

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Validation of discharge diagnosis codes to identify serious infections among older adults

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020857
Article Type:	Research
Date Submitted by the Author:	27-Nov-2017
Complete List of Authors:	Wiese, Andrew; Vanderbilt University Medical Center, Health Policy Griffin, Marie R; Vanderbilt University Medical Center, Health Policy Stein, Michael; Vanderbilt University, Pharmacology Schaffner, William; Vanderbilt University Medical Center, Health Policy Greevy, Robert; Vanderbilt School of Medicine, Biostatistics Mitchel, Jr., Edward; Vanderbilt University Medical Center, Health Policy Grijalva, Carlos; Vanderbilt University, Health Policy
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Infectious diseases, Epidemiology
Keywords:	coding algorithms, Medicaid, older adults, serious infections

BMJ Open

1 2		
2 3 4	1	Validation of discharge diagnosis codes to identify serious infections among older adults
5 6	2	
7 8	3	Running title: Validation of diagnosis codes to identify infections
9 10	4	
11 12	5	Authors: Andrew D. Wiese, PhD, MPH ¹ ; Marie R. Griffin ^{1,2} , MD, MPH; C. Michael Stein, MB, ChB ³ ;
13 14 15	6	William Schaffner, MD ¹ ; Robert Greevy, PhD ⁴ ; Edward F. Mitchel Jr., MS ¹ ; Carlos G. Grijalva, MD,
15 16 17	7	MPH ^{1,2}
17 18 19	8	Affiliations: ¹ Department of Health Policy, Vanderbilt University School of Medicine, Nashville,
20 21	9	Tennessee, USA; ² Mid-South Geriatric Research Education and Clinical Center, VA Tennessee Valley
22 23	10	Health Care System, Nashville, Tennessee, USA; ³ Departments of Pharmacology and ⁴ Biostatistics,
24 25	11	Vanderbilt University School of Medicine, Nashville, Tennessee, USA
26 27	12	Corresponding Author: Andrew D. Wiese, PhD, MPH; Department of Health Policy, Vanderbilt
28 29	13	University Medical Center, Suite 2600, Village at Vanderbilt, 1500 21st Avenue South, Nashville, TN
30 31	14	37212; phone: (615) 875-7997; email: andrew.d.wiese@vanderbilt.edu
32 33	15	
34 35 36	16	Key words: coding algorithms; Medicaid; older adults; serious infections
37	17	
38 39 40	18	Word Count: 3,411 /4,000 Tables and Figures: (3/5)
41 42	19	Tables and Figures: (3/5)
43 44	20	
45 46	21	
47 48	22	
49 50	23	
51 52	24	
53 54 55	25	
55 56 57	26	
58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

ABSTRACT (262/300) Objectives: Hospitalizations for serious infections are common among older adults and frequently used as study outcomes. Yet few studies have evaluated the performance of diagnosis codes to identify serious infections in this population. We sought to determine the positive predictive value (PPV) of diagnosis codes for identifying hospitalizations due to serious infections among older adults. Setting and participants: We identified hospitalizations for possible infection among adults >50 years enrolled in the Tennessee Medicaid healthcare program (2008-2013) using ICD-9 diagnosis codes for pneumonia, meningitis/encephalitis, bacteremia/sepsis, cellulitis/soft-tissue infections, endocarditis, pyelonephritis and septic arthritis/osteomyelitis. **Design:** Medical records were systematically obtained from hospitals randomly selected from a stratified sampling framework based on geographical region and hospital discharge volume. Measures: Two trained clinical reviewers used a standardized extraction form to abstract information from medical records. Pre-defined algorithms served as reference to adjudicate confirmed infection-specific hospitalizations. We calculated the PPV of diagnosis codes using confirmed hospitalizations as reference. Sensitivity analyses determined the PPV robustness to definitions that required radiological or microbiological confirmation. We also determined interrater reliability between reviewers. **Results:** The PPV of diagnosis codes for hospitalizations for infection (n=716) was 90% (95% CI: 88-92). The PPV was highest for pneumonia [97% (95% CI: 95-98)] and cellulitis [91% (95% CI: 86-96)], and lowest for meningitis/encephalitis [50% (95% CI: 19-81)]. The adjudication reliability was excellent [93% agreement; first agreement-coefficient: 0.91]. The overall PPV was lower when requiring microbiological confirmation [45%] and when requiring radiological confirmation for pneumonia [79%]. **Conclusions:** Discharge diagnosis codes have a high PPV for identifying hospitalizations for serious infections among older adults, especially for common infections.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	53	STRENGTHS AND LIMITATIONS OF THE STUDY
5 6	54	• This study examined the performance of diagnosis coding algorithms to identify hospitalizations
7 8	55	due to serious infections among older adults enrolled in a State Medicaid program using a
9 10	56	systematic and representative sample of records from hospitals of different sizes and in distinct
11 12	57	State regions.
13 14 15	58	• The reference criteria to identify true infections was based on previous literature and clinical
16 17	59	expertise but may be imperfect. Nevertheless, identifying microbiologically-confirmed infections
18 19	60	is difficult due to the low sensitivity of culture-based diagnostic methods often used in clinical
20 21	61	practice.
22 23	62	• Diagnosis codes were based on the ICD-9-coding system only. These findings will continue to be
24 25	63	helpful for retrospective studies that encompass periods of ICD-9 use, yet additional studies
26 27 28	64	evaluating the performance of ICD-10-based codes would be beneficial.
28 29 30	65	• Our coding algorithms to identify serious infections had a high positive predictive value overall,
31 32	66	and will be useful in ongoing and future research using administrative data
33 34	67	
35 36	68	
37 38	69	
39 40 41	70	
42 43	71	
44 45	72	
46 47	73	
48 49	74	
50 51	75	
52 53 54	76	
54 55 56	77	
57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

78 INTRODUCTION

Infectious diseases remain a leading cause of morbidity and mortality in the U.S. and elsewhere (1). Older adults, in particular, are at high risk for serious infections and their long-term consequences (2, 3). Among older adults, community-acquired serious infections (including pneumonia, sepsis, and meningitis) often require hospitalization and represent a substantial burden on the U.S. healthcare system (4-7). Therefore, it is important to monitor the incidence of these infections, identify important risk factors, and determine the impact of preventative policies (e.g., vaccination) on these diseases among older adults (8-10).

Large-scale epidemiological studies using administrative data often use serious infections as outcomes (11-15). However, few studies have evaluated the performance of diagnosis codes to identify serious infections among older adults. Most previous studies that have assessed the performance of coded discharge diagnosis codes to identify serious infections have focused mainly on common infections (e.g., pneumonia or sepsis), specific populations (e.g., patients with rheumatoid arthritis), or on healthcare-associated or hospital-acquired infections (16-25). Nevertheless, the performance of coded discharge diagnoses for accurately identifying infections requiring hospitalization among older adults is unclear. Therefore, we sought to determine the positive predictive value (PPV) of specific discharge diagnoses for identifying infections that required hospitalization among older adults.

96 METHODS

97 Data sources

98 TennCare is the managed Medicaid program in the State of Tennessee that provides healthcare
99 insurance to those who are Medicaid eligible (around 20% of the Tennessee population). The adult
100 TennCare population consists of low-income pregnant women and individuals who are elderly or have a
101 disability (over 600,000 annually) (26). We used data from TennCare, supplemented with data from the
102 Tennessee Hospital Discharge System (a registry for all hospitalizations in Tennessee) and pharmacy
103 information from Medicare Part D for those that were dual eligible, to identify a retrospective cohort of

Page 5 of 37

BMJ Open

TennCare enrollees >50 years of age with pharmacy benefits (2008-2013). Cohort members had at least 180 days of baseline continuous enrollment before cohort entry, and were also required to be free of certain life-threatening conditions known to increase the risk of infection (solid organ transplantation, end-stage renal disease, HIV/AIDS, malignancy and serious kidney, liver and respiratory disease), have evidence of at least one pharmacy prescription fill and evidence of at least one healthcare encounter during baseline (to ensure detection of healthcare usage). Follow-up started on the earliest date the inclusion criteria were met and continued through the earliest of the following: study end date (December 31, 2013), the day prior to diagnosis of a serious life-threatening condition that would have precluded entry to the cohort, loss of enrollment, or date of death. From this retrospective cohort, we identified possible hospitalizations for serious infections (see *Identification of hospitalizations for serious infection*) for our validation study. To avoid including infections that may have originated due to a previous hospital stay, we excluded hospitalizations for infections that occurred in the 30-day period after discharge from a previous hospitalization.

¹ 117 Identifica

Identification of hospitalizations for serious infection

Clinical knowledge and a literature review were used to identify primary discharge diagnosis codes that have been used previously to identify specific serious infections that require hospitalization (*study infections*), including pneumonia (alone or with a primary diagnosis of bacteremia/sepsis), bacteremia/sepsis, pyelonephritis, meningitis/encephalitis, osteomyelitis/septic arthritis, endocarditis and cellulitis (25, 27-29). Specific International Classifications of Diseases-Clinical Modification 9th-revision BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

123 (ICD-9-CM) diagnosis codes used to identify possible hospitalizations for each infection type are

⁵ 124 presented in Table 1.

125 Sampling Strategy

We used stratified random sampling to select a representative subset of study infection
hospitalizations from among all possible cases identified in the retrospective cohort. Since larger hospitals
would be over represented in a purely random sampling, and because there may also be regional
variability in coding practices and infection prevalence, we constructed a sampling framework where

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

hospitals were stratified based on their geographic region in Tennessee (West, Central, and East), and
tertiles of reported discharge volume (Low, Medium, and High) during the study period (30-32). From
this sampling framework, we randomly selected three hospitals from each of these nine sampling strata,
and retrieved their medical records for review and validation (Figure 1). This strategy, relative to a purely
random sample, ensured better representation of infections identified in smaller hospitals and those in
more rural regions of the State of Tennessee. If a hospital refused to participate, it was replaced by
another hospital randomly selected from the same sampling stratum.

The overall goal was to review and validate 675 hospitalizations for serious infection from 27 hospitals (25 hospitalizations for each of the 3 hospitals comprising a stratum, yielding 75 hospitalizations for each of the 9 strata) (Figure 1). We conservatively assumed that up to 80% of records requested would be available for review, and so we requested 32 records per hospital to receive an average of 25 records from each (Figure 1). To ensure that we reviewed sufficient rare infections, we preferentially selected any identified possible hospitalizations for meningitis/encephalitis, osteomyelitis/septic arthritis and endocarditis from each hospital in the sample. We randomly selected the remaining set of possible hospitalizations for other serious infections based on the proportional distribution of common infections at each hospital (pneumonia, bacteremia/sepsis, pyelonephritis and cellulitis) until 32 infections were identified. For hospitals with fewer than 32 infections during the study period, all infections were requested.

148 Abstraction of Medical Records

149Relevant clinical information was abstracted from the medical record (transfer notes, emergency150room summary, admission summary, physical/history, pharmacy information, laboratory, microbiology,151and radiology information, and discharge summary) of each hospitalization with a primary discharge152diagnosis code indicative of infection using a standardized and customized REDCap electronic data153capture instrument hosted at Vanderbilt University (33). As we were interested in infections that led to154hospitalizations, we focused our reviews on clinical, microbiological and radiological information from155the 2 days prior to the admission date through 2 days after admission to limit the possibility of identifying

Page 7 of 37

BMJ Open

1 ว		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	156	infections that developed during the hospitalization (i.e. nosocomial infections). In preparation for this
	157	study, the case report form was pilot-tested among a separate, convenience sample of 354 possible
	158	infections identified in the cohort from 3 hospitals in the same city as Vanderbilt University. This separate
	159	sample of hospitalizations was used only for pilot-testing the case report form, and was not included in
	160	the current study. One trained medical reviewer abstracted the relevant information for all selected
	161	records using the case report form. During the abstraction process, the lack of a particular finding in the
	162	medical record was treated as a lack of evidence for that finding, and so no information was considered
	163	missing after abstraction.
20 21	164	Adjudication of Medical Records
22 23	165	All records received were abstracted, reviewed and adjudicated. We made the final determination
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	166	of whether a hospitalization represented a confirmed infection or not using <i>a priori</i> definitions of clinical,
	167	radiological, and/or microbiological findings compatible with infection for each infection type. Previous
	168	validation studies and expert clinical knowledge were used to define these specific a priori definitions for
	169	each infection type (Supplementary appendix) (25, 28, 34).
	170	Statistical analysis
	171	We calculated the PPV of the ICD-9-CM discharge diagnosis codes for identifying
	172	hospitalizations for serious infection using the results of the <i>a priori</i> definitions applied to the information
39 40	173	abstracted from the medical records as the reference. Secondary analyses assessed the PPV for
41 42	174	hospitalizations for serious infection across hospitals of different sizes and in different geographical
43 44	175	regions of Tennessee.
45 46	176	We also assessed the reliability of the abstraction process. A second trained medical reviewer
47 48	177	abstracted relevant information from a subset of selected records, which included all meningitis and
49 50	178	endocarditis records, and a random selection of 10% of each of the remaining infection types. Each
51 52	179	reviewer conducted the process independently and blinded from one another. For the subset of records
53 54	180	abstracted by both reviewers, inter-reviewer agreement for the adjudication of a true or mis-identified
55 56 57	181	hospitalization was assessed using the Gwet's first agreement coefficient (AC_1) (36-38). Since Cohen's
58 59		7
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

r	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
54	
55	
56	
57	
58	
59	
53	

1

182	kappa statistic can be unreliable when the prevalence of the event and the level of observer agreement are
183	high in the study sample, we used Gwet's AC ₁ as a reliability measure unlikely to be affected by these
184	concerns (38-40). In sensitivity analyses, we assessed the impact of excluding hospitalizations that
185	occurred after the individual was transferred from another healthcare facility, as initial documentation and
186	details of the infection could be missing or incomplete in the receiving hospital (34). We also assessed the
187	impact on the PPV for all infections when requiring microbiological identification of a pathogen
188	(excluding common contaminants) from a sterile site within 2 days before or after the hospitalization
189	admission date. Among hospitalizations for possible pneumonia, we also assessed the PPV when
190	radiological evidence of pneumonia was required [i.e. pneumonia, opacity, or infiltrate mentioned in a
191	chest X-ray or computed tomography scan report] (Supplementary appendix). All analyses were
192	performed in Stata-IC, version 15.1 (College Station TX).
193	
194	RESULTS Cohort characteristics
195	Cohort characteristics
196	Among a retrospective cohort of 129,465 adults \geq 50 years of age enrolled in TennCare, 8,322
197	hospitalizations for serious infection were identified during the study period (2008-2013). Pneumonia,
198	cellulitis and bacteremia/sepsis were the most common infections (54.3%, 20.5% and 18.4%,
199	respectively), followed by pyelonephritis (3.8%) and septic arthritis/osteomyelitis (2.5%). Fewer than 1%

of hospitalizations were due to meningitis/encephalitis (n=30) and endocarditis (n=18). Cohort members
were primarily female (57.8%) with a median age of 60 years and with residence outside of a nursing

202 home (85.9%).

203 Collection, review and adjudication of selected medical records

Of the 27 hospitals that were initially selected for the sample, 21 (78%) were able to participate.
We selected 7 additional hospitals to replace the 6 non-participants to achieve the desired sample size,
including an additional small hospital in the East region due to a large number of unavailable records
from a single participating hospital.

8

1 2		
3 4 5 6 7 8 9 10 11 12 13 14	208	We received 716 (89%) of 808 requested records from 28 participating hospitals [Table 2].
	209	Record availability from participating hospitals was lower in medium size hospitals (81.8%) compared to
	210	small (93.5%) and large hospitals (91.7%), but did not differ by geographic region. Record availability by
	211	infection type was greater than 86% for all infection types, with the exception of hospitalizations for the
	212	rare endocarditis cases (57.1%; only 4 of 7 cases).
	213	There was evidence of transfer from a prior healthcare facility for 21.8% of the hospitalizations
15 16	214	for serious infection [highest percentage of transfers for bacteremia/sepsis (38.5%) and pneumonia
17 18 19	215	(25.1%)]. The most common healthcare facility source was a nursing home/skilled nursing facility
20 21	216	(84.6%), but also included group home sources (7.7%), other sources (4.5%) [assisted living facility,
22 23	217	mental health center] and another acute care hospital (3.2%). There was evidence of an emergency
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	218	department visit within 7 days prior to admission date for the serious infection hospitalization in 4.8% of
	219	the records.
	220	Performance of discharge diagnosis codes
	221	A total of 646 [PPV: 90.2% (95% CI: 88.0-92.4)] of the hospitalizations for serious infection
	222	identified using ICD-9-CM primary discharge diagnosis codes were confirmed by applying the a priori
	223	definitions to the abstracted data. The PPV was highest for pneumonia and cellulitis [96.8% (95% CI:
	224	94.5-98.4) and 91.1% (95% CI: 86.0-96.1), respectively], and was \geq 75% for bacteremia/sepsis,
	225	pyelonephritis, septic arthritis/osteomyelitis, and endocarditis. The PPV was lowest for
	226	meningitis/encephalitis [50.0% (95% CI: 19.0-81.0)], although the precision was limited due to a low
	227	number of available records for review (Table 2).
	228	When performance was evaluated across stratification sampling parameters, no apparent
47 48	229	differences were observed in the PPV for records from hospitals in different geographical regions of
49 50 51 52 53 54	230	Tennessee. Although the PPV was high for all three discharge volume groups, the PPV was significantly
	231	lower in large hospitals [84.6% (95% CI: 80.1-89.0)] compared to smaller hospitals [93.9% (95% CI:
	232	90.8-97.0); PPV difference: -9.3% (95% CI: -14.7, -3.9)] and medium hospitals [92.7% (95% CI: 89.4-
55 56 57	233	96.0); PPV difference: -8.1% (95% CI: -13.7, -2.6)] (Table 2). This was likely driven by the different
58 59		9
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
- 3 4	234	distributions in the types of infections selected for review in the hospital groups. Large hospitals had a
5 6	235	higher proportion of non-pneumonia infections (70.4%) compared to medium and small hospitals (49.4%
7 8	236	and 36.1%, respectively). Importantly, the PPV for pneumonia was similar in each discharge volume
9 10	237	group (range: 96.0 to 96.6%), whereas the PPV was smaller for non-pneumonia infections in large
11 12	238	hospitals (79.8%) compared to medium (88.7%) and small (89.2%) hospitals.
13 14	239	In the 82 records independently abstracted by two reviewers to assess reliability, there was 92.7%
15 16 17	240	(95% CI: 86.9-98.4) agreement for identifying true hospitalizations for serious infection. The inter-rater
17 18 19	241	agreement was also high when assessing reliability, independent of the outcome prevalence, with an AC_1
20 21	242	of 0.91 (95% CI: 0.84-0.99).
22 23	243	Sensitivity analyses
24 25	244	The PPV was virtually unchanged when excluding the 21.8% of hospitalizations that occurred as
26 27	245	transfers from another healthcare facility [90.1% (95% CI: 87.7-92.6)]. Microbiological evidence of the
28 29	246	specific infection type was found in 47.6% of records, leading to reduced PPVs when requiring
30 31	247	microbiological evidence [45.4% (95% CI: 41.7-49.0)]. Microbiological evidence of infection was
32 33	248	highest in hospitalizations for suspected pyelonephritis (94.4%), but was $\leq 60\%$ for every other infection
34 35 36	249	type [pneumonia (42.7%); cellulitis/soft tissue infections (58.5%); bacteremia/sepsis (26.1%)]. When
37 38	250	requiring radiological confirmation of pneumonia, the PPV for coded diagnoses was 78.8% (95% CI:
39 40	251	74.5-83.2). Approximately 95.6% of possible hospitalizations for pneumonia had at least one documented
41 42	252	chest x-ray or CT-scan. Among those patients with a chest x-ray or CT-scan report available (n=325),
43 44	253	83.4% had a finding compatible with pneumonia. The main findings among the 54 patients with possible
45 46	254	pneumonia and a radiological report available, but without radiological confirmation of pneumonia
47 48	255	included atelectasis (n=6), interstitial pneumonitis (n=3), chronic heart failure with pulmonary edema
49 50	256	(n=1), and no radiological findings of any kind (n=44).
51 52	257	
53 54	258	
55 56 57	259	
58 59		10
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

242	of 0.91 (95% CI: 0.84-0.99).
243	Sensitivity analyses
244	The PPV was virtually unchanged when excluding the 21.8% of hospitalizations that occurred as
245	transfers from another healthcare facility [90.1% (95% CI: 87.7-92.6)]. Microbiological evidence of the
246	specific infection type was found in 47.6% of records, leading to reduced PPVs when requiring
247	microbiological evidence [45.4% (95% CI: 41.7-49.0)]. Microbiological evidence of infection was
248	highest in hospitalizations for suspected pyelonephritis (94.4%), but was $\leq 60\%$ for every other infection
249	type [pneumonia (42.7%); cellulitis/soft tissue infections (58.5%); bacteremia/sepsis (26.1%)]. When
250	requiring radiological confirmation of pneumonia, the PPV for coded diagnoses was 78.8% (95% CI:
251	74.5-83.2). Approximately 95.6% of possible hospitalizations for pneumonia had at least one documented
252	chest x-ray or CT-scan. Among those patients with a chest x-ray or CT-scan report available (n=325),
253	83.4% had a finding compatible with pneumonia. The main findings among the 54 patients with possible
254	pneumonia and a radiological report available, but without radiological confirmation of pneumonia
255	included atelectasis (n=6), interstitial pneumonitis (n=3), chronic heart failure with pulmonary edema
256	(n=1), and no radiological findings of any kind (n=44).
257	
258	
259	
	10
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2		
2 3 4	260	DISCUSSION
5 6	261	Discharge diagnoses for identifying hospitalizations due to serious infections among older adults
7 8	262	had an overall positive predictive value of 90.2%, with highest values for identification of common
9 10	263	serious infections. PPVs were consistently high across different hospital types and regions of Tennessee.
11 12	264	Microbiological confirmation was available for fewer than 50% of those admitted with possible
13 14	265	hospitalizations for serious infections, and as expected, such a requirement resulted in a lower PPV.
15 16	266	Importantly, the PPV for pneumonia hospitalizations remained relatively high even when requiring
17 18	267	radiological confirmation. In addition, including hospitalizations for serious infection that were the result
19 20	268	of a transfer from another healthcare facility (e.g. acute care hospital, skilled nursing facility) did not
21 22	269	change the PPV of hospitalizations for serious infection.
23 24 25	270	The PPV for hospitalizations for pneumonia in previous smaller validation studies has ranged
25 26 27	271	from 72 to 86% in different healthcare systems, but those studies were not focused on older adults (25,
27 28 29	272	41-43). In our study of hospitalizations among older adults, we found that coded discharge diagnoses
30 31	273	have a higher PPV for pneumonia compared to previous studies. The PPV for bacteremia/sepsis was also
32 33	274	on the higher range of previously reported PPVs for diagnosis codes to identify bacteremia/sepsis from
34 35	275	administrative data in other populations (reported range from 45% to 97.7%), and for septic
36 37	276	arthritis/osteomyelitis compared to a previous study conducted among patients with diabetes (63.9%
38 39	277	versus 75.9% in our study) (44-46). Overall, the observed PPV for all infections in our study was
40 41	278	comparable to two previous comprehensive validation studies of bacterial infections, one among patients
42 43	279	with rheumatoid arthritis in a single hospital system and another among patients in one of the Veteran's
44 45	280	Affairs integrated service networks (28, 34). Compared to the these two previous studies of ICD-9 codes,
46 47	281	we abstracted and adjudicated a larger number of records while using a more systematic sampling
48 49 50	282	strategy to retrieve and review records for hospitalizations from multiple regions and hospital types as
50 51 52	283	opposed to a single hospital or healthcare system. However, the PPVs for individual infections were less
53 54	284	precise and less similar to these previous studies, especially for rare infections, as would be expected due
55 56	285	to the low numbers of rare infections across previous studies (28, 34). The results of our study are also
57 58		11
50		

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

similar to previous validation studies that used corresponding ICD-10 diagnosis codes to identify
hospitalizations for serious infection (47, 48).

One limitation to consider in our study was that it was not designed to estimate the sensitivity and specificity of the coding algorithms. This would have required the identification, review and adjudication of a sample of hospitalizations that did not fulfill our algorithm (i.e. presence of the ICD-9 primary discharge diagnosis codes indicative of infection). However, when the prevalence of an outcome is low, the PPV approximates the specificity (49). Importantly, any non-differential outcome misclassification between exposure groups resulting from the use of imperfect but highly-specific measurements would attenuate the impact of the misclassification on the relative risk estimates (50). In addition, we found that the PPV of coded discharge diagnoses for serious infections remained high across hospitals of different sizes and across different geographical areas of Tennessee, which may have different prevalences of hospitalizations for serious infection (51). Although our study applied a systematic sampling strategy to assure the representation of different settings in our population, our population was restricted to older adults enrolled in a State Medicaid program. Therefore, caution is warranted when extrapolating the study findings to other populations.

