ, Greenlee HB. Cholecystectomy in cirrhotic patients: a formidable operation. *Am J Surg* 1982;**143**:55-60.

10. Hanje AJ, Patel T. Preoperative evaluation of patients with liver disease. *Nat Clin Pract Gastroenterol Hepatol*2007;4:266-76.

11. Friedman LS. The risk of surgery in patients with liver disease.

Hepatology1999;29:1617-23.

12. Komaki Y, Komaki F, Micic D, *et al.* Risk of colorectal cancer in chronic liver diseases: a systematic review and meta-analysis. *Gastrointest Endosc*2017;**86**:93-104 e5.

13. Montomoli J, Erichsen R, Christiansen CF, et al. Liver disease and 30-day mortality

2013	; 13 :66.
14.	Metcalf AM, Dozois RR, Wolff BG, et al. The surgical risk of colectomy in pa
with	cirrhosis. Dis Colon Rectum 1987;30:529-31.
15.	Schwartz SI. Biliary tract surgery and cirrhosis: a critical combination.
Surge	ery1981; 90 :577-83.
16.	Sorensen HT, Mellemkjaer L, Jepsen P, et al. Risk of cancer in patients hospita
with	fatty liver: a Danish cohort study. <i>J Clin Gastroenterol</i> 2003; 36 :356-9.
17.	You J, Huang S, Huang GQ, et al. Nonalcoholic fatty liver disease: a negative r
facto	r for colorectal cancer prognosis. Medicine (Baltimore) 2015;94:e479.
18.	Friedman LS. Surgery in the patient with liver disease. Trans Am Clin Climator
Assoc	22010; 121 :192-204; discussion 5.
19.	Patel T. Surgery in the patient with liver disease. Mayo Clin Proc 1999;74:593-
20.	Hippisley-Cox J, Coupland C. Development and validation of risk prediction
equat	ions to estimate survival in patients with colorectal cancer: cohort study.
BMJ	2017; 357 :j2497.
21.	Gervaz P, Pak-art R, Nivatvongs S, et al. Colorectal adenocarcinoma in cirrhot
patie	nts. J Am Coll Surg 2003; 196 :874-9.
22.	Meunier K, Mucci S, Quentin V, et al. Colorectal surgery in cirrhotic patients:
asses	sment of operative morbidity and mortality. <i>Dis Colon Rectum</i> 2008; 51 :1225-31.
23.	Nguyen GC, Correia AJ, Thuluvath PJ. The impact of cirrhosis and portal
hyper	rtension on mortality following colorectal surgery: a nationwide, population-based
Dis (Colon Rectum 2009; 52 :1367-74.
24.	Ghaferi AA, Mathur AK, Sonnenday CJ, et al. Adverse outcomes in patients w
chror	nic liver disease undergoing colorectal surgery. Ann Surg 2010;252:345-50.

25. Surani SR, Mendez Y, Anjum H, et al. Pulmonary complications of hepatic diseases. *World J. Gastroenterol* 2016;**22:**6008-15.

26. Rustagi T, Zarookian EI, Qasba O, *et al*. Chronic hepatitis C as a risk factor for colorectal adenoma. *Int J Colorectal Dis* 2014;**29**:75-80.

27. Wong VW, Wong GL, Tsang SW,*et al.* High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. *Gut* 2011;**60**:829-36.

28. Doubeni CA, Laiyemo AO, Major JM,*et al.* Socioeconomic status and the risk of colorectal cancer: an analysis of more than a half million adults in the National Institutes of Health-AARP Diet and Health Study. *Cancer*2012;**118**:3636-44.

29. Yokomichi H, Nagai A, Hirata M, *et al.* Statin use and all-cause and cancer mortality:BioBank Japan cohort. *J Epidemiol* 2017;27:S84-91.

30. Shao YY, Hsu CH, Yeh KH,*et al.* Statin Use Is Associated With Improved Prognosis of Colorectal Cancer in Taiwan. *Clin Colorectal Cancer* 2015;**14**:177-84 e4.

31. Ferroni P, Palmirotta R, Spila A, *et al.* Prognostic significance of adiponectin levels in non-metastatic colorectal cancer. *Anticancer Res* 2007;**27**:483-9.

