

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Effects of managed care on the proportion of inappropriate elective diagnostic coronary angiographies in non-emergency patients, a retrospective cross-sectional analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020388
Article Type:	Research
Date Submitted by the Author:	31-Oct-2017
Complete List of Authors:	Chmiel, C; Universitat Zurich, Institute of Primary Care Reich, Oliver; Helsana Group, Department of Health Sciences Signorell, Andri; Helsana Group, Department of Health Sciences Neuner-Jehle, Stefan; Universitat Zurich, Institute of Primary Care Rosemann, Thomas; Universitat Zurich, Institute of Primary Care Senn, Oliver; Universitat Zurich, Institute of Primary Care
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Medical management, Cardiovascular medicine, Diagnostics
Keywords:	- Elective coronary angiography, - Managed care, - Inappropriate, - Voluntary health care plans, - Limited access insurance models, - Non-invasive ischemia testing

SCHOLARONE™ Manuscripts

1	Effects of managed	care on the	proportion (of inappropriate el	ective diagnostic

- coronary angiographies in non-emergency patients, a retrospective cross-
- 3 sectional analysis

- 6 Corinne Chmiel, PD Dr. med.^{1§}, Oliver Reich, PhD², Andri Signorell MSc³, Stefan
- Neuner-Jehle, Dr. med. MPH¹, Thomas Rosemann, Prof. Dr. med. PhD⁴, Oliver Senn
- 8 Prof. Dr. med. MPH⁵

- ¹Research Associate, ⁴Professor, Head of Department, ⁵Vice Director Institute of
- 11 Primary Care, University of Zurich, Zurich, Switzerland
- ²Head of Department, ³Statistician Department of Health Sciences, Helsana Group,
- 13 Zurich, Switzerland

- 15 § Corresponding author:
- University Hospital Zürich, Institute of Primary Care, University of Zurich,
- 17 Pestalozzistrasse 24, CH-8091 Zürich, Switzerland
- 18 Email: corinne.chmiel@usz.ch
- 19 Tel: 0041 44 255 98 55
- 20 Fax: 0041 44 255 90 97
- 22 Word count : 3015

Abstract

- 25 Existing guidelines recommend non-invasive ischemia testing (NIIT) for the majority
 26 of patients with suspected ischemic heart disease in a non-emergency setting. A
 27 substantial amount of these patients undergoes diagnostic coronary angiography
 28 (CA) without therapeutic intervention inappropriately. The aim of this study was to
 29 evaluate the effect of voluntary health care plans with limited access on the
 30 proportion of patients without NIIT prior to elective purely diagnostic CA.
- 31 <u>Design, setting and participants:</u>
 - Retrospective cross-sectional analysis of insurance claims data from 2012 to 2015. Data for this study included mandatory and voluntary health insurance claims from approximately 1.2 million patients enrolled with the Helsana Insurance Group. Inclusion criteria: patients undergoing CA. Exclusion criteria: Patients <18 years, incomplete coverage of mandatory basic health insurance, acute cardiac ischemia and emergency procedures, therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting). The effect of voluntary health care plans with limited health access (gate keeping (GK) and managed care (MC) capitation plans) on the proportion of NIIT undertaken within two months before diagnostic CA was assessed by means of multiple logistic regression analysis, controlled for other influencing factors.

43 Results

9173 patients matched in- and exclusion criteria. 33.2% (3044) did not receive NIIT before CA. MC was independently associated with a higher proportion of NIIT (p<0.001, OR 1.17), when additionally controlled for age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high risk status (patients having received therapeutic

49	cardiac intervention within 1	1 month after or 18 months prior to diagnostic CA). GK
50	plans showed no significant	t association with the rate of NIIT (p=0.07, OR 1.11)

Conclusions

In a non-gate keeping health care system voluntary MC insurance plans with capitation are able to reduce inappropriate use of diagnostic CA stronger than GK or basic insurance plans.

Article summary

- Highly relevant topic concerning inappropriate use of a potentially harmful and expensive procedure such as the CA
- Only scarce data on non-emergency CA exists in literature
- Data originates from a single health insurance group in Switzerland, although one of the largest in the country, including data on mandatory health insurance claims from approximately 1.2 million patients
 - No data on socioeconomic status and clinical information is available

Key Words

- Elective coronary angiography
- 68 Managed care
- 69 Inappropriate
- 70 Voluntary health care plans
- Limited access insurance models
- Non-invasive ischemia testing

Introduction

Existing guidelines ¹⁻⁷ recommend non-invasive ischemia testing (NIIT) for the majority of patients with suspected ischemic heart disease in a non-emergency setting. Nevertheless, a substantial amount of these patients undergo diagnostic coronary angiography (CA) without therapeutic intervention inappropriately and are therefore exposed to unnecessary risks without any clinical benefit 8-15. In a non-gate keeping health care system such as Switzerland hardly any steering mechanisms exist, to ensure that potentially harmful and expensive procedures are only performed in case of correct indication. The admitting physician (mainly general practitioner or cardiologist) usually gives the indication for the intervention and the performing invasive centers rarely decline assigned patients due to economic reasons or in order not to disagree with the admitting physician. Besides the mandatory healthcare plans, offering unlimited access to almost all sectors of the health care system including specialist and emergency care, alternative voluntary health care plans with various degrees of restriction in exchange to premium reduction can be chosen from. These voluntary health care plans can be summarized into two main groups: 1) gate keeping (GK) plans with steering mechanisms, such as mandatory consultation of an insurance hotline for example, and 2) managed care (MC) plans with capitation. Previous studies showed a lower prevalence of potentially inappropriate medication use in elderly patients and a lower disease specific hospitalization rate in chronically ill patients enrolled in a MC plan compared to non-MC patients ^{16 17}. No data on the association between NIIT and various types of health care plans in Switzerland exist. The aim of this study was therefore to evaluate the effect of voluntary GK or MC health care plans on the proportion of patients without NIIT prior to elective purely diagnostic CA without therapeutic intervention. We performed a retrospective

analysis of insurance claims data on diagnostic procedures undertaken within two months before CA depending on the health care plan.

Materials and Methods

Setting

Swiss residents are obliged to enroll in a mandatory health insurance, which covers all health care costs besides deductibles. Depending on the insurance model chosen, annual deductibles for adults vary between 300 and 2500 Swiss Francs. A patient copayment of 10% of all costs up to a maximum of 700 Swiss Francs per year is payable independent of the chosen insurance model. Currently residents can chose a mandatory health insurance from 53 different insurance companies. In general, in Switzerland no gate-keeping system exists, meaning that patients have unlimited access to all healthcare providers, unless they are voluntarily insured in a limited access model. Patients agree to a restriction of choice or limited access in exchange of lower premiums. In such limited access models, the general practitioner or an insurance telephone hotline have to be consulted, before contacting a specialist or another institution such as a hospital. In case of emergency, this regulation is overruled. Compared to other health care systems, the Swiss system is more inpatient treatment oriented due to co-financing of inpatient treatments by governmental institutions.

Subjects, data collection and measurements

Data for this study included mandatory health insurance claims from approximately

1.2 million patients, which live all over Switzerland and were enrolled with the

Helsana Group. Data on patients undergoing CA in the years 2012 to 2015 were

125	retrospectively analyzed. Detailed TARMED (Standard billing rate for outpatient
126	medical care in Switzerland, version 2014) and Diagnosis Related Groups (DRG,
127	version 2012) positions can be found in the Supplemental Material.
128	
129	Inclusion criteria
130	- Diagnostic CA performed in the years 2012 to 2015. If in this time interval
131	patients received more than one CA, only the first CA was taken into
132	consideration.
133	
134	Exclusion criteria
135	- incomplete coverage of mandatory basic health insurance 18 months before
136	and/or 1 month after CA
137	- Patients <18 years
138	- Acute cardiac ischemia and/or emergency procedures
139	- Therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass
140	grafting)
141	
142	Measurements
143	- Patient characteristics: sex, age, language area and type of insurance
144	coverage (deductible class, supplementary private hospital insurance,
145	managed care insurance model)
146	- Setting of CA: inpatient or outpatient
147	- NIIT performed within two months prior to CA (stress-ECG, echocardiography,
148	stress echocardiography, scintigraphy, computer tomography, heart MRI)
149	- Cardiovascular Medication grouped according to Anatomical-Therapeutic-

Chemical-Classification (ATC) 18

151	 Group 1: Aspirin, platelet aggregation inhibitors
152	 Group 2: statins, lipid modifying agents
153	o Group 3: antihypertensives, diuretics, beta blocking agents, calcium
154	channel blockers, agents acting on the renin-angiotensin system
155	o Group 4: antidiabetics
156	o Group 5: antianginous drugs
157	o Gruop 6: antithrombotics
158	 Number of chronic conditions according to Pharmaceutical cost groups PCG ¹⁹
159	20
160	o Group 1: pcg_n < 3 0, 1 or 2 PCGs
161	 Group 2: pcg_n < 5 3 to 4 PCGs
162	o Group 3: pcg_n < 7 5 to 6 PCGs
163	o Group 4: pcg_n ≥ 7 7 or more PCGs
164	
165	Sensitivity Analysis with high-risk patients
166	We performed a sensitivity analysis of our data by defining a subgroup of patients as
167	high risk with supposed cardiac disease, if having received therapeutic cardiac
168	intervention/diagnosis within one month after and/or 18 months prior to diagnostic
169	CA.
170	
171	Processing and analyzing data
172	Data was checked for eligibility and completeness and subjected to a set of
173	predefined plausibility tests. These included checks for contradictory data, duplication
174	and plausibility of time measurements.

Statistical analysis

Descriptive statistical techniques were used to provide a general profile of the study population and grouped into patients with mandatory health insurance with no limited access health care plans versus voluntary limited access health care plans consisting of the two subgroups GK and MC. These data were presented as means in the case of continuous variables and as percentages in case of categorical variables. Differences with respect to age, sex, deductible class, supplementary private hospital insurance coverage, language area, inpatient CA, cardiac medication class according to ATC, number of chronic medical conditions identified using PCGs and high risk status (patients having received therapeutic cardiac intervention/diagnosis within one month after and/or 18 months prior to diagnostic CA) were analyzed with a nonparametric analysis of variance (Kruskal-Wallis test for continuous variables and chi-square tests for categorical variables). We developed several statistical models to evaluate the major outcome of receiving NIIT within two months prior CA depending on the health care plan. Two different models were investigated: 1) using the federal definition of voluntary health care plans which includes all insurance plans with limited health care access, meaning GK as well as managed MC plans. 2) GK versus MC plans. In order to assess patient-level effects the following additional independent variables were included in the models: age, sex, deductible class, supplementary private hospital insurance coverage, language area, inpatient CA, cardiac medication class according to ATC, number of chronic medical conditions identified using PCGs and high risk status. The strength of associations was measured by the odds ratio (OR) and the respective 95% confidence intervals (CI). The level of significance was set at 0.05. All statistical analyses were performed using R version 3.3.1 (2016-06-21) (R Foundation for Statistical Computing, Vienna, Austria) 21 22

Ethics approval

According to the national ethical and legal regulation, an ethical approval was not needed. Permission to access the study data was provided by the Helsana Group. Since data was anonymized, no consent of patients was required.

Results

Population

During the observed period a total of 19'032 therapeutic CA performed on 14'833 patients were registered in the Helsana data warehouse. 12'078 CA were eligible for analysis. According to the exclusion criteria (multiple exclusion criteria possible per person), we excluded 5 patients since they were under the age of 18 years, 828 patients due to an incomplete coverage of mandatory basic health insurance during the necessary observation period, 360 emergency procedures, 1'922 therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting). In total, 9'173 patients remained for analysis.

The descriptive statistics of the study population can be seen in Table 1. From the 9'173 patients representing the study population 5'587 were male (60.9%, mean age

Table 1 Descriptive statistics of the study population grouped into non-limited and limited health care access insurance plans (GK and MC)

66.4 years) and 3'586 were female (39.1%, mean age 68.7 years).