Another limitation is the use of available clinical information to operationalize definitions for adjudication of true hospitalizations for infections. It is possible that some procedures, laboratory findings and diagnoses that informed the final diagnosis of infection were not fully recorded in the medical records, and thus, were not available for our review and may have contributed to the observed PPV for some infections. Although we used previous validation studies and clinical information to build prespecified definitions for the adjudication of true infections, our reference criteria may be imperfect, considering the retrospective nature of our determinations and potential variability in clinical practice. Nevertheless, we also assessed how the availability of selected findings (i.e. microbiological and radiological information) in the medical record impacted the overall and infection-specific PPV. We demonstrated that relying on highly specific clinical diagnostics, such as microbiological and radiological information, to confirm true infections would result in lower PPVs for identification of infections in

Page 13 of 37

BMJ Open

1 2		
2 3 4 5 6 7 8	312	administrative data. Requiring microbiological confirmation to confirm true infections is challenging
	313	because of the known low sensitivity of culture-based diagnostic methods (most commonly used in
	314	clinical practice), which may lead to misclassification (52, 53). In addition, requiring radiological
9 10	315	evidence compatible with pneumonia within 2 days of hospital admission did lower the observed PPV for
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	316	pneumonia hospitalizations. Nevertheless, the observed PPV remained close to 80%, which should reduce
	317	concerns about using diagnosis codes to identify hospitalizations due to pneumonia. Finally, the coding
	318	algorithms were based on the ICD-9-coding system only. Although these findings will be helpful for
	319	retrospective studies that encompass periods of ICD-9 use, additional studies evaluating the performance
	320	of ICD-10-based codes would be useful to complement our findings.
	321	Our study demonstrated that discharge diagnosis codes can be used to accurately identify
	322	hospitalizations for serious infections among older adults. The highest PPVs were observed for the most
26 27	323	common infections, and the PPV for pneumonia remained high when requiring radiological confirmation.
28 29	324	The PPV was poor when microbiological confirmation of infection was required to identify a true
30 31	325	hospitalization for serious infection. This information supports the use of discharge diagnosis codes for
32 33	326	infections as outcomes in ongoing and future studies among older adults.
34 35	327	
36 37 38 39 40	328	Acknowledgement
	329	We are indebted to the Tennessee Bureau of TennCare of the Department of Finance and Administration,
41 42	330	which provided data for the study. We are also indebted to the Tennessee Department of Health for
43 44	331	providing data for the study. Statements in the report should not be construed as endorsement by the U.S.
45 46	332	Department of Health and Human Services, the Department of Veterans Affairs, or the Tennessee
47 48	333	Department of Health.
49 50	334	
51 52	335	Funding
53 54	336	This study was funded by the NIH (R03-AG-042981 and R01-AG-043471-01A1) and the TL1 award
55 56 57	337	TL1TR000447.
57 58 59		13
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3		
4	338	
4 5 6	339	Contributors
7 8	340	ADW planned the medical record collection and statistical analysis, analyzed and interpreted the data, and
9 10	341	drafted and revised the paper. MRG, WS, CMS, and RAG planned the statistical analysis, interpreted the
11 12	342	data and revised the paper. EFM prepared the data, and revised the paper. CGG initiated the project,
13 14 15	343	acquired the data from TennCare, planned the medical record collection and statistical analysis,
15 16 17	344	interpreted the data, and revised the paper.
18 19	345	
20 21	346	Declaration of interests
22 23	347	CGG has received consulting fees from Pfizer and Merck, and received research support from Sanofi-
24 25	348	Pasteur, Campbell Alliance, the Centers for Disease Control and Prevention, National Institutes of Health,
26 27 28	349	and the Agency for Health Care Research and Quality. WS has received personal fees from Pfizer,
28 29 30	350	Merck, Novavax, Dynavax, Sanofi-Pasteur, GSK, Seqirus, and received research support from the
31 32	351	Centers for Disease Control and Prevention. ADW, EFM, CMS, MRG and RAG have no conflicts of
33 34	352	interest to disclose.
35 36	353	
37 38	354	Data sharing
39 40		No additional unpublished data are available from the study. The study protocol and statistical code are
41 42 43	356	available from the corresponding author, Andrew Wiese (andrew.d.wiese@vanderbilt.edu).
44 45	357	
46 47	358 359	
48 49	360	
50 51	361	
52 53	362	
54 55 56	363	
50 57 58	505	14
50 59		11

1 2		
- 3 4	364	REFERENCES
5 6	365	Khabbaz RF, Moseley RR, Steiner RJ, Levitt AM, Bell BP. Challenges of infectious diseases in
7 8	366	he USA. <i>Lancet</i> 2014; 384 (9937): 53-63.
9 10	367	2. Grohskopf LA, Sokolow LZ, Broder KR, et al. Prevention and Control of Seasonal Influenza with
11 12	368	Vaccines. MMWR Recommendations and reports : Morbidity and mortality weekly report
13 14 15	369	Recommendations and reports / Centers for Disease Control 2016; 65(5): 1-54.
15 16 17	370	8. Kim DK, Bridges CB, Harriman KH. Advisory committee on immunization practices
17 18 19	371	ecommended immunization schedule for adults aged 19 years or olderUnited States, 2015. MMWR
20 21	372	Morbidity and mortality weekly report 2015; 64(4): 91-2.
22 23	373	4. Jeon CY, Muennig P, Furuya EY, Cohen B, Nash D, Larson EL. Burden of present-on-admission
24 25	374	nfections and health care-associated infections, by race and ethnicity. American journal of infection
26 27	375	control 2014; 42 (12): 1296-302.
28 29	376	5. Pilishvili T, Bennett NM. Pneumococcal Disease Prevention Among Adults: Strategies for the
30 31	377	Jse of Pneumococcal Vaccines. American journal of preventive medicine 2015; 49(6 Suppl 4): S383-90.
32 33	378	5. Sjoding MW, Prescott HC, Wunsch H, Iwashyna TJ, Cooke CR. Longitudinal Changes in ICU
34 35 26	379	Admissions Among Elderly Patients in the United States. Critical care medicine 2016; 44(7): 1353-60.
36 37 38	380	7. Crotty MP, Meyers S, Hampton N, et al. Epidemiology, Co-Infections, and Outcomes of Viral
39 40	381	Pneumonia in Adults: An Observational Cohort Study. Medicine 2015; 94(50): e2332.
41 42	382	3. Simonetti AF, Garcia-Vidal C, Viasus D, et al. Declining mortality among hospitalized patients
43 44	383	with community-acquired pneumonia. Clinical microbiology and infection : the official publication of the
45 46	384	European Society of Clinical Microbiology and Infectious Diseases 2016; 22(6): 567.e1-7.
47 48	385	P. Rivero-Calle I, Pardo-Seco J, Aldaz P, et al. Incidence and risk factor prevalence of community-
49 50	386	acquired pneumonia in adults in primary care in Spain (NEUMO-ES-RISK project). BMC infectious
51 52	387	<i>liseases</i> 2016; 16 (1): 645.
53 54	388	0. Park JY, Park S, Lee SH, et al. Microorganisms Causing Community-Acquired Acute Bronchitis:
55 56	389	The Role of Bacterial Infection. <i>PloS one</i> 2016; 11 (10): e0165553.
57 58 59		5
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

11. Jackson ML, Walker R, Lee S, Larson E, Dublin S. Predicting 2-Year Risk of Developing Pneumonia in Older Adults without Dementia. Journal of the American Geriatrics Society 2016; 64(7): 1439-47. 12. Clement RC, Haddix KP, Creighton RA, Spang JT, Tennant JN, Kamath GV. Risk Factors for Infection After Knee Arthroscopy: Analysis of 595,083 Cases From 3 United States Databases. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association 2016; 32(12): 2556-61. Weinert BA, Edmonson MB. Hospitalizations at Nonfederal Facilities for Lower Respiratory 13. Tract Infection in American Indian and Alaska Native Children Younger than 5 Years of Age, 1997-2012. The Journal of pediatrics 2016; 175: 33-9.e4. 14. Akiyama T, Chikuda H, Yasunaga H, Horiguchi H, Fushimi K, Saita K. Incidence and risk factors for mortality of vertebral osteomyelitis: a retrospective analysis using the Japanese diagnosis procedure combination database. BMJ open 2013; 3(3). 15. Graversen ME, Dalgaard LS, Jensen-Fangel S, Jespersen B, Ostergaard L, Sogaard OS. Risk and outcome of pyelonephritis among renal transplant recipients. BMC infectious diseases 2016; 16: 264. 16. Abou Zahr Z, Spiegelman A, Cantu M, Ng B. Perioperative use of anti-rheumatic agents does not increase early postoperative infection risks: a Veteran Affairs' administrative database study. Rheumatology international 2015; 35(2): 265-72. 17. Carnahan RM, Moores KG, Perencevich EN. A systematic review of validated methods for identifying infection related to blood products, tissue grafts, or organ transplants using administrative data. Pharmacoepidemiology and drug safety 2012; 21 Suppl 1: 213-21. 18. Condell O, Gubbels S, Nielsen J, et al. Automated surveillance system for hospital-acquired urinary tract infections in Denmark. The Journal of hospital infection 2016; 93(3): 290-6. 19. Gedeborg R, Furebring M, Michaelsson K. Diagnosis-dependent misclassification of infections using administrative data variably affected incidence and mortality estimates in ICU patients. Journal of clinical epidemiology 2007; 60(2): 155-62.

60

BMJ Open

1 2					
- 3 4	416	20.	Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the		
5 6 7 8	417	surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clinical			
	418	infecti	ous diseases : an official publication of the Infectious Diseases Society of America 2014; 58 (5):		
9 10	419	688-96	5.		
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	420	21.	Shaklee J, Zerr DM, Elward A, et al. Improving surveillance for pediatric Clostridium difficile		
	421	infecti	on: derivation and validation of an accurate case-finding tool. The Pediatric infectious disease		
	422	journa	<i>l</i> 2011; 30 (3): e38-40.		
	423	22.	Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R. Administrative databases		
	424	provide inaccurate data for surveillance of long-term central venous catheter-associated infections.			
	425	Infection control and hospital epidemiology : the official journal of the Society of Hospital			
	426	Epidemiologists of America 2003; 24(12): 946-9.			
26 27	427	23.	Greenberg JA, Hohmann SF, Hall JB, Kress JP, David MZ. Validation of a Method to Identify		
28 29	428	Immunocompromised Patients with Severe Sepsis in Administrative Databases. Annals of the American			
30 31	429	<i>Thoracic Society</i> 2016; 13 (2): 253-8.			
32 33	430	24.	Olsen MA, Young-Xu Y, Stwalley D, et al. The burden of clostridium difficile infection:		
34 35	431	estima	tes of the incidence of CDI from U.S. Administrative databases. BMC infectious diseases 2016; 16:		
36 37 38 39 40	432	177.			
	433	25.	Grijalva CG, Chung CP, Stein CM, et al. Computerized definitions showed high positive		
40 41 42	434	predict	tive values for identifying hospitalizations for congestive heart failure and selected infections in		
43 44	435	Medic	aid enrollees with rheumatoid arthritis. <i>Pharmacoepidemiology and drug safety</i> 2008; 17 (9): 890-5.		
45 46	436	26.	TennCare Fiscal Year 2015-2016 Annual Report. In: Administration DoHCF, ed.2016.		
47 48	437	267.	Wiese AD, Griffin MR, Stein CM, Mitchel EF, Jr., Grijalva CG. Opioid Analgesics and the Risk		
49 50	438	of Seri	ous Infections Among Patients With Rheumatoid Arthritis: A Self-Controlled Case Series Study.		
51 52 53	439	Arthrii	tis & rheumatology (Hoboken, NJ) 2016; 68 (2): 323-31.		
54 55					
56 57					
58		17			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

59

60

2 3	440	28.	Schneeweiss S, Robicsek A, Scranton R, Zuckerman D, Solomon DH. Veteran's affairs hospital			
4 5 6	441	dischar	ge databases coded serious bacterial infections accurately. Journal of clinical epidemiology 2007;			
6 7 8	442	60 (4): 397-409.				
9 10	443	29.	Grijalva CG, Kaltenbach L, Arbogast PG, Mitchel EF, Jr., Griffin MR. Initiation of rheumatoid			
11 12	444	arthriti	s treatments and the risk of serious infections. Rheumatology (Oxford, England) 2010; 49(1): 82-			
13 14	445	90.				
15 16	446	30.	Brenner H, Gefeller O. Variation of sensitivity, specificity, likelihood ratios and predictive values			
17 18	447	with disease prevalence. Statistics in medicine 1997; 16(9): 981-91.				
19 20 21	448	31.	Kim HM, Smith EG, Stano CM, et al. Validation of key behaviourally based mental health			
21 22 23	449	diagno	ses in administrative data: suicide attempt, alcohol abuse, illicit drug abuse and tobacco use. BMC			
24 25	450	health services research 2012; 12: 18.				
26 27	451	32.	El-Ghitany EM, Farghaly AG, Farag S, Abd El-Wahab EW. Validation of EGCRISC for Chronic			
28 29 30 31	452	Hepatitis C Infection Screening and Risk Assessment in the Egyptian Population. <i>PloS one</i> 2016; 11 (12):				
	453	e0168649.				
32 33	454	33.	Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data			
34 35 36 37 38 39 40	455	capture	e (REDCap)a metadata-driven methodology and workflow process for providing translational			
	456	researc	h informatics support. Journal of biomedical informatics 2009; 42(2): 377-81.			
	457	34.	Patkar NM, Curtis JR, Teng GG, et al. Administrative codes combined with medical records			
41 42	458	based c	criteria accurately identified bacterial infections among rheumatoid arthritis patients. Journal of			
43 44	459	clinica	<i>l epidemiology</i> 2009; 62 (3): 321-7, 7.e1-7.			
45 46	460	35.	Aronson PL, Williams DJ, Thurm C, et al. Accuracy of diagnosis codes to identify febrile young			
47 48	461	infants	using administrative data. Journal of hospital medicine : an official publication of the Society of			
49 50 51 52	462	Hospite	<i>al Medicine</i> 2015; 10 (12): 787-93.			
	463	36.	Govatsmark RE, Sneeggen S, Karlsaune H, Slordahl SA, Bonaa KH. Interrater reliability of a			
53 54 55 56	464	nationa	al acute myocardial infarction register. Clinical epidemiology 2016; 8: 305-12.			
57 58		18				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2					
2 3 4	465	37.	Wongpakaran N, Wongpakaran T, Wedding D, Gwet KL. A comparison of Cohen's Kappa and		
5 6	466	Gwet's	AC1 when calculating inter-rater reliability coefficients: a study conducted with personality		
7 8	467	disorde	er samples. BMC medical research methodology 2013; 13: 61.		
9 10	468	38.	Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement.		
11 12	469	The Br	itish journal of mathematical and statistical psychology 2008; 61(Pt 1): 29-48.		
13 14	470	39.	Lantz CA, Nebenzahl E. Behavior and interpretation of the kappa statistic: resolution of the two		
15 16	471	parado	xes. Journal of clinical epidemiology 1996; 49 (4): 431-4.		
17 18	472	40.	Feinstein AR, Cicchetti DV. High agreement but low kappa: I. The problems of two paradoxes.		
19 20 21	473	Journal of clinical epidemiology 1990; 43 (6): 543-9.			
21 22 23	474	41.	Drahos J, Vanwormer JJ, Greenlee RT, Landgren O, Koshiol J. Accuracy of ICD-9-CM codes in		
24 25	475	identifying infections of pneumonia and herpes simplex virus in administrative data. Annals of			
26 27 28 29	476	epidemiology 2013; 23 (5): 291-3.			
	477	42.	Aronsky D, Haug PJ, Lagor C, Dean NC. Accuracy of administrative data for identifying patients		
30 31	478	with p	neumonia. American journal of medical quality : the official journal of the American College of		
32 33	479	Medica	al Quality 2005; 20 (6): 319-28.		
34 35	480	43.	Kern DM, Davis J, Williams SA, et al. Validation of an administrative claims-based diagnostic		
36 37	481	code fo	or pneumonia in a US-based commercially insured COPD population. International journal of		
38 39	482	chroni	c obstructive pulmonary disease 2015; 10: 1417-25.		
40 41 42	483	44.	Iwashyna TJ, Odden A, Rohde J, et al. Identifying patients with severe sepsis using		
42 43 44	484	admini	strative claims: patient-level validation of the angus implementation of the international consensus		
45 46	485	confere	ence definition of severe sepsis. Medical care 2014; 52(6): e39-43.		
47 48	486	45.	Newton KM, Wagner EH, Ramsey SD, et al. The use of automated data to identify complications		
49 50	487	and co	morbidities of diabetes: a validation study. Journal of clinical epidemiology 1999; 52(3): 199-207.		
51 52	488	46.	Carnahan RM, Herman RA, Moores KG. A systematic review of validated methods for		
53 54	489	identif	ying transfusion-related sepsis using administrative and claims data. Pharmacoepidemiology and		
55 56	490	drug sa	afety 2012; 21 Suppl 1 : 222-9.		
57 58		19			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

2							
3 4	491	47.	Sahli L, Lapeyre-Mestre M, Derumeaux H, Moulis G. Positive predictive values of selected				
5 6	492	hospita	nospital discharge diagnoses to identify infections responsible for hospitalization in the French national				
7 8	493	hospita	al database. Pharmacoepidemiology and drug safety 2016; 25(7): 785-9.				
9 10	494	48.	Holland-Bill L, Xu H, Sorensen HT, et al. Positive predictive value of primary inpatient discharge				
11 12	495	diagno	ses of infection among cancer patients in the Danish National Registry of Patients. Annals of				
13 14	496	epidem	niology 2014; 24(8): 593-7, 7.e1-18.				
15 16 17	497	49.	Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic				
17 18 10	498	researc	h on therapeutics. Journal of clinical epidemiology 2005; 58(4): 323-37.				
19 20 21	499	50.	Rodgers A, MacMahon S. Systematic underestimation of treatment effects as a result of				
21 22 23	500	diagno	stic test inaccuracy: implications for the interpretation and design of thromboprophylaxis trials.				
23 24 25	501	Throm	bosis and haemostasis 1995; 73 (2): 167-71.				
26 27	502	51.	van Walraven C, English S, Austin PC. Administrative database code accuracy did not vary				
28 29	503	notably	with changes in disease prevalence. Journal of clinical epidemiology 2016; 79: 86-9.				
30 31	504	52.	Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and				
32 33	505	other n	on-culture-based methods in diagnosis of sepsis. Clinical microbiology reviews 2010; 23(1): 235-				
34 35	506	51.					
36 37	507	53.	Niederman MS. The argument against using quantitative cultures in clinical trials and for the				
38 39	508	manage	ement of ventilator-associated pneumonia. Clinical infectious diseases : an official publication of				
40 41	509	the Infe	ectious Diseases Society of America 2010; 51 Suppl 1 : S93-9.				
42 43	510						
44 45 46	511						
40 47 48	512						
49 50	513						
50 51 52							
52 53 54	514						
55 56	515						
57 58		20					
59 60		_ •	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

	Serious Infection	Primary (first listed) discharge diagnosis code		
	Pneumonia-primary definition	003.22, 480.* [†] , 481, 482.*, 483.*, 484.*, 485.*, 486.*, 487.0		
	Pneumonia-secondary definition			
	(pneumonia diagnosis (above) in any	510.*, 038.*, 790.7, 995.91, 995.92		
	other diagnosis field)			
		003.21, 036.0, 0.47*, 049.*, 053.0, 054.72, 072.1, 091.81, 094.2, 098.82		
	Meningitis/ Encephalitis	100.81, 320.*, 036.1, 054.3, 056.01, 058.21, 058.29, 062.*, 063.*, 064.*		
		066.41, 072.2, 094.81, 130.0, 323.*		
	Bacteremia/ Sepsis [†] 038.*, 790.7, 995.91, 995.92			
	Cellulitis/ Soft-tissue infections	035, 040.0, 569.61, 681.*, 682.*, 728.86, 785.4		
	Endocarditis	036.42, 074.22, 093.2*, 098.84, 421.*, 422.92		
	Pyelonephritis	590.*		
	Septic Arthritis/ Osteomyelitis	003.23, 056.71, 098.5*, 711.0, 711.00-711.07, 711.09, 711.9*, 003.24,		
		376.03, 526.4, 730.0*, 730.1*, 730.2*		
7	+ Without a diagnosis of pneumonia in any other diagnosis field			
8	+ A * indicates all numeric values [0-9]		
9				
	21			
	For peer review on	ly - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
12 13 14 15 16	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

 Table 2. Positive predictive value (PPV) of coded discharge diagnosis definitions for hospitalizations

 for serious infections among older adults enrolled in Tennessee Medicaid, 2008-2013

Туре	Expected Number of Records	Records Received	PPV (95 % CI)
Overall	675	716	90.2 (88.0, 92.4)
Region Specific			
West	225	195	91.3 (87.3, 95.2)
Central	225	225	88.9 (84.8, 93.0)
East	225	296	90.5 (87.2, 93.9)
Bed volume size specific			
Low	225	230	93.9 (90.8, 97.0)
Medium	225	233	92.7 (89.4, 96.0)
High	225	253	84.6 (80.1, 89.0)
Serious Infection			
Pneumonia	305	340	96.8 (94.5, 98.4)
Cellulitis/Soft-tissue infections	125	123	91.1 (86.0, 96.1)
Pyelonephritis	80	89	87.6 (80.8, 94.5)
Bacteremia/Sepsis	100	92	82.6 (74.9, 90.4)
Septic Arthritis/Osteomyelitis	50	58	75.9 (64.8, 86.9)
Meningitis/Encephalitis	10	10	50.0 (19.0, 81.0)
Endocarditis	5	4	75.0 (32.6, 100.0)

22

59

60

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Figure legends

Figure 1. Sampling strategy for identifying potential hospitalizations for serious infection

to beet terien only

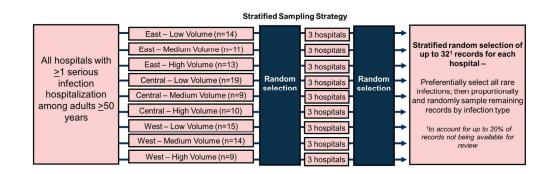


Figure 1. Sampling strategy for identifying potential hospitalizations for serious infection 271x..

Supplementary Appendix

Infection-Specific Definitions of Hospitalization for Serious Infection

We used a pre-specified adjudication process to determine whether each abstracted medical record corresponded to a true infection or not. Previous validation studies and expert clinical knowledge were used to define specific a priori definitions for each infection type.¹⁻³ Information abstracted from the medical record was compared to these a priori definitions for each infection type to make the final determination of whether a hospitalization represented a true infection or not.

Outline

Out	tline	
Ι.	Sepsis/Septicemia/Bacteremia/Septic Shock/Generalized Infection	Page 2
II.	Pneumonia	•
III.	Cellulitis/Soft-tissue infections	Page 5
IV.	Endocarditis	
V.	Meningitis/Encephalitis	Page 7
VI.	Pyelonephritis	Page 9
VII.	Septic Arthritis/Osteomyelitis	Page 10
VIII	I. References	Page 11

2	
3	I. <u>Sepsis/Septicemia/Bacteremia/Septic Shock/Generalized Infection</u>
4	
5	Either of the following [1 or 2]:
6 7	1. Positive culture of a non-contaminant pathogen
8	i. <u>Positive blood culture [any of the following (1-2)]</u>
9	1. Any gram-negative organism, except:
10	a. No predominant organism
11	2. A gram positive organism, except:
12	a. Coagulase-negative Staphylococcus
13	b. <i>Bacillus spp.</i> (other than <i>Bacillus anthracis</i>)
14 15	c. Corynebacterium spp.
15 16	d. Propionibacterium spp.
17	e. Micrococcus
18	
19	f. Diptheroids g. Viridians Group Streptococci
20	h. Enterococci
21	II. Enterococci
22	i. Clostridium perfringens
23	j. Aerococcus
24 25	K. Alcaligenes Jaecalis
25 26	1. Citrobacter
27	m. Neisseria subflava
28	n. Stomatococcus
29	o. Streptococcus bovis
30	p. Veillonella candidemia
31	q. Mycobacterium tuberculosis
32	r. S. salivarius
33	s. "Gram Positive"
34 35	t. "No predominant organism"
36	u. Streptococcus alpha
37	2. At least two of the following, documented at admission +/- 2 days [i-iii]
38	i. <u>Hypotension</u>
39	1. Systolic BP \leq 90 mmHg
40	2. Reduction of systolic BP of 40mmHg from earliest measurement
41	collected during the admission of interest
42	ii. <u>Two of the following [1-4]:</u>
43 44	1. Temperature $\geq 38^{\circ}$ C or $\leq 36^{\circ}$ C
44 45	2. Heart rate \geq 90 beats/minute
46	3. Respiratory rate \geq 20 breaths/min or PaCO ₂ < 32 mmHg
47	4. WBC \geq 10,000 cells/mm ³ or \leq 4,500 cells/mm ³ or WBC with $>$ 10 %
48	immature (band) forms
49	iii. Initiation of antibiotic treatment specifically for
50	sepsis/septicemia/bacteremia/septic shock/generalized infection
51	
52 53	
53 54	
54 55	
56	
57	
58	2
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
3 4 5 6 7 8 9 100 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31 32 33 34 35 36 37 38	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

II. <u>Pneumonia</u>

- 1. Pneumonia identified through examination (all three of the following [a-c]):
 - a. One of the following admission findings indicative of respiratory findings:
 - 1. New and/or increased cough
 - 2. Shortness of breath
 - 3. Pleuritic chest pain
 - 4. New purulent production
 - 5. Altered mental status ("agitation" and "lethargy" included)
 - 6. Crackles
 - a. Physical evidence of consolidation such as egophony, whispered pectoriloquy, etc.

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

- b. One of the following examination findings indicative of systemic infection [1-4]:
 - 1. Temperature (T \geq 100.4°F (38°C) or \leq 96°F) in first 48 hours of
 - admission
 - 2. Systolic BP \leq 90mmHg
 - 3. Shock
 - a. Volume nonresponsive hypotension
 - 4. Blood peripheral WBC (\geq 10.0 x 10⁹/L or \leq 4.5 x 10⁹/L)
- c. Treatment with antibiotics/antivirals indicated for suspected infection

<u>OR</u>

At least two of the following [1-3]:

- 1. Two of the following from #1 ([a and b], [a and c], or [b-c])
- 2. Any of the following findings listed on chest imaging from radiologic report documented at
 - admission +/- 2 days
 - a. Pneumonia
 - b. Lung abscess
 - c. Opacity consistent with pneumonia/lung abscess
 - d. Infiltrate consistent with pneumonia/lung abscess
 - e. Consolidation consistent with pneumonia/lung abscess
 - f. Increased density consistent with pneumonia/lung abscess
 - g. Pleural effusion consistent with pneumonia/lung abscess
 - h. Interstitial edema consistent with pneumonia/lung abscess
- 3. Sterile Site Laboratory Findings
 - i. Any one of the following [i through v]
 - i. Sputum lab findings [any **one** of the following (1, 2)]:
 - 1. Sputum culture/PCR/serology/gram stain positive for an agent that is not considered a contaminant [see exclusion list below]:
 - a. *Aspergillus* species, *Enterococcus* species, viridians group streptococci, and yeast
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
 - ii. Blood lab findings [either of the following (1-3)]
 - 1. Blood culture/PCR/serology positive for an agent that is not considered a contaminant [see exclusion list below]:
 - a. Exclusions
 - i. Coagulase-negative Staphylococcus

59

- ii. Bacillus spp. (other than Bacillus anthracis)
- iii. Corynebacterium spp.
- iv. Propionibacterium spp.
- v. Micrococcus
- vi. Diptheroids
- vii. Viridians Group Streptococci
- viii. Enterococci
- ix. Clostridium perfringens
- x. Aerococcus
- xi. Alcaligenes faecalis
- xii. Citrobacter
- xiii. Neisseria subflava
- xiv. Stomatococcus
- xv. Streptococcus bovis
- xvi. Veillonella candidemia
- xvii. Mycobacterium tuberculosis
- xviii. S. salivarius
- 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
- iii. Pleural fluid lab findings [either of the following (1, 2)]
 - 1. Culture/PCR/serology positive for a bacterial pathogen
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
- iv. Bronchoscopic specimen or deep endotracheal tube aspiration lab findings [either of the following (1, 2)]
 - 1. Culture/PCR/serology positive for a bacterial pathogen
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
- v. Urine antigen detection testing [either of the following (1, 2)]
 - 1. Legionella pneumophila
 - 2. Streptococcus pneumoniae

III. <u>Cellulitis/Soft-Tissue Infection</u>

Both of the following:

- 1. Any mention of the following with recent onset (<14 days) [any of the following]
 - a. Skin erythema
 - b. Surgical site infection
 - c. Superficial central line infection
 - d. Ostomy site infection
 - e. Skin infection with associated lymphangitis
- 2. Antibiotic treatment initiated for suspected infection

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

IV. Endocarditis

Any one of the following [1-3]:

- 1. Major Criteria [both of the following]:
 - a. Suggestive microbiology [at least one of the following]:
 - i. Positive blood culture of an *endocarditis organism* [any of the following]:
 - 1. Streptococcus bovis
 - 2. Viridians streptococci
 - 3. *Staphylococcus aureus*
 - 4. Enterococcus spp.
 - 5. HACEK organisms
 - 6. Coagulase negative staphylococci
 - b. Evidence of endocardial involvement [at least one of the following]:
 - i. New regurgiant murmur (a change in a preexisting murmur does not get scored)
 - ii. Echocardiogram suspicious for any of the following:
 - 1. Intracardiac mass with no alternative explanation
 - 2. Endocardial abscess
 - 3. New partial prosthesis dehiscence
 - 4. Vegetation on valve
- 2. Minor Criteria [at least 4 of the following]:
 - a. Predisposing valvular disease or IV drug use
 - b. Temperature $\geq 100.4^{\circ}$ F or 38°C
 - c. Vascular phenomena
 - i. Janeway lesions, conjunctival hemorrhages, arterial emboli, septic pulmonary infarcts, mycotic aneurysm, intracranial bleed
 - d. Immunologic phenomena
 - i. Osler nodes, Roth Spots, elevated Rheumatoid factor, hematuria in non-catheter urine, or other evidence of glomerulonephritis
 - e. Positive blood cultures
 - i. Excluding a single positive culture for coagulase negative staphylococci or a single positive culture for an organism that does not fall into the "reasonable endocarditis organism" (i.e. coagulase-positive and coagulase-negative *S. aureus*, Enterococcus, viridians group Streptococci, *S. bovis*, HACEK organisms)
 - f. Positive serology for Brucella, Bartonella, Legionella, or Chlamydia
 - g. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
- 3. At least one Major Criteria AND 3 minor criteria.