32. Guadagni F, Roselli M, Martini F,*et al.* Prognostic significance of serum adipokine levels in colorectal cancer patients. *Anticancer Res* 2009;**29**:3321-7.

33. Abraha I, Giovanni G, Serraino D, et al. Validity of breast, lung, and colorectal cancer diagnoses in administrative databases: a systematic review protocol. *BMJ Open*2016;6:e010409.

34. Cooper GS, Yuan Z, Stange KC, et al. The sensitivity of Medicare claims data for case ascertainment of six common cancers. *Med Care* 1999;**37**:436-44.

		Chro	S	
	Total sample N = 7463	No N = 5908	Yes N = 1555	p-valu
Type of chronic liver diseases				
None	5908 (79.16)	5908 (100.00)	0 (0.00)	
Chronic hepatitis B	65 (0.87)	0 (0.00)	65 (4.18)	
Chronic hepatitis C	564 (7.56)	0 (0.00)	564 (36.27)	
Non-alcoholic fatty liver disease	441 (5.91)	0 (0.00)	441 (28.36)	
Other types	485 (6.50)	0 (0.00)	485 (31.19)	
Postoperative complications				0.228
No	5830 (78.12)	4633 (78.42)	1197 (76.98)	
Yes	1633 (21.88)	1275 (21.58)	358 (23.02)	
Postoperative infection	360 (22.05)	276 (21.65)	84 (23.46)	
Postoperative shock	23 (1.41)	15 (1.18)	8 (2.23)	
Postoperative bleeding	149 (9.12)	104 (8.16)	45 (12.57)	
Disruption of wound	73 (4.47)	55 (4.31)	18 (5.03)	
Non-healing surgical wound	4 (0.24)	4 (0.31)	0 (0.00)	
Nervous system				
complications	17 (1.04)	16 (1.25)	1 (0.28)	
Cardiac arrest/heart failure	125 (7.65)	102 (8.00)	23 (6.42)	
Phlebitis/thrombophlebitis	5 (0.31)	3 (0.24)	2 (0.56)	
Respiratory complications	141 (8.63)	121 (9.49)	20 (5.59)	
Digestive system	675 (41.33)	529 (41.49)	146 (40.78)	
complications			· · · ·	
Urinary complications	60 (3.67)	49 (3.84)	11 (3.07)	
Unspecified complications	1 (0.06)	1 (0.08)	0 (0.00)	
In-Hospital Mortality				< 0.00
No	7301 (97.83)	5806 (98.28)	1495 (96.14)	
Yes	162 (2.17)	102 (1.73)	60 (3.86)	0.00
Age				0.984
Mean \pm SD	62.53 ± 12.17	62.53 ± 12.16	62.52 ± 12.17	
Gender				0.70
Male	4283 (57.39)	3384 (57.28)	899 (57.81)	
Female	3180 (42.61)	2524 (42.72)	656 (42.19)	
Race				< 0.00
White	4536 (60.78)	3570 (60.43)	966 (62.12)	
Black	810 (10.85)	614 (10.39)	196 (12.60)	
Hispanic	359 (4.81)	266 (4.50)	93 (5.98)	
Asian or Pacific Islander	154 (2.06)	108 (1.83)	46 (2.96)	
Native American	24 (0.32)	19 (0.32)	5 (0.32)	