	Non-limite access	Non-limited access		Limited a	ccess		
	Total	No NIIT	With NIIT	Total	No NIIT	With NIIT	
Count	5'258	1'818 (34.6%)	3'440 (65.4%)	3'915	1'226 (31.3%)	2'689 (68.7%)	

High Risk	2'696	1'006	1'690	***	1'814	593	1'221	
(= 1)	(51.3%)	(55.3%)	(49.1%)		(46.3%)	(48.4%)	(45.4%)	
Age (mean)	67.7	68.1	67.6	**	66.7	66.5	66.8	
	(11.6)	(12.8)	(10.9)		(11.6)	(12.8)	(11.0)	
Sex (fem)	2'089	738	1'351		1'497	467	1'030	
	(39.7%)	(40.6%)	(39.3%)		(38.2%)	(38.1%)	(38.3%)	
Deductible								
300	3'617	1'262	2'355		2'504	799	1'705	
	(68.8%)	(69.4%)	(68.5%)		(64.0%)	(65.2%)	(63.4%)	
500	1'143	394	749		850	250	600	
	(21.7%)	(21.7%)	(21.8%)		(21.7%)	(20.4%)	(22.3%)	
1000	116	45	71		167	54	113	
	(2.2%)	(2.5%)	(2.1%)		(4.3%)	(4.4%)	(4.2%)	
1500	186	59	127		153	47	106	
	(3.5%)	(3.2%)	(3.7%)		(3.9%)	(3.8%)	(3.9%)	
2000	19	5	14		35	5	30	
	(0.4%)	(0.3%)	(0.4%)		(0.9%)	(0.4%)	(1.1%)	
2500	177	53	124		206	71	135	
	(3.4%)	(2.9%)	(3.6%)		(5.3%)	(5.8%)	(5.0%)	
Private	1'418	493	925		866	262	604	
	(27.0%)	(27.1%)	(26.9%)		(22.1%)	(21.4%)	(22.5%)	
Latin	1'607	541	1'066)	832	250	582	
	(30.6%)	(29.8%)	(31.0%)		(21.3%)	(20.4%)	(21.6%)	
Inpatient	2'931	1'166	1'765	***	2'180	798	1'382	*
•	(55.7%)	(64.1%)	(51.3%)		(55.7%)	(65.1%)	(51.4%)	
ATC					4			
	21112		41=00		110.110			
1	2'442	704	1'738	***	1'840	460	1'380	*
	(46.4%)	(38.7%)	` ′		(47.0%)	(37.5%)	(51.3%)	
2	1'792	576	1'216	**	1'347	370	977	*
	(34.1%)	(31.7%)	(35.3%)		(34.4%)	(30.2%)	(36.3%)	
3	3'306	1'114	2'192		2'387	681	1'706	*
	(62.9%)	(61.3%)	(63.7%)		(61.0%)	(55.5%)	(63.4%)	
4	787	277	510		489	152	337	
	(15.0%)	(15.2%)	(14.8%)		(12.5%)	(12.4%)	(12.5%)	
5	825	281	544		508	168	340	
	(15.7%)	(15.5%)	(15.8%)		(13.0%)	(13.7%)	(12.6%)	
6	3'467	1'038	2'429	***	2'492	667	1'825	*
	(65.9%)	(57.1%)	(70.6%)		(63.7%)	(54.4%)	(67.9%)	
PCG				**				
<3	1'277	434	843		1'268	394	874	
9	(24.3%)	(23.9%)	(24.5%)		(32.4%)	(32.1%)	(32.5%)	1

3-4	1'967	634	1'333	1'463	435		
	(37.4%)	(34.9%)	(38.8%)	(37.4%)	(35.5%)	(38.2%)	
5-6		467	872	840	276	• • •	
	(25.5%)	(25.7%)	(25.3%)	(21.5%)	(22.5%)	(21.0%)	
>6	675	283	392	344	121	223	
	(12.8%)	(15.6%)	(11.4%)	(8.8%)	(9.9%)	(8.3%)	

NIIT: Non-invasive ischemia testing. Deductible class in Swiss Francs. Private: supplementary private hospital insurance, Latin: French or Italian part of Switzerland compared to German part. CA: coronary angiography, ATC: Anatomical-Therapeutic-Chemical-Classification group 1 = Aspirin, platelet aggregation inhibitors, 2 = statins, lipid modifying agents, 3 = antihypertensives, diuretics, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system, 4 = antidiabetics, 5 = antianginous drugs, 6: antithrombotics, PCG: number of chronic conditions according to pharmaceutical cost groups. High risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA. Significance no NIIT vs with NIIT within non limited access and limited access group: *** p<0.0001, ** p<0.001.

Patients insured in mandatory basic health care plans were slightly older (67.7 (11.6) vs. 66.6 (11.6) years, p<0.0001), chose the lowest possible deductible of 300 Francs more often (3'617 (68.8%) vs. 2'504 (64.0%), p<0.001), were enrolled in a supplementary private hospital insurance more often (1'418 (27.0%) vs. 866 (22.1%), p<0.0001), had more antidiabetics (787 (15%) vs 489 (12.5%), p<0.0001) and antianginal medication (825 (15.7%) vs 508 (13.0%), p<0.0001), more PCGs (4.1 (2.1) vs. 3.6 (2.0), p<0.0001) and had more often a high risk status (2'696 (51.3%) vs. 1'814 (46.3%), p<0.0001), compared to patients insured in voluntary limited access

health care plans. Concerning the other patient characteristics, no differences existed.

Non-invasive ischemia testing

488 (33.8 %) of patients without NIIT had a conventional ECG prior to CA, in the high risk population this was the case in 722 (45.2%) (p<0.0001). Patients insured in limited access health care models underwent the NIITs stress-ECG + transthoracic echocardiography significantly more often before CA (1'750 (44.7%) vs. 2'039 (38.8 %) p<0.0001, and 2'044 (52.2%) and 2'528 (48.1%), p<0.0001) than patients with basic insurance. The remaining types of NIIT were rarely performed and only showed a significant difference in the use of scintigraphy (basic insurance 131 (2.5%) vs. limited access models 64 (1.6%), p<0.001).

Determinants for non-invasive ischemia testing

Patients with MC health care plans were 17% significantly more likely to receive NIIT before CA compared to patients with mandatory health care plans, when controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high risk status (OR 1.17, p<0.001). GK insurance models did not show any significant influence on the chance of receiving NIIT (OR 1.11, p=0.071). The distribution of NIIT performed according to health care plan can be appreciated in Figure 1.

Figure 1: Distribution of NIIT performed according to health care plan.

OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders
age, sex, language area, insurance coverage, inpatient treatment, cardiovascular

medication, number of chronic comorbidities and high risk status. * p<0.001 8 (OR 1.17) for managed care compared to standard health care plan.

Following determinants were also independently significantly associated with receiving NIIT: the use of platelet aggregation inhibitors, antithrombotic and antihypertensive medication, being privately insured and a deductible of 2000 SFR.

Following determinants were significantly associated with not receiving NIIT: high-risk status, a high number of chronic comorbidities as well as inpatient treatment (Table 2).

Table 2: Determinants for receiving non-invasive ischemia testing before coronary

280 <u>angiography</u>

281		se	or	sig
282	Intercept	0.156353	NA	**
283	Age (years)	0.002069	1.003	
284	Sex (female)	0.047562	1.062	
285	Deductible Class (Swiss Francs, Refe	rence 300)		
286	500	0.057142	1.020	
287	1000	0.132115	0.865	
288	1500	0.125301	1.075	
289	2000	0.356787	2.177	*
290	2500	0.118825	1.022	
291	Private	0.054254	1.140	*
292	French or Italian part of Switzerland	0.055272	0.937	
293	Inpatient CA	0.052856	0.599	***
294	ATC group			

295	1	0.065923	1.423	***
296	2	0.053149	1.023	
297	3	0.049768	1.104	*
298	4	0.068884	0.974	
299	5	0.065494	0.994	
300	6	0.069080	1.184	*
301	PCG (reference <3)			
302	<5	0.060711	1.058	
303	<7	0.069882	0.928	
304	>=7	0.088073	0.742	***
305	Limited access models (reference sta	andard health	insurance)	
306	Managed Care	0.057877	1.171	**
307	Gate Keeping	0.059874	1.114	
308	High risk cardiac status	0.046443	0.836	***
309				
310	se: standard error, or: odds ratio, sig: s	ignificance: *	** p<0.0001, *	** p<0.001 *p<0.01,
311	Private: supplementary private hospital	insurance, C	A: coronary a	ngiography, ATC:
312	Anatomical-Therapeutic-Chemical-Class	ssification gro	up 1 = Aspirir	n, platelet
313	aggregation inhibitors, 2 = statins, lipid	modifying ag	ents, 3 = antil	hypertensives,
314	diuretics, beta blocking agents, calcium	channel bloc	ckers, agents	acting on the renin-
315	angiotensin system, 4 = antidiabetics, 8	5 = antiangino	ous drugs, 6: a	antithrombotics,
316	PCG: number of chronic conditions acc	cording to pha	rmaceutical c	ost groups. High
317	risk patients: having received therapeu	tic cardiac inte	ervention with	in one month after
318	or 18 months prior to diagnostic CA.			

Discussion

In our study population of elective CA with no therapeutic consequence (no coronary angioplasty/stenting or coronary artery bypass grafting) one third did not receive NIIT before diagnostic CA. MC was independently significantly associated with a higher proportion of NIIT when additionally controlled for potential confounders. GK plans showed no significant association with the rate of NIIT.

Effects of limited access health care plans on treatment quality

It has been assumed that patients insured in limited access health care plans undergo less diagnostic procedures or interventions due to budget considerations. In our study, this hypothesis is refuted. Patients insured in limited access health care plans not only underwent a more appropriate diagnostic pathway than regularly insured patients did, they even received more non-invasive diagnostic testing, which resulted in less inadequate CA. Our findings are in line with studies showing that being insured in MC models is associated with a survival benefit by promoting better preventive and higher quality of care ²³⁻²⁵. Especially among Medicare beneficiaries, which are prone to multimorbidity, this effect has been shown ²⁶. These models have also shown lower prevalence of potentially inappropriate medication use in elderly patients and a lower disease specific hospitalization rate in chronically ill patients ¹⁶

Our study raises the question why patients in limited access health care plans receive a more appropriate diagnostic pathway in this clinical situation of stable angina pectoris. There has been evidence for and against the theory that patients enrolled in a MC insurance model are healthier due to biased selection ²⁷⁻³⁶ and commercial considerations of the MC insurer ^{37 38}. In our study population patients insured in limited access plans showed some evidence of being healthier than

regularly insured patients. Nevertheless being insured only in MC but not GK plans was independently associated with a higher rate of NIIT, controlled for all the differences in patient characteristics. It is clear that physicians participating in MC plans are obliged to keep diagnostic and treatment costs as low as possible while keeping up with quality concerns. One could therefore argue that it is cheaper to not to choose a diagnostic detour over NIIT instead of choosing the straight forward way of sending a patient to the more invasive CA which offers a clear answer to an uncertain clinical situation including the option of therapeutic action. It seems that MC health care providers have understood what Meara et al. have summed up accurately: "Reductions in spending for patients must be a result of decreases in the provision of services. If these are needed services, quality of care will decline. Alternatively, quality of care might be higher in low expenditure areas if differences in spending result from reductions in unnecessary or inappropriate services 39". Besides this intuitive statement there has been scientific evidence that a diagnostic detour is worthwhile taking, since it sums up in reduced peri and post interventional costs without loss in quality ¹¹. Our study is not able to answer the questions why patients in limited access models received a more appropriate diagnostic approach. One can only hypothesize that coordination of care is straighter forward in the limited access setting and the indication for invasive and expensive diagnostic procedures is more thoroughly scrutinized especially in the GK models, which include capitation.

Determinants for NIIT

Even though simple echocardiography with no stress testing does not actually qualify as a NIIT, we chose to include this diagnostic procedure due to following considerations: some cardiologists might argue that patients with dyskinesia in simple echocardiography are likely to have relevant coronary pathology therefore offering an

argument for CA besides the clinical evaluation. Our theory is supported by the "2014" ESC/EACTS Guidelines on Myocardial Revascularization which state: "regional wall motion abnormalities may be detected in simple echocardiography, which increase the likelihood of coronary artery disease". Since the inclusion of this additional test leads to underestimation of "real" NIIT performed, the findings only strengthen our hypothesis. Since our study lacks clinical data, only indirect hints by means of PCG and ATC codes as well as other confounders are available to assess clinical reasoning. The association between the use of platelet aggregation inhibitors or antithrombotic agents and antihypertensive medication with receiving NIIT before CA suggest a reasonable deliberation in the sense of estimating pretest probability when deciding on optimal diagnostic strategy. The same counts for the association of high-risk status and a larger number of chronic comorbidities as determinants for not receiving NIIT prior to elective CA. This finding is consistent with two US studies indicating that risk stratification was performed, considering the higher likelihood of a coronary pathology in patients with known coronary heart disease 8 10. In our study, non-clinical factors seem to influence decision-making processes concerning diagnostic pathways, reflected by the findings that being privately insured and a deductible of 2000 SFR were positively and inpatient treatment negatively independently associated with NIIT.