1	
2	
3	V. <u>Meningitis/Encephalitis</u>
4	
5	Any one of the following [1 or 2]:
6 7	1. Both of the following [a-b]
8	a. Laboratory Findings [any one of the following (i-ix)]
9	
10	i. CSF demonstrates any bacterium
10	1. Excluding Diptheroids, Propionibacteria, Bacillus, Coagulase Negative
12	Staphylococcus
13	ii. CSF demonstrates Diptheroids, Propionibacteria, Bacillus, Coagulase Negative
14	Staphylococcus in the setting of past neurosurgical intervention AND physicians
15	elected to treat with antibacterials
16	iii. Blood cultures positive for any of the following:
17	1. S. pneumoniae
18	2. H. influenza
19	3. Neisseria meningitidis
20	4. Group B Streptococcus
21	
22	iv. Stool cultures positive for enterovirus
23	v. Throat or sputum cultures positive for <i>Neisseria meningitidis</i> in the setting of a
24	rapid onset, overwhelming infection syndrome, including petechiae
25	vi. Serology positive for Mycoplasma, Leptospira, measles, mumps, lymphocytic
26	choriomeningitis virus, arboviruses (e.g. St. Louis encephalitis virus), or HIV (if
27	historically consistent with acute seroconversion).
28	vii. Brain biopsy demonstrates encephalitis
29	viii. Positive CSF culture or PCR detection for any of the following
30 31	ix. Acute or convalescent serology demonstrates positive antibody pattern for any of
31	the following:
33	1. Encephalitis arbovirus (La Crosse, St. louis, Eastern Equine, Western
34	Equine, Powassan, Japanese, West Nile)
35	
36	b. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected
37	meningitis/encephalitis
38	
39	2. At least two of the following [a-d]
40	a. Clinical meningitis/encephalitis [at least two of the following]:
41	i. Petechial rash
42	ii. Nuchal rigidity (by history or exam)
43	iii. Altered sensorium
44	iv. Fever
45	v. Altered level of consciousness, including "agitation" or "lethargy"
46	vi. Behavioral change
47	vii. Diminished level of consciousness (not easily roused)
48	
49 50	viii. History of any of the following: headaches, altered mental status, or recent
50	exposure to patient with known bacterial meningitis
51 52	ix. Reduction in fever within 72 hours of starting anti-bacterial
52 53	b. Inflammatory CSF [at least one of the following i-ii]
53 54	i. Pleocytosis: \geq 15 WBC/mm ³ (after subtracting one WBC for every 1,000 RBC)
55	ii. Elevated protein (based on local lab-determined upper limits)
55	c. Suggestive Findings [at least one of the following (i-iv)
57	
58	7
59	

i. Septic syndrome

iii. Abnormal imaging

discharges)

meningitis/encephalitis

ii. Focal neurological deficits documented during examination (such as flaccid paralysis or speech alterations for West Nile Virus) 1. Computed tomography or magnetic resonance imaging (MRI) demonstrating focal edema or inflammation or hemorrhage 2. Indicated as "meningitis/encephalitis" or "compatible with meningitis/encephalitis" or "cannot rule out meningitis/encephalitis" iv. Findings indicating an abnormal electroencephalography (such as focal periodic d. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for presumed ior occite terren ont

VI. <u>Pyelonephritis</u>

At least two of the following [1-4]:

- 1. Suggestion of infection [at least one of the following]:
 - a. Temperature \geq 100.4°F (38°C)
 - b. Peripheral blood WBC \geq 10,000/mm³
 - c. Positive blood culture for any of the following:
 - i. Gram Negative Rods
 - ii. Enterococcus spp.
 - iii. Staphylococcus saprophyticus
 - d. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
- 2. Strong renal localization [at least one of the following]:
 - a. CT, MRI, or Ultrasound Suggestive of Renal Inflammation
- 3. Minor Criteria [at least two of the following]:
 - a. Flank pain
 - b. Costovertebral angle tenderness
 - c. Complaints of dysuria, frequency, or suprapubic pain
 - d. Any pyuria
 - e. Urine culture positive for a single organism
- 4. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected pyelonephritis

VII. Septic Arthritis/Osteomyelitis

Any one of the following (1-5):

1

2 3

4 5

6

7

8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

49 50

51

52

53

59

- 1. Synovial fluid gram stain or tissue gram stain or special stain demonstrating any organism
- 2. Joint culture/PCR/serology positive for any organism
- 3. At least two of the following (a-d):
 - a. Positive blood culture/PCR/serology
 - b. Joint with acute (\leq 7 days) worsening of inflammatory features (**at least two of the following**):
 - i. Pain on history
 - ii. ROM
 - iii. Warmth
 - iv. Effusion
 - v. Swelling
 - vi. Limited range of motion
 - c. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
 - d. Any one of the following (i-iv)
 - i. Synovial fluid WBC \geq 30,000/mm³
 - ii. Synovial fluid WBC \geq 60,000/mm³ with > 75% PMNs
 - iii. Skin lesions, tenosynovitis, or urethral/cervical/rectal Gram stain or culture suggestive of *Neisseria gonorrhoeae*
 - iv. Any indication of the following in the synovial fluid: needle-like crystals, CPPD crystals, uric acid.
- 4. Positive bone biopsy [at least one of the following (a-c)]:
 - a. Positive culture for any organism
 - b. Positive gram stain
- 5. Imaging and indirect features [at least two of the following (a-c)]:
 - a. Consistent imaging [at least one of the following (i-iv)]:
 - i. Plain X-ray read by a radiologist as suggestive of osteomyelitis
 - ii. CT Scan read by a radiologist as suggestive of osteomyelitis
 - iii. MRI read by a radiologist as suggestive of osteomyelitis
 - iv. Bone scan or WBC scan read as suggestive of osteomyelitis
 - b. Suggestive indirect features[at least one of the following (i-viii)]:
 - i. Temperature > 100.4°F (38°C)
 - ii. Bony pain or tenderness or erythema over bone suspected to be infected
 - iii. Draining soft tissue sinus over bone suspected to be infected
 - iv. Positive "probe to bone" (or visible bone in deep ulcer at suspected site)
 - v. Blood culture positive for *S. aureus*
 - vi. $ESR \ge 75 \text{ mm/hour}$
 - vii. Intravenous drug use or indwelling catheter
 - viii. Inflammation on imaging associated with an orthopedic prosthesis
 - c. Positive culture for any organism form wound sample over the bone suspected of infection
 - d. Antibiotic/antiviral/antifungal treatment for suspected infection

VIII. References

- 1. Grijalva CG, Chung CP, Stein CM, et al. Computerized definitions showed high positive predictive values for identifying hospitalizations for congestive heart failure and selected infections in Medicaid enrollees with rheumatoid arthritis. Pharmacoepidemiology and drug safety 2008; 17(9): 890-5.
- 2. Schneeweiss S, Robicsek A, Scranton R, Zuckerman D, Solomon DH. Veteran's affairs hospital discharge databases coded serious bacterial infections accurately. Journal of clinical epidemiology 2007; 60(4): 397-409.
- reg GG, et al. Ac. tified bacterial infectio. 2009; 62(3): 321-7, 7.e1-7. 3. Patkar NM, Curtis JR, Teng GG, et al. Administrative codes combined with medical records based criteria accurately identified bacterial infections among rheumatoid arthritis patients. Journal of clinical epidemiology 2009; 62(3): 321-7, 7.e1-7.

1 2	
3 4	
5	
6 7	
8 9	
10 11	
12	
13 14	
15 16	
17 18	
19 20	
21	
22 23	
24 25	
26 27	
28 29	
30	
31 32	
33 34	
35 36	
37 38	
39	
40 41	
42 43	
44 45	
46 47	
48	
49 50	
51 52	
53 54	
55 56	
57	
58 59	
60	

Section & Topic	No	Item	Reported on pa #
That any Alleston of			
Title or Abstract			-
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy (such as sensitivity, specificity, predictive values, or AUC)	2
ADSTDACT		(such as sensitivity, specificity, predictive values, of AUC)	
ABSTRACT	•	Structured summary of study design, methods, results, and conclusions	2
	2	(for specific guidance, see STARD for Abstracts)	2
INTRODUCTION		(101 specific guidance, see STARD for Abstracts)	
INTRODUCTION	3	Scientific and clinical background, including the intended use and clinical role of the index	4
	3	test	4
	4	Study objectives and hypotheses	4
METHODS	4	Study objectives and hypotheses	4
METHODS	-	Whether data collection was planned before the index test and reference standard	1
Study design	5	whether data conection was planned before the index test and reference standard were performed (prospective study) or after (retrospective study)	4
Dauticinanta	6	Eligibility criteria	4,5
Participants	0 7	On what basis potentially eligible participants were identified	4, <i>3</i> 5
	'	(such as symptoms, results from previous tests, inclusion in registry)	5
	8	Where and when potentially eligible participants were identified (setting, location and dates)	4,5
	9	Whether participants formed a consecutive, random or convenience series	4-6
Test methods	9 10a	Index test, in sufficient detail to allow replication	5, Table 1,
1 est methous	10a	index test, in sufficient dean to anow repreation	Supplementary Appendix
	10b	Reference standard, in sufficient detail to allow replication	6, Supplementar Appendix
	11	Rationale for choosing the reference standard (if alternatives exist)	6, Supplementar Appendix
	12a	Definition of and rationale for test positivity cut-offs or result categories	
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	6, Supplementar
		of the reference standard, distinguishing pre-specified from exploratory	Appendix
	13a	Whether clinical information and reference standard results were available	6, Supplementar
		to the performers/readers of the index test	Appendix
	13b	Whether clinical information and index test results were available	6, Supplementar
		to the assessors of the reference standard	Appendix
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	7,8
	15	How indeterminate index test or reference standard results were handled	7,8
	16	How missing data on the index test and reference standard were handled	7,8
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	7,8
RESULTS	18	Intended sample size and how it was determined	7,8
	19	Flow of participants, using a diagram	8
Participants	19 20	Baseline demographic and clinical characteristics of participants	8
	20 21a	Distribution of severity of disease in those with the target condition	o n/a
	21a 21b	Distribution of severity of disease in those with the target condition	n/a n/a
	210 22	Time interval and any clinical interventions between index test and reference standard	
Tast posulta		Cross tabulation of the index test results (or their distribution)	n/a
Test results	23	by the results of the reference standard	9,10, Table 2
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	9,10 Table 2
	24 25	Any adverse events from performing the index test or the reference standard	
DISCUSSION	23	Any auverse events from performing the index test of the reference standard	n/a
DISCUSSION	26	Study limitations, including sources of notantial bias, statistical uncertainty, and	11 12
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	11-13
	27	Implications for practice, including the intended use and clinical role of the index test	11-13
	41	impleations for practice, including the intellect use and enfilted fore of the index test	11-13

OTHER INFORMATION			
INFORMATION	28	Registration number and name of registry Where the full study protocol can be accessed Sources of funding and other support; role of funders	n/a
	20	Where the full study protocol can be accessed	14
	30	Sources of funding and other support; role of funders	13

BMJ Open

Validation of discharge diagnosis codes to identify serious infections among middle age and older adults

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020857.R1
Article Type:	Research
Date Submitted by the Author:	14-Mar-2018
Complete List of Authors:	Wiese, Andrew; Vanderbilt University Medical Center, Health Policy Griffin, Marie R; Vanderbilt University Medical Center, Health Policy Stein, Michael; Vanderbilt University, Pharmacology Schaffner, William; Vanderbilt University Medical Center, Health Policy Greevy, Robert; Vanderbilt School of Medicine, Biostatistics Mitchel, Jr., Edward; Vanderbilt University Medical Center, Health Policy Grijalva, Carlos; Vanderbilt University, Health Policy
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Infectious diseases, Epidemiology
Keywords:	coding algorithms, Medicaid, older adults, serious infections

1		
2 3 4	1	Validation of discharge diagnosis codes to identify serious infections among middle age and older
5 6	2	adults
7 8	3	
9 10	4	Running title: Validation of diagnosis codes to identify infections
11 12	5	
13 14	6	Authors: Andrew D. Wiese, PhD, MPH ¹ ; Marie R. Griffin ^{1,2} , MD, MPH; C. Michael Stein, MB, ChB ³ ;
15 16 17	7	William Schaffner, MD ¹ ; Robert Greevy, PhD ⁴ ; Edward F. Mitchel Jr., MS ¹ ; Carlos G. Grijalva, MD,
17 18 19	8	MPH ^{1,2}
20 21	9	Affiliations: ¹ Department of Health Policy, Vanderbilt University School of Medicine, Nashville,
22 23	10	Tennessee, USA; ² Mid-South Geriatric Research Education and Clinical Center, VA Tennessee Valley
24 25	11	Health Care System, Nashville, Tennessee, USA; ³ Departments of Pharmacology and ⁴ Biostatistics,
26 27	12	Vanderbilt University School of Medicine, Nashville, Tennessee, USA
28 29	13	Corresponding Author: Andrew D. Wiese, PhD, MPH; Department of Health Policy, Vanderbilt
30 31	14	University Medical Center, Suite 2600, Village at Vanderbilt, 1500 21 st Avenue South, Nashville, TN
32 33	15	37212; phone: (615) 875-7997; email: andrew.d.wiese@vanderbilt.edu
34 35 36	16	
30 37 38	17	Key words: coding algorithms; Medicaid; older adults; serious infections
39 40	18	
41 42	19	Word Count: 3,748/4,000
43 44	20	Tables and Figures: (4/5)
45 46	21	
47 48	22	
49 50	23	
51 52	24	
53 54	25	
55 56 57	26	
57 58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

ABSTRACT (277/300)

Objectives: Hospitalizations for serious infections are common among middle age and older adults and frequently used as study outcomes. Yet few studies have evaluated the performance of diagnosis codes to identify serious infections in this population. We sought to determine the positive predictive value (PPV) of diagnosis codes for identifying hospitalizations due to serious infections among middle age and older adults. Setting and participants: We identified hospitalizations for possible infection among adults >50 years enrolled in the Tennessee Medicaid healthcare program (2008-2012) using ICD-9 diagnosis codes for pneumonia, meningitis/encephalitis, bacteremia/sepsis, cellulitis/soft-tissue infections, endocarditis, pyelonephritis and septic arthritis/osteomyelitis. **Design:** Medical records were systematically obtained from hospitals randomly selected from a stratified sampling framework based on geographical region and hospital discharge volume. Measures: Two trained clinical reviewers used a standardized extraction form to abstract information from medical records. Pre-defined algorithms served as reference to adjudicate confirmed infectionspecific hospitalizations. We calculated the PPV of diagnosis codes using confirmed hospitalizations as reference. Sensitivity analyses determined the robustness of the PPV to definitions that required radiological or microbiological confirmation. We also determined interrater reliability between reviewers. **Results:** The PPV of diagnosis codes for hospitalizations for infection (n=716) was 90% (95% CI: 88-92). The PPV was highest for pneumonia [97% (95% CI: 94-98)] and cellulitis [91% (95% CI: 85-95)], and lowest for meningitis/encephalitis [50% (95% CI: 24-76)]. The adjudication reliability was excellent [93% agreement; first agreement-coefficient: 0.91]. The overall PPV was lower when requiring microbiological confirmation [45%] and when requiring radiological confirmation for pneumonia [79%]. **Conclusions:** Discharge diagnosis codes have a high PPV for identifying hospitalizations for common, serious infections among middle age and older adults. PPV estimates for rare infections were imprecise.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	53	STRENGTHS AND LIMITATIONS OF THE STUDY
5 6	54	• This study examined the performance of diagnosis coding algorithms to identify hospitalizations
7 8	55	due to serious infections among middle age and older adults enrolled in a State Medicaid program
9 10	56	using a systematic and representative sample of records from hospitals of different sizes and in
11 12	57	distinct State regions.
13 14	58	• The reference criteria to identify true infections was based on previous literature and clinical
15 16	59	expertise but may be imperfect. Nevertheless, identifying microbiologically-confirmed infections
17 18 19	60	is difficult due to the low sensitivity of culture-based diagnostic methods often used in clinical
20 21	61	practice.
22 23	62	• Diagnosis codes were based on the ICD-9-coding system only. These findings will continue to be
24 25	63	helpful for retrospective studies that encompass periods of ICD-9 use, yet additional studies
26 27	64	evaluating the performance of ICD-10-based codes would be beneficial.
28 29	65	• Our coding algorithms to identify serious infections had a high positive predictive value overall,
30 31	66	and will be useful in ongoing and future research using administrative data
32 33 34	67	
35 36	68	
37 38	69	
39 40	70	
41 42	71	
43 44	72	
45 46	73	
47 48 49	74	
49 50 51	75	
52 53	76	
54 55	77	
56 57		
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

78 INTRODUCTION

Infectious diseases remain a leading cause of morbidity and mortality in the U.S. and elsewhere.(1) Middle age and older adults, in particular, are at high risk for serious infections and their long-term consequences.(2, 3) Among older adults, community-acquired serious infections (including pneumonia, sepsis, and meningitis) often require hospitalization and represent a substantial burden on the U.S. healthcare system.(4-7) The incidence of community-acquired pneumonia is very high among adults > 50 years of age (248 cases per 100,000 adults) with an even higher burden among adults > 80 years of age (1.643 cases per 100,000 adults).(8) Sepsis, cellulitis and pyelonephritis are also very common (sepsis: 100 cases per 100,000 and cellulitis/pyelonephritis: >150 hospitalizations per 100,000 adults) with an increasing incidence of severe sepsis with increased age.(9-11) Meningitis and endocarditis are relatively rare (around 2-3 cases per 100,000), although the case fatality rate is very high.(12, 13) Therefore, it is important to monitor the incidence of these infections, identify important risk factors, and determine the impact of preventative policies (e.g., vaccination) on these diseases among middle age and older adults.(14-16)

Large-scale epidemiological studies using administrative data often use serious infections as outcomes.(17-21) However, few studies have evaluated the performance of diagnosis codes to identify serious infections among middle age and older adults. Most previous studies that have assessed the performance of coded discharge diagnosis codes to identify serious infections have focused mainly on common infections (e.g., pneumonia or sepsis), specific populations (e.g., patients with rheumatoid arthritis), or on healthcare-associated or hospital-acquired infections. (22-31) Nevertheless, the performance of coded discharge diagnoses for accurately identifying infections requiring hospitalization among middle age and older adults is unclear. Therefore, we sought to determine the positive predictive value (PPV) of specific discharge diagnoses for identifying infections that required hospitalization among middle age and older adults.

µ 102

103 METHODS

BMJ Open

104	Data	sources	

TennCare is the managed Medicaid program in the State of Tennessee that provides healthcare insurance to those who are Medicaid eligible (around 20% of the Tennessee population).(32) The adult TennCare population consists of low-income pregnant women and individuals who are elderly or have a disability (over 600,000 annually).(32) We used data from TennCare, supplemented with data from the Tennessee Hospital Discharge Data System (a registry for all hospitalizations in Tennessee) and pharmacy information from Medicare Part D for those that were dual eligible, to identify a retrospective cohort of TennCare enrollees >50 years of age with pharmacy benefits (2008-2012). We restricted the hospitalizations for serious infection to those occurring from 2008 through 2012 to only include more recent hospitalizations for which medical records are more likely to be available. Cohort members had at least 180 days of baseline continuous enrollment before cohort entry, and were also required to be free of certain life-threatening conditions known to increase the risk of infection (solid organ transplantation, end-stage renal disease, HIV/AIDS, malignancy and serious kidney, liver and respiratory disease) that may limit longitudinal follow-up and impact the assessments of patients' exposures and their risk of infections. Cohort members were also required to have evidence of at least one pharmacy prescription fill and evidence of at least one healthcare encounter during baseline (to ensure use of benefits so that if a healthcare encounter for an infection occurred, it would be detected). Follow-up started on the earliest date the inclusion criteria were met and continued through the earliest of the following: study end date (December 31, 2012), the day prior to diagnosis of a serious life-threatening condition that would have precluded entry to the cohort, loss of enrollment, or date of death. From this retrospective cohort, we identified possible hospitalizations for serious infections (see Identification of hospitalizations for serious *infection*) for our validation study. To avoid including infections that may have originated due to a previous hospital stay, we excluded hospitalizations for infections that occurred in the 30-day period after discharge from a previous hospitalization. The study was approved by the institutional review boards of Vanderbilt University and the Tennessee Department of Health, and by the Division of TennCare. Identification of hospitalizations for serious infection

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Clinical knowledge and a literature review were used to identify primary discharge diagnosis codes that have been used previously to identify specific serious infections that require hospitalization (study infections), including pneumonia (alone or with a primary diagnosis of bacteremia/sepsis), bacteremia/sepsis, pyelonephritis, meningitis/encephalitis, osteomyelitis/septic arthritis, endocarditis and cellulitis.(31, 33-35) Specific International Classifications of Diseases-Clinical Modification, 9th-revision (ICD-9-CM) diagnosis codes used to identify possible hospitalizations for each infection type are presented in Table 1. As the objective of our study was to determine the PPV of coding algorithms to identify serious infections that required hospitalization, we focused only on primary diagnoses of infection to reduce the possibility of detecting concurrent infections that may not have led to hospitalization or nosocomial infections that developed during the course of the hospitalization.(35) **Sampling Strategy**

We used stratified random sampling to select a representative subset of study infection hospitalizations from among all possible cases identified in the retrospective cohort from among hospitals within 200 miles of Vanderbilt University Medical Center (VUMC). Since larger hospitals would be over-represented in a purely random sampling, and because there may also be regional variability in coding practices and infection prevalence, we constructed a sampling framework where hospitals were stratified based on their geographic region in Tennessee (West, Central, and East), and tertiles of reported discharge volume (Low, Medium, and High) during the study period. (36-38) From this sampling framework, we randomly selected three hospitals from each of these nine sampling strata, and retrieved their medical records for review and validation (Figure 1). This strategy, relative to a purely random sample, ensured better representation of infections identified in smaller hospitals and those in more rural regions of the State of Tennessee. If a hospital refused to participate, it was replaced by another hospital randomly selected from the same sampling stratum.

153 The overall goal was to review and validate 675 hospitalizations for serious infection from 27
154 hospitals (25 hospitalizations for each of the 3 hospitals comprising a stratum, yielding 75 hospitalizations
155 for each of the 9 strata) (Figure 1). We conservatively assumed that up to 80% of records requested would

Page 7 of 39

BMJ Open

be available for review, and so we requested 32 records per hospital to receive an average of 25 records from each (Figure 1). To ensure that we reviewed sufficient rare infections, we preferentially selected any identified possible hospitalizations for meningitis/encephalitis, osteomyelitis/septic arthritis and endocarditis from each hospital in the sample. We randomly selected the remaining set of possible hospitalizations for other serious infections based on the proportional distribution of common infections at each hospital (pneumonia, bacteremia/sepsis, pyelonephritis and cellulitis) until 32 infections were identified. For hospitals with fewer than 32 infections during the study period, all infections were requested. **Abstraction of Medical Records** Relevant clinical information was abstracted from the medical record (transfer notes, emergency room summary, admission summary, physical/history, pharmacy information, laboratory, microbiology, and radiology information, and discharge summary) of each hospitalization with a primary discharge diagnosis code indicative of infection using a standardized and customized REDCap electronic data capture instrument hosted at Vanderbilt University.(39) As we were interested in infections that led to hospitalizations, we focused our reviews on clinical, microbiological and radiological information from the 2 days prior to the admission date through 2 days after admission to limit the possibility of identifying infections that developed during the hospitalization (i.e. nosocomial infections). In preparation for this study, the case report form was pilot-tested among a separate, convenience sample of 354 possible infections identified in the cohort from 3 hospitals in the same city as Vanderbilt University. This separate sample of hospitalizations was used only for pilot-testing the case report form, and was not included in

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

176 the current study. One trained medical reviewer abstracted the relevant information for all selected 177 records using the case report form. During the abstraction process, the lack of a particular finding in the 178 medical record was treated as a lack of evidence for that finding, and so no information was considered 179 missing after abstraction.