Other/Missing	1580 (21.17)	1331 (22.53)	249 (16.01)	
Median household income				< 0.00
Quartile 1	1993 (26.71)	1564 (26.47)	429 (27.59)	
Quartile 2	1902 (25.49)	1489 (25.20)	413 (26.56)	
Quartile 3	1757 (23.54)	1386 (23.46)	371 (23.86)	
Quartile 4	1646 (22.06)	1354 (22.92)	292 (18.78)	
Others	165 (2.21)	115 (1.95)	50 (3.22)	0.01
Location of hospital				< 0.00
Rural	984 (13.19)	833 (14.10)	151 (9.71)	
Urban non-teaching	2711 (36.33)	2152 (36.43)	559 (35.95)	
Urban teaching	3731 (49.99)	2894 (48.98)	837 (53.83)	
Others	37 (0.50)	29 (0.49)	8 (0.51)	
Types of admission				0.00
Non-elective	2323 (31.13)	1789 (30.28)	534 (34.34)	
Elective	5122 (68.63)	4103 (69.45)	1019 (65.53)	
Others	18 (0.24)	16 (0.27)	2 (0.13)	
Severity of CRC				0.98
None	4889 (65.51)	3868 (65.47)	1021 (65.66)	
Lymph node metastasis	1823 (24.43)	1444 (24.44)	379 (24.37)	
Distant metastasis	751 (10.06)	596 (10.09)	155 (9.97)	
Length of hospital stay (day)				< 0.0
Mean \pm SD	8.96 ± 7.24	8.61 ± 6.49	10.26 ± 9.46	
Hyperlipidemia				< 0.0
No	5624 (75.36)	4382 (74.17)	1242 (79.87)	
Yes	1839 (24.64)	1526 (25.83)	313 (20.13)	
Obesity				0.82
No	6556 (87.85)	5187 (87.80)	1369 (88.04)	
Yes	907 (12.15)	721 (12.20)	186 (11.96)	
Abbreviation: CRC, colorectal cancer.			~ /	
,				

	Univariat	e	Multivaria	te
	OR (95% CI)	p value	aOR (95% CI)	p value
Chronic liver diseases				
No	reference		reference	
Yes	1.08 (0.94, 1.23)	0.292	0.91 (0.78, 1.05)	0.192
Race				
White	reference			
Black	1.01 (0.83, 1.23)	0.905		
Hispanic	1.03 (0.79, 1.35)	0.827		
Asian or Pacific islander	0.85 (0.54, 1.34)	0.494		
Native American	1.10 (0.42, 2.92)	0.845		
Other/Missing	0.95 (0.81, 1.10)	0.456		
Median household income				
Quartile 1	reference			
Quartile 2	1.16 (0.99, 1.36)	0.075		
Quartile 3	0.93 (0.79, 1.10)	0.389		
Quartile 4	1.02 (0.86, 1.21)	0.827		
Others	1.06 (0.71, 1.59)	0.785		
Location of hospital				
Rural	reference	0.055		
Urban non-teaching	1.09 (0.90, 1.32)	0.355		
Urban teaching	1.04 (0.87, 1.25)	0.667		
Others Tomos of a during in a	1.25 (0.57, 2.75)	0.572		
Types of admission	C			
Non-elective	reference			
Elective	0.95 (0.83, 1.08)	0.397		
Others	0.85 (0.24, 3.03)	0.802		
Length of hospital stay	1.13 (1.12, 1.14)	<0.001	1.13 (1.12, 1.15)	<0.001
Hyperlipidemia				
No	reference		reference	
Yes	0.77 (0.67, 0.89)	<0.001	0.97 (0.83, 1.12)	0.671
Obesity				
No	reference			
Yes	1.09 (0.91, 1.30)	0.353		

Table 2. Univariate and multivariate logistic regression analyses to identify factors associated