Reinforcing quality control mechanisms in a non-gate keeping health care system

Besides the existing voluntary steering mechanisms such limited access health care
plans guided by patient's preferences only, more alternative steering mechanisms
have to be implemented in non-gate keeping health care systems, in order to
minimize the influence of non-clinical factors on medical decision making, which

might lead to inappropriate and possibly dangerous health care utilization as well as increasing expenditures. A positive example here fore is the implementation of national registries ⁴⁰ combined with quality initiatives, such as the in 2009 published Appropriate Use Criteria for Coronary Revascularization 9 40 41. In 2011, the registry started giving feedbacks on the participating hospital's performance concerning appropriateness of CA including a benchmarking against other participating institutions. At the same time the American Board of Internal Medicine's Choosing Wisely initiative launched national quality improvement campaigns, identifying CA appropriateness as a key area for intervention ⁴². As a consequence insurance companies incorporated measures of CA appropriateness into pay-for-performance programs 43 and reimbursement was declined for certain CA identified as inappropriate 44. The combination of implementing national registries combined with quality initiatives had been proven amazingly effective, showing a decrease of nonacute CA classified as inappropriate from 26.2% to 13.3% 45. In Switzerland currently no registries on CA exist, hence other solutions for influencing treatment pathways have to be developed besides offering voluntary limited access health care plans. A possible alternative solution to the conundrum of reducing costs without cutting quality seems hence to be paying for outcomes instead of volume. As the findings of our study suggest, a possible approach is to raise the market share of MC to such a volume that it might also affect care for fee-for-service patients ³⁹. As Meara et al have summarized, the effects have been show to play in a variety of ways: more MC in a market might lower expenditures by reducing the number of specialists, and thereby the number of specialists' services provided 46 47 by encouraging more conservative practice patterns ^{46 47}, or by slowing the diffusion of more costly technologies 46 48.

Strengths and limitations

Only scarce data on non-emergency CA exists in literature. The only data found originates from the US among Medicare as well as commercially insured patients and from Switzerland, both non-gate keeping health care systems. Whether the proportion of inappropriate diagnostic CA from our study can be translated to other non-gate keeping health care systems is difficult to estimate, since substantial variation in the proportion of non-acute PCIs considered inappropriate across hospitals can be found, ranging from about 6% to 70% ^{8 10 14 15 45}. From a previous study from Switzerland ¹² similar proportions were found, suggesting generalizability of our data. The current study seems even more representative than the previous Swiss study, since it included data over a longer time-period with consecutively larger amount of patients and corresponding data. Since the study is based on insurance claims data, no data on socioeconomic status and clinical information is available.

Conclusions

In a non-gate keeping health care system voluntary MC insurance plans with
capitation are able to reduce inappropriate use of diagnostic CA stronger than GK or
basic insurance plans.

441 References

- 1. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 2012;126(25):3097-137. doi: 10.1161/CIR.0b013e3182776f83
- Skinner JS, Smeeth L, Kendall JM, et al. NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. *Heart* 2010;96(12):974-8. doi: 10.1136/hrt.2009.190066
- Chest Pain of Recent Onset: Assessment and Diagnosis of Recent Onset Chest Pain or Discomfort of Suspected Cardiac Origin. London2010.
- 4. Task Force M, Montalescot G, Sechtem U, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European heart journal 2013;34(38):2949-3003. doi: 10.1093/eurheartj/eht296
- Archbold RA. Comparison between National Institute for Health and Care Excellence (NICE) and European Society of Cardiology (ESC) guidelines for the diagnosis and management of stable angina: implications for clinical practice. *Open Heart* 2016;3(1):e000406. doi: 10.1136/openhrt-2016-000406
- 6. Henderson RA, O'Flynn N, Guideline Development G. Management of stable angina: summary of NICE guidance. *Heart* 2012;98(6):500-7. doi: 10.1136/heartjnl-2011-301436
- 7. N OF, Timmis A, Henderson R, et al. Management of stable angina: summary of NICE guidance. BMJ 2011;343:d4147. doi: 10.1136/bmj.d4147
- Lin GA, Dudley R, Lucas FL, et al. FRequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. *JAMA* 2008;300(15):1765-73. doi: 10.1001/jama.300.15.1765
- 9. Patel MR, Dehmer GJ, Hirshfeld JW, et al. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: A Report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology: Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. Circulation 2009;119(9):1330-52. doi: 10.1161/CIRCULATIONAHA.108.191768
- Topol EJ, Ellis SG, Cosgrove DM, et al. Analysis of coronary angioplasty practice in the United States with an insurance-claims data base. *Circulation* 1993;87(5):1489-97. doi: 10.1161/01.cir.87.5.1489
- 11. Shaw LJ, Hachamovitch R, Berman DS, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. *Journal of the American College of Cardiology* 1999;33(3):661-9.
- 12. Chmiel C, Reich O, Signorell A, et al. Appropriateness of diagnostic coronary angiography as a measure of cardiac ischemia testing in non-emergency patients a retrospective cross-sectional analysis. *PloS one* 2015;10(2):e0117172. doi: 10.1371/journal.pone.0117172
- 13. Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. *New Engl J Med* 2007;356(15):1503-16. doi: DOI 10.1056/NEJMoa070829
- 14. Chan PS, Patel MR, Klein LW, et al. APpropriateness of percutaneous coronary intervention. *JAMA* 2011;306(1):53-61. doi: 10.1001/jama.2011.916
- 15. Bradley SM, Maynard C, Bryson CL. Appropriateness of Percutaneous Coronary Interventions in Washington State. *Circ-Cardiovasc Qual* 2012;5(4):445-53. doi: 10.1161/Circoutcomes.111.964320
- Reich O, Rosemann T, Rapold R, et al. Potentially Inappropriate Medication Use in Older Patients in Swiss Managed Care Plans: Prevalence, Determinants and Association with Hospitalization. *PloS one* 2014;9(8) doi: ARTN e105425
 10.1371/journal.pone.0105425
- 10.137 1/journal.pone.0103423
 - 17. Huber CA, Reich O, Fruh M, et al. Effects of Integrated Care on Disease-Related Hospitalisation and Healthcare Costs in Patients with Diabetes, Cardiovascular Diseases and Respiratory

- Illnesses: A Propensity-Matched Cohort Study in Switzerland. *Int J Integr Care* 2016;16 doi: 10.5334/ijic.2455
 Huber CA, Szucs TD, Rapold R, et al. Identifying patients with chronic conditions using pharmac
 - 18. Huber CA, Szucs TD, Rapold R, et al. Identifying patients with chronic conditions using pharmacy data in Switzerland: an updated mapping approach to the classification of medications. *BMC public health* 2013;13:1030. doi: 10.1186/1471-2458-13-1030
 - Lamers LM, van Vliet RC. The Pharmacy-based Cost Group model: validating and adjusting the classification of medications for chronic conditions to the Dutch situation. *Health policy* 2004;68(1):113-21. doi: 10.1016/j.healthpol.2003.09.001
 - 20. Huber CA, Schneeweiss S, Signorell A, et al. Improved prediction of medical expenditures and health care utilization using an updated chronic disease score and claims data. *J Clin Epidemiol* 2013;66(10):1118-27. doi: 10.1016/j.jclinepi.2013.04.011
 - 21. (2015) RCT. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. [Available from: http://www.R-project.org/.
 - 22. DescTools: Tools for descriptive statistics. R package version 0.99.15 [program]: Signorell. A. , 2016.
 - 23. DeLaet DE, Shea S, Carrasquillo O. Receipt of preventive services among privately insured minorities in managed care versus fee-for-service insurance plans. *J Gen Intern Med* 2002;17(6):451-57. doi: DOI 10.1046/j.1525-1497.2002.10512.x
 - Landon BE, Zaslavsky AM, Bernard SL, et al. Comparison of performance of traditional Medicare vs Medicare managed care. *Jama-J Am Med Assoc* 2004;291(14):1744-52. doi: DOI 10.1001/jama.291.14.1744
 - 25. Miller RH, Luft HS. HMO plan performance update: an analysis of the literature, 1997-2001. *Health affairs* 2002;21(4):63-86.
 - 26. Huesch MD. Long-term impact of Medicare managed care on patients treated for coronary artery disease. *Medical care* 2012;50(1):18-26. doi: 10.1097/MLR.0b013e3182294a20
 - 27. Maciejewski ML, Dowd B, Call KT, et al. Comparing mortality and time until death for medicare HMO and FFS beneficiaries. *Health services research* 2001;35(6):1245-65.
 - 28. Park E. Informing the debate about curbing Medicare Advantage overpayments. *Center on Budget and Policy Priorities* 2007
 - 29. Call KT, Dowd B, Feldman R, et al. Selection experiences in Medicare HMOs: pre-enrollment expenditures. *Health care financing review* 1999;20(4):197-209.
 - 30. Deb P, Trivedi PK. Specification and simulated likelihood estimation of a non-normal treatment-outcome model with selection: Application to health care utilization. *Economet J* 2006;9(2):307-31. doi: DOI 10.1111/j.1368-423X.2006.00187.x
 - 31. Mello MM, Stearns SC, Norton EC. Do Medicare HMOs still reduce health services use after controlling for selection bias? *Health Econ* 2002;11(4):323-40. doi: Doi 10.1002/Hec.664
 - 32. Cao Z, McGuire TG. Service-level selection by HMOs in Medicare. *J Health Econ* 2003;22(6):915-31. doi: DOI 10.1016/j.healeco.2003.06.005
 - 33. Nicholson S, Bundorf K, Stein RM, et al. The magnitude and nature of risk selection in employer-sponsored health plans. *Health services research* 2004;39(6):1817-U1. doi: DOI 10.1111/j.1475-6773.2004.00320.x
 - 34. Chernew M, DeCicca P, Town R. Managed care and medical expenditures of Medicare beneficiaries. *J Health Econ* 2008;27(6):1451-61. doi: DOI 10.1016/j.jhealeco.2008.07.014
 - 35. Atherly A, Dowd BE, Feldman R. The effect of benefits, premiums, and health risk on health plan choice in the Medicare program. *Health services research* 2004;39(4):847-64. doi: DOI 10.1111/j.1475-6773.2004.00261.x
 - 36. Huesch MD. Managing care? Medicare managed care and patient use of cardiologists. *Health services research* 2010;45(2):329-54. doi: 10.1111/j.1475-6773.2009.01070.x
 - 37. Bundorf MK, Schulman KA, Stafford JA, et al. Impact of managed care on the treatment, costs, and outcomes of fee-for-service Medicare patients with acute myocardial infarction. *Health services research* 2004;39(1):131-52.
 - 38. Cutler DM, McClellan M, Newhouse JP. How does managed care do it? *Rand J Econ* 2000;31(3):526-48. doi: Doi 10.2307/2600999
 - 39. Meara E, Landrum MB, Ayanian JZ, et al. The effect of managed care market share on appropriate use of coronary angiography among traditional medicare beneficiaries. *Inquiry-J Health Car* 2004;41(2):144-58.
 - 40. Registry ACoCC. National Cardiovascular Data Registry.
 - 41. website JC. Proceedings from the National Summit on Overuse 2012 [updated September 24. Available from: http://www.jointcommission.org/assets/1/6/National Summit Overuse.pdf accessed August 17 2016.

42. Interventions. SfCAa. Five Things Physicians and Patients Should Question. [Available from: http://www.choosingwisely.org/societies/society-for-cardiovascular-angiography-and-interventions/ accessed August 17 2016.

- 43. Michigan. BCBSo. Hospital Pay-for-Performance Program. [Available from: https://www.bcbsm.com/content/dam/public/Providers/Documents/value/p4p-hospital-cqi-performance-index-guide.pdf. accessed August 17 2016.
- 44. website. NYSDoH. [Available from: https://www.health.ny.gov/health-care/medicaid/program/update/2013/2013-06.htm#ous.accessed Agust 17 2016.
- 45. Desai N, Bradley S, Parzynski C, et al. Appropriate Use Criteria for Coronary Revascularization and Trends in Utilization, PatientSelection, and Appropriateness of Percutaneous Coronary Intervention FindingsFrom the NCDR- CathPCI Registry. *Circulation* 2015;132(23):2278-78.
- 46. Baker LC. Managed care and technology adoption in health care: evidence from magnetic resonance imaging. *J Health Econ* 2001;20(3):395-421. doi: Doi 10.1016/S0167-6296(01)00072-8
- 47. Heidenreich PA, McClellan M, Frances C, et al. The relation between managed care market share and the treatment of elderly fee-for-service patients with myocardial infarction. *American Journal of Medicine* 2002;112(3):176-82. doi: Pii S0002-9343(01)01098-1

 Doi 10.1016/S0002-9343(01)01098-1
- 48. Cutler DM, Sheiner L. Managed care and the growth of medical expenditures. Nber Fr Hlth Pol Res 1998;1:77-115.