180 Adjudication of Medical Records

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

All records received were abstracted, reviewed and adjudicated. We made the final determination of whether a hospitalization represented a confirmed infection or not using *a priori* definitions of clinical, radiological, and/or microbiological findings compatible with infection for each infection type. Previous validation studies and expert clinical knowledge were used to define these specific *a priori* definitions for each infection type (*Supplementary appendix*).(31, 35, 40)

186 Statistical analysis

We calculated the PPV of the ICD-9-CM discharge diagnosis codes for identifying hospitalizations for serious infection using the results of the *a priori* definitions applied to the information abstracted from the medical records as the reference (the proportion of cases identified with discharge diagnosis codes that were determined to be true cases after adjudication of the medical record information). We calculated 95% confidence intervals for the PPV using Wilson's formula.(41) Secondary analyses assessed the PPV for hospitalizations for serious infection across hospitals of different sizes and in different geographical regions of Tennessee.

We also assessed the reliability of the abstraction process. A second trained medical reviewer abstracted relevant information from a subset of selected records, which included all meningitis and endocarditis records, and a random selection of 10% of each of the remaining infection types. Each reviewer conducted the process independently and blinded from one another. For the subset of records abstracted by both reviewers, inter-reviewer agreement for the adjudication of a true or mis-identified infection was assessed using the Gwet's first agreement coefficient (AC₁).(42-44) Since Cohen's kappa statistic can be unreliable when the prevalence of the event and the level of observer agreement are high in the study sample, we used Gwet's AC_1 as a reliability measure unlikely to be affected by these concerns.(44-46)

In planned sensitivity analyses, we first assessed the impact of excluding hospitalizations that occurred after the individual was transferred from another healthcare facility, as initial documentation and details of the infection could be missing or incomplete in the receiving hospital.(40) We also assessed the impact on the PPV for all infections when requiring microbiological identification of a pathogen

1 2		
2 3 4	207	(excluding common contaminants) from a sterile site within 2 days before or after the hospitalization
5 6	208	admission date. A final sensitivity analysis among hospitalizations for possible pneumonia assessed the
7 8	209	PPV when radiological evidence of pneumonia was required [i.e. pneumonia, opacity, or infiltrate
9 10	210	mentioned in a chest X-ray or computed tomography scan report] (Supplementary appendix). All analyses
11 12	211	were performed in Stata-IC, version 15.1 (College Station TX).
13 14	212	Patient and Public Involvement
15 16	213	No patients were involved in the development of the research question, the outcome measures, or the
17 18 19	214	design or conduct of the study. As we conducted a retrospective study using administrative data, we have
20 21	215	no plans to disseminate the results of the research to study participants.
22 23	216	
24 25	217	RESULTS
26 27	218	Cohort characteristics
28 29	219	Among a retrospective cohort of 129,465 adults \geq 50 years of age enrolled in TennCare, 9,769
30 31	220	hospitalizations for serious infection were identified during the study period (2008-2012) among 7,770
32 33	221	unique patients (Figure 2). Cohort members were primarily female (57.8%) with a median age of 54 years
34 35 26	222	(mean: 57 years; range: 50-110). Among the 8,322 hospitalizations for serious infection that occurred at a
36 37 38	223	hospital within 200 miles of VUMC, pneumonia, cellulitis and bacteremia/sepsis were the most common
39 40	224	infections (54.3%, 20.5% and 18.4%, respectively), followed by pyelonephritis (3.8%) and septic
40 41 42	225	arthritis/osteomyelitis (2.5%). Fewer than 1% of hospitalizations were due to meningitis/encephalitis
43 44	226	(n=30) and endocarditis (n=18).
45 46	227	Collection, review and adjudication of selected medical records
47 48	228	Of the 27 hospitals that were initially selected for the sample, 21 (78%) were able to participate.
49 50	229	We selected 7 additional hospitals to replace the 6 non-participants to achieve the desired sample size,
51 52	230	including an additional small hospital in the East region due to a large number of unavailable records
53 54 55	231	from a single participating hospital.
56 57 58		9
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2		
3 4 5 6 7 8 9 10	232	We received 716 (89%) of 808 requested records from 28 participating hospitals [Table 2].
	233	Record availability from participating hospitals was lower in medium size hospitals (81.8%) compared to
	234	small (93.5%) and large hospitals (91.7%), but did not differ by geographic region. Record availability by
	235	infection type was greater than 86% for all infection types, with the exception of hospitalizations for the
11 12	236	rare endocarditis cases (57.1%; only 4 of 7 cases).
13 14	237	The sample of hospitalizations for serious infection included patients who were primarily female
15 16	238	(63.6%), with a median age of 60 years (mean: 64 years; range: 50-101) at the time of hospitalization.
17 18	239	There was evidence of transfer from a prior healthcare facility for 21.8% of the hospitalizations for
19 20 21	240	serious infection [highest percentage of transfers for bacteremia/sepsis (38.5%) and pneumonia (25.1%)].
21 22 23	241	The most common healthcare facility source was a nursing home/skilled nursing facility (84.6%), but also
23 24 25	242	included group home sources (7.7%), other sources (4.5%) [assisted living facility, mental health center]
26 27	243	and another acute care hospital (3.2%). There was evidence of an emergency department visit within 7
28 29	244	days prior to admission date for the serious infection hospitalization in 4.8% of the records.
30 31	245	Performance of discharge diagnosis codes
32 33 34 35	246	A total of 646 [PPV: 90.2% (95% CI: 87.8-92.2)] of the hospitalizations for serious infection
	247	identified using ICD-9-CM primary discharge diagnosis codes were confirmed by applying the a priori
36 37 38	248	definitions to the abstracted data. The PPV was highest for pneumonia and cellulitis [96.5% (95% CI:
39 40	249	93.9-98.0) and 91.1% (95% CI: 84.7-94.9), respectively], and was ≥75% for bacteremia/sepsis,
40 41 42	250	pyelonephritis, septic arthritis/osteomyelitis, and endocarditis. The PPV was lowest for
43 44	251	meningitis/encephalitis [50.0% (95% CI: 23.7-76.3)], although the precision was limited due to a low
45 46	252	number of available records for review (Table 2). Among the 10 potential cases of
47 48	253	meningitis/encephalitis, 7 cases were meningitis/meningoencephalitis and 3 were encephalitis. The
49 50 51 52	254	respective PPVs for meningitis/meningoencephalitis and encephalitis were 71.4% (95% CI: 35.9-91.8)
	255	and 0%, respectively.
53 54	256	When performance was evaluated across stratification sampling parameters, no apparent
55 56 57	257	differences were observed in the PPV for records from hospitals in different geographical regions of
58		10
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 39

59

60

1		
2 3 4	258	Tennessee. Although the PPV was high for all three discharge volume groups, the PPV was significantly
5 6	259	lower in large hospitals [84.6% (95% CI: 79.6-88.5)] compared to smaller hospitals [93.9% (95% CI:
7 8	260	90.0-96.3); PPV difference: -9.3% (95% CI: -14.7, -3.9)] and medium hospitals [92.7% (95% CI: 88.6-
9 10	261	95.4); PPV difference: -8.1% (95% CI: -13.7, -2.6)] (Table 2). This was likely driven by the different
11 12	262	distributions in the types of infections selected for review in the hospital groups. Large hospitals had a
13 14	263	higher proportion of non-pneumonia infections (70.4%) compared to medium and small hospitals (49.4%
15 16 17	264	and 36.1%, respectively). Importantly, the PPV for pneumonia was similar in each discharge volume
17 18 19	265	group (range: 96.0 to 96.6%), whereas the PPV was smaller for non-pneumonia infections in large
20 21	266	hospitals (79.8%) compared to medium (88.7%) and small (89.2%) hospitals.
22 23	267	In the 82 records independently abstracted by two reviewers to assess reliability, there was 92.7%
24 25	268	(95% CI: 86.9-98.4) agreement for identifying true hospitalizations for serious infection. The inter-rater
26 27	269	agreement was also high when assessing reliability, independent of the outcome prevalence, with an AC ₁
28 29	270	of 0.91 (95% CI: 0.84-0.99). Of the 6 discordant cases, 3 were meningitis/encephalitis (1
30 31	271	meningitis/meningoencephalitis and 2 encephalitis), with one each of bacteremia/sepsis, pyelonephritis
32 33	272	and septic arthritis. The main reason for a discrepancy between reviewers was whether or not treatment
34 35 36	273	for the infection of interest occurred within 2 days of the admission date, which was one of the major
30 37 38	274	criteria for adjudication (see Supplementary appendix).
39 40	275	Sensitivity analyses
41 42	276	The PPV was virtually unchanged when excluding the 21.8% of hospitalizations that occurred as
43 44	277	transfers from another healthcare facility [90.1% (95% CI: 87.4-92.3)]. Microbiological evidence of the
45 46	278	specific infection type was found in 47.6% of records, leading to reduced PPVs when requiring
47 48	279	microbiological evidence [45.4% (95% CI: 41.8-49.1)]. Microbiological evidence of infection was
49 50	280	highest in hospitalizations for suspected pyelonephritis (94.4%), but was $\leq 60\%$ for every other infection
51 52	281	type [pneumonia (42.7%); cellulitis/soft tissue infections (58.5%); bacteremia/sepsis (26.1%)]. When
53 54 55	282	requiring radiological confirmation of pneumonia, the PPV for coded diagnoses was 78.8% (95% CI:
55 56 57	283	74.2-82.8). Approximately 95.6% of possible hospitalizations for pneumonia had at least one documented
58 50		11

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

chest x-ray or CT-scan. Among those patients with a chest x-ray or CT-scan report available (n=325), 83.4% had a finding compatible with pneumonia. The main findings among the 54 patients with possible pneumonia and a radiological report available, but without radiological confirmation of pneumonia included atelectasis (n=6), interstitial pneumonitis (n=3), chronic heart failure with pulmonary edema (n=1), and no radiological findings of any kind (n=44).

290 DISCUSSION

Discharge diagnoses for identifying hospitalizations due to serious infections among middle age and older adults had an overall PPV of 90.2%, with highest values for the identification of common serious infections. PPVs were consistently high across different hospital types and regions of Tennessee. Furthermore, the PPV was similar after exclusion of hospitalizations for serious infection that were the result of a transfer from another healthcare facility (e.g. acute care hospital, skilled nursing facility). Microbiological confirmation was available for fewer than 50% of patients admitted with possible hospitalizations for serious infections, and as expected, the requirement resulted in a low PPV for all infections, with the exception of pyelonephritis. Importantly, the PPV for pneumonia hospitalizations remained relatively high even when requiring radiological confirmation.

The PPV for hospitalizations for pneumonia in previous smaller validation studies has ranged from 72 to 86% in different healthcare systems, but those studies were not focused on middle age and older adults.(31, 47-49) In our study of hospitalizations among middle age and older adults, we found that coded discharge diagnoses have a higher PPV for pneumonia compared to previous studies. The PPV for bacteremia/sepsis was also on the higher range of previously reported PPVs for diagnosis codes to identify bacteremia/sepsis from administrative data in other populations (reported range from 45% to 97.7%), and for septic arthritis/osteomyelitis compared to a previous study conducted among patients with diabetes (63.9% versus 75.9% in our study).(23, 50, 51) Overall, the observed PPV for all infections in our study was comparable to two previous comprehensive validation studies of bacterial infections, one among patients with rheumatoid arthritis in a single hospital system and another among patients in one of

Page 13 of 39

1

BMJ Open

⊴)
2)
pe	
Ĕ	
Ħ	2
st	•
pu	_
SD	•
ee	-
g	
10.11)
1	
ο Q)
bn	-
- Jo	•
1136/bmjopen-2	
Ť	
Ň)
1	1
ę	\$
N N)
ğ	5
Š	i
S	
2	
19 June 2018. I	
n	
ē	
C)
18	5
]
ŏ	
ñ	_
00	
nioade	-
ă	
=	-
0	
om	
om nt	
om nttp:	
BMJ Upen: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://b	
om nttp://bmj	
om nttp://bmjop	
om http://bmjopen	
ed trom http://bmjopen.b	
om http://bmjopen.bmj	
om http://bmjopen.bmj.cc	
om http://bmjopen.bmj.com,	
om http://bmjopen.bmj.com/ o	
om http://bmjopen.bmj.com/ on /	
om http://bmjopen.bmj.com/ on Api	
om http://bmjopen.bmj.com/ on April	
om http://bmjopen.bmj.com/ on April 19,	
om http://bmjopen.bmj.com/ on April 19, 2	
om http://bmjopen.bmj.com/ on April 19, 202	
om http://bmjopen.bmj.com/ on April 19, 2024 t	
om http://bmjopen.bmj.com/ on April 19, 2024 by	
om http://bmjopen.bmj.com/ on April 19, 2024 by gu	
om http://bmjopen.bmj.com/ on April 19, 2024 by gues	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. I	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prc	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prote	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protecte	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by cc	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copy	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyrig	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.	

2		
3 4	310	the Veteran's Affairs integrated service networks.(35, 40) Compared to these two previous studies of
5 6	311	ICD-9 codes, we abstracted and adjudicated a larger number of records while using a more systematic
7 8	312	sampling strategy to retrieve and review records for hospitalizations from multiple regions and hospital
9 10	313	types as opposed to a single hospital or healthcare system. However, some of the PPVs for individual
11 12	314	infections were less precise and less similar to these previous studies. This was especially true for rare
13 14	315	infections, as would be expected due to the low numbers of rare infections in our study and across
15 16	316	previous studies.(35, 40) The results of our study are also similar to previous validation studies that used
17 18	317	corresponding ICD-10 diagnosis codes to identify hospitalizations for serious infection.(52, 53)
19 20 21	318	One limitation to consider in our study was that it was not designed to estimate the sensitivity and
22 23	319	specificity of the coding algorithms. This would have required the identification, review and adjudication
24 25	320	of a sample of hospitalizations that did not fulfill our algorithm (i.e. presence of the ICD-9 primary
26 27	321	discharge diagnosis codes indicative of infection). However, when the prevalence of an outcome is low,
28 29	322	the PPV approximates the specificity.(54) Importantly, any non-differential outcome misclassification
30 31	323	between exposure groups resulting from the use of imperfect but highly-specific measurements would
32 33	324	attenuate the impact of the misclassification on the relative risk estimates.(55) In addition, we found that
34 35	325	the PPV of coded discharge diagnoses for serious infections remained high across hospitals of different
36 37	326	sizes and across different geographical areas of Tennessee, which may have different rates of
38 39	327	hospitalizations for serious infection.(56) Although our study applied a systematic sampling strategy to
40 41 42	328	assure the representation of different settings in our population, our population was restricted to middle
42 43 44	329	age and older adults enrolled in a State Medicaid program. Therefore, caution is warranted when
45 46	330	extrapolating the study findings to other populations.
47 48	331	Another limitation is the use of available clinical information to operationalize definitions for
49 50	332	adjudication of true hospitalizations for infections. It is possible that some procedures, laboratory findings
51 52	333	and diagnoses that informed the final diagnosis of infection were not fully recorded in the medical
53 54	334	records, and thus, were not available for our review and may have contributed to the observed PPV for

- 335 some infections. Although we used previous validation studies and clinical information to build pre-
 - 13

55

56 57 58

59

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2	
2	
3	
4	
5	
6	
3 4 5 6 7 8	
/	
8	
9	
9 10	
11	
12	
13	
14	
12 13 14 15 16 17 18	
16	
10	
17	
18	
19	
20	
21	
22	
23 24 25 26	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
34	
34	
34	
34 35 36 37	
34 35 36 37 38	
34 35 36 37 38	
34 35 36 37 38 39	
34 35 36 37 38 39 40	
34 35 36 37 38 39 40 41	
34 35 36 37 38 39 40 41 42	
34 35 36 37 38 39 40 41	
34 35 36 37 38 39 40 41 42 43	
34 35 36 37 38 39 40 41 42 43 44	
34 35 36 37 38 39 40 41 42 43 44 45	
 34 35 36 37 38 39 40 41 42 43 44 45 46 	
34 35 36 37 38 39 40 41 42 43 44 45	
 34 35 36 37 38 39 40 41 42 43 44 45 46 	
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	

1

336	specified definitions for the adjudication of true infections, our reference criteria may be imperfect,
337	considering the retrospective nature of our determinations and potential variability in clinical practice.
338	Nevertheless, we also assessed how the availability of selected findings (i.e. microbiological and
339	radiological information) in the medical record impacted the overall and infection-specific PPV. We
340	demonstrated that relying on highly specific clinical diagnostics, such as microbiological and radiological
341	information, to confirm true infections would result in lower PPVs for identification of infections in
342	administrative data. Requiring microbiological confirmation to confirm true infections is challenging
343	because of the known low sensitivity of culture-based diagnostic methods (most commonly used in
344	clinical practice), which may lead to misclassification.(57, 58) In addition, requiring radiological evidence
345	compatible with pneumonia within 2 days of hospital admission did lower the observed PPV for
346	pneumonia hospitalizations. Nevertheless, the observed PPV remained close to 80%, which should reduce
347	concerns about using diagnosis codes to identify hospitalizations due to pneumonia. Finally, the coding
348	algorithms were based on the ICD-9-coding system only. Although these findings will be helpful for
349	retrospective studies that encompass periods of ICD-9 use, additional studies evaluating the performance
350	of ICD-10-based codes would be useful to complement our findings.
351	Our study demonstrated that discharge diagnosis codes can be used to accurately identify
352	hospitalizations for serious infections among middle age and older adults. The highest PPVs were
353	observed for the most common infections, and the PPV for pneumonia remained high when requiring
354	radiological confirmation. Importantly, consistently high PPVs were observed across different hospital
355	sizes and regions. However, the estimated PPV was lower and less precise for very rare infections (e.g.
356	encephalitis). This should be an important consideration for studies specifically focused on those less
357	frequent outcomes, especially when strict microbiological confirmation is required. Taken together, these

findings support the use of discharge diagnosis codes for infections to identify outcomes in ongoing andfuture epidemiological studies among middle age and older adults.

360

60

361 Acknowledgement

Page 15 of 39

1

2		
3 4	362	We are indebted to the Tennessee Bureau of TennCare of the Tennessee Department of Finance and
5 6 7 8 9 10 11 12	363	Administration, which provided data for the study. We are also indebted to the Tennessee Department of
	364	Health for providing data for the study. Statements in the report should not be construed as endorsement
	365	by the U.S. Department of Health and Human Services, the Department of Veterans Affairs, or the
	366	Tennessee Department of Health.
13 14	367	
15 16	368	Funding
17 18	369	This study was funded by the NIH (R03-AG-042981 and R01-AG-043471-01A1) and the TL1 award
19 20 21	370	TL1TR000447.
22 23	371	Contributors
24 25	372	ADW planned the medical record collection and statistical analysis, analyzed and interpreted the data, and
26 27	373	drafted and revised the paper. MRG, WS, CMS, and RAG planned the statistical analysis, interpreted the
28 29	374	data and revised the paper. EFM prepared the data, and revised the paper. CGG designed the project,
30 31	375	acquired the data from TennCare, planned the medical record collection and statistical analysis,
32 33 34 35	376	interpreted the data, and revised the paper.
	377	Declaration of interests
36 37	378	CGG has received consulting fees from Pfizer and Merck, and received research support from Sanofi-
38 39 40 41 42	379	Pasteur, Campbell Alliance, the Centers for Disease Control and Prevention, National Institutes of Health,
	380	The Food and Drug Administration, and the Agency for Health Care Research and Quality. WS has
43 44	381	received personal fees from Pfizer, Merck, Novavax, Dynavax, Sanofi-Pasteur, GSK, Seqirus, and
45 46	382	received research support from the Centers for Disease Control and Prevention. ADW, EFM, CMS, MRG
47 48	383	and RAG have no conflicts of interest to disclose.
49 50	384	Data sharing
51 52	385	No additional unpublished data are available from the study. The study protocol and statistical code are
53 54	386	available from the corresponding author, Andrew Wiese (andrew.d.wiese@vanderbilt.edu).
55 56	387	
57 58		15
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	388		REFERENCES
5 6	389	1.	Khabbaz RF, Moseley RR, Steiner RJ, Levitt AM, Bell BP. Challenges of infectious diseases in
7 8	390		the USA. Lancet. 2014;384(9937):53-63.
9 10	391	2.	Grohskopf LA, Sokolow LZ, Broder KR, Olsen SJ, Karron RA, Jernigan DB, et al. Prevention
11 12	392		and Control of Seasonal Influenza with Vaccines. MMWR Recomm Rep. 2016;65(5):1-54.
13 14	393	3.	Kim DK, Bridges CB, Harriman KH. Advisory committee on immunization practices
15 16	394		recommended immunization schedule for adults aged 19 years or olderUnited States, 2015.
17 18	395		MMWR Morb Mortal Wkly Rep. 2015;64(4):91-2.
19 20 21	396	4.	Jeon MH, Chung JW, Choi SH, Kim TH, Lee EJ, Choo EJ. Pneumonia risk factors and clinical
22 23	397		features of hospitalized patients older than 15 years with pandemic influenza A (H1N1) in South
24 25	398		Korea: a multicenter study. Diagn Microbiol Infect Dis. 2011;70(2):230-5.
26 27	399	5.	Pilishvili T, Bennett NM. Pneumococcal Disease Prevention Among Adults: Strategies for the
28 29	400		Use of Pneumococcal Vaccines. Am J Prev Med. 2015;49(6 Suppl 4):S383-90.
30 31	401	6.	Sjoding MW, Prescott HC, Wunsch H, Iwashyna TJ, Cooke CR. Longitudinal Changes in ICU
32 33	402		Admissions Among Elderly Patients in the United States. Crit Care Med. 2016;44(7):1353-60.
34 35	403	7.	Crotty MP, Meyers S, Hampton N, Bledsoe S, Ritchie DJ, Buller RS, et al. Epidemiology, Co-
36 37 38	404		Infections, and Outcomes of Viral Pneumonia in Adults: An Observational Cohort Study.
39 40	405		Medicine (Baltimore). 2015;94(50):e2332.
40 41 42	406	8.	Jain S, Self WH, Wunderink RG, Fakhran S, Balk R, Bramley AM, et al. Community-Acquired
43 44	407		Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415-27.
45 46	408	9.	Filbin MR, Arias SA, Camargo CA, Jr., Barche A, Pallin DJ. Sepsis visits and antibiotic
47 48	409		utilization in U.S. emergency departments*. Crit Care Med. 2014;42(3):528-35.
49 50	410	10.	Christensen KL, Holman RC, Steiner CA, Sejvar JJ, Stoll BJ, Schonberger LB. Infectious disease
51 52	411		hospitalizations in the United States. Clin Infect Dis. 2009;49(7):1025-35.
53 54			
55 56 57			
58 59		16	
60			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

1 2			
3 4	412	11.	Ginde AA, Moss M, Shapiro NI, Schwartz RS. Impact of older age and nursing home residence
5 6	413		on clinical outcomes of US emergency department visits for severe sepsis. J Crit Care.
7 8	414		2013;28(5):606-11.
9 10	415	12.	Iung B, Vahanian A. Epidemiology of acquired valvular heart disease. Can J Cardiol.
11 12	416		2014;30(9):962-70.
13 14	417	13.	Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, et al. Bacterial
15 16	418		meningitis in the United States, 1998-2007. N Engl J Med. 2011;364(21):2016-25.
17 18	419	14.	Simonetti AF, Garcia-Vidal C, Viasus D, Garcia-Somoza D, Dorca J, Gudiol F, et al. Declining
19 20 21	420		mortality among hospitalized patients with community-acquired pneumonia. Clin Microbiol
21 22 23	421		Infect. 2016;22(6):567.e1-7.
24 25	422	15.	Rivero-Calle I, Pardo-Seco J, Aldaz P, Vargas DA, Mascaros E, Redondo E, et al. Incidence and
26 27	423		risk factor prevalence of community-acquired pneumonia in adults in primary care in Spain
28 29	424		(NEUMO-ES-RISK project). BMC Infect Dis. 2016;16(1):645.
30 31	425	16.	Park JY, Park S, Lee SH, Lee MG, Park YB, Oh KC, et al. Microorganisms Causing Community-
32 33	426		Acquired Acute Bronchitis: The Role of Bacterial Infection. PLoS One. 2016;11(10):e0165553.
34 35	427	17.	Jackson ML, Walker R, Lee S, Larson E, Dublin S. Predicting 2-Year Risk of Developing
36 37	428		Pneumonia in Older Adults without Dementia. J Am Geriatr Soc. 2016;64(7):1439-47.
38 39	429	18.	Clement RC, Haddix KP, Creighton RA, Spang JT, Tennant JN, Kamath GV. Risk Factors for
40 41 42	430		Infection After Knee Arthroscopy: Analysis of 595,083 Cases From 3 United States Databases.
43 44	431		Arthroscopy. 2016;32(12):2556-61.
45 46	432	19.	Weinert BA, Edmonson MB. Hospitalizations at Nonfederal Facilities for Lower Respiratory
47 48	433		Tract Infection in American Indian and Alaska Native Children Younger than 5 Years of Age,
49 50	434		1997-2012. J Pediatr. 2016;175:33-9.e4.
51 52	435	20.	Akiyama T, Chikuda H, Yasunaga H, Horiguchi H, Fushimi K, Saita K. Incidence and risk
53 54	436		factors for mortality of vertebral osteomyelitis: a retrospective analysis using the Japanese
55 56	437		diagnosis procedure combination database. BMJ Open. 2013;3(3).
57 58		17	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 39

BMJ Open

1

3 4	438	21.	Graversen ME, Dalgaard LS, Jensen-Fangel S, Jespersen B, Ostergaard L, Sogaard OS. Risk and
5 6	439		outcome of pyelonephritis among renal transplant recipients. BMC Infect Dis. 2016;16:264.
7 8	440	22.	Abou Zahr Z, Spiegelman A, Cantu M, Ng B. Perioperative use of anti-rheumatic agents does not
9 10	441		increase early postoperative infection risks: a Veteran Affairs' administrative database study.
11 12	442		Rheumatol Int. 2015;35(2):265-72.
13 14	443	23.	Carnahan RM, Herman RA, Moores KG. A systematic review of validated methods for
15 16	444		identifying transfusion-related sepsis using administrative and claims data. Pharmacoepidemiol
17 18	445		Drug Saf. 2012;21 Suppl 1:222-9.
19 20 21	446	24.	Condell O, Gubbels S, Nielsen J, Espenhain L, Frimodt-Moller N, Engberg J, et al. Automated
21 22 23	447		surveillance system for hospital-acquired urinary tract infections in Denmark. J Hosp Infect.
24 25	448		2016;93(3):290-6.
26 27	449	25.	Gedeborg R, Furebring M, Michaelsson K. Diagnosis-dependent misclassification of infections
28 29	450		using administrative data variably affected incidence and mortality estimates in ICU patients. J
30 31	451		Clin Epidemiol. 2007;60(2):155-62.
32 33	452	26.	Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the
34 35	453		surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clin
36 37	454		Infect Dis. 2014;58(5):688-96.
38 39 40	455	27.	Shaklee J, Zerr DM, Elward A, Newland J, Leckerman K, Asti L, et al. Improving surveillance
40 41 42	456		for pediatric Clostridium difficile infection: derivation and validation of an accurate case-finding
43 44	457		tool. Pediatr Infect Dis J. 2011;30(3):e38-40.
45 46	458	28.	Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R. Administrative databases
47 48	459		provide inaccurate data for surveillance of long-term central venous catheter-associated
49 50	460		infections. Infect Control Hosp Epidemiol. 2003;24(12):946-9.
51 52	461	29.	Greenberg JA, Hohmann SF, Hall JB, Kress JP, David MZ. Validation of a Method to Identify
53 54	462		Immunocompromised Patients with Severe Sepsis in Administrative Databases. Ann Am Thorac
55 56	463		Soc. 2016;13(2):253-8.
57 58		18	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

₽
5
Dpe
n: fi
rst
bup
lish
ed
as 1
0.1
136
)/bn
ŋjop
en-
201
7-0
208
357
g
19
Jun
e 2(
018
BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.
MU
loac
led
fror
n <mark>h</mark> i
to:/
/bm
jö
en.t
<u>, </u>
ŝ
0
n A
orii
19,
202
4 b
β
Jest
 P
ote
cte
дby
8
pyri
ght.