	Postoperative in	fection	Postoperative bl	eeding	Cardiac arrest/hear	rt failure
	OR (95% CI)	p value	OR (95% CI)	p value	OR (95% CI)	p value
Chronic liver diseases						
No	reference		reference		reference	
2 Yes	1.16 (0.90, 1.49)	0.255	1.67 (1.17, 2.38)	0.005	0.82 (0.51, 1.31)	0.404
Race						
White	reference		reference		reference	
5 Black	0.93 (0.64, 1.35)	0.691	0.72 (0.38, 1.34)	0.301	0.86 (0.43, 1.72)	0.664
Hispanic	1.30 (0.81, 2.08)	0.273	0.94 (0.43, 2.06)	0.867	1.39 (0.62, 3.11)	0.428
Asian or Pacific islander	0.96 (0.43, 2.16)	0.924	0.32 (0.04, 2.39)	0.265	1.95 (0.55, 6.92)	0.301
Native American	2.65 (0.66, 10.63)	0.169	NA	NA	1.68 (0.20, 13.93)	0.630
Other/Missing	0.93 (0.70, 1.25)	0.636	0.96 (0.62, 1.48)	0.858	0.79 (0.48, 1.29)	0.314
² Median household income						
Quartile 1	reference		reference		reference	
5 Quartile 2	0.96 (0.71, 1.29)	0.763	1.41 (0.90, 2.19)	0.133	1.32 (0.77, 2.25)	0.314
Quartile 3	0.94 (0.69, 1.28)	0.691	0.74 (0.44, 1.25)	0.260	1.40 (0.81, 2.43)	0.225
Quartile 4	0.78 (0.56, 1.09)	0.141	0.87 (0.52, 1.45)	0.597	1.23 (0.70, 2.16)	0.479
Others	0.73 (0.30, 1.76)	0.488	0.92 (0.26, 3.21)	0.898	1.82 (0.59, 5.57)	0.296
Location of hospital						
Rural	reference		reference		reference	
Urban non-teaching	1.23 (0.82, 1.84)	0.320	0.94 (0.53, 1.67)	0.833	1.04 (0.57, 1.90)	0.888
Urban teaching	1.45 (0.99, 2.14)	0.058	1.06 (0.61, 1.84)	0.828	1.08 (0.60, 1.96)	0.797
Others	0.52 (0.07, 4.07)	0.536	NA	NA	3.16 (0.60, 16.64)	0.175
Types of admission						
8 Non-elective	reference		reference		reference	
Elective	0.90 (0.71, 1.15)	0.405	1.21 (0.82, 1.78)	0.341	1.01 (0.67, 1.53)	0.959
Others	1.33 (0.16, 11.06)	0.791	NA	NA	NA	NA
Length of hospital stay	1.13 (1.11, 1.15)	<0.001	1.03 (1.01, 1.05)	0.010	1.01 (0.98, 1.04)	0.434
B Hyperlipidemia						
⁴ No	reference		reference		reference	
5 Yes	0.64 (0.48, 0.85)	0.002	0.88 (0.59, 1.32)	0.544	0.75 (0.49, 1.15)	0.191
' Obesity						
³ No	reference		reference		reference	
Yes	1.30 (0.95, 1.78)	0.098	0.69 (0.38, 1.25)	0.218	1.12 (0.62, 2.02)	0.709
P < 0.05 were shown in boldf	face.					
Abbreviation: NA, not availa	ıble					
4 5						
5						
,						
3					26	

Table 3-1 Univariate logistic regression analyses to identify risk factors for specific postoperative

	Respiratory comp	lications	Digestive system con	nplications
	OR (95% CI)	p value	OR (95% CI)	p value
Chronic liver diseases				
No	reference		reference	
Yes	0.62 (0.38, 1.00)	0.048	1.04 (0.86, 1.26)	0.697
Race				
White	reference		reference	
Black	0.60 (0.30, 1.18)	0.139	1.32 (1.02, 1.72)	0.034
Hispanic	0.61 (0.23, 1.59)	0.312	0.70 (0.45, 1.08)	0.106
Asian or Pacific islander	NA	NA	1.14 (0.63, 2.08)	0.668
Native American	NA	NA	0.47 (0.06, 3.67)	0.474
Other/Missing	1.06 (0.69, 1.63)	0.776	0.99 (0.81, 1.23)	0.957
Median household income				
Quartile 1	reference		reference	
Quartile 2	1.15 (0.71, 1.86)	0.577	1.05 (0.83, 1.32)	0.706
Quartile 3	0.84 (0.50, 1.39)	0.492	1.00 (0.78, 1.27)	0.990
Quartile 4	1.05 (0.63, 1.74)	0.857	1.21 (0.96, 1.54)	0.112
Others	0.96 (0.27, 3.44)	0.953	1.24 (0.71, 2.18)	0.454
Location of hospital				
Rural	reference		reference	
Urban non-teaching	0.91 (0.55, 1.48)	0.694	1.08 (0.82, 1.40)	0.588
Urban teaching	0.46 (0.27, 0.76)	0.003	0.95 (0.73, 1.24)	0.710
Others	NA	NA	2.16 (0.82, 5.69)	0.120
Types of admission				
Non-elective	reference		reference	
Elective	1.06 (0.72, 1.56)	0.777	1.01 (0.84, 1.22)	0.879
Others	NA	NA	0.98 (0.21, 4.46)	0.977
Length of hospital stay	1.04 (1.02, 1.06)	0.001	1.05 (1.04, 1.06)	< 0.00
Hyperlipidemia	() ,			
No	reference		reference	
Yes	0.74 (0.48, 1.15)	0.183	1.01 (0.83, 1.22)	0.948
Obesity	· · · · · ·			
No	reference		reference	
Yes	1.24 (0.72, 2.14)	0.441	1.14 (0.88, 1.48)	0.328