Sources of Funding

This work was supported by the Swiss Academy of Medical Sciences (SAMS), Switzerland. The funding source had no influence on study design; on the collection, analysis, and interpretation of the data; on the writing of the manuscript; and the decision to submit the manuscript for publication.

Competing interests

Oliver Reich and Andri Signorell are employed by the Helsana Group. The sponsor had no role in the planning, conducting or submission of this manuscript. These authors declare no conflict of interest. Helsana Group shall have no liability to any third party in respect to the contents of this article. All the other authors have no conflicts of interests or financial disclosures to declare.

Authors Contributions

Conceived and designed the experiments: CC, OR, AS, SNJ, TR, OS. Performed the experiments: CC, OR, AS. Analyzed the data: CC, OR, AS, SNJ, TR, OS. Wrote the paper: CC, edited and approved the paper: CC, OR, AS, SNJ, TR, OS.

Consent for publication

Since data were completely anonymized, no patient consent was necessary.

Availability of data and materials

Individual data cannot be made fully available on the internet because the study is based on claims data of the Helsana Group, the owner of the data. Thus, data underlie data protection and privacy restrictions. These restrictions prohibit the insurer from sharing the collected data. Data analysis was performed within the

premises of the Helsana research group by the statistician AS in collaboration with the authors OR and CC and administrative permission was received to access de-identified data by the researchers from the University of Zurich.

Supplemental Material

Supplemental Methods/Definitions

J	
	•

4	1)	Inc	lusion	Crit	eria

5	Tarmed	17.071
6		17.074
7		17.101
8		17.109
9		17.181
10		17.182
11	DRG	F49D

- DRG
 - F49D

- F49F
- If two coronary angiographies (CA) were performed on the same day at the same
- provider, the intervention is counted once.

F49E

- If the CA was performed twice at the same day but different providers the CA counts
- twice (both concerning the inpatients positions (Diagnosis related Groups (DRG)) and
- the outpatient positions (Standard billing rate for outpatient medical care in
- Switzerland (TARMED))
- If during 2012-2015 patients received more than one CA, only the first CA was taken
- into consideration.

1	2) Exclusion Criteria				
2	Acute cardiac ischemia and/or e	emergency pi	ocedures	Tarmed	0.2510
3					0.2520
4					0.2540
5					0.2560
6					0.2580
7					35.0610
8				DRG	F41A
9					F41B
10					
11	Therapeutic CA (coronary angio	oplasty/stentii	ng or coronary	artery by-pa	ass grafting,
12	without myocardial infarction)	Tarmed	17.1110		
13			17.1240		
14		DRG	F15Z		
15			F19Z		
16			F24B		
17			F49A		
18			F49C		
19			F52A		
20			F52B		
21			F54Z		
22			F56A		
23			F56B		
24			F57A		
25			F57B		
26			F58Z		

1		F59A
2		F59B
3	Incomplete	coverage of mandatory basic health insurance 18 months before and/or 1
4	month after	CA
5	Patients <18	8 years
6		
7		
8	3) Diagnost	ic Procedures
9	Tarmed	17.0010: Electrocardiogram (ECG): not considered as NIIT, only in
10		combination with other NIIT
11		17.0050: Cardiac intervention with medication under continuous
12		registration of ECG: not considered as NIIT, only in combination with
13		another NIIT
14		17.0060: ECG performed by specialist outside of the practice or
15		hospital: not considered as NIIT, only in combination with another NIIT
16		17.0080 and 17.0090: Stress-ECG
17		17.0210: Echocardiography, transthoracic, qualitative and quantitative
18		examination of adult
19		17.0280: Stressechocardiography, physical stress
20		17.0290: Stressechocardiography, medication stress
21		31.0260: Scintigraphy physiologically triggered
22		39.4060: Computed tomography of entire thorax and/or sternoclavicular
23		joint
24		39.5100 Heart MRI
25	DRG	No separate codes available for inpatient diagnostic procedures, only
26		for therapeutic interventions

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 4) High	risk	patients
-----------	------	----------

- 2 Patients having received therapeutic cardiac intervention within one month after or 18
- 3 months prior to diagnostic CA

4 Tarmed 0.2	251	U
--------------	-----	---

- 5 0.2520
- 6 0.2540
- 7 0.2560
- 8 0.2580
- 9 35.0610
- 10 17.1110
- 11 17.1240
- 12 And all 18.001until/including 18.0740
- 13 DRG all Chapter F

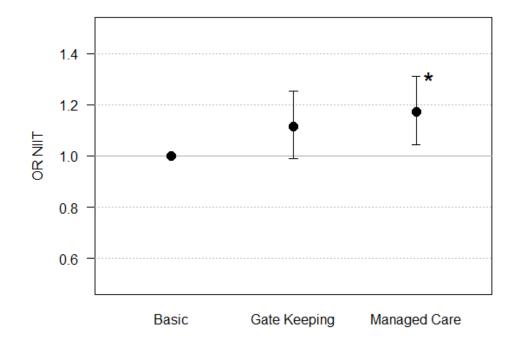


Figure 1: Distribution of NIIT performed according to health care plan. OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high risk status. * p<0.001 8 (OR 1.17) for managed care compared to standard health care plan.

Section/Topic	Item #	Recommendation	Reported on page #	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1, 2	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3, 4	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3, 4	
Objectives	3	State specific objectives, including any prespecified hypotheses	2, 4, 5	
Methods				
Study design	4	Present key elements of study design early in the paper	5-8	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias	7, 8	
Study size	10	Explain how the study size was arrived at	5, 6	
Quantitative variables	· · = · · · · · · · · · · · · ·		6, 7, 8	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7, 8	
		(b) Describe any methods used to examine subgroups and interactions	7, 8	
		(c) Explain how missing data were addressed	7, 8	
		(d) If applicable, describe analytical methods taking account of sampling strategy	6-8	
		(e) Describe any sensitivity analyses	7, 8	
Results				

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9-14
		(b) Give reasons for non-participation at each stage	9-14
		(c) Consider use of a flow diagram	Not applicable
Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) and information of		(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9-14
		(b) Indicate number of participants with missing data for each variable of interest	9-14
Outcome data	15*	Report numbers of outcome events or summary measures	9-14
Main results			9-14
		(b) Report category boundaries when continuous variables were categorized	Not applicable
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-14
Discussion			
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	19
nterpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence		15-19	
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	23

^{*}Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org

BMJ Open

Effects of managed care on the proportion of inappropriate elective diagnostic coronary angiographies in non-emergency patients in Switzerland, a retrospective cross-sectional analysis

Journal:	BMJ Open		
Manuscript ID	bmjopen-2017-020388.R1		
Article Type:	Research		
Date Submitted by the Author:	27-Mar-2018		
Complete List of Authors:	Chmiel, C; Universitat Zurich, Institute of Primary Care Reich, Oliver; Helsana Group, Department of Health Sciences Signorell, Andri; Helsana Group, Department of Health Sciences Neuner-Jehle, Stefan; Universitat Zurich, Institute of Primary Care Rosemann, Thomas; Universitat Zurich, Institute of Primary Care Senn, Oliver; Universitat Zurich, Institute of Primary Care		
Primary Subject Heading :	Health services research		
Secondary Subject Heading:	Medical management, Cardiovascular medicine, Diagnostics		
Keywords:	- Elective coronary angiography, - Managed care, - Inappropriate, - Voluntary health care plans, - Limited access insurance models, - Non-invasive ischemia testing		

SCHOLARONE™ Manuscripts

1	Effects of managed	care on the p	roportion of	inappropriate e	elective diagnostic
---	--------------------	---------------	--------------	-----------------	---------------------

- 2 coronary angiographies in non-emergency patients in Switzerland, a
- 3 retrospective cross-sectional analysis

- 6 Corinne Chmiel, PD Dr. med.^{1§}, Oliver Reich, PhD², Andri Signorell MSc³, Stefan
- Neuner-Jehle, Dr. med. MPH¹, Thomas Rosemann, Prof. Dr. med. PhD⁴, Oliver Senn
- 8 Prof. Dr. med. MPH⁵

- ¹Research Associate, ⁴Professor, Head of Department, ⁵Vice Director Institute of
- 11 Primary Care, University of Zurich, Zurich, Switzerland
- ²Head of Department, ³Statistician Department of Health Sciences, Helsana Group,
- 13 Zurich, Switzerland

- 15 § Corresponding author:
- University Hospital Zürich, Institute of Primary Care, University of Zurich,
- 17 Pestalozzistrasse 24, CH-8091 Zürich, Switzerland
- 18 Email: corinne.chmiel@usz.ch
- 19 Tel: 0041 44 255 98 55
- 20 Fax: 0041 44 255 90 97
- 22 Word count : 3533

Abstract

- 24 Objective
- 25 Guidelines recommend non-invasive ischemia testing (NIIT) for the majority of
- 26 patients with suspected ischemic heart disease in a non-emergency setting. A
- 27 substantial amount of these patients undergoes diagnostic coronary angiography
- 28 (CA) without therapeutic intervention inappropriately due to lacking preceding NIIT.
- The aim of this study was to evaluate the effect of voluntary health care models with
- 30 limited access on the proportion of patients without NIIT prior to elective purely
- 31 diagnostic CA.
- 32 <u>Design:</u>
- 33 Retrospective cross-sectional analysis of insurance claims data from 2012 to 2015.
- Data included claims of basic and voluntary health care models from approximately
- 1.2 million patients enrolled with the Helsana Insurance Group. Voluntary health care
- models with limited health access are divided into gate keeping (GK) and managed
- care (MC) capitation models. Inclusion criteria: patients undergoing CA. Exclusion
- criteria: Patients <18 years, incomplete health insurance data coverage, acute
- 39 cardiac ischemia and emergency procedures, therapeutic CA (coronary
- angioplasty/stenting or coronary artery by-pass grafting). The effect of voluntary
- 41 health care models on the proportion of NIIT undertaken within two months before
- diagnostic CA was assessed by means of multiple logistic regression analysis,
- 43 controlled for influencing factors.
- 44 Results
- 45 9173 patients matched in- and exclusion criteria. 33.2% (3044) did not receive NIIT
- before CA. MC was independently associated with a higher proportion of NIIT
- 47 (p<0.001, OR 1.17, CI 1.045 1.312), when additionally controlled for demographics,
- 48 insurance coverage, inpatient treatment, cardiovascular medication, chronic

49	comorbidities, high-risk status (patients with therapeutic cardiac intervention 1 month
50	after or 18 months prior to diagnostic CA). GK models showed no significant
51	association with the rate of NIIT (p=0.07, OR 1.11, CI 0.991 - 1.253).
52	Conclusions
53	In a non-gate keeping health care system voluntary MC health care models with
54	capitation are able to reduce inappropriate use of diagnostic CA stronger than GK or
55	basic models.
56	
57	
58	Article summary
59	- Highly relevant topic concerning inappropriate use of a potentially harmful and
60	expensive procedure such as the CA
61	- Only scarce data on non-emergency CA exists in literature
62	- Data originates from a single health insurance group in Switzerland, although
63	one of the largest in the country, including data on health insurance claims
64	from approximately 1.2 million patients
65	- No data on socioeconomic status and clinical information is available
66	Key Words
67	Key Words
68	- Elective coronary angiography
69	- Managed care
70	- Gate keeping
	la proposaciona

- Inappropriate
- Voluntary health care models
- Limited access insurance models
- 74 Non-invasive ischemia testing

Introduction

Existing guidelines ¹⁻⁷ recommend non-invasive ischemia testing (NIIT) for the majority of patients with suspected ischemic heart disease in a non-emergency setting. Nevertheless, a substantial amount of these patients undergo diagnostic coronary angiography (CA) without therapeutic intervention inappropriately, and are therefore exposed to unnecessary risks without any clinical benefit 8-15. In a non-gate keeping health care system such as Switzerland, hardly any steering mechanisms exist to ensure that potentially harmful and expensive procedures are only performed in case of correct indication. The admitting physician (mainly general practitioner or cardiologist) usually sets the indication for the intervention and the performing invasive centers rarely decline assigned patients due to economic reasons or in order not to disagree with the admitting physician. Besides the basic healthcare models, offering unlimited access to almost all sectors of the health care system including specialist and emergency care, alternative voluntary health care models with various degrees of restriction in exchange to premium reduction can be chosen from. These voluntary health care models can be summarized into two main groups: 1) gate keeping (GK) models with steering mechanisms, such as basic consultation of an insurance hotline for example, and 2) managed care (MC) models with capitation. Previous studies showed a lower prevalence of potentially inappropriate medication use in elderly patients and a lower disease specific hospitalization rate in chronically ill patients enrolled in a MC model compared to non-MC patients ^{16 17}. No data on the association between NIIT and various types of health care models in Switzerland exist. The aim of this study was therefore to evaluate the effect of voluntary GK or MC health care models on the proportion of patients without NIIT prior to elective purely diagnostic CA without therapeutic intervention. The study includes a retrospective

analysis of insurance claims data on diagnostic procedures undertaken within two months before CA depending on the health care model.

