

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

# Association of seasonal viral acute respiratory infection with pneumococcal disease: a systematic review of population-based studies

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2017-019743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date Submitted by the Author:        | 22-Sep-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:            | Li, You; University of Edinburgh School of Molecular Genetic and Population<br>Health Sciences, Centre for Global Health Research<br>Peterson, Meagan; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Campbell, Harry; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Nair, Harish; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Nair, Harish; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research |
| <b>Primary Subject<br/>Heading</b> : | Infectious diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Secondary Subject Heading:           | Infectious diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Keywords:                            | respiratory tract infection, pneumococcal infection, viral acute respiratory infection, pneumococcal disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

SCHOLARONE<sup>™</sup> Manuscripts

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| 1                                                                                                                                                                                                                                            |   |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------|
| 2<br>3<br>4                                                                                                                                                                                                                                  | 1 | Assoc             |
| 4<br>5<br>6                                                                                                                                                                                                                                  | 2 | revie             |
| 7<br>8<br>9                                                                                                                                                                                                                                  | 3 | Autho             |
| 10<br>11                                                                                                                                                                                                                                     | 4 | <sup>1</sup> Cent |
| 12<br>13<br>14                                                                                                                                                                                                                               | 5 | Unive             |
| 15<br>16                                                                                                                                                                                                                                     | 6 | * Cor             |
| 17<br>18<br>19                                                                                                                                                                                                                               | 7 | Email             |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 |   |                   |

- w of population-based studies
- ors: You Li<sup>\* 1</sup>, Meagan Peterson<sup>1</sup>, Harry Campbell<sup>1</sup>, Harish Nair<sup>1</sup>
- tre for Global Health Research, Usher Institute of Population Health Sciences and Informatics,
- ersity of Edinburgh, Edinburgh, Scotland, UK.
- responding author
- ioner terien ong : You.Li2@ed.ac.uk (YL)

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Abstract **Objective:** Animal and *in vitro* studies suggest viral acute respiratory infection (VARI) can predispose to pneumococcal infection. These findings suggest that prevention of VARI can yield additional benefits for the control of pneumococcal disease (PD). In population-based studies, however, the evidence is not in accordance, possibly due to a variety of methodological challenges and problems in these studies. We aimed to summarise and critically review the methods and results from these studies in order to inform future studies. Methods: We conducted a systematic review of population-based studies that analysed the association between preceding seasonal VARI and subsequent PD. We searched MEDLINE, Embase and Global Health databases using tailored search strategies. **Results:** A total of 26 studies were included. After critically reviewing the methodologies and findings, 13 of the 26 included studies did not control for seasonal factors shared by both VARI and PD. This, in turn, could lead to an overestimation of the association between the two illnesses. The remaining 13 studies that controlled for seasonal factors suggested that influenza and/or RSV infections were likely to be associated with the subsequent occurrence of PD (influenza: 11/13studies; RSV: 4/5 studies). However, these studies were unable to conduct individual patient data-based analyses. Nevertheless, the included studies suggested that the association between seasonal VARI and subsequent PD were related to additional factors such as virus type and subtype, age group, comorbidity status, presentation of PD and pneumococcal serotype. **Conclusions:** Population-based studies do not give consistent support for an association between preceding seasonal VARI and subsequent PD incidence. The main methodological challenges of existing studies include the failure to utilize individual patient data, control for seasonal factors of VARI and PD, or include other factors related to the association (e.g. virus, age, comorbidity and pneumococcal serotype). Strengths and limitations of this study

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1           |    |                                                                                                 |
|-------------|----|-------------------------------------------------------------------------------------------------|
| 2           | 22 |                                                                                                 |
| 3           | 33 | • This is the first review that critically reviewed the methods and the findings of population- |
| 4<br>5<br>6 | 34 | based studies that reported an association between VARI and PD.                                 |
| 7<br>8      | 35 | Results of studies summarised according to study design and methods                             |
| 9<br>10     | 36 | • No meta-analysis was conducted due to a variety of study designs, data sources and analytical |
| 11<br>12    | 37 | methods in the studies so a narrative summary of the methods and results is provided.           |
| 13<br>14    | 38 | • The review is presented in a manner that would be accessible to a general audience so no      |
| 15<br>16    | 39 | detailed statistical techniques are discussed.                                                  |
| 17<br>18    | 40 |                                                                                                 |
| 19<br>20    |    |                                                                                                 |
| 20<br>21    |    |                                                                                                 |
| 22          |    |                                                                                                 |
| 23          |    |                                                                                                 |
| 24          |    |                                                                                                 |
| 25          |    |                                                                                                 |
| 26          |    |                                                                                                 |
| 27          |    |                                                                                                 |
| 28<br>29    |    |                                                                                                 |
| 30          |    |                                                                                                 |
| 31          |    |                                                                                                 |
| 32          |    |                                                                                                 |
| 33          |    |                                                                                                 |
| 34          |    |                                                                                                 |
| 35          |    |                                                                                                 |
| 36<br>37    |    |                                                                                                 |
| 38          |    |                                                                                                 |
| 39          |    |                                                                                                 |
| 40          |    |                                                                                                 |
| 41          |    |                                                                                                 |
| 42          |    |                                                                                                 |
| 43<br>44    |    |                                                                                                 |
| 44<br>45    |    |                                                                                                 |
| 46          |    |                                                                                                 |
| 47          |    |                                                                                                 |
| 48          |    |                                                                                                 |
| 49          |    |                                                                                                 |
| 50          |    |                                                                                                 |
| 51<br>52    |    |                                                                                                 |
| 53          |    |                                                                                                 |
| 55          |    |                                                                                                 |
| 55          |    |                                                                                                 |
| 56          |    |                                                                                                 |
| 57          |    |                                                                                                 |
| 58<br>59    |    | 3                                                                                               |
| 59<br>60    |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                       |
|             |    |                                                                                                 |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

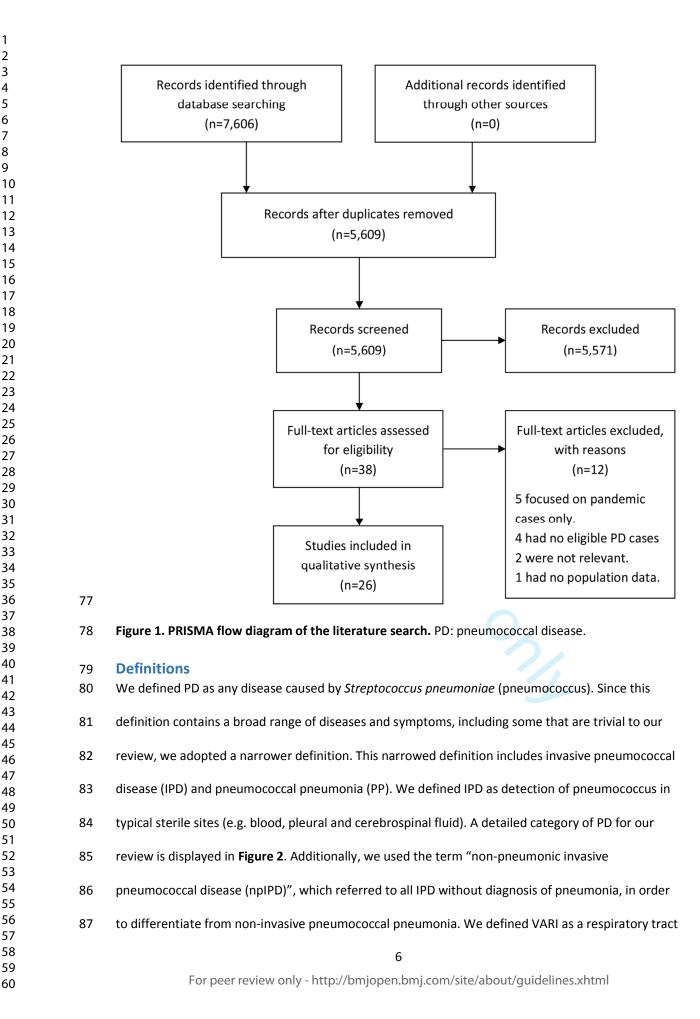
| 1                                                                          |  |
|----------------------------------------------------------------------------|--|
| 2                                                                          |  |
| 3                                                                          |  |
| 4                                                                          |  |
| 4<br>5<br>6                                                                |  |
| 6                                                                          |  |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                      |  |
| 8                                                                          |  |
| 9                                                                          |  |
| 10                                                                         |  |
| 11                                                                         |  |
| 12                                                                         |  |
| 13                                                                         |  |
| 14                                                                         |  |
| 14<br>15                                                                   |  |
| 16                                                                         |  |
| 15<br>16<br>17                                                             |  |
| 10                                                                         |  |
| 10                                                                         |  |
| יק<br>רכ                                                                   |  |
| ∠∪<br>⊃1                                                                   |  |
| ∠ I<br>วว                                                                  |  |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 |  |
| 23                                                                         |  |
| 24                                                                         |  |
| 25                                                                         |  |
| 26                                                                         |  |
| 27                                                                         |  |
| 28                                                                         |  |
| 29                                                                         |  |
| 30                                                                         |  |
| 31                                                                         |  |
| 32                                                                         |  |
| 33                                                                         |  |
| 34<br>35                                                                   |  |
| 35                                                                         |  |
| 36                                                                         |  |
| 36<br>37                                                                   |  |
| 37<br>38                                                                   |  |
| 39                                                                         |  |
| 40                                                                         |  |
|                                                                            |  |
| 41                                                                         |  |
| 42                                                                         |  |
| 43                                                                         |  |
| 44                                                                         |  |
| 45                                                                         |  |
| 46                                                                         |  |
| 47                                                                         |  |
| 48                                                                         |  |
| 49                                                                         |  |
| 50                                                                         |  |
| 51                                                                         |  |
| 52                                                                         |  |
| 53                                                                         |  |
| 54                                                                         |  |
| 55                                                                         |  |
| 56                                                                         |  |
| 57                                                                         |  |
| 58                                                                         |  |
| 59                                                                         |  |
| 59<br>60                                                                   |  |
| 00                                                                         |  |

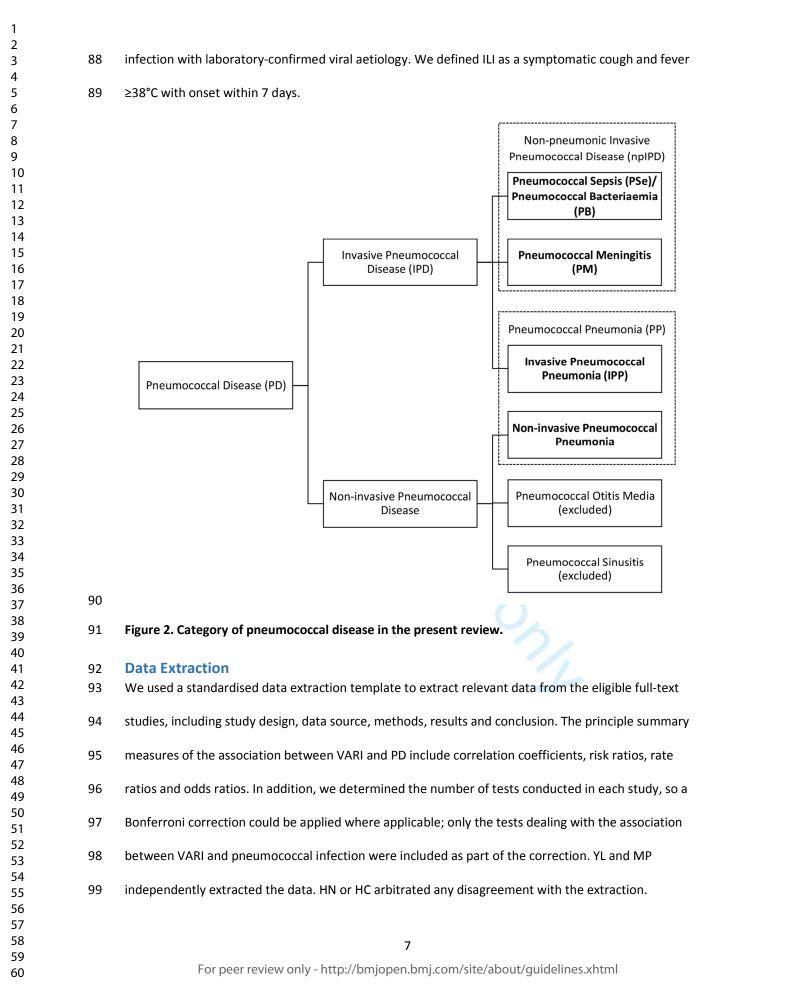
1

| 41<br>42 | Introduction<br>Both viral acute respiratory infection (VARI) and pneumococcal disease (PD) account for a substantial |
|----------|-----------------------------------------------------------------------------------------------------------------------|
| 43       | disease burden worldwide, especially in young children. <sup>122</sup> The association of viral acute respiratory     |
| 44       | infection (VARI) and subsequent pneumococcal disease (PD) was not well recognised until the                           |
| 45       | catastrophic 1918 influenza pandemic, which resulted in an estimated 40-50 million deaths; <sup>3</sup> it has        |
| 46       | been suggested that pneumococcus may have been a major cause the deaths. <sup>4</sup> Most recently, it was           |
| 47       | observed that the incidence of PD was higher during 2009 influenza H1N1 pandemic period than the                      |
| 48       | same period in pre-pandemic <sup>5-9</sup> and post-pandemic years. <sup>689</sup>                                    |
| 49       | During inter-pandemic periods, the associations of seasonal influenza and other seasonal                              |
| 50       | respiratory viruses such as respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and                       |
| 51       | parainfluenza (PIV) with PD incidence are poorly understood and remain unclear. In animal and in-                     |
| 52       | vitro studies, it has been suggested that viral respiratory infection could predispose to                             |
| 53       | pneumococcal infection and might facilitate pneumococcal transmission; in turn, this co-infection                     |
| 54       | could induce a lethal synergism that is much more severe than infection with either pathogen alone                    |
| 55       | (a brief summary of findings displayed in Supplementary Table S1). However, these studies are all                     |
| 56       | relatively small-scale studies and may be subject to publication bias favouring reporting of positive                 |
| 57       | findings. In population-based studies, the findings were inconsistent. These studies differed                         |
| 58       | substantially in study design, data sources and methods, making it difficult to compare and interpret                 |
| 59       | the results across the studies. We conducted a systematic review of population-based studies on the                   |
| 60       | association of preceding VARI on the occurrence of PD to summarise the methodology and results,                       |
| 61       | critically review the findings and present recommendations for future studies.                                        |
|          |                                                                                                                       |

# 62 Methods

63 Search Strategy and Selection Criteria


64 We searched MEDLINE, Embase and Global Health databases using tailored search strategies (details
65 in Supplementary Text S1, PRISMA flowchart in Figure 1). We restricted the search to studies


66 published between 1 January 1990 and 27 April 2017. We included population-based studies with

#### **BMJ** Open

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| 67 | clinically diagnosed PD cases (see below for detailed definition). In terms of VARI exposure, we            |
|----|-------------------------------------------------------------------------------------------------------------|
| 68 | accepted the following studies: (1) those with laboratory confirmed viral infections; (2) those with an     |
| 69 | ICD code for influenza and/or RSV infection; (3) those with case definition of influenza-like illness (ILI) |
| 70 | and bronchiolitis. We excluded animal studies and theoretical studies where no population data              |
| 71 | were applied. We focused our review on the association of seasonal VARI and PD and thus excluded            |
| 72 | studies that reported pandemic influenza cases only. No language restrictions were applied. The             |
| 73 | reference lists of eligible studies were also checked to identify additional studies for inclusion. The     |
| 74 | protocol for this systematic review was registered on PROSPERO (registration number:                        |
| 75 | CRD42017064760).                                                                                            |
| 76 |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    | CRD42017064760).                                                                                            |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |





Page 8 of 50

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

#### **Results**

- A total of 26 studies were eligible and included in the review. We summarised the studies and
- displayed the results according to study design and methods.

#### **Individual Patient Data Based Studies**

- Individual patient data based studies during the inter-pandemic period are sparse. Only three
- studies were included (Table 1). The reported results consistently supported the role of preceding
- VARI on occurrence of PD. However, none of these three studies attempted to control the seasonal
- factors of VARI and PD that could confound the association.

#### Table 1. Summary of individual patient data based studies.

| Study                                      | Study<br>Period | Population                                      | VARI           | PD (n of<br>cases)  | Methods                                                                                                                                                                                                                                                                                                                          | Main findings                                                                                      |
|--------------------------------------------|-----------------|-------------------------------------------------|----------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Edwards et<br>al. 2011 <sup>10</sup>       | 2005–<br>2009   | all ages<br>Northern<br>Territory,<br>Australia | IFV            | IPD<br>(n=346)      | Using data from Notifiable<br>Diseases System, the<br>relative risk of IPD in ≤4w<br>after IFV compared with<br>background risk was<br>calculated.                                                                                                                                                                               | RR=112.5<br>[48.9–224.8]                                                                           |
| O'Brien et<br>al. 2000 <sup>11</sup>       | 1995–<br>1996   | <18y<br>Iowa, US                                | ili<br>IFV A   | Severe PP<br>(n=13) | Case-control design: case<br>from children with severe<br>PP, 3 controls per case<br>selected from friends of<br>cases or from the same<br>primary case practice,<br>matched with age (within<br>1y of the case). ILI history<br>(7–28d) investigated by<br>telephone interview and<br>IFV A convalescent<br>serology collected. | OR (ILI<br>history)=12.4<br>[1.7-306],<br>OR (IFV A<br>convalescent<br>serology)=3.7<br>[1.0–18.1] |
| Stensballe<br>et al.<br>2008 <sup>12</sup> | 1996–<br>2003   | all ages<br>Denmark                             | RSV<br>non-RSV | IPD<br>(n=7,787)    | Prospective cohort study:<br>two exposure groups were<br>RSV and non-RSV<br>respiratory infection<br>hospitalisations within 30d                                                                                                                                                                                                 | RR for RSV=7.<br>[3.6–14.3],<br>RR for non-<br>RSV=4.5 [2.0-<br>10.0]                              |

disease; OR, odds ratio; PD, pneumococcal disease; PP, pneumococcal pneumonia; RR, relative risk;

RSV, respiratory syncytial virus; VARI, viral acute respiratory infection; w, week(s); y, year(s).

| 1              |     |                                                                                                                      |
|----------------|-----|----------------------------------------------------------------------------------------------------------------------|
| 2<br>3         | 112 | Ecological Studies                                                                                                   |
| 4              | 113 | In our review, twenty-three of 26 studies were ecological studies. Additionally, the study by                        |
| 5              | -   |                                                                                                                      |
| 6<br>7         | 114 | Stensballe et al. <sup>12</sup> analysed data at both population and individual level. Since such ecological studies |
| 8<br>9         | 115 | often utilized multiple analytical methods, we reported the results below according to the study                     |
| 10<br>11       | 116 | methodology used to allow for more appropriate comparisons.                                                          |
| 12<br>13       | 117 | Correlation analyses with no control for seasonal patterns                                                           |
| 14<br>15       | 118 | Table 2 shows a summary of 11 studies using correlation analyses. Since all studies conducted                        |
| 16<br>17       | 119 | multiple tests in analysing the correlation (e.g. across age groups, viruses and lag time between VARI               |
| 18<br>19       | 120 | and PD), Bonferroni method was applied to adjust the significance level. The correlation between PD                  |
| 20<br>21       | 121 | and influenza or RSV was significant in all five studies that analysed population data of all ages                   |
| 22<br>23       | 122 | (correlation coefficient r: 0.40–0.71 for influenza at no time lag, 0.47–0.77 for RSV at no time lag).               |
| 24<br>25       | 123 | However, such correlation can never suggest a causal role of VARI on subsequent PD. The shared                       |
| 26<br>27<br>28 | 124 | seasonal risk factors (e.g. temperature, rainfall and length of sunshine) of VARI and PD can confound                |
| 29<br>30       | 125 | the effects, leading to falsely high correlation coefficients while no causal effect exists. Of the 11               |
| 31<br>32       | 126 | studies displayed, seven studies did not perform any further analysis to control for seasonal patterns,              |
| 33<br>34       | 127 | and subsequently it is difficult to interpret the findings from these studies.                                       |
| 35<br>36       |     |                                                                                                                      |
| 37             |     |                                                                                                                      |
| 38<br>39       |     |                                                                                                                      |
| 40             |     |                                                                                                                      |
| 41             |     |                                                                                                                      |
| 42             |     |                                                                                                                      |
| 43<br>44       |     |                                                                                                                      |
| 45             |     |                                                                                                                      |
| 46             |     |                                                                                                                      |
| 47             |     |                                                                                                                      |
| 48             |     |                                                                                                                      |
| 49<br>50       |     |                                                                                                                      |
| 51             |     |                                                                                                                      |
| 52             |     |                                                                                                                      |
| 53             |     |                                                                                                                      |
| 54             |     |                                                                                                                      |
| 55<br>56       |     |                                                                                                                      |
| 56<br>57       |     |                                                                                                                      |
| 58             |     | 0                                                                                                                    |
| 59             |     | 9                                                                                                                    |
| 60             |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                            |

# 128 Table 2. Summary of ecological studies utilising correlation analysis.

| Study                                | Study<br>Period | Population                      | VARI                             | PD (n of cases)            | Data Sources and<br>Scale for Analysis                   | Correlation<br>Method | Correlation Coefficients (time lag)                                                                                                                                                                                                                                                |
|--------------------------------------|-----------------|---------------------------------|----------------------------------|----------------------------|----------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ampofo et<br>al. 2008 <sup>13</sup>  | 2001–<br>2007   | <18y<br>Utah, US                | IFV<br>RSV<br>PIV<br>ADV<br>hMPV | IPD<br>(n=435)             | Hospitalisation<br>and lab data,<br>fortnightly          | Pearson               | <18y, IPD coded by ICD-9 IFV: 0.23 (0), 0.24 (2w), 0.18 (4w); RSV: 0.31a (0), 0.35a (2w), 0.34a (4w); PIV: 0.03 (0), -0.01 (2w), -0.03 (4w); ADV: 0.01 (0), -0.05 (2w), -0.08 (4w); hMPV: 0.31a (0), 0.39a (2w), 0.37a (4w) (similar results for culture-confirmed IPD)            |
| Burgos et al.<br>2015 <sup>14</sup>  | 1996–<br>2012   | ≥18y<br>Barcelona,<br>Spain     | IFV                              | IPD<br>(n=1,150)           | Hospitalisation<br>and surveillance<br>lab data, monthly | Spearman              | <u>≥18γ</u><br>IFV: <b>0.65a</b> (0), <b>0.45a</b> (1m)                                                                                                                                                                                                                            |
| Ciruela et al.<br>2016 <sup>15</sup> | 2006–<br>2012   | all ages<br>Catalonia,<br>Spain | IFV<br>RSV<br>ADV                | IPD<br>(n=8,044)           | Microbiological<br>reporting system,<br>monthly          | Spearman              | <u>All ages</u><br>IFV: <b>0.71a</b> (0), <b>0.64a</b> (1m);<br>RSV: <b>0.77a</b> (0), <b>0.80a</b> (1m);<br>ADV: <b>0.61a</b> (0), <b>0.39a</b> (1m)<br>(similar results for age-stratified analysis of<br>and RSV; results of ADV were only significan<br>among <5y with no lag) |
| Jansen et al.<br>2008 <sup>16</sup>  | 1997–<br>2003   | all ages<br>Netherlands         | IFV<br>RSV                       | IPD<br>(n=7,266;<br>PM+PB) | Weekly Sentinel<br>System, weekly                        | Spearman              | <u>0–4y</u> , <u>5–17y</u> , <u>≥18y</u><br>IFV-PB: <b>0.24b</b> , <b>0.21b</b> , <b>0.62b</b><br>IFV-PM: <b>0.23b</b> , <b>0.14b</b> , <b>0.39b</b><br>RSV-PB: <b>0.29b</b> , <b>0.12b</b> , <b>0.59b</b><br>RSV-PM: <b>0.36b</b> , —, <b>0.44b</b>                               |
|                                      |                 |                                 |                                  |                            | 10                                                       |                       |                                                                                                                                                                                                                                                                                    |
|                                      |                 |                                 | For peer revie                   | w only - http://bn         | njopen.bmj.com/site/                                     | /about/guidelir       | nes.xhtml                                                                                                                                                                                                                                                                          |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| Study                                                                     | Study<br>Period | Population                               | VARI                                | PD (n of cases)   | Data Sources and<br>Scale for Analysis                          | Correlation<br>Method      | Correlation Coefficients (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|---------------------------------------------------------------------------|-----------------|------------------------------------------|-------------------------------------|-------------------|-----------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Kim et al.<br>1996 <sup>17</sup>                                          | 1990–<br>1993   | all ages<br>Houston, TX,<br>US           | IFV<br>RSV<br>ADV<br>PIV<br>non-IFV | IPD<br>(n=480)    | Hospitalisation<br>and surveillance<br>lab data,<br>fortnightly | Pearson                    | $ \frac{\geq 18y}{}$ IFV: <b>0.46a</b> (0), <b>0.35</b> (4w)<br>RSV: <b>0.56a</b> (0), <b>0.54a</b> (4w)<br>ADV: <b>0.25</b> (0), <b>0.29</b> (4w)<br>non-IFV: <b>0.38a</b> (0), <b>0.35</b> (4w)<br>$\leq 18y$<br>IFV: 0.08 (0), <b>0.23</b> (4w), <b>0.47a</b> (8w)<br>RSV: 0.13 (0), <b>0.28</b> (4w), <b>0.32</b> (8w)<br>ADV: <b>0.31</b> (0), <b>0.55a</b> (4w), <b>0.24</b> (8w)<br>non-IFV: <b>0.24</b> (0), <b>0.39a</b> (4w), <b>0.21</b> (8w) |  |  |
| Murdoch et<br>al. 2009 <sup>18</sup>                                      | 1995–<br>2006   | all ages<br>Christchurch,<br>New Zealand | IFV<br>RSV<br>ADV<br>PIV            | IPD<br>(n=737)    | Surveillance data,<br>monthly                                   | Spearman                   | All ages<br>IFV A: 0.44a (0), 0.37a (1m)<br>IFV B: 0.23 (0), 0.13 (1m)<br>RSV: 0.52a (0), 0.47a (1m)<br>ADV: 0.27a (0), 0.33a (1m)<br>PIV 1/2: 0.24 (0), 0.31a (1m)<br>PIV 3: 0.34a (0), 0.17 (1m)<br>(correlations were stronger in 5–65y<br>and >65y)                                                                                                                                                                                                  |  |  |
| Nicoli et al.<br>2013 <sup>19</sup>                                       | 1996–<br>2009   | all ages<br>England and<br>Wales, UK     | IFV<br>RSV                          | IPD<br>(n=71,333) | Surveillance data,<br>weekly                                    | Pearson<br>and<br>Spearman | All ages, Pearson<br>IFV: <b>0.54a</b><br>RSV: <b>0.47a</b><br><u>All ages</u> , Spearman<br>IFV: <b>0.67a</b><br>RSV: <b>0.63a</b><br>(correlations were stronger in 15–64y and<br>≥65y than 0–4y and 5–14y)                                                                                                                                                                                                                                            |  |  |
|                                                                           |                 |                                          |                                     |                   | 11                                                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml |                 |                                          |                                     |                   |                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

| Study                                                                     | Study<br>Period | Population                | VARI                                 | PD (n of cases)                     | Data Sources and<br>Scale for Analysis                                                        | Correlation<br>Method | Correlation Coefficients (time lag)                                                                                                                                                                  |  |  |
|---------------------------------------------------------------------------|-----------------|---------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Peltola et al.<br>2011 <sup>20</sup>                                      | 1995–<br>2007   | <5y<br>Finland            | RV<br>EV<br>RSV<br>IFV<br>PIV<br>ADV | IPD<br>(about 90<br>cases per year) | National<br>Infectious Disease<br>Register + 3<br>studies + virus<br>database,<br>fortnightly | Pearson               | < <u>5γ</u> RV: 0.28, 0.25, 0.31, 0.23a (from 4 studies) EV: 0.17 RSV: 0.05 IFV: -0.03 IFV A: -0.08 PIV: 0.02 ADV: -0.05                                                                             |  |  |
| tensballe<br>t al. 2008 <sup>12</sup>                                     | 1996–<br>2003   | all ages<br>Denmark       | RSV<br>non-RSV                       | IPD<br>(n=7,787)                    | Population Based<br>Registries Cohort,<br>monthly                                             | Pearson               | <u>All ages</u><br>RSV: <b>0.55a</b><br>non-RSV: <b>0.65a</b><br><u>&lt;2y</u><br>RSV: 0.08                                                                                                          |  |  |
| Talbot et al.<br>2005 <sup>21</sup>                                       | 1995–<br>2002   | all ages<br>Tennessee, US | IFV<br>RSV                           | IPD<br>(n=4,147)                    | Surveillance data,<br>weekly                                                                  | Pearson               | All ages<br>RSV: 0.56a (0), 0.60a (1w), 0.59a (2w), 0.57a<br>(3w), 0.55a (4w)<br>IFV: 0.40a (0), 0.41a (1w), 0.34a (2w), 0.33a<br>(3w), 0.26a (4w)<br>(correlations were stronger in ≥18y than <18y) |  |  |
|                                                                           |                 |                           |                                      |                                     |                                                                                               |                       |                                                                                                                                                                                                      |  |  |
|                                                                           |                 |                           |                                      |                                     | 12                                                                                            |                       |                                                                                                                                                                                                      |  |  |
| For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml |                 |                           |                                      |                                     |                                                                                               |                       |                                                                                                                                                                                                      |  |  |

| 3<br>4<br>5<br>6<br>7                                       |     | Study                               | Study<br>Period       | Population                                   | VARI              | PD (n of cases)               | Data Sources and<br>Scale for Analysis | Correlation<br>Method | Correlation Coefficients (time lag)                                                                                                                  |  |  |
|-------------------------------------------------------------|-----|-------------------------------------|-----------------------|----------------------------------------------|-------------------|-------------------------------|----------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 |     | Watson et<br>al. 2006 <sup>22</sup> | 2000<br>(May–<br>Oct) | all ages<br>New South<br>Wales,<br>Australia | IFV<br>RSV<br>PIV | IPD<br>(n=681)                | Surveillance data,<br>weekly           | Pearson               | $\frac{<18y}{IFV: not significant}$ RSV: 0.58a PIV: -0.40 $\geq 18y$ IFV: not significant RSV: not significant PIV: not significant RSV or IFV: 0.48 |  |  |
| 18<br>19                                                    | 129 | Time lag indi                       | cates the             | time difference l                            | between prece     | eding VARI and sub            | sequent PD incidenc                    | e.                    |                                                                                                                                                      |  |  |
| 20<br>21                                                    | 130 | Abbreviation                        | s: ADV, ac            | lenovirus; EV, er                            | nterovirus; IFV   | , influenza virus; IP         | D, invasive pneumoc                    | coccal disease;       | m, month(s); MPV, metapneumovirus; PB,                                                                                                               |  |  |
| 22<br>23                                                    | 131 | pneumococc                          | al bactera            | emia; PD, pneur                              | nococcal disea    | ase; PIV, parainflue          | nza virus; PM, pneun                   | nococcal meni         | ngitis; RSV, respiratory syncytial virus; RV,                                                                                                        |  |  |
| 24<br>25                                                    | 132 | rhinovirus; V                       | ARI, viral a          | acute respiratory                            | y infection; w,   | week(s); y, year(s)           | . '0                                   |                       |                                                                                                                                                      |  |  |
| 26<br>27                                                    | 133 | Correlation of                      | oefficient            | s <b>in bold</b> were st                     | tatistically sign | ificant ( <i>P</i> <0.05); cc | orrelation coefficients                | s ending with "       | 'a" were statistically significant after Bonferroni                                                                                                  |  |  |
| 28<br>29                                                    | 134 | adjustment (                        | <i>P</i> < 0.05/n     | umber of releva                              | nt tests) or wh   | en the Bonferroni             | correction was deem                    | ned unnecessa         | ry; correlation coefficients ending with "b" did not                                                                                                 |  |  |
| 30<br>31<br>32                                              | 135 | have enough                         | informati             | ion to apply the                             | Bonferroni coi    | rrection.                     |                                        |                       |                                                                                                                                                      |  |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39                      |     |                                     |                       |                                              |                   |                               |                                        |                       |                                                                                                                                                      |  |  |
| 40<br>41<br>42<br>43                                        |     |                                     |                       |                                              |                   |                               | 13                                     |                       |                                                                                                                                                      |  |  |
| 44<br>45                                                    |     |                                     |                       |                                              | For peer rev      | iew only - http://br          | njopen.bmj.com/site                    | /about/guideli        | nes.xhtml                                                                                                                                            |  |  |
| 46<br>47                                                    | ht. | cteq by copyrigh                    | iest. Prote           | ril 19, 2024 by gu                           |                   |                               |                                        |                       | 010-7102-nəqojmd/3611.01 as bərlailduq firif :nəqO LMB                                                                                               |  |  |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| 136<br>137 | Analyses controlling for seasonal patterns<br>Table 3 shows the summary of 13 studies that controlled for seasonal patterns. Where required, we |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 138        | applied the Bonferroni correction to account for multiple tests. Results were inconsistent among the                                            |
| 139        | studies. In all-age population studies, preceding influenza infection was likely to be associated with                                          |
| 140        | IPD (11 of 13 studies reported an association). According to two studies that displayed age-stratified                                          |
| 141        | results, <sup>18 19</sup> the association between influenza and IPD was more likely to exist among older people                                 |
| 142        | than among young children. In terms of preceding RSV infection, four out of five studies observed an                                            |
| 143        | association of RSV with PD incidence. Specifically, one study <sup>15</sup> found the association between RSV                                   |
| 144        | and IPD only existed among children <5 years. Studies reporting other viruses such as ADV and PIV                                               |
| 145        | were sparse (two and one studies, respectively). Five studies that analysed two or more viruses                                                 |
| 146        | demonstrated that the association differed by the type of the virus. Moreover, the association could                                            |
| 147        | differ among virus subtypes (e.g. influenza A vs influenza B <sup>23</sup> and PIV 1/2 vs PIV 3 <sup>18</sup> ). Notably, there                 |
| 148        | are other factors that could influence the strength of the associations reported in these studies. For                                          |
| 149        | instance, the association could vary by presentation of PD (invasive pneumococcal pneumonia, IPP                                                |
| 150        | vs npIPD <sup>24-26</sup> and PP vs pneumococcal sepsis, PSe <sup>27</sup> ). Preceding VARI was more likely to be associated                   |
| 151        | with the occurrence of pneumonia than other clinical presentations. Additionally, the results from                                              |
| 152        | studies in Denmark, where comorbidity status and pneumococcal serotype were available,                                                          |
| 153        | demonstrated that influenza had a greater influence on the incidence of low-invasiveness serotypes                                              |
| 154        | than medium- or high- invasiveness among the low comorbidity group; among the high comorbidity                                                  |
| 155        | group, the pattern was reversed. <sup>26 28</sup>                                                                                               |
|            |                                                                                                                                                 |

## **Table 3. Summary of ecological studies controlling for seasonal patterns.**

| Study                                | Study<br>Period | Population                      | VARI (unit<br>used in<br>model)          | PD<br>(number<br>of cases) | Data Sources<br>and Scale for<br>Analysis                            | Statistical<br>Methods             | Covariates                                           | RR [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                       | AP [95% CI] (time lag) |
|--------------------------------------|-----------------|---------------------------------|------------------------------------------|----------------------------|----------------------------------------------------------------------|------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Allard et al.<br>2012 <sup>29</sup>  | 1997–<br>2008   | all ages<br>Montreal,<br>Canada | IFV (case)                               | IPD<br>(n=2,920)           | Notification<br>data and<br>sentinel<br>surveillance<br>data, weekly | Negative<br>binomial<br>regression | long-term<br>trends and<br>seasonal trends<br>of IPD | All ages<br>IFV A: 1.01 (0), 1.00 (1w),<br>1.00 (2w), 0.99 (3w), 1.00<br>(4w), 1.00 (5w)<br>IFV B: 1.01 (0), 1.01 (1w),<br>1.00 (2w), 1.01 (3w), 0.99<br>(4w), 1.01 (5w)                                                                                                                                                                                                                                     |                        |
| Burgos et al.<br>2015 <sup>14</sup>  | 1996–<br>2012   | ≥18y<br>Barcelona,<br>Spain     | IFV (IR per<br>1,000)                    | IPD<br>(n=1,150)           | Hospitalisation<br>and surveillance<br>lab data,<br>monthly          | Negative<br>binomial<br>regression | temperature                                          | <u>≥18y</u><br>IFV: <b>1.23a</b> [1.03–1.47]                                                                                                                                                                                                                                                                                                                                                                 |                        |
| Ciruela et al.<br>2016 <sup>15</sup> | 2006–<br>2012   | all ages<br>Catalonia,<br>Spain | IFV<br>RSV<br>ADV<br>(IR per<br>100,000) | IPD<br>(n=8,044)           | Microbiological<br>reporting<br>system, monthly                      | Negative<br>binomial<br>regression | temperature >1<br>7°C                                | All ages<br>IFV: 1.26b [1.03–1.54] (0),<br>1.09 [0.87–1.36] (1m)<br>RSV: 1.15 [0.89–1.48] (0),<br>1.81b [1.36–2.41] (1m)<br>ADV: 1.58 [0.88–2.74] (0),<br>1.32 [0.68–2.42] (1m)<br>$\leq 5y$<br>IFV: 1.16 [0.90–1.50] (0),<br>1.06 [0.80–1.42] (1m)<br>RSV: 1.41 [1.00–1.97] (0),<br>2.57b [1.78–3.71] (1m)<br>ADV: 2.47b [1.38–4.53]<br>(0), 1.00 [0.59–1.68] (1m)<br>(not significant in 5–64y<br>or ≥65y) |                        |
|                                      |                 |                                 |                                          |                            |                                                                      | 15                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
|                                      |                 |                                 | For pee                                  | r review on                | v - http://bmiop                                                     | en.bmi.com/                        | ′site/about/guide                                    | lines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                  |                        |

| Study                                  | Study<br>Period | Population                                | used in<br>model)                    | (number<br>of cases)  | and Scale for<br>Analysis                       | Statistical<br>Methods             | Covariates                                                                                                                                                             | RR [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                      | AP [95% CI] (time lag)                    |
|----------------------------------------|-----------------|-------------------------------------------|--------------------------------------|-----------------------|-------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Grabowska et<br>al. 2006 <sup>30</sup> | 1994–<br>2004   | all ages<br>Sweden                        | IFV<br>(binary)                      | IPD<br>(n=11,637<br>) | Surveillance<br>data, weekly                    | Negative<br>binomial<br>regression | yearly trends<br>and seasonal<br>trends of IPD                                                                                                                         | All ages<br>IFV: 1.03 [0.93–1.15] (0),<br>1.11 [1.00–1.23] (1w),<br>1.11 [0.99–1.22] (2w),<br>1.14 [1.02–1.26] (3w),<br>1.12 [1.01–1.23] (4w)                                                                                                                                                                                                                                                               | <u>All ages</u><br><b>6%</b> [1–12%] (3w) |
| Kuster et al.<br>2011 <sup>23</sup>    | 1995–<br>2009   | all ages<br>Toronto/ Peel<br>area, Canada | IFV (100<br>cases)                   | IPD<br>(n=6,191)      | Population-<br>based<br>surveillance,<br>weekly | Negative<br>binomial<br>regression | multi-year<br>trends and<br>seasonal trends<br>of IPD, relative<br>humidity,<br>temperature,<br>UV index                                                               | <u>All ages</u><br>IFV A&B: <b>1.09a</b> [1.05–<br>1.14] (1w), <b>0.93</b> [0.89–<br>0.98] (3w)<br>IFV A: identical to IFV A&B<br>IFV B: not significant                                                                                                                                                                                                                                                    |                                           |
| Murdoch et al.<br>2009 <sup>18</sup>   | 1995–<br>2006   | all ages<br>Christchurch,<br>New Zealand  | IFV<br>RSV<br>ADV<br>PIV<br>(binary) | IPD<br>(n=737)        | Surveillance<br>data, monthly                   | Negative<br>binomial<br>regression | average daily<br>temperature<br><10°C,<br>PM10 >50µg/m <sup>3</sup><br>, days with<br>rainfall >10,<br>mean daily 9 am<br>humidity >75%,<br>mean daily<br>sunshine >6h | All ages<br>IFV: <b>1.38</b> [1.02–1.85] (0),<br>1.20 [0.91–1.58] (1m)<br>RSV: 1.15 [0.87–1.52] (0),<br>0.90 [0.68–1.18] (1m)<br>PIV 1/2: 1.04 [0.82–1.30]<br>(0), 1.04 [0.84–1.29] (1m)<br>PIV 3 outside IFV season:<br><b>1.64a</b> [1.18–2.30] (0), <b>1.49</b><br>[1.07–2.08] (1m)<br>ADV: 0.97 [0.78–1.20] (0),<br><b>1.26</b> [1.02–1.54] (1m)<br>(similar in 5–65y, >65y;<br>not significant in <5y) |                                           |
|                                        |                 |                                           |                                      |                       |                                                 | 16                                 |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
|                                        |                 |                                           | For pee                              | r review on           | ly - http://bmjop                               | en.bmj.com/                        | site/about/guide                                                                                                                                                       | lines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |

| Study                                   | Study<br>Period | Population                                                     | VARI (unit<br>used in<br>model)                             | PD<br>(number<br>of cases)       | Data Sources<br>and Scale for<br>Analysis | Statistical<br>Methods             | Covariates                                                                                                     | RR [95% CI] (time lag) | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|-----------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nicoli et al.<br>2013 <sup>19</sup>     | 1996–<br>2009   | all ages<br>England and<br>Wales, UK                           | IFV<br>RSV<br>(case)                                        | IPD<br>(n=71,333<br>)            | Surveillance<br>data, weekly              | Negative<br>binomial<br>regression | weekly<br>temperature or<br>monthly hours<br>of sunshine<br>(separately in<br>models; results<br>were similar) |                        | All ages, 0-4y, 5-14y, 15-64y         ≥65y controlling for         temperature, multiplicative         model         IFV: 5.6%b [0.2-23.8%] , -0.4         [-1.8-0.0%], 2.9% [0.0-13.6%         1.8% [0.1-7.4%], 3.2%b [0.0-14.7%]         RSV: 2.9%b [0.1-14.2%], 1.4%         [0.0-6.9%], 5.9%b [0.0-27.6%         14.5%b [0.0-52.7%], 7.9%b         [0.0-27.4%]         (no significant results in time lag analyses) |
| Walter et al.<br>2010 <sup>24</sup>     | 1995–<br>2006   | all ages<br>US                                                 | IFV (positive<br>percentage)                                | IPD (IPP,<br>npIPD;<br>n=21,239) | Surveillance<br>data, weekly              | Negative<br>binomial<br>regression | seasonal trends<br>and linear<br>trends of IPP                                                                 |                        | Northeast, <u>all ages</u><br>IFV-IPP: <b>4.9%</b> [4.5–5.3%] (1w)<br>South, <u>all ages</u><br>IFV-IPP: <b>5.4%b</b> [5.0–5.9%] (1v<br>West, <u>all ages</u><br>IFV-IPP: <b>5.2%</b> [4.8–6.0%] (1w)<br>(not significant for IFV-npIPD)                                                                                                                                                                                 |
| Weinberger et<br>al. 2014 <sup>25</sup> | 1996–<br>2012   | <7y<br>Navajo/White<br>Mountain<br>Apache<br>population,<br>US | Bronchiolitis<br>(IR, as a<br>proxy for<br>RSV)<br>IFV (IR) | IPD<br>(IPP,<br>npIPD;<br>n=496) | 4 community-<br>based studies,<br>monthly | Poisson<br>regression              | pneumococcal<br>carriage<br>prevalence,<br>seasonal trends<br>of IPD, PCV<br>periods                           |                        | < <u>&lt;7y</u><br>Bronchiolitis-PP: <b>15.5%b</b> [1.8-<br>26.1%]<br>Bronchiolitis-npIPD: 8.0%<br>[-4.8–19.3%]<br>(not significant for IFV)                                                                                                                                                                                                                                                                             |
|                                         |                 |                                                                |                                                             |                                  |                                           | 17                                 |                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                          |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| Study                                   | Study<br>Period | Population      | VARI (unit<br>used in<br>model)      | PD<br>(number<br>of cases) | Data Sources<br>and Scale for<br>Analysis                                   | Statistical<br>Methods | Covariates                                                                                                 | RR [95% CI] (time lag) | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------|-----------------|-----------------|--------------------------------------|----------------------------|-----------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weinberger et<br>al. 2013 <sup>28</sup> | 1977–<br>2007   | ≥40y<br>Denmark | ILI (case, as<br>a proxy for<br>IFV) | IPP<br>(n=8,308)           | Surveillance<br>data +<br>nationwide<br>general practice<br>reports, weekly | Poisson<br>regression  | seasonal trends<br>of IPP, dummy<br>variable for<br>week<br>1,2,3,51,52 and<br>its interaction<br>with ILI |                        | <ul> <li>≥40y, low comorbidity and low serotype invasiveness</li> <li>ILI: 17.9%a [13.6–21.9%] (1w)</li> <li>≥40y, low comorbidity and high serotype invasiveness</li> <li>ILI: 6.7%a [3.8–11.7%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and low serotype invasiveness</li> <li>ILI: 1.3% [-1.6–5.4%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and high serotype invasiveness</li> <li>ILI: 1.3% [-1.6–5.4%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and high serotype invasiveness</li> <li>ILI: 8.9%a [6.6–11.8%] (1w)</li> </ul> |
|                                         |                 |                 |                                      |                            |                                                                             |                        |                                                                                                            |                        | ILI: <b>8.9%a</b> [6.6–11.8%] (1w)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                 |                 |                                      |                            |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |                 |                 |                                      |                            |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |                 |                 |                                      |                            |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |                 |                 |                                      |                            |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |                 |                 |                                      |                            |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |                 |                 |                                      |                            |                                                                             | 18                     |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Study                                   | Study<br>Period | Population          | VARI (unit<br>used in<br>model)      | PD<br>(number<br>of cases)       | Data Sources<br>and Scale for<br>Analysis                                   | Statistical<br>Methods | Covariates                                                                                                 | RR [95% CI] (time lag) | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------|-----------------|---------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weinberger et<br>al. 2014 <sup>26</sup> | 1977–<br>2007   | all ages<br>Denmark | ILI (case, as<br>a proxy for<br>IFV) | IPD (IPP,<br>npIPD;<br>n=13,882) | Surveillance<br>data +<br>nationwide<br>general practice<br>reports, weekly | Poisson<br>regression  | seasonal trends<br>of IPD, dummy<br>variable for<br>week<br>1,2,3,51,52 and<br>its interaction<br>with ILI |                        | $\frac{15-39y}{100}, low comorbidity LI-IPD: 9.9%a [6.0-13.0%](1w) LI-IPP: 11.2%a [6.5-14.8%](1w) LI-npIPD: 6.6% [-1.2-14.3%](1w)15-39y, medium/highcomorbidity LI-IPD: 0.3% [-8.4-9.7%] (1w) LI-IPD: 0.3% [-8.4-9.7%] (1w) LI-IPP: 5.4% [-5.0-18.7%] (1w) LI-IPPD: -6.6% [-25.7-7.6%](1w)≥40y, low comorbidity LI-IPD: 7.6%a [5.1-11.6%](1w) LI-IPD: 7.8%a [5.8-11.7%] (1w) LI-IPPD: 6.9%a [1.8-12.8%](1w)≥40y, medium/highcomorbidity LI-IPD: 6.2%a [4.3-9.3%] (1w) LI-IPD: 5.3%a [2.5-8.9%](1w)$ |
|                                         |                 |                     |                                      |                                  |                                                                             | 19                     |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                 |                     | -                                    |                                  |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                 |                     | For pee                              | r review on                      | ly - http://bmjop                                                           | en.bmi.com/            | /site/about/guide                                                                                          | lines.xhtml            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|   | Study                                   | Study<br>Period | Population              | VARI (unit<br>used in<br>model)        | PD<br>(number<br>of cases)   | Data Sources<br>and Scale for<br>Analysis | Statistical<br>Methods                                                                                     | Covariates                                                     | RR [95% CI] (time lag)                                                                                                                                                                                                                                                       | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                             |
|---|-----------------------------------------|-----------------|-------------------------|----------------------------------------|------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | Weinberger et<br>al. 2015 <sup>27</sup> | 1992–<br>2009   | <2y<br>36 states in US  | IFV<br>RSV<br>(IR)                     | PD (PP,<br>PSe;<br>n=17,404) | State inpatient<br>databases,<br>weekly   | Poisson<br>regression                                                                                      | seasonal trends<br>of PD, PCV<br>periods, IFV or<br>RSV, state | <u>0–2m, 3–11m, 0–11m,</u><br><u>12–23m</u><br>RSV-PP: <b>1.42b</b> [1.30–<br>1.55], <b>1.24b</b> [1.17–1.33],<br><b>1.23b</b> [1.19–1.30], <b>1.12b</b><br>[1.09–1.18]                                                                                                      | 0-2m, 3-11m, 0-11m, 12-23m<br>IFV-PP: 2.1% [-4.5-1.4%],<br>2.2%a [0.1-3.4%], 0.6% [-0.9-<br>1.4%], 3.2%a [1.7-4.7%]<br>RSV-PP:35.7%a [27.9-42.7%],<br>20.0%a [14.7-24.8%], 20.3%a<br>[17.4-25.1%], 10.1%a [7.6-<br>13.9%]<br>IFV-PSe: 0.7% [-1.1-2.2%],<br>-2.7%a [-3.7-1.7%], -0.6%<br>[-1.4-0.3%], 1.9%a [1.1-2.6%]<br>RSV-PSe: 15.0%a [13.1-17.1%],<br>0.1% [-4.9-5.0%], 7.2%a [5.3-<br>9.0%], 3.8%a [2.5-5.2%] |
|   | Zhou et al.<br>2012 <sup>31</sup>       | 1994–<br>2005   | all ages<br>Atlanta, US | IFV<br>RSV<br>(positive<br>percentage) | IPP<br>(n=5,683)             | Surveillance<br>data, weekly              | Negative<br>binomial<br>regression<br>(comparison<br>between<br>models with<br>and without<br>IFV and RSV) | temperature,<br>sunshine,<br>precipitation                     | p values for the likelihood<br>ratio test were <0.05 for 5<br>of 11 influenza seasons:<br>1994–95, 1996–97, 1998–<br>99, 2003–04, 2004–05;<br>after Bonferroni<br>adjustment association<br>was significant for 3 of 11<br>influenza seasons: 1996–<br>97, 2003–04, 2004–05. |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - | -                                       |                 |                         |                                        |                              | bsequent PD ind                           |                                                                                                            |                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                         |                 |                         |                                        |                              |                                           |                                                                                                            |                                                                | h, hour(s); ILI, influenza<br>c invasive pneumococca                                                                                                                                                                                                                         | -like illness; IPD, invasive                                                                                                                                                                                                                                                                                                                                                                                       |
|   | pheumococc                              | uiseds          | c, ir r , ilivasive     |                                        |                              | nia, in, incluent                         |                                                                                                            | , non-priedmoni                                                |                                                                                                                                                                                                                                                                              | , uiscase, r ev,                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                         |                 |                         |                                        |                              |                                           | 20                                                                                                         |                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                         |                 |                         |                                        |                              |                                           |                                                                                                            |                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                         |                 |                         | For peer                               | r review onl                 | y - http://bmjop                          | en.bmj.com/                                                                                                | site/about/guide                                               | lines.xhtml                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                         |                 | 19, 2024 by gue         |                                        |                              |                                           |                                                                                                            |                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 1        |     |                                                                                                                                                            |
|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   |     |                                                                                                                                                            |
| 4        |     |                                                                                                                                                            |
| 5<br>6   | 160 | pneumococcal conjugate vaccine; PD, pneumococcal disease; PIV, parainfluenza virus; PP, pneumococcal pneumonia; PSe, pneumococcal sepsis; RR,              |
| 7<br>8   | 161 | relative risk; RSV, respiratory syncytial virus; UV index, clear-sky ultraviolet index; VARI, viral acute respiratory infection; w, week(s); y, year(s).   |
| 9<br>10  | 162 | Relative risk or attributable percentage in bold were statistically significant (P<0.05); relative risk or attributable percentage ending with "a" were    |
| 11<br>12 | 163 | statistically significant after Bonferroni adjustment (P<0.05/number of relevant tests) or when the Bonferroni correction was deemed unnecessary, those    |
| 13<br>14 | 164 | ending with "b" did not have enough information to apply the Bonferroni correction.                                                                        |
| 15       | 165 |                                                                                                                                                            |
| 16<br>17 |     |                                                                                                                                                            |
| 18       |     |                                                                                                                                                            |
| 19       |     |                                                                                                                                                            |
| 20       |     |                                                                                                                                                            |
| 21<br>22 |     |                                                                                                                                                            |
| 23       |     |                                                                                                                                                            |
| 24       |     |                                                                                                                                                            |
| 25       |     |                                                                                                                                                            |
| 26<br>27 |     |                                                                                                                                                            |
| 28       |     |                                                                                                                                                            |
| 29       |     |                                                                                                                                                            |
| 30       |     |                                                                                                                                                            |
| 31       |     |                                                                                                                                                            |
| 32<br>33 |     |                                                                                                                                                            |
| 34       |     |                                                                                                                                                            |
| 35       |     |                                                                                                                                                            |
| 36       |     |                                                                                                                                                            |
| 37       |     |                                                                                                                                                            |
| 38<br>39 |     |                                                                                                                                                            |
| 40       |     |                                                                                                                                                            |
| 41       |     | 21                                                                                                                                                         |
| 42       |     |                                                                                                                                                            |
| 43<br>44 |     |                                                                                                                                                            |
| 44<br>45 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                  |
| 46<br>47 | .11 | BAJ Open: first published as 10.1136/bmjopen-21076. Protected by copyright from http://bmjopen.bmj.com/ on April 29, 2024 by guest. Protected by copyright |

#### 

| 166 | Studies | utilising | other | analyses |
|-----|---------|-----------|-------|----------|
|-----|---------|-----------|-------|----------|

167 Five ecological studies utilised other analytical methods (**Table 4**). While four of five studies

168 supported the association between preceding VARI and PD, these studies did not control for the

169 seasonal factors of VARI and PD.