Table 3-2. Univariate logistic regression analyses to identify risk factors for specific postoperative complications among inpatients diagnosed with colorectal cancer

Abbreviation:NA, not available

	Postoperative inf	fection	Postoperative bl	eeding	Respiratory compl	lications	Digestive system con	nplications
	aOR (95% CI)	p value	aOR (95% CI)	p value	aOR (95% CI)	p value	aOR (95% CI)	p value
Chronic liver diseases								
No	reference		reference		reference		reference	
Yes	0.90 (0.67, 1.20)	0.459	1.64 (1.15, 2.34)	0.007	0.58 (0.36, 0.95)	0.029	0.97 (0.80, 1.18)	0.768
Race								
White							reference	
Black							1.26 (0.97, 1.65)	0.081
Hispanic							0.65 (0.41, 1.01)	0.056
Asian or Pacific slander							1.17 (0.64, 2.14)	0.600
Native American Other/Missing							0.52 (0.07, 4.05)	0.534
Median household ncome								
Quartile 1								
Quartile 2								
Quartile 3								
Quartile 4								
Others								
Location of hospital								
Rural					reference			
Urban non-teaching					0.89 (0.54, 1.46)	0.640		
Urban teaching					0.44 (0.26, 0.75)	0.002		
Others					NA	NA		
Types of admission								

Table 4. Multivariate logistic regression analyses to identify risk factors forspecific postoperative complications among inpatients

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Non-elective									
Elective									
Others									
Length of hospital stay	1.13 (1.11, 1.15)	<0.001	1.02 (1.01, 1.04)	0.013	1.04 (1.02, 1	.07) < 0.001	1.05 (1	1.04, 1.06)	< (
Hyperlipidemia									
No	reference								
Yes	0.81 (0.59, 1.12)	0.202							
Obesity									
No									
Yes									
P < 0.05 were shown in b	oldface.								
Abbreviation:NA, not av	ailable								
			907 re						
									29

	Univariat	e	Multivariat	te
	OR (95% CI)	p value	aOR (95% CI)	p value
Chronic liver diseases				
No	reference		reference	
Yes	2.33 (1.68, 3.23)	<0.001	2.05 (1.43, 2.94)	<0.001
Race				
White	reference			
Black	1.31 (0.76, 2.27)	0.332		
Hispanic	0.93 (0.42, 2.06)	0.864		
Asian or Pacific Islander	NA	NA		
Native American	NA	NA		
Other/Missing	0.86 (0.55, 1.35)	0.512		
Median household income				
Quartile 1	reference		reference	
Quartile 2	1.28 (0.83, 1.96)	0.268	1.51(0.95, 2.40)	0.083
Quartile 3	0.58 (0.35, 0.99)	0.046	0.71(0.41, 1.26)	0.247
Quartile 4	0.68 (0.40, 1.15)	0.152	0.77(0.42, 1.39)	0.384
Others	1.72 (0.59, 4.96)	0.320	1.17(0.35, 3.83)	0.800
Location of hospital				
Rural	reference		reference	
Urban non-teaching	0.65 (0.40, 1.04)	0.073	0.63 (0.37, 1.08)	0.094
Urban teaching	0.59 (0.37, 0.94)	0.025	0.63 (0.37, 1.06)	0.084
Others	2.87 (0.29, 28.13)	0.365	4.54 (0.43, 48.16)	0.209
Types of admission				
Non-elective	reference		reference	
Elective	0.37 (0.26, 0.52)	<0.001	0.50 (0.34, 0.73)	<0.001
Others	NA	NA	NA	NA
Length of hospital stay	1.07 (1.05, 1.09)	<0.001	1.06 (1.04, 1.08)	<0.001