Materials and Methods

Setting

Swiss residents are obliged to enroll in a basic health care model, which covers all costs besides deductibles. Depending on the model chosen, annual deductibles for adults vary between 300 and 2500 Swiss Francs. A patient copayment of 10% of all costs up to a maximum of 700 Swiss Francs per year is payable independent of the chosen health care model. Currently residents can chose a basic health care model from 53 different insurance companies. In general, in Switzerland no gate-keeping system exists, meaning that patients have unlimited access to all healthcare providers, unless they are voluntarily insured in a limited access model. Patients agree to a restriction of choice or limited access in exchange of lower premiums. In such limited access models, the general practitioner or an insurance telephone hotline have to be consulted before contacting a specialist or another institution such as a hospital. In case of emergency, this regulation is overruled. In Switzerland, the currently existing limited access models can be summarized into two types of models: 1) GK models with steering mechanisms, such as prior consultation of a telemedicine center for example, and 2) MC models with capitation. In the capitation system, the health insurance company reimburses the health care providers, usually physician networks, with a set amount for each enrolled patient assigned to them per period of time, whether or not that person seeks care. The remuneration is based on the average expected health care utilization of each individual patient, with greater payment for patients with significant medical history or chronic conditions. Compared

to other health care systems, the Swiss system is more inpatient treatment oriented
due to co-financing of inpatient treatments by governmental institutions

Subjects, data collection and measurements

- Data for this study included health insurance claims from approximately 1.2 million
- patients, which live all over Switzerland and were enrolled with the Helsana Group.
- Data on patients undergoing CA in the years 2012 to 2015 were retrospectively
- analyzed. Detailed TARMED (Standard billing rate for outpatient medical care in
- Switzerland, version 2014) and Diagnosis Related Groups (DRG, version 2012)
- positions are specifoed in the Supplemental Material.

137 Inclusion criteria

- Diagnostic CA performed in the years 2012 to 2015. If in this time interval
 patients received more than one CA, only the first CA was taken into
 consideration.
- 141 Exclusion criteria
- incomplete insurance data coverage 18 months before and/or 1 month after

 CA (due to e.g. change of insurance company, military services, death)
- Patients <18 years
- Acute cardiac ischemia and/or emergency procedures
- Therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting)

148 Measurements

- Patient characteristics: sex, age, language area and type of insurance coverage (deductible class, supplementary private hospital insurance, MC health care model)
 - Setting of CA: inpatient or outpatient

153	- NIIT performed within two months prior to CA (stress-ECG, echocardiography,
154	stress echocardiography, scintigraphy, computed tomography, cardiac MRI)
155	- Cardiovascular Medication grouped according to Anatomical-Therapeutic-
156	Chemical-Classification (ATC) 18
157	o Group 1: Aspirin, platelet aggregation inhibitors
158	o Group 2: statins, lipid modifying agents
159	o Group 3: antihypertensives, diuretics, beta blocking agents, calcium
160	channel blockers, agents acting on the renin-angiotensin system
161	o Group 4: antidiabetics
162	o Group 5: antianginous drugs
163	o Gruop 6: antithrombotics
164	 Number of chronic conditions according to Pharmaceutical cost groups PCG ¹⁹
165	20
166	o Group 1: pcg_n < 3 0, 1 or 2 PCGs
167	o Group 2: pcg_n < 5 3 to 4 PCGs
168	o Group 3: pcg_n < 7 5 to 6 PCGs
169	Group 4: pcg_n ≥ 7 7 or more PCGs
170	Sensitivity Analysis with high-risk patients
171	We performed a sensitivity analysis of our data by defining a subgroup of patients as
172	high-risk with supposed cardiac disease, if having received therapeutic cardiac
173	intervention/diagnosis within one month after and/or 18 months prior to diagnostic
174	CA.
175	
176	Patient and public involvement
177	Neither patients nor the public were involved in the study design.
178	

Processing and analyzing data

Data was checked for eligibility and completeness and subjected to a set of predefined plausibility tests. These included checks for contradictory data, duplication and plausibility of time measurements.

Statistical analysis

Descriptive statistical techniques were used, to provide a general profile of the study population and grouped into patients with non-limited versus limited access health care models, consisting of the two subgroups GK and MC. These data were presented as means in the case of continuous variables and as percentages in case of categorical variables. Differences with respect to age, sex, deductible class, supplementary private hospital insurance coverage, language area, inpatient CA, cardiac medication class according to ATC, number of chronic medical conditions identified using PCGs and high-risk status (patients having received therapeutic cardiac intervention/diagnosis within one month after and/or 18 months prior to diagnostic CA) were analyzed with a nonparametric analysis of variance (Kruskal-Wallis test for continuous variables and chi-square tests for categorical variables). We performed a logistic regression analysis to evaluate the independent association between receiving NIIT within two months prior to CA and the various health care models. In order to assess patient-level effects the following additional independent variables were included in the models: age, sex, deductible class, supplementary private hospital insurance coverage, language area, inpatient CA, cardiac medication class according to ATC, number of chronic medical conditions identified using PCGs and high-risk status. The strength of associations was measured by the odds ratio (OR) and the respective 95% confidence intervals (CI). The level of significance was

_	
204	set
205	21)
206	<u>Eth</u>
207	Acc
208	nee
209	Sin
210	
211	
212	Res
213	Por

set at 0.05. All statistical analyses were performed using R version 3.3.1 (2016-06-

21) (R Foundation for Statistical Computing, Vienna, Austria) ^{21 22}.

Ethics approval

According to the national ethical and legal regulation, an ethical approval was not needed. Permission to access the study data was provided by the Helsana Group.

Since data was anonymized, no consent of patients was required.

Results

Population

During the observed period a total of 19'032 therapeutic CA performed on 14'833 patients were registered in the Helsana data warehouse. 12'078 CA were eligible for analysis. According to the exclusion criteria (multiple exclusion criteria possible per person), we excluded 5 patients since they were under the age of 18 years, 828 patients due to incomplete coverage of health insurance data during the necessary observation period, 360 emergency procedures, 1'922 therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting). In total, 9'173 patients remained for analysis.

The descriptive statistics of the study population are listed in Table 1. From the 9'173 patients representing the study population 5'587 were male (60.9%, mean age 66.4 years) and 3'586 were female (39.1%, mean age 68.7 years).

Table 1 Descriptive statistics of the study population grouped into non-limited and limited access health care models (GK and MC)

				Limited access (n=3'915)					
				GK (n=1'816)		MC (n=2'09	99)		
	No NIIT (n=1'818)	With NIIT (n=3'440)		No NIIT (n=574)	With NIIT (n=1'242)	No NIIT (n=652)	With NIIT (n=1'447)		
High-Risk (= 1)	1'006	1'690	***	287	577	306	644		
Age (mean)	68.1 (12.8)	67.6 (10.9)	**	66.4 (12.5)	66.9 (10.6)	66.6 (13.1)	66.6 (11.4)		
Sex (fem)	738	1'351		213	483	254	547		
Deductible				Gr					
300	1'262	2'355		357	743	442	962		
500	394	749		134	310	116	290		
1000	45	71		26	65	28	48		
1500	59	127		24	51	23	55		
2000	5	14		2	14	3	16		
2500	53	124		31	59	40	76		

Private	493	925		120	288		142	316	
Latin	541	1'066		195	466		55	116	
Inpatient	1'166	1'765	***	357	584	***	441	798	***
ATC									
1	704	1'738	***	219	648	***	241	732	***
2	576	1'216	**	175	465	**	195	512	*
3	1'114	2'192		316	755	**	365	931	***
4	277	510		72	152		80	185	
5	281	544		89	162		79	178	
6	1'038	2'429	***	319	840	***	348	985	***
PCG			**				7/1		
<3	434	843		175	372		203	444	
3-4	634	1'333		200	474		221	557	
5-6	467	872		145	295		150	304	

>6	283	392	54	101	78	142

NIIT: Non-invasive ischemia testing. GK: Gate keeping, MC: Managed care: Deductible class in Swiss Francs. Private: supplementary private hospital insurance, Latin: French or Italian part of Switzerland compared to German part. CA: coronary angiography, ATC: Anatomical-Therapeutic-Chemical-Classification group 1 = Aspirin, platelet aggregation inhibitors, 2 = statins, lipid modifying agents, 3 = antihypertensives, diuretics, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system, 4 = antidiabetics, 5 = antianginous drugs, 6: antithrombotics, PCG: number of chronic conditions according to pharmaceutical cost groups. High-risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA. Significance no NIIT vs with NIIT within nonlimited access and limited access group: *** p<0.0001, **p<0.001, *p<0.001.

Patients insured in basic health care models were slightly older (67.7 (11.6) vs. 66.6 (11.6) years, p<0.0001), chose the lowest possible deductible of 300 Francs more often (3'617 (68.8%) vs. 2'504 (64.0%), p<0.001), were enrolled in a supplementary private hospital insurance more often (1'418 (27.0%) vs. 866 (22.1%), p<0.0001), had more antidiabetics (787 (15%) vs 489 (12.5%), p<0.0001) and antianginal medication (825 (15.7%) vs 508 (13.0%), p<0.0001), more PCGs (4.1 (2.1) vs. 3.6 (2.0), p<0.0001) and had more often a high-risk status (2'696 (51.3%) vs. 1'814 (46.3%), p<0.0001), compared to patients insured in limited access models. Concerning the other patient characteristics, no differences existed.

Non-invasive ischemia testing

488 (33.8 %) of patients without NIIT had a conventional ECG prior to CA, in the high-risk population this was the case in 722 (45.2%) (p<0.0001). The most NIITs stress-ECG + transthoracic echocardiography were performed significantly more often before CA in patients insured in limited access compared to non-limited access models (1'750 (44.7%) vs. 2'039 (38.8 %) p<0.0001, and 2'044 (52.2%) and 2'528 (48.1%), p<0.0001). The remaining types of NIIT were rarely performed and only showed a significant difference in the use of scintigraphy (non-limited 131 (2.5%) vs. limited access models 64 (1.6%), p<0.001).

Determinants for non-invasive ischemia testing

Patients with MC models were 17% significantly more likely to receive NIIT before CA compared to patients with non-limited models, when controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high-risk status (OR 1.17, p<0.001). GK models did not show any significant influence on the chance of receiving NIIT

(OR 1.11, p=0.071). The distribution of NIIT performed according to health care model can be appreciated in Figure 1.

Figure 1: Distribution of NIIT performed according to health care model.

OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high-risk status. * p<0.001 (OR 1.17) for managed care model compared to non-limited access model (Reference).

Following determinants were also independently significantly associated with receiving NIIT: the use of platelet aggregation inhibitors, antithrombotic and antihypertensive medication, being supplementary privately insured and a deductible of 2000 SFR. Following determinants were significantly associated with not receiving NIIT: high-risk status, a high number of chronic comorbidities as well as inpatient treatment (Table 2).

Table 2: Determinants for receiving non-invasive ischemia testing before coronary

277 <u>angiography</u>

278		CI	OR	Sig
279	Age (years)	0.998 - 1.007	1.003	
280	Sex (female)	0.967 - 1.166	1.062	
281	Deductible Class (Swiss Francs, Refe	rence 300)		
282	500	0.912 - 1.141	1.020	
283	1000	0.667 - 1.120	0.865	
284	1500	0.841 - 1.374	1.075	
285	2000	1.082 - 4.381	2.177	*

286	2500	0.809 - 1.289	1.022	
287	Private	1.025 - 1.267	1.140	*
288	French or Italian part of Switzerland	0.841 - 1.044	0.937	
289	Inpatient CA	0.540 - 0.664	0.599	***
290	ATC group			
291	1	1.251 - 1.620	1.423	***
292	2	0.922 - 1.135	1.023	
293	3	1.002 - 1.218	1.104	*
294	4	0.851 - 1.115	0.974	
295	5	0.874 - 1.130	0.994	
296	6	1.034 - 1.356	1.184	*
297	PCG (reference <3)			
298	<5	0.940 - 1.192	1.058	
299	<7	0.809 - 1.064	0.928	
300	>=7	0.624 - 0.881	0.742	***
301	Limited access models (reference no	n-limited access)		
302	Managed Care	1.045 - 1.312	1.171	**
303	Gate Keeping	0.991 - 1.253	1.114	
304	High-risk cardiac status	0.046443 0.836	***	
305	CI: confidence interval, OR: odds ratio,	Sig: significance: **	* p<0.0001, *	* p<0.001
306	*p<0.01, Private: supplementary private	e hospital insurance,	CA: coronary	/
307	angiography, ATC: Anatomical-Therape	eutic-Chemical-Clas	sification grou	ıp 1 =
308	Aspirin, platelet aggregation inhibitors,	2 = statins, lipid mod	difying agents	, 3 =
309	antihypertensives, diuretics, beta block	ing agents, calcium	channel block	ers, agents
310	acting on the renin-angiotensin system,	, 4 = antidiabetics, 5	= antiangino	us drugs, 6:
311	antithrombotics, PCG: number of chron	ic conditions accord	ling to pharma	aceutical cost
				15

groups. High-risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA.