## 170 Table 4. Summary of ecological studies utilising other methods.

| Study                                     | Study<br>Period | Population                                   | VARI                                                      | PD (n of<br>cases)     | Methods                                                                                                                                                                                                                      | Main findings                                                                                                                        |
|-------------------------------------------|-----------------|----------------------------------------------|-----------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Dangor et<br>al. 2014 <sup>32</sup>       | 2005–<br>2008   | <15y<br>Soweto,<br>South<br>Africa           | IFV                                                       | IPD<br>(n=636)         | X-11 seasonal adjustment<br>method to obtain peak<br>timing. Peak timing was<br>compared using time series<br>graph.                                                                                                         | IFV peaked in<br>May–Jul,<br>followed by<br>IPD (Aug–Oct).                                                                           |
| Kuster et al.<br>2011 <sup>23</sup>       | 1995–<br>2009   | all ages<br>Toronto/<br>Peel area,<br>Canada | IFV                                                       | IPD<br>(n=6,191)       | Spearman correlation for<br>phase and amplitude terms<br>between influenza and IPD;<br>Granger methods to test<br>whether influenza<br>predicted IPD; Case-<br>crossover analysis to<br>evaluate short-term<br>associations. | IFV enhanced<br>short-term risk<br>of IPD (1w<br>lag), but<br>seasonal<br>waveforms<br>were not<br>correlated.                       |
| Opatowski<br>et al.<br>2013 <sup>33</sup> | 2001–<br>2004   | all ages<br>France                           | VARI<br>(only<br>available<br>during<br>winter<br>season) | PM<br>(n=1,383)        | Weekly PM was modelled<br>using a generalised<br>estimating equations<br>approach; a mathematic<br>model of pneumococcal<br>colonisation and meningitis<br>infection was built.                                              | Model<br>simulations<br>suggested a<br>combined<br>impact of VARI<br>on<br>pneumococcal<br>transmissibility<br>and<br>pathogenicity. |
| Shrestha et<br>al. 2013 <sup>34</sup>     | 1989–<br>2009   | Illinois, US                                 | IFV                                                       | PP<br>(n not<br>known) | SIRS compartmental model<br>of pneumococcal<br>transmission using<br>influenza incidence as a<br>covariate.                                                                                                                  | a transient<br>(~1w) but<br>strong<br>increase (~<br>100 fold) in<br>the risk of PP<br>after infection<br>with IFV.                  |

Page 23 of 50

# **BMJ** Open

| Study                                                                                                                                      | Study<br>Period                                                                                         | Population                                                                                                                                   | VARI                                                                                                        | PD (n of<br>cases)                                                                                                                       | Methods                                                                                                                                                                                                                                       | Main findings                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Toschke et<br>al. 2008 <sup>35</sup>                                                                                                       | 1997–<br>2003                                                                                           | <16y<br>Germany                                                                                                                              | IFV A                                                                                                       | IPD<br>(n=1,474)                                                                                                                         | Time series analysis using<br>Farrington algorithm;<br>multivariate time series<br>analysis using "3h<br>algorithm".                                                                                                                          | Influenza A<br>season did not<br>affect IPD<br>season<br>(P=0.49);<br>influenza A<br>peak did not<br>precede IPD<br>peak.                    |
| Abbreviatio                                                                                                                                | ns: IFV, ii                                                                                             | nfluenza viru                                                                                                                                | s; IPD, inv                                                                                                 | asive pneum                                                                                                                              | ococcal disease; PD, pneun                                                                                                                                                                                                                    | nococcal disease                                                                                                                             |
| PM, pneum                                                                                                                                  | ococcal r                                                                                               | neningitis; PI                                                                                                                               | <sup>o</sup> , pneumo                                                                                       | ococcal pneu                                                                                                                             | monia; VARI, viral acute res                                                                                                                                                                                                                  | spiratory infection                                                                                                                          |
| w, week(s);                                                                                                                                | y, year(s                                                                                               | ).                                                                                                                                           |                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                               |                                                                                                                                              |
|                                                                                                                                            |                                                                                                         |                                                                                                                                              |                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                               |                                                                                                                                              |
| Discuss                                                                                                                                    | ion                                                                                                     |                                                                                                                                              |                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                               |                                                                                                                                              |
| In our reviev                                                                                                                              | w, we su                                                                                                | mmarised po                                                                                                                                  | pulation-                                                                                                   | based studie                                                                                                                             | s that evaluated the associa                                                                                                                                                                                                                  | ation of seasona                                                                                                                             |
| VARI and su                                                                                                                                | ıbsequen                                                                                                | t PD. To our                                                                                                                                 | knowledg                                                                                                    | e, this is the                                                                                                                           | first review that summarise                                                                                                                                                                                                                   | es the                                                                                                                                       |
| methodolog                                                                                                                                 | gy and fin                                                                                              | dings of exis                                                                                                                                | ting epide                                                                                                  | emiological st                                                                                                                           | tudies on this topic.                                                                                                                                                                                                                         |                                                                                                                                              |
| We found                                                                                                                                   | l that rep                                                                                              | orted associa                                                                                                                                | ations bet                                                                                                  | ween VARI a                                                                                                                              | nd subsequent PD were inc                                                                                                                                                                                                                     | consistent amo                                                                                                                               |
|                                                                                                                                            |                                                                                                         |                                                                                                                                              |                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                               |                                                                                                                                              |
|                                                                                                                                            | ded stud                                                                                                | ies. Only thre                                                                                                                               | ee studies                                                                                                  | <sup>10-12</sup> analysec                                                                                                                | the association using indiv                                                                                                                                                                                                                   | vidual patient d                                                                                                                             |
| the 26 inclu                                                                                                                               |                                                                                                         |                                                                                                                                              |                                                                                                             |                                                                                                                                          | I the association using indiv<br>s between VARI and PD tha                                                                                                                                                                                    |                                                                                                                                              |
| the 26 inclu<br>These studie                                                                                                               | es did no                                                                                               | t account for                                                                                                                                | the share                                                                                                   | ed risk factor                                                                                                                           | 4                                                                                                                                                                                                                                             | t influenced th                                                                                                                              |
| the 26 inclu<br>These studio<br>seasonality,                                                                                               | es did no<br>. such as t                                                                                | t account for<br>temperature                                                                                                                 | the share<br>, length o                                                                                     | ed risk factor<br>f sunshine an                                                                                                          | s between VARI and PD tha                                                                                                                                                                                                                     | t influenced th<br>antially limiting                                                                                                         |
| the 26 inclu<br>These studio<br>seasonality,<br>the inference                                                                              | es did no<br>such as t<br>ces that c                                                                    | t account for<br>temperature<br>an be made                                                                                                   | the share<br>, length o<br>from thes                                                                        | ed risk factor<br>f sunshine an<br>e data. In eco                                                                                        | s between VARI and PD thand amount of rainfall, substa                                                                                                                                                                                        | t influenced th<br>antially limiting<br>the 23 ecologic                                                                                      |
| the 26 inclu<br>These studio<br>seasonality,<br>the inference<br>studies acco                                                              | es did no<br>such as f<br>ces that c<br>punted fo                                                       | t account for<br>temperature<br>an be made<br>or seasonal pa                                                                                 | the share<br>, length o<br>from thes<br>atterns. Ir                                                         | ed risk factor<br>f sunshine an<br>ee data. In eco<br>n these studie                                                                     | s between VARI and PD thand amount of rainfall, substa                                                                                                                                                                                        | t influenced the<br>antially limiting<br>the 23 ecologic<br>and/or RSV                                                                       |
| the 26 inclu<br>These studie<br>seasonality,<br>the inference<br>studies acco<br>infections w                                              | es did no<br>such as<br>ces that c<br>punted fo<br>vere likely                                          | t account for<br>temperature<br>an be made<br>or seasonal pa<br>y to be assoc                                                                | the share<br>, length o<br>from thes<br>atterns. Ir<br>iated with                                           | ed risk factor<br>f sunshine an<br>e data. In eco<br>n these studio<br>n the subsequ                                                     | s between VARI and PD than<br>ad amount of rainfall, substa<br>plogical studies, only 13 of t<br>es, we found that influenza                                                                                                                  | t influenced the<br>antially limiting<br>the 23 ecologic<br>and/or RSV<br>influenza, the                                                     |
| the 26 inclu<br>These studio<br>seasonality,<br>the inference<br>studies acco<br>infections we<br>association                              | es did no<br>such as<br>ces that c<br>ounted fo<br>vere likely<br>was stroi                             | t account for<br>temperature<br>an be made<br>or seasonal pa<br>y to be assoc<br>nger among y                                                | the share<br>, length o<br>from thes<br>atterns. Ir<br>iated with<br>younger p                              | ed risk factor<br>f sunshine an<br>e data. In eco<br>n these studie<br>n the subseque<br>opulations co                                   | s between VARI and PD than<br>ad amount of rainfall, substa<br>plogical studies, only 13 of t<br>es, we found that influenza<br>uent occurrence of PD. For i                                                                                  | t influenced th<br>antially limiting<br>the 23 ecologic<br>and/or RSV<br>nfluenza, the<br>while the patt                                     |
| the 26 inclu<br>These studie<br>seasonality,<br>the inference<br>studies acco<br>infections we<br>association<br>was reverse               | es did no<br>such as<br>ces that c<br>ounted fo<br>vere likely<br>was stroi                             | t account for<br>temperature<br>an be made<br>or seasonal pa<br>y to be assoc<br>nger among y<br>/. <sup>15</sup> Data fron                  | the share<br>, length o<br>from thes<br>atterns. Ir<br>iated with<br>younger p<br>n multiple                | ed risk factor<br>f sunshine an<br>e data. In eco<br>n these studie<br>n the subsequ<br>opulations co<br>e studies sugg                  | s between VARI and PD than<br>ad amount of rainfall, substa<br>ological studies, only 13 of t<br>es, we found that influenza<br>uent occurrence of PD. For i<br>compared to older adults <sup>18 19</sup>                                     | t influenced the<br>antially limiting<br>the 23 ecologic<br>and/or RSV<br>influenza, the<br>while the patt<br>studies) and                   |
| the 26 inclu<br>These studio<br>seasonality,<br>the inference<br>studies acco<br>infections w<br>association<br>was reverse<br>subtype (tw | es did no<br>such as<br>ces that c<br>ounted fo<br>vere likely<br>was stroi<br>ed for RSN<br>vo studies | t account for<br>temperature<br>an be made<br>or seasonal pa<br>y to be assoc<br>nger among y<br>/. <sup>15</sup> Data fron<br>5), comorbidi | the share<br>, length o<br>from thes<br>atterns. Ir<br>iated with<br>younger p<br>n multiple<br>ty status ( | ed risk factor<br>f sunshine an<br>e data. In eco<br>n these studie<br>n the subsequ<br>opulations co<br>e studies sugg<br>(two studies) | s between VARI and PD than<br>ad amount of rainfall, substant<br>ological studies, only 13 of t<br>es, we found that influenza<br>uent occurrence of PD. For i<br>compared to older adults <sup>18 15</sup><br>gested that virus type (five s | t influenced th<br>antially limiting<br>the 23 ecologic<br>and/or RSV<br>influenza, the<br>while the patt<br>studies) and<br>be invasiveness |

# Page 24 of 50

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

# BMJ Open

| 4                    |  |
|----------------------|--|
| 5                    |  |
| 6                    |  |
| 7                    |  |
| 8                    |  |
| 9                    |  |
| 10                   |  |
| 11                   |  |
| 12                   |  |
| 13                   |  |
| 14                   |  |
| 12<br>13<br>14<br>15 |  |
| 16                   |  |
| 17                   |  |
| 18                   |  |
| 19<br>20             |  |
| 20                   |  |
| 22                   |  |
| 23                   |  |
| 24                   |  |
| 25                   |  |
| 26                   |  |
| 27                   |  |
| 28                   |  |
| 29                   |  |
| 30                   |  |
| 31                   |  |
| 32                   |  |
| 33<br>24             |  |
| 34<br>35             |  |
| 36                   |  |
| 37                   |  |
| 38                   |  |
| 39                   |  |
| 40                   |  |
| 41                   |  |
| 42                   |  |
| 43                   |  |
| 44                   |  |
| 45                   |  |
| 46                   |  |
| 47                   |  |
| 48<br>49             |  |
| 49<br>50             |  |
| 50                   |  |
| 52                   |  |
| 53                   |  |
| 54                   |  |
| 55                   |  |
| 56                   |  |
| 57                   |  |
| 58                   |  |
| 59                   |  |
| 60                   |  |

1

2 3

| 190 | analytical methods. As such, heterogeneity among the studies, along with their ecological nature,                    |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 191 | limits the amount of valid inferences that can be made from the data (as summarised above).                          |
| 192 | Nevertheless, these studies provide important clues for the potential factors related to the                         |
| 193 | association between VARI and subsequent PD, and thus could help with the conception and design                       |
| 194 | of future studies. Ideally, in order to understand whether a particular preceding VARI can predispose                |
| 195 | an individual to PD, a prospective cohort study that monitors each individual for VARI and                           |
| 196 | pneumococcal infection would be utilised, allowing analyses at both individual and population levels.                |
| 197 | However, such a design would not be feasible or affordable as inter alia pneumococcal infections are                 |
| 198 | rare. Alternatively, utilisation of large-scale routine health data and reliable data linkage (through               |
| 199 | unique individual identifiers) from sources such as surveillance data and hospitalisation datasets may               |
| 200 | be feasible in many industrialised countries. An example of such data linkage in our review is the                   |
| 201 | study by Stensballe and colleagues <sup>12</sup> that linked information from four Danish population-based           |
| 202 | registries. While the authors conducted individual-level analysis, the results were based on cases                   |
| 203 | tested for both the presence of respiratory viruses and pneumococcal infection. The true number of                   |
| 204 | VARI-associated PD cases is likely to be significantly higher due to incomplete testing of cases; the                |
| 205 | untested viral-pneumococcal cases could represent a crucial source of selection bias. Community-                     |
| 206 | based active surveillance can likely address the issue of missing cases but such surveillance would be               |
| 207 | labour intensive to conduct. Another option is a case-control study, which is affordable and practical,              |
| 208 | but not without its limitations. In addition to challenges in designing such studies, defining the                   |
| 209 | history of VARI is likely to be inaccurate since the timing of viral serology may be less accurate. <sup>20</sup> In |
| 210 | the case-control study by O'Brien and colleagues, <sup>11</sup> the authors used influenza-strain specific           |
| 211 | convalescent serology as evidence for preceding influenza infection. The authors also conducted                      |
| 212 | telephone interviews to investigate ILI history but they did not mention whether interviewers and                    |
| 213 | interviewees were blind to case or control status. Moreover, the value of this case-control study is                 |
| 214 | limited by its very small sample size (n case = 13).                                                                 |
|     |                                                                                                                      |

Page 25 of 50

#### **BMJ** Open

| Compared with individual patient data based studies, ecological studies are more feasible, and                                      |
|-------------------------------------------------------------------------------------------------------------------------------------|
| thus the most common study design included in our review (23/26). However, the results should be                                    |
| interpreted at a population level and cannot be generalised to the individual level. Since ecological                               |
| studies used data aggregated into broad categories, the potential biases introduced by the                                          |
| aggregation should be taken into account. For instance, while 14 out of 23 ecological studies used                                  |
| weekly data, others used fortnightly or monthly data. This may lead to misclassification as the time                                |
| window of the association of VARI on PD susceptibility can be as short as one week. <sup>36 37</sup> Moreover,                      |
| data from different sources in ecological studies should represent the same population.                                             |
| Apart from the study design, one further challenge of analysing the association is accounting for                                   |
| the influence of seasonal factors of VARI and PD. Both VARI and PD have similar seasonal patterns,                                  |
| and thus are likely to correlate as indicated by the correlation results from ecological studies. The                               |
| increased risk of PD during an epidemic season could be caused by VARI or by seasonal risk factors                                  |
| or by both. In the present review, ten ecological studies and all three individual patient data based                               |
| studies did not attempt to control for seasonal confounders, likely leading to biased estimations of                                |
| the association. For example, the study by Edwards and colleagues <sup>10</sup> reported a relative risk as high                    |
| as 112.5 when not adjusting any seasonal factors. One way to address this problem in such studies                                   |
| would be to match the individuals with the onset timing of pneumococcal infection, keeping the risk                                 |
| of PD comparable between VARI cases and non-VARI cases.                                                                             |
| Our review suggests that the association of VARI and subsequent PD could vary by virus type <sup>15 18 19</sup>                     |
| <sup>25 28</sup> and even by subtype <sup>18 23</sup> . Studies using combinations of viral infections such as all virus, influenza |
| + RSV, non-influenza, or non-RSV could give biased estimations of the association. However, it is not                               |
| always practical to analyse the association by virus type. In ecological studies, different types of                                |
| viruses might co-circulate and thus be highly correlated in incidence, making it difficult to determine                             |
| the role for each virus. In terms of PD, most studies used IPD as the outcome of interest. However,                                 |
| studies that categorised IPD into IPP and npIPD found that the association was more pronounced in                                   |
| IPP than in npIPD. <sup>24-26</sup> A similar finding, that the association was stronger in PP than PSe, was                        |
| 25                                                                                                                                  |
| Ear peer review only - http://bmionen.hmi.com/site/about/guidelines.yhtml                                                           |

#### Page 26 of 50

#### **BMJ** Open

|                                 | 241 | reported in another study. <sup>27</sup> These results suggest VARI is more likely to be associated with            |
|---------------------------------|-----|---------------------------------------------------------------------------------------------------------------------|
|                                 | 242 | pneumonic pneumococcal infections than non-pneumonic infections. In our review, we excluded                         |
|                                 | 243 | studies using information other than clinical diagnosis as a proxy for PD (e.g. prescription data and               |
| 2                               | 244 | carriage data). Pneumococcal carriage could have a fundamental role in the transmission and                         |
| 0<br>1<br>2                     | 245 | incidence of PD. <sup>38</sup> In a study analysing the impact of pneumococcal carriage and viral activity,         |
| 2<br>3<br>4<br>5<br>6           | 246 | Weinberger and colleagues <sup>25</sup> found npIPD was associated with carriage prevalence, whereas IPP was        |
| 5                               | 247 | associated with bronchiolitis (as a proxy for RSV). The authors also proposed that preceding VARI                   |
| 7<br>8                          | 248 | increased susceptibility but did not enhance transmission (indicated by carriage prevalence) in                     |
| 9<br>0                          | 249 | children. However, more studies are needed to confirm these findings.                                               |
| 1<br>2<br>3                     | 250 | The association could also vary by population characteristics. According to two studies that                        |
| 4                               | 251 | displayed age-stratified results, <sup>18 19</sup> the association of influenza and subsequent IPD was more likely  |
| 5<br>6<br>7                     | 252 | to exist among older people than among young children. Studies by Weinberger et al. <sup>26 28</sup> gauged the     |
| 7<br>8<br>9                     | 253 | association in different comorbidity and pneumococcal serotype groups among Denmark                                 |
| 0                               | 254 | populations. The results showed that influenza had a stronger impact on the incidence of low-                       |
| 2<br>3                          | 255 | invasiveness serotypes than medium- or high- invasiveness ones in the low comorbidity group, while                  |
| 4<br>5<br>6                     | 256 | the pattern reversed in the high comorbidity group. Another study that analysed clinical records of                 |
| 6<br>7                          | 257 | 919 patients with PP found that infrequently colonising pneumococcal serotypes were more likely to                  |
| 8<br>9                          | 258 | cause PP after preceding VARI, particularly in patients with immunodeficiency or chronic lung                       |
| 0<br>1                          | 259 | diseases. <sup>39</sup> These findings suggest the need for future studies to analyse the association by age group, |
| 2<br>3<br>4<br>5<br>6<br>7      | 260 | pneumococcal serotype and comorbidity status. Moreover, the recent introduction of pneumococcal                     |
| 4<br>5                          | 261 | vaccines has brought changes in the incidence of serotype-specific PD, <sup>40</sup> making the association of      |
|                                 | 262 | VARI and PD more complicated to understand. As a result, future studies should consider the                         |
| 8<br>9<br>0                     | 263 | possible serotype-specific influence that pneumococcal vaccines have on both individual immunity                    |
| 1                               | 264 | and herd immunity when analysing the association.                                                                   |
| 3                               | 265 | In addition to the factors discussed above, additional factors may influence the estimates of the                   |
| 2<br>3<br>4<br>5<br>6<br>7<br>8 | 266 | association. The first is the change over time in the methodology of data collection, including                     |
| 7<br>8                          |     | 26                                                                                                                  |
| 0                               |     |                                                                                                                     |

#### BMJ Open

| ן<br>ר         |     |                                                                                                                   |
|----------------|-----|-------------------------------------------------------------------------------------------------------------------|
| 2<br>3         | 267 | changes in test method or diagnosis, clinical practice and health-seeking behaviour. The second is                |
| 4<br>5<br>6    | 268 | the possible delay in measurement, which happened most often in passive hospital-based studies.                   |
| 7<br>8         | 269 | Thirdly, for ecological studies using aggregated data, "holiday spikes" could occur due to more social            |
| 9<br>10        | 270 | gatherings; <sup>41</sup> besides, weekends and holidays might influence timely tests or diagnosis as well as the |
| 11<br>12       | 271 | health-seeking behaviour of patients.                                                                             |
| 13<br>14       | 272 | We found many studies tended to conduct multiple statistical tests using different subgroups and                  |
| 15<br>16       | 273 | time periods (e.g. age group, virus, time lag between VARI and PD) without specifying the primary                 |
| 17<br>18       | 274 | study question a priori or making proper statistical adjustments to account for multiple testing. This            |
| 19<br>20       | 275 | could give rise to an increased risk of reporting false positive results. In this review, we applied              |
| 21<br>22       | 276 | Bonferroni corrections to adjust for the multiple tests where deemed necessary. Since the                         |
| 23<br>24       | 277 | Bonferroni method is conservative and we are unable to adjust for studies where P values were not                 |
| 25<br>26<br>27 | 278 | given, the adjustment in our review is intended for readers' reference and as caveats for future                  |
| 27<br>28<br>29 | 279 | studies.                                                                                                          |
| 30<br>31       | 280 | Given the substantial burden of VARI across the world, <sup>1</sup> even a modest association between VARI        |
| 32<br>33       | 281 | and subsequent PD could lead to a substantial burden of disease in terms of VARI-related PD cases. If             |
| 34<br>35       | 282 | proper anti-bacterial interventions could be applied to those with higher risk of PD due to a                     |
| 36<br>37       | 283 | preceding VARI, subsequent pneumococcal infections could be prevented. The interventions would                    |
| 38<br>39       | 284 | be more effective / better targeted if we could estimate the risk (i.e. the strength of association)              |
| 40<br>41       | 285 | according to timing of infection by week/month of a year, age, comorbidity status, virus type and                 |
| 42<br>43       | 286 | status of immunity. In turn, understanding the association between VARI and subsequent                            |
| 44<br>45       | 287 | pneumococcal infection can help evaluate the full impact of viral vaccine programs.                               |
| 46<br>47       | 288 | In conclusion, the role of seasonal VARI on subsequent PD incidence remains controversial in                      |
| 48<br>49<br>50 | 289 | population-based studies. Nevertheless, these studies provide valuable information and can help                   |
| 50<br>51<br>52 | 290 | with the conception of future well-designed studies. Future work could explore the association by                 |
| 53<br>54       | 291 | timing of infection, age, comorbidity status, virus type, pneumococcal serotype and presentation,                 |
| 55<br>56       | 292 | and thus would identify potentially susceptible populations with VARI for preventive interventions.               |
| 57<br>58       |     | 27                                                                                                                |
| 59             |     | 27<br>For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml                                   |
| 60             |     | FOLDEELTEVIEW ONLY - ITLD://DITIODEN.DITLCOM/SITE/ADOUT/OUIDEITNES.XNUMI                                          |

Page 28 of 50

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

**Supplementary Materials** 

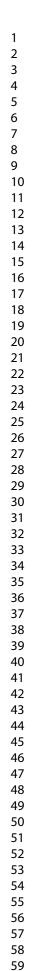
Text S1. Search strategy

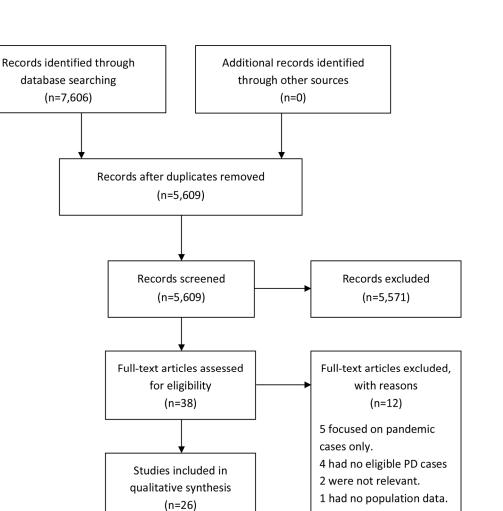
File S1. PRISMA checklist

File S2. Protocol registered in PROSPERO

Table S1. Summary of findings from animal and in vitro studies.

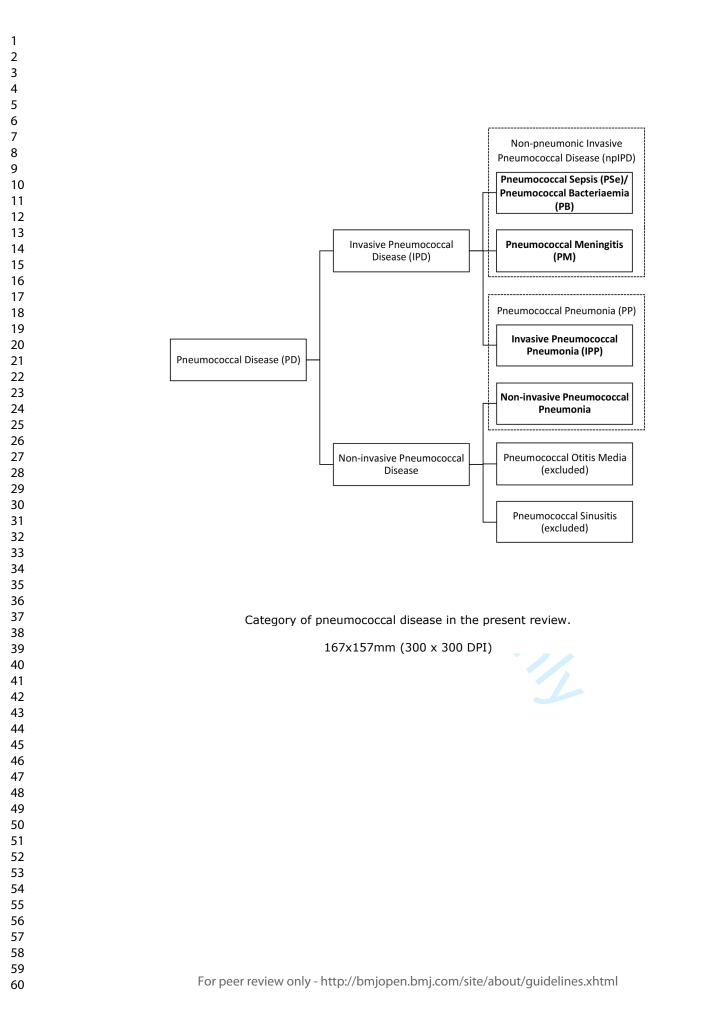
| 298 | Contributors: HN and HC conceived the study. YL did the literature search and reviewed the articles.     |
|-----|----------------------------------------------------------------------------------------------------------|
| 299 | YL and MP extracted and analysed the data independently with oversight from HN and HC. YL                |
| 300 | drafted the manuscript. MP, HN and HC critically reviewed the manuscript. All authors read and           |
| 301 | approved the final draft of the manuscript.                                                              |
| 302 | Competing interests: none declared.                                                                      |
| 303 | Data sharing statement: Data extraction sheets are available in the Edinburgh DataShare repository,      |
| 304 | http://dx.doi.org/10.7488/ds/2047.                                                                       |
| 305 | Funding: YL is supported by a scholarship from the China Scholarship Council.                            |
|     | REFERENCES                                                                                               |
|     |                                                                                                          |
| 306 | 1. Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause          |
| 307 | mortality, and cause-specific mortality for 249 causes of death, 1980-2013;2015: a systematic            |
| 308 | analysis for the Global Burden of Disease Study 2015. The Lancet 2016;388(10053):1459-544.               |
| 309 | 2. O'Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in       |
| 310 | children younger than 5 years: global estimates. Lancet 2009;374(9693):893-902.                          |
| 311 | 3. McCullers JA. Insights into the interaction between influenza virus and pneumococcus. Clin            |
| 312 | Microbiol Rev 2006;19(3):571-82.                                                                         |
| 313 | 4. Chien Y-W, Klugman KP, Morens DM. Bacterial Pathogens and Death during the 1918 Influenza             |
| 314 | Pandemic. N Engl J Med 2009;361(26):2582-83.                                                             |
| 315 | 5. Fleming-Dutra KE, Taylor T, Link-Gelles R, et al. Effect of the 2009 influenza A(H1N1) pandemic on    |
| 316 | invasive pneumococcal pneumonia. J Infect Dis 2013;207(7):1135-43.                                       |
| 317 | 6. Launes C, Garcia-Garcia JJ, Trivino M, et al. Respiratory viruses, such as 2009 H1N1 influenza virus, |
| 318 | could trigger temporal trends in serotypes causing pneumococcal disease. Clin Microbiol Infect           |
| 319 | 2014;20(12):O1088-90.                                                                                    |
|     |                                                                                                          |
|     | 28                                                                                                       |


# BMJ Open


| 1<br>2   |     |                                                                                                           |  |  |  |
|----------|-----|-----------------------------------------------------------------------------------------------------------|--|--|--|
| 3        | 320 | 7. Nelson GE, Gershman KA, Swerdlow DL, et al. Invasive pneumococcal disease and pandemic                 |  |  |  |
| 4<br>5   | 321 | (H1N1) 2009, Denver, Colorado, USA. Emerg Infect Dis 2012;18(2):208-16.                                   |  |  |  |
| 6        | 322 | 8. Pedro-Botet ML, Burgos J, Lujan M, et al. Impact of the 2009 influenza A H1N1 pandemic on              |  |  |  |
| 7<br>8   | 323 | invasive pneumococcal disease in adults. Scand J Infect Dis 2014;46(3):185-92.                            |  |  |  |
| 9<br>10  | 324 | 9. Weinberger DM, Simonsen L, Jordan R, et al. Impact of the 2009 influenza pandemic on                   |  |  |  |
| 10<br>11 | 325 | pneumococcal pneumonia hospitalizations in the United States. J Infect Dis 2012;205(3):458-65.            |  |  |  |
| 12<br>13 | 326 | 10. Edwards LJ, Markey PG, Cook HM, et al. The relationship between influenza and invasive                |  |  |  |
| 14       | 327 | pneumococcal disease in the Northern Territory, 2005-2009. Med J Aust 2011;194(4):207.                    |  |  |  |
| 15<br>16 | 328 | 11. O'Brien KL, Walters MI, Sellman J, et al. Severe pneumococcal pneumonia in previously healthy         |  |  |  |
| 17       | 329 | children: the role of preceding influenza infection. Clin Infect Dis 2000;30(5):784-9.                    |  |  |  |
| 18<br>19 | 330 | 12. Stensballe LG, Hjuler T, Andersen A, et al. Hospitalization for respiratory syncytial virus infection |  |  |  |
| 20       | 331 | and invasive pneumococcal disease in Danish children aged <2 years: a population-based cohort             |  |  |  |
| 21<br>22 | 332 | study. Clin Infect Dis 2008;46(8):1165-71.                                                                |  |  |  |
| 23<br>24 | 333 | 13. Ampofo K, Bender J, Sheng X, et al. Seasonal invasive pneumococcal disease in children: role of       |  |  |  |
| 25       | 334 | preceding respiratory viral infection. Pediatrics 2008;122(2):229-37.                                     |  |  |  |
| 26<br>27 | 335 | 14. Burgos J, Larrosa MN, Martinez A, et al. Impact of influenza season and environmental factors on      |  |  |  |
| 28       | 336 | the clinical presentation and outcome of invasive pneumococcal disease. Eur J Clin Microbiol Infect       |  |  |  |
| 29<br>30 | 337 |                                                                                                           |  |  |  |
| 31       | 338 | 15. Ciruela P, Broner S, Izquierdo C, et al. Invasive pneumococcal disease rates linked to                |  |  |  |
| 32<br>33 | 339 | meteorological factors and respiratory virus circulation (Catalonia, 2006-2012). BMC Public Health        |  |  |  |
| 34<br>35 | 340 | 2016;16(400).                                                                                             |  |  |  |
| 36       | 341 | 16. Jansen AG, Sanders EA, A VDE, et al. Invasive pneumococcal and meningococcal disease:                 |  |  |  |
| 37<br>38 | 342 | association with influenza virus and respiratory syncytial virus activity? Epidemiol Infect               |  |  |  |
| 39       | 343 | 2008;136(11):1448-54.                                                                                     |  |  |  |
| 40<br>41 | 344 | 17. Kim PE, Musher DM, Glezen WP, et al. Association of invasive pneumococcal disease with season,        |  |  |  |
| 42<br>43 | 345 | atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis          |  |  |  |
| 43<br>44 | 346 | 1996;22(1):100-6.                                                                                         |  |  |  |
| 45<br>46 | 347 | 18. Murdoch DR, Jennings LC. Association of respiratory virus activity and environmental factors with     |  |  |  |
| 47       | 348 | the incidence of invasive pneumococcal disease. J Infect 2009;58(1):37-46.                                |  |  |  |
| 48<br>49 | 349 | 19. Nicoli EJ, Trotter CL, Turner KM, et al. Influenza and RSV make a modest contribution to invasive     |  |  |  |
| 50       | 350 | pneumococcal disease incidence in the UK. J Infect 2013;66(6):512-20.                                     |  |  |  |
| 51<br>52 | 351 | 20. Peltola V, Heikkinen T, Ruuskanen O, et al. Temporal association between rhinovirus circulation       |  |  |  |
| 53<br>54 | 352 | in the community and invasive pneumococcal disease in children. Pediatr Infect Dis J 2011;30(6):456-      |  |  |  |
| 55       | 353 | 61.                                                                                                       |  |  |  |
| 56<br>57 |     |                                                                                                           |  |  |  |
| 58       |     | 29                                                                                                        |  |  |  |
| 59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |  |  |  |
|          |     |                                                                                                           |  |  |  |

| 2<br>3   | 354 | 21. Talbot TR, Poehling KA, Hartert TV, et al. Seasonality of invasive pneumococcal disease: temporal       |
|----------|-----|-------------------------------------------------------------------------------------------------------------|
| 4        | 355 | relation to documented influenza and respiratory syncytial viral circulation. Am J Med                      |
| 5<br>6   | 356 | 2005;118(3):285-91.                                                                                         |
| 7        | 357 | 22. Watson M, Gilmour R, Menzies R, et al. The association of respiratory viruses, temperature, and         |
| 8<br>9   | 358 | other climatic parameters with the incidence of invasive pneumococcal disease in Sydney, Australia.         |
| 10<br>11 | 359 | Clin Infect Dis 2006;42(2):211-5.                                                                           |
| 12       | 360 | 23. Kuster SP, Tuite AR, Kwong JC, et al. Evaluation of coseasonality of influenza and invasive             |
| 13<br>14 | 361 | pneumococcal disease: results from prospective surveillance. PLoS Med 2011;8(6):e1001042.                   |
| 15<br>16 | 362 | 24. Walter ND, Taylor TH, Shay DK, et al. Influenza circulation and the burden of invasive                  |
| 17       | 363 | pneumococcal pneumonia during a non-pandemic period in the United States. Clin Infect Dis                   |
| 18<br>19 | 364 | 2010;50(2):175-83.                                                                                          |
| 20       | 365 | 25. Weinberger DM, Grant LR, Steiner CA, et al. Seasonal drivers of pneumococcal disease incidence:         |
| 21<br>22 | 366 | impact of bacterial carriage and viral activity.[Erratum appears in Clin Infect Dis. 2014 Mar;58(6):908].   |
| 23<br>24 | 367 | Clin Infect Dis 2014;58(2):188-94.                                                                          |
| 25       | 368 | 26. Weinberger DM, Harboe ZB, Viboud C, et al. Pneumococcal disease seasonality: incidence,                 |
| 26<br>27 | 369 | severity and the role of influenza activity. Eur Respir J 2014;43(3):833-41.                                |
| 28       | 370 | 27. Weinberger DM, Klugman KP, Steiner CA, et al. Association between respiratory syncytial virus           |
| 29<br>30 | 371 | activity and pneumococcal disease in infants: a time series analysis of US hospitalization data. PLoS       |
| 31<br>32 | 372 | Med 2015;12(1):e1001776.                                                                                    |
| 33       | 373 | 28. Weinberger DM, Harboe ZB, Viboud C, et al. Serotype-specific effect of influenza on adult               |
| 34<br>35 | 374 | invasive pneumococcal pneumonia. J Infect Dis 2013;208(8):1274-80.                                          |
| 36       | 375 | 29. Allard R, Couillard M, Pilon P, et al. Invasive bacterial infections following influenza: a time-series |
| 37<br>38 | 376 | analysis in Montreal, Canada, 1996-2008. Influenza other respi 2012;6(4):268-75.                            |
| 39       | 377 | 30. Grabowska K, Hogberg L, Penttinen P, et al. Occurrence of invasive pneumococcal disease and             |
| 40<br>41 | 378 | number of excess cases due to influenza. BMC Infect Dis 2006;6:58.                                          |
| 42<br>43 | 379 | 31. Zhou H, Haber M, Ray S, et al. Invasive pneumococcal pneumonia and respiratory virus co-                |
| 44       | 380 | infections. Emerg Infect Dis 2012;18(2):294-7.                                                              |
| 45<br>46 | 381 | 32. Dangor Z, Izu A, Moore DP, et al. Temporal association in hospitalizations for tuberculosis,            |
| 47       | 382 | invasive pneumococcal disease and influenza virus illness in South African children. PLoS ONE               |
| 48<br>49 | 383 | 2014;9(3):e91464.                                                                                           |
| 50<br>51 | 384 | 33. Opatowski L, Varon E, Dupont C, et al. Assessing pneumococcal meningitis association with viral         |
| 52       | 385 | respiratory infections and antibiotics: insights from statistical and mathematical models. Proc Biol Sci    |
| 53<br>54 | 386 | 2013;280(1764):20130519.                                                                                    |
| 55       |     |                                                                                                             |
| 56<br>57 |     |                                                                                                             |
| 58<br>59 |     | 30                                                                                                          |
| 60       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                   |

# BMJ Open


| 2        |     |                                                                                                        |
|----------|-----|--------------------------------------------------------------------------------------------------------|
| 3        | 387 | 34. Shrestha S, Foxman B, Weinberger DM, et al. Identifying the interaction between influenza and      |
| 4<br>5   | 388 | pneumococcal pneumonia using incidence data. Sci Transl Med 2013;5(191):191ra84.                       |
| 6        | 389 | 35. Toschke AM, Arenz S, von Kries R, et al. No temporal association between influenza outbreaks       |
| 7<br>8   | 390 | and invasive pneumococcal infections. Arch Dis Child 2008;93(3):218-20.                                |
| 9        | 391 | 36. McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae:      |
| 10<br>11 | 392 | characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis    |
| 12<br>13 | 393 | 2002;186(3):341-50.                                                                                    |
| 14       | 394 | 37. Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-gamma during        |
| 15<br>16 | 395 | recovery from influenza infection. Nat Med 2008;14(5):558-64.                                          |
| 17       | 396 | 38. Simell B, Auranen K, Käyhty H, et al. The fundamental link between pneumococcal carriage and       |
| 18<br>19 | 397 | disease. Expert Rev Vaccines 2012;11(7):841-55.                                                        |
| 20<br>21 | 398 | 39. Song JY, Nahm MH, Cheong HJ, et al. Impact of preceding flu-like illness on the serotype           |
| 21       | 399 | distribution of pneumococcal pneumonia. PLoS ONE 2014;9(4):e93477.                                     |
| 23<br>24 | 400 | 40. Shiri T, Datta S, Madan J, et al. Indirect effects of childhood pneumococcal conjugate vaccination |
| 25       | 401 | on invasive pneumococcal disease: a systematic review and meta-analysis. The Lancet Global Health      |
| 26<br>27 | 402 | 2017;5(1):e51-e59.                                                                                     |
| 28       | 403 | 41. Walter ND, Taylor THJ, Dowell SF, et al. Holiday Spikes in Pneumococcal Disease among Older        |
| 29<br>30 | 404 | Adults. N Engl J Med 2009;361(26):2584-85.                                                             |
| 31<br>32 | 405 |                                                                                                        |
| 33       | 105 |                                                                                                        |
| 34<br>35 | 406 |                                                                                                        |
| 36       |     |                                                                                                        |
| 37<br>38 |     |                                                                                                        |
| 39<br>40 |     |                                                                                                        |
| 41       |     |                                                                                                        |
| 42<br>43 |     |                                                                                                        |
| 44       |     |                                                                                                        |
| 45<br>46 |     |                                                                                                        |
| 47       |     |                                                                                                        |
| 48<br>49 |     |                                                                                                        |
| 50<br>51 |     |                                                                                                        |
| 52       |     |                                                                                                        |
| 53<br>54 |     |                                                                                                        |
| 55       |     |                                                                                                        |
| 56<br>57 |     |                                                                                                        |
| 58       |     | 31                                                                                                     |
| 59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                              |





PRISMA flow diagram of the literature search. PD: pneumococcal disease.

158x165mm (300 x 300 DPI)



| $\begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 02 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 13 \\ 23 \\ 34 \\ 53 \\ 6 \\ 73 \\ 8 \\ 9 \\ 01 \\ 12 \\ 34 \\ 45 \\ 46 \\ 78 \\ 9 \\ 51 \\ 53 \\ 55 \\ 57 \\ 58 \\ 59 \\ \end{array}$                                      | 1<br>2<br>3 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>9<br>20<br>21<br>22<br>32<br>4<br>25<br>26<br>27<br>28<br>29<br>31<br>32<br>33<br>4<br>35<br>37<br>38<br>9<br>40<br>41<br>42<br>34<br>45<br>46<br>47<br>48<br>9<br>50<br>152<br>53<br>45<br>56<br>57<br>58<br>59                                                                    | 4<br>5<br>6 |  |
| $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 13 \\ 23 \\ 34 \\ 35 \\ 37 \\ 38 \\ 9 \\ 41 \\ 42 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 23 \\ 55 \\ 57 \\ 58 \\ 59 \end{array}$                                                           | 9           |  |
| $\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 940\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$                                                                                        | 11          |  |
| $\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 940\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 48\\ 950\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$                                                                                                    | 13<br>14    |  |
| $\begin{array}{c} 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 546\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$                                                                                                              | 16<br>17    |  |
| $\begin{array}{c} 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$                                                                                                                    | 20          |  |
| $\begin{array}{c} 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$                                                                                                                                     | 22<br>23    |  |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                   | 25          |  |
| 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                               | 28          |  |
| <ul> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> </ul> | 30<br>31    |  |
| <ul> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> </ul>                                     | 33<br>34    |  |
| <ol> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> </ol>                                                                         | 36<br>37    |  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                       | 39<br>40    |  |
| 45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                         | 42<br>43    |  |
| 48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                           | 45<br>46    |  |
| 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                             | 48<br>49    |  |
| 54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                               | 51          |  |
| 56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                           | 53<br>54    |  |
| 59                                                                                                                                                                                                                                                                                                                                             | 56<br>57    |  |
| 60                                                                                                                                                                                                                                                                                                                                             |             |  |

1

| Table S1. Summary of findings from animal and in vitro studies.                       |                                                                                      |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                                                                                 | Material                                                                             | Exposure                                                                                         | Main findings                                                                                                                                                                                                                                                                                                                                                            |
| Diavatopoulos<br>et al. 2010 <sup>1</sup>                                             | Mice<br>(n=~10 per<br>group)                                                         | influenza A +<br>pneumococcus<br>(3d later)                                                      | On day 3 of pneumococcus challenge,<br>pneumococcus numbers increased in the<br>nasopharynx (50-fold, P=0.0002) and the<br>lungs (300-fold, P=0.0005) in influenza A<br>group, compared with mock-treated group;<br>transmission of pneumococcus between<br>littermates was dependent on infection with<br>influenza A.                                                  |
| Hament et al.<br>2004 <sup>2</sup>                                                    | Monolayers of<br>human<br>nasopharyngeal<br>cells and<br>pneumocyte<br>type II cells | RSV +<br>pneumococcus                                                                            | After RSV infection of the monolayers, an<br>increased adherence (2–10 fold) was<br>observed among all serotypes compared<br>with uninfected monolayers.                                                                                                                                                                                                                 |
| Hament et al.<br>2005 <sup>3</sup><br>Kukavica-<br>Ibrulj et al.<br>2009 <sup>4</sup> | Mice<br>(n=7 per group)<br>Mice<br>(n=18 per<br>group)                               | RSV +<br>pneumococcus<br>(0 or 4d later)<br>hMPV/<br>influenza A +<br>pneumococcus<br>(5d later) | At 24h of pneumococcus challenge, mice<br>infected with RSV 0 or 4d before<br>pneumococcus challenge had higher levels<br>of bacteremia than control group.<br>Pneumococcus numbers on day 7 of<br>pneumococcus challenge: 5×10 <sup>2</sup> CFU/lung in<br>mock infection, 10 <sup>7</sup> CFU/lung in hMPV group<br>and 10 <sup>8</sup> CFU/lung in influenza A group. |
|                                                                                       |                                                                                      |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                          |

## Table S1. Summary of findings from animal and in vitro studies

Page 35 of 50

#### **BMJ** Open

| Study                 | Material       | Exposure        | Main findings                              |
|-----------------------|----------------|-----------------|--------------------------------------------|
| LeVine et al.         | Mice (n=3 per  | influenza A +   | Lungs of influenza-exposed mice            |
| 2001 <sup>5</sup>     | group)         | pneumococcus    | demonstrated greater colony counts 24h     |
| 2001                  | P. oah)        | (7d later)      | and 48h following pneumococcus challenge.  |
|                       |                | hMPV/           | Only mice infected with influenza A        |
| Ludewick et           | Mice (n=18 per | influenza A +   | demonstrated an 8% weight loss 72h         |
| al. 2011 <sup>6</sup> | group)         | pneumococcus    | following pneumococcus challenge while     |
|                       |                | (14d later)     | hMPV group and mock group did not.         |
|                       |                |                 | 60% of mice died 2–11d after               |
|                       |                |                 | pneumococcus challenge in influenza A      |
| McCullers et          |                | influenza A +   | group compared with 15% in mock group;     |
|                       | Mice (n=20 per | pneumococcus    | reversal of the order of challenge led to  |
| al. 2002 <sup>7</sup> | group)         | (0 or 7d later) | protection from influenza; challenge of    |
|                       |                |                 | influenza and pneumococcus on the same     |
|                       |                |                 | day led to 100% mortality.                 |
|                       | Ferrets (n=5   | influence A     | Prior influenza infection enhanced         |
| McCullers et          | per group) and | influenza A +   | pneumococcal transmission and disease; the |
| al. 2010 <sup>8</sup> | Mice (n=~5 per | pneumococcus    | influenza-mediated effects were            |
|                       | group)         | (7d later)      | pneumococcal strain dependent.             |
|                       |                |                 | Pneumococcal coinfection during the acute  |
|                       |                | influenza A +   | phase of influenza A infection increased   |
| Sharma-               | Mice (n=3–5    | pneumococcus    | degree of pneumonia and mortality for all  |
| Chawla et al.         | per group)     | T4, 19F or 7F   | tested pneumococcal strains. However, the  |
| 2016 <sup>9</sup>     |                | (7d later)      | incidence and kinetics of systemic         |
|                       |                |                 | dissemination remained strain dependent.   |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Study                              | Material                                                                          | Exposure                            | Main findings                                                                                                                                                                                                                    |
|------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Smith et al.<br>2014 <sup>10</sup> | Human ciliated<br>respiratory<br>epithelial cells<br>and mice (n=10<br>per group) | RSV +<br>pneumococcus               | Following incubation with RSV,<br>pneumococcus demonstrated a significant<br>increase in the inflammatory response and<br>bacterial adherence to human ciliated<br>epithelial cultures and increased virulence in<br>mice model. |
| Stark et al.<br>2006 <sup>11</sup> | Mice (n>12 per<br>group)                                                          | RSV +<br>pneumococcus<br>(7d later) | Pneumococcus numbers at 24h of<br>pneumococcus challenge: 7.45×10 <sup>5</sup><br>CFU/lung in RSV group, 5.9×10 <sup>3</sup> CFU/lung in<br>mock group.                                                                          |

The number in brackets in the column Material refers to the number of animals observed under each experiment condition; number of animals used in transmission models (used by some studies) were not displayed.

Abbreviations: CFU, colony-forming units; d, day(s); h, hour(s); hMPV, human metapneumovirus;

RSV, respiratory syncytial virus.

#### **BMJ** Open

#### Reference

1. Diavatopoulos DA, Short KR, Price JT, et al. Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. Faseb J 2010;24(6):1789-98.

2. Hament J-M, Aerts PC, Fleer A, et al. Enhanced Adherence of Streptococcus pneumoniae to

Human Epithelial Cells Infected with Respiratory Syncytial Virus. Pediatr Res 2004;55(6):972-78.

3. Hament JM, Aerts PC, Fleer A, et al. Direct binding of respiratory syncytial virus to pneumococci: a

phenomenon that enhances both pneumococcal adherence to human epithelial cells and

pneumococcal invasiveness in a murine model. Pediatr Res 2005;58(6):1198-203.

4. Kukavica-Ibrulj I, Hamelin ME, Prince GA, et al. Infection with human metapneumovirus predisposes mice to severe pneumococcal pneumonia. J Virol 2009;83(3):1341-9.

5. LeVine AM, Koeningsknecht V, Stark JM. Decreased pulmonary clearance of S. pneumoniae following influenza A infection in mice. J Virol Methods 2001;94(1-2):173-86.

6. Ludewick HP, Aerts L, Hamelin ME, et al. Long-term impairment of Streptococcus pneumoniae lung clearance is observed after initial infection with influenza A virus but not human metapneumovirus in mice. J Gen Virol 2011;92(Pt 7):1662-5.

7. McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis 2002;186(3):341-50.

8. McCullers JA, McAuley JL, Browall S, et al. Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J Infect Dis 2010;202(8):1287-95.

9. Sharma-Chawla N, Sender V, Kershaw O, et al. Influenza A virus infection predisposes hosts to secondary infection with different Streptococcus pneumoniae serotypes with similar outcome but serotype-specific manifestation. Infection and Immunity 2016;84(12):3445-57.

10. Smith CM, Sandrini S, Datta S, et al. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 2014;190(2):196-207.

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

11. Stark JM, Stark MA, Colasurdo GN, et al. Decreased bacterial clearance from the lungs of mice following primary respiratory syncytial virus infection. J Med Virol 2006;78(6):829-38.

.tion.JMe

| Text S1. Search strategy                                                                           |
|----------------------------------------------------------------------------------------------------|
| Medline                                                                                            |
| 1. Meningitis, Pneumococcal/ or Pneumonia, Pneumococcal/ or exp Pneumococcal Infections/ or        |
| pneumococc*.mp.                                                                                    |
| 2. exp Streptococcus pneumoniae/ or Streptococcus pneumoniae.mp.                                   |
| 3. virus.mp. or exp Viruses/                                                                       |
| 4. exp Virus Diseases/ or virus disease*.mp.                                                       |
| 5. correlat*.mp.                                                                                   |
| 6. associat*.mp.                                                                                   |
| 7. interact*.mp.                                                                                   |
| <ul> <li>7. interact*.mp.</li> <li>8. relat*.mp.</li> <li>9. 1 or 2</li> <li>10. 3 or 4</li> </ul> |
| 9. 1 or 2                                                                                          |
| 10. 3 or 4                                                                                         |
| 11. 5 or 6 or 7 or 8                                                                               |
| 12. 9 and 10 and 11                                                                                |
| 13. limit 12 to yr="1990 -Current"                                                                 |
| 1664 results by 27 Apr 2017                                                                        |
| EMbase                                                                                             |
| 1. exp pneumococcal infection/ or pneumococc*.mp.                                                  |
| 2. Streptococcus pneumoniae.mp. or exp Streptococcus pneumoniae/                                   |
|                                                                                                    |
|                                                                                                    |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

4. exp virus infection/ or virus infection\*.mp. or virus disease\*.mp. 5. exp correlational study/ or exp correlation analysis/ or correlat\*.mp. 6. associat\*.mp. 7. interact\*.mp. <image> 8. relat\*.mp. 9.1 or 2 10.3 or 4 11.5 or 6 or 7 or 8 12.9 and 10 and 11 13. limit 12 to yr="1990 -Current" 4778 results by 27 Apr 2017.

#### **Global Health**

1. Streptococcus pneumoniae.mp. or exp Streptococcus pneumoniae/

- 2. pneumococc\*.mp.
- 3. virus\*.mp. or viruses/

3. exp virus/ or virus\*.mp.

- 4. virus disease\*.mp. or viral diseases.sh. or virus infection\*.mp.
- 5. exp correlation/ or correlation analysis/ or correlat\*.mp.

6. associat\*.mp.

7. interact\*.mp.

| 1        |                                                                             |
|----------|-----------------------------------------------------------------------------|
| 2        |                                                                             |
| 3        | 8. relat*.mp.                                                               |
| 4        |                                                                             |
| 5        | 9. 1 or 2                                                                   |
| 6        | 3.1012                                                                      |
| 7        |                                                                             |
| 8        | 10. 3 or 4                                                                  |
| 9        |                                                                             |
| 10       |                                                                             |
| 11       | 11. 5 or 6 or 7 or 8                                                        |
| 12       |                                                                             |
| 13       | 12. 9 and 10 and 11                                                         |
| 14<br>15 |                                                                             |
| 16       |                                                                             |
| 17       | 13. limit 12 to yr="1990 -Current"                                          |
| 18       |                                                                             |
| 19       |                                                                             |
| 20       | 1164 results by 27 Apr 2017                                                 |
| 21       |                                                                             |
| 22       |                                                                             |
| 23       |                                                                             |
| 24       |                                                                             |
| 25       |                                                                             |
| 26       |                                                                             |
| 27       |                                                                             |
| 28       |                                                                             |
| 29       |                                                                             |
| 30       | 1164 results by 27 Apr 2017                                                 |
| 31       |                                                                             |
| 32       |                                                                             |
| 33       |                                                                             |
| 34       |                                                                             |
| 35       |                                                                             |
| 36       |                                                                             |
| 37       |                                                                             |
| 38<br>39 |                                                                             |
| 40       |                                                                             |
| 40       |                                                                             |
| 42       |                                                                             |
| 43       |                                                                             |
| 44       |                                                                             |
| 45       |                                                                             |
| 46       |                                                                             |
| 47       |                                                                             |
| 48       |                                                                             |
| 49       |                                                                             |
| 50       |                                                                             |
| 51       |                                                                             |
| 52       |                                                                             |
| 53       |                                                                             |
| 54       |                                                                             |
| 55       |                                                                             |
| 56       |                                                                             |
| 57       |                                                                             |
| 58       |                                                                             |
| 59       | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml   |
| 60       | r or peer review only - http://binjopen.binj.com/site/about/guidemies.Xhtml |

# UNIVERSITY of York Centre for Reviews and Dissemination

Page 42 of 50

# PROSPERO International prospective register of systematic reviews

#### Review title and timescale

1 Review title

Give the working title of the review. This must be in English. Ideally it should state succinctly the interventions or exposures being reviewed and the associated health or social problem being addressed in the review. Association of seasonal viral acute respiratory infection (VARI) with pneumococcal disease (PD): a systematic review of population-based studies

2 Original language title

For reviews in languages other than English, this field should be used to enter the title in the language of the review. This will be displayed together with the English language title.

- 3 Anticipated or actual start date Give the date when the systematic review commenced, or is expected to commence. 07/12/2016
- 4 Anticipated completion date Give the date by which the review is expected to be completed. 31/05/2017
- 5 Stage of review at time of this submission

Indicate the stage of progress of the review by ticking the relevant boxes. Reviews that have progressed beyond the point of completing data extraction at the time of initial registration are not eligible for inclusion in PROSPERO. This field should be updated when any amendments are made to a published record.