Table 5. Univariate and multivariate logistic regression analyses to identifyfactors associated with in-hospital mortality among inpatients diagnosed with colorectal cancer.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

No	reference			reference	
Yes	0.39 (0.25, 0.63)	<0.00	1	0.46 (0.28, 0.75)	0.00
Obesity					
No	reference				
Yes	0.56 (0.29, 1.08)	0.084			
	een postoperative complica CRC patients with CLD (1				
	Length of	hospita	ıl stay	_	
	Median (IO	QR)	p-value		
Postoperative complication	15		< 0.001		
No	7.0 (5.0, 10	(0.0)			
1.0		,			
Yes	11.5 (5.0, 1	· ·			
Yes Postoperative infection	11.5 (5.0, 1	0.0)	<0.001		
Yes		0.0)	<0.001		
Yes Postoperative infection No Yes	11.5 (5.0, 1	0.0)			
Yes Postoperative infection No Yes Postoperative bleeding	11.5 (5.0, 1 7.0 (5.0, 1) 17.0 (10.0, 2	0.0) 0.0) 26.0)	<0.001 0.009		
Yes Postoperative infection No Yes Postoperative bleeding No	11.5 (5.0, 1 7.0 (5.0, 1 17.0 (10.0, 2 7.0 (5.0, 1)	.0.0) 0.0) 26.0) 0.0)			
Yes Postoperative infection No Yes Postoperative bleeding No Yes	11.5 (5.0, 1 7.0 (5.0, 1) 17.0 (10.0, 2 7.0 (5.0, 1) 8.0 (6.0, 1)	.0.0) 0.0) 26.0) 0.0)	0.009		
Yes Postoperative infection No Yes Postoperative bleeding No Yes Cardiac arrest/heart failure	11.5 (5.0, 1 7.0 (5.0, 1) 17.0 (10.0, 2 7.0 (5.0, 1) 8.0 (6.0, 1)	.0.0) 0.0) 26.0) 0.0) 2.0)			
Yes Postoperative infection No Yes Postoperative bleeding No Yes Cardiac arrest/heart failure No	11.5 (5.0, 1 7.0 (5.0, 1) 17.0 (10.0, 2 7.0 (5.0, 1) 8.0 (6.0, 1) 7.0 (5.0, 1)	.0.0) 0.0) 26.0) 0.0) 2.0) 0.0)	0.009		
Yes Postoperative infection No Yes Postoperative bleeding No Yes Cardiac arrest/heart failure No Yes	11.5 (5.0, 1 7.0 (5.0, 1) 17.0 (10.0, 2 7.0 (5.0, 1) 8.0 (6.0, 1)	.0.0) 0.0) 26.0) 0.0) 2.0) 0.0)	0.009 0.047		
Yes Postoperative infection No Yes Postoperative bleeding No Yes Cardiac arrest/heart failure No Yes Respiratory complications	11.5 (5.0, 1 7.0 (5.0, 1) 17.0 (10.0, 2 7.0 (5.0, 1) 8.0 (6.0, 1) 7.0 (5.0, 1) 8.0 (6.0, 1)	.0.0) 0.0) 26.0) 0.0) 2.0) 0.0) 7.0)	0.009		
Yes Postoperative infection No Yes Postoperative bleeding No Yes Cardiac arrest/heart failure No Yes	11.5 (5.0, 1 7.0 (5.0, 1) 17.0 (10.0, 2 7.0 (5.0, 1) 8.0 (6.0, 1) 7.0 (5.0, 1)	.0.0) 0.0) 26.0) 0.0) 2.0) 0.0) 7.0) 0.0)	0.009 0.047		

BMJ Open: first published as 10.1136/bmjopen-2017-020511 on 17 July 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Disasting anatom consultation	<0.001	
Digestive system complications No		
Yes	10.5 (7.0, 17.0)	
		32
For	peer review only - http://bmjopen.bmj.com/site/about/guidel	
	11 101 12 July 2018. Downloaded from http://bmjopen.bmj.com/	