1 2			
2 3 4	464	30.	Olsen MA, Young-Xu Y, Stwalley D, Kelly CP, Gerding DN, Saeed MJ, et al. The burden of
5 6	465		clostridium difficile infection: estimates of the incidence of CDI from U.S. Administrative
7 8	466		databases. BMC Infect Dis. 2016;16:177.
9 10	467	31.	Grijalva CG, Chung CP, Stein CM, Gideon PS, Dyer SM, Mitchel EF, Jr., et al. Computerized
11 12	468		definitions showed high positive predictive values for identifying hospitalizations for congestive
13 14	469		heart failure and selected infections in Medicaid enrollees with rheumatoid arthritis.
15 16	470		Pharmacoepidemiol Drug Saf. 2008;17(9):890-5.
17 18 19	471	32.	TennCare Fiscal Year 2015-2016 Annual Report. In: Administration DoHCF, ed; 2016.
19 20 21	472	33.	Wiese AD, Griffin MR, Stein CM, Mitchel EF, Jr., Grijalva CG. Opioid Analgesics and the Risk
22 23	473		of Serious Infections Among Patients With Rheumatoid Arthritis: A Self-Controlled Case Series
24 25	474		Study. Arthritis Rheumatol. 2016;68(2):323-31.
26 27	475	34.	Grijalva CG, Kaltenbach L, Arbogast PG, Mitchel EF, Jr., Griffin MR. Initiation of rheumatoid
28 29	476		arthritis treatments and the risk of serious infections. Rheumatology (Oxford). 2010;49(1):82-90.
30 31	477	35.	Schneeweiss S, Robicsek A, Scranton R, Zuckerman D, Solomon DH. Veteran's affairs hospital
32 33	478		discharge databases coded serious bacterial infections accurately. J Clin Epidemiol.
34 35 36	479		2007;60(4):397-409.
30 37 38	480	36.	Brenner H, Gefeller O. Variation of sensitivity, specificity, likelihood ratios and predictive values
39 40	481		with disease prevalence. Stat Med. 1997;16(9):981-91.
41 42	482	37.	Kim HM, Smith EG, Stano CM, Ganoczy D, Zivin K, Walters H, et al. Validation of key
43 44	483		behaviourally based mental health diagnoses in administrative data: suicide attempt, alcohol
45 46	484		abuse, illicit drug abuse and tobacco use. BMC Health Serv Res. 2012;12:18.
47 48	485	38.	El-Ghitany EM, Farghaly AG, Farag S, Abd El-Wahab EW. Validation of EGCRISC for Chronic
49 50	486		Hepatitis C Infection Screening and Risk Assessment in the Egyptian Population. PLoS One.
51 52	487		2016;11(12):e0168649.
53 54 55			
55 56 57			
58		19	

19

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2			
3 4	488	39.	Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data
5 6	489		capture (REDCap)a metadata-driven methodology and workflow process for providing
7 8	490		translational research informatics support. J Biomed Inform. 2009;42(2):377-81.
9 10	491	40.	Patkar NM, Curtis JR, Teng GG, Allison JJ, Saag M, Martin C, et al. Administrative codes
11 12	492		combined with medical records based criteria accurately identified bacterial infections among
13 14	493		rheumatoid arthritis patients. J Clin Epidemiol. 2009;62(3):321-7, 7.e1-7.
15 16	494	41.	Niesner K, Murff HJ, Griffin MR, Wasserman B, Greevy R, Grijalva CG, et al. Validation of VA
17 18	495		administrative data algorithms for identifying cardiovascular disease hospitalization.
19 20	496		Epidemiology. 2013;24(2):334-5.
21 22 22	497	42.	Govatsmark RE, Sneeggen S, Karlsaune H, Slordahl SA, Bonaa KH. Interrater reliability of a
23 24 25	498		national acute myocardial infarction register. Clin Epidemiol. 2016;8:305-12.
26 27	499	43.	Wongpakaran N, Wongpakaran T, Wedding D, Gwet KL. A comparison of Cohen's Kappa and
28 29	500		Gwet's AC1 when calculating inter-rater reliability coefficients: a study conducted with
30 31	501		personality disorder samples. BMC Med Res Methodol. 2013;13:61.
32 33	502	44.	Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement. Br
34 35	503		J Math Stat Psychol. 2008;61(Pt 1):29-48.
36 37	504	45.	Lantz CA, Nebenzahl E. Behavior and interpretation of the kappa statistic: resolution of the two
38 39	505		paradoxes. J Clin Epidemiol. 1996;49(4):431-4.
40 41	506	46.	Feinstein AR, Cicchetti DV. High agreement but low kappa: I. The problems of two paradoxes. J
42 43	507		Clin Epidemiol. 1990;43(6):543-9.
44 45 46	508	47.	Drahos J, Vanwormer JJ, Greenlee RT, Landgren O, Koshiol J. Accuracy of ICD-9-CM codes in
47 48	509		identifying infections of pneumonia and herpes simplex virus in administrative data. Ann
49 50	510		Epidemiol. 2013;23(5):291-3.
51 52	511	48.	Aronsky D, Haug PJ, Lagor C, Dean NC. Accuracy of administrative data for identifying patients
53 54	512		with pneumonia. Am J Med Qual. 2005;20(6):319-28.
55 56			
57 58		20	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
- 3 4	513	49.	Kern DM, Davis J, Williams SA, Tunceli O, Wu B, Hollis S, et al. Validation of an
5 6	514		administrative claims-based diagnostic code for pneumonia in a US-based commercially insured
7 8	515		COPD population. Int J Chron Obstruct Pulmon Dis. 2015;10:1417-25.
9 10	516	50.	Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, et al. Identifying patients with
11 12	517		severe sepsis using administrative claims: patient-level validation of the angus implementation of
13 14	518		the international consensus conference definition of severe sepsis. Med Care. 2014;52(6):e39-43.
15 16	519	51.	Newton KM, Wagner EH, Ramsey SD, McCulloch D, Evans R, Sandhu N, et al. The use of
17 18	520		automated data to identify complications and comorbidities of diabetes: a validation study. J Clin
19 20 21	521		Epidemiol. 1999;52(3):199-207.
21 22 23	522	52.	Sahli L, Lapeyre-Mestre M, Derumeaux H, Moulis G. Positive predictive values of selected
24 25	523		hospital discharge diagnoses to identify infections responsible for hospitalization in the French
26 27	524		national hospital database. Pharmacoepidemiol Drug Saf. 2016;25(7):785-9.
28 29	525	53.	Holland-Bill L, Xu H, Sorensen HT, Acquavella J, Svaerke C, Gammelager H, et al. Positive
30 31	526		predictive value of primary inpatient discharge diagnoses of infection among cancer patients in
32 33	527		the Danish National Registry of Patients. Ann Epidemiol. 2014;24(8):593-7, 7.e1-18.
34 35	528	54.	Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic
36 37	529		research on therapeutics. J Clin Epidemiol. 2005;58(4):323-37.
38 39 40	530	55.	Rodgers A, MacMahon S. Systematic underestimation of treatment effects as a result of
40 41 42	531		diagnostic test inaccuracy: implications for the interpretation and design of thromboprophylaxis
43 44	532		trials. Thromb Haemost. 1995;73(2):167-71.
45 46	533	56.	van Walraven C, English S, Austin PC. Administrative database code accuracy did not vary
47 48	534		notably with changes in disease prevalence. J Clin Epidemiol. 2016;79:86-9.
49 50	535	57.	Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and
51 52	536		other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev. 2010;23(1):235-51.
53 54	537	58.	Niederman MS. The argument against using quantitative cultures in clinical trials and for the
55 56	538		management of ventilator-associated pneumonia. Clin Infect Dis. 2010;51 Suppl 1:S93-9.
57 58		21	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Serious Infection	Primary (first listed) discharge diagnosis code			
	Pneumonia-primary definition	003.22, 480.* [†] , 481, 482.*, 483.*, 484.*, 485.*, 486.*, 487.0			
	Pneumonia-secondary definition				
	(pneumonia diagnosis (above) in any	510.*, 038.*, 790.7, 995.91, 995.92			
	other diagnosis field)				
		003.21, 036.0, 0.47*, 049.*, 053.0, 054.72, 072.1, 091.81, 094.2, 098.82			
	Meningitis/ Encephalitis	100.81, 320.*, 036.1, 054.3, 056.01, 058.21, 058.29, 062.*, 063.*, 064.*			
		066.41, 072.2, 094.81, 130.0, 323.*			
	Bacteremia/ Sepsis ⁺	038.*, 790.7, 995.91, 995.92			
	Cellulitis/ Soft-tissue infections	035, 040.0, 569.61, 681.*, 682.*, 728.86, 785.4			
	Endocarditis	036.42, 074.22, 093.2*, 098.84, 421.*, 422.92			
	Pyelonephritis	590.*			
	Septic Arthritis/ Osteomyelitis	003.23, 056.71, 098.5*, 711.0, 711.00-711.07, 711.09, 711.9*, 003.24,			
		376.03, 526.4, 730.0*, 730.1*, 730.2*			
540	+ Without a diagnosis of pneumonia in any other diagnosis field				
541	[‡] A * indicates all numeric values [0-9]				
542	L	1			
512					
	22				
		y - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

BMJ Open

1 2 3	Table 2. Positive predictive
4 5 6	for serious infections amon
7 8 9	Туре
10 11	Overall
12 13	Region Specific
14 15	West
16	Central
17 18	East
19 20	Bed volume size specific
21 22	Low
23 24	Medium
25 26	High
27 28	Serious Infection
29	Pneumonia
30 31	Cellulitis/Soft-tissue infection
32 33	Pyelonephritis
34 35	Bacteremia/Sepsis
36 37	Septic Arthritis/Osteomyelit
38 39	Meningitis/Encephalitis
40	
41 42	Endocarditis
43 44	
45 46	
47 48	
49	
50	
51 52	
53	
54	
55	
56	
57 58	23
50	23

Table 2. Positive predictive value (PPV) of coded discharge diagnosis definitions for hospitalizations
for sorious infactions among adults > 50 years of aga anrolled in Tannassaa Madigaid 2008 2012

Гуре	Expected Number of Records	Records Received	PPV (95 % CI)		
Dverall	675	716	90.2	(87.8, 92.2)	
Region Specific					
West	225	195	91.3	(86.5, 94.5	
Central	225	225	88.9	(84.1, 92.4	
East	225	296	90.5	(86.7, 93.4)	
Bed volume size specific					
Low	225	230	93.9	(90.0, 96.3	
Medium	225	233	92.7	(88.6, 95.4	
High	225	253	84.6	(79.6, 88.5	
erious Infection					
Pneumonia	305	340	96.5	(93.9, 98.0	
Cellulitis/Soft-tissue infections	125	123	91.1	(84.7, 94.9)	
Pyelonephritis	80	89	87.6	(79.2, 93.0)	
Bacteremia/Sepsis	100	92	82.6	(73.6, 89.0)	
Septic Arthritis/Osteomyelitis	50	58	75.9	(63.5, 85.0)	
Meningitis/Encephalitis	10	10	50.0	(23.7, 76.3	
Endocarditis	5	4	75.0	(30.1, 95.4	

- 59 60

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Figure 1. Sampling strategy for identifying potential hospitalizations for serious infection Figure 2. Identifying a retrospective cohort of patients >50 years of age without serious/lifethreatening conditions, Tennessee Medicaid (2008-2012)

<text>

			:	Stra	atified Sam	plin	g Strategy						
- [H	East – Low Volume (n=14)	\mathbf{r}		-	3 hospitals			-	Stratified random		
		Ì	East – Medium Volume (n=11)	<u> </u>		_	3 hospitals]_	-	-	selection of up to 32 records for each		
	All hospitals ^a with ≥1 serious infection	-	East – High Volume (n=13)]_		-	3 hospitals]	-	-	hospital –		
		-	Central – Low Volume (n=19)	}_	Random	_	3 hospitals		Random	-	Preferentially select al rare infections: then		
	hospitalization among adults ≥50		H	H	Central – Medium Volume (n=9)	}_	selection	_	3 hospitals]_	selection	-	proportionally and
	years of age in TennCare	_[Central – High Volume (n=10)	}_		-	3 hospitals]_	-	-	randomly sample remaining records by		
	(2008-2012)	(2008-2012)	West – Low Volume (n=15)]_		-	3 hospitals]_	-	-	infection type		
	oWithin 200 miles of		West – Medium Volume (n=14)]		-	3 hospitals]-		-	^b to account for up to 20%		
	Vanderbilt University Medical Center		West – High Volume (n=9)			_	3 hospitals	1		-	of records not being available for review		

Figure 1. Sampling strategy for identifying potential hospitalizations for serious infection

457x139mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

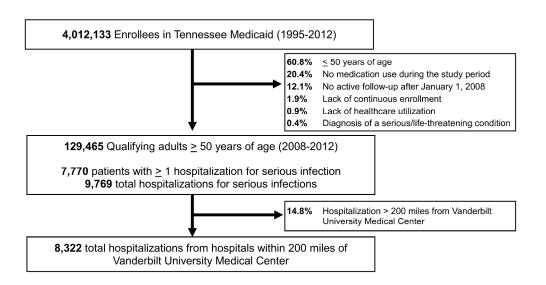


Figure 2. Identifying a retrospective cohort of patients \geq 50 years of age without serious/life-threatening conditions, Tennessee Medicaid (2008-2012)

355x190mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Supplementary Appendix

Infection-Specific Definitions of Hospitalization for Serious Infection

We used a pre-specified adjudication process to determine whether each abstracted medical record corresponded to a true infection or not. Previous validation studies and expert clinical knowledge were used to define specific a priori definitions for each infection type.¹⁻³ Information abstracted from the medical record was compared to these *a priori* definitions for each infection type to make the final determination of whether a hospitalization represented a true infection or not.

Outline

Ι.	Sepsis/Septicemia/Bacteremia/Septic Shock/Generalized Infection	Page 2
II.	Pneumonia	Page 3
III.	Cellulitis/Soft-tissue infections	
IV.	Endocarditis	Page 6
V.	Endocarditis Meningitis/Encephalitis	Page 7
VI.	Pvelonephritis	Page 9
VII.	Septic Arthritis/Osteomvelitis	Page 10
VIII	l. References	Page 11

2 3	I.	<u>Sepsis/Septicemia/</u>
4 5		of the following [1 or
6 7	1.	Positive culture of
8	1.	i. <u>Pos</u>
9 10		
11		
12 13		
14 15		
15 16		
17 18		
19		
20 21		
22		
23 24		
25 26		
27		
28 29		
30		
31 32		
33 34		
35		
36 37	2.	At least two of the i. Hy
38 39		i. <u>Hy</u>
40		
41 42		ii. Tw
43 44		
45		
46 47		
48		··· • •
49 50		iii. <u>Init</u> sep
51 52		-+
53		
54 55		
56		
57 58	2	
59 60		For peer re
00		1

/Bacteremia/Septic Shock/Generalized Infection

or 2]:

1

2

a non-contaminant pathogen

- sitive blood culture [any of the following (1-2)]
 - 1. Any gram-negative organism, except:
 - a. No predominant organism
 - 2. A gram positive organism, except:
 - a. Coagulase-negative Staphylococcus
 - b. Bacillus spp. (other than Bacillus anthracis)
 - c. Corynebacterium spp.
 - d. Propionibacterium spp.
 - e. Micrococcus
 - f. Diptheroids
 - g. Viridians Group Streptococci
 - h. Enterococci
 - i. Clostridium perfringens
 - j. Aerococcus
 - k. Alcaligenes faecalis
 - 1. *Citrobacter*
 - m. Neisseria subflava
 - n. Stomatococcus
 - o. Streptococcus bovis
 - p. Veillonella candidemia
 - q. Mycobacterium tuberculosis
 - r. S. salivarius
 - s. "Gram Positive"
 - "No predominant organism" t.
 - u. Streptococcus alpha

e following, documented at admission +/- 2 days [i-iii]

- potension
 - 1. Systolic BP < 90 mmHg
 - 2. Reduction of systolic BP of 40mmHg from earliest measurement collected during the admission of interest
- vo of the following [1-4]:
 - 1. Temperature $\geq 38^{\circ}$ C or $\leq 36^{\circ}$ C
 - 2. Heart rate \geq 90 beats/minute
 - 3. Respiratory rate \geq 20 breaths/min or PaCO₂ < 32 mmHg
 - 4. WBC \geq 10,000 cells/mm³ or \leq 4,500 cells/mm³ or WBC with > 10 % immature (band) forms
- tiation of antibiotic treatment specifically for psis/septicemia/bacteremia/septic shock/generalized infection

32 33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49 50

51

52

53

54

55

56 57 58

59

60

II. <u>Pneumonia</u>

- 1. Pneumonia identified through examination (<u>all three of the following [a-c]):</u>
 - a. One of the following admission findings indicative of respiratory findings:
 - 1. New and/or increased cough
 - 2. Shortness of breath
 - 3. Pleuritic chest pain
 - 4. New purulent production
 - 5. Altered mental status ("agitation" and "lethargy" included)
 - 6. Crackles
 - a. Physical evidence of consolidation such as egophony, whispered pectoriloquy, etc.

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

- b. One of the following examination findings indicative of systemic infection [1-4]:
 - 1. Temperature (T \geq 100.4°F (38°C) or \leq 96°F) in first 48 hours of
 - admission
 - 2. Systolic BP \leq 90mmHg
 - 3. Shock
 - a. Volume nonresponsive hypotension
 - 4. Blood peripheral WBC (> 10.0 x $10^{9}/L$ or $\leq 4.5 x 10^{9}/L$)
- c. Treatment with antibiotics/antivirals indicated for suspected infection

<u>OR</u>

At least two of the following [1-3]:

- 1. Two of the following from #1 ([a and b], [a and c], or [b-c])
- 2. Any of the following findings listed on chest imaging from radiologic report documented at
 - admission +/- 2 days
 - a. Pneumonia
 - b. Lung abscess
 - c. Opacity consistent with pneumonia/lung abscess
 - d. Infiltrate consistent with pneumonia/lung abscess
 - e. Consolidation consistent with pneumonia/lung abscess
 - f. Increased density consistent with pneumonia/lung abscess
 - g. Pleural effusion consistent with pneumonia/lung abscess
 - h. Interstitial edema consistent with pneumonia/lung abscess
- 3. Sterile Site Laboratory Findings
 - i. Any one of the following [i through v]
 - i. Sputum lab findings [any **one** of the following (1, 2)]:
 - 1. Sputum culture/PCR/serology/gram stain positive for an agent that is not considered a contaminant [see exclusion list below]:
 - a. *Aspergillus* species, *Enterococcus* species, viridians group streptococci, and yeast
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
 - ii. Blood lab findings [either of the following (1-3)]
 - 1. Blood culture/PCR/serology positive for an agent that is not considered a contaminant [see exclusion list below]:
 - a. Exclusions
 - i. Coagulase-negative Staphylococcus

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

- ii. Bacillus spp. (other than Bacillus anthracis)
- iii. Corynebacterium spp.
- iv. Propionibacterium spp.
- v. Micrococcus
- vi. Diptheroids
- vii. Viridians Group Streptococci
- viii. Enterococci
- ix. Clostridium perfringens
- x. Aerococcus
- xi. Alcaligenes faecalis
- xii. Citrobacter
- xiii. Neisseria subflava
- xiv. Stomatococcus
- xv. Streptococcus bovis
- xvi. Veillonella candidemia
- xvii. Mycobacterium tuberculosis
- xviii. S. salivarius
- 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
- iii. Pleural fluid lab findings [either of the following (1, 2)]
 - 1. Culture/PCR/serology positive for a bacterial pathogen
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
- iv. Bronchoscopic specimen or deep endotracheal tube aspiration lab findings [either of the following (1, 2)]
 - 1. Culture/PCR/serology positive for a bacterial pathogen
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
 - v. Urine antigen detection testing [either of the following (1, 2)]
 - 1. Legionella pneumophila
 - 2. Streptococcus pneumoniae

III. <u>Cellulitis/Soft-Tissue Infection</u>

Both of the following:

- 1. Any mention of the following with recent onset (<14 days) [any of the following]
 - a. Skin erythema
 - b. Surgical site infection
 - c. Superficial central line infection
 - d. Ostomy site infection
 - e. Skin infection with associated lymphangitis
- 2. Antibiotic treatment initiated for suspected infection

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

IV. Endocarditis

Any one of the following [1-3]:

- 1. Major Criteria [both of the following]:
 - a. Suggestive microbiology [at least one of the following]:
 - i. Positive blood culture of an *endocarditis organism* [any of the following]:
 - 1. Streptococcus bovis
 - 2. Viridians streptococci
 - 3. Staphylococcus aureus
 - 4. Enterococcus spp.
 - 5. HACEK organisms
 - 6. Coagulase negative staphylococci
 - b. Evidence of endocardial involvement [at least one of the following]:
 - i. New regurgiant murmur (a change in a preexisting murmur does not get scored)
 - ii. Echocardiogram suspicious for any of the following:
 - 1. Intracardiac mass with no alternative explanation
 - 2. Endocardial abscess
 - 3. New partial prosthesis dehiscence
 - 4. Vegetation on valve
- 2. Minor Criteria [at least 4 of the following]:
 - a. Predisposing valvular disease or IV drug use
 - b. Temperature $\geq 100.4^{\circ}$ F or 38° C
 - c. Vascular phenomena
 - i. Janeway lesions, conjunctival hemorrhages, arterial emboli, septic pulmonary infarcts, mycotic aneurysm, intracranial bleed
 - d. Immunologic phenomena
 - i. Osler nodes, Roth Spots, elevated Rheumatoid factor, hematuria in non-catheter urine, or other evidence of glomerulonephritis
 - e. Positive blood cultures
 - i. Excluding a single positive culture for coagulase negative staphylococci or a single positive culture for an organism that does not fall into the "reasonable endocarditis organism" (i.e. coagulase-positive and coagulase-negative *S. aureus*, Enterococcus, viridians group Streptococci, *S. bovis*, HACEK organisms)
 - f. Positive serology for Brucella, Bartonella, Legionella, or Chlamydia
 - g. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
- 3. At least one Major Criteria AND 3 minor criteria.