The review has not yet started ×

| Review stage                                                    | Started | Completed |
|-----------------------------------------------------------------|---------|-----------|
| Preliminary searches                                            | Yes     | Yes       |
| Piloting of the study selection process                         | Yes     | Yes       |
| Formal screening of search results against eligibility criteria | Yes     | Yes       |
| Data extraction                                                 | Yes     | No        |
| Risk of bias (quality) assessment                               | Yes     | No        |
| Data analysis                                                   | No      | No        |

Provide any other relevant information about the stage of the review here.

#### Review team details

6 Named contact

The named contact acts as the guarantor for the accuracy of the information presented in the register record. You Li

- Named contact email
   Enter the electronic mail address of the named contact.
   You.Li2@ed.ac.uk
- 8 Named contact address
  Enter the full postal address for the named contact.
  3.730 Doorway 1, Old Medical School Teviot Place Edinburgh UK
- Named contact phone number
   Enter the telephone number for the named contact, including international dialing code.
   +44 (0)7871 566188
- 10 Organisational affiliation of the review Full title of the organisational affiliations for this review, and website address if available. This field may be completed as 'None' if the review is not affiliated to any organisation.

Page: 1 / 7

**BMJ Open** 

| UN               |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cer              | IIVERSIT                                                                                                                                                                                                                                                                                                                        | Y <i>of york</i><br>views and Dis                                                                                                                                                                                                                                                                   | semination                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    | National Institute<br>Health Resear                                                                                                                                         |  |
|                  | The Univers                                                                                                                                                                                                                                                                                                                     | ity of Edinburgh                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |  |
|                  | Website add                                                                                                                                                                                                                                                                                                                     | Iress:                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |  |
|                  | www.ed.ac.u                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |  |
| 11               | Give the title                                                                                                                                                                                                                                                                                                                  | e, first name and la                                                                                                                                                                                                                                                                                | I their organisational<br>ast name of all member<br>ach member of the revie                                                                                                                               | s of the team working directly on                                                                                                                                                                                                                                                                                                                  | the review. Give the                                                                                                                                                        |  |
|                  | Title                                                                                                                                                                                                                                                                                                                           | First name                                                                                                                                                                                                                                                                                          | Last name                                                                                                                                                                                                 | Affiliation                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |  |
|                  | Mr<br>Ms                                                                                                                                                                                                                                                                                                                        | You<br>Meagan                                                                                                                                                                                                                                                                                       | Li<br>Peterson                                                                                                                                                                                            | The University of Edinburg<br>The University of Edinburg                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |  |
|                  | Professor                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     | Nair                                                                                                                                                                                                      | The University of Edinburg                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |  |
|                  | Professor                                                                                                                                                                                                                                                                                                                       | Harry                                                                                                                                                                                                                                                                                               | Campbell                                                                                                                                                                                                  | The University of Edinburg                                                                                                                                                                                                                                                                                                                         | Jh                                                                                                                                                                          |  |
| 12               | Funding sources/sponsors<br>Give details of the individuals, organizations, groups or other legal entities who take responsibility for initiating,<br>managing, sponsoring and/or financing the review. Any unique identification numbers assigned to the review by<br>individuals or bodies listed should be included.<br>None |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |  |
| 13               | investigated                                                                                                                                                                                                                                                                                                                    | ditions that could l<br>in the review.<br>ly actual or potenti                                                                                                                                                                                                                                      | ead to actual or percei<br>al conflicts of interest?                                                                                                                                                      | ved undue influence on judgemer                                                                                                                                                                                                                                                                                                                    | its concerning the main topic                                                                                                                                               |  |
| 4.4              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |  |
| 14               |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                         | or organisations who are working                                                                                                                                                                                                                                                                                                                   | on the review but who are no                                                                                                                                                |  |
| 14               | Give the nar                                                                                                                                                                                                                                                                                                                    | ne, affiliation and                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                         | or organisations who are working<br>Organisation details                                                                                                                                                                                                                                                                                           | on the review but who are no                                                                                                                                                |  |
|                  | Give the nar<br>listed as revi                                                                                                                                                                                                                                                                                                  | ne, affiliation and<br>iew team member<br>First name                                                                                                                                                                                                                                                | S.                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                    | on the review but who are no                                                                                                                                                |  |
|                  | Give the nar<br>listed as revi<br>Title<br><b>/iew method</b>                                                                                                                                                                                                                                                                   | ne, affiliation and<br>iew team member<br>First name<br><b>Is</b>                                                                                                                                                                                                                                   | S.                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                    | on the review but who are no                                                                                                                                                |  |
| Rev              | Give the nar<br>listed as revi<br>Title<br>view method<br>Review que<br>State the qu                                                                                                                                                                                                                                            | ne, affiliation and<br>iew team member<br>First name<br>ds<br>estion(s)<br>estion(s) to be add                                                                                                                                                                                                      | s.<br>Last name<br>dressed / review object                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    | box for each question.                                                                                                                                                      |  |
| Rev              | Give the nar<br>listed as revi<br>Title<br>view method<br>Review que<br>State the qu<br>What method<br>PD?                                                                                                                                                                                                                      | ne, affiliation and<br>iew team member<br>First name<br>ds<br>estion(s)<br>estion(s) to be add<br>ds have been use<br>s have been report                                                                                                                                                            | s.<br>Last name<br>dressed / review object<br>d in population-based s                                                                                                                                     | Organisation details<br>ives. Please complete a separate                                                                                                                                                                                                                                                                                           | box for each question.<br>between VARI and subseque                                                                                                                         |  |
| Rev              | Give the nar<br>listed as revi<br>Title<br>view method<br>Review que<br>State the qu<br>What method<br>PD?<br>What results<br>subsequent<br>Searches                                                                                                                                                                            | ne, affiliation and<br>iew team member<br>First name<br>ds<br>estion(s)<br>estion(s) to be add<br>ds have been use<br>s have been report<br>PD?                                                                                                                                                     | s.<br>Last name<br>dressed / review object<br>d in population-based s<br>ed in population-based                                                                                                           | Organisation details<br>ives. Please complete a separate<br>studies analysing the association                                                                                                                                                                                                                                                      | box for each question.<br>between VARI and subseque<br>n between VARI and                                                                                                   |  |
| Rev<br>15        | Give the nar<br>listed as revi<br>Title<br>view method<br>Review que<br>State the qu<br>What method<br>PD?<br>What results<br>subsequent<br>Searches<br>Give details<br>strategy is no<br>We searched                                                                                                                           | ne, affiliation and<br>iew team member<br>First name<br>ds<br>estion(s)<br>estion(s) to be add<br>ds have been use<br>s have been report<br>PD?<br>of the sources to l<br>ot required, but m<br>d three bibliograph                                                                                 | s.<br>Last name<br>dressed / review object<br>d in population-based s<br>red in population-based<br>be searched, and any r<br>ay be supplied as a lint<br>nic databases (MEDLIN                           | Organisation details<br>ives. Please complete a separate<br>studies analysing the association<br>studies analysing the association<br>estrictions (e.g. language or publi                                                                                                                                                                          | box for each question.<br>between VARI and subseque<br>n between VARI and<br>cation period). The full search                                                                |  |
| Rev<br>15        | Give the nar<br>listed as revi<br>Title<br>view method<br>Review que<br>State the que<br>What method<br>PD?<br>What results<br>subsequent<br>Searches<br>Give details<br>strategy is no<br>We searched<br>published be<br>URL to sea                                                                                            | me, affiliation and<br>iew team member<br>First name<br>ds<br>estion(s)<br>estion(s) to be add<br>ds have been use<br>s have been report<br>PD?<br>of the sources to l<br>ot required, but m<br>d three bibliograph<br>etween 1 January<br>arch strategy<br>one, give the link to                   | s.<br>Last name<br>dressed / review object<br>d in population-based s<br>red in population-based<br>be searched, and any r<br>ay be supplied as a link<br>nic databases (MEDLIN<br>1990 and 27 April 2017 | Organisation details<br>ives. Please complete a separate<br>studies analysing the association<br>studies analysing the association<br>estrictions (e.g. language or public<br>or attachment.<br>IE, Embase and Global Health) for                                                                                                                  | box for each question.<br>between VARI and subseque<br>n between VARI and<br>cation period). The full search<br>or primary research studies<br>the language of publication. |  |
| <b>Rev</b><br>15 | Give the nam<br>listed as revi<br>Title<br>view method<br>Review que<br>State the que<br>What method<br>PD?<br>What results<br>subsequent<br>Searches<br>Give details<br>strategy is new<br>We searched<br>published be<br>URL to sea<br>If you have of<br>will store and                                                       | me, affiliation and<br>iew team member<br>First name<br>ds<br>estion(s)<br>estion(s) to be add<br>ds have been use<br>s have been report<br>PD?<br>of the sources to l<br>ot required, but me<br>d three bibliograph<br>etween 1 January<br>arch strategy<br>one, give the link to<br>d link to it. | s.<br>Last name<br>dressed / review object<br>d in population-based s<br>red in population-based<br>be searched, and any r<br>ay be supplied as a link<br>nic databases (MEDLIN<br>1990 and 27 April 2017 | Organisation details<br>ives. Please complete a separate<br>studies analysing the association<br>studies analysing the association<br>studies analysing the association<br>estrictions (e.g. language or public<br>or attachment.<br>IE, Embase and Global Health) for<br>No restrictions were placed on the<br>here. Alternatively you can e-mail | box for each question.<br>between VARI and subseque<br>n between VARI and<br>cation period). The full searcl<br>or primary research studies<br>the language of publication. |  |

Page: 2 / 7

# UNIVERSITY of York Centre for Reviews and Dissemination

Viral acute respiratory infection; pneumococcal disease.

| UN<br>Cer | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19        | Participants/population<br>Give summary criteria for the participants or populations being studied by the review. The preferred format includes<br>details of both inclusion and exclusion criteria.<br>Population-based studies involving people with viral acute respiratory infection and pneumococcal disease.<br>Specifically, the following participants were considered: (1) Those with laboratory confirmed viral infections; (2) Tho<br>with ICD code for influenza and RSV infection; (3) Those with a case definition of an influenza-like illness (ILI) and<br>bronchiolitis.                                                                                                                                                                                                                                                                                                                             |
| 20        | Intervention(s), exposure(s)<br>Give full and clear descriptions of the nature of the interventions or the exposures to be reviewed<br>Population-based studies involving people with viral acute respiratory infection and pneumococcal disease.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21        | Comparator(s)/control<br>Where relevant, give details of the alternatives against which the main subject/topic of the review will be compared<br>(e.g. another intervention or a non-exposed control group).<br>Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22        | Types of study to be included<br>Give details of the study designs to be included in the review. If there are no restrictions on the types of study design<br>eligible for inclusion, this should be stated.<br>There were no restrictions imposed on the types of study design eligible for inclusion. We included population-base<br>studies involving clinically diagnosed PD cases, and specifically, we accepted the following studies: (1) Those<br>involving laboratory confirmed viral infections; (2) Those involving an ICD code for influenza and RSV infection; (3)<br>Those involving case definitions of an influenza-like illness (ILI) and bronchiolitis. We excluded animal studies and<br>theoretical studies in which no population data was applied. We focused our review on the association of seasonal<br>VARI with PD, and thus excluded studies that reported influenza pandemic cases only. |
| 23        | Context<br>Give summary details of the setting and other relevant characteristics which help define the inclusion or exclusion<br>criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24        | Primary outcome(s)<br>Give the most important outcomes.<br>The association between VARI and subsequent PD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | Give information on timing and effect measures, as appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25        | Secondary outcomes<br>List any additional outcomes that will be addressed. If there are no secondary outcomes enter None.<br>Factors that could affect the association between VARI and subsequent PD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26        | Give information on timing and effect measures, as appropriate.<br>Data extraction (selection and coding)<br>Give the procedure for selecting studies for the review and extracting data, including the number of researchers<br>involved and how discrepancies will be resolved. List the data to be extracted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 27        | Risk of bias (quality) assessment<br>State whether and how risk of bias will be assessed, how the quality of individual studies will be assessed, and<br>whether and how this will influence the planned synthesis.<br>Risk of bias will be assessed by evaluating the power of the studies, the measures taken to control for confounders<br>and any multiple tests made without reasonable correction or justification. Bias is expected to have little impact on<br>review because it is intended to provide a summary of all relevant studies, and no quantitative analysis will be<br>conducted.                                                                                                                                                                                                                                                                                                                 |
| 28        | Strategy for data synthesis<br>Give the planned general approach to be used, for example whether the data to be used will be aggregate or at the<br>level of individual participants, and whether a quantitative or narrative (descriptive) synthesis is planned. Where<br>appropriate a brief outline of analytic approach should be given.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# UNIVERSITY of York Centre for Reviews and Dissemination

NHS National Institute for Health Research

Page 46 of 50

A descriptive synthesis is planned. A summary of both the methods and the results of eligible studies will be provided.

| U N<br>Cen | IVERSITY of Jork.<br>tre for Reviews and Dissemination National Institute for<br>Health Research                                                                                                                                                                                                                                                                      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29         | Analysis of subgroups or subsets<br>Give any planned exploration of subgroups or subsets within the review. 'None planned' is a valid response if no<br>subgroup analyses are planned.<br>None planned.                                                                                                                                                               |
| Rev        | iew general information                                                                                                                                                                                                                                                                                                                                               |
| 30         | Type and method of review<br>Select the type of review and the review method from the drop down list.<br>Systematic review                                                                                                                                                                                                                                            |
| 31         | Language<br>Select the language(s) in which the review is being written and will be made available, from the drop down list. Use<br>the control key to select more than one language.<br>English                                                                                                                                                                      |
|            | Will a summary/abstract be made available in English?<br>Yes                                                                                                                                                                                                                                                                                                          |
| 32         | Country<br>Select the country in which the review is being carried out from the drop down list. For multi-national collaborations<br>select all the countries involved. Use the control key to select more than one country.<br>Scotland                                                                                                                              |
| 33         | Other registration details<br>Give the name of any organisation where the systematic review title or protocol is registered together with any unique<br>identification number assigned. If extracted data will be stored and made available through a repository such as the<br>Systematic Review Data Repository (SRDR), details and a link should be included here. |
| 34         | Reference and/or URL for published protocol<br>Give the citation for the published protocol, if there is one.<br>Give the link to the published protocol, if there is one. This may be to an external site or to a protocol deposited with<br>CRD in pdf format.                                                                                                      |
|            | l give permission for this file to be made publicly available<br>Yes                                                                                                                                                                                                                                                                                                  |
| 35         | Dissemination plans<br>Give brief details of plans for communicating essential messages from the review to the appropriate audiences.<br>Do you intend to publish the review on completion?<br>Yes                                                                                                                                                                    |
| 36         | Keywords<br>Give words or phrases that best describe the review. (One word per box, create a new box for each term)                                                                                                                                                                                                                                                   |
| 37         | Details of any existing review of the same topic by the same authors<br>Give details of earlier versions of the systematic review if an update of an existing review is being registered,<br>including full bibliographic reference if possible.                                                                                                                      |
| 38         | Current review status<br>Review status should be updated when the review is completed and when it is published.<br>Ongoing                                                                                                                                                                                                                                            |
| 39         | Any additional information<br>Provide any further information the review team consider relevant to the registration of the review.                                                                                                                                                                                                                                    |

# UNIVERSITY of York Centre for Reviews and Dissemination



40 Details of final report/publication(s) This field should be left empty until details of the completed review are available. Give the full citation for the final report or publication of the systematic review. Give the URL where available.

for occite teries only

Page: 7 / 7



# PRISMA 2009 Checklist

| dentify the report as a systematic review, meta-analysis, or both.<br>rovide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, articipants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and nplications of key findings; systematic review registration number.<br>rescribe the rationale for the review in the context of what is already known.<br>rovide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, utcomes, and study design (PICOS).<br>addicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide egistration information including registration number. | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rovide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, articipants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and nplications of key findings; systematic review registration number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>2<br>4<br>4<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| articipants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and inplications of key findings; systematic review registration number.<br>rescribe the rationale for the review in the context of what is already known.<br>rovide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, utcomes, and study design (PICOS).<br>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide egistration information including registration number.<br>pecify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered,                                                                       | 4<br>4<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| articipants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and inplications of key findings; systematic review registration number.<br>rescribe the rationale for the review in the context of what is already known.<br>rovide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, utcomes, and study design (PICOS).<br>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide egistration information including registration number.<br>pecify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered,                                                                       | 4<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rovide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, utcomes, and study design (PICOS).<br>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide egistration information including registration number.<br>pecify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered,                                                                                                                                                                                                                                                                                                                                              | 4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| rovide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, utcomes, and study design (PICOS).<br>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide egistration information including registration number.<br>pecify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered,                                                                                                                                                                                                                                                                                                                                              | 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| utcomes, and study design (PICOS).<br>ndicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide<br>egistration information including registration number.<br>pecify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered,                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| egistration information including registration number.<br>pecify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| egistration information including registration number.<br>pecify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| inguage, publication status) used as criteria for eligibility, giving rationale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| escribe all information sources (e.g., databases with dates of coverage, contact with study authors to identify dditional studies) in the search and date last searched.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| resent full electronic search strategy for at least one database, including any limits used, such that it could be epeated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Text S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tate the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| escribe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes<br>or obtaining and confirming data from investigators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ist and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and implifications made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| escribe methods used for assessing risk of bias of individual studies (including specification of whether this was one at the study or outcome level), and how this information is to be used in any data synthesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| tate the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ist<br>inpes<br>one<br>tat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cribe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes obtaining and confirming data from investigators.<br>and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and olifications made.<br>cribe methods used for assessing risk of bias of individual studies (including specification of whether this was e at the study or outcome level), and how this information is to be used in any data synthesis. |



# **PRISMA 2009 Checklist**

| Section/topic                                                                        | #                  | Checklist item                                                                                                                                                                                           | Reported<br>on page # |
|--------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Risk of bias across studies                                                          | 15                 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                             | NA                    |
| Additional analyses                                                                  | 16                 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                         | NA                    |
| RESULTS                                                                              |                    |                                                                                                                                                                                                          |                       |
| Study selection                                                                      | 17                 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                          | 4-6                   |
| Study characteristics                                                                | 18                 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.                                                             | 8-23                  |
| Risk of bias within studies                                                          | 19                 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                                                                                                | 8-23                  |
| Results of individual studies                                                        | 20                 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. | 8-23                  |
| Synthesis of results                                                                 | 21                 | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                                                                                                  | NA                    |
| Risk of bias across studies                                                          | 22                 | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                          | NA                    |
| Additional analysis                                                                  | 23                 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                    | NA                    |
| DISCUSSION                                                                           |                    |                                                                                                                                                                                                          |                       |
| Summary of evidence                                                                  | 24                 | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).                     | 27                    |
| Limitations                                                                          | 25                 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).                                            | 27                    |
| Conclusions                                                                          | 26                 | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                  | 27                    |
| FUNDING                                                                              | <u> </u>           |                                                                                                                                                                                                          |                       |
| Funding                                                                              | 27                 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.                                                               | NA                    |
| )<br>) <i>From:</i> Moher D, Liberati A, Tetzlaff<br>doi:10.1371/journal.pmed1000097 | J, Altm            | an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med<br>For more information, visit: <u>www.prisma-statement.org</u> .     | 6(7): e100009         |
| 2                                                                                    |                    | Page 2 of 2                                                                                                                                                                                              |                       |
| }<br>•                                                                               |                    |                                                                                                                                                                                                          |                       |
| ;                                                                                    |                    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                |                       |
| st. Protected by copyright.                                                          | pλ ân <del>c</del> | 9202, et lingA no hop-imd.neqoimd//:qtth mort bebsolnwol.8102. Downloaded from http://mgionen.com/ on April 2024                                                                                         | do rwa                |

BMJ Open: first published as 10.136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

# **BMJ Open**

#### Association of seasonal viral acute respiratory infection with pneumococcal disease: a systematic review of population-based studies

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2017-019743.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date Submitted by the Author:        | 29-Jan-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:            | Li, You; University of Edinburgh School of Molecular Genetic and Population<br>Health Sciences, Centre for Global Health Research<br>Peterson, Meagan; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Campbell, Harry; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Nair, Harish; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Nair, Harish; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research |
| <b>Primary Subject<br/>Heading</b> : | Infectious diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Secondary Subject Heading:           | Infectious diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Keywords:                            | respiratory tract infection, pneumococcal infection, viral acute respiratory infection, pneumococcal disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

SCHOLARONE<sup>™</sup> Manuscripts

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| 1                                                                                                                                                                                                        |   |                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------|
| 2<br>3                                                                                                                                                                                                   | 1 | Association of seasonal viral acute respiratory in                       |
| 4<br>5<br>6                                                                                                                                                                                              | 2 | review of population-based studies                                       |
| 7<br>8<br>9                                                                                                                                                                                              | 3 | Authors: You Li* <sup>1</sup> , Meagan Peterson <sup>1</sup> , Harry Cam |
| 10<br>11<br>12                                                                                                                                                                                           | 4 | <sup>1</sup> Centre for Global Health Research, Usher Institu            |
| 13<br>14                                                                                                                                                                                                 | 5 | University of Edinburgh, Edinburgh, Scotland, UK                         |
| 15<br>16                                                                                                                                                                                                 | 6 | * Corresponding author                                                   |
| 17<br>18<br>19                                                                                                                                                                                           | 7 | Email: You.Li2@ed.ac.uk (YL)                                             |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53 |   |                                                                          |
| 54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                                                                                                   |   | For peer review only - http://bmjope                                     |

| nfection with pneumococcal disease: a systematic   |
|----------------------------------------------------|
| pbell <sup>1</sup> , Harish Nair <sup>1</sup>      |
| ute of Population Health Sciences and Informatics, |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |

| 2              |    |                                                                                                          |
|----------------|----|----------------------------------------------------------------------------------------------------------|
| 3<br>4         | 8  | Abstract                                                                                                 |
| 5              | 9  | Objective: Animal and in vitro studies suggest viral acute respiratory infection (VARI) can predispose   |
| 6<br>7         | 10 | to pneumococcal infection. These findings suggest that prevention of VARI can yield additional           |
| 8<br>9<br>10   | 11 | benefits for the control of pneumococcal disease (PD). In population-based studies, however, the         |
| 10<br>11<br>12 | 12 | evidence is not in accordance, possibly due to a variety of methodological challenges and problems       |
| 13<br>14       | 13 | in these studies. We aimed to summarise and critically review the methods and results from these         |
| 15<br>16       | 14 | studies in order to inform future studies.                                                               |
| 17<br>18       | 15 | Methods: We conducted a systematic review of population-based studies that analysed the                  |
| 19<br>20       | 16 | association between preceding seasonal VARI and subsequent PD. We searched MEDLINE, Embase               |
| 21<br>22<br>23 | 17 | and Global Health databases using tailored search strategies.                                            |
| 24<br>25<br>26 | 18 | Results: A total of 28 studies were included. After critically reviewing the methodologies and           |
| 20<br>27<br>28 | 19 | findings, 11 studies did not control for seasonal factors shared by VARI and PD. This, in turn, could    |
| 29<br>30       | 20 | lead to an overestimation of the association between the two illnesses. One case-control study was       |
| 31<br>32       | 21 | limited by its small sample size (n case=13). The remaining 16 studies that controlled for seasonal      |
| 33<br>34       | 22 | factors suggested that influenza and/or RSV infections were likely to be associated with the             |
| 35<br>36       | 23 | subsequent occurrence of PD (influenza: 12/14 studies; RSV: 4/5 studies). However, these 16 studies      |
| 37<br>38       | 24 | were unable to conduct individual patient data based analyses. Nevertheless, these studies               |
| 39<br>40       | 25 | suggested the association between VARI and subsequent PD was related to additional factors such          |
| 41<br>42       | 26 | as virus type and subtype, age group, comorbidity status, presentation of PD and pneumococcal            |
| 43<br>44<br>45 | 27 | serotype.                                                                                                |
| 46<br>47       | 28 | Conclusions: Population-based studies do not give consistent support for an association between          |
| 48<br>49       | 29 | preceding seasonal VARI and subsequent PD incidence. The main methodological challenges of               |
| 50<br>51       | 30 | existing studies include the failure to utilise individual patient data, control for seasonal factors of |
| 52<br>53       | 31 | VARI and PD, or include other factors related to the association (e.g. virus, age, comorbidity and       |
| 54<br>55<br>56 | 32 | pneumococcal serotype).                                                                                  |
| 57<br>58       |    | 2                                                                                                        |
| 59<br>60       |    | 2<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                           |
|                |    |                                                                                                          |

1

#### BMJ Open

| 1        |    |                                                                                                  |
|----------|----|--------------------------------------------------------------------------------------------------|
| 2<br>3   | 33 | Strengths and limitations of this study                                                          |
| 4<br>5   | 34 | • This is the first review that critically reviewed the methods and findings of population-based |
| 6<br>7   | 35 | studies that reported an association between VARI and PD.                                        |
| 8<br>9   | 36 | <ul> <li>Results of studies summarised according to study design and methods.</li> </ul>         |
| 10<br>11 | 37 | • No meta-analysis was conducted due to a variety of study designs, data sources and analytical  |
| 12<br>13 | 38 | methods in the studies so a narrative summary of the methods and results is provided.            |
| 14<br>15 | 39 | methods in the studies so a narrative summary of the methods and results is provided.            |
| 16<br>17 |    |                                                                                                  |
| 18<br>19 |    |                                                                                                  |
| 20<br>21 |    |                                                                                                  |
| 22       |    |                                                                                                  |
| 23<br>24 |    |                                                                                                  |
| 25       |    |                                                                                                  |
| 26<br>27 |    |                                                                                                  |
| 27       |    |                                                                                                  |
| 29       |    |                                                                                                  |
| 30<br>31 |    |                                                                                                  |
| 32       |    |                                                                                                  |
| 33       |    |                                                                                                  |
| 34<br>35 |    |                                                                                                  |
| 36       |    |                                                                                                  |
| 37<br>38 |    |                                                                                                  |
| 39       |    |                                                                                                  |
| 40       |    |                                                                                                  |
| 41<br>42 |    |                                                                                                  |
| 43       |    |                                                                                                  |
| 44<br>45 |    |                                                                                                  |
| 45<br>46 |    |                                                                                                  |
| 47       |    |                                                                                                  |
| 48<br>49 |    |                                                                                                  |
| 50       |    |                                                                                                  |
| 51<br>52 |    |                                                                                                  |
| 52<br>53 |    |                                                                                                  |
| 54       |    |                                                                                                  |
| 55<br>56 |    |                                                                                                  |
| 56<br>57 |    |                                                                                                  |
| 58       |    | 3                                                                                                |
| 59       |    | -                                                                                                |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| 40 | Introduction                                                                                                            |
|----|-------------------------------------------------------------------------------------------------------------------------|
| 41 | Both viral acute respiratory infection (VARI) and pneumococcal disease (PD) account for a substantial                   |
| 42 | disease burden worldwide, especially in young children and the elderly. <sup>1-3</sup> The association of viral         |
| 43 | acute respiratory infection (VARI) and subsequent pneumococcal disease (PD) was not well                                |
| 44 | recognised until the catastrophic 1918 influenza pandemic, which resulted in an estimated 40–50                         |
| 45 | million deaths; <sup>4</sup> it has been suggested that pneumococcus may have been a major cause of death. <sup>5</sup> |
| 46 | Most recently, it was observed that the incidence of PD was higher during 2009 influenza H1N1                           |
| 47 | pandemic period than the same period in pre-pandemic $^{6\cdot10}$ and post-pandemic years. $^{7910}$                   |
| 48 | During inter-pandemic periods, the associations of seasonal influenza and other seasonal                                |
| 49 | respiratory viruses such as respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and                         |
| 50 | parainfluenza virus (PIV) with PD incidence are poorly understood and remain unclear. In animal and                     |
| 51 | in-vitro studies, it has been suggested that viral respiratory infection could predispose to                            |
| 52 | pneumococcal infection and might facilitate pneumococcal transmission; in turn, this co-infection                       |
| 53 | could induce a lethal synergism that is much more severe than infection with either pathogen alone                      |
| 54 | (a brief summary of findings displayed in <b>Supplementary Table S1</b> ). However, these studies are all               |
| 55 | relatively small-scale studies and may be subject to publication bias favouring reporting of positive                   |
| 56 | findings. In population-based studies, the findings were inconsistent. These studies differed                           |
| 57 | substantially in study design, data sources and methods, making it difficult to compare and interpret                   |
| 58 | the results across the studies. We conducted a systematic review of population-based studies on the                     |
| 59 | association of preceding VARI on the occurrence of PD to summarise the methodology and results,                         |
| 60 | critically review the findings and present recommendations for future studies.                                          |
|    |                                                                                                                         |

## 61 Methods

62 Search Strategy and Selection Criteria

We searched MEDLINE, Embase and Global Health databases using tailored search strategies (search
 strategies in Supplementary Text S1, PRISMA flowchart in Figure 1). We restricted the search to

studies published between 1 January 1990 and 31 Dec 2017. We included population-based studies

Page 5 of 57

# BMJ Open

| ן<br>ר         |    |                                                                                                             |
|----------------|----|-------------------------------------------------------------------------------------------------------------|
| 2<br>3         | 66 | with clinically diagnosed PD cases (see below for detailed definition). In terms of VARI exposure, we       |
| 4<br>5         | 67 | accepted the following studies: (1) those with laboratory confirmed viral infections; (2) those with an     |
| 6<br>7         | 68 | ICD code for influenza and/or RSV infection; (3) those with case definition of influenza-like illness (ILI) |
| 8<br>9<br>10   | 69 | and bronchiolitis as proxies for influenza and RSV, respectively. We excluded animal studies and            |
| 11<br>12       | 70 | theoretical studies where no population data were applied. We focused our review on the                     |
| 13<br>14       | 71 | association of seasonal VARI and PD and thus excluded studies that reported pandemic influenza              |
| 15<br>16       | 72 | cases only. No language restrictions were applied. The reference lists of eligible studies were also        |
| 17<br>18       | 73 | checked to identify additional studies for inclusion. For all included studies, quality assessment was      |
| 19<br>20       | 74 | conducted using tailored Critical Appraisal Skills Programme (CASP) checklists for case-control             |
| 21<br>22       | 75 | studies and cohort studies (Supplementary File S1). The review was conducted and reported                   |
| 23<br>24       | 76 | according to the PRISMA guidelines (Supplementary File S2). The protocol for this systematic review         |
| 25<br>26       | 77 | was registered on PROSPERO (registration number: CRD42017064760; Supplementary File S3).                    |
| 27<br>28<br>29 | 78 | Figure 1. PRISMA flow diagram of the literature search. PD: pneumococcal disease.                           |
| 30             | 79 | Definition of PD                                                                                            |
| 31<br>32       | 80 | We defined PD as any disease caused by <i>Streptococcus pneumoniae</i> (pneumococcus). Since this           |
| 33             |    |                                                                                                             |
| 34<br>35       | 81 | definition contains a broad range of diseases and symptoms, including some that are trivial to our          |
| 36<br>37       | 82 | review, we adopted a narrower definition. This narrowed definition includes invasive pneumococcal           |
| 38<br>39       | 83 | disease (IPD) and pneumococcal pneumonia (PP). We defined IPD as detection of pneumococcus in               |
| 40<br>41       | 84 | typical sterile sites (e.g. blood, pleural and cerebrospinal fluid). A detailed category of PD for our      |
| 42<br>43       | 85 | review is displayed in Figure 2. Additionally, we used the term "non-pneumonic invasive                     |
| 44<br>45       | 86 | pneumococcal disease (npIPD)", which referred to all IPD without diagnosis of pneumonia, in order           |
| 46<br>47       | 87 | to differentiate from non-invasive and invasive pneumococcal pneumonia.                                     |
| 48<br>49       | 88 | Figure 2. Category of pneumococcal disease in the present review.                                           |
| 50<br>51       | 89 | Definition of VARI                                                                                          |
| 52             | 90 | We defined VARI as a respiratory tract infection with viral aetiology. ILI was viewed as a proxy for        |
| 53<br>54       | 91 | influenza infection in the present review. We defined ILI as a symptomatic cough and fever ≥38°C            |
| 55<br>56       |    |                                                                                                             |
| 56<br>57       | 92 | with onset within 7 days.                                                                                   |
| 58             |    | 5                                                                                                           |
| 59<br>60       |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                   |
|                |    |                                                                                                             |

| 1<br>2         |           |
|----------------|-----------|
| 3<br>4<br>5    | 93<br>94  |
| 6<br>7         | 95        |
| 8<br>9         | 96        |
| 10<br>11       | 97        |
| 12<br>13<br>14 | 98        |
| 15<br>16<br>17 | 99<br>100 |
| 18<br>19       | 101       |
| 20<br>21       | 102       |
| 22<br>23       | 103       |
| 24<br>25       | 104       |
| 26<br>27       | 105       |
| 28<br>29       | 106       |
| 30<br>31       | 107       |
| 32<br>33<br>34 | 108       |
| 35<br>36       |           |
| 37             | 109       |
| 38             | 110       |
| 39<br>40<br>41 | 111       |
| 42<br>43       | 112       |
| 44<br>45       | 113       |
| 46             | 114       |
| 47<br>48       | 115       |
| 49<br>50       | 116       |
| 51<br>52       | 117       |
| 53<br>54       | 118       |
| 55<br>56       | 119       |
| 57<br>58       | 115       |
| 59             |           |
| 60             |           |

### **Data Extraction** We used a standardised data extraction template to extract relevant data from the eligible full-text

| 95                                                          | studies, including study design, data source, methods, results and conclusion. The principle summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 96                                                          | measures of the association between VARI and PD include correlation coefficients, risk ratios, rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 97                                                          | ratios, odds ratios and attributable percentage of PD to VARI. YL and MP independently extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 98                                                          | the data. HN or HC arbitrated any disagreement with the extraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 99<br>100                                                   | Data Analysis<br>Since it was expected that methodology would differ substantially between studies and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 101                                                         | quantitative meta-analysis would not be appropriate, a narrative synthesis was conducted. Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 102                                                         | were summarised according to methodology to allow for more appropriate comparisons of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 103                                                         | results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 104                                                         | In addition, because of the concern of multiple testing, we determined the number of tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 105                                                         | conducted in each study, so a Bonferroni correction could be applied where applicable; only the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 106                                                         | tests relevant to the association between VARI and pneumococcal infection were included as part of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 107                                                         | the correction. The Bonferroni-adjusted significance level was calculated as 0.05 divided by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 108                                                         | number of relevant statistical tests within a study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 109<br>110                                                  | Results<br>A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 110                                                         | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 110<br>111                                                  | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study designs, exposures and outcomes of interest and analytical methods in these studies (summarised in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 110<br>111<br>112                                           | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study designs, exposures and outcomes of interest and analytical methods in these studies (summarised in <b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 110<br>111<br>112<br>113                                    | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study designs, exposures and outcomes of interest and analytical methods in these studies (summarised in <b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to study design and methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 110<br>111<br>112                                           | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study designs, exposures and outcomes of interest and analytical methods in these studies (summarised in <b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 110<br>111<br>112<br>113<br>114                             | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study<br>designs, exposures and outcomes of interest and analytical methods in these studies (summarised in<br><b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to<br>study design and methods.<br>Individual Patient Data Based Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 110<br>111<br>112<br>113<br>114<br>115                      | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study<br>designs, exposures and outcomes of interest and analytical methods in these studies (summarised in<br><b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to<br>study design and methods.<br><b>Individual Patient Data Based Studies</b><br>Individual patient data based studies during the inter-pandemic period are sparse. Only three                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 110<br>111<br>112<br>113<br>114<br>115<br>116               | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study<br>designs, exposures and outcomes of interest and analytical methods in these studies (summarised in<br><b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to<br>study design and methods.<br>Individual Patient Data Based Studies<br>Individual patient data based studies during the inter-pandemic period are sparse. Only three<br>studies <sup>17 25 29</sup> were identified ( <b>Table 1</b> ), including two cohort studies <sup>17 29</sup> and one small case-control                                                                                                                                                                                                                                                                                                               |
| 110<br>111<br>112<br>113<br>114<br>115<br>116<br>117        | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study<br>designs, exposures and outcomes of interest and analytical methods in these studies (summarised in<br><b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to<br>study design and methods.<br>Individual Patient Data Based Studies<br>Individual patient data based studies during the inter-pandemic period are sparse. Only three<br>studies <sup>17 25 29</sup> were identified ( <b>Table 1</b> ), including two cohort studies <sup>17 29</sup> and one small case-control<br>study by O'Brien et al <sup>25</sup> . The reported results consistently supported the role of preceding VARI on                                                                                                                                                                                           |
| 110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118 | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study<br>designs, exposures and outcomes of interest and analytical methods in these studies (summarised in<br><b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to<br>study design and methods.<br><b>Individual Patient Data Based Studies</b><br>Individual patient data based studies during the inter-pandemic period are sparse. Only three<br>studies <sup>17 25 29</sup> were identified ( <b>Table 1</b> ), including two cohort studies <sup>17 29</sup> and one small case-control<br>study by O'Brien et al <sup>25</sup> . The reported results consistently supported the role of preceding VARI on<br>occurrence of PD. However, the two cohort studies did not attempt to control the seasonal risk                                                                                  |
| 110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118 | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study<br>designs, exposures and outcomes of interest and analytical methods in these studies (summarised in<br><b>Table S2</b> ). Due to the variety, we summarised the studies and displayed the results according to<br>study design and methods.<br><b>Individual Patient Data Based Studies</b><br>Individual patient data based studies during the inter-pandemic period are sparse. Only three<br>studies <sup>17 25 29</sup> were identified ( <b>Table 1</b> ), including two cohort studies <sup>17 29</sup> and one small case-control<br>study by O'Brien et al <sup>25</sup> . The reported results consistently supported the role of preceding VARI on<br>occurrence of PD. However, the two cohort studies did not attempt to control the seasonal risk<br>factors of VARI and PD that could potentially bias the estimated effect size. |

| 2                                                                          | 120 | Table 1 Cur                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                      | findisiduala                                    |                           | - h d -+            | dias                                                                                                                                                                                                                                                                                                          |                                                                                                    |  |  |
|----------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| 3<br>4<br>5<br>6                                                           | 120 | Study                                                                                                                                                                                                                                                                                                                                                                                       | Study<br>Period                                                                                                      | f individual p<br>Population                    | VARI                      | PD (n of cases)     | Methods                                                                                                                                                                                                                                                                                                       | Main findings                                                                                      |  |  |
| 7<br>8<br>9<br>10<br>11<br>12                                              |     | Edwards et<br>al. 2011 <sup>17</sup>                                                                                                                                                                                                                                                                                                                                                        | 2005–<br>2009                                                                                                        | all ages<br>Northern<br>Territory,<br>Australia | IFV                       | IPD<br>(n=346)      | Using data from Notifiable<br>Diseases System, relative<br>risk of IPD calculated in<br>≤4w after IFV compared<br>with background risk                                                                                                                                                                        | RR=112.5<br>[48.9–224.8]                                                                           |  |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 |     | O'Brien et<br>al. 2000 <sup>25</sup>                                                                                                                                                                                                                                                                                                                                                        | 1995–<br>1996                                                                                                        | <18y<br>Iowa, US                                | ili<br>IFV A              | Severe PP<br>(n=13) | Case-control design: case<br>from children with severe<br>PP, 3 controls per case<br>selected, from friends of<br>cases or from the same<br>primary care practice,<br>matched by age (within 1y<br>of the case). ILI history (7–<br>28d within admission)<br>investigated by telephone<br>interview and IFV A | OR (ILI<br>history)=12.4<br>[1.7-306],<br>OR (IFV A<br>convalescent<br>serology)=3.7<br>[1.0–18.1] |  |  |
| 25<br>26<br>27<br>28<br>29<br>30<br>31                                     |     | Stensballe<br>et al.<br>2008 <sup>29</sup>                                                                                                                                                                                                                                                                                                                                                  | 1996–<br>2003                                                                                                        | all ages<br>Denmark                             | RSV<br>non-RSV            | IPD<br>(n=7,787)    | convalescent serology<br>collected.<br>Prospective cohort study:<br>two exposure groups, RSV<br>and non-RSV respiratory<br>infection hospitalisations<br>within 30d                                                                                                                                           | RR for RSV=7.1<br>[3.6–14.3],<br>RR for non-<br>RSV=4.5 [2.0–<br>10.0]                             |  |  |
| 32<br>33                                                                   | 121 | Abbreviatio                                                                                                                                                                                                                                                                                                                                                                                 | ns: d, da                                                                                                            | y(s); IFV, influ                                | ienza virus               | ; ILI, influen      | za-like illness; IPD, invasive                                                                                                                                                                                                                                                                                | -                                                                                                  |  |  |
| 34<br>35                                                                   | 122 | disease; OR, odds ratio; PD, pneumococcal disease; PP, pneumococcal pneumonia; RR, relative r                                                                                                                                                                                                                                                                                               |                                                                                                                      |                                                 |                           |                     |                                                                                                                                                                                                                                                                                                               |                                                                                                    |  |  |
| 36<br>37<br>38                                                             | 123 | RSV, respiratory syncytial virus; VARI, viral acute respiratory infection; w, week(s); y, year(s).                                                                                                                                                                                                                                                                                          |                                                                                                                      |                                                 |                           |                     |                                                                                                                                                                                                                                                                                                               |                                                                                                    |  |  |
| 39                                                                         | 124 | Ecological Studies                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |                                                 |                           |                     |                                                                                                                                                                                                                                                                                                               |                                                                                                    |  |  |
| 40<br>41                                                                   | 125 | In our review, 25 <sup>11-16</sup> <sup>18-24</sup> <sup>26-28</sup> <sup>30-38</sup> of the 28 studies were ecological studies. 16 <sup>11</sup> <sup>13</sup> <sup>14</sup> <sup>16</sup> <sup>18</sup> <sup>19</sup> <sup>22-24</sup> <sup>26</sup> <sup>32</sup> <sup>34-38</sup> out of the 25 ecological studies controlled for seasonal patterns of VARI and PD ( <b>Table S2</b> ). |                                                                                                                      |                                                 |                           |                     |                                                                                                                                                                                                                                                                                                               |                                                                                                    |  |  |
| 42<br>43<br>44                                                             | 126 |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                 |                           |                     |                                                                                                                                                                                                                                                                                                               |                                                                                                    |  |  |
| 45<br>46                                                                   | 127 | Additionally                                                                                                                                                                                                                                                                                                                                                                                | Additionally, the study by Stensballe et al. <sup>29</sup> analysed data at both population and individual level but |                                                 |                           |                     |                                                                                                                                                                                                                                                                                                               |                                                                                                    |  |  |
| 47<br>48                                                                   | 128 | did not cont                                                                                                                                                                                                                                                                                                                                                                                | rol for th                                                                                                           | ne seasonal p                                   | atterns.                  |                     |                                                                                                                                                                                                                                                                                                               |                                                                                                    |  |  |
| 49                                                                         | 129 | Correlation                                                                                                                                                                                                                                                                                                                                                                                 | n analys                                                                                                             | es with no c                                    | ontrol for                | seasonal            | patterns                                                                                                                                                                                                                                                                                                      |                                                                                                    |  |  |
| 50<br>51                                                                   | 130 | Table 2 show                                                                                                                                                                                                                                                                                                                                                                                | ws a sum                                                                                                             | nmary of 11 s                                   | tudies <sup>12-14 2</sup> | 20 21 23 24 27 29 3 | <sup>30 33</sup> using correlation analys                                                                                                                                                                                                                                                                     | ses without                                                                                        |  |  |
| 52<br>53                                                                   | 131 | controlling f                                                                                                                                                                                                                                                                                                                                                                               | or seaso                                                                                                             | nal patterns                                    | of VARI and               | d PD. Since a       | all studies conducted multi                                                                                                                                                                                                                                                                                   | ple tests in                                                                                       |  |  |
| 54<br>55<br>56                                                             | 132 | analysing th                                                                                                                                                                                                                                                                                                                                                                                | e correla                                                                                                            | ation (e.g. acr                                 | oss age gro               | oups, viruse        | s and lag time between VA                                                                                                                                                                                                                                                                                     | RI and PD),                                                                                        |  |  |
| 57<br>58                                                                   |     |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                 |                           | 7                   |                                                                                                                                                                                                                                                                                                               |                                                                                                    |  |  |
| 59<br>60                                                                   |     |                                                                                                                                                                                                                                                                                                                                                                                             | For pee                                                                                                              | er review only                                  | - http://bn               |                     | com/site/about/guidelines.                                                                                                                                                                                                                                                                                    | xhtml                                                                                              |  |  |

| 133 | Bonferroni method was applied to adjust the significance level. The correlation between PD and                             |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 134 | influenza or RSV was statistically significant in all five studies <sup>14 23 24 29 30</sup> that analysed population data |
| 135 | of all ages (correlation coefficient r: 0.40–0.71 for influenza at no time lag, 0.47–0.77 for RSV at no                    |
| 136 | time lag).                                                                                                                 |

ι ficant in . .tr: 0.40-0.71 for .

#### 137 Table 2. Summary of ecological studies utilising correlation analysis.

| Study                                | Study<br>Period | Population                      | VARI                             | PD (n of cases)            | Data Sources and<br>Scale for Analysis                   | Correlation<br>Method | Correlation Coefficients (time lag)                                                                                                                                                                                                                                                  |
|--------------------------------------|-----------------|---------------------------------|----------------------------------|----------------------------|----------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ampofo et<br>al. 2008 <sup>12</sup>  | 2001–<br>2007   | <18y<br>Utah, US                | IFV<br>RSV<br>PIV<br>ADV<br>hMPV | IPD<br>(n=435)             | Hospitalisation<br>and lab data,<br>fortnightly          | Pearson               | <18y, IPD coded by ICD-9 IFV: 0.23c (0), 0.24c (2w), 0.18c (4w); RSV: 0.31a (0), 0.35a (2w), 0.34a (4w); PIV: 0.03 (0), -0.01 (2w), -0.03 (4w); ADV: 0.01 (0), -0.05 (2w), -0.08 (4w); hMPV: 0.31a (0), 0.39a (2w), 0.37a (4w) (similar results for culture-confirmed IPD)           |
| Burgos et al.<br>2015 <sup>13</sup>  | 1996–<br>2012   | ≥18y<br>Barcelona,<br>Spain     | IFV                              | IPD<br>(n=1,150)           | Hospitalisation<br>and surveillance<br>lab data, monthly | Spearman              | <u>≥18γ</u><br>IFV: <b>0.65a</b> (0), <b>0.45a</b> (1m)                                                                                                                                                                                                                              |
| Ciruela et al.<br>2016 <sup>14</sup> | 2006–<br>2012   | all ages<br>Catalonia,<br>Spain | IFV<br>RSV<br>ADV                | IPD<br>(n=8,044)           | Microbiological<br>reporting system,<br>monthly          | Spearman              | <u>All ages</u><br>IFV: <b>0.71a</b> (0), <b>0.64a</b> (1m);<br>RSV: <b>0.77a</b> (0), <b>0.80a</b> (1m);<br>ADV: <b>0.61a</b> (0), <b>0.39a</b> (1m)<br>(similar results for age-stratified analysis of I<br>and RSV; results of ADV were only significan<br>among <5y with no lag) |
| Jansen et al.<br>2008 <sup>20</sup>  | 1997–<br>2003   | all ages<br>Netherlands         | IFV<br>RSV                       | IPD<br>(n=7,266;<br>PM+PB) | Weekly Sentinel<br>System, weekly                        | Spearman              | <u>0–4y</u> , <u>5–17y</u> , <u>≥18y</u><br>IFV-PB: <b>0.24b</b> , <b>0.21b</b> , <b>0.62b</b><br>IFV-PM: <b>0.23b</b> , <b>0.14b</b> , <b>0.39b</b><br>RSV-PB: <b>0.29b</b> , <b>0.12b</b> , <b>0.59b</b><br>RSV-PM: <b>0.36b</b> , <i>—</i> , <b>0.44b</b>                         |
|                                      |                 |                                 |                                  |                            | 9                                                        |                       |                                                                                                                                                                                                                                                                                      |
|                                      |                 |                                 | For peer revie                   | ew only - http://bn        | njopen.bmj.com/site                                      | /about/guideli        | nes.xhtml                                                                                                                                                                                                                                                                            |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| ages IFV<br>uston, TX, ADV<br>PIV<br>non-IF |                   | Hospitalisation<br>and surveillance<br>lab data,<br>fortnightly | Pearson                    | $\frac{\geq 18\gamma}{  FV: 0.46a(0), 0.35c(4w)  }$ $RSV: 0.56a(0), 0.54a(4w)$ $ADV: 0.25c(0), 0.29c(4w)$ $non-IFV: 0.38a(0), 0.35c(4w)$ $\frac{<18\gamma}{  FV: 0.08(0), 0.23c(4w), 0.47a(8w)  }$ $RSV: 0.13(0), 0.28c(4w), 0.32c(8w)  $ $ADV: 0.31c(0), 0.55a(4w), 0.24c(8w)  $ $non-IFV: 0.24c(0), 0.39a(4w), 0.21c(8w)  $ $\frac{All ages}{  FV   A: 0.44a(0), 0.37a(1m)  }$ |
|---------------------------------------------|-------------------|-----------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ages RSV                                    |                   |                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                  |
| w Zealand PIV                               | IPD<br>(n=737)    | Surveillance data,<br>monthly                                   | Spearman                   | IFV B: <b>0.23c</b> (0), 0.13 (1m)<br>RSV: <b>0.52a</b> (0), <b>0.47a</b> (1m)<br>ADV: <b>0.27a</b> (0), <b>0.33a</b> (1m)<br>PIV 1/2: <b>0.24c</b> (0), <b>0.31a</b> (1m)<br>PIV 3: <b>0.34a</b> (0), <b>0.17c</b> (1m)<br>(correlations were stronger in 5–65y<br>and >65y)                                                                                                    |
| ages IFV<br>Iand and RSV<br>Ies, UK         | IPD<br>(n=71,333) | Surveillance data,<br>weekly                                    | Pearson<br>and<br>Spearman | All ages, Pearson<br>IFV: <b>0.54a</b><br>RSV: <b>0.47a</b><br><u>All ages</u> , Spearman<br>IFV: <b>0.67a</b><br>RSV: <b>0.63a</b><br>(correlations were stronger in 15–64y and<br>≥65y than 0–4y and 5–14y)                                                                                                                                                                    |
|                                             |                   | 10                                                              |                            |                                                                                                                                                                                                                                                                                                                                                                                  |
| le                                          | кэv<br>Эs, UK     | es, UK                                                          | es, UK 10                  | es, UK Spearman                                                                                                                                                                                                                                                                                                                                                                  |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| Study                                   | Study<br>Period | Population                | VARI                                 | PD (n of cases)                     | Data Sources and<br>Scale for Analysis                                                        | Correlation<br>Method | Correlation Coefficients (time lag)                                                                                                                                                                 |
|-----------------------------------------|-----------------|---------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peltola et al.<br>2011 <sup>27</sup>    | 1995–<br>2007   | <5y<br>Finland            | RV<br>EV<br>RSV<br>IFV<br>PIV<br>ADV | IPD<br>(about 90<br>cases per year) | National<br>Infectious Disease<br>Register + 3<br>studies + virus<br>database,<br>fortnightly | Pearson               | < <u>&lt;5γ</u><br>RV: 0.28c, 0.25c, 0.31, 0.23a (from 4 studies)<br>EV: 0.17c<br>RSV: 0.05<br>IFV: -0.03<br>IFV A: -0.08<br>PIV: 0.02<br>ADV: -0.05                                                |
| Stensballe<br>et al. 2008 <sup>29</sup> | 1996–<br>2003   | all ages<br>Denmark       | RSV<br>non-RSV                       | IPD<br>(n=7,787)                    | Population Based<br>Registries Cohort,<br>monthly                                             | Pearson               | <u>All ages</u><br>RSV: <b>0.55a</b><br>non-RSV: <b>0.65a</b><br><u>&lt;2y</u><br>RSV: 0.08                                                                                                         |
| Talbot et al.<br>2005 <sup>30</sup>     | 1995–<br>2002   | all ages<br>Tennessee, US | IFV<br>RSV                           | IPD<br>(n=4,147)                    | Surveillance data,<br>weekly                                                                  | Pearson               | All ages<br>RSV: 0.56a (0), 0.60a (1w), 0.59a (2w), 0.57a<br>(3w), 0.55a (4w)<br>IFV: 0.40a (0), 0.41a (1w), 0.34a (2w), 0.33a<br>(3w), 0.26a (4w)<br>(correlations were stronger in ≥18y than <18y |
|                                         |                 |                           |                                      |                                     |                                                                                               |                       |                                                                                                                                                                                                     |
|                                         |                 |                           |                                      |                                     | 11                                                                                            |                       |                                                                                                                                                                                                     |
|                                         |                 |                           | For peer revie                       | ew only - http://bn                 | njopen.bmj.com/site/                                                                          | /about/guideli        | nes.xhtml                                                                                                                                                                                           |

|             | Study                                                | Study<br>Period                        | Population                                                     | VARI                                                                               | PD (n of cases)                                                       | Data Sources and<br>Scale for Analysis                                 | Correlation<br>Method     | Correlation Coefficients (time lag)                                                                                                                  |
|-------------|------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| -           | Watson et<br>al. 2006 <sup>33</sup>                  | 2000<br>(May–<br>Oct)                  | all ages<br>New South<br>Wales,<br>Australia                   | IFV<br>RSV<br>PIV                                                                  | IPD<br>(n=681)                                                        | Surveillance data,<br>weekly                                           | Pearson                   | <pre>&lt;18y IFV: not significant RSV: 0.58a PIV: -0.40c ≥18y IFV: not significant RSV: not significant PIV: not significant RSV or IFV: 0.48c</pre> |
| 8           | Time lag indic                                       | cates the                              | time difference                                                | between prece                                                                      | eding VARI and sub                                                    | sequent PD incidence                                                   | e.                        |                                                                                                                                                      |
| 9           | Abbreviations                                        | s: ADV, ad                             | denovirus; EV, e                                               | nterovirus; IFV                                                                    | , influenza virus; IP                                                 | D, invasive pneumoc                                                    | occal disease;            | m, month(s); MPV, metapneumovirus; PB,                                                                                                               |
| 0           | nneumococc                                           | al bactera                             | emia: PD pneu                                                  | mococcal disea                                                                     | se PIV parainflue                                                     | nza virus <sup>.</sup> PM pneun                                        | nococcal menii            | ngitis; RSV, respiratory syncytial virus; RV,                                                                                                        |
|             | rhinovirus; V/                                       |                                        |                                                                |                                                                                    |                                                                       |                                                                        |                           |                                                                                                                                                      |
| -           |                                                      | init) that                             | acute respirator                                               | y mection; w,                                                                      | week(s); y, year(s).                                                  |                                                                        |                           |                                                                                                                                                      |
|             |                                                      |                                        |                                                                |                                                                                    |                                                                       |                                                                        | ly ( <i>P</i> <0.05); cor | relation coefficients ending with "a" were                                                                                                           |
| 2           | Correlation co                                       | oefficient                             | s <b>in bold</b> were s                                        | statistically sign                                                                 | ificant as originally                                                 | reported in the stud                                                   |                           | relation coefficients ending with "a" were oni correction was deemed unnecessary;                                                                    |
| 2<br>3      | Correlation co<br>statistically si                   | oefficient<br>gnificant                | s <b>in bold</b> were s                                        | i adjustment (F                                                                    | ificant as originally<br>2< 0.05/number of                            | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| 2<br>3<br>4 | Correlation co<br>statistically si<br>correlation co | pefficient<br>gnificant<br>pefficient: | s <b>in bold</b> were s                                        | statistically sign<br>ii adjustment (F<br>o" did not have                          | ificant as originally<br>< 0.05/number of<br>enough informatio        | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| 2<br>3<br>4 | Correlation co<br>statistically si<br>correlation co | pefficient<br>gnificant<br>pefficient: | s <b>in bold</b> were s<br>after Bonferron<br>s ending with "k | statistically sign<br>ii adjustment (F<br>o" did not have                          | ificant as originally<br>< 0.05/number of<br>enough informatio        | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| 2<br>3<br>4 | Correlation co<br>statistically si<br>correlation co | pefficient<br>gnificant<br>pefficient: | s <b>in bold</b> were s<br>after Bonferron<br>s ending with "k | statistically sign<br>ii adjustment (F<br>o" did not have                          | ificant as originally<br>< 0.05/number of<br>enough informatio        | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| 2<br>3<br>4 | Correlation co<br>statistically si<br>correlation co | pefficient<br>gnificant<br>pefficient: | s <b>in bold</b> were s<br>after Bonferron<br>s ending with "k | statistically sign<br>ii adjustment (F<br>o" did not have                          | ificant as originally<br>< 0.05/number of<br>enough informatio        | reported in the stud<br>relevant tests) or wh<br>on to apply the Bonfe | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| 2<br>3<br>4 | Correlation co<br>statistically si<br>correlation co | pefficient<br>gnificant<br>pefficient: | s <b>in bold</b> were s<br>after Bonferron<br>s ending with "k | statistically sign<br>ii adjustment (F<br>o" did not have                          | ificant as originally<br>< 0.05/number of<br>enough informatio        | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| 2<br>3<br>4 | Correlation co<br>statistically si<br>correlation co | pefficient<br>gnificant<br>pefficient: | s <b>in bold</b> were s<br>after Bonferron<br>s ending with "k | statistically sign<br>i adjustment ( <i>P</i><br>o" did not have<br>rroni adjustme | ificant as originally<br>< 0.05/number of<br>enough informatio<br>nt. | reported in the stud<br>relevant tests) or wh<br>on to apply the Bonfe | en the Bonferi            | roni correction was deemed unnecessary;<br>n; correlation coefficients ending with "c" were                                                          |