Discussion

In our study population of elective CA with no therapeutic consequence (no coronary angioplasty/stenting or coronary artery bypass grafting) one third did not receive NIIT before diagnostic CA. MC was independently significantly associated with a higher proportion of NIIT when additionally controlled for potential confounders. GK models showed no significant association with the rate of NIIT.

Effects of limited access health care models on treatment quality

In our study, emergency CA were excluded and the study population consisted of patients undergoing purely diagnostic elective CA with no therapeutic consequence (e.g. no coronary angioplasty/stenting or coronary artery by-pass grafting). The study population therefore represents a selection of patients with at least stable CHD or no CHD at all. From a previous study among this selection of patients we know, that 37.5% did not receive any NIIT at all before elective CA with no therapeutic consequence, suggesting a substantial overuse of a potentially harmful and inappropriate diagnostic intervention ¹². It has been assumed that patients insured in limited access health care models undergo less diagnostic procedures or interventions due to budget considerations, especially in capitated health care models. In our study, this hypothesis is clearly refuted. Patients with stable angina pectoris insured in limited access health care models underwent a more appropriate diagnostic pathway than regularly insured patients did, meaning in a stable clinical situation they were subjected to significantly more non-invasive diagnostic testing,

therefore reducing inadequate CA. Our findings are in line with another study from the Swiss health care system, which also showed higher referral rates among MC patients compared to patients insured in basic health care models ²³. One reason for that finding could be that general practitioners in most networks are forced to consider evidence based guidelines, which is not mandatory for general practitioners which are not member of a network. Other studies showed that being insured in MC models is associated with a survival benefit by promoting better preventive and higher quality of care ²⁴⁻²⁶. Especially among Medicare beneficiaries, which are prone to multimorbidity, this effect has been shown ²⁷. These models have also shown lower prevalence of potentially inappropriate medication use in elderly patients and a lower disease specific hospitalization rate in chronically ill patients 16 17. Our study raises the question why patients in limited access health care models receive a more appropriate diagnostic pathway in this clinical situation of stable angina pectoris. There has been evidence for and against the theory that patients enrolled in a MC health care model are healthier due to biased selection ²⁸⁻³⁷ and commercial considerations of the MC insurer ^{38 39}. In our study population, patients insured in limited access models showed some evidence of being healthier than regularly insured patients. Nevertheless being insured only in MC but not GK models was independently associated with a higher rate of NIIT, controlled for all the differences in patient characteristics. It is clear that physicians participating in MC models are obliged to keep diagnostic and treatment costs as low as possible while keeping up with quality concerns. One could therefore argue that it is cheaper to not to choose a diagnostic detour over NIIT instead of choosing the straight forward way of sending a patient to the more invasive CA, which offers a clear answer to an uncertain clinical situation including the option of therapeutic action. It seems that MC health care providers have understood what Meara et al. have summed up

accurately: "Reductions in spending for patients must be a result of decreases in the provision of services. If these are needed services, quality of care will decline.

Alternatively, quality of care might be higher in low expenditure areas if differences in spending result from reductions in unnecessary or inappropriate services ⁴⁰". Besides this intuitive statement there has been scientific evidence that a diagnostic detour is worthwhile taking, since it sums up in reduced peri and post interventional costs without loss in quality ¹¹. Our study is not able to answer the questions why patients in limited access models received a more appropriate diagnostic approach. One can only hypothesize that a more rigorous coordination of care, as performed in the MC models, is straighter forward and the indication for invasive and expensive diagnostic procedures is more thoroughly scrutinized.

Determinants for NIIT

Even though simple echocardiography with no stress testing does not actually qualify as a NIIT, we chose to include this diagnostic procedure due to following considerations: some cardiologists might argue that patients with dyskinesia in simple echocardiography are likely to have relevant coronary pathology therefore offering an argument for CA besides the clinical evaluation. Our theory is supported by the "2014 ESC/EACTS Guidelines on Myocardial Revascularization which state: "regional wall motion abnormalities may be detected in simple echocardiography, which increase the likelihood of coronary artery disease". Since the inclusion of this additional test leads to underestimation of "real" NIIT performed, the findings only strengthen our hypothesis.

Since our study lacks clinical data, only indirect hints by means of PCG and ATC codes as well as other confounders are available to assess clinical reasoning. The association between the use of platelet aggregation inhibitors or antithrombotic

agents and antihypertensive medication with receiving NIIT before CA suggest a reasonable deliberation in the sense of estimating pretest probability when deciding on optimal diagnostic strategy. The same counts for the association of high-risk status and a larger number of chronic comorbidities as determinants for not receiving NIIT prior to elective CA. This finding is consistent with two US studies indicating that risk stratification was performed, considering the higher likelihood of a coronary pathology in patients with known coronary heart disease ^{8 10}. In our study, also non-clinical factors seem to influence decision-making processes concerning diagnostic pathways, reflected by the findings that being privately insured and a deductible of 2000 SFR were positively and inpatient treatment negatively independently associated with NIIT.

As previously observed in another Swiss study analyzing inappropriate use of

As previously observed in another Swiss study analyzing inappropriate use of arthroscopic meniscal surgery in degenerative knee disease ⁴¹, a substantial amount of the patients in our sample underwent CA as inpatients in contrast to other health care settings. This finding is most likely explained by differences in the organization of the health care system in Switzerland. Here regional governments subsidize inpatient treatment covering approximately 50% of total costs, and patients with supplementary private insurance receive a substantially higher reimbursement when treated as inpatients. Nevertheless, in the regression analysis with the outcome proportion of NIIT, we controlled for potential confounders, such as inpatient treatment as well. The results therefore seem robust concerning the question whether limited access health care models have a significant impact on the appropriateness of the diagnostic approach.

Reinforcing quality control mechanisms in a non-gate keeping health care system

Besides the existing voluntary steering mechanisms such limited access health care models guided by patient's preferences only, more alternative steering mechanisms have to be implemented in non-gate keeping health care systems, in order to minimize the influence of non-clinical factors on medical decision making, which might lead to inappropriate and possibly dangerous health care utilization as well as increasing expenditures. A positive example for alternative steering mechanisms is the implementation of national registries ⁴² combined with quality initiatives, such as the in 2009 published Appropriate Use Criteria for Coronary Revascularization 9 42 43. In 2011, the registry started giving feedbacks on the participating hospital's performance concerning appropriateness of CA including a benchmarking against other participating institutions. At the same time the American Board of Internal Medicine's Choosing Wisely initiative launched national quality improvement campaigns, identifying CA appropriateness as a key area for intervention 44. As a consequence insurance companies incorporated measures of CA appropriateness into pay-for-performance programs ⁴⁵ and reimbursement was declined for certain CA identified as inappropriate ⁴⁶. The combination of implementing national registries combined with quality initiatives had been proven amazingly effective, showing a decrease of non-acute CA classified as inappropriate from 26.2% to 13.3% 47. In Switzerland currently no registries on CA exist, hence other solutions for influencing treatment pathways have to be developed, besides offering voluntary limited access health care models. A possible alternative solution to the conundrum of reducing costs without cutting quality seems hence to be paying for outcomes instead of volume. As the findings of our study suggest, a possible approach is to raise the market share of MC to such a volume that it might also affect care for fee-for-service patients 40. As Meara et al have summarized, the effects have been show to play in a variety of ways: more MC in a market might lower expenditures by reducing the

number of specialists, and thereby the number of specialists' services provided ^{48 49} by encouraging more conservative practice patterns ^{48 49}, or by slowing the diffusion of more costly technologies ^{48 50}.

Strengths and limitations

Only scarce data on non-emergency CA exists in literature. The only data found originates from the US among Medicare as well as commercially insured patients and from Switzerland, both non-gate keeping health care systems. Whether the proportion of inappropriate diagnostic CA from our study can be translated to other non-gate keeping health care systems is difficult to estimate, since substantial variation in the proportion of non-acute PCIs considered inappropriate across hospitals can be found, ranging from about 6% to 70% 8 10 14 15 47. From a previous study from Switzerland 12 similar proportions were found, suggesting generalizability of our data. The current study seems even more representative than the previous Swiss study, since it included data over a longer time-period with consecutively larger amount of patients and corresponding data. Since the study is based on insurance claims data, no data on socioeconomic status and clinical information is available. Given that this is a cross-sectional observational study, rather than an interventional one, the only conclusions that we can draw are of association rather than causation. Due to the study design, unfortunately no estimations on clinical outcome parameters can be made. For example, in order to explore clinical appropriateness, the proportion of CA's avoided by performing NIIT would be of great interest. As a substitute for clinical data, ATC and PCG are used, offering only indirect information on comorbidities. On the other hand PCGs represent a strength, since they have been shown to directly correlate with associated health care costs ¹⁹. Due to data structure, it is not possible to distinguish between CT angiography (including

intravenous contrast) and CT without intravenous contrast. Therefore, all CTs of the chest were included in analysis. Since the inclusion of this broader NIIT definition leads to underestimation of "real" NIIT performed, the findings only strengthen our hypothesis.

Conclusions

ce inappropriate . In a non-gate keeping health care system voluntary MC health care models with capitation are able to reduce inappropriate use of diagnostic CA stronger than GK or basic models.

References

- 1. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS quideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 2012;126(25):3097-137. doi: 10.1161/CIR.0b013e3182776f83
- 2. Skinner JS, Smeeth L, Kendall JM, et al. NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Heart 2010;96(12):974-8. doi: 10.1136/hrt.2009.190066
- 3. Chest Pain of Recent Onset: Assessment and Diagnosis of Recent Onset Chest Pain or Discomfort of Suspected Cardiac Origin, London2010.
- 4. Task Force M, Montalescot G, Sechtem U, et al. 2013 ESC guidelines on the management of stable coronary artery disease; the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European heart journal 2013;34(38):2949-3003. doi: 10.1093/eurheartj/eht296
- 5. Archbold RA. Comparison between National Institute for Health and Care Excellence (NICE) and European Society of Cardiology (ESC) guidelines for the diagnosis and management of stable angina: implications for clinical practice. Open Heart 2016;3(1):e000406. doi: 10.1136/openhrt-2016-000406
- 6. Henderson RA, O'Flynn N, Guideline Development G. Management of stable angina: summary of NICE guidance. Heart 2012;98(6):500-7. doi: 10.1136/heartinl-2011-301436
- 7. N OF, Timmis A, Henderson R, et al. Management of stable angina: summary of NICE guidance. BMJ 2011;343:d4147. doi: 10.1136/bmj.d4147
- 8. Lin GA, Dudley R, Lucas FL, et al. FRequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. JAMA 2008;300(15):1765-73. doi: 10.1001/jama.300.15.1765
- 9. Patel MR, Dehmer GJ, Hirshfeld JW, et al. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: A Report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology: Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. Circulation 2009;119(9):1330-52. doi: 10.1161/CIRCULATIONAHA.108.191768
- 10. Topol EJ, Ellis SG, Cosgrove DM, et al. Analysis of coronary angioplasty practice in the United States with an insurance-claims data base. Circulation 1993;87(5):1489-97. doi: 10.1161/01.cir.87.5.1489
- 11. Shaw LJ, Hachamovitch R, Berman DS, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group, Journal of the American College of Cardiology 1999:33(3):661-9.
- 12. Chmiel C, Reich O, Signorell A, et al. Appropriateness of diagnostic coronary angiography as a measure of cardiac ischemia testing in non-emergency patients - a retrospective crosssectional analysis. PloS one 2015;10(2):e0117172. doi: 10.1371/journal.pone.0117172
- 13. Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. New Engl J Med 2007;356(15):1503-16. doi: DOI 10.1056/NEJMoa070829
- 14. Chan PS, Patel MR, Klein LW, et al. APpropriateness of percutaneous coronary intervention. JAMA 2011;306(1):53-61. doi: 10.1001/jama.2011.916
- 15. Bradley SM, Maynard C, Bryson CL. Appropriateness of Percutaneous Coronary Interventions in Washington State. Circ-Cardiovasc Qual 2012;5(4):445-53. doi: 10.1161/Circoutcomes.111.964320
- 16. Reich O, Rosemann T, Rapold R, et al. Potentially Inappropriate Medication Use in Older Patients in Swiss Managed Care Plans: Prevalence, Determinants and Association with Hospitalization. PloS one 2014;9(8) doi: ARTN e105425 10.1371/journal.pone.0105425
- 17. Huber CA, Reich O, Fruh M, et al. Effects of Integrated Care on Disease-Related Hospitalisation and Healthcare Costs in Patients with Diabetes, Cardiovascular Diseases and Respiratory