1	
2	
3	V. <u>Meningitis/Encephalitis</u>
4	
5	Any one of the following [1 or 2]:
6	1 Poth of the following [a h]
7	1. Both of the following [a-b]
8	a. Laboratory Findings [any one of the following (i-ix)]
9	i. CSF demonstrates any bacterium
10	1. Excluding Diptheroids, Propionibacteria, Bacillus, Coagulase Negative
11	Staphylococcus
12	ii. CSF demonstrates Diptheroids, Propionibacteria, Bacillus, Coagulase Negative
13	Staphylococcus in the setting of past neurosurgical intervention AND physicians
14	elected to treat with antibacterials
15	
16	iii. Blood cultures positive for any of the following:
17	1. S. pneumoniae
18	2. H. influenza
19 20	3. Neisseria meningitidis
20	4. Group B Streptococcus
21	iv. Stool cultures positive for enterovirus
22	v. Throat or sputum cultures positive for <i>Neisseria meningitidis</i> in the setting of a
23 24	rapid onset, overwhelming infection syndrome, including petechiae
24 25	
25 26	vi. Serology positive for <i>Mycoplasma</i> , <i>Leptospira</i> , measles, mumps, lymphocytic
20 27	choriomeningitis virus, arboviruses (e.g. St. Louis encephalitis virus), or HIV (if
27	historically consistent with acute seroconversion).
28 29	vii. Brain biopsy demonstrates encephalitis
29 30	viii. Positive CSF culture or PCR detection for any of the following
30 31	ix. Acute or convalescent serology demonstrates positive antibody pattern for any of
32	the following:
32	u de la constante de
33 34	1. Encephalitis arbovirus (La Crosse, St. louis, Eastern Equine, Western
35	Equine, Powassan, Japanese, West Nile)
36	b. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected
30	meningitis/encephalitis
38	
39	2. At least two of the following [a-d]
40	a. Clinical meningitis/encephalitis [at least two of the following]:
41	i. Petechial rash
42	ii. Nuchal rigidity (by history or exam)
43	
44	iii. Altered sensorium
45	iv. Fever
46	v. Altered level of consciousness, including "agitation" or "lethargy"
47	vi. Behavioral change
48	vii. Diminished level of consciousness (not easily roused)
49	viii. History of any of the following: headaches, altered mental status, or recent
50	exposure to patient with known bacterial meningitis
51	ix. Reduction in fever within 72 hours of starting anti-bacterial
52	-
53	b. Inflammatory CSF [at least one of the following i-ii]
54	i. Pleocytosis: \geq 15 WBC/mm ³ (after subtracting one WBC for every 1,000 RBC)
55	ii. Elevated protein (based on local lab-determined upper limits)
56	c. Suggestive Findings [at least one of the following (i-iv)
57	
58	7
59	

i. Septic syndrome

- ii. Focal neurological deficits documented during examination (such as flaccid paralysis or speech alterations for West Nile Virus)
- iii. Abnormal imaging
 - 1. Computed tomography or magnetic resonance imaging (MRI) demonstrating focal edema or inflammation or hemorrhage
 - 2. Indicated as "meningitis/encephalitis" or "compatible with meningitis/encephalitis" or "cannot rule out meningitis/encephalitis"
- iv. Findings indicating an abnormal electroencephalography (such as focal periodic discharges)
- d. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for presumed meningitis/encephalitis

VI. <u>Pyelonephritis</u>

At least two of the following [1-4]:

- 1. Suggestion of infection [at least one of the following]:
 - a. Temperature $\geq 100.4^{\circ} F (38^{\circ} C)$
 - b. Peripheral blood WBC $\geq 10,000/\text{mm}^3$
 - c. Positive blood culture for any of the following:
 - i. Gram Negative Rods
 - ii. Enterococcus spp.
 - iii. Staphylococcus saprophyticus
 - d. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
- 2. Strong renal localization [at least one of the following]:
 - a. CT, MRI, or Ultrasound Suggestive of Renal Inflammation
- 3. Minor Criteria [at least two of the following]:
 - a. Flank pain
 - b. Costovertebral angle tenderness
 - c. Complaints of dysuria, frequency, or suprapubic pain
 - d. Any pyuria
 - e. Urine culture positive for a single organism
- 4. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected pyelonephritis

VII. Septic Arthritis/Osteomyelitis

Any one of the following (1-5):

1

2 3

4 5

6

7

8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

49 50

51

52

53

59

- 1. Synovial fluid gram stain or tissue gram stain or special stain demonstrating any organism
- 2. Joint culture/PCR/serology positive for any organism
- 3. At least two of the following (a-d):
 - a. Positive blood culture/PCR/serology
 - b. Joint with acute $(\le 7 \text{ days})$ worsening of inflammatory features (at least two of the following):
 - i. Pain on history
 - ii. ROM
 - iii. Warmth
 - iv. Effusion
 - v. Swelling
 - vi. Limited range of motion
 - c. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
 - d. Any one of the following (i-iv)
 - i. Synovial fluid WBC \geq 30,000/mm³
 - ii. Synovial fluid WBC \geq 60,000/mm³ with > 75% PMNs
 - iii. Skin lesions, tenosynovitis, or urethral/cervical/rectal Gram stain or culture suggestive of *Neisseria gonorrhoeae*
 - iv. Any indication of the following in the synovial fluid: needle-like crystals, CPPD crystals, uric acid.
- 4. Positive bone biopsy [at least one of the following (a-c)]:
 - a. Positive culture for any organism
 - b. Positive gram stain
- 5. Imaging and indirect features [at least two of the following (a-c)]:
 - a. Consistent imaging [at least one of the following (i-iv)]:
 - i. Plain X-ray read by a radiologist as suggestive of osteomyelitis
 - ii. CT Scan read by a radiologist as suggestive of osteomyelitis
 - iii. MRI read by a radiologist as suggestive of osteomyelitis
 - iv. Bone scan or WBC scan read as suggestive of osteomyelitis
 - b. Suggestive indirect features[at least one of the following (i-viii)]:
 - i. Temperature > $100.4^{\circ}F(38^{\circ}C)$
 - ii. Bony pain or tenderness or erythema over bone suspected to be infected
 - iii. Draining soft tissue sinus over bone suspected to be infected
 - iv. Positive "probe to bone" (or visible bone in deep ulcer at suspected site)
 - v. Blood culture positive for *S. aureus*
 - vi. $ESR \ge 75 \text{ mm/hour}$
 - vii. Intravenous drug use or indwelling catheter
 - viii. Inflammation on imaging associated with an orthopedic prosthesis
 - c. Positive culture for any organism form wound sample over the bone suspected of infection
 - d. Antibiotic/antiviral/antifungal treatment for suspected infection

VIII. References

- 1. Grijalva CG, Chung CP, Stein CM, et al. Computerized definitions showed high positive predictive values for identifying hospitalizations for congestive heart failure and selected infections in Medicaid enrollees with rheumatoid arthritis. Pharmacoepidemiology and drug safety 2008; 17(9): 890-5.
- 2. Schneeweiss S, Robicsek A, Scranton R, Zuckerman D, Solomon DH. Veteran's affairs hospital discharge databases coded serious bacterial infections accurately. Journal of clinical epidemiology 2007; 60(4): 397-409.
- 3. Patkar NM, Curtis JR, Teng GG, et al. Administrative codes combined with medical records based criteria accurately identified bacterial infections among rheumatoid arthritis patients. Journal of clinical epidemiology 2009; 62(3): 321-7, 7.e1-7.

Reported on page

1 2	
3 4	
5	
6 7	
8	
9 10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21 22	
23	
24 25	
26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56 57	
58	
59 60	

1

Section & Topic

	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
	-	(such as sensitivity, specificity, predictive values, or AUC)	2
ABSTRACT			
ADSTRACT	2	Structured summary of study design, methods, results, and conclusions	2
	2	(for specific guidance, see STARD for Abstracts)	2
INTRODUCTION		(10) specific guidance, see STARD for Abstracts)	
INTRODUCTION	3	Scientific and clinical background, including the intended use and clinical role of the index	4
	3	test	4
	4	Study objectives and hypotheses	4
METHODS	-	Study objectives and hypotheses	4
Study design	5	Whether data collection was planned before the index test and reference standard	4
siuuy uesign	3	whether data conjection was planned before the index test and reference standard were performed (prospective study) or after (retrospective study)	4
Darticipants	6	Eligibility criteria	4,5
Participants	0 7	On what basis potentially eligible participants were identified	4,3 5
	/	(such as symptoms, results from previous tests, inclusion in registry)	5
	8	Where and when potentially eligible participants were identified (setting, location and dates)	15
		Whether participants formed a consecutive, random or convenience series	4,5
Testered	9 10-		4-6
Test methods	10a	Index test, in sufficient detail to allow replication	5, Table 1, Supplementary
			Appendix
	10b	Reference standard, in sufficient detail to allow replication	6, Supplementary
			Appendix
	11	Rationale for choosing the reference standard (if alternatives exist)	6, Supplementary
	10	D. Guiding a Constantional a Constant and the large state of the second state second	Appendix
	12a	Definition of and rationale for test positivity cut-offs or result categories	
	101	of the index test, distinguishing pre-specified from exploratory	(<u>Secondance</u>
	12b	Definition of and rationale for test positivity cut-offs or result categories of the reference standard, distinguishing pre-specified from exploratory	6, Supplementary Appendix
	13 a	Whether clinical information and reference standard results were available	6, Supplementary
	158	to the performers/readers of the index test	Appendix
	13b	Whether clinical information and index test results were available	
	130	to the assessors of the reference standard	6, Supplementary Appendix
Anabysis	14		7,8
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy How indeterminate index test or reference standard results were handled	7,8
			7,8
	16 17	How missing data on the index test and reference standard were handled Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from	
	1/	exploratory	7,8
	19		7 8
RESULTS	18	Intended sample size and how it was determined	7,8
	19	Flow of participants, using a diagram	8
Participants	19 20	Baseline demographic and clinical characteristics of participants	8
	20 21a	Distribution of severity of disease in those with the target condition	n/a
	21a 21b	Distribution of severity of disease in those with the target condition	n/a
		3	
Tost vosulta	22	Time interval and any clinical interventions between index test and reference standard	n/a 0.10. Table 2
Test results	23	Cross tabulation of the index test results (or their distribution) by the results of the reference standard	9,10, Table 2
	24		0 10 Table 2
	24 25	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	9,10 Table 2
DISCUSSION	25	Any adverse events from performing the index test or the reference standard	n/a
DISCUSSION	24	Otada limitationa includina gamaza di attati di lita attati di 1 attati di 1	11 12
	26	Study limitations, including sources of potential bias, statistical uncertainty, and	11-13
	~=	generalisability	11 12
	27	Implications for practice, including the intended use and clinical role of the index test	11-13

INFORMATION	28	Registration number and name of registry Where the full study protocol can be accessed	n/a
	20 29	Where the full study protocol can be accessed	1/4
	30	Sources of funding and other support; role of funders	13

BMJ Open

Validation of discharge diagnosis codes to identify serious infections among middle age and older adults

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020857.R2
Article Type:	Research
Date Submitted by the Author:	02-May-2018
Complete List of Authors:	Wiese, Andrew; Vanderbilt University Medical Center, Health Policy Griffin, Marie R; Vanderbilt University Medical Center, Health Policy Stein, Michael; Vanderbilt University, Pharmacology Schaffner, William; Vanderbilt University Medical Center, Health Policy Greevy, Robert; Vanderbilt School of Medicine, Biostatistics Mitchel, Jr., Edward; Vanderbilt University Medical Center, Health Policy Grijalva, Carlos; Vanderbilt University, Health Policy
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Infectious diseases, Epidemiology
Keywords:	coding algorithms, Medicaid, older adults, serious infections

BMJ Open

2		
3 4	1	Validation of discharge diagnosis codes to identify serious infections among middle age and older
5 6	2	adults
7 8	3	
9 10	4	Running title: Validation of diagnosis codes to identify infections
11 12	5	
13 14	6	Authors: Andrew D. Wiese, PhD, MPH ¹ ; Marie R. Griffin ^{1,2} , MD, MPH; C. Michael Stein, MB, ChB ³ ;
15 16	7	William Schaffner, MD ¹ ; Robert Greevy, PhD ⁴ ; Edward F. Mitchel Jr., MS ¹ ; Carlos G. Grijalva, MD,
17 18	8	MPH ^{1,2}
19 20 21	9	Affiliations: ¹ Department of Health Policy, Vanderbilt University School of Medicine, Nashville,
22 23	10	Tennessee, USA; ² Mid-South Geriatric Research Education and Clinical Center, VA Tennessee Valley
24 25	11	Health Care System, Nashville, Tennessee, USA; ³ Departments of Pharmacology and ⁴ Biostatistics,
26 27	12	Vanderbilt University School of Medicine, Nashville, Tennessee, USA
28 29	13	
30 31	14	Corresponding Author: Andrew D. Wiese, PhD, MPH; Department of Health Policy, Vanderbilt
32 33	15	University Medical Center, Suite 2600, Village at Vanderbilt, 1500 21st Avenue South, Nashville, TN
34 35	16	37212; phone: (615) 875-7997; email: <u>andrew.d.wiese.1@vumc.org</u>
36 37 38	17	
39 40	18	Key words: coding algorithms; Medicaid; older adults; serious infections
41 42	19	
43 44	20	Word Count: 3,777/4,000
45 46	21	Tables and Figures: (4/5)
47 48	22	
49 50	23	
51 52	24	
53 54	25	
55 56	26	
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

ABSTRACT (277/300)

Objectives: Hospitalizations for serious infections are common among middle age and older adults and frequently used as study outcomes. Yet few studies have evaluated the performance of diagnosis codes to identify serious infections in this population. We sought to determine the positive predictive value (PPV) of diagnosis codes for identifying hospitalizations due to serious infections among middle age and older adults. Setting and participants: We identified hospitalizations for possible infection among adults >50 years enrolled in the Tennessee Medicaid healthcare program (2008-2012) using ICD-9 diagnosis codes for pneumonia, meningitis/encephalitis, bacteremia/sepsis, cellulitis/soft-tissue infections, endocarditis, pyelonephritis and septic arthritis/osteomyelitis. **Design:** Medical records were systematically obtained from hospitals randomly selected from a stratified sampling framework based on geographical region and hospital discharge volume. Measures: Two trained clinical reviewers used a standardized extraction form to abstract information from medical records. Pre-defined algorithms served as reference to adjudicate confirmed infectionspecific hospitalizations. We calculated the PPV of diagnosis codes using confirmed hospitalizations as reference. Sensitivity analyses determined the robustness of the PPV to definitions that required radiological or microbiological confirmation. We also determined interrater reliability between reviewers. **Results:** The PPV of diagnosis codes for hospitalizations for infection (n=716) was 90% (95% CI: 88-92). The PPV was highest for pneumonia [97% (95% CI: 94-98)] and cellulitis [91% (95% CI: 85-95)], and lowest for meningitis/encephalitis [50% (95% CI: 24-76)]. The adjudication reliability was excellent [93% agreement; first agreement-coefficient: 0.91]. The overall PPV was lower when requiring microbiological confirmation [45%] and when requiring radiological confirmation for pneumonia [79%]. **Conclusions:** Discharge diagnosis codes have a high PPV for identifying hospitalizations for common, serious infections among middle age and older adults. PPV estimates for rare infections were imprecise.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	53	STRENGTHS AND LIMITATIONS OF THE STUDY
5 6	54	• This study examined the performance of diagnosis coding algorithms to identify hospitalizations
7 8	55	due to serious infections among middle age and older adults enrolled in a State Medicaid program
9 10	56	using a systematic and representative sample of records from hospitals of different sizes and in
11 12	57	distinct State regions.
13 14	58	• The reference criteria to identify true infections was based on the previous literature and clinical
15 16 17	59	expertise but may be imperfect. Nevertheless, identifying microbiologically-confirmed infections
17 18 19	60	is difficult due to the low sensitivity of culture-based diagnostic methods often used in clinical
20 21	61	practice.
22 23	62	• Diagnosis codes were based on the ICD-9-coding system only. These findings will continue to be
24 25	63	helpful for retrospective studies that encompass periods of ICD-9 use, yet additional studies
26 27	64	evaluating the performance of ICD-10-based codes would be beneficial.
28 29	65	• Our coding algorithms to identify serious infections had a high positive predictive value overall,
30 31	66	and will be useful in ongoing and future research using administrative data
32 33 34	67	
35 36	68	
37 38	69	
39 40	70	
41 42	71	
43 44	72	
45 46	73	
47 48	74	
49 50 51	75	
52 53	76	
54 55	77	
56 57		
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

78 INTRODUCTION

Infectious diseases remain a leading cause of morbidity and mortality in the U.S. and elsewhere.(1) Middle age and older adults, in particular, are at high risk for serious infections and their long-term consequences.(2, 3) Among older adults, community-acquired serious infections (including pneumonia, sepsis, and meningitis) often require hospitalization and represent a substantial burden on the U.S. healthcare system.(4-7) The incidence of community-acquired pneumonia is very high among adults > 50 years of age (248 cases per 100,000 adults) with an even higher burden among adults > 80 years of age (1.643 cases per 100,000 adults).(8) Sepsis, cellulitis and pyelonephritis are also very common (sepsis: 100 cases per 100,000 and cellulitis/pyelonephritis: >150 hospitalizations per 100,000 adults) with an increasing incidence of severe sepsis with increased age.(9-11) Meningitis and endocarditis are relatively rare (around 2-3 cases per 100,000), although the case fatality rate is very high.(12, 13) Therefore, it is important to monitor the incidence of these infections, identify important risk factors, and determine the impact of preventative policies (e.g., vaccination) on these diseases among middle age and older adults.(14-16)

Large-scale epidemiological studies using administrative data often use serious infections as outcomes.(17-21) However, few studies have evaluated the performance of diagnosis codes to identify serious infections among middle age and older adults. Most previous studies that have assessed the performance of coded discharge diagnosis codes to identify serious infections have focused mainly on common infections (e.g., pneumonia or sepsis), specific populations (e.g., patients with rheumatoid arthritis), or on healthcare-associated or hospital-acquired infections. (22-31) Nevertheless, the performance of coded discharge diagnoses for accurately identifying infections requiring hospitalization among middle age and older adults is unclear. Therefore, we sought to determine the positive predictive value (PPV) of specific discharge diagnoses for identifying infections that required hospitalization among middle age and older adults.

µ 102

103 METHODS

BMJ Open

104	Data	sources	

TennCare is the managed Medicaid program in the State of Tennessee that provides healthcare insurance to those who are Medicaid eligible (around 20% of the Tennessee population).(32) The adult TennCare population consists of low-income pregnant women and individuals who are elderly or have a disability (over 600,000 annually).(32) We used data from TennCare, supplemented with data from the Tennessee Hospital Discharge Data System (a registry for all hospitalizations in Tennessee) and pharmacy information from Medicare Part D for those that were dual eligible, to identify a retrospective cohort of TennCare enrollees >50 years of age with pharmacy benefits (2008-2012). We restricted the hospitalizations for serious infection to those occurring from 2008 through 2012 to only include more recent hospitalizations for which medical records are more likely to be available. Cohort members had at least 180 days of baseline continuous enrollment before cohort entry, and were also required to be free of certain life-threatening conditions known to increase the risk of infection (solid organ transplantation, end-stage renal disease, HIV/AIDS, malignancy and serious kidney, liver and respiratory disease) that may limit longitudinal follow-up and impact the assessments of patients' exposures and their risk of infections. Cohort members were also required to have evidence of at least one pharmacy prescription fill and evidence of at least one healthcare encounter during baseline (to ensure use of benefits so that if a healthcare encounter for an infection occurred, it would be detected). Follow-up started on the earliest date the inclusion criteria were met and continued through the earliest of the following: study end date (December 31, 2012), the day prior to diagnosis of a serious life-threatening condition that would have precluded entry to the cohort, loss of enrollment, or date of death. From this retrospective cohort, we identified possible hospitalizations for serious infections (see Identification of hospitalizations for serious *infection*) for our validation study. To avoid including infections that may have originated due to a previous hospital stay, we excluded hospitalizations for infections that occurred in the 30-day period after discharge from a previous hospitalization. The study was approved by the institutional review boards of Vanderbilt University and the Tennessee Department of Health, and by the Division of TennCare. Identification of hospitalizations for serious infection

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Clinical knowledge and a literature review were used to identify primary discharge diagnosis codes that have been used previously to identify specific serious infections that require hospitalization (study infections), including pneumonia (alone or with a primary diagnosis of bacteremia/sepsis), bacteremia/sepsis, pyelonephritis, meningitis/encephalitis, osteomyelitis/septic arthritis, endocarditis and cellulitis.(31, 33-35) Specific International Classifications of Diseases-Clinical Modification, 9th-revision (ICD-9-CM) diagnosis codes used to identify possible hospitalizations for each infection type are presented in Table 1. As the objective of our study was to determine the PPV of coding algorithms to identify serious infections that required hospitalization, we focused only on primary diagnoses of infection to reduce the possibility of detecting concurrent infections that may not have led to hospitalization or nosocomial infections that developed during the course of the hospitalization.(35) **Sampling Strategy**

We used stratified random sampling to select a representative subset of study infection hospitalizations from among all possible cases identified in the retrospective cohort from among hospitals within 200 miles of Vanderbilt University Medical Center (VUMC). Since larger hospitals would be over-represented in a purely random sampling, and because there may also be regional variability in coding practices and infection prevalence, we constructed a sampling framework where hospitals were stratified based on their geographic region in Tennessee (West, Central, and East), and tertiles of reported discharge volume (Low, Medium, and High) during the study period. (36-38) From this sampling framework, we randomly selected three hospitals from each of these nine sampling strata, and retrieved their medical records for review and validation (Figure 1). This strategy, relative to a purely random sample, ensured better representation of infections identified in smaller hospitals and those in more rural regions of the State of Tennessee. If a hospital refused to participate, it was replaced by another hospital randomly selected from the same sampling stratum.

153 The overall goal was to review and validate 675 hospitalizations for serious infection from 27
154 hospitals (25 hospitalizations for each of the 3 hospitals comprising a stratum, yielding 75 hospitalizations
155 for each of the 9 strata) (Figure 1). We conservatively assumed that up to 80% of records requested would

Page 7 of 39

BMJ Open

be available for review, and so we requested 32 records per hospital to receive an average of 25 records from each (Figure 1). To ensure that we reviewed sufficient rare infections, we preferentially selected any identified possible hospitalizations for meningitis/encephalitis, osteomyelitis/septic arthritis and endocarditis from each hospital in the sample. We randomly selected the remaining set of possible hospitalizations for other serious infections based on the proportional distribution of common infections at each hospital (pneumonia, bacteremia/sepsis, pyelonephritis and cellulitis) until 32 infections were identified. For hospitals with fewer than 32 infections during the study period, all infections were requested. **Abstraction of Medical Records**

Relevant clinical information was abstracted from the medical record (transfer notes, emergency room summary, admission summary, physical/history, pharmacy, laboratory, microbiology, and radiology information, and discharge summary) of each hospitalization with a primary discharge diagnosis code indicative of infection using a standardized and customized REDCap electronic data capture instrument hosted at Vanderbilt University.(39) As we were interested in infections that led to hospitalizations, we focused our reviews on clinical, microbiological and radiological information from the 2 days prior to the admission date through 2 days after admission to limit the possibility of identifying infections that developed during the hospitalization (i.e. nosocomial infections). In preparation for this study, the case report form was pilot-tested among a separate, convenience sample of 354 possible infections identified in the cohort from 3 hospitals in the same city as Vanderbilt University. This separate sample of hospitalizations was used only for pilot-testing the case report form, and was not included in the current study. One trained medical reviewer abstracted the relevant information for all selected records using the case report form. During the abstraction process, the lack of a particular finding in the medical record was treated as a lack of evidence for that finding, and so no information was considered missing after abstraction. **Adjudication of Medical Records**

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

All records received were reviewed, abstracted and adjudicated. We made the final determination of whether a hospitalization represented a confirmed infection or not using *a priori* definitions of clinical, radiological, and/or microbiological findings compatible with infection for each infection type. Previous validation studies and expert clinical knowledge were used to define these specific *a priori* definitions for each infection type (*Supplementary appendix*).(31, 35, 40)

186 Statistical analysis

We calculated the PPV of the ICD-9-CM discharge diagnosis codes for identifying hospitalizations for serious infection using the results of the *a priori* definitions applied to the information abstracted from the medical records as the reference (the proportion of cases identified with discharge diagnosis codes that were determined to be true cases after adjudication of the medical record information). We calculated 95% confidence intervals for the PPV using Wilson's formula.(41) Secondary analyses assessed the PPV for hospitalizations for serious infection across hospitals of different sizes and in different geographical regions of Tennessee.

We also assessed the reliability of the abstraction process. A second trained medical reviewer abstracted relevant information from a subset of selected records, which included all meningitis and endocarditis records, and a random selection of 10% of each of the remaining infection types. Each reviewer conducted the process independently and blinded from one another. For the subset of records abstracted by both reviewers, inter-reviewer agreement for the adjudication of a true or mis-identified infection was assessed using the Gwet's first agreement coefficient (AC₁).(42-44) Since Cohen's kappa statistic can be unreliable when the prevalence of the event and the level of observer agreement are high in the study sample, we used Gwet's AC_1 as a reliability measure unlikely to be affected by these concerns.(44-46)

In planned sensitivity analyses, we first assessed the impact of excluding hospitalizations that occurred after the individual was transferred from another healthcare facility, as initial documentation and details of the infection could be missing or incomplete in the receiving hospital.(40) We also assessed the impact on the PPV for all infections when requiring microbiological identification of a pathogen

BMJ Open

207	(excluding common contaminants) from a sterile site within 2 days before or after the hospitalization
208	admission date. A final sensitivity analysis among hospitalizations for possible pneumonia assessed the
209	PPV when radiological evidence of pneumonia was required [i.e. pneumonia, opacity, or infiltrate
210	mentioned in a chest X-ray or computed tomography scan report] (Supplementary appendix). All analyses
211	were performed in Stata-IC, version 15.1 (College Station TX).
212	Patient and Public Involvement
213	No patients were involved in the development of the research question, the outcome measures, or the
214	design or conduct of the study. As we conducted a retrospective study using administrative data, we have
215	no plans to disseminate the results of the research to study participants.
216	
217	RESULTS
218	Cohort characteristics
219	Among a retrospective cohort of 129,465 adults \geq 50 years of age enrolled in TennCare, 9,769
220	hospitalizations for serious infection were identified during the study period (2008-2012) among 7,770
221	unique patients (Figure 2). Cohort members were primarily female (57.8%) with a median age of 54 years
222	(mean: 57 years; range: 50-110). For efficiency considerations, our medical chart review activities then
223	focused on hospitalizations for serious infection (n=8,322) that occurred at hospitals within 200 miles of
224	VUMC. Pneumonia, cellulitis and bacteremia/sepsis were the most common infections identified using
225	discharge diagnosis codes (54.3%, 20.5% and 18.4%, respectively), followed by pyelonephritis (3.8%)
226	and septic arthritis/osteomyelitis (2.5%). Fewer than 1% of hospitalizations were due to
227	meningitis/encephalitis (n=30) and endocarditis (n=18).
228	Collection, review and adjudication of selected medical records
229	Of the 27 hospitals that were initially selected for the sample, 21 (78%) were able to participate.
230	We selected 7 additional hospitals to replace the 6 non-participants to achieve the desired sample size,
231	including an additional small hospital in the East region due to a large number of unavailable records
232	from a single participating hospital.
	9

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2		
3 4	233	We received 716 (88.6%) of 808 requested records from 28 participating hospitals [Table 2].
5 6	234	Record availability from participating hospitals was lower in medium size hospitals (81.8%) compared to
7 8	235	small (93.5%) and large hospitals (91.7%), but did not differ by geographic region. Record availability by
9 10	236	infection type was greater than 86% for all infection types, with the exception of hospitalizations for the
11 12	237	rare endocarditis cases (57.1%; only 4 of 7 cases).
13 14	238	The sample of hospitalizations for serious infection included patients who were primarily female
15 16	239	(63.6%), with a median age of 60 years (mean: 64 years; range: 50-101) at the time of hospitalization.
17 18	240	There was evidence of transfer from a prior healthcare facility for 21.8% of the hospitalizations for
19 20 21	241	serious infection [highest percentage of transfers for bacteremia/sepsis (38.5%) and pneumonia (25.1%)].
21 22 23	242	The most common healthcare facility source was a nursing home/skilled nursing facility (84.6%), but also
23 24 25	243	included group home sources (7.7%), other sources (4.5%) [assisted living facility, mental health center]
26 27	244	and another acute care hospital (3.2%). There was evidence of an emergency department visit within 7
28 29	245	days prior to admission date for the serious infection hospitalization in 4.8% of the records.
30 31	246	Performance of discharge diagnosis codes
32 33	247	A total of 646 [PPV: 90.2% (95% CI: 87.8-92.2)] of the hospitalizations for serious infection
34 35	248	identified using ICD-9-CM primary discharge diagnosis codes were confirmed by applying the a priori
36 37	249	definitions to the abstracted data. The PPV was highest for pneumonia and cellulitis [96.5% (95% CI:
38 39 40	250	93.9-98.0) and 91.1% (95% CI: 84.7-94.9), respectively], and was \geq 75% for bacteremia/sepsis,
40 41 42	251	pyelonephritis, septic arthritis/osteomyelitis, and endocarditis. The PPV was lowest for
43 44	252	meningitis/encephalitis [50.0% (95% CI: 23.7-76.3)], although the precision was limited due to a low
45 46	253	number of available records for review (Table 2). Among the 10 potential cases of
47 48	254	meningitis/encephalitis, 7 cases were meningitis/meningoencephalitis and 3 were encephalitis. The
49 50	255	respective PPVs for meningitis/meningoencephalitis and encephalitis were 71.4% (95% CI: 35.9-91.8)
51 52	256	and 0%, respectively.
53 54	257	When performance was evaluated across stratification sampling parameters, no apparent
55 56	258	differences were observed in the PPV for records from hospitals in different geographical regions of
57 58		10
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 39

59

60

BMJ Open

1 2		
2 3 4	259	Tennessee. Although the PPV was high for all three discharge volume groups, the PPV was significantly
5 6	260	lower in large hospitals [84.6% (95% CI: 79.6-88.5)] compared to smaller hospitals [93.9% (95% CI:
7 8	261	90.0-96.3); PPV difference: -9.3% (95% CI: -14.7, -3.9)] and medium hospitals [92.7% (95% CI: 88.6-
9 10	262	95.4); PPV difference: -8.1% (95% CI: -13.7, -2.6)] (Table 2). This was likely driven by the different
11 12	263	distributions in the types of infections selected for review in the hospital groups. Large hospitals had a
13 14	264	higher proportion of non-pneumonia infections (70.4%) compared to medium and small hospitals (49.4%
15 16	265	and 36.1%, respectively). Importantly, the PPV for pneumonia was similar in each discharge volume
17 18 19	266	group (range: 96.0 to 96.6%), whereas the PPV was smaller for non-pneumonia infections in large
20 21	267	hospitals (79.8%) compared to medium (88.7%) and small (89.2%) hospitals.
22 23	268	In the 82 records independently abstracted by two reviewers to assess reliability, there was 92.7%
24 25	269	(95% CI: 86.9-98.4) agreement for identifying true hospitalizations for serious infection. The inter-rater
26 27	270	agreement was also high when assessing reliability, independent of the outcome prevalence, with an AC_1
28 29	271	of 0.91 (95% CI: 0.84-0.99). Of the 6 discordant cases, 3 were meningitis/encephalitis (1
30 31	272	meningitis/meningoencephalitis and 2 encephalitis), with one each of bacteremia/sepsis, pyelonephritis
32 33	273	and septic arthritis. The main reason for a discrepancy between reviewers was whether or not treatment
34 35	274	for the infection of interest occurred within 2 days of the admission date, which was one of the major
36 37 28	275	criteria for adjudication (see Supplementary appendix).
38 39 40	276	Sensitivity analyses
41 42	277	The PPV was virtually unchanged when excluding the 21.8% of hospitalizations that occurred as
43 44	278	transfers from another healthcare facility [90.1% (95% CI: 87.4-92.3)]. Microbiological evidence of the
45 46	279	specific infection type was found in 47.6% of records, leading to reduced PPVs when requiring
47 48	280	microbiological evidence [45.4% (95% CI: 41.8-49.1)]. Microbiological evidence of infection was
49 50	281	highest in hospitalizations for suspected pyelonephritis (94.4%), but was $\leq 60\%$ for every other infection
51 52	282	type [pneumonia (42.7%); cellulitis/soft tissue infections (58.5%); bacteremia/sepsis (26.1%)]. When
53 54	283	requiring radiological confirmation of pneumonia, the PPV for coded diagnoses was 78.8% (95% CI:
55 56 57	284	74.2-82.8). Approximately 95.6% of possible hospitalizations for pneumonia had at least one documented
57 58		11

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

chest x-ray or CT-scan. Among those patients with a chest x-ray or CT-scan report available (n=325), 83.4% had a finding compatible with pneumonia. The main findings among the 54 patients with possible pneumonia and a radiological report available, but without radiological confirmation of pneumonia included atelectasis (n=6), interstitial pneumonitis (n=3), chronic heart failure with pulmonary edema (n=1), and no radiological findings of any kind (n=44).