Page 13 of 57

#### **BMJ** Open

| 146<br>147 | <b>Regression analyses controlling for seasonal patterns</b><br><b>Table 3</b> shows the summary of the 15 studies <sup>11 13 14 16 18 22-24 26 32 34-38</sup> that controlled for seasonal |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 148        | patterns by regression analysis. Results were inconsistent among the studies. In all-age population                                                                                         |
| 149        | studies, preceding influenza infection was likely to be associated with IPD (12 studies <sup>13 14 16 18 22-24 32 35-</sup>                                                                 |
| 150        | <sup>38</sup> reported an association and two studies <sup>11 34</sup> reported no association). According to two studies <sup>23 24</sup>                                                  |
| 151        | that reported age-stratified results, the association between influenza and IPD was more likely to                                                                                          |
| 152        | exist among older people than among young children. In terms of preceding RSV infection, four <sup>14 24 34</sup>                                                                           |
| 153        | <sup>37</sup> out of five studies <sup>14 23 24 34 37</sup> observed an association of RSV with PD incidence. Specifically, one                                                             |
| 154        | study <sup>14</sup> found the association between RSV and IPD only existed among children <5 years. Studies                                                                                 |
| 155        | reporting other viruses such as ADV and PIV were sparse (two <sup>14 23</sup> and one <sup>23</sup> studies, respectively).                                                                 |
| 156        | Five studies <sup>14 23 24 34 37</sup> that reported two or more viruses demonstrated that the association differed                                                                         |
| 157        | by the type of virus. Moreover, the association could differ among virus subtypes (e.g. influenza A vs                                                                                      |
| 158        | influenza $B^{22}$ and PIV 1/2 vs PIV 3 <sup>23</sup> ). Notably, there are other factors that could influence the                                                                          |
| 159        | strength of the associations reported in these studies. For instance, the association could vary by                                                                                         |
| 160        | presentation of PD (invasive pneumococcal pneumonia, IPP vs npIPD <sup>32 34 36</sup> and PP vs pneumococcal                                                                                |
| 161        | sepsis, PSe <sup>37</sup> ); preceding VARI was more likely to be associated with the occurrence of pneumonia                                                                               |
| 162        | than other clinical presentations. Additionally, the results from studies in Denmark, where                                                                                                 |
| 163        | comorbidity status and pneumococcal serotype were available, demonstrated that influenza had a                                                                                              |
| 164        | greater influence on the incidence of low-invasiveness serotypes than medium- or high- invasiveness                                                                                         |
| 165        | among the low comorbidity group; among the high comorbidity group, the pattern was reversed. <sup>35 36</sup>                                                                               |
|            |                                                                                                                                                                                             |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

#### **Table 3. Summary of ecological studies controlling for seasonal patterns.**

| Study                                | Study<br>Period | Population                      | VARI (unit<br>used in<br>model)          | PD<br>(number<br>of cases) | Data Sources<br>and Scale for<br>Analysis                            | Statistical<br>Methods             | Covariates                                           | RR [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                              | AP [95% CI] (time lag) |
|--------------------------------------|-----------------|---------------------------------|------------------------------------------|----------------------------|----------------------------------------------------------------------|------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Allard et al.<br>2012 <sup>11</sup>  | 1997–<br>2008   | all ages<br>Montreal,<br>Canada | IFV (case)                               | IPD<br>(n=2,920)           | Notification<br>data and<br>sentinel<br>surveillance<br>data, weekly | Negative<br>binomial<br>regression | long-term<br>trends and<br>seasonal trends<br>of IPD | All ages<br>IFV A: 1.01 (0), 1.00 (1w),<br>1.00 (2w), 0.99 (3w), 1.00<br>(4w), 1.00 (5w)<br>IFV B: 1.01 (0), 1.01 (1w),<br>1.00 (2w), 1.01 (3w), 0.99<br>(4w), 1.01 (5w)                                                                                                                                                                                                                                            |                        |
| Burgos et al.<br>2015 <sup>13</sup>  | 1996–<br>2012   | ≥18y<br>Barcelona,<br>Spain     | IFV (IR per<br>1,000)                    | IPD<br>(n=1,150)           | Hospitalisation<br>and surveillance<br>lab data,<br>monthly          | Negative<br>binomial<br>regression | temperature                                          | <u>≥18γ</u><br>IFV: <b>1.23a</b> [1.03–1.47]                                                                                                                                                                                                                                                                                                                                                                        |                        |
| Ciruela et al.<br>2016 <sup>14</sup> | 2006–<br>2012   | all ages<br>Catalonia,<br>Spain | IFV<br>RSV<br>ADV<br>(IR per<br>100,000) | IPD<br>(n=8,044)           | Microbiological<br>reporting<br>system, monthly                      | Negative<br>binomial<br>regression | temperature >1<br>7°C                                | All ages<br>IFV: 1.26b [1.03–1.54] (0),<br>1.09 [0.87–1.36] (1m)<br>RSV: 1.15 [0.89–1.48] (0),<br>1.81b [1.36–2.41] (1m)<br>ADV: 1.58 [0.88–2.74] (0),<br>1.32 [0.68–2.42] (1m)<br>$\leq 5y$<br>IFV: 1.16 [0.90–1.50] (0),<br>1.06 [0.80–1.42] (1m)<br>RSV: 1.41 [1.00–1.97] (0),<br>2.57b [1.78–3.71] (1m)<br>ADV: 2.47b [1.38–4.53]<br>(0), 1.00 [0.59–1.68] (1m)<br>(not significant in 5–64y<br>or $\geq 65y$ ) |                        |
|                                      |                 |                                 |                                          |                            |                                                                      | 14                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                                      |                 |                                 | For pee                                  | r review onl               | ly - http://bmjop                                                    | en.bmj.com/                        | site/about/quide                                     | lines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                         |                        |

| Study                                              | Study<br>Period | Population                                | VARI (unit<br>used in<br>model)      | PD<br>(number<br>of cases) | Data Sources<br>and Scale for<br>Analysis       | Statistical<br>Methods               | Covariates                                                                                                                                                             | RR [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                         | AP [95% CI] (time lag)                                           |
|----------------------------------------------------|-----------------|-------------------------------------------|--------------------------------------|----------------------------|-------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Domenech de<br>Cellès et al.<br>2017 <sup>16</sup> | 2000–<br>2014   | all ages<br>France                        | ILI (as a<br>proxy for<br>IFV)       | IPD<br>(n=64,542<br>)      | National<br>surveillance<br>system, weekly      | Mixed-effect<br>linear<br>regression | seasonal trends<br>of IPD                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                | <u>All ages</u><br>ILI: median 4.9% across a<br>study years (1w) |
| Grabowska et<br>al. 2006 <sup>18</sup>             | 1994–<br>2004   | all ages<br>Sweden                        | IFV<br>(binary)                      | IPD<br>(n=11,637<br>)      | Surveillance<br>data, weekly                    | Negative<br>binomial<br>regression   | yearly trends<br>and seasonal<br>trends of IPD                                                                                                                         | <u>All ages</u><br>IFV: 1.03 [0.93–1.15] (0),<br>1.11 [1.00–1.23] (1w),<br>1.11 [0.99–1.22] (2w),<br><b>1.14c</b> [1.02–1.26] (3w),<br><b>1.12c</b> [1.01–1.23] (4w)                                                                                                                                                                                                                                           | <u>All ages</u><br><b>6%c</b> [1–12%] (3w)                       |
| Kuster et al.<br>2011 <sup>22</sup>                | 1995–<br>2009   | all ages<br>Toronto/ Peel<br>area, Canada | IFV (100<br>cases)                   | IPD<br>(n=6,191)           | Population-<br>based<br>surveillance,<br>weekly | Negative<br>binomial<br>regression   | multi-year<br>trends and<br>seasonal trends<br>of IPD, relative<br>humidity,<br>temperature,<br>UV index                                                               | All ages<br>IFV A&B: <b>1.09a</b> [1.05–<br>1.14] (1w), <b>0.93c</b> [0.89–<br>0.98] (3w)<br>IFV A: identical to IFV A&B<br>IFV B: not significant                                                                                                                                                                                                                                                             |                                                                  |
| Murdoch et al.<br>2009 <sup>23</sup>               | 1995–<br>2006   | all ages<br>Christchurch,<br>New Zealand  | IFV<br>RSV<br>ADV<br>PIV<br>(binary) | IPD<br>(n=737)             | Surveillance<br>data, monthly                   | Negative<br>binomial<br>regression   | average daily<br>temperature<br><10°C,<br>PM10 >50µg/m <sup>3</sup><br>, days with<br>rainfall >10,<br>mean daily 9 am<br>humidity >75%,<br>mean daily<br>sunshine >6h | All ages<br>IFV: <b>1.38c</b> [1.02–1.85] (0),<br>1.20 [0.91–1.58] (1m)<br>RSV: 1.15 [0.87–1.52] (0),<br>0.90 [0.68–1.18] (1m)<br>PIV 1/2: 1.04 [0.82–1.30]<br>(0), 1.04 [0.84–1.29] (1m)<br>PIV 3 outside IFV season:<br><b>1.64a</b> [1.18–2.30] (0),<br><b>1.49c</b> [1.07–2.08] (1m)<br>ADV: 0.97 [0.78–1.20] (0),<br><b>1.26c</b> [1.02–1.54] (1m)<br>(similar in 5–65y, >65y;<br>not significant in <5y) |                                                                  |
|                                                    |                 |                                           |                                      |                            |                                                 | 15                                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |

| ages IFV<br>gland and RSV<br>gles, UK (case) | IPD<br>(n=71,333<br>)             | Analysis<br>Surveillance<br>data, weekly                                | Negative<br>binomial<br>regression                                                   | weekly<br>temperature or<br>monthly hours<br>of sunshine<br>(separately in<br>models; results<br>were similar)                                      |                                                                                                                                                                                                                                                                          | All ages, 0-4y, 5-14y, 15-64y,<br>≥65y controlling for<br>temperature, multiplicative<br>model<br>IFV: 5.6%b [0.2-23.8%], -0.4%<br>[-1.8-0.0%], 2.9%c [0.0-<br>13.6%], 1.8%c [0.1-7.4%],<br>3.2%b [0.0-14.7%]<br>RSV: 2.9%b [0.1-14.2%], 1.4%d<br>[0.0-6.9%], 5.9%b [0.0-27.6%]<br>14.5%b [0.0-52.7%], 7.9%b                                                  |
|----------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              |                                   |                                                                         |                                                                                      |                                                                                                                                                     |                                                                                                                                                                                                                                                                          | [0.0–27.4%]<br>(no significant results in time<br>lag analyses)                                                                                                                                                                                                                                                                                               |
| ages VARI (IR)<br>nce                        | PM<br>(n=1,383)                   | Surveillance<br>data, weekly                                            | Poisson<br>regression<br>using<br>generalised<br>estimating<br>equations<br>approach | seasonal trends<br>of PM                                                                                                                            | <u>All ages</u><br>regression parameter:<br><b>19.4c</b><br><b>23.1a</b> (1w)<br><b>23.9a</b> (2w)                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                               |
| ages IFV (positive<br>percentage)            | IPD (IPP,<br>npIPD;<br>n=21,239)  | Surveillance<br>data, weekly                                            | Negative<br>binomial<br>regression                                                   | seasonal trends<br>and linear<br>trends of IPP                                                                                                      |                                                                                                                                                                                                                                                                          | Northeast, <u>all ages</u><br>IFV-IPP: <b>4.9%c</b> [4.5–5.3%] (1w<br>South, <u>all ages</u><br>IFV-IPP: <b>5.4%b</b> [5.0–5.9%] (1w<br>West, <u>all ages</u><br>IFV-IPP: <b>5.2%c</b> [4.8–6.0%] (1w<br>(not significant for IFV-npIPD)                                                                                                                      |
| n                                            | ce VARI (IR)<br>ges IFV (positive | ce VARI (IR) (n=1,383)<br>ce IFV (positive percentage) IPD (IPP, npIPD; | ce VARI (IR) (n=1,383) data, weekly<br>ges IFV (positive npIPD; data, weekly         | ce VARI (IR) PM Surveillance generalised<br>(n=1,383) data, weekly estimating<br>equations<br>approach<br>IPD (IPP,<br>npIPD; data, weekly binomial | ges     VARI (IR)     PM     Surveillance     generalised     seasonal trends       ce     VARI (IR)     (n=1,383)     data, weekly     generalised     of PM       ges     IFV (positive percentage)     IPD (IPP, npIPD;     Surveillance     Negative seasonal trends | ges       VARI (IR)       PM       Surveillance<br>(n=1,383)       generalised<br>data, weekly       seasonal trends<br>estimating<br>equations<br>approach       19.4c         ges       IFV (positive<br>percentage)       IPD (IPP,<br>npIPD;       Surveillance<br>data weekly       Negative<br>binomial       seasonal trends<br>and linear       19.4c |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| Study                                   | Study<br>Period | Population                                                     | VARI (unit<br>used in<br>model)                             | PD<br>(number<br>of cases)       | Data Sources<br>and Scale for<br>Analysis                                   | Statistical<br>Methods | Covariates                                                                                                 | RR [95% CI] (time lag) | AP [95% Cl] (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|-----------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weinberger et<br>al. 2014 <sup>34</sup> | 1996–<br>2012   | <7y<br>Navajo/White<br>Mountain<br>Apache<br>population,<br>US | Bronchiolitis<br>(IR, as a<br>proxy for<br>RSV)<br>IFV (IR) | IPD<br>(IPP,<br>npIPD;<br>n=496) | 4 community-<br>based studies,<br>monthly                                   | Poisson<br>regression  | pneumococcal<br>carriage<br>prevalence,<br>seasonal trends<br>of IPD, PCV<br>periods                       |                        | <pre>&lt;7y<br/>Bronchiolitis-PP: 15.5%b [1.8<br/>26.1%]<br/>Bronchiolitis-npIPD: 8.0%<br/>[-4.8–19.3%]<br/>(not significant for IFV)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Weinberger et<br>al. 2013 <sup>35</sup> | 1977–<br>2007   | ≥40y<br>Denmark                                                | ILI (case, as<br>a proxy for<br>IFV)                        | IPP<br>(n=8,308)                 | Surveillance<br>data +<br>nationwide<br>general practice<br>reports, weekly | Poisson<br>regression  | seasonal trends<br>of IPP, dummy<br>variable for<br>week<br>1,2,3,51,52 and<br>its interaction<br>with ILI |                        | <ul> <li>≥40y, low comorbidity and losserotype invasiveness</li> <li>ILI: 17.9%a [13.6–21.9%] (1w</li> <li>≥40y, low comorbidity and high serotype invasiveness</li> <li>ILI: 6.7%a [3.8–11.7%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and low serotype invasiveness</li> <li>ILI: 1.3% [-1.6–5.4%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and high serotype invasiveness</li> <li>ILI: 1.3% [-1.6–5.4%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and high serotype invasiveness</li> <li>ILI: 8.9%a [6.6–11.8%] (1w)</li> </ul> |
|                                         |                 |                                                                |                                                             |                                  |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                 |                                                                |                                                             |                                  |                                                                             | 17                     |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                 |                                                                |                                                             |                                  |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Meinberger et       1977-       all ages       ILI (case, as a proxy for npIPD; n=13,882)       ILI (case, as a proxy for npIPD; n=13,882)       seasonal trends       ILI-IPD: 0.3% [-8.4-9.7%] (1w)         ILI-IPD: 0.3% [-8.4-9.7%] (1w)       iLI-IPD: 0.3% [-8.4-9.7%] (1w)       iLI-IPD: 0.3% [-8.4-9.7%] (1w)       iLI-IPD: 0.3% [-8.4-9.7%] (1w)         Al. 2014 <sup>36</sup> 2007       Denmark       ILI (case, as a proxy for npIPD; n=13,882)       nationwide general practice reports, weekly       variable for week       (1w)         ILI-IPD: 7.6%a [5.1-11.6%]       with ILI       Yu       Yu       Yu       Yu         ILI-IPD: 6.9%a [1.8-12.8%]       (1w)       Yu       Yu       Yu         ILI-IPD: 6.2%a [4.3-9.3%] (1w)       Yu       Yu       Yu       Yu | Study                                   | Study<br>Period | Population | VARI (unit<br>used in<br>model) | PD<br>(number<br>of cases) | Data Sources<br>and Scale for<br>Analysis                | Statistical<br>Methods | Covariates                                                                              | RR [95% CI] (time lag) | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|------------|---------------------------------|----------------------------|----------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weinberger et<br>al. 2014 <sup>36</sup> |                 |            | ILI (case, as<br>a proxy for    | IPD (IPP,<br>npIPD;        | Surveillance<br>data +<br>nationwide<br>general practice | regression             | of IPD, dummy<br>variable for<br>week<br>1,2,3,51,52 and<br>its interaction<br>with ILI |                        | ILI-IPD: 9.9%a [6.0–13.0%]         (1w)         ILI-IPP: 11.2%a [6.5–14.8%]         (1w)         ILI-npIPD: 6.6% [-1.2–14.3%]         (1w)         15–39y, medium/high         comorbidity         ILI-IPD: 0.3% [-8.4–9.7%] (1w)         ILI-IPD: 0.3% [-8.4–9.7%] (1w)         ILI-IPD: 0.3% [-8.4–9.7%] (1w)         ILI-IPD: 0.3% [-8.4–9.7%] (1w)         ILI-IPD: 7.6%a [5.1–11.6%]         (1w)         240y, low comorbidity         ILI-IPD: 7.6%a [5.1–11.6%]         (1w)         ILI-IPD: 6.9%a [1.8–12.8%]         (1w)         ILI-IPD: 6.9%a [4.3–9.3%] (1w)         240y, medium/high         comorbidity         ILI-IPD: 6.2%a [4.3–9.3%] (1w)         ILI-IPD: 6.5%a [4.4–10.1%] (1w) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                 |            |                                 |                            |                                                          | 18                     |                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|     | Study                                   | Study<br>Period | Population              | VARI (unit<br>used in<br>model)        | PD<br>(number<br>of cases)   | Data Sources<br>and Scale for<br>Analysis | Statistical<br>Methods                                                                                     | Covariates                                                     | RR [95% CI] (time lag)                                                                                                                                                                                                                                                       | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-----------------------------------------|-----------------|-------------------------|----------------------------------------|------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Weinberger et<br>al. 2015 <sup>37</sup> | 1992–<br>2009   | <2y<br>36 states in US  | IFV<br>RSV<br>(IR)                     | PD (PP,<br>PSe;<br>n=17,404) | State inpatient<br>databases,<br>weekly   | Poisson<br>regression                                                                                      | seasonal trends<br>of PD, PCV<br>periods, IFV or<br>RSV, state | <u>0–2m, 3–11m, 0–11m,</u><br><u>12–23m</u><br>RSV-PP: <b>1.42b</b> [1.30–<br>1.55], <b>1.24b</b> [1.17–1.33],<br><b>1.23b</b> [1.19–1.30], <b>1.12b</b><br>[1.09–1.18]                                                                                                      | 0-2m, 3-11m, 0-11m, 12-23m<br>IFV-PP: 2.1% [-4.5-1.4%],<br>2.2%a [0.1-3.4%], 0.6% [-0.9-<br>1.4%], 3.2%a [1.7-4.7%]<br>RSV-PP:35.7%a [27.9-42.7%],<br>20.0%a [14.7-24.8%], 20.3%a<br>[17.4-25.1%], 10.1%a [7.6-<br>13.9%]<br>IFV-PSe: 0.7% [-1.1-2.2%],<br>-2.7%a [-3.71.7%], -0.6%<br>[-1.4-0.3%], 1.9%a [1.1-2.6%]<br>RSV-PSe: 15.0%a [13.1-17.1%]<br>0.1% [-4.9-5.0%], 7.2%a [5.3-<br>9.0%], 3.8%a [2.5-5.2%] |
|     | Zhou et al.<br>2012 <sup>38</sup>       | 1994–<br>2005   | all ages<br>Atlanta, US | IFV<br>RSV<br>(positive<br>percentage) | IPP<br>(n=5,683)             | Surveillance<br>data, weekly              | Negative<br>binomial<br>regression<br>(comparison<br>between<br>models with<br>and without<br>IFV and RSV) | temperature,<br>sunshine,<br>precipitation                     | p values for the likelihood<br>ratio test were <0.05 for 5<br>of 11 influenza seasons:<br>1994–95, 1996–97, 1998–<br>99, 2003–04, 2004–05;<br>after Bonferroni<br>adjustment association<br>was significant for 3 of 11<br>influenza seasons: 1996–<br>97, 2003–04, 2004–05. |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 167 | Time lag indi                           | cates the       | e time differen         | ce between \                           | /ARI and su                  | bsequent PD in                            | cidence.                                                                                                   |                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 168 | Abbreviation                            | s: ADV, a       | adenovirus; AP          | , attributable                         | percentag                    | e; CI, confidence                         | e interval; IFV,                                                                                           | influenza virus;                                               | h, hour(s); ILI, influenza                                                                                                                                                                                                                                                   | -like illness; IPD, invasive                                                                                                                                                                                                                                                                                                                                                                                     |
| 169 | pneumococc                              | al diseas       | e; IPP, invasive        | e pneumococ                            | cal pneumo                   | onia; IR, inciden                         | ce rate; npIPD                                                                                             | , non-pneumoni                                                 | c invasive pneumococca                                                                                                                                                                                                                                                       | l disease; PCV,                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                         |                 |                         |                                        |                              |                                           | 19                                                                                                         |                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                         |                 |                         | For peer                               | r review onl                 | y - http://bmjop                          | oen.bmj.com/s                                                                                              | ite/about/guide                                                | lines.xhtml                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                         | ອາດາສ .າຂ       | ang ya tizuz ,ei        |                                        |                              |                                           |                                                                                                            |                                                                |                                                                                                                                                                                                                                                                              | Open: first published as 10.                                                                                                                                                                                                                                                                                                                                                                                     |

| 1<br>2      |     |                                                                                                                                                                                                                                               |
|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3           |     |                                                                                                                                                                                                                                               |
| 4<br>5<br>6 | 170 | pneumococcal conjugate vaccine; PD, pneumococcal disease; PIV, parainfluenza virus; PP, pneumococcal pneumonia; PSe, pneumococcal sepsis; RR,                                                                                                 |
| 7<br>8      | 171 | relative risk; RSV, respiratory syncytial virus; UV index, clear-sky ultraviolet index; VARI, viral acute respiratory infection; w, week(s); y, year(s).                                                                                      |
| 9<br>10     | 172 | Relative risk or attributable percentage in bold were statistically significant as originally reported in the study (P<0.05); relative risk or attributable                                                                                   |
| 11<br>12    | 173 | percentage ending with "a" were statistically significant after Bonferroni adjustment (P<0.05/number of relevant tests) or when the Bonferroni correction                                                                                     |
| 13<br>14    | 174 | was deemed unnecessary, those ending with "b" did not have enough information to apply the Bonferroni correction; relative risk or attributable                                                                                               |
| 15<br>16    | 175 | was deemed unnecessary, those ending with "b" did not have enough information to apply the Bonferroni correction; relative risk or attributable<br>percentage ending with "c" were not statistically significant after Bonferroni adjustment. |
| 17<br>18    | 176 |                                                                                                                                                                                                                                               |
| 19<br>20    |     |                                                                                                                                                                                                                                               |
| 21<br>22    |     |                                                                                                                                                                                                                                               |
| 23          |     |                                                                                                                                                                                                                                               |
| 24<br>25    |     |                                                                                                                                                                                                                                               |
| 26          |     |                                                                                                                                                                                                                                               |
| 27<br>28    |     |                                                                                                                                                                                                                                               |
| 29          |     |                                                                                                                                                                                                                                               |
| 30<br>31    |     |                                                                                                                                                                                                                                               |
| 32          |     |                                                                                                                                                                                                                                               |
| 33<br>34    |     |                                                                                                                                                                                                                                               |
| 35          |     |                                                                                                                                                                                                                                               |
| 36<br>37    |     |                                                                                                                                                                                                                                               |
| 38          |     |                                                                                                                                                                                                                                               |
| 39<br>40    |     |                                                                                                                                                                                                                                               |
| 40<br>41    |     | 20                                                                                                                                                                                                                                            |
| 42          |     | 20                                                                                                                                                                                                                                            |
| 43<br>44    |     |                                                                                                                                                                                                                                               |
| 44<br>45    |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                     |
| 46<br>47    | .tr | BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyrigh                                                                          |

| 177 | Studies | utilising | other | analyses |
|-----|---------|-----------|-------|----------|
|-----|---------|-----------|-------|----------|

178 Seven ecological studies<sup>15 16 19 22 26 28 31</sup> utilised other analytical methods (**Table 4**). Except for studies

by Hendriks et al.<sup>19</sup> and Toschke et al.<sup>31</sup>, all studies reported an association between VARI and PD.

## 180 Table 4. Summary of ecological studies utilising other methods.

| Study                                                 | Study<br>Period | Population                         | VARI                                 | PD (n of<br>cases)    | Data<br>Sources and<br>Scale for<br>Analysis                              | Methods                                                                                                                           | Main findings                                                                                                                                        |
|-------------------------------------------------------|-----------------|------------------------------------|--------------------------------------|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dangor et<br>al. 2014 <sup>15</sup>                   | 2005–<br>2008   | <15y<br>Soweto,<br>South<br>Africa | IFV                                  | IPD<br>(n=636)        | Hospitalisati<br>on and<br>surveillance<br>laboratory<br>data,<br>monthly | X-11 seasonal<br>adjustment<br>method to<br>retain seasonal<br>components.<br>Peak timing<br>compared by<br>time series<br>graph. | IFV peak in May–<br>Jul, followed by<br>IPD (Aug–Oct);<br>no correlation<br>analysis results<br>reported                                             |
| Domenech<br>de Cellès<br>et al.<br>2017 <sup>16</sup> | 2000–<br>2014   | all ages<br>France                 | ILI (as<br>a<br>proxy<br>for<br>IFV) | IPD<br>(n=64,54<br>2) | National<br>surveillance<br>system,<br>weekly                             | Correlation<br>analysis of<br>waveforms of<br>ILI and IPD                                                                         | Correlation of<br>peak timing of ILI<br>and IPD peak 2:<br>0.42 [0.04-0.66];<br>correlation of<br>total cases of ILI<br>and IPD: 0.31<br>[0.03-0.56] |
| Hendriks<br>et al.<br>2017 <sup>19</sup>              | 2004–<br>2014   | all ages<br>Netherlan<br>ds        | ILI (as<br>a<br>proxy<br>for<br>IFV) | IPD<br>(n=6,572)      | Surveillance<br>data, weekly                                              | cross-<br>correlations of<br>the time series<br>model<br>(SARIMA)<br>residuals                                                    | no significant<br>cross-<br>correlations<br>observed                                                                                                 |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

| 1<br>2         |  |
|----------------|--|
| 3<br>4         |  |
|                |  |
| 5<br>6<br>7    |  |
| 8              |  |
| 9<br>10        |  |
| 11             |  |
| 12<br>13<br>14 |  |
| 14<br>15       |  |
| 16<br>17       |  |
| 17<br>18       |  |
| 19             |  |
| 20<br>21       |  |
| 22<br>23       |  |
| 24             |  |
| 25<br>26       |  |
| 27<br>28       |  |
| 29             |  |
| 30<br>31       |  |
| 32             |  |
| 33<br>34       |  |
| 35<br>36       |  |
| 37             |  |
| 38<br>39       |  |
| 40             |  |
| 41<br>42       |  |
| 43<br>44       |  |
| 45             |  |
| 46<br>47       |  |
| 48<br>49       |  |
| 50             |  |
| 51<br>52       |  |
| 53             |  |
| 54<br>55       |  |
| 56<br>57       |  |
| 58             |  |
| 59<br>60       |  |
|                |  |

1

| Study                                     | Study<br>Period | Population                                   | VARI | PD (n of<br>cases)     | Data<br>Sources and<br>Scale for<br>Analysis                                                           | Methods                                                                                                                                                                                                                              | Main findings                                                                                                                                                                         |
|-------------------------------------------|-----------------|----------------------------------------------|------|------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kuster et<br>al. 2011 <sup>22</sup>       | 1995–<br>2009   | all ages<br>Toronto/<br>Peel area,<br>Canada | IFV  | IPD<br>(n=6,191)       | Population-<br>based<br>surveillance,<br>weekly                                                        | Spearman<br>correlation for<br>phase and<br>amplitude<br>between IFV<br>and IPD;<br>Granger<br>methods to<br>test whether<br>influenza<br>predicted IPD;<br>Case-crossover<br>analysis to<br>evaluate short-<br>term<br>associations | Phase and<br>amplitude<br>between IFV and<br>IPD not<br>correlated;<br>Granger test of<br>IFV causing IPD:<br><i>P</i> <0.001;<br>case-crossover<br>OR: 1.10[1.02–<br>1.18] at 1w lag |
| Opatowski<br>et al.<br>2013 <sup>26</sup> | 2001–<br>2004   | all ages<br>France                           | VARI | PM<br>(n=1,383)        | Surveillance<br>data,<br>weekly                                                                        | Mathematic<br>model of<br>pneumococcus<br>transmission,<br>to estimate<br>the interaction<br>parameters<br>between VARI<br>and PM                                                                                                    | Factor of VARI<br>on<br>pneumococcus<br>acquisition or<br>transmissibility:<br>8.7[4.6–14.4];<br>factor of VARI on<br>pathogenicity:<br>92[28–361]                                    |
| Shrestha<br>et al.<br>2013 <sup>28</sup>  | 1989–<br>2009   | all ages<br>Illinois, US                     | IFV  | PP<br>(n not<br>known) | Hospital<br>data, weekly<br>(Dataset I<br>from 1989<br>to 1997,<br>dataset II<br>from 2000<br>to 2013) | Mathematic<br>model of<br>pneumococcus<br>transmission,<br>to estimate<br>the interaction<br>parameters<br>between VARI<br>and PP                                                                                                    | Factor of IFV on<br>PP susceptibility:<br>dataset I<br>115[70–200],<br>dataset II 85[30–<br>160]                                                                                      |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 57

**BMJ** Open

| udy                             |
|---------------------------------|
| ischke et<br>2008 <sup>31</sup> |

182 PM, pneumococcal meningitis; PP, pneumococcal pneumonia; VARI, viral acute respiratory infection;

183 w, week(s); y, year(s).

## 184 Discussion

In our review, we summarised population-based studies that evaluated the association of seasonal VARI and subsequent PD. To our knowledge, this is the first review that summarises the methodology and findings of existing epidemiological studies on this topic. We found that reported associations between VARI and subsequent PD were inconsistent among the 28 included studies. Only three studies<sup>17 25 29</sup> analysed the association using individual patient data. The two cohort studies<sup>17 29</sup> did not account for the shared risk factors between VARI and PD that influenced their seasonality, substantially limiting the inferences that can be made from these data while the case-control study<sup>25</sup> was limited by its small sample size (n case=13). In ecological studies, only 16<sup>11 13 14 16 18 19 22-24 26 32 34-38</sup> of the 25<sup>11-16 18-24 26-28 30-38</sup> ecological studies accounted for seasonal patterns. In these studies, we found that influenza and/or RSV infections were likely to be associated with the subsequent occurrence of PD. For influenza, the association was stronger among younger populations compared to older adults<sup>23 24</sup> while the pattern was reversed for RSV.<sup>14</sup> Data from multiple studies suggested that virus type (five studies<sup>14 23 24 34 37</sup>) and subtype (two studies<sup>22 23</sup>), 

| 198 | comorbidity status (two studies <sup>35 36</sup> ) and pneumococcal serotype invasiveness (one study <sup>35</sup> ) could |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 199 | influence the association. However, these 16 ecological studies had various population                                     |
| 200 | characteristics (e.g. age, comorbidity, immunity status), PD datasets, VARI datasets and analytical                        |
| 201 | methods. As such, heterogeneity among the studies, along with their ecological nature, limits the                          |
| 202 | amount of valid inferences that can be made from the data (as summarised above).                                           |
| 203 | Nevertheless, these studies provide important clues for the potential factors related to the                               |
| 204 | association between VARI and subsequent PD, and thus could help with the conception and design                             |
| 205 | of future studies. Ideally, in order to understand whether a particular preceding VARI can predispose                      |
| 206 | an individual to PD, a prospective cohort study that monitors each individual for VARI and                                 |
| 207 | pneumococcal infection would be utilised, allowing analyses at both individual and population levels.                      |
| 208 | However, such a design would not be feasible or affordable as inter alia pneumococcal infections are                       |
| 209 | rare. Alternatively, utilisation of large-scale routine health data and reliable data linkage (through                     |
| 210 | unique individual identifiers) from sources such as surveillance data and hospitalisation datasets may                     |
| 211 | be feasible in many industrialised countries. An example of such data linkage in our review is the                         |
| 212 | study by Stensballe and colleagues <sup>29</sup> that linked information from four Danish population-based                 |
| 213 | registries. While the authors conducted individual-level analysis, the results were based on cases                         |
| 214 | tested for both the presence of respiratory viruses and pneumococcal infection. The true number of                         |
| 215 | VARI-associated PD cases is likely to be significantly higher due to incomplete testing of cases; the                      |
| 216 | untested viral-pneumococcal cases could represent a crucial source of selection bias. Community-                           |
| 217 | based active surveillance can likely address the issue of missing cases but such surveillance would be                     |
| 218 | labour intensive and less cost-effective to conduct. Another option is a case-control study, which is                      |
| 219 | affordable and practical, but not without its limitations. In addition to challenges in designing such                     |
| 220 | studies, defining the history of VARI is likely to be inaccurate since the timing of viral serology may                    |
| 221 | be less accurate (information bias). <sup>27</sup> In the case-control study by O'Brien and colleagues, <sup>25</sup> the  |
| 222 | authors used influenza-strain specific convalescent serology as evidence for preceding influenza                           |
| 223 | infection. The authors also conducted telephone interviews to investigate ILI history but they did not                     |
|     | 24                                                                                                                         |
|     |                                                                                                                            |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 25 of 57

1

59

60

#### BMJ Open

| 2              |     |                                                                                                                                     |
|----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 3              | 224 | mention whether interviewers and interviewees were blind to case or control status. Moreover, the                                   |
| 4<br>5         | 225 | value of this case-control study is limited by its very small sample size (n case = 13).                                            |
| 6<br>7         | 226 | Compared with individual patient data based studies, ecological studies are more feasible, and                                      |
| 8<br>9<br>10   | 227 | thus the most common study design included in our review (25/28). However, there are some                                           |
| 10<br>11<br>12 | 228 | caveats when interpreting results from ecological studies. First, causality can never be inferred from                              |
| 13<br>14       | 229 | such studies. Second, the results should be interpreted at a population level and cannot be                                         |
| 15<br>16       | 230 | generalised to the individual level. Since ecological studies used data aggregated into broad                                       |
| 17<br>18       | 231 | categories, the potential biases introduced by the aggregation should be taken into account. For                                    |
| 19<br>20       | 232 | instance, while 16 out of 25 ecological studies used weekly data, others used fortnightly or monthly                                |
| 21<br>22       | 233 | data. This may lead to misclassification as the time window of the association of VARI on PD                                        |
| 23<br>24       | 234 | susceptibility can be as short as one week. <sup>39 40</sup> Moreover, data from different sources in ecological                    |
| 25<br>26       | 235 | studies should represent the same population.                                                                                       |
| 27<br>28       | 236 | Apart from the study design, one further challenge of analysing the association is accounting for                                   |
| 29<br>30       | 237 | the influence of seasonal factors of VARI and PD (confounding). Both VARI and PD have similar                                       |
| 31<br>32       | 238 | seasonal patterns, and thus are likely to correlate as indicated by the correlation results from                                    |
| 33<br>34<br>35 | 239 | ecological studies. The increased risk of PD during an epidemic season could be caused by VARI or by                                |
| 36<br>37       | 240 | seasonal risk factors or by both. In the present review, 11 studies <sup>12 15 17 20 21 27-31 33</sup> did not attempt to           |
| 38<br>39       | 241 | control for seasonal confounders, likely leading to biased estimations of the association. For example,                             |
| 40<br>41       | 242 | the study by Edwards and colleagues <sup>17</sup> reported a relative risk as high as 112.5 when not adjusting                      |
| 42<br>43       | 243 | any seasonal factors. One way to address this problem in such studies would be to match the                                         |
| 44<br>45       | 244 | individuals with the onset timing of pneumococcal infection, keeping the risk of PD comparable                                      |
| 46<br>47       | 245 | between VARI cases and non-VARI cases; for ecological studies, regression analysis adding seasonal                                  |
| 48<br>49       | 246 | terms or climatic factors (such as temperature and humidity), or cross-correlation analysis of time                                 |
| 50<br>51       | 247 | series controlling for seasonal patterns could be considered.                                                                       |
| 52<br>53       | 248 | Our review suggests that the association of VARI and subsequent PD could vary by virus type <sup>14 23 24</sup>                     |
| 54<br>55       | 249 | <sup>34 35</sup> and even by subtype <sup>22 23</sup> . Studies using combinations of viral infections such as all virus, influenza |
| 56<br>57       |     |                                                                                                                                     |
| 58<br>50       |     | 25                                                                                                                                  |

|              | 250 | + RSV, non-influenza, or non-RSV could give biased estimations of the association. However, it is not               |
|--------------|-----|---------------------------------------------------------------------------------------------------------------------|
|              | 251 | always practical to analyse the association by virus type. In ecological studies, different types of                |
|              | 252 | viruses might co-circulate and thus be highly correlated in incidence, making it difficult to determine             |
| )            | 253 | the role for each virus. In terms of PD, most studies used IPD as the outcome of interest. However,                 |
| 2<br>2       | 254 | studies that categorised IPD into IPP and npIPD found that the association was more pronounced in                   |
| 3<br>1       | 255 | IPP than in npIPD. <sup>32 34 36</sup> A similar finding, that the association was stronger in PP than PSe, was     |
| 5            | 256 | reported in another study. <sup>37</sup> These results suggest VARI is more likely to be associated with            |
| 7<br>3       | 257 | pneumonic pneumococcal infections than non-pneumonic infections. In our review, we excluded                         |
| )<br>)       | 258 | studies using information other than clinical diagnosis as a proxy for PD (e.g. prescription data and               |
| <br><u>2</u> | 259 | carriage data). Pneumococcal carriage could have a fundamental role in the transmission and                         |
| 3<br>1<br>-  | 260 | incidence of PD. <sup>41</sup> In a study analysing the impact of pneumococcal carriage and viral activity,         |
| 5            | 261 | Weinberger and colleagues <sup>34</sup> found npIPD was associated with carriage prevalence, whereas IPP was        |
| 3            | 262 | associated with bronchiolitis (as a proxy for RSV). The authors also proposed that preceding VARI                   |
| )<br>        | 263 | increased susceptibility but did not enhance transmission (indicated by carriage prevalence) in                     |
| 2<br>3       | 264 | children. However, more studies are needed to confirm these findings.                                               |
| 1<br>5       | 265 | The association could also vary by population characteristics. According to two studies that                        |
| 5<br>7       | 266 | displayed age-stratified results, <sup>23 24</sup> the association of influenza and subsequent IPD was more likely  |
| 3<br>9       | 267 | to exist among older people than among young children. Studies by Weinberger et al. <sup>35 36</sup> gauged the     |
| )            | 268 | association in different comorbidity and pneumococcal serotype groups among Denmark                                 |
| 3            | 269 | populations. The results showed that influenza had a stronger impact on the incidence of low-                       |
| +<br>5<br>-  | 270 | invasiveness serotypes than medium- or high- invasiveness ones in the low comorbidity group, while                  |
| 2<br>7<br>2  | 271 | the pattern reversed in the high comorbidity group. Another study that analysed clinical records of                 |
| )            | 272 | 919 patients with PP found that infrequently colonising pneumococcal serotypes were more likely to                  |
| 2<br>1<br>2  | 273 | cause PP after preceding VARI, particularly in patients with immunodeficiency or chronic lung                       |
| 3<br>1       | 274 | diseases. <sup>42</sup> These findings suggest the need for future studies to analyse the association by age group, |
| 5            | 275 | pneumococcal serotype and comorbidity status. Moreover, the recent introduction of pneumococcal                     |
| 7<br>3       |     | 26                                                                                                                  |
| )            |     | For peer review only - http://bmionen.hmi.com/cite/about/quidelines.yhtml                                           |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

59

60

#### BMJ Open

| 1              |     |                                                                                                                   |
|----------------|-----|-------------------------------------------------------------------------------------------------------------------|
| 2<br>3         | 276 | vaccines has brought changes in the incidence of serotype-specific PD, <sup>43</sup> making the association of    |
| 4<br>5         | 277 | VARI and PD more complicated to understand. As a result, future studies should consider the                       |
| 6<br>7         | 278 | possible serotype-specific influence that pneumococcal vaccines have on both individual immunity                  |
| 8<br>9<br>10   | 279 | and herd immunity when analysing the association.                                                                 |
| 10<br>11<br>12 | 280 | In addition to the factors discussed above, additional factors may influence the estimates of the                 |
| 13<br>14       | 281 | association. The first is the change over time in the methodology of data collection, including                   |
| 15<br>16       | 282 | changes in test method or diagnosis, clinical practice and health-seeking behaviour. The second is                |
| 17<br>18       | 283 | the possible delay in measurement, which happened most often in passive hospital-based studies.                   |
| 19<br>20       | 284 | Thirdly, for ecological studies using aggregated data, "holiday spikes" could occur due to more social            |
| 21<br>22       | 285 | gatherings; <sup>44</sup> besides, weekends and holidays might influence timely tests or diagnosis as well as the |
| 23<br>24       | 286 | health-seeking behaviour of patients.                                                                             |
| 25<br>26       | 287 | We found many studies tended to conduct multiple statistical tests using different subgroups and                  |
| 27<br>28       | 288 | time periods (e.g. age group, virus, time lag between VARI and PD) without specifying the primary                 |
| 29<br>30       | 289 | study question a priori or making proper statistical adjustments to account for multiple testing. This            |
| 31<br>32<br>33 | 290 | could give rise to an increased risk of reporting false positive results. In this review, we applied              |
| 33<br>34<br>35 | 291 | Bonferroni corrections to adjust for the multiple tests where deemed necessary. Since the                         |
| 36<br>37       | 292 | Bonferroni method is conservative and we are unable to adjust for studies where <i>P</i> values were not          |
| 38<br>39       | 293 | given, the adjustment in our review is intended for readers' reference and as caveats for future                  |
| 40<br>41       | 294 | studies.                                                                                                          |
| 42<br>43       | 295 | Given the substantial burden of VARI across the world, <sup>1</sup> even a modest association between VARI        |
| 44<br>45       | 296 | and subsequent PD could lead to a substantial burden of disease in terms of VARI-related PD cases. If             |
| 46<br>47       | 297 | proper anti-bacterial interventions could be applied to those with higher risk of PD due to a                     |
| 48<br>49       | 298 | preceding VARI, subsequent pneumococcal infections could be prevented. The interventions would                    |
| 50<br>51       | 299 | be more effective / better targeted if we could estimate the risk (i.e. the strength of association)              |
| 52<br>53       | 300 | according to timing of infection by week/month of a year, age, comorbidity status, virus type and                 |
| 54<br>55<br>56 |     |                                                                                                                   |
| 56<br>57       |     |                                                                                                                   |
| 58<br>50       |     | 27                                                                                                                |

| 301 | status of immunity. In turn, understanding the association between VARI and subsequent                      |
|-----|-------------------------------------------------------------------------------------------------------------|
| 302 | pneumococcal infection can help evaluate the full impact of viral vaccine programs.                         |
| 303 | In conclusion, the role of seasonal VARI on subsequent PD incidence remains controversial in                |
| 304 | population-based studies. Nevertheless, these studies provide valuable information and can help             |
| 305 | with the conception of future well-designed studies. Future work could explore the association by           |
| 306 | timing of infection, age, comorbidity status, virus type, pneumococcal serotype and presentation,           |
| 307 | and thus would identify potentially susceptible populations with VARI for preventive interventions.         |
| 308 | Supplementary Materials                                                                                     |
| 309 | Table S1. Summary of findings from animal and in vitro studies.                                             |
| 310 | Table S2. Summary of methodologies utilised in the included studies (n=28).                                 |
| 311 | Text S1. Search strategy                                                                                    |
| 312 | File S1. Quality assessment of included studies                                                             |
| 313 | File S2. PRISMA checklist                                                                                   |
| 314 | File S3. Protocol registered in PROSPERO                                                                    |
| 315 | <b>Contributors:</b> HN and HC conceived the study. YL did the literature search and reviewed the articles. |
| 316 | YL and MP extracted and analysed the data independently with oversight from HN and HC. YL                   |
| 317 | drafted the manuscript. MP, HN and HC critically reviewed the manuscript. All authors read and              |
| 318 | approved the final draft of the manuscript.                                                                 |
| 319 | Competing interests: none declared.                                                                         |
| 320 | <b>Data sharing statement:</b> Data extraction sheets are available in the Edinburgh DataShare repository,  |
| 321 | http://dx.doi.org/10.7488/ds/2047.                                                                          |
| 322 | Acknowledgement: YL is supported by a scholarship from the China Scholarship Council.                       |
| 323 | Funding: This research received no specific grant from any funding agency.                                  |
| 324 |                                                                                                             |
|     |                                                                                                             |
|     |                                                                                                             |
|     | 28                                                                                                          |
|     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                   |

| 1<br>2<br>3 |     | REFERENCES                                                                                                  |
|-------------|-----|-------------------------------------------------------------------------------------------------------------|
| 4<br>5      |     |                                                                                                             |
| 6           | 325 | 1. Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause             |
| 7<br>8      | 326 | mortality, and cause-specific mortality for 249 causes of death, 1980-2013;2015: a systematic               |
| 9<br>10     | 327 | analysis for the Global Burden of Disease Study 2015. The Lancet 2016;388(10053):1459-544.                  |
| 11          | 328 | 2. O'Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in          |
| 12<br>13    | 329 | children younger than 5 years: global estimates. Lancet 2009;374(9693):893-902.                             |
| 14          | 330 | 3. Drijkoningen JJC, Rohde GGU. Pneumococcal infection in adults: burden of disease. Clinical               |
| 15<br>16    | 331 | Microbiology and Infection 2014;20:45-51.                                                                   |
| 17          | 332 | 4. McCullers JA. Insights into the interaction between influenza virus and pneumococcus. Clin               |
| 18<br>19    | 333 | Microbiol Rev 2006;19(3):571-82.                                                                            |
| 20          | 334 | 5. Chien Y-W, Klugman KP, Morens DM. Bacterial Pathogens and Death during the 1918 Influenza                |
| 21<br>22    | 335 | Pandemic. N Engl J Med 2009;361(26):2582-83.                                                                |
| 23          | 336 | 6. Fleming-Dutra KE, Taylor T, Link-Gelles R, et al. Effect of the 2009 influenza A(H1N1) pandemic on       |
| 24<br>25    | 337 | invasive pneumococcal pneumonia. J Infect Dis 2013;207(7):1135-43.                                          |
| 26          | 338 | 7. Launes C, Garcia-Garcia JJ, Trivino M, et al. Respiratory viruses, such as 2009 H1N1 influenza virus,    |
| 27<br>28    | 339 | could trigger temporal trends in serotypes causing pneumococcal disease. Clin Microbiol Infect              |
| 29<br>30    | 340 | 2014;20(12):O1088-90.                                                                                       |
| 31          | 341 | 8. Nelson GE, Gershman KA, Swerdlow DL, et al. Invasive pneumococcal disease and pandemic                   |
| 32<br>33    | 342 | (H1N1) 2009, Denver, Colorado, USA. Emerg Infect Dis 2012;18(2):208-16.                                     |
| 34          | 343 | 9. Pedro-Botet ML, Burgos J, Lujan M, et al. Impact of the 2009 influenza A H1N1 pandemic on                |
| 35<br>36    | 344 | invasive pneumococcal disease in adults. Scand J Infect Dis 2014;46(3):185-92.                              |
| 37          | 345 | 10. Weinberger DM, Simonsen L, Jordan R, et al. Impact of the 200 <mark>9 influ</mark> enza pandemic on     |
| 38<br>39    | 346 | pneumococcal pneumonia hospitalizations in the United States. J Infect Dis 2012;205(3):458-65.              |
| 40          | 347 | 11. Allard R, Couillard M, Pilon P, et al. Invasive bacterial infections following influenza: a time-series |
| 41<br>42    | 348 | analysis in Montreal, Canada, 1996-2008. Influenza other respi 2012;6(4):268-75.                            |
| 43          | 349 | 12. Ampofo K, Bender J, Sheng X, et al. Seasonal invasive pneumococcal disease in children: role of         |
| 44<br>45    | 350 | preceding respiratory viral infection. Pediatrics 2008;122(2):229-37.                                       |
| 46<br>47    | 351 | 13. Burgos J, Larrosa MN, Martinez A, et al. Impact of influenza season and environmental factors on        |
| 48          | 352 | the clinical presentation and outcome of invasive pneumococcal disease. Eur J Clin Microbiol Infect         |
| 49<br>50    | 353 | Dis 2015;34(1):177-86.                                                                                      |
| 51          | 354 | 14. Ciruela P, Broner S, Izquierdo C, et al. Invasive pneumococcal disease rates linked to                  |
| 52<br>53    | 355 | meteorological factors and respiratory virus circulation (Catalonia, 2006-2012). BMC Public Health          |
| 54          | 356 | 2016;16(400).                                                                                               |
| 55<br>56    |     |                                                                                                             |
| 57          |     |                                                                                                             |
| 58<br>59    |     | 29                                                                                                          |
| 60          |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                   |

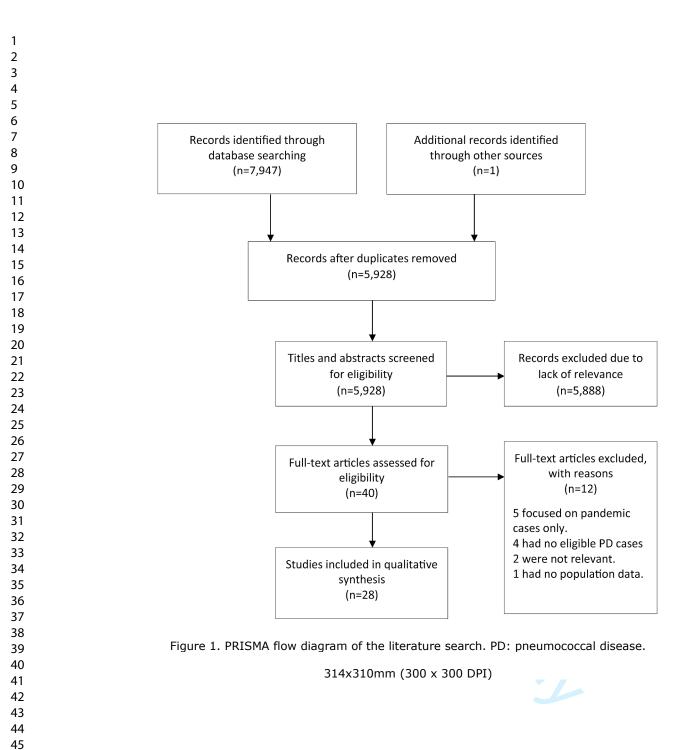
BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