- Huber CA, Szucs TD, Rapold R, et al. Identifying patients with chronic conditions using pharmacy data in Switzerland: an updated mapping approach to the classification of medications. BMC public health 2013;13:1030. doi: 10.1186/1471-2458-13-1030
- 19. Lamers LM, van Vliet RC. The Pharmacy-based Cost Group model: validating and adjusting the classification of medications for chronic conditions to the Dutch situation. *Health policy* 2004;68(1):113-21. doi: 10.1016/j.healthpol.2003.09.001
- 20. Huber CA, Schneeweiss S, Signorell A, et al. Improved prediction of medical expenditures and health care utilization using an updated chronic disease score and claims data. *J Clin Epidemiol* 2013;66(10):1118-27. doi: 10.1016/j.jclinepi.2013.04.011
- 21. (2015) RCT. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. [Available from: http://www.R-project.org/.
- 22. DescTools: Tools for descriptive statistics. R package version 0.99.15 [program]: Signorell. A. , 2016.
- Tandjung R, Morell S, Hanhart A, et al. Referral determinants in Swiss primary care with a special focus on managed care. PloS one 2017;12(11):e0186307. doi: 10.1371/journal.pone.0186307
- 24. DeLaet DE, Shea S, Carrasquillo O. Receipt of preventive services among privately insured minorities in managed care versus fee-for-service insurance plans. *J Gen Intern Med* 2002;17(6):451-57. doi: DOI 10.1046/j.1525-1497.2002.10512.x
- 25. Landon BE, Zaslavsky AM, Bernard SL, et al. Comparison of performance of traditional Medicare vs Medicare managed care. *Jama-J Am Med Assoc* 2004;291(14):1744-52. doi: DOI 10.1001/jama.291.14.1744
- 26. Miller RH, Luft HS. HMO plan performance update: an analysis of the literature, 1997-2001. *Health affairs* 2002;21(4):63-86.
- 27. Huesch MD. Long-term impact of Medicare managed care on patients treated for coronary artery disease. *Medical care* 2012;50(1):18-26. doi: 10.1097/MLR.0b013e3182294a20
- 28. Maciejewski ML, Dowd B, Call KT, et al. Comparing mortality and time until death for medicare HMO and FFS beneficiaries. *Health services research* 2001;35(6):1245-65.
- 29. Park E. Informing the debate about curbing Medicare Advantage overpayments. Center on Budget and Policy Priorities 2007
- 30. Call KT, Dowd B, Feldman R, et al. Selection experiences in Medicare HMOs: pre-enrollment expenditures. *Health care financing review* 1999;20(4):197-209.
- 31. Deb P, Trivedi PK. Specification and simulated likelihood estimation of a non-normal treatment-outcome model with selection: Application to health care utilization. *Economet J* 2006;9(2):307-31. doi: DOI 10.1111/j.1368-423X.2006.00187.x
- 32. Mello MM, Stearns SC, Norton EC. Do Medicare HMOs still reduce health services use after controlling for selection bias? *Health Econ* 2002;11(4):323-40. doi: Doi 10.1002/Hec.664
- 33. Cao Z, McGuire TG. Service-level selection by HMOs in Medicare. *J Health Econ* 2003;22(6):915-31. doi: DOI 10.1016/j.healeco.2003.06.005
- Nicholson S, Bundorf K, Stein RM, et al. The magnitude and nature of risk selection in employersponsored health plans. *Health services research* 2004;39(6):1817-U1. doi: DOI 10.1111/j.1475-6773.2004.00320.x
- 35. Chernew M, DeCicca P, Town R. Managed care and medical expenditures of Medicare beneficiaries. *J Health Econ* 2008;27(6):1451-61. doi: DOI 10.1016/j.jhealeco.2008.07.014
- 36. Atherly A, Dowd BE, Feldman R. The effect of benefits, premiums, and health risk on health plan choice in the Medicare program. *Health services research* 2004;39(4):847-64. doi: DOI 10.1111/j.1475-6773.2004.00261.x
- 37. Huesch MD. Managing care? Medicare managed care and patient use of cardiologists. *Health services research* 2010;45(2):329-54. doi: 10.1111/j.1475-6773.2009.01070.x
- 38. Bundorf MK, Schulman KA, Stafford JA, et al. Impact of managed care on the treatment, costs, and outcomes of fee-for-service Medicare patients with acute myocardial infarction. *Health services research* 2004;39(1):131-52.
- 39. Cutler DM, McClellan M, Newhouse JP. How does managed care do it? *Rand J Econ* 2000;31(3):526-48. doi: Doi 10.2307/2600999
- 40. Meara E, Landrum MB, Ayanian JZ, et al. The effect of managed care market share on appropriate use of coronary angiography among traditional medicare beneficiaries. *Inquiry-J Health Car* 2004;41(2):144-58.
- 41. Muheim LLS, Senn O, Fruh M, et al. Inappropriate use of arthroscopic meniscal surgery in degenerative knee disease An observational study from Switzerland. *Acta Orthop* 2017;88(5):550-55. doi: 10.1080/17453674.2017.1344915

- 42. Registry ACoCC. National Cardiovascular Data Registry.
- 43. website JC. Proceedings from the National Summit on Overuse 2012 [updated September 24. Available from: http://www.jointcommission.org/assets/1/6/National Summit Overuse.pdf accessed August 17 2016.
- 44. Interventions. SfCAa. Five Things Physicians and Patients Should Question. [Available from: http://www.choosingwisely.org/societies/society-for-cardiovascular-angiography-andinterventions/ accessed August 17 2016.
- 45. Michigan. BCBSo. Hospital Pay-for-Performance Program. [Available from: https://www.bcbsm.com/content/dam/public/Providers/Documents/value/p4p-hospital-cqiperformance-index-guide.pdf. accessed August 17 2016.
- 46. website. NYSDoH. [Available from: https://www.health.ny.gov/health_care/medicaid/program/update/2013/2013-06.htm#ous. accessed Agust 17 2016.
- 47. Desai N, Bradley S, Parzynski C, et al. Appropriate Use Criteria for Coronary Revascularization and Trends in Utilization, PatientSelection, and Appropriateness of Percutaneous Coronary Intervention - FindingsFrom the NCDR- CathPCI Registry. Circulation 2015;132(23):2278-78.
- 48. Baker LC. Managed care and technology adoption in health care: evidence from magnetic resonance imaging. J Health Econ 2001;20(3):395-421. doi: Doi 10.1016/S0167-6296(01)00072-8
- 49. Heidenreich PA, McClellan M, Frances C, et al. The relation between managed care market share and the treatment of elderly fee-for-service patients with myocardial infarction. American Journal of Medicine 2002;112(3):176-82. doi: Pii S0002-9343(01)01098-1 Doi 10.1016/S0002-9343(01)01098-1
- 50. Cutler DM, Sheiner L. Managed care and the growth of medical expenditures. Nber Fr Hlth Pol Ife ca. Res 1998;1:77-115.

Sources of Funding

This work was supported by the Swiss Academy of Medical Sciences (SAMS), Switzerland. The funding source had no influence on study design; on the collection, analysis, and interpretation of the data; on the writing of the manuscript; and the decision to submit the manuscript for publication.

Competing interests

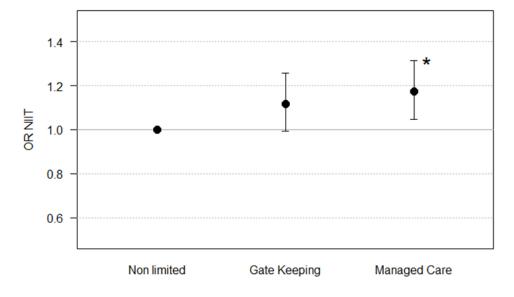
Oliver Reich and Andri Signorell are employed by the Helsana Group. The sponsor had no role in the planning, conducting or submission of this manuscript. These authors declare no conflict of interest. Helsana Group shall have no liability to any third party in respect to the contents of this article. All the other authors have no conflicts of interests or financial disclosures to declare.

Authors Contributions

Conceived and designed the experiments: CC, OR, AS, SNJ, TR, OS. Performed the experiments: CC, OR, AS. Analyzed the data: CC, OR, AS, SNJ, TR, OS. Wrote the paper: CC, edited and approved the paper: CC, OR, AS, SNJ, TR, OS.

Consent for publication

Since data were completely anonymized, no patient consent was necessary.


Availability of data and materials

Individual data cannot be made fully available on the internet because the study is based on claims data of the Helsana Group, the owner of the data. Thus, data underlie data protection and privacy restrictions. These restrictions prohibit the insurer from sharing the collected data. Data analysis was performed within the

premises of the Helsana research group by the statistician AS in collaboration with
the authors OR and CC and administrative permission was received to access de-
identified data by the researchers from the University of Zurich.

Figure Legend

- Figure 1: Distribution of NIIT performed according to health care model.
- OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders
- age, sex, language area, insurance coverage, inpatient treatment, cardiovascular
- 658 medication, number of chronic comorbidities and high-risk status. * p<0.001 (OR
- 659 1.17) for managed care model compared to non-limited access model (Reference).

OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high- risk status. * p<0.001 8 (OR 1.17) for managed care model compared to standard health care plannon-limited access model (Reference).

Supplemental Material

2 Supplemental Methods/Definitions

- 4 1) Inclusion Criteria
- 5 Tarmed 17.071
- 6 17.074
- 7 17.101
- 8 17.109
- 9 17.181
- 10 17.182
- 11 DRG F49D
- 12 F49E
- 13 F49F
- 14 If two coronary angiographies (CA) were performed on the same day at the same
- provider, the intervention is counted once.
- 16 If the CA was performed twice at the same day but different providers the CA counts
- twice (both concerning the inpatients positions (Diagnosis related Groups (DRG)) and
- the outpatient positions (Standard billing rate for outpatient medical care in
- 19 Switzerland (TARMED))
- 20 If during 2012-2015 patients received more than one CA, only the first CA was taken
- 21 into consideration.

1	2) Exclusion Criteria				
2	Acute cardiac ischemia and/or	emergency pr	ocedures	Tarmed	0.2510
3					0.2520
4					0.2540
5					0.2560
6					0.2580
7					35.0610
8				DRG	F41A
9					F41B
10					
11	Therapeutic CA (coronary angio	oplasty/stentir	ng or coronary	y artery by-pa	ass grafting,
12	without myocardial infarction)	Tarmed	17.1110		
13			17.1240		
14		DRG	F15Z		
15			F19Z		
16			F24B		
17			F49A		
18			F49C		
19			F52A		
20			F52B		
21			F54Z		
22			F56A		
23			F56B		
24			F57A		
25			F57B		
26			F58Z		

1		F59A					
2		F59B					
3	Incomplete coverage of mandatory basic health insurance 18 months before and/or 1						
4	month after	r CA					
5	Patients <1	8 years					
6							
7							
8	3) Diagnos	tic Procedures					
9	Tarmed	17.0010: Electrocardiogram (ECG): not considered as NIIT, only in					
10		combination with other NIIT					
11		17.0050: Cardiac intervention with medication under continuous					
12		registration of ECG: not considered as NIIT, only in combination with					
13		another NIIT					
14		17.0060: ECG performed by specialist outside of the practice or					
15		hospital: not considered as NIIT, only in combination with another NIIT					
16		17.0080 and 17.0090: Stress-ECG					
17		17.0210: Echocardiography, transthoracic, qualitative and quantitative					
18		examination of adult					
19		17.0280: Stressechocardiography, physical stress					
20		17.0290: Stressechocardiography, medication stress					
21		31.0260: Scintigraphy physiologically triggered					
22		39.4060: Computed tomography of entire thorax and/or sternoclavicular					
23		joint					
24		39.5100 Heart MRI					
25	DRG	No separate codes available for inpatient diagnostic procedures, only					
26		for therapeutic interventions					

1 4) High risk patients

- 2 Patients having received therapeutic cardiac intervention within one month after or 18
- 3 months prior to diagnostic CA
- 4 Tarmed 0.2510
- 5 0.2520
- 6 0.2540
- 7 0.2560
- 8 0.2580
- 9 35.0610
- 10 17.1110
- 11 17.1240
- 12 And all 18.001until/including 18.0740
- 13 DRG all Chapter F