DISCUSSION

Discharge diagnoses for identifying hospitalizations due to serious infections among middle age and older adults had an overall PPV of 90.2%, with the highest values for the identification of common serious infections. PPVs were consistently high across different hospital types and regions of Tennessee. Furthermore, the PPV was similar after exclusion of hospitalizations for serious infection that were the result of a transfer from another healthcare facility (e.g. acute care hospital, skilled nursing facility). Microbiological confirmation was available for fewer than 50% of patients admitted with possible hospitalizations for serious infections, and as expected, the requirement resulted in a low PPV for all infections, with the exception of pyelonephritis. Importantly, the PPV for pneumonia hospitalizations remained relatively high even when requiring radiological confirmation.

The PPV for hospitalizations for pneumonia in previous smaller validation studies has ranged from 72 to 86% in different healthcare systems, but those studies were not focused on middle age and older adults.(31, 47-49) In our study of hospitalizations among middle age and older adults, we found that coded discharge diagnoses have a higher PPV for pneumonia compared to previous studies. The PPV for bacteremia/sepsis was also on the higher range of previously reported PPVs for diagnosis codes to identify bacteremia/sepsis from administrative data in other populations (reported range from 45% to 97.7%), and for septic arthritis/osteomyelitis compared to a previous study conducted among patients with diabetes (63.9% versus 75.9% in our study).(23, 50, 51) Overall, the observed PPV for all infections in our study was comparable to two previous comprehensive validation studies of bacterial infections, one among patients with rheumatoid arthritis in a single hospital system and another among patients in one of

Page 13 of 39

1

BMJ Open

⊴)
2)
pe	
Ĕ	
Ħ	2
st	•
pu	_
SD	•
ee	-
g	
10.11)
1	
ο Q)
bn	-
- Jo	•
1136/bmjopen-2	
Ť	
Ň)
1	1
ę	\$
N N)
ğ	5
Š	i
S	
2	
19 June 2018. I	
n	
ē	
C)
18	5
]
ŏ	
ñ	_
00	
nioade	-
ă	
₹	-
0	
om	
om nt	
om nttp:	
BMJ Upen: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://b	
om http://bmj	
om nttp://bmjop	
om http://bmjopen	
ed trom http://bmjopen.b	
om http://bmjopen.bmj	
om http://bmjopen.bmj.cc	
om http://bmjopen.bmj.com,	
om http://bmjopen.bmj.com/ o	
om http://bmjopen.bmj.com/ on /	
om http://bmjopen.bmj.com/ on Api	
om http://bmjopen.bmj.com/ on April	
om http://bmjopen.bmj.com/ on April 19,	
om http://bmjopen.bmj.com/ on April 19, 2	
om http://bmjopen.bmj.com/ on April 19, 202	
om http://bmjopen.bmj.com/ on April 19, 2024 t	
om http://bmjopen.bmj.com/ on April 19, 2024 by	
om http://bmjopen.bmj.com/ on April 19, 2024 by gu	
om http://bmjopen.bmj.com/ on April 19, 2024 by gues	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. I	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prc	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prote	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protecte	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by cc	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copy	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyrig	
om http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.	

2		
3 4	311	the Veteran's Affairs integrated service networks.(35, 40) Compared to these two previous studies of
5 6	312	ICD-9 codes, we abstracted and adjudicated a larger number of records while using a more systematic
7 8	313	sampling strategy to retrieve and review records for hospitalizations from multiple regions and hospital
9 10	314	types as opposed to a single hospital or healthcare system. However, some of the PPVs for individual
11 12	315	infections were less precise and less similar to these previous studies. This was especially true for rare
13 14	316	infections, as would be expected due to the low numbers of rare infections in our study and across
15 16	317	previous studies.(35, 40) The results of our study are also similar to previous validation studies that used
17 18	318	corresponding ICD-10 diagnosis codes to identify hospitalizations for serious infection.(52, 53)
19 20 21	319	One limitation to consider in our study was that it was not designed to estimate the sensitivity and
21 22 23	320	specificity of the coding algorithms. This would have required the identification, review and adjudication
24 25	321	of a sample of hospitalizations that did not fulfill our algorithm (i.e. presence of the ICD-9 primary
26 27	322	discharge diagnosis codes indicative of infection). However, when the prevalence of an outcome is low,
28 29	323	the PPV approximates the specificity.(54) Importantly, any non-differential outcome misclassification
30 31	324	between exposure groups resulting from the use of imperfect but highly-specific measurements would
32 33	325	attenuate the impact of the misclassification on the relative risk estimates.(55) In addition, we found that
34 35	326	the PPV of coded discharge diagnoses for serious infections remained high across hospitals of different
36 37	327	sizes and across different geographical areas of Tennessee, which may have different rates of
38 39	328	hospitalizations for serious infection.(56) Although our study applied a systematic sampling strategy to
40 41	329	assure the representation of different settings in our population, our population was restricted to middle
42 43 44	330	age and older adults enrolled in a State Medicaid program. Therefore, caution is warranted when
44 45 46	331	extrapolating the study findings to other populations.
47 48	332	Another limitation is the use of available clinical information to operationalize definitions for
49 50	333	adjudication of true hospitalizations for infections. It is possible that some procedures, laboratory findings
51 52	334	and diagnoses that informed the final diagnosis of infection were not fully recorded in the medical
53 54	335	records, and thus, were not available for our review and may have contributed to the observed PPV for
E E		

some infections. Although we used previous validation studies and clinical information to build pre-

13

55

56 57 58

59

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2 3	
4	
5 6	
7 8	
9	
10 11	
12 13	
14	
16	
17 18	
19 20	
21	
22 23	
24 25	
26	
27	
29 30	
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 20\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 36\\ 36\\ 37\\ 36\\ 37\\ 36\\ 37\\ 36\\ 37\\ 36\\ 36\\ 37\\ 36\\ 36\\ 37\\ 36\\ 36\\ 37\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$	
33	
34 35	
36 37	
38 39	
40	
41 42	
43 44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55 56	
57 58	
59	
60	

1

337	specified definitions for the adjudication of true infections, our reference criteria may be imperfect,
338	considering the retrospective nature of our determinations and potential variability in clinical practice.
339	Nevertheless, we also assessed how the availability of selected findings (i.e. microbiological and
340	radiological information) in the medical record impacted the overall and infection-specific PPV. We
341	demonstrated that relying on highly specific clinical diagnostics, such as microbiological and radiological
342	information, to confirm true infections would result in lower PPVs for identification of infections in
343	administrative data. Requiring microbiological confirmation to confirm true infections is challenging
344	because of the known low sensitivity of culture-based diagnostic methods (most commonly used in
345	clinical practice), which may lead to misclassification.(57, 58) In addition, requiring radiological evidence
346	compatible with pneumonia within 2 days of hospital admission did lower the observed PPV for
347	pneumonia hospitalizations. Nevertheless, the observed PPV remained close to 80%, which should reduce
348	concerns about using diagnosis codes to identify hospitalizations due to pneumonia. Finally, the coding
349	algorithms were based on the ICD-9-coding system only. Although these findings will be helpful for
350	retrospective studies that encompass periods of ICD-9 use, additional studies evaluating the performance
351	of ICD-10-based codes would be useful to complement our findings.
352	Our study demonstrated that discharge diagnosis codes can be used to accurately identify
353	hospitalizations for serious infections among middle age and older adults. The highest PPVs were
354	observed for the most common infections, and the PPV for pneumonia remained high when requiring
355	radiological confirmation. Importantly, consistently high PPVs were observed across different hospital
356	sizes and regions. However, the estimated PPV was lower and less precise for very rare infections (e.g.
357	encephalitis). This should be an important consideration for studies specifically focused on those less
358	frequent outcomes, especially when strict microbiological confirmation is required. Taken together, these
359	findings support the use of discharge diagnosis codes for infections to identify outcomes in ongoing and
360	future epidemiological studies among middle age and older adults.

361

362 Acknowledgement

Page 15 of 39

1

BMJ Open

2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16	363	We are indebted to the Tennessee Bureau of TennCare of the Tennessee Department of Finance and
	364	Administration, which provided data for the study. We are also indebted to the Tennessee Department of
	365	Health for providing data for the study. Statements in the report should not be construed as endorsement
	366	by the U.S. Department of Health and Human Services, the Department of Veterans Affairs, or the
	367	Tennessee Department of Health.
	368	
	369	Funding
17 18	370	This study was funded by the NIH (R03-AG-042981 and R01-AG-043471-01A1) and the TL1 award
19 20 21 22 23	371	TL1TR000447.
	372	Contributors
23 24 25	373	ADW planned the medical record collection and statistical analysis, analyzed and interpreted the data, and
26 27	374	drafted and revised the paper. MRG, WS, CMS, and RAG planned the statistical analysis, interpreted the
28 29 30 31 32 33 34 35	375	data and revised the paper. EFM prepared the data, and revised the paper. CGG designed the project,
	376	acquired the data from TennCare, planned the medical record collection and statistical analysis,
	377	interpreted the data, and revised the paper.
	378	Declaration of interests
36 37	379	CGG has received consulting fees from Pfizer and Merck, and received research support from Sanofi-
38 39 40 41	380	Pasteur, Campbell Alliance, the Centers for Disease Control and Prevention, National Institutes of Health,
	381	The Food and Drug Administration, and the Agency for Health Care Research and Quality. WS has
42 43 44	382	received personal fees from Pfizer, Merck, Novavax, Dynavax, Sanofi-Pasteur, GSK, Seqirus, and
45 46	383	received research support from the Centers for Disease Control and Prevention. ADW, EFM, CMS, MRG
47 48	384	and RAG have no conflicts of interest to disclose.
49 50	385	Data sharing
51 52	386	No additional unpublished data are available from the study. The study protocol and statistical code are
53 54	387	available from the corresponding author, Andrew Wiese (andrew.d.wiese.1@vumc.org).
55 56	388	
57 58		15
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4	389		REFERENCES
5 6	390	1.	Khabbaz RF, Moseley RR, Steiner RJ, Levitt AM, Bell BP. Challenges of infectious diseases in
7 8	391		the USA. Lancet. 2014;384(9937):53-63.
9 10	392	2.	Grohskopf LA, Sokolow LZ, Broder KR, Olsen SJ, Karron RA, Jernigan DB, et al. Prevention
11 12	393		and Control of Seasonal Influenza with Vaccines. MMWR Recomm Rep. 2016;65(5):1-54.
13 14	394	3.	Kim DK, Bridges CB, Harriman KH. Advisory committee on immunization practices
15 16	395		recommended immunization schedule for adults aged 19 years or olderUnited States, 2015.
17 18	396		MMWR Morb Mortal Wkly Rep. 2015;64(4):91-2.
19 20	397	4.	Jeon MH, Chung JW, Choi SH, Kim TH, Lee EJ, Choo EJ. Pneumonia risk factors and clinical
21 22	398		features of hospitalized patients older than 15 years with pandemic influenza A (H1N1) in South
23 24 25	399		Korea: a multicenter study. Diagn Microbiol Infect Dis. 2011;70(2):230-5.
25 26 27	400	5.	Pilishvili T, Bennett NM. Pneumococcal Disease Prevention Among Adults: Strategies for the
28 29	401		Use of Pneumococcal Vaccines. Am J Prev Med. 2015;49(6 Suppl 4):S383-90.
30 31	402	6.	Sjoding MW, Prescott HC, Wunsch H, Iwashyna TJ, Cooke CR. Longitudinal Changes in ICU
32 33	403		Admissions Among Elderly Patients in the United States. Crit Care Med. 2016;44(7):1353-60.
34 35	404	7.	Crotty MP, Meyers S, Hampton N, Bledsoe S, Ritchie DJ, Buller RS, et al. Epidemiology, Co-
36 37	405		Infections, and Outcomes of Viral Pneumonia in Adults: An Observational Cohort Study.
38 39	406		Medicine (Baltimore). 2015;94(50):e2332.
40 41	407	8.	Jain S, Self WH, Wunderink RG, Fakhran S, Balk R, Bramley AM, et al. Community-Acquired
42 43	408		Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415-27.
44 45 46	409	9.	Filbin MR, Arias SA, Camargo CA, Jr., Barche A, Pallin DJ. Sepsis visits and antibiotic
47 48	410		utilization in U.S. emergency departments*. Crit Care Med. 2014;42(3):528-35.
49 50	411	10.	Christensen KL, Holman RC, Steiner CA, Sejvar JJ, Stoll BJ, Schonberger LB. Infectious disease
51 52	412		hospitalizations in the United States. Clin Infect Dis. 2009;49(7):1025-35.
53 54			
55 56			
57 58		16	

59

BMJ Open

1 2			
3 4	413	11.	Ginde AA, Moss M, Shapiro NI, Schwartz RS. Impact of older age and nursing home residence
5 6	414		on clinical outcomes of US emergency department visits for severe sepsis. J Crit Care.
7 8	415		2013;28(5):606-11.
9 10	416	12.	Iung B, Vahanian A. Epidemiology of acquired valvular heart disease. Can J Cardiol.
11 12	417		2014;30(9):962-70.
13 14	418	13.	Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, et al. Bacterial
15 16	419		meningitis in the United States, 1998-2007. N Engl J Med. 2011;364(21):2016-25.
17 18	420	14.	Simonetti AF, Garcia-Vidal C, Viasus D, Garcia-Somoza D, Dorca J, Gudiol F, et al. Declining
19 20 21	421		mortality among hospitalized patients with community-acquired pneumonia. Clin Microbiol
21 22 23	422		Infect. 2016;22(6):567.e1-7.
24 25	423	15.	Rivero-Calle I, Pardo-Seco J, Aldaz P, Vargas DA, Mascaros E, Redondo E, et al. Incidence and
26 27	424		risk factor prevalence of community-acquired pneumonia in adults in primary care in Spain
28 29	425		(NEUMO-ES-RISK project). BMC Infect Dis. 2016;16(1):645.
30 31	426	16.	Park JY, Park S, Lee SH, Lee MG, Park YB, Oh KC, et al. Microorganisms Causing Community-
32 33	427		Acquired Acute Bronchitis: The Role of Bacterial Infection. PLoS One. 2016;11(10):e0165553.
34 35	428	17.	Jackson ML, Walker R, Lee S, Larson E, Dublin S. Predicting 2-Year Risk of Developing
36 37	429		Pneumonia in Older Adults without Dementia. J Am Geriatr Soc. 2016;64(7):1439-47.
38 39	430	18.	Clement RC, Haddix KP, Creighton RA, Spang JT, Tennant JN, Kamath GV. Risk Factors for
40 41 42	431		Infection After Knee Arthroscopy: Analysis of 595,083 Cases From 3 United States Databases.
42 43 44	432		Arthroscopy. 2016;32(12):2556-61.
45 46	433	19.	Weinert BA, Edmonson MB. Hospitalizations at Nonfederal Facilities for Lower Respiratory
47 48	434		Tract Infection in American Indian and Alaska Native Children Younger than 5 Years of Age,
49 50	435		1997-2012. J Pediatr. 2016;175:33-9.e4.
51 52	436	20.	Akiyama T, Chikuda H, Yasunaga H, Horiguchi H, Fushimi K, Saita K. Incidence and risk
53 54	437		factors for mortality of vertebral osteomyelitis: a retrospective analysis using the Japanese
55 56	438		diagnosis procedure combination database. BMJ Open. 2013;3(3).
57 58		17	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 39

BMJ Open

1

3 4	439	21.	Graversen ME, Dalgaard LS, Jensen-Fangel S, Jespersen B, Ostergaard L, Sogaard OS. Risk and
5 6	440		outcome of pyelonephritis among renal transplant recipients. BMC Infect Dis. 2016;16:264.
7 8	441	22.	Abou Zahr Z, Spiegelman A, Cantu M, Ng B. Perioperative use of anti-rheumatic agents does not
9 10	442		increase early postoperative infection risks: a Veteran Affairs' administrative database study.
11 12	443		Rheumatol Int. 2015;35(2):265-72.
13 14	444	23.	Carnahan RM, Herman RA, Moores KG. A systematic review of validated methods for
15 16	445		identifying transfusion-related sepsis using administrative and claims data. Pharmacoepidemiol
17 18	446		Drug Saf. 2012;21 Suppl 1:222-9.
19 20	447	24.	Condell O, Gubbels S, Nielsen J, Espenhain L, Frimodt-Moller N, Engberg J, et al. Automated
21 22 23	448		surveillance system for hospital-acquired urinary tract infections in Denmark. J Hosp Infect.
24 25	449		2016;93(3):290-6.
26 27	450	25.	Gedeborg R, Furebring M, Michaelsson K. Diagnosis-dependent misclassification of infections
28 29	451		using administrative data variably affected incidence and mortality estimates in ICU patients. J
30 31	452		Clin Epidemiol. 2007;60(2):155-62.
32 33	453	26.	Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the
34 35	454		surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clin
36 37	455		Infect Dis. 2014;58(5):688-96.
38 39 40	456	27.	Shaklee J, Zerr DM, Elward A, Newland J, Leckerman K, Asti L, et al. Improving surveillance
40 41 42	457		for pediatric Clostridium difficile infection: derivation and validation of an accurate case-finding
43 44	458		tool. Pediatr Infect Dis J. 2011;30(3):e38-40.
45 46	459	28.	Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R. Administrative databases
47 48	460		provide inaccurate data for surveillance of long-term central venous catheter-associated
49 50	461		infections. Infect Control Hosp Epidemiol. 2003;24(12):946-9.
51 52	462	29.	Greenberg JA, Hohmann SF, Hall JB, Kress JP, David MZ. Validation of a Method to Identify
53 54	463		Immunocompromised Patients with Severe Sepsis in Administrative Databases. Ann Am Thorac
55 56	464		Soc. 2016;13(2):253-8.
57 58		18	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

n of e	BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyrigh
ized	shed as
gestive	s 10.11
	36/bm
	jopen-
	2017-0
ne Risk)20857
Series	' on 19
) June
natoid	2018.
:82-90.	Downl
ospital	oaded
	from t
	nttp://b
e values	mjoper
	n.bmj.c
	om/ o
ol	ר April
	19, 20
Chronic	124 by
ne.	guest.
	Protec
	xted by
	соруг
	ight.

Olsen MA, Young-Xu Y, Stwalley D, Kelly CP, Gerding DN, Saeed MJ, et al. The burden 30. clostridium difficile infection: estimates of the incidence of CDI from U.S. Administrative databases. BMC Infect Dis. 2016;16:177. 31. Grijalva CG, Chung CP, Stein CM, Gideon PS, Dyer SM, Mitchel EF, Jr., et al. Computer definitions showed high positive predictive values for identifying hospitalizations for cong heart failure and selected infections in Medicaid enrollees with rheumatoid arthritis. Pharmacoepidemiol Drug Saf. 2008;17(9):890-5. TennCare Fiscal Year 2015-2016 Annual Report. In: Administration DoHCF, ed: 2016. 32. Wiese AD, Griffin MR, Stein CM, Mitchel EF, Jr., Grijalva CG. Opioid Analgesics and th 33. of Serious Infections Among Patients With Rheumatoid Arthritis: A Self-Controlled Case Study. Arthritis Rheumatol. 2016;68(2):323-31. 34. Grijalva CG, Kaltenbach L, Arbogast PG, Mitchel EF, Jr., Griffin MR. Initiation of rheum arthritis treatments and the risk of serious infections. Rheumatology (Oxford). 2010;49(1): 35. Schneeweiss S, Robicsek A, Scranton R, Zuckerman D, Solomon DH. Veteran's affairs ho discharge databases coded serious bacterial infections accurately. J Clin Epidemiol. 2007;60(4):397-409. Brenner H, Gefeller O. Variation of sensitivity, specificity, likelihood ratios and predictive 36. with disease prevalence. Stat Med. 1997;16(9):981-91. 37. Kim HM, Smith EG, Stano CM, Ganoczy D, Zivin K, Walters H, et al. Validation of key behaviourally based mental health diagnoses in administrative data: suicide attempt, alcoho abuse, illicit drug abuse and tobacco use. BMC Health Serv Res. 2012;12:18. 38. El-Ghitany EM, Farghaly AG, Farag S, Abd El-Wahab EW. Validation of EGCRISC for C Hepatitis C Infection Screening and Risk Assessment in the Egyptian Population. PLoS On 2016;11(12):e0168649.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2			
3 4	489	39.	Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data
5 6	490		capture (REDCap)a metadata-driven methodology and workflow process for providing
7 8	491		translational research informatics support. J Biomed Inform. 2009;42(2):377-81.
9 10	492	40.	Patkar NM, Curtis JR, Teng GG, Allison JJ, Saag M, Martin C, et al. Administrative codes
11 12	493		combined with medical records based criteria accurately identified bacterial infections among
13 14	494		rheumatoid arthritis patients. J Clin Epidemiol. 2009;62(3):321-7, 7.e1-7.
15 16	495	41.	Niesner K, Murff HJ, Griffin MR, Wasserman B, Greevy R, Grijalva CG, et al. Validation of VA
17 18	496		administrative data algorithms for identifying cardiovascular disease hospitalization.
19 20	497		Epidemiology. 2013;24(2):334-5.
21 22	498	42.	Govatsmark RE, Sneeggen S, Karlsaune H, Slordahl SA, Bonaa KH. Interrater reliability of a
23 24	499		national acute myocardial infarction register. Clin Epidemiol. 2016;8:305-12.
25 26	500	43.	Wongpakaran N, Wongpakaran T, Wedding D, Gwet KL. A comparison of Cohen's Kappa and
27 28	501		Gwet's AC1 when calculating inter-rater reliability coefficients: a study conducted with
29 30	501		personality disorder samples. BMC Med Res Methodol. 2013;13:61.
31 32		11	
33 34	503	44.	Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement. Br
35 36	504		J Math Stat Psychol. 2008;61(Pt 1):29-48.
37 38	505	45.	Lantz CA, Nebenzahl E. Behavior and interpretation of the kappa statistic: resolution of the two
39 40	506		paradoxes. J Clin Epidemiol. 1996;49(4):431-4.
41 42	507	46.	Feinstein AR, Cicchetti DV. High agreement but low kappa: I. The problems of two paradoxes. J
43 44	508		Clin Epidemiol. 1990;43(6):543-9.
45 46	509	47.	Drahos J, Vanwormer JJ, Greenlee RT, Landgren O, Koshiol J. Accuracy of ICD-9-CM codes in
47 48	510		identifying infections of pneumonia and herpes simplex virus in administrative data. Ann
49 50	511		Epidemiol. 2013;23(5):291-3.
51 52	512	48.	Aronsky D, Haug PJ, Lagor C, Dean NC. Accuracy of administrative data for identifying patients
53 54	513		with pneumonia. Am J Med Qual. 2005;20(6):319-28.
55 56			
57 58		20	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
8			