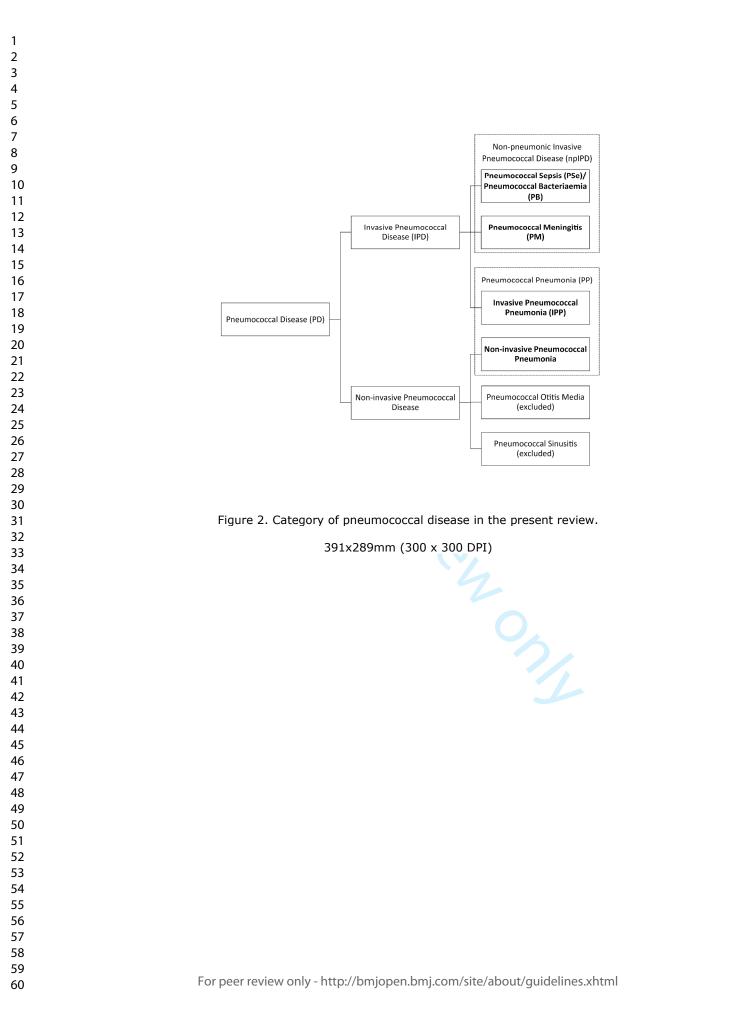
| 2<br>3   | 357 | 15. Dangor Z, Izu A, Moore DP, et al. Temporal association in hospitalizations for tuberculosis,         |
|----------|-----|----------------------------------------------------------------------------------------------------------|
| 4        | 358 | invasive pneumococcal disease and influenza virus illness in South African children. PLoS ONE            |
| 5<br>6   | 359 | 2014;9(3):e91464.                                                                                        |
| 7<br>8   | 360 | 16. Domenech de Cellès M, Arduin H, Varon E, et al. Characterizing and Comparing the Seasonality of      |
| 9        | 361 | Influenza-Like Illnesses and Invasive Pneumococcal Diseases Using Seasonal Waveforms. Am J               |
| 10<br>11 | 362 | Epidemiol 2017:kwx336-kwx36.                                                                             |
| 12       | 363 | 17. Edwards LJ, Markey PG, Cook HM, et al. The relationship between influenza and invasive               |
| 13<br>14 | 364 | pneumococcal disease in the Northern Territory, 2005-2009. Med J Aust 2011;194(4):207.                   |
| 15<br>16 | 365 | 18. Grabowska K, Hogberg L, Penttinen P, et al. Occurrence of invasive pneumococcal disease and          |
| 16<br>17 | 366 | number of excess cases due to influenza. BMC Infect Dis 2006;6:58.                                       |
| 18<br>19 | 367 | 19. Hendriks W, Boshuizen H, Dekkers A, et al. Temporal cross-correlation between influenza-like         |
| 20       | 368 | illnesses and invasive pneumococcal disease in The Netherlands. Influenza and other Respiratory          |
| 21<br>22 | 369 | Viruses 2017;11(2):130-37.                                                                               |
| 23       | 370 | 20. Jansen AG, Sanders EA, A VDE, et al. Invasive pneumococcal and meningococcal disease:                |
| 24<br>25 | 371 | association with influenza virus and respiratory syncytial virus activity? Epidemiol Infect              |
| 26<br>27 | 372 | 2008;136(11):1448-54.                                                                                    |
| 28       | 373 | 21. Kim PE, Musher DM, Glezen WP, et al. Association of invasive pneumococcal disease with season,       |
| 29<br>30 | 374 | atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis         |
| 31<br>32 | 375 | 1996;22(1):100-6.                                                                                        |
| 32<br>33 | 376 | 22. Kuster SP, Tuite AR, Kwong JC, et al. Evaluation of coseasonality of influenza and invasive          |
| 34<br>35 | 377 | pneumococcal disease: results from prospective surveillance. PLoS Med 2011;8(6):e1001042.                |
| 36       | 378 | 23. Murdoch DR, Jennings LC. Association of respiratory virus activity and environmental factors with    |
| 37<br>38 | 379 | the incidence of invasive pneumococcal disease. J Infect 2009;58(1):37-46.                               |
| 39       | 380 | 24. Nicoli EJ, Trotter CL, Turner KM, et al. Influenza and RSV make a modest contribution to invasive    |
| 40<br>41 | 381 | pneumococcal disease incidence in the UK. J Infect 2013;66(6):512-20.                                    |
| 42<br>43 | 382 | 25. O'Brien KL, Walters MI, Sellman J, et al. Severe pneumococcal pneumonia in previously healthy        |
| 44       | 383 | children: the role of preceding influenza infection. Clin Infect Dis 2000;30(5):784-9.                   |
| 45<br>46 | 384 | 26. Opatowski L, Varon E, Dupont C, et al. Assessing pneumococcal meningitis association with viral      |
| 47       | 385 | respiratory infections and antibiotics: insights from statistical and mathematical models. Proc Biol Sci |
| 48<br>49 | 386 | 2013;280(1764):20130519.                                                                                 |
| 50<br>51 | 387 | 27. Peltola V, Heikkinen T, Ruuskanen O, et al. Temporal association between rhinovirus circulation      |
| 52       | 388 | in the community and invasive pneumococcal disease in children. Pediatr Infect Dis J 2011;30(6):456-     |
| 53<br>54 | 389 | 61.                                                                                                      |
| 55       |     |                                                                                                          |
| 56<br>57 |     |                                                                                                          |
| 58<br>59 |     | 30                                                                                                       |
|          |     |                                                                                                          |

Page 31 of 57

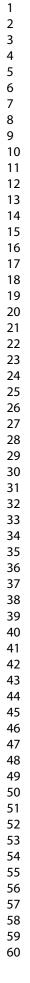
1

# BMJ Open


| 2        |     |                                                                                                           |
|----------|-----|-----------------------------------------------------------------------------------------------------------|
| 3        | 390 | 28. Shrestha S, Foxman B, Weinberger DM, et al. Identifying the interaction between influenza and         |
| 4<br>5   | 391 | pneumococcal pneumonia using incidence data. Sci Transl Med 2013;5(191):191ra84.                          |
| 6        | 392 | 29. Stensballe LG, Hjuler T, Andersen A, et al. Hospitalization for respiratory syncytial virus infection |
| 7<br>8   | 393 | and invasive pneumococcal disease in Danish children aged <2 years: a population-based cohort             |
| 9        | 394 | study. Clin Infect Dis 2008;46(8):1165-71.                                                                |
| 10<br>11 | 395 | 30. Talbot TR, Poehling KA, Hartert TV, et al. Seasonality of invasive pneumococcal disease: temporal     |
| 12<br>13 | 396 | relation to documented influenza and respiratory syncytial viral circulation. Am J Med                    |
| 14       | 397 | 2005;118(3):285-91.                                                                                       |
| 15<br>16 | 398 | 31. Toschke AM, Arenz S, von Kries R, et al. No temporal association between influenza outbreaks          |
| 17       | 399 | and invasive pneumococcal infections. Arch Dis Child 2008;93(3):218-20.                                   |
| 18<br>19 | 400 | 32. Walter ND, Taylor TH, Shay DK, et al. Influenza circulation and the burden of invasive                |
| 20       | 401 | pneumococcal pneumonia during a non-pandemic period in the United States. Clin Infect Dis                 |
| 21<br>22 | 402 | 2010;50(2):175-83.                                                                                        |
| 23<br>24 | 403 | 33. Watson M, Gilmour R, Menzies R, et al. The association of respiratory viruses, temperature, and       |
| 24<br>25 | 404 | other climatic parameters with the incidence of invasive pneumococcal disease in Sydney, Australia.       |
| 26<br>27 | 405 | Clin Infect Dis 2006;42(2):211-5.                                                                         |
| 28       | 406 | 34. Weinberger DM, Grant LR, Steiner CA, et al. Seasonal drivers of pneumococcal disease incidence:       |
| 29<br>30 | 407 | impact of bacterial carriage and viral activity.[Erratum appears in Clin Infect Dis. 2014 Mar;58(6):908]. |
| 31       | 408 | Clin Infect Dis 2014;58(2):188-94.                                                                        |
| 32<br>33 | 409 | 35. Weinberger DM, Harboe ZB, Viboud C, et al. Serotype-specific effect of influenza on adult             |
| 34<br>35 | 410 | invasive pneumococcal pneumonia. J Infect Dis 2013;208(8):1274-80.                                        |
| 36       | 411 | 36. Weinberger DM, Harboe ZB, Viboud C, et al. Pneumococcal disease seasonality: incidence,               |
| 37<br>38 | 412 | severity and the role of influenza activity. Eur Respir J 2014;43(3):833-41.                              |
| 39       | 413 | 37. Weinberger DM, Klugman KP, Steiner CA, et al. Association between respiratory syncytial virus         |
| 40<br>41 | 414 | activity and pneumococcal disease in infants: a time series analysis of US hospitalization data. PLoS     |
| 42       | 415 | Med 2015;12(1):e1001776.                                                                                  |
| 43<br>44 | 416 | 38. Zhou H, Haber M, Ray S, et al. Invasive pneumococcal pneumonia and respiratory virus co-              |
| 45       | 417 | infections. Emerg Infect Dis 2012;18(2):294-7.                                                            |
| 46<br>47 | 418 | 39. McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae:         |
| 48<br>49 | 419 | characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis       |
| 50       | 420 | 2002;186(3):341-50.                                                                                       |
| 51<br>52 | 421 | 40. Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-gamma during           |
| 53       | 422 | recovery from influenza infection. Nat Med 2008;14(5):558-64.                                             |
| 54<br>55 |     |                                                                                                           |
| 56       |     |                                                                                                           |
| 57<br>58 |     | 31                                                                                                        |
| 59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |
|          |     |                                                                                                           |


BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

**BMJ** Open


| 423 | 41. Simell B, Auranen K, Käyhty H, et al. The fundamental link between pneumococcal carriage and |
|-----|--------------------------------------------------------------------------------------------------|
|     |                                                                                                  |

- disease. Expert Rev Vaccines 2012;11(7):841-55.
  - 42. Song JY, Nahm MH, Cheong HJ, et al. Impact of preceding flu-like illness on the serotype
  - distribution of pneumococcal pneumonia. PLoS ONE 2014;9(4):e93477.
  - 43. Shiri T, Datta S, Madan J, et al. Indirect effects of childhood pneumococcal conjugate vaccination
  - a. ease: a s, J, Dowell SF, et al. Ho. 39;361(26):2584-85. on invasive pneumococcal disease: a systematic review and meta-analysis. The Lancet Global Health
  - 2017;5(1):e51-e59.
  - 44. Walter ND, Taylor THJ, Dowell SF, et al. Holiday Spikes in Pneumococcal Disease among Older
  - Adults. N Engl J Med 2009;361(26):2584-85.





| Study                    | Material        | Exposure                        | Main findings                                         |
|--------------------------|-----------------|---------------------------------|-------------------------------------------------------|
|                          |                 |                                 | On day 3 of pneumococcus challenge,                   |
|                          |                 |                                 | pneumococcus numbers increased in the                 |
|                          | Miss            | influenza A +                   | nasopharynx (50-fold, P=0.0002) and the               |
| Diavatopoulos            | Mice            |                                 | lungs (300-fold, P=0.0005) in influenza A             |
| et al. 2010 <sup>1</sup> | (n=~10 per      | pneumococcus                    | group, compared with mock-treated group               |
|                          | group)          | (3d later)                      | transmission of pneumococcus between                  |
|                          |                 |                                 | littermates was dependent on infection wit            |
|                          |                 |                                 | influenza A.                                          |
|                          | Monolayers of   |                                 |                                                       |
| Hament et al.            | human           |                                 | After RSV infection of the monolayers, an             |
|                          | nasopharyngeal  | RSV +                           | increased adherence (2–10 fold) was                   |
| 2004 <sup>2</sup>        | cells and       | pneumococcus                    | observed among all serotypes compared                 |
|                          | pneumocyte      |                                 | with uninfected monolayers.                           |
|                          | type II cells   |                                 |                                                       |
|                          |                 | RSV +                           | At 24h of pneumococcus challenge, mice                |
| Hament et al.            | Mice            |                                 | infected with RSV 0 or 4d before                      |
| 2005 <sup>3</sup>        | (n=7 per group) | pneumococcus<br>(0 or 4d later) | pneumococcus challenge had higher levels              |
|                          |                 |                                 | of bacteremia than control group.                     |
| Kukavica-                | Mice            | hMPV/                           | Pneumococcus numbers on day 7 of                      |
| Ibrulj et al.            | (n=18 per       | influenza A +                   | pneumococcus challenge: 5×10 <sup>2</sup> CFU/lung i  |
| 2009 <sup>4</sup>        | group)          | pneumococcus                    | mock infection, 10 <sup>7</sup> CFU/lung in hMPV grou |
|                          | 5               | (5d later)                      | and 10 <sup>8</sup> CFU/lung in influenza A group.    |



Main findings

Lungs of influenza-exposed mice

demonstrated greater colony counts 24h

Only mice infected with influenza A

demonstrated an 8% weight loss 72h

hMPV group and mock group did not.

following pneumococcus challenge while

and 48h following pneumococcus challenge.

| 2              |                          |                |                 |
|----------------|--------------------------|----------------|-----------------|
| 3<br>4<br>5    | Study                    | Material       | Exposure        |
| 5<br>6<br>7    | LeVine et al.            | Mice (n=3 per  | influenza A +   |
| 8<br>9         | <b>2001</b> <sup>5</sup> | group)         | pneumococcus    |
| 10<br>11       |                          | 0 17           | (7d later)      |
| 12<br>13       |                          |                | hMPV/           |
| 14<br>15       | Ludewick et              | Mice (n=18 per | influenza A +   |
| 16<br>17<br>18 | al. 2011 <sup>6</sup>    | group)         | pneumococcus    |
| 19<br>20       |                          |                | (14d later)     |
| 21<br>22       |                          |                |                 |
| 23<br>24       |                          |                |                 |
| 25<br>26<br>27 | McCullers et             | Mice (n=20 per | influenza A +   |
| 27<br>28<br>29 | al. 2002 <sup>7</sup>    | group)         | pneumococcus    |
| 30<br>31       | ui. 2002                 | Broab          | (0 or 7d later) |
| 32<br>33       |                          |                |                 |
| 34<br>35       |                          |                |                 |
| 36<br>37<br>38 |                          | Ferrets (n=5   | influenza A +   |
| 39<br>40       | McCullers et             | per group) and |                 |
| 41<br>42       | al. 2010 <sup>8</sup>    | Mice (n=~5 per | pneumococcus    |
| 43<br>44       |                          | group)         | (7d later)      |
| 45<br>46       |                          |                |                 |
| 47<br>48<br>49 | Channer                  |                | influenza A +   |
| 50<br>51       | Sharma-                  | Mice (n=3–5    | pneumococcus    |
| 52<br>53       | Chawla et al.            | per group)     | T4, 19F or 7F   |
| 54<br>55       | 2016 <sup>9</sup>        |                | (7d later)      |
| 56<br>57       |                          |                |                 |
| 58<br>59<br>60 |                          |                |                 |
|                |                          |                |                 |

|    | 60% of mice died 2–11d after               |
|----|--------------------------------------------|
|    | pneumococcus challenge in influenza A      |
|    | group compared with 15% in mock group;     |
| us | reversal of the order of challenge led to  |
| -) | protection from influenza; challenge of    |
|    | influenza and pneumococcus on the same     |
|    | day led to 100% mortality.                 |
|    | Prior influenza infection enhanced         |
| us | pneumococcal transmission and disease; the |
| us | influenza-mediated effects were            |
|    | pneumococcal strain dependent.             |
|    | Pneumococcal coinfection during the acute  |
|    | phase of influenza A infection increased   |
| us | degree of pneumonia and mortality for all  |
| :  | tested pneumococcal strains. However, the  |
|    | incidence and kinetics of systemic         |
|    | dissemination remained strain dependent.   |
|    |                                            |
|    |                                            |

Page 37 of 57

| Study                              | Material                                                                          | Exposure                            | Main findings                                                                                                                                                                                                                    |
|------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Smith et al.<br>2014 <sup>10</sup> | Human ciliated<br>respiratory<br>epithelial cells<br>and mice (n=10<br>per group) | RSV +<br>pneumococcus               | Following incubation with RSV,<br>pneumococcus demonstrated a significant<br>increase in the inflammatory response and<br>bacterial adherence to human ciliated<br>epithelial cultures and increased virulence in<br>mice model. |
| Stark et al.<br>2006 <sup>11</sup> | Mice (n>12 per<br>group)                                                          | RSV +<br>pneumococcus<br>(7d later) | Pneumococcus numbers at 24h of<br>pneumococcus challenge: 7.45×10 <sup>5</sup><br>CFU/lung in RSV group, 5.9×10 <sup>3</sup> CFU/lung in<br>mock group.                                                                          |

The number in brackets in the column Material refers to the number of animals observed under each experiment condition; number of animals used in transmission models (used by some studies) were not displayed.

Abbreviations: CFU, colony-forming units; d, day(s); h, hour(s); hMPV, human metapneumovirus;

RSV, respiratory syncytial virus.

#### Reference

1. Diavatopoulos DA, Short KR, Price JT, et al. Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. Faseb J 2010;24(6):1789-98.

2. Hament J-M, Aerts PC, Fleer A, et al. Enhanced Adherence of Streptococcus pneumoniae to

Human Epithelial Cells Infected with Respiratory Syncytial Virus. Pediatr Res 2004;55(6):972-78.

3. Hament JM, Aerts PC, Fleer A, et al. Direct binding of respiratory syncytial virus to pneumococci: a phenomenon that enhances both pneumococcal adherence to human epithelial cells and

pneumococcal invasiveness in a murine model. Pediatr Res 2005;58(6):1198-203.

4. Kukavica-Ibrulj I, Hamelin ME, Prince GA, et al. Infection with human metapneumovirus predisposes mice to severe pneumococcal pneumonia. J Virol 2009;83(3):1341-9.

5. LeVine AM, Koeningsknecht V, Stark JM. Decreased pulmonary clearance of S. pneumoniae following influenza A infection in mice. J Virol Methods 2001;94(1-2):173-86.

6. Ludewick HP, Aerts L, Hamelin ME, et al. Long-term impairment of Streptococcus pneumoniae lung clearance is observed after initial infection with influenza A virus but not human metapneumovirus in mice. J Gen Virol 2011;92(Pt 7):1662-5.

7. McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis 2002;186(3):341-50.

8. McCullers JA, McAuley JL, Browall S, et al. Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J Infect Dis 2010;202(8):1287-95.

9. Sharma-Chawla N, Sender V, Kershaw O, et al. Influenza A virus infection predisposes hosts to secondary infection with different Streptococcus pneumoniae serotypes with similar outcome but serotype-specific manifestation. Infection and Immunity 2016;84(12):3445-57.

10. Smith CM, Sandrini S, Datta S, et al. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 2014;190(2):196-207.

 11. Stark JM, Stark MA, Colasurdo GN, et al. Decreased bacterial clearance from the lungs of mice following primary respiratory syncytial virus infection. J Med Virol 2006;78(6):829-38.

for peer teriew only

|                                             | All VARI              | Ехро         | osure        |              | Out          | come         |              |              | Data         |              | Andalys          | is at PO     | P level      | Seasonality  |
|---------------------------------------------|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|
| Study                                       | lab-confirmed         | IFV          | RSV          | Others       | PD           | IPD          | PP           | Others       | IDNV         | POP          | <b>.</b>         | REGR         |              | Adjustment   |
| Allard et al. 2012 <sup>1</sup>             | Yes, multiple methods | ✓            |              |              |              | ✓            |              |              |              | ✓            | 43               | ✓            |              | ✓            |
| Ampofo et al. 2008 <sup>2</sup>             | Yes, IF and culture   | $\checkmark$ | ✓            | ✓            |              | $\checkmark$ |              |              |              | ✓            | o¶∕              |              |              |              |
| Burgos et al. 2015 <sup>3</sup>             | Yes, IF and PCR       | ✓            |              |              |              | ✓            |              |              |              | ✓            | 2≯/              | ✓            |              | ✓            |
| Ciruela et al. 2016 <sup>4</sup>            | Yes, multiple methods | ✓            | ✓            | ✓            |              | ✓            |              |              |              | ✓            | ρ¥.              | ✓            |              | ✓            |
| Dangor et al. 2014 <sup>5</sup>             | Yes, IF and culture   | ✓            |              |              |              | ✓            |              |              |              | ✓            | 20               |              | ✓            |              |
| Domenech de Cellès et al. 2017 <sup>6</sup> | No                    | $\checkmark$ |              |              |              | $\checkmark$ |              |              |              | $\checkmark$ | 18.              | ✓            | ✓            | √            |
| Edwards et al. 2011 <sup>7</sup>            | Yes, method not known | $\checkmark$ |              |              |              | ✓            |              |              | $\checkmark$ |              | Dov              |              |              |              |
| Grabowska et al. 2006 <sup>8</sup>          | Yes, multiple methods | $\checkmark$ |              |              |              | $\checkmark$ |              |              |              | $\checkmark$ | wnload           | ✓            |              | ✓            |
| Hendriks et al. 2017 <sup>9</sup>           | No                    | ~            |              |              |              | ✓            |              |              |              | ✓            |                  |              | $\checkmark$ | ✓            |
| Jansen et al. 2008 <sup>10</sup>            | Yes, multiple methods | ~            | ✓            |              |              | ✓            |              | ✓            |              | ✓            | e∂+ f            |              |              |              |
| Kim et al. 1996 <sup>11</sup>               | Yes, culture          | $\checkmark$ | ~            | ✓            |              | ✓            |              |              |              | ✓            | rðn              |              |              |              |
| Kuster et al. 2011 <sup>12</sup>            | Yes, culture and DAT  | ✓            |              |              |              | ✓            |              |              |              | ✓            | ı htt            | ✓            | ✓            | ✓            |
| Murdoch et al. 2009 <sup>13</sup>           | Yes, IF and culture   | ✓            | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              |              |              | $\checkmark$ | <u>ار ال</u> رام | ✓            |              | ✓            |
| Nicoli et al. 2013 <sup>14</sup>            | Yes, multiple methods | $\checkmark$ | ✓            |              |              | $\checkmark$ |              |              |              | $\checkmark$ | offij            | $\checkmark$ |              | ✓            |
| O'Brien et al. 2000 <sup>15</sup>           | Yes, serology         | $\checkmark$ |              |              |              |              | $\checkmark$ |              | ✓            |              | ope              |              |              | ✓            |
| Opatowski et al. 2013 <sup>16</sup>         | No                    |              |              | ✓            |              |              |              | ✓            |              | ✓            | n.b              | ✓            | ✓            | ✓            |
| Peltola et al. 2011 <sup>17</sup>           | Yes, multiple methods | ✓            | ✓            | ✓            |              | $\checkmark$ |              |              |              | ✓            | nj.              |              |              |              |
| Shrestha et al. 2013 <sup>18</sup>          | No                    | ✓            |              |              |              |              | ~            |              |              | ✓            | Öm               |              | $\checkmark$ |              |
| Stensballe et al. 2008 <sup>19</sup>        | No                    |              | ✓            | ✓            |              | $\checkmark$ |              |              | $\checkmark$ | $\checkmark$ | ðr               |              |              |              |
| Talbot et al. 2005 <sup>20</sup>            | Yes, culture and RAT  | $\checkmark$ | ✓            |              |              | $\checkmark$ |              |              |              | $\checkmark$ | жр               |              |              |              |
| Toschke et al. 2008 <sup>21</sup>           | Yes, PCR              | $\checkmark$ |              |              |              | ✓            |              |              |              | $\checkmark$ | ril 1            |              | $\checkmark$ |              |
| Walter et al. 2010 <sup>22</sup>            | Yes, method not known | $\checkmark$ |              |              |              | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ | 9, 2             | $\checkmark$ |              | ✓            |
| Watson et al. 2006 <sup>23</sup>            | Yes, DAT              | $\checkmark$ | ✓            | ✓            |              | $\checkmark$ |              |              |              | $\checkmark$ | 202.             |              |              |              |
| Weinberger et al. 2014 <sup>24</sup>        | No                    | $\checkmark$ | ✓            |              |              | $\checkmark$ |              | ✓            |              | $\checkmark$ | 4 by             | ✓            |              | ✓            |
| Weinberger et al. 2013 <sup>25</sup>        | No                    | $\checkmark$ |              |              |              |              |              | ✓            |              | $\checkmark$ | u gu             | $\checkmark$ |              | √            |
| Weinberger et al. 2014 <sup>26</sup>        | No                    | $\checkmark$ |              |              |              | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ | lest.            | ✓            |              | √            |
| Weinberger et al. 2015 <sup>27</sup>        | No                    | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | . Pr             | $\checkmark$ |              | $\checkmark$ |
| Zhou et al. 2012 <sup>28</sup>              | Yes, method not known | $\checkmark$ | ✓            |              |              |              |              |              |              | $\checkmark$ | ote              | ✓            |              | ✓            |

CORR, correlation; DAT, direct antigen test; IF, immunofluorescence; IFV, influenza virus; INDV, individual; IPD, invasive pneu not disease; PCR, polymerase chain reaction; PD, pneumococcal disease; POP, population; PP, pneumococcal pneumonia; REGR, regression; RAT, rapid antigen test; RSV, respiratory syncytial virus; VARI, viral copyright. acute respiratory infection.

46

| Page                                                                                           | 1 of 57 BMJ Open 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                              | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                             | 1. Allard R, Couillard M, Pilon P, et al. Invasive bacterial infections following influenza: a time-series analysis in Montreal, Canada a, 1996-2008. Influenza other respi<br>2012;6(4):268-75.<br>2. Ampofo K, Bender J, Sheng X, et al. Seasonal invasive pneumococcal disease in children: role of preceding respiratory viral bifection. Pediatrics 2008;122(2):229-37.<br>3. Burgos J, Larrosa MN, Martinez A, et al. Impact of influenza season and environmental factors on the clinical presentation and outcome of invasive pneumococcal<br>disease. Eur J Clin Microbiol Infect Dis 2015;34(1):177-86.<br>4. Ciruela P, Broner S, Izquierdo C, et al. Invasive pneumococcal disease rates linked to meteorological factors and respiratory dirus circulation (Catalonia, 2006-2012). BMC<br>Public Health 2016;16(400).<br>5. Dangor Z, Izu A, Moore DP, et al. Temporal association in hospitalizations for tuberculosis, invasive pneumococcal disease and influenza virus illness in South African<br>children. PLoS ONE 2014;9(3):e91464.<br>6. Domenech de Cellès M, Arduin H, Varon E, et al. Characterizing and Comparing the Seasonality of Influenza-Like Illnesses and Invasive Pneumococcal Diseases Using<br>Seasonal Waveforms. Am J Epidemiol 2017:kwx336-kwx36. |
| 15<br>16<br>17<br>18<br>19                                                                     | 7. Edwards LJ, Markey PG, Cook HM, et al. The relationship between influenza and invasive pneumococcal disease in the Northern Territory, 2005-2009. Med J Aust 2011;194(4):207.<br>8. Grabowska K, Hogberg L, Penttinen P, et al. Occurrence of invasive pneumococcal disease and number of excess cases due to influenza. BMC Infect Dis 2006;6:58.<br>9. Hendriks W, Boshuizen H, Dekkers A, et al. Temporal cross-correlation between influenza-like illnesses and invasive pneumococcal disease in The Netherlands. Influenza and other Respiratory Viruses 2017;11(2):130-37.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20<br>21<br>22<br>23<br>24<br>25                                                               | 10. Jansen AG, Sanders EA, A VDE, et al. Invasive pneumococcal and meningococcal disease: association with influenza virus add respiratory syncytial virus activity?<br>Epidemiol Infect 2008;136(11):1448-54.<br>11. Kim PE, Musher DM, Glezen WP, et al. Association of invasive pneumococcal disease with season, atmospheric conditions air pollution, and the isolation of respiratory viruses. Clin Infect Dis 1996;22(1):100-6.<br>12. Kuster SP, Tuite AR, Kwong JC, et al. Evaluation of coseasonality of influenza and invasive pneumococcal disease: results from prospective surveillance. PLoS Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26<br>27<br>28<br>29                                                                           | 2011;8(6):e1001042.<br>13. Murdoch DR, Jennings LC. Association of respiratory virus activity and environmental factors with the incidence of invasive pneumococcal disease. J Infect<br>2009;58(1):37-46.<br>14. Nicoli EJ, Trotter CL, Turner KM, et al. Influenza and RSV make a modest contribution to invasive pneumococcal disease incidence in the UK. J Infect 2013;66(6):512-20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                             | 15. O'Brien KL, Walters MI, Sellman J, et al. Severe pneumococcal pneumonia in previously healthy children: the role of preceding influenza infection. Clin Infect Dis 2000;30(5):784-9.<br>16. Opatowski L, Varon E, Dupont C, et al. Assessing pneumococcal meningitis association with viral respiratory infections an eantibiotics: insights from statistical and mathematical models. Proc Biol Sci 2013;280(1764):20130519.<br>17. Peltola V, Heikkinen T, Ruuskanen O, et al. Temporal association between rhinovirus circulation in the community and invasive pneumococcal disease in children.<br>Pediatr Infect Dis J 2011;30(6):456-61.<br>18. Shrestha S, Foxman B, Weinberger DM, et al. Identifying the interaction between influenza and pneumococcal pneumonia gusing incidence data. Sci Transl Med 2013;5(191):191ra84.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> </ol> | 19. Stensballe LG, Hjuler T, Andersen A, et al. Hospitalization for respiratory syncytial virus infection and invasive pneumococal disease in Danish children aged <2 years: a population-based cohort study. Clin Infect Dis 2008;46(8):1165-71.<br>20. Talbot TR, Poehling KA, Hartert TV, et al. Seasonality of invasive pneumococcal disease: temporal relation to documented influenza and respiratory syncytial viral circulation. Am J Med 2005;118(3):285-91.<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

 6/bmjope

21. Toschke AM, Arenz S, von Kries R, et al. No temporal association between influenza outbreaks and invasive pneumococca influenza. Arch Dis Child 2008;93(3):218-20. 22. Walter ND, Taylor TH, Shay DK, et al. Influenza circulation and the burden of invasive pneumococcal pneumonia during a Ron-pandemic period in the United States. Clin Infect Dis 2010;50(2):175-83. 23. Watson M, Gilmour R, Menzies R, et al. The association of respiratory viruses, temperature, and other climatic parameter with the incidence of invasive pneumococcal disease in Sydney, Australia. Clin Infect Dis 2006;42(2):211-5. 24. Weinberger DM, Grant LR, Steiner CA, et al. Seasonal drivers of pneumococcal disease incidence: impact of bacterial carriage and viral activity. [Erratum appears in Clin Infect Dis. 2014 Mar;58(6):908]. Clin Infect Dis 2014;58(2):188-94. 25. Weinberger DM, Harboe ZB, Viboud C, et al. Serotype-specific effect of influenza on adult invasive pneumococcal pneumo 🛱 ia. J Infect Dis 2013;208(8):1274-80. 26. Weinberger DM, Harboe ZB, Viboud C, et al. Pneumococcal disease seasonality: incidence, severity and the role of influenta activity. Eur Respir J 2014;43(3):833-41. 27. Weinberger DM, Klugman KP, Steiner CA, et al. Association between respiratory syncytial virus activity and pneumococcardisease in infants: a time series analysis of US hospitalization data. PLoS Med 2015;12(1):e1001776. 28. Zhou H, Haber M, Ray S, et al. Invasive pneumococcal pneumonia and respiratory virus co-infections. Emerg Infect Dis 2012;18(2):294-7. aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright beer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### Text S1. Search strategy

#### Medline

1. Meningitis, Pneumococcal/ or Pneumonia, Pneumococcal/ or exp Pneumococcal Infections/ or

pneumococc\*.mp.

2. exp Streptococcus pneumoniae/ or Streptococcus pneumoniae.mp.

- 3. virus.mp. or exp Viruses/
- .isease\*.mp 4. exp Virus Diseases/ or virus disease\*.mp.
- 5. correlat\*.mp.
- 6. associat\*.mp.
- 7. interact\*.mp.
- 8. relat\*.mp.
- 9.1 or 2
- 10.3 or 4
- 11.5 or 6 or 7 or 8
- 12.9 and 10 and 11
- 13. limit 12 to yr="1990 -Current"
- 1,664 results by 27 Apr 2017

#### 1,888 results by 31 Dec 2017

#### **EMbase**

1. exp pneumococcal infection/ or pneumococc\*.mp.

2. Streptococcus pneumoniae.mp. or exp Streptococcus pneumoniae/

3. exp virus/ or virus\*.mp.

4. exp virus infection/ or virus infection\*.mp. or virus disease\*.mp.

5. exp correlational study/ or exp correlation analysis/ or correlat\*.mp.

6. associat\*.mp.

7. interact\*.mp.

8. relat\*.mp.

9.1 or 2

10.3 or 4

11.5 or 6 or 7 or 8

12.9 and 10 and 11

13. limit 12 to yr="1990 -Current"

4,778 results by 27 Apr 2017.

5,098 results by 31 Dec 2017.

#### **Global Health**

vmonae/ 1. Streptococcus pneumoniae.mp. or exp Streptococcus pneumoniae/

5. exp correlation/ or correlation analysis/ or correlat\*.mp.

<sup>2.</sup> pneumococc\*.mp.

<sup>3.</sup> virus\*.mp. or viruses/

<sup>4.</sup> virus disease\*.mp. or viral diseases.sh. or virus infection\*.mp.

6. associat\*.mp.

7. interact\*.mp.

8. relat\*.mp.

9. 1 or 2

10. 3 or 4

11. 5 or 6 or 7 or 8

12. 9 and 10 and 11

13. limit 12 to yr="1990 -Current"

1,164 results by 27 Apr 2017

961 results by 31 Dec 2017

Per terior

|          |                           |            |                                                                  |           |               | I                                             | BMJ Open                                              |                                                  |                                                 |                                                                         | 136/bmjopen                                                 |                     |                                               |                         |
|----------|---------------------------|------------|------------------------------------------------------------------|-----------|---------------|-----------------------------------------------|-------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|-----------------------------------------------|-------------------------|
|          | Study                     | informatio | n                                                                | Inclu     | usion         |                                               |                                                       |                                                  | Q                                               | uality Assessme                                                         | -                                                           |                     |                                               |                         |
|          |                           |            |                                                                  |           |               |                                               |                                                       |                                                  |                                                 | autions                                                                 | Have the<br>authors taken<br>account of the<br>conford ding | 2                   |                                               |                         |
|          |                           |            |                                                                  |           | Reason<br>for | Did the study<br>address a<br>clearly focused | Were the<br>subjects<br>recruited in an<br>acceptable | Was the<br>exposure<br>accurately<br>measured to | Was the<br>outcome<br>accurately<br>measured to | identified all<br>important<br>confounding<br>factors (e.g.<br>seasonal | factor와n the<br>design and/or<br>analysis (e.g.<br>seaso    | Were the<br>results | Can the results<br>be applied to<br>the local | with other<br>available |
| D        | First Author              | Year       | Title                                                            | Inclusion | Exclusion     | issue?                                        | way?                                                  |                                                  | minimise bias?                                  | factors)                                                                | factor                                                      | reliable?           | population                                    | evidence?               |
| 137      | Allard, R                 | 2012       |                                                                  |           |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes 201                                                     | Yes                 | Yes                                           | Yes                     |
| 11       | Ampofo, K                 |            | Seasonal invasive pneumococca                                    |           | ļ             | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | No                                                                      | No 100                                                      | Yes                 | Yes                                           | Yes                     |
| 12       | Burgos, J                 |            | Impact of influenza season and                                   |           | ļ             | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes U                                                       | Yes                 | Yes                                           | Yes                     |
| 138      | Ciruela, P                | 2016       |                                                                  |           | <u> </u>      | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes Ö                                                       | Yes                 | Yes                                           | Yes                     |
| 13       | Dangor, Z                 |            | Temporal association in hospita                                  |           |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | No                                                                      | No no                                                       | No                  | No                                            | Yes                     |
| 140      | Domenech de Cellès, M     |            | Characterizing and Comparing t                                   |           |               | Yes                                           | Yes                                                   | No<br>NA                                         | Yes<br>NA                                       | Yes<br>NA                                                               | Yes O<br>NA O                                               | Yes                 | Yes                                           | Yes<br>NA               |
| 14<br>15 | Dominguez, A              |            | Benefit of conjugate pneumoco<br>The relationship between influe |           | no PD case    | Yes                                           | NA<br>Yes                                             | Yes                                              | Yes                                             | No                                                                      | No Q                                                        | NA<br>Yes           | NA<br>Yes                                     | Yes                     |
| 15<br>16 | Edwards, LJ<br>Eshaghi, A | 2011       |                                                                  |           | no PD case    |                                               | NA                                                    | NA                                               | NA                                              | NA                                                                      | NA TO                                                       | NA                  | NA                                            | NA                      |
| 17       | Fleming-Dutra, KE         |            | Effect of the 2009 influenza A(H                                 |           | pandemic      |                                               | NA                                                    | NA                                               | NA                                              | NA                                                                      |                                                             | NA                  | NA                                            | NA                      |
| 18       | Grabowska, K              |            | Occurrence of invasive pneumo                                    | -         | panuenne      | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes 🚬                                                       | Yes                 | Yes                                           | Yes                     |
| 19       | Grijalva, CG              |            | The role of influenza and parain                                 |           | no PD case    |                                               | NA                                                    | NA                                               | NA                                              | NA                                                                      | NA 📅                                                        | NA                  | NA                                            | NA                      |
| 139      | Hendriks, W.              |            | Temporal cross-correlation betw                                  |           |               | Yes                                           | Yes                                                   | No                                               | Yes                                             | Yes                                                                     | Yes                                                         | Yes                 | Yes                                           | Yes                     |
| 110      | Jansen, AG                | 2017       | Invasive pneumococcal and mer                                    |           |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | No                                                                      | No 3                                                        | Yes                 | Yes                                           | Yes                     |
| 111      | Kim, PE                   |            | Association of invasive pneumo                                   |           |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | No                                                                      | No 9                                                        | Yes                 | Yes                                           | Yes                     |
| 112      | Kuster, SP                | 2011       | Evaluation of coseasonality of in                                | -         |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes 0                                                       | Yes                 | Yes                                           | Yes                     |
| 113      | Launes, C                 |            | Respiratory viruses, such as 200                                 |           | pandemic      |                                               | NA                                                    | NA                                               | NA                                              | NA                                                                      | NA 🗧                                                        | NA                  | NA                                            | NA                      |
| 114      | Madhi, SA                 |            | A role for Streptococcus pneum                                   |           | topic not r   |                                               | NA                                                    | NA                                               | NA                                              | NA                                                                      | NA 3                                                        | NA                  | NA                                            | NA                      |
| 115      | Muhlemann, K              |            | The prevalence of penicillin-nor                                 |           | no PD case    |                                               | NA                                                    | NA                                               | NA                                              | NA                                                                      | NA o                                                        | NA                  | NA                                            | NA                      |
| 116      | Murdoch, DR               |            | Association of respiratory virus                                 |           |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes S                                                       | Yes                 | Yes                                           | Yes                     |
| 117      | Nelson, GE                | 2012       | Invasive pneumococcal disease                                    | no        | pandemic      | NA                                            | NA                                                    | NA                                               | NA                                              | NA                                                                      | NA                                                          | NA                  | NA                                            | NA                      |
| 136      | Nicoli, EJ                | 2013       | Influenza and RSV make a mode                                    | yes       | ľ.            | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes 🗅                                                       | Yes                 | Yes                                           | Yes                     |
| 118      | O'Brien, KL               | 2000       | Severe pneumococcal pneumor                                      | yes       |               | Yes                                           | Yes                                                   | No                                               | No                                              | Yes                                                                     | Yes A                                                       | Not sure            | Not sure                                      | Yes                     |
| 119      | Opatowski, L              | 2013       | Assessing pneumococcal mening                                    | yes       |               | Yes                                           | Yes                                                   | Yes                                              | Yes 🧹                                           | Yes                                                                     | Yes Ϋ                                                       | Yes                 | Yes                                           | Yes                     |
| 120      | Pedro-Botet, ML           | 2014       | Impact of the 2009 influenza A I                                 | no        | pandemic      | NA                                            | NA                                                    | NA                                               | NA                                              | NA                                                                      | NA 19                                                       | NA                  | NA                                            | NA                      |
| 121      | Peltola, V                | 2011       | Temporal association between i                                   | 1         |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | No                                                                      | No                                                          | Yes                 | Yes                                           | Yes                     |
| 122      | Shrestha, S               | 2013       | Time and dose-dependent risk o                                   | no        | no popula     | INA                                           | NA                                                    | NA                                               | NA                                              | NA                                                                      | NA Ö                                                        | NA                  | NA                                            | NA                      |
| 123      | Shrestha, S               | 2013       | 10                                                               | 1         |               | Yes                                           | Yes                                                   | Not sure                                         | Yes                                             | No                                                                      | No 4                                                        | Yes                 | Yes                                           | Yes                     |
| 124      | Stensballe, LG            |            | Hospitalization for respiratory s                                | 1         |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | No                                                                      | No by                                                       | Yes                 | Yes                                           | Yes                     |
| 125      | Talbot, TR                |            | Seasonality of invasive pneumo                                   | -         | L             | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | No                                                                      | No Q                                                        | Yes                 | Yes                                           | Yes                     |
| 126      | Toschke, AM               |            | No temporal association betwee                                   |           |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | No                                                                      |                                                             | Yes                 | Yes                                           | Yes                     |
| 127      | Walter, ND                |            | Influenza circulation and the bu                                 | ,         |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes .                                                       | Yes                 | Yes                                           | Yes                     |
| 128      | Watson, M                 |            | The association of respiratory vi                                |           | ļ             | Yes                                           | Yes                                                   | No                                               | Yes                                             | No                                                                      | No D                                                        | Yes                 | Yes                                           | Yes                     |
| 129      | Weinberger, DM            |            | Seasonal drivers of pneumococo                                   |           | ļ             | Yes                                           | Yes                                                   | No                                               | Yes                                             | Yes                                                                     | Yes <b>Ofec</b>                                             | Yes                 | Yes                                           | Yes                     |
| 130      | Weinberger, DM            |            | Serotype-specific effect of influe                               |           | <u> </u>      | Yes                                           | Yes                                                   | No                                               | Yes                                             | Yes                                                                     |                                                             | Yes                 | Yes                                           | Yes                     |
| 131      | Weinberger, DM            |            | Pneumococcal disease seasonal                                    |           | <u> </u>      | Yes                                           | Yes                                                   | No                                               | Yes                                             | Yes                                                                     | Yes 0                                                       | Yes                 | Yes                                           | Yes                     |
| 132      | Weinberger, DM            |            | Association between respiratory                                  | ,         |               | Yes                                           | Yes                                                   | No                                               | Yes                                             | Yes                                                                     |                                                             | Yes                 | Yes                                           | Yes                     |
| 133      | Weinberger, DM            |            | Impact of the 2009 influenza pa                                  |           | pandemic      |                                               | NA                                                    | NA                                               | NA                                              | NA                                                                      | · · · ·                                                     | NA                  | NA                                            | NA                      |
| 34       | Yoon, YK                  |            | Impact of preceding respiratory                                  |           | topic not i   |                                               | NA                                                    | NA                                               | NA                                              | NA                                                                      |                                                             | NA                  | NA                                            | NA                      |
| 135      | Zhou, H                   | 2012       | Invasive pneumococcal pneumo                                     | yes       |               | Yes                                           | Yes                                                   | Yes                                              | Yes                                             | Yes                                                                     | Yes yright.                                                 | Yes                 | Yes                                           | Yes                     |



# PRISMA 2009 Checklist

| Pa             | ige 47 of 57                       |       | BMJ Open 33                                                                                                                                                                                                                                                                                                |                       |
|----------------|------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1<br>2         | PRISMA 2                           | 009 ( | Checklist 20,                                                                                                                                                                                                                                                                                              |                       |
| 3<br>4<br>5    | Section/topic                      | #     | Checklist item                                                                                                                                                                                                                                                                                             | Reported<br>on page # |
| 6<br>7         | TITLE                              |       | <u>a</u>                                                                                                                                                                                                                                                                                                   |                       |
| 8              | Title                              | 1     | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                                                                                                        | 1                     |
| 9<br>10        |                                    |       |                                                                                                                                                                                                                                                                                                            |                       |
| 11<br>12<br>13 | Structured summary                 | 2     | Provide a structured summary including, as applicable: background; objectives; data sources study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | 2                     |
| 15             | INTRODUCTION                       |       |                                                                                                                                                                                                                                                                                                            |                       |
| 16             | Rationale                          | 3     | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                             | 4                     |
| 18<br>19       | )<br>Objectives                    | 4     | Provide an explicit statement of questions being addressed with reference to participants, ingrventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                  | 4                     |
| 20             | METHODS                            |       | 5://br                                                                                                                                                                                                                                                                                                     |                       |
| 21<br>22<br>23 | Protocol and registration          | 5     | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and if available, provide registration information including registration number.                                                                                                                               | 5                     |
| 24<br>25       | Eligibility criteria               | 6     | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                     | 4-5                   |
| 26<br>27<br>29 | Information sources                | 7     | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                 | 4-5                   |
| 29<br>30       | ) Search                           | 8     | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                              | Text S1               |
| 31             | Study selection                    | 9     | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                  | 4-5                   |
| 34<br>35       | Data collection process            | 10    | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.                                                                                                                                 | 6                     |
| 36<br>37       | Data items                         | 11    | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                      | 6                     |
| 39<br>39<br>40 | Risk of bias in individual studies | 12    | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.                                                                                     | 5                     |
| 41             | Summary measures                   | 13    | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                                                                                                              | 6                     |
| 42<br>43<br>44 | Synthesis of results               | 14    | Describe the methods of handling data and combining results of studies, if done, including near assures of consistency (e.g., l <sup>2</sup> ) for each meta-analysis.                                                                                                                                     | NA                    |
| 45<br>46<br>47 | 5                                  | . 1   | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml<br>Page 1 of 2                                                                                                                                                                                                                   |                       |



47

# PRISMA 2009 Checklist

|                                   |            | BMJ Open                                                                                                                                                                                                 | Page 48 of         |
|-----------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PRISMA 20                         | 009        | BMJ Open 36/bm<br>Checklist 20                                                                                                                                                                           |                    |
| Section/topic                     | #          | Checklist item                                                                                                                                                                                           | Reported on page # |
| Risk of bias across studies       | 15         | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                             | NA                 |
| Additional analyses               | 16         | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                         | NA                 |
| RESULTS                           |            |                                                                                                                                                                                                          |                    |
| Study selection                   | 17         | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                          | Figure 1           |
| Study characteristics             | 18         | For each study, present characteristics for which data were extracted (e.g., study size, PICOs, follow-up period) and provide the citations.                                                             | 6-23               |
| Risk of bias within studies       | 19         | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                                                                                                | 6-23, File<br>S3   |
| Results of individual studies     | 20         | For all outcomes considered (benefits or harms), present, for each study: (a) simple summare data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. | 6-23               |
| Synthesis of results              | 21         | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                                                                                                  | NA                 |
| Risk of bias across studies       | 22         | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                          | NA                 |
| Additional analysis               | 23         | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                    | NA                 |
|                                   |            | >                                                                                                                                                                                                        |                    |
| Summary of evidence               | 24         | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).                     | 23-24              |
| Limitations                       | 25         | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).                                            | 23-28              |
| Conclusions                       | 26         | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                  | 28                 |
| FUNDING                           | 1          |                                                                                                                                                                                                          |                    |
| Funding                           | 27         | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.                                                               | 28                 |
| 2 doi:10.1371/journal.pmed1000097 | f J, Altma | an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Me                                                                        | d 6(7): e1000097.  |
| 4<br>5<br>5                       |            | Page 2 of 2<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                 |                    |

## PROSPERO

International prospective register of systematic reviews

# Systematic review

## 1. \* Review title.

Give the working title of the review, for example the one used for obtaining funding. Ideally the title should state succinctly the interventions or exposures being reviewed and the associated health or social problems. Where appropriate, the title should use the PI(E)COS structure to contain information on the Participants, Intervention (or Exposure) and Comparison groups, the Outcomes to be measured and Study designs to be included.

Association of seasonal viral acute respiratory infection (VARI) with pneumococcal disease (PD): a systematic review of population-based studies

## 2. Original language title.

For reviews in languages other than English, this field should be used to enter the title in the language of the review. This will be displayed together with the English language title.

## 3. \* Anticipated or actual start date.

Give the date when the systematic review commenced, or is expected to commence.

### 07/12/2016

## 4. \* Anticipated completion date.

Give the date by which the review is expected to be completed.

### 15/01/2018

## 5. \* Stage of review at time of this submission.

Indicate the stage of progress of the review by ticking the relevant Started and Completed boxes. Additional information may be added in the free text box provided.

Please note: Reviews that have progressed beyond the point of completing data extraction at the time of initial registration are not eligible for inclusion in PROSPERO. Should evidence of incorrect status and/or completion date being supplied at the time of submission come to light, the content of the PROSPERO record will be removed leaving only the title and named contact details and a statement that inaccuracies in the stage of the review date had been identified.

This field should be updated when any amendments are made to a published record and on completion and publication of the review.

### The review has not yet started: No

| Review stage                                                    | Started | Completed |
|-----------------------------------------------------------------|---------|-----------|
| Preliminary searches                                            | Yes     | Yes       |
| Piloting of the study selection process                         | Yes     | Yes       |
| Formal screening of search results against eligibility criteria | Yes     | Yes       |
| Data extraction                                                 | Yes     | Yes       |
| Risk of bias (quality) assessment                               | Yes     | Yes       |
| Data analysis                                                   | Yes     | Yes       |
|                                                                 |         |           |

# PROSPERO

## International prospective register of systematic reviews

Page 50 of 57

Provide any other relevant information about the stage of the review here (e.g. Funded proposal, protocol not yet finalised).

## 6. \* Named contact.

The named contact acts as the guarantor for the accuracy of the information presented in the register record. You Li

## Email salutation (e.g. "Dr Smith" or "Joanne") for correspondence:

## 7. \* Named contact email.

Give the electronic mail address of the named contact.

You.Li2@ed.ac.uk

## 8. Named contact address

Give the full postal address for the named contact.

3.730 Doorway 1, Old Medical School Teviot Place Edinburgh UK

## 9. Named contact phone number.

Give the telephone number for the named contact, including international dialling code.

+44 (0)7871 566188

## 10. \* Organisational affiliation of the review.

Full title of the organisational affiliations for this review and website address if available. This field may be completed as 'None' if the review is not affiliated to any organisation.

The University of Edinburgh

## Organisation web address:

www.ed.ac.uk

## 11. Review team members and their organisational affiliations.

Give the title, first name, last name and the organisational affiliations of each member of the review team. Affiliation refers to groups or organisations to which review team members belong.

Mr You Li. The University of Edinburgh Ms Meagan Peterson. The University of Edinburgh Professor Harish Nair. The University of Edinburgh Professor Harry Campbell. The University of Edinburgh

## 12. \* Funding sources/sponsors.

Give details of the individuals, organizations, groups or other legal entities who take responsibility for initiating, managing, sponsoring and/or financing the review. Include any unique identification numbers assigned to the review by the individuals or bodies listed.

None

## 13. \* Conflicts of interest.

List any conditions that could lead to actual or perceived undue influence on judgements concerning the main topic investigated in the review.

### None

## 14. Collaborators.

Give the name and affiliation of any individuals or organisations who are working on the review but who are not listed as review team members.

## 15. \* Review question.

State the question(s) to be addressed by the review, clearly and precisely. Review questions may be specific or broad. It may be appropriate to break very broad questions down into a series of related more specific questions. Questions may be framed or refined using PI(E)COS where relevant.

# What methods have been used in population-based studies analysing the association between VARI and subsequent PD?

What results have been reported in population-based studies analysing the association between VARI and subsequent PD?

## 16. \* Searches.

Give details of the sources to be searched, search dates (from and to), and any restrictions (e.g. language or publication period). The full search strategy is not required, but may be supplied as a link or attachment.

We searched three bibliographic databases (MEDLINE, Embase and Global Health) for primary research studies published between 1 January 1990 and 27 April 2017.

An update of the search was done for primary research studies published between 1 January 1990 and 31 December 2017.

No restrictions were placed on the language of publication.

## 17. URL to search strategy.

Give a link to the search strategy or an example of a search strategy for a specific database if available (including the keywords that will be used in the search strategies).

Alternatively, upload your search strategy to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

Yes I give permission for this file to be made publicly available

## 18. \* Condition or domain being studied.

Give a short description of the disease, condition or healthcare domain being studied. This could include health and wellbeing outcomes.

Viral acute respiratory infection; pneumococcal disease.

## 19. \* Participants/population.

Give summary criteria for the participants or populations being studied by the review. The preferred format includes details of both inclusion and exclusion criteria.

# Population-based studies involving people with viral acute respiratory infection and pneumococcal disease. Specifically, the following participants were considered:

- (1) Those with laboratory confirmed viral infections;
- (2) Those with ICD code for influenza and RSV infection;
- (3) Those with a case definition of an influenza-like illness (ILI) and bronchiolitis.

## 20. \* Intervention(s), exposure(s).

# PROSPERO International prospective register of systematic reviews

Give full and clear descriptions or definitions of the nature of the interventions or the exposures to be reviewed.

Population-based studies involving people with viral acute respiratory infection and pneumococcal disease.

## 21. \* Comparator(s)/control.

Where relevant, give details of the alternatives against which the main subject/topic of the review will be compared (e.g. another intervention or a non-exposed control group). The preferred format includes details of both inclusion and exclusion criteria.

## Not applicable.

## 22. \* Types of study to be included.

Give details of the types of study (study designs) eligible for inclusion in the review. If there are no restrictions on the types of study design eligible for inclusion, or certain study types are excluded, this should be stated. The preferred format includes details of both inclusion and exclusion criteria.

There were no restrictions imposed on the types of study design eligible for inclusion. We included populationbased studies involving clinically diagnosed PD cases, and specifically, we accepted the following studies: (1) Those involving laboratory confirmed viral infections; (2) Those involving an ICD code for influenza and RSV infection; (3) Those involving case definitions of an influenza-like illness (ILI) and bronchiolitis. We excluded animal studies and theoretical studies in which no population data was applied. We focused our review on the association of seasonal VARI with PD, and thus excluded studies that reported influenza pandemic cases only.

# 23. Context.

Give summary details of the setting and other relevant characteristics which help define the inclusion or exclusion criteria.

# 24. \* Primary outcome(s).

Give the pre-specified primary (most important) outcomes of the review, including details of how the outcome is defined and measured and when these measurement are made, if these are part of the review inclusion criteria.

The association between VARI and subsequent PD.

## Timing and effect measures

## 25. \* Secondary outcome(s).

List the pre-specified secondary (additional) outcomes of the review, with a similar level of detail to that required for primary outcomes. Where there are no secondary outcomes please state 'None' or 'Not applicable' as appropriate to the review

Factors that could affect the association between VARI and subsequent PD.

## Timing and effect measures

# 26. Data extraction (selection and coding).

Give the procedure for selecting studies for the review and extracting data, including the number of researchers involved and how discrepancies will be resolved. List the data to be extracted.

# 27. \* Risk of bias (quality) assessment.

State whether and how risk of bias will be assessed (including the number of researchers involved and how

## International prospective register of systematic reviews

discrepancies will be resolved), how the quality of individual studies will be assessed, and whether and how this will influence the planned synthesis.

Risk of bias will be assessed by evaluating the power of the studies, the measures taken to control for confounders, and any multiple tests made without reasonable correction or justification. Bias is expected to have little impact on the review because it is intended to provide a summary of all relevant studies, and no quantitative analysis will be conducted.