BMJ Open

1 2			
2 3 4	514	49.	Kern DM, Davis J, Williams SA, Tunceli O, Wu B, Hollis S, et al. Validation of an
5 6	515		administrative claims-based diagnostic code for pneumonia in a US-based commercially insured
7 8	516		COPD population. Int J Chron Obstruct Pulmon Dis. 2015;10:1417-25.
9 10	517	50.	Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, et al. Identifying patients with
11 12	518		severe sepsis using administrative claims: patient-level validation of the angus implementation of
13 14	519		the international consensus conference definition of severe sepsis. Med Care. 2014;52(6):e39-43.
15 16	520	51.	Newton KM, Wagner EH, Ramsey SD, McCulloch D, Evans R, Sandhu N, et al. The use of
17 18	521		automated data to identify complications and comorbidities of diabetes: a validation study. J Clin
19 20	522		Epidemiol. 1999;52(3):199-207.
21 22 23	523	52.	Sahli L, Lapeyre-Mestre M, Derumeaux H, Moulis G. Positive predictive values of selected
23 24 25	524		hospital discharge diagnoses to identify infections responsible for hospitalization in the French
26 27	525		national hospital database. Pharmacoepidemiol Drug Saf. 2016;25(7):785-9.
28 29	526	53.	Holland-Bill L, Xu H, Sorensen HT, Acquavella J, Svaerke C, Gammelager H, et al. Positive
30 31	527		predictive value of primary inpatient discharge diagnoses of infection among cancer patients in
32 33	528		the Danish National Registry of Patients. Ann Epidemiol. 2014;24(8):593-7, 7.e1-18.
34 35	529	54.	Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic
36 37	530		research on therapeutics. J Clin Epidemiol. 2005;58(4):323-37.
38 39	531	55.	Rodgers A, MacMahon S. Systematic underestimation of treatment effects as a result of
40 41 42	532		diagnostic test inaccuracy: implications for the interpretation and design of thromboprophylaxis
42 43 44	533		trials. Thromb Haemost. 1995;73(2):167-71.
44 45 46	534	56.	van Walraven C, English S, Austin PC. Administrative database code accuracy did not vary
47 48	535		notably with changes in disease prevalence. J Clin Epidemiol. 2016;79:86-9.
49 50	536	57.	Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and
51 52	537		other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev. 2010;23(1):235-51.
53 54	538	58.	Niederman MS. The argument against using quantitative cultures in clinical trials and for the
55 56	539		management of ventilator-associated pneumonia. Clin Infect Dis. 2010;51 Suppl 1:S93-9.
57 58		21	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Table 1. Discharge diagnosis code definitions (ICD-9-CM) for hospitalizations for serious infection			
	Serious Infection	Primary (first listed) discharge diagnosis code			
	Pneumonia-primary definition	003.22, 480.* ⁱ , 481, 482.*, 483.*, 484.*, 485.*, 486.*, 487.0			
	Pneumonia-secondary definition				
	(primary diagnosis code with	510 * 020 * 700 7 005 01 005 02			
	pneumonia diagnosis (above) in any	510.*, 038.*, 790.7, 995.91, 995.92			
	other diagnosis field)				
		003.21, 036.0, 0.47*, 049.*, 053.0, 054.72, 072.1, 091.81, 094.2, 098.82			
	Meningitis/ Encephalitis	100.81, 320.*, 036.1, 054.3, 056.01, 058.21, 058.29, 062.*, 063.*, 064.*			
		066.41, 072.2, 094.81, 130.0, 323.*			
	Bacteremia/ Sepsis+	038.*, 790.7, 995.91, 995.92			
	Cellulitis/ Soft-tissue infections	035, 040.0, 569.61, 681.*, 682.*, 728.86, 785.4			
	Endocarditis	036.42, 074.22, 093.2*, 098.84, 421.*, 422.92			
	Pyelonephritis	590.*			
	Septic Arthritis/ Osteomyelitis	003.23, 056.71, 098.5*, 711.0, 711.00-711.07, 711.09, 711.9*, 003.24,			
		376.03, 526.4, 730.0*, 730.1*, 730.2*			
541	[‡] A * indicates all numeric values [0-9]			
542	+ Without a diagnosis of pneumonia in any other diagnosis field				
543					
	22				
	For peer review on	ly - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

Table 1 Discharge diagnosis code definitions (ICD_9_CM) for hospitalizations for sorious infaction E 1 O

BMJ Open

1 2 3	
4	Table 2. Positive predictive value (PP)
5 6	for serious infections among adults ≥ 5
7 8 9	Туре
10	Overall
11 12 13	Region Specific
14 15	West
16 17	Central
18 19	East
20	Bed volume size specific
21 22	Low
23 24	Medium
25 26	High
27 28	Serious Infection
29 30	Pneumonia
31 32	Cellulitis/Soft-tissue infections
33 34	Pyelonephritis
35 36	Bacteremia/Sepsis
37 38	Septic Arthritis/Osteomyelitis
39	Endocarditis
40 41 42	Meningitis/Encephalitis
43 44	
45	
46 47	
48 49	
50	
51 52	
53 54	
55	
56	

Table 2. Positive predictive value (PPV) of coded discharge diagnosis definitions for hospitalizations
for serious infections among adults > 50 years of age enrolled in Tennessee Medicaid 2008-2012

Expected Number of Records	Records Received	PPV (95 % CI)		
675	716	90.2	(87.8, 92.2)	
225	195	91.3	(86.5, 94.5)	
225	225	88.9	(84.1, 92.4)	
225	296	90.5	(86.7, 93.4)	
225	230	93.9	(90.0, 96.3)	
225	233	92.7	(88.6, 95.4)	
225	253	84.6	(79.6, 88.5)	
305	340	96.5	(93.9, 98.0)	
125	123	91.1	(84.7, 94.9)	
80	89	87.6	(79.2, 93.0)	
100	92	82.6	(73.6, 89.0)	
50	58	75.9	(63.5, 85.0)	
5	4	75.0	(30.1, 95.4)	
10	10	50.0	(23.7, 76.3)	

23

59 60

57

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Figure 1. Sampling strategy for identifying potential hospitalizations for serious infection Figure 2. Identifying a retrospective cohort of patients >50 years of age without serious/lifethreatening conditions, Tennessee Medicaid (2008-2012)

<text>

			:	Stra	atified Sam	plin	g Strategy				
- [H	East – Low Volume (n=14)	\mathbf{r}		-	3 hospitals]_		-	Stratified random
		Ì	East – Medium Volume (n=11)	<u> </u>		_	3 hospitals]_		-	selection of up to 32 records for each
	All hospitals ^a with >1 serious	-	East – High Volume (n=13)]_		_	3 hospitals]_		-	hospital –
	infection hospitalization	-	Central – Low Volume (n=19)	}_	Random	_	3 hospitals]_	Random	-	Preferentially select al rare infections: then
	among adults ≥50	_	Central – Medium Volume (n=9)	}_	selection	_	3 hospitals]_	selection	-	proportionally and
	years of age in TennCare (2008-2012) Within 200 miles of	-[Central – High Volume (n=10)	}_		-	3 hospitals]_		-	randomly sample remaining records by
		-	West – Low Volume (n=15)]_		-	3 hospitals]-		-	infection type
			West – Medium Volume (n=14)]		-	3 hospitals]_		-	^b to account for up to 209
	Vanderbilt University Medical Center		West – High Volume (n=9)			_	3 hospitals	1			of records not being available for review

Figure 1. Sampling strategy for identifying potential hospitalizations for serious infection

457x139mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

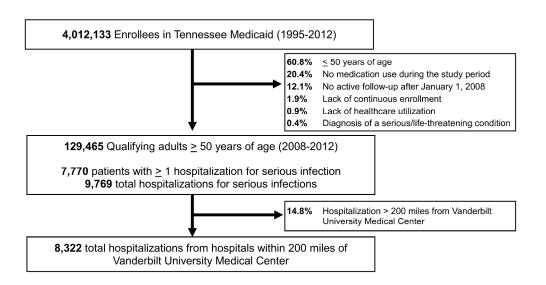


Figure 2. Identifying a retrospective cohort of patients \geq 50 years of age without serious/life-threatening conditions, Tennessee Medicaid (2008-2012)

355x190mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Supplementary Appendix

Infection-Specific Definitions of Hospitalization for Serious Infection

We used a pre-specified adjudication process to determine whether each abstracted medical record corresponded to a true infection or not. Previous validation studies and expert clinical knowledge were used to define specific a priori definitions for each infection type.¹⁻³ Information abstracted from the medical record was compared to these *a priori* definitions for each infection type to make the final determination of whether a hospitalization represented a true infection or not.

Outline

Ι.	Sepsis/Septicemia/Bacteremia/Septic Shock/Generalized Infection	Page 2
II.	Pneumonia	Page 3
III.	Cellulitis/Soft-tissue infections	
IV.	Endocarditis	Page 6
V.	Endocarditis Meningitis/Encephalitis	Page 7
VI.	Pyelonephritis	Page 9
VII.	Septic Arthritis/Osteomvelitis	Page 10
VIII	. References	Page 11

2 3	I.	<u>Sepsis/Septicemia/</u>
4 5		of the following [1 or
6 7	1.	Positive culture of
8		i. <u>Pos</u>
9 10		
11		
12 13		
14 15		
15 16		
17 18		
19		
20 21		
22		
23 24		
25 26		
27		
28 29		
30		
31 32		
33 34		
35		
36 37	2.	At least two of the
38 39		i. <u>Hy</u>
40		
41 42		ii. Tw
43		<u></u>
44 45		
46 47		
48		···· •
49 50		iii. <u>Init</u> sep
51 52		
53		
54 55		
56		
57 58	2	
59 60		For peer re
~~		•

/Bacteremia/Septic Shock/Generalized Infection

or 2]:

1

2

a non-contaminant pathogen

- sitive blood culture [any of the following (1-2)]
 - 1. Any gram-negative organism, except:
 - a. No predominant organism
 - 2. A gram positive organism, except:
 - a. Coagulase-negative Staphylococcus
 - b. Bacillus spp. (other than Bacillus anthracis)
 - c. Corynebacterium spp.
 - d. Propionibacterium spp.
 - e. Micrococcus
 - f. Diptheroids
 - g. Viridians Group Streptococci
 - h. Enterococci
 - i. Clostridium perfringens
 - j. Aerococcus
 - k. Alcaligenes faecalis
 - 1. *Citrobacter*
 - m. Neisseria subflava
 - n. Stomatococcus
 - o. Streptococcus bovis
 - p. Veillonella candidemia
 - q. Mycobacterium tuberculosis
 - r. S. salivarius
 - s. "Gram Positive"
 - "No predominant organism" t.
 - u. Streptococcus alpha

e following, documented at admission +/- 2 days [i-iii]

- potension
 - 1. Systolic BP < 90 mmHg
 - 2. Reduction of systolic BP of 40mmHg from earliest measurement collected during the admission of interest
- vo of the following [1-4]:
 - 1. Temperature $\geq 38^{\circ}$ C or $\leq 36^{\circ}$ C
 - 2. Heart rate \geq 90 beats/minute
 - 3. Respiratory rate \geq 20 breaths/min or PaCO₂ < 32 mmHg
 - 4. WBC \geq 10,000 cells/mm³ or \leq 4,500 cells/mm³ or WBC with > 10 % immature (band) forms
- tiation of antibiotic treatment specifically for psis/septicemia/bacteremia/septic shock/generalized infection

2 3

4 5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21 22

23

24

25 26

27

28 29

30

31

32 33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49 50

51

52

53

54

55

56 57 58

59

60

II. <u>Pneumonia</u>

- 1. Pneumonia identified through examination (<u>all three of the following [a-c]):</u>
 - a. One of the following admission findings indicative of respiratory findings:
 - 1. New and/or increased cough
 - 2. Shortness of breath
 - 3. Pleuritic chest pain
 - 4. New purulent production
 - 5. Altered mental status ("agitation" and "lethargy" included)
 - 6. Crackles
 - a. Physical evidence of consolidation such as egophony, whispered pectoriloquy, etc.
 - b. One of the following examination findings indicative of systemic infection [1-4]:
 - 1. Temperature (T \ge 100.4^oF (38^oC) or \le 96^oF) in first 48 hours of
 - admission
 - 2. Systolic BP \leq 90mmHg
 - 3. Shock
 - a. Volume nonresponsive hypotension
 - 4. Blood peripheral WBC (> 10.0 x $10^{9}/L$ or $\leq 4.5 x 10^{9}/L$)
 - c. Treatment with antibiotics/antivirals indicated for suspected infection

<u>OR</u>

At least two of the following [1-3]:

- 1. Two of the following from #1 ([a and b], [a and c], or [b-c])
- 2. Any of the following findings listed on chest imaging from radiologic report documented at
 - admission +/- 2 days
 - a. Pneumonia
 - b. Lung abscess
 - c. Opacity consistent with pneumonia/lung abscess
 - d. Infiltrate consistent with pneumonia/lung abscess
 - e. Consolidation consistent with pneumonia/lung abscess
 - f. Increased density consistent with pneumonia/lung abscess
 - g. Pleural effusion consistent with pneumonia/lung abscess
 - h. Interstitial edema consistent with pneumonia/lung abscess
- 3. Sterile Site Laboratory Findings
 - i. Any one of the following [i through v]
 - i. Sputum lab findings [any **one** of the following (1, 2)]:
 - 1. Sputum culture/PCR/serology/gram stain positive for an agent that is not considered a contaminant [see exclusion list below]:
 - a. *Aspergillus* species, *Enterococcus* species, viridians group streptococci, and yeast
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
 - ii. Blood lab findings [either of the following (1-3)]
 - 1. Blood culture/PCR/serology positive for an agent that is not considered a contaminant [see exclusion list below]:
 - a. Exclusions
 - i. Coagulase-negative Staphylococcus

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

- ii. Bacillus spp. (other than Bacillus anthracis)
- iii. Corynebacterium spp.
- iv. Propionibacterium spp.
- v. Micrococcus
- vi. Diptheroids
- vii. Viridians Group Streptococci
- viii. Enterococci
- ix. Clostridium perfringens
- x. Aerococcus
- xi. Alcaligenes faecalis
- xii. Citrobacter
- xiii. Neisseria subflava
- xiv. Stomatococcus
- xv. Streptococcus bovis
- xvi. Veillonella candidemia
- xvii. Mycobacterium tuberculosis
- xviii. S. salivarius
- 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
- iii. Pleural fluid lab findings [either of the following (1, 2)]
 - 1. Culture/PCR/serology positive for a bacterial pathogen
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
- iv. Bronchoscopic specimen or deep endotracheal tube aspiration lab findings [either of the following (1, 2)]
 - 1. Culture/PCR/serology positive for a bacterial pathogen
 - 2. Positive viral study (culture/PCR/antigen screen) for a viral pathogen
- v. Urine antigen detection testing [either of the following (1, 2)]
 - 1. Legionella pneumophila
 - 2. Streptococcus pneumoniae

III. <u>Cellulitis/Soft-Tissue Infection</u>

Both of the following:

- 1. Any mention of the following with recent onset (<14 days) [any of the following]
 - a. Skin erythema
 - b. Surgical site infection
 - c. Superficial central line infection
 - d. Ostomy site infection
 - e. Skin infection with associated lymphangitis
- 2. Antibiotic treatment initiated for suspected infection

BMJ Open: first published as 10.1136/bmjopen-2017-020857 on 19 June 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

IV. Endocarditis

Any one of the following [1-3]:

- 1. Major Criteria [both of the following]:
 - a. Suggestive microbiology [at least one of the following]:
 - i. Positive blood culture of an *endocarditis organism* [any of the following]:
 - 1. Streptococcus bovis
 - 2. Viridians streptococci
 - 3. Staphylococcus aureus
 - 4. Enterococcus spp.
 - 5. HACEK organisms
 - 6. Coagulase negative staphylococci
 - b. Evidence of endocardial involvement [at least one of the following]:
 - i. New regurgiant murmur (a change in a preexisting murmur does not get scored)
 - ii. Echocardiogram suspicious for any of the following:
 - 1. Intracardiac mass with no alternative explanation
 - 2. Endocardial abscess
 - 3. New partial prosthesis dehiscence
 - 4. Vegetation on valve
- 2. Minor Criteria [at least 4 of the following]:
 - a. Predisposing valvular disease or IV drug use
 - b. Temperature $\geq 100.4^{\circ}$ F or 38° C
 - c. Vascular phenomena
 - i. Janeway lesions, conjunctival hemorrhages, arterial emboli, septic pulmonary infarcts, mycotic aneurysm, intracranial bleed
 - d. Immunologic phenomena
 - i. Osler nodes, Roth Spots, elevated Rheumatoid factor, hematuria in non-catheter urine, or other evidence of glomerulonephritis
 - e. Positive blood cultures
 - i. Excluding a single positive culture for coagulase negative staphylococci or a single positive culture for an organism that does not fall into the "reasonable endocarditis organism" (i.e. coagulase-positive and coagulase-negative *S. aureus*, Enterococcus, viridians group Streptococci, *S. bovis*, HACEK organisms)
 - f. Positive serology for Brucella, Bartonella, Legionella, or Chlamydia
 - g. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
- 3. At least one Major Criteria AND 3 minor criteria.

1	
2	
3	V. <u>Meningitis/Encephalitis</u>
4	
5	Any one of the following [1 or 2]:
6	1 Doth of the following [a h]
7	1. Both of the following [a-b]
8	a. Laboratory Findings [any one of the following (i-ix)]
9	i. CSF demonstrates any bacterium
10	1. Excluding Diptheroids, Propionibacteria, Bacillus, Coagulase Negative
11	Staphylococcus
12	ii. CSF demonstrates Diptheroids, Propionibacteria, Bacillus, Coagulase Negative
13	Staphylococcus in the setting of past neurosurgical intervention AND physicians
14	elected to treat with antibacterials
15	
16 17	iii. Blood cultures positive for any of the following:
17 18	1. S. pneumoniae
18 19	2. H. influenza
19 20	3. Neisseria meningitidis
20 21	4. Group B Streptococcus
21	iv. Stool cultures positive for enterovirus
22	v. Throat or sputum cultures positive for <i>Neisseria meningitidis</i> in the setting of a
23	rapid onset, overwhelming infection syndrome, including petechiae
25	vi. Serology positive for <i>Mycoplasma</i> , <i>Leptospira</i> , measles, mumps, lymphocytic
26	
27	choriomeningitis virus, arboviruses (e.g. St. Louis encephalitis virus), or HIV (if
28	historically consistent with acute seroconversion).
29	vii. Brain biopsy demonstrates encephalitis
30	viii. Positive CSF culture or PCR detection for any of the following
31	ix. Acute or convalescent serology demonstrates positive antibody pattern for any of
32	the following:
33	1. Encephalitis arbovirus (La Crosse, St. louis, Eastern Equine, Western
34	Equine, Powassan, Japanese, West Nile)
35	b. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected
36	
37	meningitis/encephalitis
38	
39	2. At least two of the following [a-d]
40	a. Clinical meningitis/encephalitis [at least two of the following]:
41	i. Petechial rash
42	ii. Nuchal rigidity (by history or exam)
43	iii. Altered sensorium
44	iv. Fever
45	v. Altered level of consciousness, including "agitation" or "lethargy"
46	
47	vi. Behavioral change
48	vii. Diminished level of consciousness (not easily roused)
49	viii. History of any of the following: headaches, altered mental status, or recent
50	exposure to patient with known bacterial meningitis
51	ix. Reduction in fever within 72 hours of starting anti-bacterial
52	b. Inflammatory CSF [at least one of the following i-ii]
53	i. Pleocytosis: $\geq 15 \text{ WBC/mm}^3$ (after subtracting one WBC for every 1,000 RBC)
54	ii. Elevated protein (based on local lab-determined upper limits)
55	
56	c. Suggestive Findings [at least one of the following (1-1v)
57	7
58	7
59	

i. Septic syndrome

- ii. Focal neurological deficits documented during examination (such as flaccid paralysis or speech alterations for West Nile Virus)
- iii. Abnormal imaging
 - 1. Computed tomography or magnetic resonance imaging (MRI) demonstrating focal edema or inflammation or hemorrhage
 - 2. Indicated as "meningitis/encephalitis" or "compatible with meningitis/encephalitis" or "cannot rule out meningitis/encephalitis"
- iv. Findings indicating an abnormal electroencephalography (such as focal periodic discharges)
- d. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for presumed meningitis/encephalitis

VI. <u>Pyelonephritis</u>

At least two of the following [1-4]:

- 1. Suggestion of infection [at least one of the following]:
 - a. Temperature $\geq 100.4^{\circ} F (38^{\circ} C)$
 - b. Peripheral blood WBC $\geq 10,000/\text{mm}^3$
 - c. Positive blood culture for any of the following:
 - i. Gram Negative Rods
 - ii. Enterococcus spp.
 - iii. Staphylococcus saprophyticus
 - d. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
- 2. Strong renal localization [at least one of the following]:
 - a. CT, MRI, or Ultrasound Suggestive of Renal Inflammation
- 3. Minor Criteria [at least two of the following]:
 - a. Flank pain
 - b. Costovertebral angle tenderness
 - c. Complaints of dysuria, frequency, or suprapubic pain
 - d. Any pyuria
 - e. Urine culture positive for a single organism
- 4. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected pyelonephritis

VII. Septic Arthritis/Osteomyelitis

Any one of the following (1-5):

1

2 3

4 5

6

7

8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

49 50

51

52

53

59

- 1. Synovial fluid gram stain or tissue gram stain or special stain demonstrating any organism
- 2. Joint culture/PCR/serology positive for any organism
- 3. At least two of the following (a-d):
 - a. Positive blood culture/PCR/serology
 - b. Joint with acute $(\le 7 \text{ days})$ worsening of inflammatory features (at least two of the following):
 - i. Pain on history
 - ii. ROM
 - iii. Warmth
 - iv. Effusion
 - v. Swelling
 - vi. Limited range of motion
 - c. Antibiotic/antiviral/antifungal/antifungal treatment initiated/recommended for suspected infection
 - d. Any one of the following (i-iv)
 - i. Synovial fluid WBC \geq 30,000/mm³
 - ii. Synovial fluid WBC \geq 60,000/mm³ with > 75% PMNs
 - iii. Skin lesions, tenosynovitis, or urethral/cervical/rectal Gram stain or culture suggestive of *Neisseria gonorrhoeae*
 - iv. Any indication of the following in the synovial fluid: needle-like crystals, CPPD crystals, uric acid.
- 4. Positive bone biopsy [at least one of the following (a-c)]:
 - a. Positive culture for any organism
 - b. Positive gram stain
- 5. Imaging and indirect features [at least two of the following (a-c)]:
 - a. Consistent imaging [at least one of the following (i-iv)]:
 - i. Plain X-ray read by a radiologist as suggestive of osteomyelitis
 - ii. CT Scan read by a radiologist as suggestive of osteomyelitis
 - iii. MRI read by a radiologist as suggestive of osteomyelitis
 - iv. Bone scan or WBC scan read as suggestive of osteomyelitis
 - b. Suggestive indirect features[at least one of the following (i-viii)]:
 - i. Temperature > $100.4^{\circ}F(38^{\circ}C)$
 - ii. Bony pain or tenderness or erythema over bone suspected to be infected
 - iii. Draining soft tissue sinus over bone suspected to be infected
 - iv. Positive "probe to bone" (or visible bone in deep ulcer at suspected site)
 - v. Blood culture positive for *S. aureus*
 - vi. $ESR \ge 75 \text{ mm/hour}$
 - vii. Intravenous drug use or indwelling catheter
 - viii. Inflammation on imaging associated with an orthopedic prosthesis
 - c. Positive culture for any organism form wound sample over the bone suspected of infection
 - d. Antibiotic/antiviral/antifungal treatment for suspected infection

VIII. References

- 1. Grijalva CG, Chung CP, Stein CM, et al. Computerized definitions showed high positive predictive values for identifying hospitalizations for congestive heart failure and selected infections in Medicaid enrollees with rheumatoid arthritis. Pharmacoepidemiology and drug safety 2008; 17(9): 890-5.
- 2. Schneeweiss S, Robicsek A, Scranton R, Zuckerman D, Solomon DH. Veteran's affairs hospital discharge databases coded serious bacterial infections accurately. Journal of clinical epidemiology 2007; 60(4): 397-409.
- 3. Patkar NM, Curtis JR, Teng GG, et al. Administrative codes combined with medical records based criteria accurately identified bacterial infections among rheumatoid arthritis patients. Journal of clinical epidemiology 2009; 62(3): 321-7, 7.e1-7.

Reported on page

1 2	
3 4	
5	
6 7	
8	
9 10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21	
22 23	
24 25	
26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56 57	
58 59	
59 60	

1

Section & Topic No Item

	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
	-	(such as sensitivity, specificity, predictive values, or AUC)	2
ABSTRACT			
indo france f	2	Structured summary of study design, methods, results, and conclusions	2
	-	(for specific guidance, see STARD for Abstracts)	2
INTRODUCTION			
Introduction	3	Scientific and clinical background, including the intended use and clinical role of the index	4
	0	test	
	4	Study objectives and hypotheses	4
METHODS	-		-
Study design	5	Whether data collection was planned before the index test and reference standard	4
study design	5	were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	4,5
1 un nerpunts	7	On what basis potentially eligible participants were identified	5
	'	(such as symptoms, results from previous tests, inclusion in registry)	5
	8	Where and when potentially eligible participants were identified (setting, location and dates)	4,5
	9	Whether participants formed a consecutive, random or convenience series	4-6
Test methods		Index test, in sufficient detail to allow replication	5, Table 1,
Test methous	104	nicex test, in sufficient dean to anow representation	Supplementary
			Appendix
	10b	Reference standard, in sufficient detail to allow replication	6, Supplementary
			Appendix
	11	Rationale for choosing the reference standard (if alternatives exist)	 Supplementary Appendix
	12a	Definition of and rationale for test positivity cut-offs or result categories	пррененх
	124	of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	6, Supplementary
	120	of the reference standard, distinguishing pre-specified from exploratory	Appendix
	13 a	Whether clinical information and reference standard results were available	6, Supplementary
		to the performers/readers of the index test	Appendix
	13b	Whether clinical information and index test results were available	6, Supplementary
		to the assessors of the reference standard	Appendix
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	7,8
	15	How indeterminate index test or reference standard results were handled	7,8
	16	How missing data on the index test and reference standard were handled	7.8
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from	7,8
		exploratory	
	18	Intended sample size and how it was determined	7,8
RESULTS			
Participants	19	Flow of participants, using a diagram	8
*	20	Baseline demographic and clinical characteristics of participants	8
	21 a	Distribution of severity of disease in those with the target condition	n/a
	21b	Distribution of alternative diagnoses in those without the target condition	n/a
	22	Time interval and any clinical interventions between index test and reference standard	n/a
Test results	23	Cross tabulation of the index test results (or their distribution)	9,10, Table 2
		by the results of the reference standard	- ,,
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	9,10 Table 2
	25	Any adverse events from performing the index test or the reference standard	n/a
DISCUSSION		y	
	26	Study limitations, including sources of potential bias, statistical uncertainty, and	11-13
		generalisability	11.12
	27	Implications for practice, including the intended use and clinical role of the index test	11-13

OTHER INFORMATION			
INFORMATION	28	Registration number and name of registry Where the full study protocol can be accessed	n/a
	20 29	Where the full study protocol can be accessed	1/4
	30	Sources of funding and other support; role of funders	13