## 28. \* Strategy for data synthesis.

Give the planned general approach to synthesis, e.g. whether aggregate or individual participant data will be used and whether a quantitative or narrative (descriptive) synthesis is planned. It is acceptable to state that a quantitative synthesis will be used if the included studies are sufficiently homogenous.

A descriptive synthesis is planned. A summary of both the methods and the results of eligible studies will be provided.

## 29. \* Analysis of subgroups or subsets.

Give details of any plans for the separate presentation, exploration or analysis of different types of participants (e.g. by age, disease status, ethnicity, socioeconomic status, presence or absence or comorbidities); different types of intervention (e.g. drug dose, presence or absence of particular components of intervention); different settings (e.g. country, acute or primary care sector, professional or family care); or different types of study (e.g. randomised or non-randomised).

### None planned.

## 30. \* Type and method of review.

e lis. Select the type of review and the review method from the lists below. Select the health area(s) of interest for vour review.

### Type of review

Cost effectiveness No Diagnostic No Epidemiologic No Individual patient data (IPD) meta-analysis No Intervention No Meta-analysis No Methodology No Network meta-analysis No Pre-clinical No Prevention No Prognostic No Prospective meta-analysis (PMA) No

58

59

## PROSPERO International prospective register of systematic reviews

Qualitative synthesis No Review of reviews No Service delivery No Systematic review Yes

Other

No

## Health area of the review

| А | Tealth area of the review<br>Ncohol/substance misuse/abuse<br>No                                                                                                                                                           |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Blood and immune system                                                                                                                                                                                                    |
|   | Cancer<br>lo<br>Cardiovascular<br>lo<br>Care of the elderly<br>lo<br>Child health<br>lo<br>Complementary therapies                                                                                                         |
|   | Cardiovascular<br>Io                                                                                                                                                                                                       |
|   | Care of the elderly                                                                                                                                                                                                        |
|   | Child health                                                                                                                                                                                                               |
|   | lo<br>Child health<br>lo<br>Complementary therapies<br>lo<br>Crime and justice<br>lo<br>Dental<br>lo<br>Digestive system<br>lo<br>Ear, nose and throat<br>lo<br>Education<br>lo<br>Endocrine and metabolic disorders<br>lo |
|   | Crime and justice                                                                                                                                                                                                          |
|   | Dental<br>Io                                                                                                                                                                                                               |
|   | Digestive system                                                                                                                                                                                                           |
|   | ar, nose and throat                                                                                                                                                                                                        |
|   | ducation<br>lo                                                                                                                                                                                                             |
|   | Indocrine and metabolic disorders                                                                                                                                                                                          |
|   | ye disorders<br>Io                                                                                                                                                                                                         |
|   | General interest<br>Io                                                                                                                                                                                                     |
|   | Genetics<br>Io                                                                                                                                                                                                             |
|   | lealth inequalities/health equity<br>lo                                                                                                                                                                                    |
|   | nfections and infestations<br>lo                                                                                                                                                                                           |
|   | nternational development<br>lo                                                                                                                                                                                             |
| N | Iental health and behavioural conditions                                                                                                                                                                                   |

National Institute for Health Research

**PROSPERO** 

| No            |                                                  |  |
|---------------|--------------------------------------------------|--|
| Muscu<br>No   | loskeletal                                       |  |
| Neuro<br>No   | ogical                                           |  |
| Nursin<br>No  | g                                                |  |
| Obstet<br>No  | rics and gynaecology                             |  |
| Oral h<br>No  | ealth                                            |  |
| Palliat<br>No | ve care                                          |  |
| Periop<br>No  | erative care                                     |  |
| Physic<br>No  | therapy                                          |  |
| Pregna<br>No  | ancy and childbirth                              |  |
| Public<br>No  | health (including social determinants of health) |  |
| Rehab<br>No   | ilitation                                        |  |
| Respir<br>No  | atory disorders                                  |  |
| Servic<br>No  | e delivery                                       |  |
| Skin d<br>No  | isorders                                         |  |
| Social<br>No  | care                                             |  |
| Tropic<br>No  | al Medicine                                      |  |
| Urolog<br>No  | ical                                             |  |
| Wound<br>No   | ds, injuries and accidents                       |  |
| Violen        | ce and abuse                                     |  |

## 31. Language.

Select each language individually to add it to the list below, use the bin icon to remove any added in error. English

There is an English language summary.

## 32. Country.

Select the country in which the review is being carried out from the drop down list. For multi-national collaborations select all the countries involved.

## Scotland

## PROSPERO International prospective register of systematic reviews

National Institute for Health Research

#### 

## 33. Other registration details.

Give the name of any organisation where the systematic review title or protocol is registered (such as with The Campbell Collaboration, or The Joanna Briggs Institute) together with any unique identification number assigned. (N.B. Registration details for Cochrane protocols will be automatically entered). If extracted data will be stored and made available through a repository such as the Systematic Review Data Repository (SRDR), details and a link should be included here. If none, leave blank.

## 34. Reference and/or URL for published protocol.

Give the citation and link for the published protocol, if there is one

Give the link to the published protocol.

Alternatively, upload your published protocol to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

### Yes I give permission for this file to be made publicly available

Please note that the information required in the PROSPERO registration form must be completed in full even if access to a protocol is given.

## 35. Dissemination plans.

Give brief details of plans for communicating essential messages from the review to the appropriate audiences.

## Do you intend to publish the review on completion?

Yes

## 36. Keywords.

Give words or phrases that best describe the review. Separate keywords with a semicolon or new line. Keywords will help users find the review in the Register (the words do not appear in the public record but are included in searches). Be as specific and precise as possible. Avoid acronyms and abbreviations unless these are in wide use.

## 37. Details of any existing review of the same topic by the same authors.

Give details of earlier versions of the systematic review if an update of an existing review is being registered, including full bibliographic reference if possible.

## 38. \* Current review status.

Review status should be updated when the review is completed and when it is published.

Please provide anticipated publication date

Review\_Completed\_not\_published

## 39. Any additional information.

Provide any other information the review team feel is relevant to the registration of the review.

## 40. Details of final report/publication(s).

This field should be left empty until details of the completed review are available.

**PROSPERO** 

Give the link to the published review.

International prospective register of systematic reviews

For beer terier only

# **BMJ Open**

## Association of seasonal viral acute respiratory infection with pneumococcal disease: a systematic review of population-based studies

|                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Manuscript ID                        | bmjopen-2017-019743.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date Submitted by the Author:        | 08-Mar-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:            | Li, You; University of Edinburgh School of Molecular Genetic and Population<br>Health Sciences, Centre for Global Health Research<br>Peterson, Meagan; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Campbell, Harry; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Nair, Harish; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research<br>Nair, Harish; University of Edinburgh School of Molecular Genetic and<br>Population Health Sciences, Centre for Global Health Research |
| <b>Primary Subject<br/>Heading</b> : | Infectious diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Secondary Subject Heading:           | Infectious diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Keywords:                            | respiratory tract infection, pneumococcal infection, viral acute respiratory infection, pneumococcal disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

SCHOLARONE<sup>™</sup> Manuscripts

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| 1                                                                                                                                                                                                                                            |   |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|
| 2<br>3                                                                                                                                                                                                                                       | 1 | Asso             |
| 4<br>5<br>6                                                                                                                                                                                                                                  | 2 | revie            |
| 7<br>8<br>9                                                                                                                                                                                                                                  | 3 | Autho            |
| 10<br>11                                                                                                                                                                                                                                     | 4 | <sup>1</sup> Cen |
| 12<br>13<br>14                                                                                                                                                                                                                               | 5 | Unive            |
| 15<br>16                                                                                                                                                                                                                                     | 6 | * Cor            |
| 17<br>18<br>19                                                                                                                                                                                                                               | 7 | Email            |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 |   |                  |

- w of population-based studies
- ors: You Li<sup>\* 1</sup>, Meagan Peterson<sup>1</sup>, Harry Campbell<sup>1</sup>, Harish Nair<sup>1</sup>
- tre for Global Health Research, Usher Institute of Population Health Sciences and Informatics,
- ersity of Edinburgh, Edinburgh, Scotland, UK.
- responding author
- ioner terien ong : You.Li2@ed.ac.uk (YL)

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 6<br>7   |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23<br>24 |  |
| 24<br>25 |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39<br>40 |  |
| 40<br>41 |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56<br>57 |  |
| 57<br>58 |  |
| 58<br>59 |  |
| 59<br>60 |  |
| 00       |  |

1

## Abstract

8

**Objective**: Animal and *in vitro* studies suggest viral acute respiratory infection (VARI) can predispose
to pneumococcal infection. These findings suggest that prevention of VARI can yield additional
benefits for the control of pneumococcal disease (PD). In population-based studies, however, the
evidence is not in accordance, possibly due to a variety of methodological challenges and problems
in these studies. We aimed to summarise and critically review the methods and results from these
studies in order to inform future studies.

Methods: We conducted a systematic review of population-based studies that analysed the
 association between preceding seasonal VARI and subsequent PD. We searched MEDLINE, Embase
 and Global Health databases using tailored search strategies.

18 Results: A total of 28 studies were included. After critically reviewing the methodologies and 19 findings, 11 studies did not control for seasonal factors shared by VARI and PD. This, in turn, could 20 lead to an overestimation of the association between the two illnesses. One case-control study was 21 limited by its small sample size (n case=13). The remaining 16 studies that controlled for seasonal 22 factors suggested that influenza and/or RSV infections were likely to be associated with the 23 subsequent occurrence of PD (influenza: 12/14 studies; RSV: 4/5 studies). However, these 16 studies 24 were unable to conduct individual patient data based analyses. Nevertheless, these studies 25 suggested the association between VARI and subsequent PD was related to additional factors such 26 as virus type and subtype, age group, comorbidity status, presentation of PD and pneumococcal 27 serotype.

28 Conclusions: Population-based studies do not give consistent support for an association between 29 preceding seasonal VARI and subsequent PD incidence. The main methodological challenges of 30 existing studies include the failure to utilise individual patient data, control for seasonal factors of 31 VARI and PD, or include other factors related to the association (e.g. virus, age, comorbidity and 32 pneumococcal serotype).

## BMJ Open

| <ul> <li>3 33 Strengths and limitations of this study</li> <li>4</li> <li>5 34 • This is the first review that critically reviewed the methods and findings of population-based</li> <li>6</li> <li>7 35 studies that reported an association between VARI and PD.</li> <li>8</li> <li>9 36 • Results of studies summarised according to study design and methods.</li> </ul>                                                                       | 1<br>2 |    |                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|--------------------------------------------------------------------------------------------------|
| <ul> <li>This is the first review that critically reviewed the methods and findings of population-based studies that reported an association between VARI and PD.</li> <li>Results of studies summarised according to study design and methods.</li> <li>No meta-analysis was conducted due to a variety of study designs, data sources and analytimethods in the studies so a narrative summary of the methods and results is provided.</li> </ul> | 3      | 33 | Strengths and limitations of this study                                                          |
| <ul> <li>studies that reported an association between VARI and PD.</li> <li>Results of studies summarised according to study design, data sources and analytimethods in the studies so a narrative summary of the methods and results is provided.</li> </ul>                                                                                                                                                                                       | 5      | 34 | • This is the first review that critically reviewed the methods and findings of population-based |
| <ul> <li>Results of studies summarised according to study design and methods.</li> <li>No meta-analysis was conducted due to a variety of study designs, data sources and analytimethods in the studies so a narrative summary of the methods and results is provided.</li> </ul>                                                                                                                                                                   | 7      | 35 | studies that reported an association between VARI and PD.                                        |
| <ul> <li>No meta-analysis was conducted due to a variety of study designs, data sources and analytimethods in the studies so a narrative summary of the methods and results is provided.</li> </ul>                                                                                                                                                                                                                                                 | 9      | 36 | Results of studies summarised according to study design and methods.                             |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            | 11     | 37 | • No meta-analysis was conducted due to a variety of study designs, data sources and analytical  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            | 13     | 38 | methods in the studies so a narrative summary of the methods and results is provided.            |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        | 39 |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            | 21     |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            | 23     |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            | 25     |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            | 28     |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            | 33     |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            | 38     |    |                                                                                                  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                            |        |    |                                                                                                  |
| 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                                  |        |    |                                                                                                  |
| 45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                                              | 43     |    |                                                                                                  |
| 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                                                    |        |    |                                                                                                  |
| 48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>3                                                                                                                                                                                                                                                                                                                                                                           | 46     |    |                                                                                                  |
| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>3                                                                                                                                                                                                                                                                                                                                                                                       |        |    |                                                                                                  |
| 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>3                                                                                                                                                                                                                                                                                                                                                                                             |        |    |                                                                                                  |
| 53<br>54<br>55<br>56<br>57<br>58 3<br>59                                                                                                                                                                                                                                                                                                                                                                                                            | 51     |    |                                                                                                  |
| 55<br>56<br>57<br>58 3<br>59                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    |                                                                                                  |
| 56<br>57<br>58 3<br>59                                                                                                                                                                                                                                                                                                                                                                                                                              |        |    |                                                                                                  |
| 58 3<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56     |    |                                                                                                  |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58     |    | 3                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |                                                                                                  |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| 40<br>41 | Introduction<br>Both viral acute respiratory infection (VARI) and pneumococcal disease (PD) account for a substantial   |
|----------|-------------------------------------------------------------------------------------------------------------------------|
| 42       | disease burden worldwide, especially in young children and the elderly. <sup>1-3</sup> The association of viral         |
| 43       | acute respiratory infection (VARI) and subsequent pneumococcal disease (PD) was not well                                |
| 44       | recognised until the catastrophic 1918 influenza pandemic, which resulted in an estimated 40–50                         |
| 45       | million deaths; <sup>4</sup> it has been suggested that pneumococcus may have been a major cause of death. <sup>5</sup> |
| 46       | Most recently, it was observed that the incidence of PD was higher during 2009 influenza H1N1                           |
| 47       | pandemic period than the same period in pre-pandemic $^{6-10}$ and post-pandemic years. $^{7910}$                       |
| 48       | During inter-pandemic periods, the associations of seasonal influenza and other seasonal                                |
| 49       | respiratory viruses such as respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and                         |
| 50       | parainfluenza virus (PIV) with PD incidence are poorly understood and remain unclear. In animal and                     |
| 51       | in-vitro studies, it has been suggested that viral respiratory infection could predispose to                            |
| 52       | pneumococcal infection and might facilitate pneumococcal transmission; in turn, this co-infection                       |
| 53       | could induce a lethal synergism that is much more severe than infection with either pathogen alone                      |
| 54       | (a brief summary of findings displayed in Supplementary Table S1). However, these studies are all                       |
| 55       | relatively small-scale studies and may be subject to publication bias favouring reporting of positive                   |
| 56       | findings. In population-based studies, the findings were inconsistent. These studies differed                           |
| 57       | substantially in study design, data sources and methods, making it difficult to compare and interpret                   |
| 58       | the results across the studies. We conducted a systematic review of population-based studies on the                     |
| 59       | association of preceding VARI on the occurrence of PD to summarise the methodology and results,                         |
| 60       | critically review the findings and present recommendations for future studies.                                          |
|          |                                                                                                                         |

## 61 Methods

62 Search Strategy and Selection Criteria

We searched MEDLINE, Embase and Global Health databases using tailored search strategies (search
 strategies in Supplementary Text S1, PRISMA flowchart in Figure 1). We restricted the search to

studies published between 1 January 1990 and 31 Dec 2017. We included population-based studies

#### **BMJ** Open

| 2              |    |                                                                                                             |
|----------------|----|-------------------------------------------------------------------------------------------------------------|
| 3<br>4         | 66 | with clinically diagnosed PD cases (see below for detailed definition). In terms of VARI exposure, we       |
| 5<br>6         | 67 | accepted the following studies: (1) those with laboratory confirmed viral infections; (2) those with an     |
| 7<br>8         | 68 | ICD code for influenza and/or RSV infection; (3) those with case definition of influenza-like illness (ILI) |
| 9<br>10        | 69 | and bronchiolitis as proxies for influenza and RSV, respectively. We excluded animal studies and            |
| 11<br>12       | 70 | theoretical studies where no population data were applied. We focused our review on the                     |
| 13<br>14       | 71 | association of seasonal VARI and PD and thus excluded studies that reported pandemic influenza              |
| 15<br>16       | 72 | cases only. No language restrictions were applied. The reference lists of eligible studies were also        |
| 17<br>18       | 73 | checked to identify additional studies for inclusion. For all included studies, quality assessment was      |
| 19<br>20       | 74 | conducted using tailored Critical Appraisal Skills Programme (CASP) checklists for case-control             |
| 21<br>22       | 75 | studies and cohort studies (Supplementary File S1). The review was conducted and reported                   |
| 23<br>24       | 76 | according to the PRISMA guidelines (Supplementary File S2). The protocol for this systematic review         |
| 25<br>26<br>27 | 77 | was registered on PROSPERO (registration number: CRD42017064760; Supplementary File S3).                    |
| 27<br>28<br>29 | 78 | Figure 1. PRISMA flow diagram of the literature search. PD: pneumococcal disease.                           |
| 30             | 79 | Definition of PD                                                                                            |
| 31<br>32       | 80 | We defined PD as any disease caused by <i>Streptococcus pneumoniae</i> (pneumococcus). Since this           |
| 33<br>34       | 81 | definition contains a broad range of diseases and symptoms, including some that are trivial to our          |
| 35<br>36       | 82 | review, we adopted a narrower definition. This narrowed definition includes invasive pneumococcal           |
| 37<br>38       | 83 | disease (IPD) and pneumococcal pneumonia (PP). We defined IPD as detection of pneumococcus in               |
| 39<br>40       | 84 | typical sterile sites (e.g. blood, pleural and cerebrospinal fluid). A detailed category of PD for our      |
| 41<br>42<br>43 | 85 | review is displayed in Figure 2. Additionally, we used the term "non-pneumonic invasive                     |
| 44<br>45       | 86 | pneumococcal disease (npIPD)", which referred to all IPD without diagnosis of pneumonia, in order           |
| 46<br>47       | 87 | to differentiate from non-invasive and invasive pneumococcal pneumonia.                                     |
| 48<br>49       | 88 | Figure 2. Category of pneumococcal disease in the present review.                                           |
| 50<br>51       | 89 | Definition of VARI                                                                                          |
| 52             | 90 | We defined VARI as a respiratory tract infection with viral aetiology. ILI was viewed as a proxy for        |
| 53<br>54<br>55 | 91 | influenza infection in the present review. We defined ILI as a symptomatic cough and fever $\geq$ 38°C      |
| 56             | 92 | with onset within 7 days.                                                                                   |
| 57<br>58       |    |                                                                                                             |
| 59             |    | 5<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                              |
| 60             |    | Tor peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml                                 |

| 2              |     |                                                                                                                                          |
|----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| 3              | 93  | Data Extraction                                                                                                                          |
| 4<br>5         | 94  | We used a standardised data extraction template to extract relevant data from the eligible full-text                                     |
| 6<br>7         | 95  | studies, including study design, data source, methods, results and conclusion. The principle summary                                     |
| 8<br>9         | 96  | measures of the association between VARI and PD include correlation coefficients, risk ratios, rate                                      |
| 10<br>11       | 97  | ratios, odds ratios and attributable percentage of PD to VARI. YL and MP independently extracted                                         |
| 12<br>13       | 98  | the data. HN or HC arbitrated any disagreement with the extraction.                                                                      |
| 14<br>15       | 00  | Data Analysia                                                                                                                            |
| 15<br>16       | 99  | Data Analysis                                                                                                                            |
| 17             | 100 | Since it was expected that methodology would differ substantially between studies and a                                                  |
| 18<br>19       | 101 | quantitative meta-analysis would not be appropriate, a narrative synthesis was conducted. Studies                                        |
| 20<br>21       | 102 | were summarised according to methodology to allow for more appropriate comparisons of the                                                |
| 22<br>23       | 103 | results.                                                                                                                                 |
| 24<br>25<br>26 | 104 | In addition, because of the concern of multiple testing, we determined the number of tests                                               |
| 20<br>27<br>28 | 105 | conducted in each study, so a Bonferroni correction could be applied where applicable; only the                                          |
| 29<br>30       | 106 | tests relevant to the association between VARI and pneumococcal infection were included as part of                                       |
| 31<br>32       | 107 | the correction. The Bonferroni-adjusted significance level was calculated as 0.05 divided by the                                         |
| 33<br>34       | 108 | number of relevant statistical tests within a study.                                                                                     |
| 35<br>36       | 109 | Patient and Public Involvement                                                                                                           |
| 37<br>38       | 110 | No patients or public were involved in the present study.                                                                                |
| 39<br>40       | 111 | Results                                                                                                                                  |
| 41<br>42       | 112 | A total of 28 studies <sup>11-38</sup> were eligible and included in the review. We noticed a variety of study                           |
| 43<br>44       | 113 | designs, exposures and outcomes of interest and analytical methods in these studies (summarised in                                       |
| 45<br>46       | 114 | Table S2). Due to the variety, we summarised the studies and displayed the results according to                                          |
| 47<br>48       | 115 | study design and methods.                                                                                                                |
| 49             | 116 | Individual Patient Data Based Studies                                                                                                    |
| 50<br>51       | 110 | Individual patient data based studies during the inter-pandemic period are sparse. Only three                                            |
| 52             | 11/ | individual patient data based studies during the inter-pandemic period are sparse. Only three                                            |
| 53<br>54       | 118 | studies <sup>17 25 29</sup> were identified ( <b>Table 1</b> ), including two cohort studies <sup>17 29</sup> and one small case-control |
| 55<br>56       | 119 | study by O'Brien et al <sup>25</sup> . The reported results consistently supported the role of preceding VARI on                         |
| 57<br>58<br>59 |     | 6                                                                                                                                        |
| 60             |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                |

### 120 occurrence of PD. However, the two cohort studies did not attempt to control the seasonal risk

121 factors of VARI and PD that could potentially bias the estimated effect size.

#### 122 Table 1. Summary of individual patient data based studies.

|    | Study                                      | Study<br>Period | Population                                      | VARI           | PD (n of<br>cases)  | Methods                                                                                                                                                                                                                                                                                                                                              | Main findings                                                                                      |
|----|--------------------------------------------|-----------------|-------------------------------------------------|----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|    | Edwards et<br>al. 2011 <sup>17</sup>       | 2005–<br>2009   | all ages<br>Northern<br>Territory,<br>Australia | IFV            | IPD<br>(n=346)      | Using data from Notifiable<br>Diseases System, relative<br>risk of IPD calculated in<br>≤4w after IFV compared<br>with background risk                                                                                                                                                                                                               | RR=112.5<br>[48.9–224.8]                                                                           |
|    | O'Brien et<br>al. 2000 <sup>25</sup>       | 1995–<br>1996   | <18y<br>Iowa, US                                | ili<br>IFV A   | Severe PP<br>(n=13) | Case-control design: case<br>from children with severe<br>PP, 3 controls per case<br>selected, from friends of<br>cases or from the same<br>primary care practice,<br>matched by age (within 1y<br>of the case). ILI history (7–<br>28d within admission)<br>investigated by telephone<br>interview and IFV A<br>convalescent serology<br>collected. | OR (ILI<br>history)=12.4<br>[1.7-306],<br>OR (IFV A<br>convalescent<br>serology)=3.7<br>[1.0–18.1] |
|    | Stensballe<br>et al.<br>2008 <sup>29</sup> | 1996–<br>2003   | all ages<br>Denmark                             | RSV<br>non-RSV | IPD<br>(n=7,787)    | Prospective cohort study:<br>two exposure groups, RSV<br>and non-RSV respiratory<br>infection hospitalisations<br>within 30d                                                                                                                                                                                                                         | RR for RSV=7.1<br>[3.6–14.3],<br>RR for non-<br>RSV=4.5 [2.0–<br>10.0]                             |
| 23 | Abbreviatio                                | ns: d, da       | y(s); IFV, influ                                | enza virus;    | : ILI, influen:     | za-like illness; IPD, invasive                                                                                                                                                                                                                                                                                                                       | pneumococcal                                                                                       |
| 24 | disease; OR,                               | odds ra         | tio; PD, pneu                                   | mococcal c     | lisease; PP,        | pneumococcal pneumonia;                                                                                                                                                                                                                                                                                                                              | RR, relative risk;                                                                                 |
| 25 | RSV, respira                               | tory syn        | cytial virus; V                                 | ARI, viral a   | cute respira        | tory infection; w, week(s);                                                                                                                                                                                                                                                                                                                          | y, year(s).                                                                                        |

126 Ecological Studies

- 127 In our review, 25<sup>11-16 18-24 26-28 30-38</sup> of the 28 studies were ecological studies. 16<sup>11 13 14 16 18 19 22-24 26 32 34-38</sup>
- 128 out of the 25 ecological studies controlled for seasonal patterns of VARI and PD (Table S2).
- 129 Additionally, the study by Stensballe et al.<sup>29</sup> analysed data at both population and individual level but
- 130 did not control for the seasonal patterns.

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

#### Correlation analyses with no control for seasonal patterns

- Table 2 shows a summary of 11 studies
   12-14 20 21 23 24 27 29 30 33 using correlation analyses without
- controlling for seasonal patterns of VARI and PD. Since all studies conducted multiple tests in
- analysing the correlation (e.g. across age groups, viruses and lag time between VARI and PD),
- Bonferroni method was applied to adjust the significance level. The correlation between PD and
- influenza or RSV was statistically significant in all five studies <sup>14 23 24 29 30</sup> that analysed population data
  - of all ages (correlation coefficient r: 0.40–0.71 for influenza at no time lag, 0.47–0.77 for RSV at no
  - time lag).

#### 139 Table 2. Summary of ecological studies utilising correlation analysis.

| Study                                | Study<br>Period | Population                      | VARI                             | PD (n of cases)            | Data Sources and<br>Scale for Analysis                   | Correlation<br>Method | Correlation Coefficients (time lag)                                                                                                                                                                                                                                                 |
|--------------------------------------|-----------------|---------------------------------|----------------------------------|----------------------------|----------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ampofo et<br>al. 2008 <sup>12</sup>  | 2001–<br>2007   | <18y<br>Utah, US                | IFV<br>RSV<br>PIV<br>ADV<br>hMPV | IPD<br>(n=435)             | Hospitalisation<br>and lab data,<br>fortnightly          | Pearson               | <18y, IPD coded by ICD-9 IFV: 0.23c (0), 0.24c (2w), 0.18c (4w); RSV: 0.31a (0), 0.35a (2w), 0.34a (4w); PIV: 0.03 (0), -0.01 (2w), -0.03 (4w); ADV: 0.01 (0), -0.05 (2w), -0.08 (4w); hMPV: 0.31a (0), 0.39a (2w), 0.37a (4w) (similar results for culture-confirmed IPD)          |
| Burgos et al.<br>2015 <sup>13</sup>  | 1996–<br>2012   | ≥18y<br>Barcelona,<br>Spain     | IFV                              | IPD<br>(n=1,150)           | Hospitalisation<br>and surveillance<br>lab data, monthly | Spearman              | <u>≥18y</u><br>IFV: <b>0.65a (</b> 0) <b>, 0.45a</b> (1m)                                                                                                                                                                                                                           |
| Ciruela et al.<br>2016 <sup>14</sup> | 2006–<br>2012   | all ages<br>Catalonia,<br>Spain | IFV<br>RSV<br>ADV                | IPD<br>(n=8,044)           | Microbiological<br>reporting system,<br>monthly          | Spearman              | <u>All ages</u><br>IFV: <b>0.71a</b> (0), <b>0.64a</b> (1m);<br>RSV: <b>0.77a</b> (0), <b>0.80a</b> (1m);<br>ADV: <b>0.61a</b> (0), <b>0.39a</b> (1m)<br>(similar results for age-stratified analysis of<br>and RSV; results of ADV were only significant<br>among <5y with no lag) |
| Jansen et al.<br>2008 <sup>20</sup>  | 1997–<br>2003   | all ages<br>Netherlands         | IFV<br>RSV                       | IPD<br>(n=7,266;<br>PM+PB) | Weekly Sentinel<br>System, weekly                        | Spearman              | <u>0–4y</u> , <u>5–17y</u> , <u>≥18y</u><br>IFV-PB: <b>0.24b</b> , <b>0.21b</b> , <b>0.62b</b><br>IFV-PM: <b>0.23b</b> , <b>0.14b</b> , <b>0.39b</b><br>RSV-PB: <b>0.29b</b> , <b>0.12b</b> , <b>0.59b</b><br>RSV-PM: <b>0.36b</b> , —, <b>0.44b</b>                                |
|                                      |                 |                                 |                                  |                            | 9                                                        |                       |                                                                                                                                                                                                                                                                                     |
|                                      |                 |                                 | For peer revie                   | ew only - http://bn        | njopen.bmj.com/site                                      | /about/guideli        | nes.xhtml                                                                                                                                                                                                                                                                           |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

|               |                                          |                                                                                                                                                                           |                                                                                                                                                                                                                         | Scale for Analysis                                                                                                                                                                                                                                                    | Method                                                                                                                                                                                                                                                                                                                                                                                               | Correlation Coefficients (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1990–<br>1993 | all ages<br>Houston, TX,<br>US           | IFV<br>RSV<br>ADV<br>PIV<br>non-IFV                                                                                                                                       | IPD<br>(n=480)                                                                                                                                                                                                          | Hospitalisation<br>and surveillance<br>lab data,<br>fortnightly                                                                                                                                                                                                       | Pearson                                                                                                                                                                                                                                                                                                                                                                                              | $ \ge 18y \\ \text{IFV: } \textbf{0.46a}(0), \textbf{0.35c}(4w) \\ \text{RSV: } \textbf{0.56a}(0), \textbf{0.54a}(4w) \\ \text{ADV: } \textbf{0.25c}(0), \textbf{0.29c}(4w) \\ \text{non-IFV: } \textbf{0.38a}(0), \textbf{0.35c}(4w) \\ \le 18y \\ \text{IFV: } \textbf{0.08}(0), \textbf{0.23c}(4w), \textbf{0.47a}(8w) \\ \text{RSV: } \textbf{0.13}(0), \textbf{0.28c}(4w), \textbf{0.32c}(8w) \\ \text{ADV: } \textbf{0.31c}(0), \textbf{0.55a}(4w), \textbf{0.24c}(8w) \\ \text{non-IFV: } \textbf{0.24c}(0), \textbf{0.39a}(4w), \textbf{0.21c}(8w) \\ \end{aligned} $ |
| 1995–<br>2006 | all ages<br>Christchurch,<br>New Zealand | IFV<br>RSV<br>ADV<br>PIV                                                                                                                                                  | IPD<br>(n=737)                                                                                                                                                                                                          | Surveillance data,<br>monthly                                                                                                                                                                                                                                         | Spearman                                                                                                                                                                                                                                                                                                                                                                                             | All ages<br>IFV A: 0.44a (0), 0.37a (1m)<br>IFV B: 0.23c (0), 0.13 (1m)<br>RSV: 0.52a (0), 0.47a (1m)<br>ADV: 0.27a (0), 0.33a (1m)<br>PIV 1/2: 0.24c (0), 0.31a (1m)<br>PIV 3: 0.34a (0), 0.17c (1m)<br>(correlations were stronger in 5–65y<br>and >65y)                                                                                                                                                                                                                                                                                                                    |
| 1996–<br>2009 | all ages<br>England and<br>Wales, UK     | IFV<br>RSV                                                                                                                                                                | IPD<br>(n=71,333)                                                                                                                                                                                                       | Surveillance data,<br>weekly                                                                                                                                                                                                                                          | Pearson<br>and<br>Spearman                                                                                                                                                                                                                                                                                                                                                                           | All ages, Pearson<br>IFV: <b>0.54a</b><br>RSV: <b>0.47a</b><br><u>All ages</u> , Spearman<br>IFV: <b>0.67a</b><br>RSV: <b>0.63a</b><br>(correlations were stronger in 15–64y and<br>≥65y than 0–4y and 5–14y)                                                                                                                                                                                                                                                                                                                                                                 |
|               |                                          |                                                                                                                                                                           |                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | 1993<br>1995–<br>2006<br>1996–           | <ul> <li>1990–<br/>Houston, TX,<br/>US</li> <li>1993 US</li> <li>1995–<br/>2006 Christchurch,<br/>New Zealand</li> <li>1996–<br/>2009 all ages<br/>England and</li> </ul> | 1990-<br>1993all ages<br>Houston, TX,<br>USRSV<br>ADV<br>PIV<br>non-IFV1995-<br>2006all ages<br>Christchurch,<br>New ZealandIFV<br>RSV<br>ADV<br>PIV<br>PIV1996-<br>2009all ages<br>England andIFV<br>RSV<br>ADV<br>PIV | 1990-<br>1993all ages<br>Houston, TX,<br>USRSV<br>ADV<br>PIV<br>non-IFVIPD<br>(n=480)<br>non-IFV1995-<br>2006all ages<br>Christchurch,<br>New ZealandIFV<br>RSV<br>ADV<br>PIVIPD<br>(n=737)<br>PIV1996-<br>2009all ages<br>England andIFV<br>RSV<br>PIVIPD<br>(n=733) | 1990-<br>1993all ages<br>Houston, TX,<br>USRSV<br>ADV<br>PIV<br>non-IFVIPD<br>(n=480)Hospitalisation<br>and surveillance<br>lab data,<br>fortnightly1995-<br>2006all ages<br>Christchurch,<br>New ZealandIFV<br>RSV<br>ADV<br>PIVIPD<br>(n=737)Surveillance data,<br>monthly1995-<br>2006all ages<br>Christchurch,<br>New ZealandIFV<br>RSV<br>ADV<br>PIVIPD<br>(n=737)Surveillance data,<br>monthly | 1990-<br>1993all ages<br>Houston, TX,<br>USRSV<br>ADV<br>PIV<br>non-IFVIPD<br>(n=480)<br>non-IFVHospitalisation<br>and surveillance<br>lab data,<br>fortnightlyPearson1995-<br>2006all ages<br>Christchurch,<br>New ZealandIFV<br>RSV<br>ADV<br>PIVIPD<br>(n=737)Surveillance data,<br>monthlySpearman1996-<br>2009all ages<br>England and<br>Wales, UKIFV<br>RSV<br>ADV<br>PIVIPD<br>(n=71,333)Surveillance data,<br>weeklySpearman                                                                                                                                          |

BMJ Open: first published as 10.1136/pmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

| Study                                   | Study<br>Period | Population                | VARI                                 | PD (n of cases)                     | Data Sources and<br>Scale for Analysis                                                        | Correlation<br>Method | Correlation Coefficients (time lag)                                                                                                                                                                                                                                              |
|-----------------------------------------|-----------------|---------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peltola et al.<br>2011 <sup>27</sup>    | 1995–<br>2007   | <5y<br>Finland            | RV<br>EV<br>RSV<br>IFV<br>PIV<br>ADV | IPD<br>(about 90<br>cases per year) | National<br>Infectious Disease<br>Register + 3<br>studies + virus<br>database,<br>fortnightly | Pearson               | < <u>&lt;5γ</u> RV: <b>0.28c</b> , <b>0.25c</b> , 0.31, <b>0.23a</b> (from 4 studies) EV: <b>0.17c</b> RSV: 0.05 IFV: -0.03 IFV A: -0.08 PIV: 0.02 ADV: -0.05                                                                                                                    |
| Stensballe<br>et al. 2008 <sup>29</sup> | 1996–<br>2003   | all ages<br>Denmark       | RSV<br>non-RSV                       | IPD<br>(n=7,787)                    | Population Based<br>Registries Cohort,<br>monthly                                             | Pearson               | <u>All ages</u><br>RSV: <b>0.55a</b><br>non-RSV: <b>0.65a</b><br><u>&lt;2y</u><br>RSV: 0.08                                                                                                                                                                                      |
| Talbot et al.<br>2005 <sup>30</sup>     | 1995–<br>2002   | all ages<br>Tennessee, US | IFV<br>RSV                           | IPD<br>(n=4,147)                    | Surveillance data,<br>weekly                                                                  | Pearson               | <u>All ages</u><br>RSV: <b>0.56a</b> (0), <b>0.60a</b> (1w), <b>0.59a</b> (2w), <b>0.57a</b><br>(3w), <b>0.55a</b> (4w)<br>IFV: <b>0.40a</b> (0), <b>0.41a</b> (1w), <b>0.34a</b> (2w), <b>0.33a</b><br>(3w), <b>0.26a</b> (4w)<br>(correlations were stronger in ≥18y than <18y |
|                                         |                 |                           |                                      |                                     |                                                                                               |                       |                                                                                                                                                                                                                                                                                  |
|                                         |                 |                           |                                      |                                     | 11                                                                                            |                       |                                                                                                                                                                                                                                                                                  |
|                                         |                 |                           |                                      |                                     | 11                                                                                            |                       |                                                                                                                                                                                                                                                                                  |
|                                         |                 |                           | For peer revi                        | ew only - http://bn                 | njopen.bmj.com/site/                                                                          | /about/guideli        | nes.xhtml                                                                                                                                                                                                                                                                        |

|                  | Study                               | Study<br>Period          | Population                                                        | VARI                                      | PD (n of cases)                        | Data Sources and<br>Scale for Analysis                                 | Correlation<br>Method     | Correlation Coefficients (time lag)                                                                                                                  |
|------------------|-------------------------------------|--------------------------|-------------------------------------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Watson et<br>al. 2006 <sup>33</sup> | 2000<br>(May–<br>Oct)    | all ages<br>New South<br>Wales,<br>Australia                      | IFV<br>RSV<br>PIV                         | IPD<br>(n=681)                         | Surveillance data,<br>weekly                                           | Pearson                   | <pre>&lt;18y IFV: not significant RSV: 0.58a PIV: −0.40c ≥18y IFV: not significant RSV: not significant PIV: not significant RSV or IFV: 0.48c</pre> |
| ) Т              | Time lag indic                      | ates the                 | time difference b                                                 | between prece                             | ding VARI and sub                      | sequent PD incidence                                                   | e.                        |                                                                                                                                                      |
| . А              | Abbreviations                       | s: ADV, ac               | denovirus; EV, en                                                 | terovirus; IFV,                           | influenza virus; IP                    | D, invasive pneumoc                                                    | occal disease;            | m, month(s); MPV, metapneumovirus; PB,                                                                                                               |
| 2 p              | neumococca                          | al hactera               | emia: PD nneun                                                    | nococcal disea                            | se: PIV_narainflue                     | nza virus: PM nneun                                                    | nococcal meni             | ngitis; RSV, respiratory syncytial virus; RV,                                                                                                        |
| •                |                                     |                          |                                                                   |                                           | week(s); y, year(s).                   |                                                                        |                           | <b>U</b> · · · · · · · · · · · · · · · · · · ·                                                                                                       |
|                  |                                     |                          |                                                                   |                                           |                                        |                                                                        |                           |                                                                                                                                                      |
|                  | Correlation co                      | pefficient               |                                                                   | atistically signi                         | ificant as originally                  |                                                                        | ly ( <i>P</i> <0.05); cor | relation coefficients ending with "a" were                                                                                                           |
| L C              |                                     |                          | s <b>in bold</b> were st                                          |                                           |                                        | reported in the stud                                                   |                           | relation coefficients ending with "a" were oni correction was deemed unnecessary;                                                                    |
| C<br>S           | statistically si                    | gnificant                | s <b>in bold</b> were st<br>after Bonferroni                      | adjustment (P                             | < 0.05/number of                       | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             |                                                                                                                                                      |
| C<br>S<br>S<br>C | statistically sig                   | gnificant<br>pefficients | s <b>in bold</b> were st<br>after Bonferroni                      | adjustment ( <i>P</i><br>' did not have a | < 0.05/number of enough information    | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| C<br>S<br>S<br>C | statistically sig                   | gnificant<br>pefficients | s <b>in bold</b> were st<br>after Bonferroni<br>s ending with "b" | adjustment ( <i>P</i><br>' did not have a | < 0.05/number of enough information    | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| C<br>S<br>S<br>C | statistically sig                   | gnificant<br>pefficients | s <b>in bold</b> were st<br>after Bonferroni<br>s ending with "b" | adjustment ( <i>P</i><br>' did not have a | < 0.05/number of enough information    | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| C<br>S<br>S<br>C | statistically sig                   | gnificant<br>pefficients | s <b>in bold</b> were st<br>after Bonferroni<br>s ending with "b" | adjustment ( <i>P</i><br>' did not have a | < 0.05/number of enough information    | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| C<br>S<br>S<br>C | statistically sig                   | gnificant<br>pefficients | s <b>in bold</b> were st<br>after Bonferroni<br>s ending with "b" | adjustment ( <i>P</i><br>' did not have a | < 0.05/number of enough information    | reported in the stud<br>relevant tests) or wh                          | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| C<br>S<br>S<br>C | statistically sig                   | gnificant<br>pefficients | s <b>in bold</b> were st<br>after Bonferroni<br>s ending with "b" | adjustment ( <i>P</i><br>' did not have a | < 0.05/number of enough information    | reported in the stud<br>relevant tests) or wh<br>on to apply the Bonfe | en the Bonfer             | oni correction was deemed unnecessary;                                                                                                               |
| C<br>S<br>S<br>C | statistically sig                   | gnificant<br>pefficients | s <b>in bold</b> were st<br>after Bonferroni<br>s ending with "b" | adjustment (P<br>' did not have o         | < 0.05/number of<br>enough information | reported in the stud<br>relevant tests) or wh<br>on to apply the Bonfe | en the Bonferi            | roni correction was deemed unnecessary;<br>n; correlation coefficients ending with "c" were                                                          |

Page 13 of 58

#### BMJ Open

| 148<br>149 |                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 150        | ) patterns by regression analysis. Results were inconsistent among the studies. In all-age population                                      |
| 151        | studies, preceding influenza infection was likely to be associated with IPD (12 studies <sup>13 14 16 18 22-24 32 35-</sup>                |
| 152        | <sup>38</sup> reported an association and two studies <sup>11 34</sup> reported no association). According to two studies <sup>23 24</sup> |
| 153        | that reported age-stratified results, the association between influenza and IPD was more likely to                                         |
| 154        | exist among older people than among young children. In terms of preceding RSV infection, four <sup>14 24 34</sup>                          |
| 155        | <sup>37</sup> out of five studies <sup>14 23 24 34 37</sup> observed an association of RSV with PD incidence. Specifically, one            |
| 156        | 5 study <sup>14</sup> found the association between RSV and IPD only existed among children <5 years. Studies                              |
| 157        | reporting other viruses such as ADV and PIV were sparse (two <sup>14 23</sup> and one <sup>23</sup> studies, respectively).                |
| 158        | <sup>3</sup> Five studies <sup>14 23 24 34 37</sup> that reported two or more viruses demonstrated that the association differed           |
| 159        | by the type of virus. Moreover, the association could differ among virus subtypes (e.g. influenza A vs                                     |
| 160        | influenza $B^{22}$ and PIV 1/2 vs PIV $3^{23}$ ). Notably, there are other factors that could influence the                                |
| 161        | strength of the associations reported in these studies. For instance, the association could vary by                                        |
| 162        | presentation of PD (invasive pneumococcal pneumonia, IPP vs npIPD <sup>32 34 36</sup> and PP vs pneumococcal                               |
| 163        | sepsis, PSe <sup>37</sup> ); preceding VARI was more likely to be associated with the occurrence of pneumonia                              |
| 164        | than other clinical presentations. Additionally, the results from studies in Denmark, where                                                |
| 165        | comorbidity status and pneumococcal serotype were available, demonstrated that influenza had a                                             |
| 166        | greater influence on the incidence of low-invasiveness serotypes than medium- or high- invasiveness                                        |
| 167        | <sup>35 36</sup> among the low comorbidity group; among the high comorbidity group, the pattern was reversed. <sup>35 36</sup>             |
|            |                                                                                                                                            |

## 168 Table 3. Summary of ecological studies controlling for seasonal patterns.

| Study                                | Study<br>Period | Population                      | VARI (unit<br>used in<br>model)          | PD<br>(number<br>of cases) | Data Sources<br>and Scale for<br>Analysis                            | Statistical<br>Methods             | Covariates                                           | RR [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                              | AP [95% CI] (time lag) |
|--------------------------------------|-----------------|---------------------------------|------------------------------------------|----------------------------|----------------------------------------------------------------------|------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Allard et al.<br>2012 <sup>11</sup>  | 1997–<br>2008   | all ages<br>Montreal,<br>Canada | IFV (case)                               | IPD<br>(n=2,920)           | Notification<br>data and<br>sentinel<br>surveillance<br>data, weekly | Negative<br>binomial<br>regression | long-term<br>trends and<br>seasonal trends<br>of IPD | All ages<br>IFV A: 1.01 (0), 1.00 (1w),<br>1.00 (2w), 0.99 (3w), 1.00<br>(4w), 1.00 (5w)<br>IFV B: 1.01 (0), 1.01 (1w),<br>1.00 (2w), 1.01 (3w), 0.99<br>(4w), 1.01 (5w)                                                                                                                                                                                                                                            |                        |
| Burgos et al.<br>2015 <sup>13</sup>  | 1996–<br>2012   | ≥18y<br>Barcelona,<br>Spain     | IFV (IR per<br>1,000)                    | IPD<br>(n=1,150)           | Hospitalisation<br>and surveillance<br>lab data,<br>monthly          | Negative<br>binomial<br>regression | temperature                                          | <u>≥18y</u><br>IFV: <b>1.23a</b> [1.03–1.47]                                                                                                                                                                                                                                                                                                                                                                        |                        |
| Ciruela et al.<br>2016 <sup>14</sup> | 2006–<br>2012   | all ages<br>Catalonia,<br>Spain | IFV<br>RSV<br>ADV<br>(IR per<br>100,000) | IPD<br>(n=8,044)           | Microbiological<br>reporting<br>system, monthly                      | Negative<br>binomial<br>regression | temperature >1<br>7°C                                | All ages<br>IFV: 1.26b [1.03–1.54] (0),<br>1.09 [0.87–1.36] (1m)<br>RSV: 1.15 [0.89–1.48] (0),<br>1.81b [1.36–2.41] (1m)<br>ADV: 1.58 [0.88–2.74] (0),<br>1.32 [0.68–2.42] (1m)<br>$\leq 5y$<br>IFV: 1.16 [0.90–1.50] (0),<br>1.06 [0.80–1.42] (1m)<br>RSV: 1.41 [1.00–1.97] (0),<br>2.57b [1.78–3.71] (1m)<br>ADV: 2.47b [1.38–4.53]<br>(0), 1.00 [0.59–1.68] (1m)<br>(not significant in 5–64y<br>or $\geq 65y$ ) |                        |
|                                      |                 |                                 |                                          |                            |                                                                      | 14                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                                      |                 |                                 | For pee                                  | r review onl               | ly - http://bmjop                                                    | en.bmj.com/                        | site/about/quide                                     | lines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                         |                        |

| Study                                              | Study<br>Period | Population                                | VARI (unit<br>used in<br>model)      | PD<br>(number<br>of cases) | Data Sources<br>and Scale for<br>Analysis       | Statistical<br>Methods               | Covariates                                                                                                                                                             | RR [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                         | AP [95% CI] (time lag)                                           |
|----------------------------------------------------|-----------------|-------------------------------------------|--------------------------------------|----------------------------|-------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Domenech de<br>Cellès et al.<br>2017 <sup>16</sup> | 2000–<br>2014   | all ages<br>France                        | ILI (as a<br>proxy for<br>IFV)       | IPD<br>(n=64,542<br>)      | National<br>surveillance<br>system, weekly      | Mixed-effect<br>linear<br>regression | seasonal trends<br>of IPD                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                | <u>All ages</u><br>ILI: median 4.9% across a<br>study years (1w) |
| Grabowska et<br>al. 2006 <sup>18</sup>             | 1994–<br>2004   | all ages<br>Sweden                        | IFV<br>(binary)                      | IPD<br>(n=11,637<br>)      | Surveillance<br>data, weekly                    | Negative<br>binomial<br>regression   | yearly trends<br>and seasonal<br>trends of IPD                                                                                                                         | <u>All ages</u><br>IFV: 1.03 [0.93–1.15] (0),<br>1.11 [1.00–1.23] (1w),<br>1.11 [0.99–1.22] (2w),<br><b>1.14c</b> [1.02–1.26] (3w),<br><b>1.12c</b> [1.01–1.23] (4w)                                                                                                                                                                                                                                           | <u>All ages</u><br><b>6%c</b> [1–12%] (3w)                       |
| Kuster et al.<br>2011 <sup>22</sup>                | 1995–<br>2009   | all ages<br>Toronto/ Peel<br>area, Canada | IFV (100<br>cases)                   | IPD<br>(n=6,191)           | Population-<br>based<br>surveillance,<br>weekly | Negative<br>binomial<br>regression   | multi-year<br>trends and<br>seasonal trends<br>of IPD, relative<br>humidity,<br>temperature,<br>UV index                                                               | <u>All ages</u><br>IFV A&B: <b>1.09a</b> [1.05–<br>1.14] (1w), <b>0.93c</b> [0.89–<br>0.98] (3w)<br>IFV A: identical to IFV A&B<br>IFV B: not significant                                                                                                                                                                                                                                                      |                                                                  |
| Murdoch et al.<br>2009 <sup>23</sup>               | 1995–<br>2006   | all ages<br>Christchurch,<br>New Zealand  | IFV<br>RSV<br>ADV<br>PIV<br>(binary) | IPD<br>(n=737)             | Surveillance<br>data, monthly                   | Negative<br>binomial<br>regression   | average daily<br>temperature<br><10°C,<br>PM10 >50µg/m <sup>3</sup><br>, days with<br>rainfall >10,<br>mean daily 9 am<br>humidity >75%,<br>mean daily<br>sunshine >6h | All ages<br>IFV: <b>1.38c</b> [1.02–1.85] (0),<br>1.20 [0.91–1.58] (1m)<br>RSV: 1.15 [0.87–1.52] (0),<br>0.90 [0.68–1.18] (1m)<br>PIV 1/2: 1.04 [0.82–1.30]<br>(0), 1.04 [0.84–1.29] (1m)<br>PIV 3 outside IFV season:<br><b>1.64a</b> [1.18–2.30] (0),<br><b>1.49c</b> [1.07–2.08] (1m)<br>ADV: 0.97 [0.78–1.20] (0),<br><b>1.26c</b> [1.02–1.54] (1m)<br>(similar in 5–65y, >65y;<br>not significant in <5y) |                                                                  |
|                                                    |                 |                                           |                                      |                            |                                                 | 15                                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |

| Study                                  | Study<br>Period | Population                           | VARI (unit<br>used in<br>model) | PD<br>(number<br>of cases)       | Data Sources<br>and Scale for<br>Analysis | Statistical<br>Methods                                                               | Covariates                                                                                                     | RR [95% CI] (time lag)                                                 | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|-----------------|--------------------------------------|---------------------------------|----------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nicoli et al.<br>2013 <sup>24</sup>    | 1996–<br>2009   | all ages<br>England and<br>Wales, UK | IFV<br>RSV<br>(case)            | IPD<br>(n=71,333<br>)            | Surveillance<br>data, weekly              | Negative<br>binomial<br>regression                                                   | weekly<br>temperature or<br>monthly hours<br>of sunshine<br>(separately in<br>models; results<br>were similar) |                                                                        | All ages, 0–4y, 5–14y, 15–64y,         ≥65y controlling for         temperature, multiplicative         model         IFV: 5.6%b [0.2–23.8%], -0.4%         [-1.8–0.0%], 2.9%c [0.0–         13.6%], 1.8%c [0.1–7.4%],         3.2%b [0.0–14.7%]         RSV: 2.9%b [0.1–14.2%], 1.4%c         [0.0–6.9%], 5.9%b [0.0–27.6%]         14.5%b [0.0–52.7%], 7.9%b         [0.0–27.4%]         (no significant results in time lag analyses) |
| Opatowski et<br>al. 2013 <sup>26</sup> | 2001–<br>2004   | all ages<br>France                   | VARI (IR)                       | PM<br>(n=1,383)                  | Surveillance<br>data, weekly              | Poisson<br>regression<br>using<br>generalised<br>estimating<br>equations<br>approach | seasonal trends<br>of PM                                                                                       | All ages<br>regression parameter:<br>19.4c<br>23.1a (1w)<br>23.9a (2w) |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Walter et al.<br>2010 <sup>32</sup>    | 1995–<br>2006   | all ages<br>US                       | IFV (positive<br>percentage)    | IPD (IPP,<br>npIPD;<br>n=21,239) | Surveillance<br>data, weekly              | Negative<br>binomial<br>regression                                                   | seasonal trends<br>and linear<br>trends of IPP                                                                 |                                                                        | Northeast, <u>all ages</u><br>IFV-IPP: <b>4.9%c</b> [4.5–5.3%] (1w)<br>South, <u>all ages</u><br>IFV-IPP: <b>5.4%b</b> [5.0–5.9%] (1w)<br>West, <u>all ages</u><br>IFV-IPP: <b>5.2%c</b> [4.8–6.0%] (1w)<br>(not significant for IFV-npIPD)                                                                                                                                                                                              |
|                                        |                 |                                      |                                 | npIPD;                           |                                           | binomial<br>regression                                                               | and linear                                                                                                     |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                 |                                      |                                 |                                  |                                           | 16                                                                                   |                                                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                 |                                      | For pee                         | r review onl                     | v - http://bmior                          | oen.bmi.com/                                                                         | site/about/guide                                                                                               | lines.xhtml                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Study                                   | Study<br>Period | Population                                                     | VARI (unit<br>used in<br>model)                             | PD<br>(number<br>of cases)       | Data Sources<br>and Scale for<br>Analysis                                   | Statistical<br>Methods | Covariates                                                                                                 | RR [95% CI] (time lag) | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|-----------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weinberger et<br>al. 2014 <sup>34</sup> | 1996–<br>2012   | <7y<br>Navajo/White<br>Mountain<br>Apache<br>population,<br>US | Bronchiolitis<br>(IR, as a<br>proxy for<br>RSV)<br>IFV (IR) | IPD<br>(IPP,<br>npIPD;<br>n=496) | 4 community-<br>based studies,<br>monthly                                   | Poisson<br>regression  | pneumococcal<br>carriage<br>prevalence,<br>seasonal trends<br>of IPD, PCV<br>periods                       |                        | <7y Bronchiolitis-PP: <b>15.5%b</b> [1.8 26.1%] Bronchiolitis-npIPD: 8.0% [-4.8–19.3%] (not significant for IFV)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Weinberger et<br>al. 2013 <sup>35</sup> | 1977–<br>2007   | ≥40y<br>Denmark                                                | ILI (case, as<br>a proxy for<br>IFV)                        | IPP<br>(n=8,308)                 | Surveillance<br>data +<br>nationwide<br>general practice<br>reports, weekly | Poisson<br>regression  | seasonal trends<br>of IPP, dummy<br>variable for<br>week<br>1,2,3,51,52 and<br>its interaction<br>with ILI |                        | <ul> <li>≥40y, low comorbidity and la serotype invasiveness</li> <li>ILI: 17.9%a [13.6–21.9%] (1w</li> <li>≥40y, low comorbidity and high serotype invasiveness</li> <li>ILI: 6.7%a [3.8–11.7%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and low serotype invasiveness</li> <li>ILI: 1.3% [-1.6–5.4%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and high serotype invasiveness</li> <li>ILI: 1.3% [-1.6–5.4%] (1w)</li> <li>≥40y, medium/high</li> <li>comorbidity and high serotype invasiveness</li> <li>ILI: 8.9%a [6.6–11.8%] (1w)</li> </ul> |
|                                         |                 |                                                                |                                                             |                                  |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                 |                                                                |                                                             |                                  |                                                                             | 17                     |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                 |                                                                |                                                             |                                  |                                                                             |                        |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Study                                   | Study<br>Period | Population          | VARI (unit<br>used in<br>model)      | PD<br>(number<br>of cases)       | Data Sources<br>and Scale for<br>Analysis                                   | Statistical<br>Methods | Covariates                                                                                                 | RR [95% CI] (time lag) | AP [95% CI] (time lag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------|-----------------|---------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weinberger et<br>al. 2014 <sup>36</sup> | 1977–<br>2007   | all ages<br>Denmark | ILI (case, as<br>a proxy for<br>IFV) | IPD (IPP,<br>npIPD;<br>n=13,882) | Surveillance<br>data +<br>nationwide<br>general practice<br>reports, weekly | Poisson<br>regression  | seasonal trends<br>of IPD, dummy<br>variable for<br>week<br>1,2,3,51,52 and<br>its interaction<br>with ILI |                        | $\frac{15-39y}{(1-1)}, low comorbidity LI-IPD: 9.9%a [6.0-13.0%](1w) LI-IPP: 11.2%a [6.5-14.8%](1w) LI-npIPD: 6.6% [-1.2-14.3%](1w)\frac{15-39y}{(1-1)}, medium/highcomorbidity LI-IPD: 0.3% [-8.4-9.7%] (1w) LI-IPD: 5.4% [-5.0-18.7%] (1w) LI-IPD: 5.4% [-5.0-18.7%] (1w) LI-IPD: -6.6% [-25.7-7.6%](1w)\geq 40y, low comorbidity LI-IPD: 7.6%a [5.1-11.6%](1w) LI-IPP: 7.8%a [5.8-11.7%] (1w) LI-IPP: 6.9%a [1.8-12.8%](1w)\geq 40y, medium/highcomorbidity LI-IPD: 6.2%a [4.3-9.3%] (1w) LI-IPD: 5.3%a [2.5-8.9%](1w)$ |
|                                         |                 |                     |                                      |                                  |                                                                             | 18                     |                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |                 |                     | For poo                              | r roviow op                      | ly - http://bmjop                                                           | on hmi com/            | (cito/obout/quida                                                                                          | lines vhtml            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Weinberger et<br>al. 2015 <sup>37</sup> 1992-<br>2009         -2y<br>36 states in US         IFV         PD (PP,<br>RSV         State inpatient<br>databases,<br>(IR)         Poisson<br>n=17,404)         Poisson<br>regression         seasonal trends<br>of PD, PCV         Solv-PP: 1.42b [1.30-1)         [17.4-25.1%], 10.1%a [7.4-25.1%], 10.1%a [7.4-25.1\%], 10.1%a [7.4-25.1\%], 10.1%a [7.4-25.1\%], 10.1% | :     | Study          | Study<br>Period | Population       | VARI (unit<br>used in<br>model) | PD<br>(number<br>of cases) | Data Sources<br>and Scale for<br>Analysis | Statistical<br>Methods                                                         | Covariates                    | RR [95% CI] (time lag)                                                                                                                                                                                               | AP [95% CI] (time lag)                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|-----------------|------------------|---------------------------------|----------------------------|-------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSV-PSe: 15.0%a [13.1-:0.1% [-4.9-5.0%], 7.2%a         0.1% [-4.9-5.0%], 7.2%a         0.1% [-4.9-5.0%], 7.2%a         0.1% [-4.9-5.0%], 7.2%a         0.0%], 3.8%a [2.5-5.2%]         Paules for the likelihood         ratio test were <0.05 for 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                |                 | •                | RSV                             | PD (PP,<br>PSe;            | databases,                                |                                                                                | of PD, PCV<br>periods, IFV or | <u>12–23m</u><br>RSV-PP: <b>1.42b</b> [1.30–<br>1.55], <b>1.24b</b> [1.17–1.33],<br><b>1.23b</b> [1.19–1.30], <b>1.12b</b>                                                                                           | 0-2m, 3-11m, 0-11m, 12-23r<br>IFV-PP: 2.1% [-4.5-1.4%],<br>2.2%a [0.1-3.4%], 0.6% [-0.9-<br>1.4%], 3.2%a [1.7-4.7%]<br>RSV-PP:35.7%a [27.9-42.7%],<br>20.0%a [14.7-24.8%], 20.3%a<br>[17.4-25.1%], 10.1%a [7.6-<br>13.9%]<br>IFV-PSe: 0.7% [-1.1-2.2%],<br>-2.7%a [-3.71.7%], -0.6% |
| Zhou et al.       1994-       all ages       RSV       IPP       Surveillance       influence       fergression       regression       fergression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                |                 |                  |                                 |                            |                                           |                                                                                |                               |                                                                                                                                                                                                                      | [-1.4-0.3%], <b>1.9%a</b> [1.1-2.6%<br>RSV-PSe: <b>15.0%a</b> [13.1-17.1%<br>0.1% [-4.9-5.0%], <b>7.2%a</b> [5.3-<br>9.0%], <b>3.8%a</b> [2.5-5.2%]                                                                                                                                 |
| <ul> <li>Time lag indicates the time difference between VARI and subsequent PD incidence.</li> <li>Abbreviations: ADV, adenovirus; AP, attributable percentage; CI, confidence interval; IFV, influenza virus; h, hour(s); ILI, influenza-like illness; IPD, invas</li> <li>pneumococcal disease; IPP, invasive pneumococcal pneumonia; IR, incidence rate; npIPD, non-pneumonic invasive pneumococcal disease; PCV,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                |                 |                  | RSV<br>(positive                |                            |                                           | binomial<br>regression<br>(comparison<br>between<br>models with<br>and without | sunshine,                     | ratio test were <0.05 for 5<br>of 11 influenza seasons:<br>1994–95, 1996–97, 1998–<br>99, 2003–04, 2004–05;<br>after Bonferroni<br>adjustment association<br>was significant for 3 of 11<br>influenza seasons: 1996– |                                                                                                                                                                                                                                                                                     |
| pneumococcal disease; IPP, invasive pneumococcal pneumonia; IR, incidence rate; npIPD, non-pneumonic invasive pneumococcal disease; PCV,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 169 - | Time lag indic | ates the        | e time differen  | ce between V                    | ARI and su                 | bsequent PD ind                           | cidence.                                                                       |                               | 57, 2003 04, 2004 03.                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170   | Abbreviations  | s: ADV, a       | denovirus; AP    | , attributable                  | percentag                  | e; Cl, confidence                         | e interval; IFV,                                                               | , influenza virus;            | h, hour(s); ILI, influenza                                                                                                                                                                                           | -like illness; IPD, invasive                                                                                                                                                                                                                                                        |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 171   | pneumococca    | ıl diseas       | e; IPP, invasive | e pneumococo                    | cal pneumo                 | onia; IR, incideno                        | ce rate; npIPD                                                                 | , non-pneumoni                | c invasive pneumococca                                                                                                                                                                                               | l disease; PCV,                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                |                 |                  |                                 |                            |                                           | 19                                                                             |                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                     |
| For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                |                 |                  | For peer                        | review onl                 | y - http://bmjop                          | en.bmj.com/s                                                                   | site/about/guide              | lines.xhtml                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |

| 1<br>2      |     |                                                                                                                                                                                                                                               |
|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3           |     |                                                                                                                                                                                                                                               |
| 4<br>5<br>6 | 172 | pneumococcal conjugate vaccine; PD, pneumococcal disease; PIV, parainfluenza virus; PP, pneumococcal pneumonia; PSe, pneumococcal sepsis; RR,                                                                                                 |
| 7<br>8      | 173 | relative risk; RSV, respiratory syncytial virus; UV index, clear-sky ultraviolet index; VARI, viral acute respiratory infection; w, week(s); y, year(s).                                                                                      |
| 9<br>10     | 174 | Relative risk or attributable percentage in bold were statistically significant as originally reported in the study (P<0.05); relative risk or attributable                                                                                   |
| 11<br>12    | 175 | percentage ending with "a" were statistically significant after Bonferroni adjustment (P<0.05/number of relevant tests) or when the Bonferroni correction                                                                                     |
| 13<br>14    | 176 | was deemed unnecessary, those ending with "b" did not have enough information to apply the Bonferroni correction; relative risk or attributable<br>percentage ending with "c" were not statistically significant after Bonferroni adjustment. |
| 15<br>16    | 177 | percentage ending with "c" were not statistically significant after Bonferroni adjustment.                                                                                                                                                    |
| 17<br>18    | 178 |                                                                                                                                                                                                                                               |
| 19<br>20    |     |                                                                                                                                                                                                                                               |
| 21          |     |                                                                                                                                                                                                                                               |
| 22<br>23    |     |                                                                                                                                                                                                                                               |
| 24<br>25    |     |                                                                                                                                                                                                                                               |
| 26          |     |                                                                                                                                                                                                                                               |
| 27<br>28    |     |                                                                                                                                                                                                                                               |
| 20<br>29    |     |                                                                                                                                                                                                                                               |
| 30<br>31    |     |                                                                                                                                                                                                                                               |
| 32          |     |                                                                                                                                                                                                                                               |
| 33<br>34    |     |                                                                                                                                                                                                                                               |
| 35          |     |                                                                                                                                                                                                                                               |
| 36<br>37    |     |                                                                                                                                                                                                                                               |
| 38          |     |                                                                                                                                                                                                                                               |
| 39          |     |                                                                                                                                                                                                                                               |
| 40<br>41    |     | 20                                                                                                                                                                                                                                            |
| 42          |     |                                                                                                                                                                                                                                               |
| 43<br>44    |     |                                                                                                                                                                                                                                               |
| 45          |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                     |
| 46<br>47    | .tr | BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyrigh                                                                          |

## 179 Studies utilising other analyses

180 Seven ecological studies<sup>15 16 19 22 26 28 31</sup> utilised other analytical methods (**Table 4**). Except for studies

181 by Hendriks et al.<sup>19</sup> and Toschke et al.<sup>31</sup>, all studies reported an association between VARI and PD.

## 182 Table 4. Summary of ecological studies utilising other methods.

| Study                                                 | Study<br>Period | Population                         | VARI                                 | PD (n of<br>cases)    | Data<br>Sources and<br>Scale for<br>Analysis                              | Methods                                                                                                                           | Main findings                                                                                                                                        |
|-------------------------------------------------------|-----------------|------------------------------------|--------------------------------------|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dangor et<br>al. 2014 <sup>15</sup>                   | 2005–<br>2008   | <15y<br>Soweto,<br>South<br>Africa | IFV                                  | IPD<br>(n=636)        | Hospitalisati<br>on and<br>surveillance<br>laboratory<br>data,<br>monthly | X-11 seasonal<br>adjustment<br>method to<br>retain seasonal<br>components.<br>Peak timing<br>compared by<br>time series<br>graph. | IFV peak in May–<br>Jul, followed by<br>IPD (Aug–Oct);<br>no correlation<br>analysis results<br>reported                                             |
| Domenech<br>de Cellès<br>et al.<br>2017 <sup>16</sup> | 2000–<br>2014   | all ages<br>France                 | ILI (as<br>a<br>proxy<br>for<br>IFV) | IPD<br>(n=64,54<br>2) | National<br>surveillance<br>system,<br>weekly                             | Correlation<br>analysis of<br>waveforms of<br>ILI and IPD                                                                         | Correlation of<br>peak timing of ILI<br>and IPD peak 2:<br>0.42 [0.04-0.66];<br>correlation of<br>total cases of ILI<br>and IPD: 0.31<br>[0.03-0.56] |
| Hendriks<br>et al.<br>2017 <sup>19</sup>              | 2004–<br>2014   | all ages<br>Netherlan<br>ds        | ILI (as<br>a<br>proxy<br>for<br>IFV) | IPD<br>(n=6,572)      | Surveillance<br>data, weekly                                              | Cross-<br>correlations of<br>the time series<br>model<br>(SARIMA)<br>residuals                                                    | No significant<br>cross-<br>correlations<br>observed                                                                                                 |

| 1<br>2         |  |
|----------------|--|
| 3<br>4         |  |
| 5              |  |
| 6<br>7         |  |
| 8              |  |
| 9<br>10        |  |
| 11             |  |
| 12<br>13       |  |
| 14             |  |
| 15<br>16       |  |
| 16<br>17<br>18 |  |
| 19             |  |
| 20<br>21       |  |
| 22             |  |
| 23<br>24       |  |
| 25             |  |
| 26<br>27       |  |
| 28<br>29       |  |
| 30             |  |
| 31<br>32       |  |
| 33             |  |
| 34<br>35       |  |
| 36<br>37       |  |
| 38             |  |
| 39<br>40       |  |
| 41<br>42       |  |
| 43             |  |
| 44<br>45       |  |
| 46<br>47       |  |
| 48             |  |
| 49<br>50       |  |
| 51             |  |
| 52<br>53       |  |
| 54<br>55       |  |
| 56             |  |
| 57<br>58       |  |
| 59             |  |
| 60             |  |

| Study                                     | Study<br>Period | Population                                   | VARI | PD (n of<br>cases)     | Data<br>Sources and<br>Scale for<br>Analysis                                                           | Methods                                                                                                                                                                                                                              | Main findings                                                                                                                                                                         |
|-------------------------------------------|-----------------|----------------------------------------------|------|------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kuster et<br>al. 2011 <sup>22</sup>       | 1995–<br>2009   | all ages<br>Toronto/<br>Peel area,<br>Canada | IFV  | IPD<br>(n=6,191)       | Population-<br>based<br>surveillance,<br>weekly                                                        | Spearman<br>correlation for<br>phase and<br>amplitude<br>between IFV<br>and IPD;<br>Granger<br>methods to<br>test whether<br>influenza<br>predicted IPD;<br>Case-crossover<br>analysis to<br>evaluate short-<br>term<br>associations | Phase and<br>amplitude<br>between IFV and<br>IPD not<br>correlated;<br>Granger test of<br>IFV causing IPD:<br><i>P</i> <0.001;<br>case-crossover<br>OR: 1.10[1.02–<br>1.18] at 1w lag |
| Opatowski<br>et al.<br>2013 <sup>26</sup> | 2001–<br>2004   | all ages<br>France                           | VARI | PM<br>(n=1,383)        | Surveillance<br>data,<br>weekly                                                                        | Mathematic<br>model of<br>pneumococcus<br>transmission,<br>to estimate<br>the interaction<br>parameters<br>between VARI<br>and PM                                                                                                    | Factor of VARI<br>on<br>pneumococcus<br>acquisition or<br>transmissibility:<br>8.7[4.6–14.4];<br>factor of VARI on<br>pathogenicity:<br>92[28–361]                                    |
| Shrestha<br>et al.<br>2013 <sup>28</sup>  | 1989–<br>2009   | all ages<br>Illinois, US                     | IFV  | PP<br>(n not<br>known) | Hospital<br>data, weekly<br>(Dataset I<br>from 1989<br>to 1997,<br>dataset II<br>from 2000<br>to 2013) | Mathematic<br>model of<br>pneumococcal<br>pneumonia<br>transmission,<br>to estimate<br>the interaction<br>parameters<br>between VARI<br>and PP                                                                                       | Factor of IFV on<br>PP susceptibility:<br>dataset I<br>115[70–200],<br>dataset II 85[30–<br>160]                                                                                      |

Page 23 of 58

BMJ Open

| Study                                | Study<br>Period | Population      | VARI  | PD (n of<br>cases) | Data<br>Sources and<br>Scale for<br>Analysis | Methods                                                                                                                                                                | Main findings                                                                                             |
|--------------------------------------|-----------------|-----------------|-------|--------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Toschke et<br>al. 2008 <sup>31</sup> | 1997–<br>2003   | <16y<br>Germany | IFV A | IPD<br>(n=1,474)   | Surveillance<br>data,<br>monthly             | Multivariate<br>time series<br>analysis using<br>"3h<br>algorithm",<br>which fit an<br>autoregressive<br>Poisson or<br>negative<br>binomial<br>model to time<br>series | IFV A season di<br>not affect IPD<br>season ( <i>P</i> =0.49<br>IFV A peak did<br>not precede IPE<br>peak |

184 PM, pneumococcal meningitis; PP, pneumococcal pneumonia; VARI, viral acute respiratory infection;

185 w, week(s); y, year(s).

## 186 Discussion

In our review, we summarised population-based studies that evaluated the association of seasonal VARI and subsequent PD. To our knowledge, this is the first review that summarises the methodology and findings of existing epidemiological studies on this topic. We found that reported associations between VARI and subsequent PD were inconsistent among the 28 included studies. Only three studies<sup>17 25 29</sup> analysed the association using individual patient data. The two cohort studies<sup>17 29</sup> did not account for the shared risk factors between VARI and PD that influenced their seasonality, substantially limiting the inferences that can be made from these data while the case-control study<sup>25</sup> was limited by its small sample size (n case=13). In ecological studies, only 16<sup>11 13 14 16 18 19 22-24 26 32 34-38</sup> of the 25<sup>11-16 18-24 26-28 30-38</sup> ecological studies accounted for seasonal patterns. In these studies, we found that influenza and/or RSV infections were likely to be associated with the subsequent occurrence of PD. For influenza, the association was stronger among younger populations compared to older adults<sup>23 24</sup> while the pattern was reversed for RSV.<sup>14</sup> Data from multiple studies suggested that virus type (five studies<sup>14 23 24 34 37</sup>) and subtype (two studies<sup>22 23</sup>), 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 3                  |     | 24                                                                                                                         |
|--------------------|-----|----------------------------------------------------------------------------------------------------------------------------|
| 5                  | 225 | infection. The authors also conducted telephone interviews to investigate ILI history but they did not                     |
| 3<br>1             | 224 | authors used influenza-strain specific convalescent serology as evidence for preceding influenza                           |
| 1<br>2             | 223 | be less accurate (information bias). <sup>27</sup> In the case-control study by O'Brien and colleagues, <sup>25</sup> the  |
| )                  | 222 | studies, defining the history of VARI is likely to be inaccurate since the timing of viral serology may                    |
| 3                  | 221 | affordable and practical, but not without its limitations. In addition to challenges in designing such                     |
| 5                  | 220 | labour intensive and less cost-effective to conduct. Another option is a case-control study, which is                      |
| <u>-</u><br>3<br>1 | 219 | based active surveillance can likely address the issue of missing cases but such surveillance would be                     |
| )<br> <br>)        | 218 | untested viral-pneumococcal cases could represent a crucial source of selection bias. Community-                           |
| 3<br>)<br>)        | 217 | VARI-associated PD cases is likely to be significantly higher due to incomplete testing of cases; the                      |
| 7                  | 216 | tested for both the presence of respiratory viruses and pneumococcal infection. The true number of                         |
| 1<br>5             | 215 | registries. While the authors conducted individual-level analysis, the results were based on cases                         |
| <u>2</u><br>3      | 214 | study by Stensballe and colleagues <sup>29</sup> that linked information from four Danish population-based                 |
| )<br>I             | 213 | be feasible in many industrialised countries. An example of such data linkage in our review is the                         |
| 3                  | 212 | unique individual identifiers) from sources such as surveillance data and hospitalisation datasets may                     |
| 5                  | 211 | rare. Alternatively, utilisation of large-scale routine health data and reliable data linkage (through                     |
| 1<br>5             | 210 | However, such a design would not be feasible or affordable as inter alia pneumococcal infections are                       |
| <u>2</u><br>3      | 209 | pneumococcal infection would be utilised, allowing analyses at both individual and population levels.                      |
| )<br>I             | 208 | an individual to PD, a prospective cohort study that monitors each individual for VARI and                                 |
| 3                  | 207 | of future studies. Ideally, in order to understand whether a particular preceding VARI can predispose                      |
| 5<br>7             | 206 | association between VARI and subsequent PD, and thus could help with the conception and design                             |
| 5<br>1<br>5        | 205 | Nevertheless, these studies provide important clues for the potential factors related to the                               |
| 1<br>2<br>2        | 204 | amount of valid inferences that can be made from the data (as summarised above).                                           |
| )                  | 203 | methods. As such, heterogeneity among the studies, along with their ecological nature, limits the                          |
|                    | 202 | characteristics (e.g. age, comorbidity, immunity status), PD datasets, VARI datasets and analytical                        |
|                    | 201 | influence the association. However, these 16 ecological studies had various population                                     |
|                    | 200 | comorbidity status (two studies <sup>35 36</sup> ) and pneumococcal serotype invasiveness (one study <sup>35</sup> ) could |
|                    |     | 25.26.                                                                                                                     |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 58

1

59

60

#### BMJ Open

| 1<br>2         |     |                                                                                                                                     |
|----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 226 | mention whether interviewers and interviewees were blind to case or control status. Moreover, the                                   |
| 5              | 227 | value of this case-control study is limited by its very small sample size (n case = 13).                                            |
| 6<br>7         | 228 | Compared with individual patient data based studies, ecological studies are more feasible, and                                      |
| 8<br>9<br>10   | 229 | thus the most common study design included in our review (25/28). However, there are some                                           |
| 10<br>11<br>12 | 230 | caveats when interpreting results from ecological studies. First, causality can never be inferred from                              |
| 13<br>14       | 231 | such studies. Second, the results should be interpreted at a population level and cannot be                                         |
| 15<br>16       | 232 | generalised to the individual level. Since ecological studies used data aggregated into broad                                       |
| 17<br>18       | 233 | categories, the potential biases introduced by the aggregation should be taken into account. For                                    |
| 19<br>20       | 234 | instance, while 16 out of 25 ecological studies used weekly data, others used fortnightly or monthly                                |
| 21<br>22       | 235 | data. This may lead to misclassification as the time window of the association of VARI on PD                                        |
| 23<br>24       | 236 | susceptibility can be as short as one week. <sup>39 40</sup> Moreover, data from different sources in ecological                    |
| 25<br>26       | 237 | studies should represent the same population.                                                                                       |
| 27<br>28       | 238 | Apart from the study design, one further challenge of analysing the association is accounting for                                   |
| 29<br>30       | 239 | the influence of seasonal factors of VARI and PD (confounding). Both VARI and PD have similar                                       |
| 31             | 259 | the influence of seasonal factors of VARI and PD (comounding). Both VARI and PD have similar                                        |
| 32<br>33       | 240 | seasonal patterns, and thus are likely to correlate as indicated by the correlation results from                                    |
| 34<br>35       | 241 | ecological studies. The increased risk of PD during an epidemic season could be caused by VARI or by                                |
| 36<br>37       | 242 | seasonal risk factors or by both. In the present review, 11 studies <sup>12 15 17 20 21 27-31 33</sup> did not attempt to           |
| 38<br>39       | 243 | control for seasonal confounders, likely leading to biased estimations of the association. For example,                             |
| 40<br>41       | 244 | the study by Edwards and colleagues <sup>17</sup> reported a relative risk as high as 112.5 when not adjusting                      |
| 42<br>43       | 245 | any seasonal factors. One way to address this problem in such studies would be to match the                                         |
| 44<br>45       | 246 | individuals with the onset timing of pneumococcal infection, keeping the risk of PD comparable                                      |
| 46<br>47       | 247 | between VARI cases and non-VARI cases; for ecological studies, regression analysis adding seasonal                                  |
| 48<br>49       | 248 | terms or climatic factors (such as temperature and humidity), or cross-correlation analysis of time                                 |
| 50<br>51       | 249 | series controlling for seasonal patterns could be considered.                                                                       |
| 52<br>53       | 250 | Our review suggests that the association of VARI and subsequent PD could vary by virus type <sup>14 23 24</sup>                     |
| 54<br>55       | 251 | <sup>34 35</sup> and even by subtype <sup>22 23</sup> . Studies using combinations of viral infections such as all virus, influenza |
| 56<br>57       |     |                                                                                                                                     |
| 58<br>50       |     | 25                                                                                                                                  |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|             | 252 | + RSV, non-influenza, or non-RSV could give biased estimations of the association. However, it is not               |
|-------------|-----|---------------------------------------------------------------------------------------------------------------------|
|             | 253 | always practical to analyse the association by virus type. In ecological studies, different types of                |
|             | 254 | viruses might co-circulate and thus be highly correlated in incidence, making it difficult to determine             |
| h           | 255 | the role for each virus. In terms of PD, most studies used IPD as the outcome of interest. However,                 |
| 1           | 256 | studies that categorised IPD into IPP and npIPD found that the association was more pronounced in                   |
| -<br>3<br>4 | 257 | IPP than in npIPD. <sup>32 34 36</sup> A similar finding, that the association was stronger in PP than PSe, was     |
| 5           | 258 | reported in another study. <sup>37</sup> These results suggest VARI is more likely to be associated with            |
| 7<br>3      | 259 | pneumonic pneumococcal infections than non-pneumonic infections. In our review, we excluded                         |
| €<br>Э      | 260 | studies using information other than clinical diagnosis as a proxy for PD (e.g. prescription data and               |
| 1<br>2      | 261 | carriage data). Pneumococcal carriage could have a fundamental role in the transmission and                         |
| 3           | 262 | incidence of PD. <sup>41</sup> In a study analysing the impact of pneumococcal carriage and viral activity,         |
| 5           | 263 | Weinberger and colleagues <sup>34</sup> found npIPD was associated with carriage prevalence, whereas IPP was        |
| 7<br>3      | 264 | associated with bronchiolitis (as a proxy for RSV). The authors also proposed that preceding VARI                   |
| 9<br>)<br>1 | 265 | increased susceptibility but did not enhance transmission (indicated by carriage prevalence) in                     |
| 2<br>3      | 266 | children. However, more studies are needed to confirm these findings.                                               |
| 4<br>5      | 267 | The association could also vary by population characteristics. According to two studies that                        |
| 5<br>7      | 268 | displayed age-stratified results, <sup>23 24</sup> the association of influenza and subsequent IPD was more likely  |
| 3<br>9      | 269 | to exist among older people than among young children. Studies by Weinberger et al. <sup>35 36</sup> gauged the     |
| )<br>1      | 270 | association in different comorbidity and pneumococcal serotype groups among Denmark                                 |
| 2<br>3      | 271 | populations. The results showed that influenza had a stronger impact on the incidence of low-                       |
| 5           | 272 | invasiveness serotypes than medium- or high- invasiveness ones in the low comorbidity group, while                  |
| 5<br>7      | 273 | the pattern reversed in the high comorbidity group. Another study that analysed clinical records of                 |
| 2<br>2<br>2 | 274 | 919 patients with PP found that infrequently colonising pneumococcal serotypes were more likely to                  |
| 5<br>1<br>2 | 275 | cause PP after preceding VARI, particularly in patients with immunodeficiency or chronic lung                       |
| -<br>3<br>4 | 276 | diseases. <sup>42</sup> These findings suggest the need for future studies to analyse the association by age group, |
| 5           | 277 | pneumococcal serotype and comorbidity status. Moreover, the recent introduction of pneumococcal                     |
| 7<br>3      |     | 26                                                                                                                  |
| €<br>)      |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                           |
|             |     |                                                                                                                     |

#### BMJ Open

| 2<br>3         | 278 | vaccines has brought changes in the incidence of serotype-specific PD, <sup>43</sup> making the association of    |
|----------------|-----|-------------------------------------------------------------------------------------------------------------------|
| 4<br>5         | 279 | VARI and PD more complicated to understand. As a result, future studies should consider the                       |
| 6<br>7<br>8    | 280 | possible serotype-specific influence that pneumococcal vaccines have on both individual immunity                  |
| 8<br>9<br>10   | 281 | and herd immunity when analysing the association.                                                                 |
| 11<br>12       | 282 | In addition to the factors discussed above, additional factors may influence the estimates of the                 |
| 13<br>14       | 283 | association. The first is the change over time in the methodology of data collection, including                   |
| 15<br>16       | 284 | changes in test method or diagnosis, clinical practice and health-seeking behaviour. The second is                |
| 17<br>18       | 285 | the possible delay in measurement, which happened most often in passive hospital-based studies.                   |
| 19<br>20       | 286 | Thirdly, for ecological studies using aggregated data, "holiday spikes" could occur due to more social            |
| 21<br>22       | 287 | gatherings; <sup>44</sup> besides, weekends and holidays might influence timely tests or diagnosis as well as the |
| 23<br>24<br>25 | 288 | health-seeking behaviour of patients.                                                                             |
| 26<br>27       | 289 | To our knowledge, this is the first review to summarise and critically appraise the methods and                   |
| 28<br>29       | 290 | results of population-based studies about the association between seasonal VARI and subsequent                    |
| 30<br>31       | 291 | PD. However, this review is not without its limitations. First, due to a variety of study designs, data           |
| 32<br>33       | 292 | sources and analytical methods in the studies included, no meta-analysis was conducted in the                     |
| 34<br>35       | 293 | review. As such, we were unable to provide a quantitative measure of the association of seasonal                  |
| 36<br>37       | 294 | VARI and PD. Second, no unpublished data sources were included in the review, which could mean                    |
| 38<br>39       | 295 | the data reported favours positive associations due to publication bias. Thus, caution should be                  |
| 40<br>41<br>42 | 296 | taken when interpreting the results. Thirdly, we found many studies tended to conduct multiple                    |
| 42<br>43<br>44 | 297 | statistical tests using different subgroups and time periods (e.g. age group, virus, time lag between             |
| 45<br>46       | 298 | VARI and PD) without specifying the primary study question a priori or making proper statistical                  |
| 47<br>48       | 299 | adjustments to account for multiple testing. This could give rise to an increased risk of reporting               |
| 49<br>50       | 300 | false positive results. In this review, we applied Bonferroni corrections to adjust for the multiple              |
| 51<br>52       | 301 | tests where deemed necessary. Since the Bonferroni method is conservative and we are unable to                    |
| 53<br>54       | 302 | adjust for studies where <i>P</i> values were not given, the adjustment in our review is intended for             |
| 55<br>56       | 303 | readers' reference and as caveats for future studies.                                                             |
| 57<br>58       |     | 27                                                                                                                |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## Page 28 of 58

## BMJ Open

| 2                                                        |  |  |
|----------------------------------------------------------|--|--|
| 4<br>5<br>6<br>7                                         |  |  |
| 6<br>7<br>0                                              |  |  |
| 8<br>9<br>10                                             |  |  |
| 10<br>11<br>12                                           |  |  |
| 13<br>14                                                 |  |  |
| 15<br>16                                                 |  |  |
| 17<br>18                                                 |  |  |
| 19<br>20                                                 |  |  |
| 21<br>22                                                 |  |  |
| 23<br>24<br>25                                           |  |  |
| 25<br>26<br>27                                           |  |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 |  |  |
| 30<br>31                                                 |  |  |
| 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38       |  |  |
| 34<br>35                                                 |  |  |
| 36<br>37                                                 |  |  |
| 39                                                       |  |  |
| 40<br>41<br>42                                           |  |  |
| 43<br>44                                                 |  |  |
| 45<br>46                                                 |  |  |
| 47<br>48                                                 |  |  |
| 49<br>50                                                 |  |  |
| 51<br>52                                                 |  |  |
| 53<br>54                                                 |  |  |
| 55<br>56                                                 |  |  |
| 57<br>58<br>59                                           |  |  |
| 60                                                       |  |  |
|                                                          |  |  |

1

2

| 304                                                                                                   | Given the substantial burden of VARI across the world, <sup>1</sup> even a modest association between VARI                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 305                                                                                                   | and subsequent PD could lead to a substantial burden of disease in terms of VARI-related PD cases. If                                                                                                                                                                                                                                                                                                                                                                                     |
| 306                                                                                                   | proper anti-bacterial interventions could be applied to those with higher risk of PD due to a                                                                                                                                                                                                                                                                                                                                                                                             |
| 307                                                                                                   | preceding VARI, subsequent pneumococcal infections could be prevented. The interventions would                                                                                                                                                                                                                                                                                                                                                                                            |
| 308                                                                                                   | be more effective / better targeted if we could estimate the risk (i.e. the strength of association)                                                                                                                                                                                                                                                                                                                                                                                      |
| 309                                                                                                   | according to timing of infection by week/month of a year, age, comorbidity status, virus type and                                                                                                                                                                                                                                                                                                                                                                                         |
| 310                                                                                                   | status of immunity. In turn, understanding the association between VARI and subsequent                                                                                                                                                                                                                                                                                                                                                                                                    |
| 311                                                                                                   | pneumococcal infection can help evaluate the full impact of viral vaccine programs.                                                                                                                                                                                                                                                                                                                                                                                                       |
| 312                                                                                                   | In conclusion, the role of seasonal VARI on subsequent PD incidence remains controversial in                                                                                                                                                                                                                                                                                                                                                                                              |
| 313                                                                                                   | population-based studies. Nevertheless, these studies provide valuable information and can help                                                                                                                                                                                                                                                                                                                                                                                           |
| 314                                                                                                   | with the conception of future well-designed studies. Future work could explore the association by                                                                                                                                                                                                                                                                                                                                                                                         |
| 315                                                                                                   | timing of infection, age, comorbidity status, virus type, pneumococcal serotype and presentation,                                                                                                                                                                                                                                                                                                                                                                                         |
| 316                                                                                                   | and thus would identify potentially susceptible populations with VARI for preventive interventions.                                                                                                                                                                                                                                                                                                                                                                                       |
| 317                                                                                                   | Supplementary Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 318                                                                                                   | Table S1. Summary of findings from animal and in vitro studies.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 319                                                                                                   | Table S2. Summary of methodologies utilised in the included studies (n=28).                                                                                                                                                                                                                                                                                                                                                                                                               |
| 319<br>320                                                                                            | Table S2. Summary of methodologies utilised in the included studies (n=28).                                                                                                                                                                                                                                                                                                                                                                                                               |
| 320                                                                                                   | Text S1. Search strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 320<br>321                                                                                            | Text S1. Search strategy<br>File S1. Quality assessment of included studies                                                                                                                                                                                                                                                                                                                                                                                                               |
| 320<br>321<br>322                                                                                     | Text S1. Search strategy<br>File S1. Quality assessment of included studies<br>File S2. PRISMA checklist                                                                                                                                                                                                                                                                                                                                                                                  |
| 320<br>321                                                                                            | Text S1. Search strategy<br>File S1. Quality assessment of included studies                                                                                                                                                                                                                                                                                                                                                                                                               |
| 320<br>321<br>322                                                                                     | Text S1. Search strategy<br>File S1. Quality assessment of included studies<br>File S2. PRISMA checklist                                                                                                                                                                                                                                                                                                                                                                                  |
| 320<br>321<br>322<br>323                                                                              | Text S1. Search strategy<br>File S1. Quality assessment of included studies<br>File S2. PRISMA checklist<br>File S3. Protocol registered in PROSPERO                                                                                                                                                                                                                                                                                                                                      |
| 320<br>321<br>322<br>323<br>324                                                                       | Text S1. Search strategy         File S1. Quality assessment of included studies         File S2. PRISMA checklist         File S3. Protocol registered in PROSPERO         Contributors: HN and HC conceived the study. YL did the literature search and reviewed the articles.                                                                                                                                                                                                          |
| 320<br>321<br>322<br>323<br>324<br>325                                                                | Text S1. Search strategy         File S1. Quality assessment of included studies         File S2. PRISMA checklist         File S3. Protocol registered in PROSPERO         Contributors: HN and HC conceived the study. YL did the literature search and reviewed the articles.         YL and MP extracted and analysed the data independently with oversight from HN and HC. YL                                                                                                        |
| <ul> <li>320</li> <li>321</li> <li>322</li> <li>323</li> <li>324</li> <li>325</li> <li>326</li> </ul> | Text S1. Search strategy         File S1. Quality assessment of included studies         File S2. PRISMA checklist         File S3. Protocol registered in PROSPERO         Contributors: HN and HC conceived the study. YL did the literature search and reviewed the articles.         YL and MP extracted and analysed the data independently with oversight from HN and HC. YL         drafted the manuscript. MP, HN and HC critically reviewed the manuscript. All authors read and |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ** Open

| Data sharing statement: Data extraction sheets are available in the Edinburgh DataShare repository |
|----------------------------------------------------------------------------------------------------|
| http://dx.doi.org/10.7488/ds/2047.                                                                 |
| Acknowledgement: YL is supported by a scholarship from the China Scholarship Council.              |
| Funding: This research received no specific grant from any funding agency.                         |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
| 29                                                                                                 |
| 29                                                                                                 |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

## BMJ Open

| 1<br>2   |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5<br>6   |  |
| 7        |  |
| 8        |  |
| 9<br>10  |  |
| 10<br>11 |  |
| 12       |  |
| 13       |  |
| 14<br>15 |  |
| 16       |  |
| 17       |  |
| 18<br>19 |  |
| 20       |  |
| 21       |  |
| 22<br>23 |  |
| 24       |  |
| 25       |  |
| 26<br>27 |  |
| 28       |  |
| 29       |  |
| 30<br>31 |  |
| 32       |  |
| 33       |  |
| 34<br>35 |  |
| 36       |  |
| 37       |  |
| 38<br>39 |  |
| 40       |  |
| 41       |  |
| 42<br>43 |  |
| 43<br>44 |  |
| 45       |  |
| 46<br>47 |  |
| 47<br>48 |  |
| 49       |  |
| 50<br>51 |  |
| 51<br>52 |  |
| 53       |  |
| 54<br>55 |  |
| 55<br>56 |  |
| 57       |  |
| 58<br>50 |  |
| 59<br>60 |  |
|          |  |

1

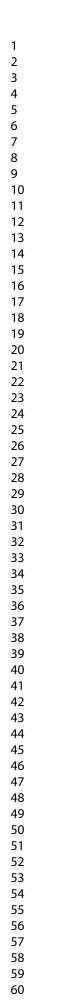
#### REFERENCES

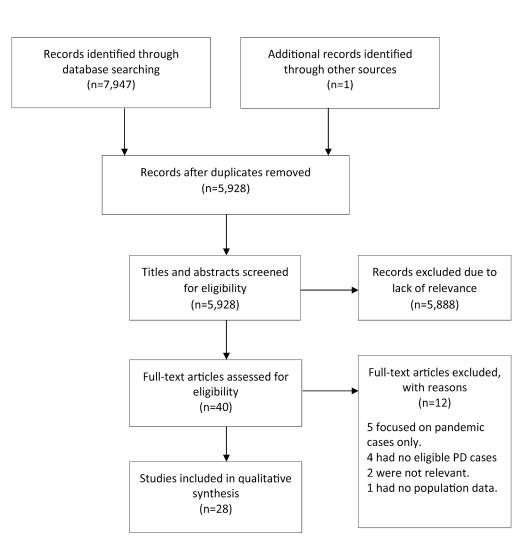
| 334 | 1. Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause             |
|-----|-------------------------------------------------------------------------------------------------------------|
| 335 | mortality, and cause-specific mortality for 249 causes of death, 1980-2013;2015: a systematic               |
| 336 | analysis for the Global Burden of Disease Study 2015. The Lancet 2016;388(10053):1459-544.                  |
| 337 | 2. O'Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in          |
| 338 | children younger than 5 years: global estimates. Lancet 2009;374(9693):893-902.                             |
| 339 | 3. Drijkoningen JJC, Rohde GGU. Pneumococcal infection in adults: burden of disease. Clinical               |
| 340 | Microbiology and Infection 2014;20:45-51.                                                                   |
| 341 | 4. McCullers JA. Insights into the interaction between influenza virus and pneumococcus. Clin               |
| 342 | Microbiol Rev 2006;19(3):571-82.                                                                            |
| 343 | 5. Chien Y-W, Klugman KP, Morens DM. Bacterial Pathogens and Death during the 1918 Influenza                |
| 344 | Pandemic. N Engl J Med 2009;361(26):2582-83.                                                                |
| 345 | 6. Fleming-Dutra KE, Taylor T, Link-Gelles R, et al. Effect of the 2009 influenza A(H1N1) pandemic on       |
| 346 | invasive pneumococcal pneumonia. J Infect Dis 2013;207(7):1135-43.                                          |
| 347 | 7. Launes C, Garcia-Garcia JJ, Trivino M, et al. Respiratory viruses, such as 2009 H1N1 influenza virus,    |
| 348 | could trigger temporal trends in serotypes causing pneumococcal disease. Clin Microbiol Infect              |
| 349 | 2014;20(12):O1088-90.                                                                                       |
| 350 | 8. Nelson GE, Gershman KA, Swerdlow DL, et al. Invasive pneumococcal disease and pandemic                   |
| 351 | (H1N1) 2009, Denver, Colorado, USA. Emerg Infect Dis 2012;18(2):208-16.                                     |
| 352 | 9. Pedro-Botet ML, Burgos J, Lujan M, et al. Impact of the 2009 influenza A H1N1 pandemic on                |
| 353 | invasive pneumococcal disease in adults. Scand J Infect Dis 2014;46(3):185-92.                              |
| 354 | 10. Weinberger DM, Simonsen L, Jordan R, et al. Impact of the 2009 influenza pandemic on                    |
| 355 | pneumococcal pneumonia hospitalizations in the United States. J Infect Dis 2012;205(3):458-65.              |
| 356 | 11. Allard R, Couillard M, Pilon P, et al. Invasive bacterial infections following influenza: a time-series |
| 357 | analysis in Montreal, Canada, 1996-2008. Influenza other respi 2012;6(4):268-75.                            |
| 358 | 12. Ampofo K, Bender J, Sheng X, et al. Seasonal invasive pneumococcal disease in children: role of         |
| 359 | preceding respiratory viral infection. Pediatrics 2008;122(2):229-37.                                       |
| 360 | 13. Burgos J, Larrosa MN, Martinez A, et al. Impact of influenza season and environmental factors or        |
| 361 | the clinical presentation and outcome of invasive pneumococcal disease. Eur J Clin Microbiol Infect         |
| 362 | Dis 2015;34(1):177-86.                                                                                      |
| 363 | 14. Ciruela P, Broner S, Izquierdo C, et al. Invasive pneumococcal disease rates linked to                  |
| 364 | meteorological factors and respiratory virus circulation (Catalonia, 2006-2012). BMC Public Health          |
| 365 | 2016;16(400).                                                                                               |
|     | 30                                                                                                          |
|     | For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml                                   |

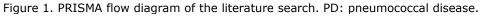
Page 31 of 58

1

60

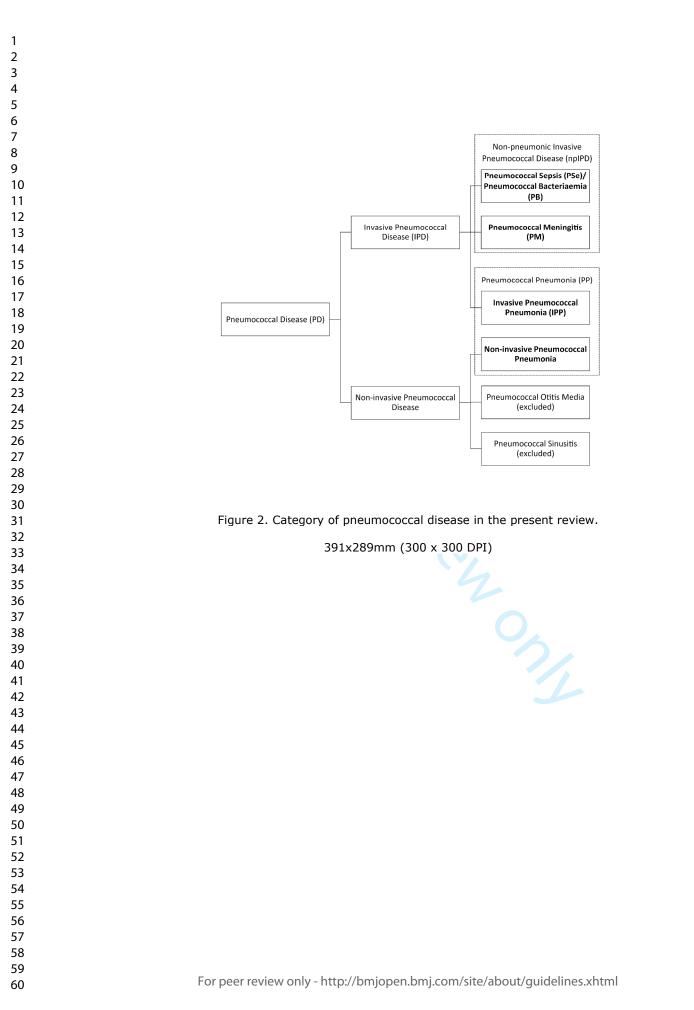

## BMJ Open


| 2<br>3   | 366 | 15. Dangor Z, Izu A, Moore DP, et al. Temporal association in hospitalizations for tuberculosis,         |
|----------|-----|----------------------------------------------------------------------------------------------------------|
| 4        | 367 | invasive pneumococcal disease and influenza virus illness in South African children. PLoS ONE            |
| 5<br>6   | 368 | 2014;9(3):e91464.                                                                                        |
| 7<br>8   | 369 | 16. Domenech de Cellès M, Arduin H, Varon E, et al. Characterizing and Comparing the Seasonality of      |
| 9        | 370 | Influenza-Like Illnesses and Invasive Pneumococcal Diseases Using Seasonal Waveforms. Am J               |
| 10<br>11 | 371 | Epidemiol 2017:kwx336-kwx36.                                                                             |
| 12       | 372 | 17. Edwards LJ, Markey PG, Cook HM, et al. The relationship between influenza and invasive               |
| 13<br>14 | 373 | pneumococcal disease in the Northern Territory, 2005-2009. Med J Aust 2011;194(4):207.                   |
| 15<br>16 | 374 | 18. Grabowska K, Hogberg L, Penttinen P, et al. Occurrence of invasive pneumococcal disease and          |
| 17       | 375 | number of excess cases due to influenza. BMC Infect Dis 2006;6:58.                                       |
| 18<br>19 | 376 | 19. Hendriks W, Boshuizen H, Dekkers A, et al. Temporal cross-correlation between influenza-like         |
| 20       | 377 | illnesses and invasive pneumococcal disease in The Netherlands. Influenza and other Respiratory          |
| 21<br>22 | 378 | Viruses 2017;11(2):130-37.                                                                               |
| 23       | 379 | 20. Jansen AG, Sanders EA, A VDE, et al. Invasive pneumococcal and meningococcal disease:                |
| 24<br>25 | 380 | association with influenza virus and respiratory syncytial virus activity? Epidemiol Infect              |
| 26<br>27 | 381 | 2008;136(11):1448-54.                                                                                    |
| 28       | 382 | 21. Kim PE, Musher DM, Glezen WP, et al. Association of invasive pneumococcal disease with season,       |
| 29<br>30 | 383 | atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis         |
| 31       | 384 | 1996;22(1):100-6.                                                                                        |
| 32<br>33 | 385 | 22. Kuster SP, Tuite AR, Kwong JC, et al. Evaluation of coseasonality of influenza and invasive          |
| 34<br>35 | 386 | pneumococcal disease: results from prospective surveillance. PLoS Med 2011;8(6):e1001042.                |
| 36       | 387 | 23. Murdoch DR, Jennings LC. Association of respiratory virus activity and environmental factors with    |
| 37<br>38 | 388 | the incidence of invasive pneumococcal disease. J Infect 2009;58(1):37-46.                               |
| 39       | 389 | 24. Nicoli EJ, Trotter CL, Turner KM, et al. Influenza and RSV make a modest contribution to invasive    |
| 40<br>41 | 390 | pneumococcal disease incidence in the UK. J Infect 2013;66(6):512-20.                                    |
| 42<br>43 | 391 | 25. O'Brien KL, Walters MI, Sellman J, et al. Severe pneumococcal pneumonia in previously healthy        |
| 43<br>44 | 392 | children: the role of preceding influenza infection. Clin Infect Dis 2000;30(5):784-9.                   |
| 45<br>46 | 393 | 26. Opatowski L, Varon E, Dupont C, et al. Assessing pneumococcal meningitis association with viral      |
| 47       | 394 | respiratory infections and antibiotics: insights from statistical and mathematical models. Proc Biol Sci |
| 48<br>49 | 395 | 2013;280(1764):20130519.                                                                                 |
| 50       | 396 | 27. Peltola V, Heikkinen T, Ruuskanen O, et al. Temporal association between rhinovirus circulation      |
| 51<br>52 | 397 | in the community and invasive pneumococcal disease in children. Pediatr Infect Dis J 2011;30(6):456-     |
| 53<br>54 | 398 | 61.                                                                                                      |
| 55       |     |                                                                                                          |
| 56<br>57 |     |                                                                                                          |
| 58       |     | 31                                                                                                       |
| 59       |     |                                                                                                          |


| 2        | 399 | 28. Shrestha S, Foxman B, Weinberger DM, et al. Identifying the interaction between influenza and         |
|----------|-----|-----------------------------------------------------------------------------------------------------------|
| 3<br>4   |     | pneumococcal pneumonia using incidence data. Sci Transl Med 2013;5(191):191ra84.                          |
| 5        | 400 |                                                                                                           |
| 6<br>7   | 401 | 29. Stensballe LG, Hjuler T, Andersen A, et al. Hospitalization for respiratory syncytial virus infection |
| 8        | 402 | and invasive pneumococcal disease in Danish children aged <2 years: a population-based cohort             |
| 9<br>10  | 403 | study. Clin Infect Dis 2008;46(8):1165-71.                                                                |
| 11       | 404 | 30. Talbot TR, Poehling KA, Hartert TV, et al. Seasonality of invasive pneumococcal disease: temporal     |
| 12<br>13 | 405 | relation to documented influenza and respiratory syncytial viral circulation. Am J Med                    |
| 14       | 406 | 2005;118(3):285-91.                                                                                       |
| 15<br>16 | 407 | 31. Toschke AM, Arenz S, von Kries R, et al. No temporal association between influenza outbreaks          |
| 17       | 408 | and invasive pneumococcal infections. Arch Dis Child 2008;93(3):218-20.                                   |
| 18<br>19 | 409 | 32. Walter ND, Taylor TH, Shay DK, et al. Influenza circulation and the burden of invasive                |
| 20       | 410 | pneumococcal pneumonia during a non-pandemic period in the United States. Clin Infect Dis                 |
| 21<br>22 | 411 | 2010;50(2):175-83.                                                                                        |
| 23<br>24 | 412 | 33. Watson M, Gilmour R, Menzies R, et al. The association of respiratory viruses, temperature, and       |
| 25       | 413 | other climatic parameters with the incidence of invasive pneumococcal disease in Sydney, Australia.       |
| 26<br>27 | 414 | Clin Infect Dis 2006;42(2):211-5.                                                                         |
| 28       | 415 | 34. Weinberger DM, Grant LR, Steiner CA, et al. Seasonal drivers of pneumococcal disease incidence:       |
| 29<br>30 | 416 | impact of bacterial carriage and viral activity.[Erratum appears in Clin Infect Dis. 2014 Mar;58(6):908]. |
| 31       | 417 | Clin Infect Dis 2014;58(2):188-94.                                                                        |
| 32<br>33 | 418 | 35. Weinberger DM, Harboe ZB, Viboud C, et al. Serotype-specific effect of influenza on adult             |
| 34       | 419 | invasive pneumococcal pneumonia. J Infect Dis 2013;208(8):1274-80.                                        |
| 35<br>36 | 420 | 36. Weinberger DM, Harboe ZB, Viboud C, et al. Pneumococcal disease seasonality: incidence,               |
| 37       | 421 | severity and the role of influenza activity. Eur Respir J 2014;43(3):833-41.                              |
| 38<br>39 | 422 | 37. Weinberger DM, Klugman KP, Steiner CA, et al. Association between respiratory syncytial virus         |
| 40<br>41 | 423 | activity and pneumococcal disease in infants: a time series analysis of US hospitalization data. PLoS     |
| 42       | 424 | Med 2015;12(1):e1001776.                                                                                  |
| 43<br>44 | 425 | 38. Zhou H, Haber M, Ray S, et al. Invasive pneumococcal pneumonia and respiratory virus co-              |
| 45       | 426 | infections. Emerg Infect Dis 2012;18(2):294-7.                                                            |
| 46<br>47 | 427 | 39. McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae:         |
| 48       | 428 | characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis       |
| 49<br>50 | 428 |                                                                                                           |
| 51       |     | 2002;186(3):341-50.                                                                                       |
| 52<br>53 | 430 | 40. Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-gamma during           |
| 54       | 431 | recovery from influenza infection. Nat Med 2008;14(5):558-64.                                             |
| 55<br>56 |     |                                                                                                           |
| 57       |     |                                                                                                           |
| 58<br>59 |     | 32                                                                                                        |
| 60       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |

| 1        |       |                                                                                                                                               |
|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 432   | 41. Simell B, Auranen K, Käyhty H, et al. The fundamental link between pneumococcal carriage and                                              |
| 4<br>5   | 433   | disease. Expert Rev Vaccines 2012;11(7):841-55.                                                                                               |
| 6        | 434   | 42. Song JY, Nahm MH, Cheong HJ, et al. Impact of preceding flu-like illness on the serotype                                                  |
| 7<br>8   | 435   | distribution of pneumococcal pneumonia. PLoS ONE 2014;9(4):e93477.                                                                            |
| 9        | 436   | 43. Shiri T, Datta S, Madan J, et al. Indirect effects of childhood pneumococcal conjugate vaccination                                        |
| 10<br>11 | 437   | on invasive pneumococcal disease: a systematic review and meta-analysis. The Lancet Global Health                                             |
| 12<br>13 | 438   | 2017;5(1):e51-e59.                                                                                                                            |
| 13       | 439   | 44. Walter ND, Taylor THJ, Dowell SF, et al. Holiday Spikes in Pneumococcal Disease among Older                                               |
| 15<br>16 | 440   | Adults. N Engl J Med 2009;361(26):2584-85.                                                                                                    |
| 17       | 4.4.1 |                                                                                                                                               |
| 18<br>19 | 441   |                                                                                                                                               |
| 20       | 442   |                                                                                                                                               |
| 21<br>22 |       | 44. Walter ND, Taylor THJ, Dowell SF, et al. Holiday Spikes in Pneumococcal Disease among Older<br>Adults. N Engl J Med 2009;361(26):2584-85. |
| 23<br>24 |       |                                                                                                                                               |
| 25       |       |                                                                                                                                               |
| 26<br>27 |       |                                                                                                                                               |
| 28       |       |                                                                                                                                               |
| 29<br>30 |       |                                                                                                                                               |
| 31<br>32 |       |                                                                                                                                               |
| 33       |       |                                                                                                                                               |
| 34<br>35 |       |                                                                                                                                               |
| 36       |       |                                                                                                                                               |
| 37<br>38 |       |                                                                                                                                               |
| 39<br>40 |       |                                                                                                                                               |
| 41       |       |                                                                                                                                               |
| 42<br>43 |       |                                                                                                                                               |
| 44       |       |                                                                                                                                               |
| 45<br>46 |       |                                                                                                                                               |
| 47<br>48 |       |                                                                                                                                               |
| 49       |       |                                                                                                                                               |
| 50<br>51 |       |                                                                                                                                               |
| 52       |       |                                                                                                                                               |
| 53<br>54 |       |                                                                                                                                               |
| 55<br>56 |       |                                                                                                                                               |
| 57       |       |                                                                                                                                               |
| 58<br>59 |       | 33                                                                                                                                            |
| 60       |       | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                     |
|          |       |                                                                                                                                               |
|          |       |                                                                                                                                               |

BMJ Open: first published as 10.1136/bmjopen-2017-019743 on 21 April 2018. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.








314x310mm (300 x 300 DPI)





| 1              |
|----------------|
| 2              |
| 3<br>4         |
| 5              |
| 6              |
| 7              |
| 8              |
| 9              |
| 10             |
| 11             |
| 12             |
| 13             |
| 14             |
| 15             |
| 16<br>17       |
| 17             |
| 18<br>19       |
| 20             |
| 21             |
| 22             |
| 23             |
| 24             |
| 25             |
| 26             |
| 27             |
| 28             |
| 29             |
| 30<br>31<br>32 |
| 27             |
| 33             |
| 34             |
| 35             |
| 36             |
| 37             |
| 38             |
| 39             |
| 40             |
| 41             |
| 42             |
| 43<br>44       |
| 44<br>45       |
| 45<br>46       |
| 47             |
| 48             |
| 49             |
| 50             |
| 51             |
| 52             |
| 53             |
| 54             |
| 55             |
| 56<br>57       |
| 57<br>50       |
| 58<br>59       |
| 59<br>60       |
| 00             |

# Table S1. Summary of findings from animal and in vitro studies.

| Study                                              | Material                                                                             | Exposure                                                           | Main findings                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study<br>Diavatopoulos<br>et al. 2010 <sup>1</sup> | Material<br>Mice<br>(n=~10 per<br>group)                                             | Exposure<br>influenza A +<br>pneumococcus<br>(3d later)            | Main findings<br>On day 3 of pneumococcus challenge,<br>pneumococcus numbers increased in the<br>nasopharynx (50-fold, P=0.0002) and the<br>lungs (300-fold, P=0.0005) in influenza A<br>group, compared with mock-treated group;<br>transmission of pneumococcus between<br>littermates was dependent on infection with<br>influenza A. |
| Hament et al.<br>2004 <sup>2</sup>                 | Monolayers of<br>human<br>nasopharyngeal<br>cells and<br>pneumocyte<br>type II cells | RSV +<br>pneumococcus                                              | After RSV infection of the monolayers, an<br>increased adherence (2–10 fold) was<br>observed among all serotypes compared<br>with uninfected monolayers.                                                                                                                                                                                 |
| Hament et al.<br>2005 <sup>3</sup><br>Kukavica-    | Mice<br>(n=7 per group)<br>Mice                                                      | RSV +<br>pneumococcus<br>(0 or 4d later)<br>hMPV/<br>influenza A + | At 24h of pneumococcus challenge, mice<br>infected with RSV 0 or 4d before<br>pneumococcus challenge had higher levels<br>of bacteremia than control group.<br>Pneumococcus numbers on day 7 of<br>pneumococcus challenge: 5×10 <sup>2</sup> CFU/lung in                                                                                 |
| lbrulj et al.<br>2009⁴                             | (n=18 per<br>group)                                                                  | pneumococcus<br>(5d later)                                         | mock infection, 10 <sup>7</sup> CFU/lung in hMPV group<br>and 10 <sup>8</sup> CFU/lung in influenza A group.                                                                                                                                                                                                                             |

Page 37 of 58

BMJ Open

| Study                                 | Material       | Exposure        | Main findings                             |
|---------------------------------------|----------------|-----------------|-------------------------------------------|
| LeVine et al.                         | Mice (n=3 per  | influenza A +   | Lungs of influenza-exposed mice           |
|                                       |                | pneumococcus    | demonstrated greater colony counts 24h    |
| 2001 <sup>5</sup>                     | group)         | (7d later)      | and 48h following pneumococcus challenge  |
|                                       |                | hMPV/           | Only mice infected with influenza A       |
| Ludewick et                           | Mice (n=18 per | influenza A +   | demonstrated an 8% weight loss 72h        |
| al. 2011 <sup>6</sup>                 | group)         | pneumococcus    | following pneumococcus challenge while    |
|                                       |                | (14d later)     | hMPV group and mock group did not.        |
|                                       |                |                 | 60% of mice died 2–11d after              |
|                                       |                |                 | pneumococcus challenge in influenza A     |
| McCullers et<br>al. 2002 <sup>7</sup> |                | influenza A +   | group compared with 15% in mock group;    |
|                                       | Mice (n=20 per | pneumococcus    | reversal of the order of challenge led to |
|                                       | group)         | (0 or 7d later) | protection from influenza; challenge of   |
|                                       |                |                 | influenza and pneumococcus on the same    |
|                                       |                |                 | day led to 100% mortality.                |
|                                       | Ferrets (n=5   | influenza A +   | Prior influenza infection enhanced        |
| McCullers et                          | per group) and |                 | pneumococcal transmission and disease; th |
| al. 2010 <sup>8</sup>                 | Mice (n=~5 per | pneumococcus    | influenza-mediated effects were           |
|                                       | group)         | (7d later)      | pneumococcal strain dependent.            |
|                                       |                |                 | Pneumococcal coinfection during the acute |
| Chaura                                |                | influenza A +   | phase of influenza A infection increased  |
| Sharma-                               | Mice (n=3–5    | pneumococcus    | degree of pneumonia and mortality for all |
| Chawla et al.                         | per group)     | T4, 19F or 7F   | tested pneumococcal strains. However, the |
| 2016 <sup>9</sup>                     |                | (7d later)      | incidence and kinetics of systemic        |
|                                       |                |                 | dissemination remained strain dependent.  |

| Study                              | Material                                                                          | Exposure                            | Main findings                                                                                                                                                                                                                    |
|------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Smith et al.<br>2014 <sup>10</sup> | Human ciliated<br>respiratory<br>epithelial cells<br>and mice (n=10<br>per group) | RSV +<br>pneumococcus               | Following incubation with RSV,<br>pneumococcus demonstrated a significant<br>increase in the inflammatory response and<br>bacterial adherence to human ciliated<br>epithelial cultures and increased virulence in<br>mice model. |
| Stark et al.<br>2006 <sup>11</sup> | Mice (n>12 per<br>group)                                                          | RSV +<br>pneumococcus<br>(7d later) | Pneumococcus numbers at 24h of<br>pneumococcus challenge: 7.45×10 <sup>5</sup><br>CFU/lung in RSV group, 5.9×10 <sup>3</sup> CFU/lung in<br>mock group.                                                                          |

The number in brackets in the column Material refers to the number of animals observed under each experiment condition; number of animals used in transmission models (used by some studies) were not displayed.

Abbreviations: CFU, colony-forming units; d, day(s); h, hour(s); hMPV, human metapneumovirus;

RSV, respiratory syncytial virus.

**BMJ** Open

| Reference |
|-----------|
|-----------|

1. Diavatopoulos DA, Short KR, Price JT, et al. Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. Faseb J 2010;24(6):1789-98.

2. Hament J-M, Aerts PC, Fleer A, et al. Enhanced Adherence of Streptococcus pneumoniae to

Human Epithelial Cells Infected with Respiratory Syncytial Virus. Pediatr Res 2004;55(6):972-78.

3. Hament JM, Aerts PC, Fleer A, et al. Direct binding of respiratory syncytial virus to pneumococci: a phenomenon that enhances both pneumococcal adherence to human epithelial cells and

pneumococcal invasiveness in a murine model. Pediatr Res 2005;58(6):1198-203.

4. Kukavica-Ibrulj I, Hamelin ME, Prince GA, et al. Infection with human metapneumovirus predisposes mice to severe pneumococcal pneumonia. J Virol 2009;83(3):1341-9.

5. LeVine AM, Koeningsknecht V, Stark JM. Decreased pulmonary clearance of S. pneumoniae following influenza A infection in mice. J Virol Methods 2001;94(1-2):173-86.

6. Ludewick HP, Aerts L, Hamelin ME, et al. Long-term impairment of Streptococcus pneumoniae lung clearance is observed after initial infection with influenza A virus but not human metapneumovirus in mice. J Gen Virol 2011;92(Pt 7):1662-5.

7. McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis 2002;186(3):341-50.

8. McCullers JA, McAuley JL, Browall S, et al. Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J Infect Dis 2010;202(8):1287-95.

9. Sharma-Chawla N, Sender V, Kershaw O, et al. Influenza A virus infection predisposes hosts to secondary infection with different Streptococcus pneumoniae serotypes with similar outcome but serotype-specific manifestation. Infection and Immunity 2016;84(12):3445-57.

10. Smith CM, Sandrini S, Datta S, et al. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 2014;190(2):196-207.

11. Stark JM, Stark MA, Colasurdo GN, et al. Decreased bacterial clearance from the lungs of mice following primary respiratory syncytial virus infection. J Med Virol 2006;78(6):829-38.

for peer teriew only

 6/bmjopen-2

Table S2 Summary of methodologies utilised in the included studies (n=28)

| Study                                       | All VARI              | Exposure     |              |              | Out | come         |              |              | Data |              | · ·      | is at PO     | P level      | Seasonality  |
|---------------------------------------------|-----------------------|--------------|--------------|--------------|-----|--------------|--------------|--------------|------|--------------|----------|--------------|--------------|--------------|
| Study                                       | lab-confirmed         | IFV          | RSV          | Others       | PD  | IPD          | PP           | Others       | IDNV | POP          | CQRR     | REGR         | Others       | Adjustment   |
| Allard et al. 2012 <sup>1</sup>             | Yes, multiple methods | $\checkmark$ |              |              |     | $\checkmark$ |              |              |      | $\checkmark$ | .43      | $\checkmark$ |              | $\checkmark$ |
| Ampofo et al. 2008 <sup>2</sup>             | Yes, IF and culture   | $\checkmark$ | $\checkmark$ | $\checkmark$ |     | $\checkmark$ |              |              |      | $\checkmark$ | or :     |              |              |              |
| Burgos et al. 2015 <sup>3</sup>             | Yes, IF and PCR       | $\checkmark$ |              |              |     | $\checkmark$ |              |              |      | $\checkmark$ | 2≯∕      | $\checkmark$ |              | $\checkmark$ |
| Ciruela et al. 2016 <sup>4</sup>            | Yes, multiple methods | $\checkmark$ | $\checkmark$ | ✓            |     | $\checkmark$ |              |              |      | $\checkmark$ | Apri     | <b>~</b>     |              | ~            |
| Dangor et al. 2014⁵                         | Yes, IF and culture   | $\checkmark$ |              |              |     | $\checkmark$ |              |              |      | $\checkmark$ | 2018.    |              | ~            |              |
| Domenech de Cellès et al. 2017 <sup>6</sup> | No                    | ✓            |              |              |     | ✓            |              |              |      | ✓            |          | ✓            | $\checkmark$ | ✓            |
| Edwards et al. 2011 <sup>7</sup>            | Yes, method not known | $\checkmark$ |              |              |     | $\checkmark$ |              |              | ✓    |              | Dov      |              |              |              |
| Grabowska et al. 2006 <sup>8</sup>          | Yes, multiple methods | ✓            |              |              |     | ✓            |              |              |      | ✓            | wnload   | ✓            |              | ✓            |
| Hendriks et al. 2017 <sup>9</sup>           | No                    | ~            |              |              |     | ✓            |              |              |      | ✓            | bad      |              | $\checkmark$ | ✓            |
| Jansen et al. 2008 <sup>10</sup>            | Yes, multiple methods | ~            | ✓            |              |     | ✓            |              | $\checkmark$ |      | ✓            | e∂r f    |              |              |              |
| Kim et al. 1996 <sup>11</sup>               | Yes, culture          | $\checkmark$ | $\checkmark$ | ✓            |     | ✓            |              |              |      | ✓            | frðn     |              |              |              |
| Kuster et al. 2011 <sup>12</sup>            | Yes, culture and DAT  | ✓            |              |              |     | ✓            |              |              |      | ✓            | ı htt    | ✓            | ✓            | $\checkmark$ |
| Murdoch et al. 2009 <sup>13</sup>           | Yes, IF and culture   | ✓            | $\checkmark$ | ~            |     | ✓            |              |              |      | ✓            | /¥d      | ✓            |              | ✓            |
| Nicoli et al. 2013 <sup>14</sup>            | Yes, multiple methods | ✓            | ✓            |              |     | ✓            |              |              |      | ✓            | bìnj     | ✓            |              | ✓            |
| O'Brien et al. 2000 <sup>15</sup>           | Yes, serology         | ✓            |              |              |     |              | $\checkmark$ |              | ✓    |              | ppe      |              |              | ✓            |
| Opatowski et al. 2013 <sup>16</sup>         | No                    |              |              | ✓            |     |              |              | $\checkmark$ |      | $\checkmark$ | n.b      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Peltola et al. 2011 <sup>17</sup>           | Yes, multiple methods | $\checkmark$ | $\checkmark$ | ✓            |     | $\checkmark$ |              |              |      | $\checkmark$ | m}.o     |              |              |              |
| Shrestha et al. 2013 <sup>18</sup>          | No                    | $\checkmark$ |              |              |     |              | $\checkmark$ |              |      | $\checkmark$ | iom      |              | $\checkmark$ |              |
| Stensballe et al. 2008 <sup>19</sup>        | No                    |              | ✓            | ✓            |     | ✓            |              |              | ✓    | ✓            | ðr       |              |              |              |
| Talbot et al. 2005 <sup>20</sup>            | Yes, culture and RAT  | ✓            | ✓            |              |     | ✓            |              |              |      | ✓            | April    |              |              |              |
| Toschke et al. 2008 <sup>21</sup>           | Yes, PCR              | ✓            |              |              |     | ✓            |              |              |      | $\checkmark$ | -        |              | ✓            |              |
| Walter et al. 2010 <sup>22</sup>            | Yes, method not known | ✓            |              |              |     | ✓            |              | ✓            |      | $\checkmark$ | 9, 2     | ✓            |              | √            |
| Watson et al. 2006 <sup>23</sup>            | Yes, DAT              | $\checkmark$ | $\checkmark$ | ✓            |     | $\checkmark$ |              |              |      | $\checkmark$ | 202      |              |              |              |
| Weinberger et al. 2014 <sup>24</sup>        | No                    | $\checkmark$ | $\checkmark$ |              |     | $\checkmark$ |              | $\checkmark$ |      | $\checkmark$ | 4 by     | $\checkmark$ |              | $\checkmark$ |
| Weinberger et al. 2013 <sup>25</sup>        | No                    | $\checkmark$ |              |              |     |              |              | $\checkmark$ |      | $\checkmark$ | u gu     | $\checkmark$ |              | $\checkmark$ |
| Weinberger et al. 2014 <sup>26</sup>        | No                    | ✓            |              |              |     | $\checkmark$ | ✓            |              |      | ✓            | ' guest. | ✓            |              | ✓            |
| Weinberger et al. 2015 <sup>27</sup>        | No                    | ✓            | ✓            |              | ✓   |              | ✓            | ✓            |      | ✓            |          | ✓            |              | ✓            |
| Zhou et al. 2012 <sup>28</sup>              | Yes, method not known | ✓            | ✓            |              |     |              |              |              |      | ✓            | Prote    | ✓            |              | ✓            |

CORR, correlation; DAT, direct antigen test; IF, immunofluorescence; IFV, influenza virus; INDV, individual; IPD, invasive pneu not disease; PCR, polymerase chain reaction; PD, pneumococcal disease; POP, population; PP, pneumococcal pneumonia; REGR, regression; RAT, rapid antigen test; RSV, respiratory syncytial virus; VARI, viral acute respiratory infection.

|                | BMJ Open                                                                                                                                                                                                                                                  | or<br>Bage 4<br>G                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1              | Reference                                                                                                                                                                                                                                                 | sen-20.                                             |
| 2<br>3         | 1. Allard R, Couillard M, Pilon P, et al. Invasive bacterial infections following influenza: a time-series analysis in Montreal, Cana<br>2012;6(4):268-75.                                                                                                | ລັບລ, 1996-2008. Influenza other respi<br>ຜີ        |
| 4<br>5         | 2. Ampofo K, Bender J, Sheng X, et al. Seasonal invasive pneumococcal disease in children: role of preceding respiratory viral i                                                                                                                          |                                                     |
| 6<br>7         | 3. Burgos J, Larrosa MN, Martinez A, et al. Impact of influenza season and environmental factors on the clinical presentation a disease. Eur J Clin Microbiol Infect Dis 2015;34(1):177-86.                                                               |                                                     |
| 8<br>9         | 4. Ciruela P, Broner S, Izquierdo C, et al. Invasive pneumococcal disease rates linked to meteorological factors and respiratory Public Health 2016;16(400).                                                                                              | Avirus circulation (Catalonia, 2006-2012). BMC      |
| 10<br>11       | 5. Dangor Z, Izu A, Moore DP, et al. Temporal association in hospitalizations for tuberculosis, invasive pneumococcal disease a children. PLoS ONE 2014;9(3):e91464.                                                                                      | and influenza virus illness in South African        |
| 12<br>13       | <ol> <li>Domenech de Cellès M, Arduin H, Varon E, et al. Characterizing and Comparing the Seasonality of Influenza-Like Illnesses a<br/>Seasonal Waveforms. Am J Epidemiol 2017:kwx336-kwx36.</li> </ol>                                                  | ନୁ<br>gd Invasive Pneumococcal Diseases Using<br>ଚୁ |
| 14<br>15       | 7. Edwards LJ, Markey PG, Cook HM, et al. The relationship between influenza and invasive pneumococcal disease in the Nort 2011;194(4):207.                                                                                                               | ਲੱ<br>gern Territory, 2005-2009. Med J Aust<br>ਤ    |
| 16<br>17<br>18 | 8. Grabowska K, Hogberg L, Penttinen P, et al. Occurrence of invasive pneumococcal disease and number of excess cases due<br>9. Hendriks W, Boshuizen H, Dekkers A, et al. Temporal cross-correlation between influenza-like illnesses and invasive pneum | <b></b>                                             |
| 19             | and other Respiratory Viruses 2017;11(2):130-37.                                                                                                                                                                                                          |                                                     |
| 20<br>21       | 10. Jansen AG, Sanders EA, A VDE, et al. Invasive pneumococcal and meningococcal disease: association with influenza virus a Epidemiol Infect 2008;136(11):1448-54.                                                                                       | n d respiratory syncytial virus activity?           |
| 22<br>23       | 11. Kim PE, Musher DM, Glezen WP, et al. Association of invasive pneumococcal disease with season, atmospheric conditions                                                                                                                                 | air pollution, and the isolation of respiratory     |
| 24<br>25       | viruses. Clin Infect Dis 1996;22(1):100-6.<br>12. Kuster SP, Tuite AR, Kwong JC, et al. Evaluation of coseasonality of influenza and invasive pneumococcal disease: results fi                                                                            | gem prospective surveillance. PLoS Med              |
| 26             | 2011;8(6):e1001042.                                                                                                                                                                                                                                       | 9<br>Panaumasassal disaasa Unfact                   |
| 27<br>28       | 13. Murdoch DR, Jennings LC. Association of respiratory virus activity and environmental factors with the incidence of invasiv-<br>2009;58(1):37-46.                                                                                                      | e pheumococcal disease. J infect                    |
| 29<br>30       | 14. Nicoli EJ, Trotter CL, Turner KM, et al. Influenza and RSV make a modest contribution to invasive pneumococcal disease in                                                                                                                             |                                                     |
| 31             | 15. O'Brien KL, Walters MI, Sellman J, et al. Severe pneumococcal pneumonia in previously healthy children: the role of prece 2000;30(5):784-9.                                                                                                           | ging influenza infection. Clin infect Dis<br>उ      |
| 32<br>33       | 16. Opatowski L, Varon E, Dupont C, et al. Assessing pneumococcal meningitis association with viral respiratory infections and                                                                                                                            | Pantibiotics: insights from statistical and         |
| 34<br>35       | mathematical models. Proc Biol Sci 2013;280(1764):20130519.<br>17. Peltola V, Heikkinen T, Ruuskanen O, et al. Temporal association between rhinovirus circulation in the community and inv                                                               | ន្ទ<br>အ្នូsive pneumococcal disease in children.   |
| 36             | Pediatr Infect Dis J 2011;30(6):456-61.<br>18. Shrestha S, Foxman B, Weinberger DM, et al. Identifying the interaction between influenza and pneumococcal pneumonia                                                                                       | or<br>a<br>Susing incidence data Sci Transl Med     |
| 37<br>38       | 2013;5(191):191ra84.                                                                                                                                                                                                                                      |                                                     |
| 39<br>40       | 19. Stensballe LG, Hjuler T, Andersen A, et al. Hospitalization for respiratory syncytial virus infection and invasive pneumococy population-based cohort study. Clin Infect Dis 2008;46(8):1165-71.                                                      | al disease in Danish children aged <2 years: a      |
| 41<br>42       | 20. Talbot TR, Poehling KA, Hartert TV, et al. Seasonality of invasive pneumococcal disease: temporal relation to documented                                                                                                                              | हुः<br>इnfluenza and respiratory syncytial viral    |
| 42<br>43       | circulation. Am J Med 2005;118(3):285-91.<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                    |                                                     |
| 44<br>45       |                                                                                                                                                                                                                                                           |                                                     |

Page 43 of 58

#### **BMJ** Open

6/bmjope

aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

- 21. Toschke AM, Arenz S, von Kries R, et al. No temporal association between influenza outbreaks and invasive pneumococca influenza. Arch Dis Child 2008;93(3):218-20.
- 22. Walter ND, Taylor TH, Shay DK, et al. Influenza circulation and the burden of invasive pneumococcal pneumonia during a Ron-pandemic period in the United States. Clin Infect Dis 2010;50(2):175-83.
- 23. Watson M, Gilmour R, Menzies R, et al. The association of respiratory viruses, temperature, and other climatic parameter with the incidence of invasive pneumococcal disease in Sydney, Australia. Clin Infect Dis 2006;42(2):211-5.
- 24. Weinberger DM, Grant LR, Steiner CA, et al. Seasonal drivers of pneumococcal disease incidence: impact of bacterial carriage and viral activity. [Erratum appears in Clin Infect Dis. 2014 Mar;58(6):908]. Clin Infect Dis 2014;58(2):188-94.
- 25. Weinberger DM, Harboe ZB, Viboud C, et al. Serotype-specific effect of influenza on adult invasive pneumococcal pneumo 🛱 ia. J Infect Dis 2013;208(8):1274-80.
- 26. Weinberger DM, Harboe ZB, Viboud C, et al. Pneumococcal disease seasonality: incidence, severity and the role of influenta activity. Eur Respir J 2014;43(3):833-41.
- 27. Weinberger DM, Klugman KP, Steiner CA, et al. Association between respiratory syncytial virus activity and pneumococcardisease in infants: a time series analysis of US hospitalization data. PLoS Med 2015;12(1):e1001776.

beer review only

28. Zhou H, Haber M, Ray S, et al. Invasive pneumococcal pneumonia and respiratory virus co-infections. Emerg Infect Dis 2012;18(2):294-7. 

#### Text S1. Search strategy

#### Medline

1. Meningitis, Pneumococcal/ or Pneumonia, Pneumococcal/ or exp Pneumococcal Infections/ or

pneumococc\*.mp.

2. exp Streptococcus pneumoniae/ or Streptococcus pneumoniae.mp.

- 3. virus.mp. or exp Viruses/
- Jisease\*.mp. 4. exp Virus Diseases/ or virus disease\*.mp.
- 5. correlat\*.mp.
- 6. associat\*.mp.
- 7. interact\*.mp.
- 8. relat\*.mp.
- 9.1 or 2
- 10.3 or 4
- 11.5 or 6 or 7 or 8
- 12.9 and 10 and 11
- 13. limit 12 to yr="1990 -Current"
- 1,664 results by 27 Apr 2017

#### 1,888 results by 31 Dec 2017

#### **EMbase**

1. exp pneumococcal infection/ or pneumococc\*.mp.

| 4  |
|----|
| 5  |
| 6  |
| 7  |
| 8  |
| 9  |
|    |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
|    |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
|    |
| 27 |
| 28 |
| 29 |
| 30 |
| 31 |
| 32 |
| 33 |
| 34 |
|    |
| 35 |
| 36 |
| 37 |
| 38 |
| 39 |
| 40 |
| 41 |
| 42 |
|    |
| 43 |
| 44 |
| 45 |
| 46 |
| 47 |
| 48 |
| 49 |
| 50 |
| 50 |
|    |
| 52 |
| 53 |
| 54 |
| 55 |
| 56 |
| 57 |
| 58 |
| 59 |
| 60 |
| 00 |

| 2. Streptococcus pneumoniae.mp. or | exp Streptococcus pr | ieumoniae/ |
|------------------------------------|----------------------|------------|
|                                    |                      |            |

3. exp virus/ or virus\*.mp.

4. exp virus infection/ or virus infection\*.mp. or virus disease\*.mp.

5. exp correlational study/ or exp correlation analysis/ or correlat\*.mp.

- 6. associat\*.mp.
- 7. interact\*.mp.
- 8. relat\*.mp.
- 9.1 or 2
- 10. 3 or 4
- 11.5 or 6 or 7 or 8
- 12.9 and 10 and 11
- 13. limit 12 to yr="1990 -Current"
- 4,778 results by 27 Apr 2017.

#### 5,098 results by 31 Dec 2017.

#### **Global Health**

1. Streptococcus pneumoniae.mp. or exp Streptococcus pneumoniae/

- 4. virus disease\*.mp. or viral diseases.sh. or virus infection\*.mp.
- 5. exp correlation/ or correlation analysis/ or correlat\*.mp.

<sup>2.</sup> pneumococc\*.mp.

<sup>3.</sup> virus\*.mp. or viruses/

6. associat\*.mp.

7. interact\*.mp.

8. relat\*.mp.

9. 1 or 2

10. 3 or 4

11.5 or 6 or 7 or 8

12.9 and 10 and 11

13. limit 12 to yr="1990 -Current"

1,164 results by 27 Apr 2017

961 results by 31 Dec 2017

Per terior

| 58                 |                                    |             |                                                                     |           |                   | I                                             | BMJ Open                    |           |                                      |                                                    | 36/bmjopen                                                                  |                     |                                               |            |
|--------------------|------------------------------------|-------------|---------------------------------------------------------------------|-----------|-------------------|-----------------------------------------------|-----------------------------|-----------|--------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|---------------------|-----------------------------------------------|------------|
|                    | Study                              | information | 1                                                                   | Inclu     | usion             |                                               |                             |           | Q                                    | uality Assessme                                    | ent 12                                                                      |                     |                                               |            |
|                    |                                    |             |                                                                     |           |                   |                                               | Were the                    | Was the   | Was the                              | Have the<br>authors<br>identified all<br>important | Have the<br>authorstaken<br>account of the<br>conford ding<br>factor on the |                     |                                               | Do the res |
|                    |                                    |             |                                                                     |           | Reason<br>for     | Did the study<br>address a<br>clearly focused | subjects<br>recruited in an | exposure  | outcome<br>accurately<br>measured to | confounding<br>factors (e.g.<br>seasonal           | design and/or<br>analysis (e.g.<br>seaso                                    | Were the<br>results | Can the results<br>be applied to<br>the local |            |
| ID                 | First Author                       | Year        | Title                                                               | Inclusion |                   | issue?                                        | way?                        |           | minimise bias?                       | factors)                                           | factor                                                                      | reliable?           | population                                    | evidence?  |
| H37                | Allard, R                          |             | Invasive bacterial infections follo                                 |           | Exclusion         | Yes                                           | Yes                         |           | Yes                                  | Yes                                                | Yes 8                                                                       | Yes                 | Yes                                           | Yes        |
| H1                 | Ampofo, K                          | 1 1         | Seasonal invasive pneumococca                                       | ,         |                   | Yes                                           | Yes                         |           | Yes                                  | No                                                 | No 8                                                                        | Yes                 | Yes                                           | Yes        |
| H2                 | Burgos, J                          |             | Impact of influenza season and                                      | ,         |                   | Yes                                           | Yes                         |           | Yes                                  | Yes                                                | Voc .                                                                       | Yes                 | Yes                                           | Yes        |
| H38                | -                                  |             | Invasive pneumococcal disease                                       |           |                   |                                               |                             |           |                                      | Yes                                                | Yes Q                                                                       |                     |                                               | Yes        |
| н <u>з</u> 8<br>Н3 | Ciruela, P                         |             | Invasive pneumococcal disease<br>Temporal association in hospita    |           |                   | Yes<br>Yes                                    | Yes<br>Yes                  |           | Yes<br>Yes                           | Yes<br>No                                          | No S                                                                        | Yes<br>No           | Yes<br>No                                     | Yes<br>Yes |
| H3<br>H40          | Dangor, Z<br>Domenech de Cellès, M | 1 1         |                                                                     |           |                   | Yes                                           | Yes                         |           | Yes                                  |                                                    | <b></b>                                                                     | Yes                 |                                               | Yes        |
| H40<br>H4          | -                                  |             | Characterizing and Comparing t<br>Benefit of conjugate pneumoco     |           | no PD case        |                                               | NA                          |           | NA                                   | Yes<br>NA                                          | Yes O<br>NA O                                                               | NA                  | Yes<br>NA                                     | NA         |
|                    | Dominguez, A                       |             |                                                                     |           |                   |                                               |                             |           |                                      |                                                    |                                                                             |                     |                                               |            |
| H5                 | Edwards, LJ                        |             | The relationship between influe<br>Infection with H274Y-positive in |           | no PD case        | Yes                                           | Yes<br>NA                   |           | Yes                                  | No<br>NA                                           | No ČÍ<br>NA Tr                                                              | Yes<br>NA           | Yes<br>NA                                     | Yes<br>NA  |
| H6<br>H7           | Eshaghi, A                         |             |                                                                     |           | pandemic          |                                               | NA                          |           | NA                                   | NA                                                 | 0                                                                           | NA                  | NA                                            | NA         |
|                    | Fleming-Dutra, KE                  |             | Effect of the 2009 influenza A(H                                    |           | pandemic          |                                               |                             |           | NA                                   |                                                    |                                                                             |                     |                                               |            |
| H8<br>H9           | Grabowska, K                       | 1 1         | Occurrence of invasive pneumo                                       | ,         |                   | Yes                                           | Yes<br>NA                   | Yes<br>NA | Yes<br>NA                            | Yes<br>NA                                          | Yes T                                                                       | Yes<br>NA           | Yes<br>NA                                     | Yes<br>NA  |
|                    | Grijalva, CG<br>Hendriks, W.       |             | The role of influenza and parain<br>Temporal cross-correlation betv |           | no PD case        | Yes                                           | Yes                         |           | Yes                                  |                                                    |                                                                             | Yes                 | Yes                                           | Yes        |
| H39                |                                    |             |                                                                     |           |                   |                                               |                             |           |                                      | Yes                                                | Yes                                                                         |                     |                                               |            |
| H10                | Jansen, AG                         | 2008        | Invasive pneumococcal and mer                                       | ,         |                   | Yes                                           | Yes                         |           | Yes                                  | No                                                 | No <u>3</u>                                                                 | Yes                 | Yes                                           | Yes        |
| H11                | Kim, PE                            |             | Association of invasive pneumo                                      |           |                   | Yes                                           | Yes                         |           | Yes                                  | No                                                 | No <u>Q</u>                                                                 | Yes                 | Yes                                           | Yes        |
| H12                | Kuster, SP                         | 1 1         | Evaluation of coseasonality of in                                   | -         |                   | Yes                                           | Yes                         |           | Yes                                  | Yes                                                | Yes g                                                                       | Yes                 | Yes                                           | Yes        |
| H13                | Launes, C                          |             | Respiratory viruses, such as 200                                    |           | pandemic          |                                               | NA                          |           | NA                                   | NA                                                 | NA                                                                          | NA                  | NA                                            | NA         |
| H14                | Madhi, SA                          |             | A role for Streptococcus pneum                                      |           | topic not r       |                                               | NA                          |           | NA                                   | NA                                                 | NA <u>3</u>                                                                 | NA                  | NA                                            | NA         |
| H15                | Muhlemann, K                       | 1 1         | The prevalence of penicillin-nor                                    |           | no PD case        |                                               | NA                          |           | NA                                   | NA                                                 | NA o                                                                        | NA                  | NA                                            | NA         |
| H16                | Murdoch, DR                        | 1 1         | Association of respiratory virus                                    | -         |                   | Yes                                           | Yes                         | -         | Yes                                  | Yes                                                | Yes                                                                         | Yes                 | Yes                                           | Yes        |
| H17                | Nelson, GE                         | 1 1         | Invasive pneumococcal disease                                       |           | pandemic          |                                               | NA                          |           | NA                                   | NA                                                 | NA O                                                                        | NA                  | NA                                            | NA         |
| H36                | Nicoli, EJ                         |             | Influenza and RSV make a mode                                       |           |                   | Yes                                           | Yes                         |           | Yes                                  | Yes                                                | Yes D                                                                       | Yes                 | Yes                                           | Yes        |
| H18                | O'Brien, KL                        | 1 1         | Severe pneumococcal pneumor                                         | -         |                   | Yes                                           | Yes                         |           | No                                   | Yes                                                | Yes A                                                                       | Not sure            | Not sure                                      | Yes        |
| H19                | Opatowski, L                       |             | Assessing pneumococcal mening                                       |           | بر میں مار در دار | Yes                                           | Yes                         | Yes       | Yes                                  | Yes                                                | Yes 🖻                                                                       | Yes                 | Yes                                           | Yes        |
| H20                | Pedro-Botet, ML                    |             | Impact of the 2009 influenza A I                                    |           | pandemic          |                                               | NA                          |           | NA                                   | NA                                                 |                                                                             | NA                  | NA                                            | NA         |
| H21                | Peltola, V                         |             | Temporal association between I                                      | ,         |                   | Yes                                           | Yes                         |           | Yes                                  | No                                                 | No No                                                                       | Yes                 | Yes                                           | Yes        |
| H22                | Shrestha, S                        | 1 1         | Time and dose-dependent risk of                                     |           | no popula         |                                               | NA                          |           | NA                                   | NA                                                 | NA 0224                                                                     | NA                  | NA                                            | NA         |
| H23                | Shrestha, S                        | 1 1         | Identifying the interaction betw                                    | ,         |                   | Yes                                           | Yes                         | Not sure  | Yes                                  | No                                                 |                                                                             | Yes                 | Yes                                           | Yes        |
| H24                | Stensballe, LG                     | 1 1         | Hospitalization for respiratory s                                   | ,<br>,    |                   | Yes                                           | Yes                         | Yes       | Yes                                  | No<br>No                                           |                                                                             | Yes                 | Yes                                           | Yes        |
| H25                | Talbot, TR                         |             | Seasonality of invasive pneumo                                      | -         |                   | Yes                                           | Yes                         |           | Yes                                  | -                                                  |                                                                             | Yes                 | Yes                                           | Yes        |
| H26                | Toschke, AM                        |             | No temporal association betwee                                      |           |                   | Yes                                           | Yes<br>Yes                  |           | Yes                                  | No                                                 | No <b>Jest</b>                                                              | Yes                 |                                               | Yes        |
| H27                | Walter, ND                         |             | Influenza circulation and the bu                                    |           |                   | Yes                                           |                             |           | Yes                                  | Yes                                                |                                                                             | Yes                 | Yes                                           | Yes        |
| H28                | Watson, M                          |             | The association of respiratory vi                                   | -         |                   | Yes                                           | Yes                         |           | Yes                                  | No                                                 | No D                                                                        | Yes                 | Yes                                           | Yes        |
| H29                | Weinberger, DM                     |             | Seasonal drivers of pneumococo                                      |           |                   | Yes                                           | Yes                         |           | Yes                                  | Yes                                                | Yes <u>Q</u>                                                                | Yes                 | Yes                                           | Yes        |
| H30                | Weinberger, DM                     |             | Serotype-specific effect of influe                                  |           |                   | Yes                                           | Yes                         |           | Yes                                  | Yes                                                | Yes C                                                                       | Yes                 | Yes                                           | Yes        |
| H31                | Weinberger, DM                     |             | Pneumococcal disease seasonal                                       |           |                   | Yes                                           | Yes                         |           | Yes                                  | Yes                                                | Yes 0                                                                       | Yes                 | Yes                                           | Yes        |
| H32                | Weinberger, DM                     |             | Association between respiratory                                     |           |                   | Yes                                           | Yes                         |           | Yes                                  | Yes                                                | Yes by                                                                      | Yes                 | Yes                                           | Yes        |
| H33                | Weinberger, DM                     |             | Impact of the 2009 influenza pa                                     |           | pandemic          |                                               | NA                          |           | NA                                   | NA                                                 |                                                                             | NA                  | NA                                            | NA         |
| H34                | Yoon, YK                           |             | Impact of preceding respiratory                                     |           | topic not r       |                                               | NA                          |           | NA                                   | NA                                                 | NA OP                                                                       | NA                  | NA                                            | NA         |
| H35                | Zhou, H                            | 2012        | Invasive pneumococcal pneumo                                        | yes       |                   | Yes                                           | Yes                         | Yes       | Yes                                  | Yes                                                | Yes<br>Yes                                                                  | Yes                 | Yes                                           | Yes        |



# **PRISMA 2009 Checklist**

|                                    |          | BMJ Open 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 48 of 58      |
|------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PRISMA 2                           | 009      | BMJ Open 36, bajopen 26, bajop |                    |
| Section/topic                      | #        | Checklist item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reported on page # |
| TITLE                              |          | ά<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| Title                              | 1        | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  |
| ABSTRACT                           | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Structured summary                 | 2        | Provide a structured summary including, as applicable: background; objectives; data sources study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                  |
| INTRODUCTION                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Rationale                          | 3        | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                  |
| Objectives                         | 4        | Provide an explicit statement of questions being addressed with reference to participants, ingrventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                  |
| METHODS                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Protocol and registration          | 5        | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and if available, provide registration information including registration number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  |
| Eligibility criteria               | 6        | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-5                |
| Information sources                | 7        | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-5                |
| Search                             | 8        | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Text S1            |
| Study selection                    | 9        | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-5                |
| Data collection process            | 10       | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                  |
| Data items                         | 11       | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                  |
| Risk of bias in individual studies | 12       | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                  |
| Summary measures                   | 13       | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                  |
| Synthesis of results               | 14       | Describe the methods of handling data and combining results of studies, if done, including near assures of consistency (e.g., l <sup>2</sup> ) for each meta-analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                 |

Page 49 of 58



47

# PRISMA 2009 Checklist

| 2                                |                                                                        | Ģ                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                  |                    |
|----------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 3<br>4<br>5                      | Section/topic                                                          | #                                                                                                                                                                                                       | Checklist item                                                                                                                                                                                                                                                                                   | Reported on page # |
| 6<br>7<br>8                      | Risk of bias across studies                                            | 15                                                                                                                                                                                                      | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                                                                                                                     | NA                 |
| 9<br>1(                          | Additional analyses                                                    | 16                                                                                                                                                                                                      | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                                                                                                                 | NA                 |
| 1<br>1:                          | RESULTS                                                                |                                                                                                                                                                                                         | 8.                                                                                                                                                                                                                                                                                               |                    |
| 13<br>14                         | Study selection                                                        | 17                                                                                                                                                                                                      | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                                                                                                                  | Figure 1           |
| 15<br>16<br>17                   | Study characteristics                                                  | 18                                                                                                                                                                                                      | For each study, present characteristics for which data were extracted (e.g., study size, PICOs, follow-up period) and provide the citations.                                                                                                                                                     | 6-23               |
| 18                               | Risk of bias within studies                                            | 19                                                                                                                                                                                                      | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                                                                                                                                                                                        | 6-23, File<br>S3   |
| 20<br>21<br>22                   | Results of individual studies                                          | For all outcomes considered (benefits or harms), present, for each study: (a) simple summar data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. | 6-23                                                                                                                                                                                                                                                                                             |                    |
| 23                               | Synthesis of results                                                   | 21                                                                                                                                                                                                      | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                                                                                                                                                                                          | NA                 |
| 24<br>25                         | Risk of bias across studies                                            | 22                                                                                                                                                                                                      | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                                                                                                                  | NA                 |
| 26                               | Additional analysis                                                    | 23                                                                                                                                                                                                      | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                                                                                                            | NA                 |
| 28                               | DISCUSSION                                                             |                                                                                                                                                                                                         | ×<br>×                                                                                                                                                                                                                                                                                           |                    |
| 29<br>30                         | Summary of evidence                                                    | 24                                                                                                                                                                                                      | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).                                                                                                             | 23-24              |
| 32<br>32<br>33                   | Limitations                                                            | 25                                                                                                                                                                                                      | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., ingomplete retrieval of identified research, reporting bias).                                                                                                                                    | 23-28              |
| 34<br>35                         | Conclusions                                                            | 26                                                                                                                                                                                                      | Provide a general interpretation of the results in the context of other evidence, and implication $\frac{1}{2}$ s for future research.                                                                                                                                                           | 28                 |
| 36                               | FUNDING                                                                |                                                                                                                                                                                                         | Pro                                                                                                                                                                                                                                                                                              |                    |
| 37<br>38<br>39                   | Funding                                                                | 27                                                                                                                                                                                                      | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.                                                                                                                                                       | 29                 |
| 4(<br>4)<br>42<br>43<br>44<br>44 | From: Moher D, Liberati A, Tetzlaff<br>doi:10.1371/journal.pmed1000097 | J, Altm                                                                                                                                                                                                 | an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med<br>For more information, visit: <u>www.prisma-statement.org</u> .<br>Page 2 of 2<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml | 6(7): e1000097.    |
| 40                               |                                                                        |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                    |

.1136/bmjopen-20

# PROSPERO International prospective register of systematic reviews

NHS National Institute for Health Research

# Systematic review

### 1. \* Review title.

Give the working title of the review, for example the one used for obtaining funding. Ideally the title should state succinctly the interventions or exposures being reviewed and the associated health or social problems. Where appropriate, the title should use the PI(E)COS structure to contain information on the Participants, Intervention (or Exposure) and Comparison groups, the Outcomes to be measured and Study designs to be included.

Association of seasonal viral acute respiratory infection (VARI) with pneumococcal disease (PD): a systematic review of population-based studies

### 2. Original language title.

For reviews in languages other than English, this field should be used to enter the title in the language of the review. This will be displayed together with the English language title.

### 3. \* Anticipated or actual start date.

Give the date when the systematic review commenced, or is expected to commence.

#### 07/12/2016

#### 4. \* Anticipated completion date.

Give the date by which the review is expected to be completed.

#### 15/01/2018

#### 5. \* Stage of review at time of this submission.

Indicate the stage of progress of the review by ticking the relevant Started and Completed boxes. Additional information may be added in the free text box provided.

Please note: Reviews that have progressed beyond the point of completing data extraction at the time of initial registration are not eligible for inclusion in PROSPERO. Should evidence of incorrect status and/or completion date being supplied at the time of submission come to light, the content of the PROSPERO record will be removed leaving only the title and named contact details and a statement that inaccuracies in the stage of the review date had been identified.

This field should be updated when any amendments are made to a published record and on completion and publication of the review.

#### The review has not yet started: No

| Review stage                                                    | Started | Completed |
|-----------------------------------------------------------------|---------|-----------|
| Preliminary searches                                            | Yes     | Yes       |
| Piloting of the study selection process                         | Yes     | Yes       |
| Formal screening of search results against eligibility criteria | Yes     | Yes       |
| Data extraction                                                 | Yes     | Yes       |
| Risk of bias (quality) assessment                               | Yes     | Yes       |
| Data analysis                                                   | Yes     | Yes       |
|                                                                 |         |           |

#### International prospective register of systematic reviews

Provide any other relevant information about the stage of the review here (e.g. Funded proposal, protocol not yet finalised).

#### 6. \* Named contact.

The named contact acts as the guarantor for the accuracy of the information presented in the register record. You Li

## Email salutation (e.g. "Dr Smith" or "Joanne") for correspondence:

#### 7. \* Named contact email.

Give the electronic mail address of the named contact.

You.Li2@ed.ac.uk

#### 8. Named contact address

Give the full postal address for the named contact.

3.730 Doorway 1, Old Medical School Teviot Place Edinburgh UK

#### 9. Named contact phone number.

Give the telephone number for the named contact, including international dialling code.

+44 (0)7871 566188

#### 10. \* Organisational affiliation of the review.

Full title of the organisational affiliations for this review and website address if available. This field may be completed as 'None' if the review is not affiliated to any organisation.

The University of Edinburgh

#### Organisation web address:

www.ed.ac.uk

#### 11. Review team members and their organisational affiliations.

Give the title, first name, last name and the organisational affiliations of each member of the review team. Affiliation refers to groups or organisations to which review team members belong.

Mr You Li. The University of Edinburgh Ms Meagan Peterson. The University of Edinburgh Professor Harish Nair. The University of Edinburgh Professor Harry Campbell. The University of Edinburgh

#### 12. \* Funding sources/sponsors.

Give details of the individuals, organizations, groups or other legal entities who take responsibility for initiating, managing, sponsoring and/or financing the review. Include any unique identification numbers assigned to the review by the individuals or bodies listed.

None

#### 13. \* Conflicts of interest.

# PROSPERO International prospective register of systematic reviews



List any conditions that could lead to actual or perceived undue influence on judgements concerning the main topic investigated in the review.

#### None

### 14. Collaborators.

Give the name and affiliation of any individuals or organisations who are working on the review but who are not listed as review team members.

### 15. \* Review question.

State the question(s) to be addressed by the review, clearly and precisely. Review questions may be specific or broad. It may be appropriate to break very broad questions down into a series of related more specific questions. Questions may be framed or refined using PI(E)COS where relevant.

# What methods have been used in population-based studies analysing the association between VARI and subsequent PD?

What results have been reported in population-based studies analysing the association between VARI and subsequent PD?

### 16. \* Searches.

Give details of the sources to be searched, search dates (from and to), and any restrictions (e.g. language or publication period). The full search strategy is not required, but may be supplied as a link or attachment.

We searched three bibliographic databases (MEDLINE, Embase and Global Health) for primary research studies published between 1 January 1990 and 27 April 2017.

An update of the search was done for primary research studies published between 1 January 1990 and 31 December 2017.

No restrictions were placed on the language of publication.

# 17. URL to search strategy.

Give a link to the search strategy or an example of a search strategy for a specific database if available (including the keywords that will be used in the search strategies).

Alternatively, upload your search strategy to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

Yes I give permission for this file to be made publicly available

#### 18. \* Condition or domain being studied.

Give a short description of the disease, condition or healthcare domain being studied. This could include health and wellbeing outcomes.

Viral acute respiratory infection; pneumococcal disease.

#### 19. \* Participants/population.

Give summary criteria for the participants or populations being studied by the review. The preferred format includes details of both inclusion and exclusion criteria.

# Population-based studies involving people with viral acute respiratory infection and pneumococcal disease. Specifically, the following participants were considered:

- (1) Those with laboratory confirmed viral infections;
- (2) Those with ICD code for influenza and RSV infection;
- (3) Those with a case definition of an influenza-like illness (ILI) and bronchiolitis.

#### 20. \* Intervention(s), exposure(s).

# International prospective register of systematic reviews

Give full and clear descriptions or definitions of the nature of the interventions or the exposures to be reviewed.

Population-based studies involving people with viral acute respiratory infection and pneumococcal disease.

#### 21. \* Comparator(s)/control.

Where relevant, give details of the alternatives against which the main subject/topic of the review will be compared (e.g. another intervention or a non-exposed control group). The preferred format includes details of both inclusion and exclusion criteria.

#### Not applicable.

### 22. \* Types of study to be included.

Give details of the types of study (study designs) eligible for inclusion in the review. If there are no restrictions on the types of study design eligible for inclusion, or certain study types are excluded, this should be stated. The preferred format includes details of both inclusion and exclusion criteria.

There were no restrictions imposed on the types of study design eligible for inclusion. We included populationbased studies involving clinically diagnosed PD cases, and specifically, we accepted the following studies: (1) Those involving laboratory confirmed viral infections; (2) Those involving an ICD code for influenza and RSV infection; (3) Those involving case definitions of an influenza-like illness (ILI) and bronchiolitis. We excluded animal studies and theoretical studies in which no population data was applied. We focused our review on the association of seasonal VARI with PD, and thus excluded studies that reported influenza pandemic cases only.

# 23. Context.

Give summary details of the setting and other relevant characteristics which help define the inclusion or exclusion criteria.

# 24. \* Primary outcome(s).

Give the pre-specified primary (most important) outcomes of the review, including details of how the outcome is defined and measured and when these measurement are made, if these are part of the review inclusion criteria.

The association between VARI and subsequent PD.

#### Timing and effect measures

#### 25. \* Secondary outcome(s).

List the pre-specified secondary (additional) outcomes of the review, with a similar level of detail to that required for primary outcomes. Where there are no secondary outcomes please state 'None' or 'Not applicable' as appropriate to the review

Factors that could affect the association between VARI and subsequent PD.

#### Timing and effect measures

# 26. Data extraction (selection and coding).

Give the procedure for selecting studies for the review and extracting data, including the number of researchers involved and how discrepancies will be resolved. List the data to be extracted.

# 27. \* Risk of bias (quality) assessment.

State whether and how risk of bias will be assessed (including the number of researchers involved and how

### **PROSPERO** International prospective register of systematic reviews

# National Institute for Health Research

discrepancies will be resolved), how the quality of individual studies will be assessed, and whether and how this will influence the planned synthesis.

Risk of bias will be assessed by evaluating the power of the studies, the measures taken to control for confounders, and any multiple tests made without reasonable correction or justification. Bias is expected to have little impact on the review because it is intended to provide a summary of all relevant studies, and no quantitative analysis will be conducted.

# 28. \* Strategy for data synthesis.

Give the planned general approach to synthesis, e.g. whether aggregate or individual participant data will be used and whether a quantitative or narrative (descriptive) synthesis is planned. It is acceptable to state that a quantitative synthesis will be used if the included studies are sufficiently homogenous.

A descriptive synthesis is planned. A summary of both the methods and the results of eligible studies will be provided.

# 29. \* Analysis of subgroups or subsets.

Give details of any plans for the separate presentation, exploration or analysis of different types of participants (e.g. by age, disease status, ethnicity, socioeconomic status, presence or absence or comorbidities); different types of intervention (e.g. drug dose, presence or absence of particular components of intervention); different settings (e.g. country, acute or primary care sector, professional or family care); or different types of study (e.g. randomised or non-randomised).

#### None planned.

#### 30. \* Type and method of review.

e lis. Select the type of review and the review method from the lists below. Select the health area(s) of interest for vour review.

#### Type of review

Cost effectiveness No Diagnostic No Epidemiologic No Individual patient data (IPD) meta-analysis No Intervention No Meta-analysis No Methodology No Network meta-analysis No Pre-clinical No Prevention No Prognostic No Prospective meta-analysis (PMA) No

| PROSPERO<br>International prospective register of systematic reviews                                                                                                | National Institute for<br>Health Research |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Qualitative synthesis<br>No                                                                                                                                         |                                           |
| Review of reviews<br>No                                                                                                                                             |                                           |
| Service delivery<br>No                                                                                                                                              |                                           |
| Systematic review<br>Yes                                                                                                                                            |                                           |
| Other<br>No                                                                                                                                                         |                                           |
| Health area of the review<br>Alcohol/substance misuse/abuse<br>No                                                                                                   |                                           |
| Blood and immune system                                                                                                                                             |                                           |
| Cancer<br>No                                                                                                                                                        |                                           |
| Cardiovascular<br>No                                                                                                                                                |                                           |
| Cancer<br>No<br>Cardiovascular<br>No<br>Care of the elderly<br>No<br>Child health<br>No<br>Complementary therapies<br>No<br>Crime and justice<br>No<br>Dental<br>No |                                           |
| Child health<br>No                                                                                                                                                  |                                           |
| Complementary therapies No                                                                                                                                          |                                           |
| Crime and justice<br>No                                                                                                                                             |                                           |
| Dental<br>No                                                                                                                                                        |                                           |
| Digestive system<br>No                                                                                                                                              |                                           |
| Ear, nose and throat                                                                                                                                                |                                           |
| No<br>Digestive system<br>No<br>Ear, nose and throat<br>No<br>Education<br>No<br>Endocrine and metabolic disorders                                                  |                                           |
| Endocrine and metabolic disorders<br>No                                                                                                                             |                                           |
| Eye disorders<br>No                                                                                                                                                 |                                           |
| General interest<br>No                                                                                                                                              |                                           |
| Genetics<br>No                                                                                                                                                      |                                           |
| Health inequalities/health equity<br>No                                                                                                                             |                                           |
| Infections and infestations<br>No                                                                                                                                   |                                           |
| International development<br>No                                                                                                                                     |                                           |
| Mental health and behavioural conditions                                                                                                                            |                                           |

# National Institute for Health Research

| International prospective register of systematic reviews      | Healt |
|---------------------------------------------------------------|-------|
| No                                                            |       |
| Musculoskeletal<br>No                                         |       |
| Neurological<br>No                                            |       |
| Nursing<br>No                                                 |       |
| Dbstetrics and gynaecology<br>No                              |       |
| Dral health<br>No                                             |       |
| Palliative care                                               |       |
| Perioperative care<br>No                                      |       |
| Physiotherapy<br>No                                           |       |
| Pregnancy and childbirth<br>No                                |       |
| Public health (including social determinants of health)<br>No |       |
| Rehabilitation<br>No                                          |       |
| Respiratory disorders                                         |       |
| Service delivery<br>No                                        |       |
| Skin disorders<br>No                                          |       |
| Social care<br>No                                             |       |
| Tropical Medicine<br>No                                       |       |
| Urological<br>No                                              |       |
| Urological<br>No<br>Wounds, injuries and accidents<br>No      |       |
| Violence and abuse<br>No                                      |       |
| 21 Longuago                                                   |       |

# 31. Language.

**PROSPERO** 

Select each language individually to add it to the list below, use the bin icon to remove any added in error. English

There is an English language summary.

# 32. Country.

Select the country in which the review is being carried out from the drop down list. For multi-national collaborations select all the countries involved.

#### Scotland

# PROSPERO

#### 33. Other registration details.

Give the name of any organisation where the systematic review title or protocol is registered (such as with The Campbell Collaboration, or The Joanna Briggs Institute) together with any unique identification number assigned. (N.B. Registration details for Cochrane protocols will be automatically entered). If extracted data will be stored and made available through a repository such as the Systematic Review Data Repository (SRDR), details and a link should be included here. If none, leave blank.

# 34. Reference and/or URL for published protocol.

Give the citation and link for the published protocol, if there is one

Give the link to the published protocol.

Alternatively, upload your published protocol to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

#### Yes I give permission for this file to be made publicly available

Please note that the information required in the PROSPERO registration form must be completed in full even if access to a protocol is given.

### 35. Dissemination plans.

Give brief details of plans for communicating essential messages from the review to the appropriate audiences.

#### Do you intend to publish the review on completion?

Yes

#### 36. Keywords.

Give words or phrases that best describe the review. Separate keywords with a semicolon or new line. Keywords will help users find the review in the Register (the words do not appear in the public record but are included in searches). Be as specific and precise as possible. Avoid acronyms and abbreviations unless these are in wide use.

# 37. Details of any existing review of the same topic by the same authors.

Give details of earlier versions of the systematic review if an update of an existing review is being registered, including full bibliographic reference if possible.

#### 38. \* Current review status.

Review status should be updated when the review is completed and when it is published.

Please provide anticipated publication date

Review\_Completed\_not\_published

#### 39. Any additional information.

Provide any other information the review team feel is relevant to the registration of the review.

#### 40. Details of final report/publication(s).

This field should be left empty until details of the completed review are available.

tor peer terier only

# PROSPERO International prospective register of systematic reviews

Give the link to the published review.

National Institute for Health Research