BMJ Open

Effects of managed care on the proportion of inappropriate elective diagnostic coronary angiographies in non-emergency patients in Switzerland, a retrospective cross-sectional analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020388.R2
Article Type:	Research
Date Submitted by the Author:	19-May-2018
Complete List of Authors:	Chmiel, C; Universitat Zurich, Institute of Primary Care Reich, Oliver; Helsana Group, Department of Health Sciences Signorell, Andri; Helsana Group, Department of Health Sciences Neuner-Jehle, Stefan; Universitat Zurich, Institute of Primary Care Rosemann, Thomas; Universitat Zurich, Institute of Primary Care Senn, Oliver; Universitat Zurich, Institute of Primary Care
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Medical management, Cardiovascular medicine, Diagnostics
Keywords:	- Elective coronary angiography, - Managed care, - Inappropriate, - Voluntary health care plans, - Limited access insurance models, - Non-invasive ischemia testing

SCHOLARONE™ Manuscripts

1	Effects of managed care on	the proportion o	of inappropriate elective diagnostic
---	----------------------------	------------------	--------------------------------------

- 2 coronary angiographies in non-emergency patients in Switzerland, a
- 3 retrospective cross-sectional analysis

- 6 Corinne Chmiel, PD Dr. med.^{1§}, Oliver Reich, PhD², Andri Signorell MSc³, Stefan
- Neuner-Jehle, Dr. med. MPH¹, Thomas Rosemann, Prof. Dr. med. PhD⁴, Oliver Senn
- 8 Prof. Dr. med. MPH⁵

- ¹Research Associate, ⁴Professor, Head of Department, ⁵Vice Director Institute of
- 11 Primary Care, University of Zurich, Zurich, Switzerland
- ²Head of Department, ³Statistician Department of Health Sciences, Helsana Group,
- 13 Zurich, Switzerland

- 15 § Corresponding author:
- University Hospital Zürich, Institute of Primary Care, University of Zurich,
- 17 Pestalozzistrasse 24, CH-8091 Zürich, Switzerland
- 18 Email: corinne.chmiel@usz.ch
- 19 Tel: 0041 44 255 98 55
- 20 Fax: 0041 44 255 90 97

22 Word count: 3627

Abstract

24 Objective

- 25 Guidelines recommend non-invasive ischemia testing (NIIT) for the majority of
- 26 patients with suspected ischemic heart disease in a non-emergency setting. A
- 27 substantial amount of these patients undergoes diagnostic coronary angiography
- 28 (CA) without therapeutic intervention inappropriately due to lacking preceding NIIT.
- The aim of this study was to evaluate the effect of voluntary health care models with
- 30 limited access on the proportion of patients without NIIT prior to elective purely
- 31 diagnostic CA.
- 32 <u>Design:</u>
- 33 Retrospective cross-sectional analysis of insurance claims data from 2012 to 2015.
- Data included claims of basic and voluntary health care models from approximately
- 1.2 million patients enrolled with the Helsana Insurance Group. Voluntary health care
- models with limited health access are divided into gate keeping (GK) and managed
- care (MC) capitation models. Inclusion criteria: patients undergoing CA. Exclusion
- criteria: Patients <18 years, acute cardiac ischemia and emergency procedures,
- therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting).
- 40 The effect of voluntary health care models on the proportion of NIIT undertaken
- within two months before diagnostic CA was assessed by means of multiple logistic
- regression analysis, controlled for influencing factors.
- 43 Results
- 44 9173 patients matched inclusion criteria. 33.2% (3044) did not receive NIIT before
- 45 CA. Compared to basic health care models MC was independently associated with a
- higher proportion of NIIT (p<0.001, OR 1.17, CI 1.045 1.312), when additionally
- 47 controlled for demographics, insurance coverage, inpatient treatment, cardiovascular
- 48 medication, chronic comorbidities, high-risk status (patients with therapeutic cardiac

49	intervention 1 month after or 18 months prior to diagnostic CA). GK models showed
50	no significant association with the rate of NIIT (p=0.07, OR 1.11, CI 0.991 - 1.253).

51 Conclusions

In a non-gate keeping health care system voluntary MC health care models with capitation were associated with a reduced inappropriate use of diagnostic CA compared to basic models.

Strengths and Limitations

- Highly relevant topic concerning inappropriate use of a potentially harmful and expensive procedure such as the CA
 - Only scarce data on non-emergency CA exists in literature originating from different health care settings
 - Data originates from a single health insurance group in Switzerland, although
 one of the largest in the country, including data on health insurance claims
 from approximately 1.2 million patients.
 - No data on socioeconomic status and clinical information is available

Key Words

- Elective coronary angiography
- 68 Managed care
- 69 Gate keeping
- 70 Inappropriate
- 71 Voluntary health care models
- 72 Limited access insurance models
- Non-invasive ischemia testing

74 Introduction

Existing guidelines ¹⁻⁷ recommend non-invasive ischemia testing (NIIT) for the majority of patients with suspected ischemic heart disease in a non-emergency setting. Nevertheless, a substantial amount of these patients undergo diagnostic coronary angiography (CA) without therapeutic intervention inappropriately, and are therefore exposed to unnecessary risks without any clinical benefit 8-15. In a non-gate keeping health care system such as Switzerland, hardly any steering mechanisms exist to ensure that potentially harmful and expensive procedures are only performed in case of correct indication. The admitting physician (mainly general practitioner or cardiologist) usually sets the indication for the intervention and the performing invasive centers rarely decline assigned patients due to economic reasons or in order not to disagree with the admitting physician. Besides the basic healthcare models, offering unlimited access to almost all sectors of the health care system including specialist and emergency care, alternative voluntary health care models with various degrees of restriction in exchange to premium reduction can be chosen from. These voluntary health care models can be summarized into two main groups: 1) gate keeping (GK) models with steering mechanisms, such as basic consultation of an insurance hotline for example, and 2) managed care (MC) models with capitation. Previous studies showed a lower prevalence of potentially inappropriate medication use in elderly patients and a lower disease specific hospitalization rate in chronically ill patients enrolled in a MC model compared to non-MC patients ^{16 17}. No data on the association between NIIT and various types of health care models in Switzerland exist. The aim of this study was therefore to evaluate the effect of voluntary GK or MC health care models on the proportion of patients without NIIT prior to elective purely diagnostic CA without therapeutic intervention. The study includes a retrospective

analysis of insurance claims data on diagnostic procedures undertaken within two

months before CA depending on the health care model.

Materials and Methods

Setting

Swiss residents are obliged to enroll in a basic health care model, which covers all costs besides deductibles. Depending on the model chosen, annual deductibles for adults vary between 300 and 2500 Swiss Francs. A patient copayment of 10% of all costs up to a maximum of 700 Swiss Francs per year is payable independent of the chosen health care model. Currently residents can chose a basic health care model from 53 different insurance companies. In general, in Switzerland no gate-keeping system exists, meaning that patients have unlimited access to all healthcare providers, unless they are voluntarily insured in a limited access model. Patients agree to a restriction of choice or limited access in exchange of lower premiums. In such limited access models, the general practitioner or an insurance telephone hotline have to be consulted before contacting a specialist or another institution such as a hospital. In case of emergency, this regulation is overruled. In Switzerland, the currently existing limited access models can be summarized into two types of models: 1) GK models with steering mechanisms, such as prior consultation of a telemedicine center for example, and 2) MC models with capitation. In the capitation system, the health insurance company reimburses the health care providers, usually physician networks, with a set amount for each enrolled patient assigned to them per period of time, whether or not that person seeks care. The remuneration is based on the average expected health care utilization of each individual patient, with greater payment for patients with significant medical history or chronic conditions. Compared

to other health care systems, the Swiss system is more inpatient treatment oriented
due to co-financing of inpatient treatments by governmental institutions

Subjects, data collection and measurements

- Data for this study included health insurance claims from approximately 1.2 million patients, which live all over Switzerland and were enrolled with the Helsana Group. Data on patients undergoing CA in the years 2012 to 2015 were retrospectively analyzed. Data was considered for analysis if insurance coverage was complete within 18 months before and/or 1 month after CA. 828 patients were not considered due to incomplete coverage of health insurance data during the necessary observation period (due to e.g. change of insurance company, military services, death). Detailed TARMED (Standard billing rate for outpatient medical care in Switzerland, version 2014) and Diagnosis Related Groups (DRG, version 2012) positions are specified in the Appendix 1.
- Inclusion criteria
- Diagnostic CA performed in the years 2012 to 2015. If in this time interval
 patients received more than one CA, only the first CA was taken into
 consideration.
- 144 Exclusion criteria
- Patients <18 years
- Acute cardiac ischemia and/or emergency procedures
- Therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting)
- 149 Measurements
 - Patient characteristics: sex, age, language area and type of insurance coverage (deductible class, supplementary private hospital insurance, MC

152	health care model)
153	- Setting of CA: inpatient or outpatient
154	- NIIT performed within two months prior to CA (stress-ECG, echocardiography,
155	stress echocardiography, scintigraphy, computed tomography, cardiac MRI)
156	- Cardiovascular Medication grouped according to Anatomical-Therapeutic-
157	Chemical-Classification (ATC) 18
158	o Group 1: Aspirin, platelet aggregation inhibitors
159	 Group 2: statins, lipid modifying agents
160	o Group 3: antihypertensives, diuretics, beta blocking agents, calcium
161	channel blockers, agents acting on the renin-angiotensin system
162	o Group 4: antidiabetics
163	o Group 5: antianginous drugs
164	Group 6: antithrombotics
165	 Number of chronic conditions according to Pharmaceutical cost groups PCG ¹⁹
166	20
167	Group 1: pcg_n < 3 0, 1 or 2 PCGs
168	o Group 2: pcg_n < 5 3 to 4 PCGs
169	o Group 3: pcg_n < 7 5 to 6 PCGs
170	o Group 4: pcg_n ≥ 7 7 or more PCGs
171	Sensitivity Analysis with high-risk patients
172	We performed a sensitivity analysis of our data by defining a subgroup of patients as
173	high-risk with supposed cardiac disease, if having received therapeutic cardiac
174	intervention/diagnosis within one month after and/or 18 months prior to diagnostic
175	CA.
176	
177	Patient and public involvement

Neither patients nor the public were involved in the study design.

Processing and analyzing data

Data were checked for eligibility and completeness and subjected to a set of predefined plausibility tests. These included checks for contradictory data, duplication and plausibility of time measurements.

Statistical analysis

Descriptive statistical techniques (Table 1) were used, to provide a general profile of the study population and grouped into totally three groups of patients: patients with non-limited and limited access health care models (GK and MC). The descriptive statistics were performed pairwise for each health care model separately. These data were presented as means in the case of continuous variables and as percentages in case of categorical variables.

Differences within the health care models (Appendix 2) with respect to the continuous

variable age were analyzed with a nonparametric analysis of variance Kruskal-Wallis test. The variables with two levels (sex, high-risk status (patients having received therapeutic cardiac intervention/diagnosis within one month after and/or 18 months prior to diagnostic CA), supplementary private hospital insurance coverage, language area, inpatient CA, medication class according to ATC) were analyzed with an exact fisher test. The number of chronic medical conditions identified using PCG and the deductible class were compared with a chi square test.

We performed a logistic regression analysis to evaluate the independent association between receiving NIIT within two months prior to CA and the various health care models (Figure 1 and Table 2). In order to assess patient-level effects, the following additional independent variables were included in the regression analysis: age, sex,

deductible class, supplementary private hospital insurance coverage, language area, inpatient CA, cardiac medication class according to ATC, number of chronic medical conditions identified using PCGs and high-risk status. Goodness of fit measures for the model were: Nagelkerke 0.051, BrierScore 0.213, C-Statistic 0.618. The strength of associations was measured by the odds ratio (OR) and the respective 95% confidence intervals (CI). The level of significance was set at 0.05. All statistical analyses were performed using R version 3.3.1 (2016-06-21) (R Foundation for Statistical Computing, Vienna, Austria) ^{21 22}.

Ethics approval

According to the national ethical and legal regulation, an ethical approval was not needed. Permission to access the study data was provided by the Helsana Group. Since data was anonymized, no consent of patients was required.

Results

Population

During the observed period a total of 19'032 therapeutic CA performed on 14'833 patients were registered in the Helsana data warehouse. 12'078 CA were eligible for analysis. According to the exclusion criteria (multiple exclusion criteria possible per person), we excluded 5 patients since they were under the age of 18 years, 360 emergency procedures, 1'922 therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting). In total, 9'173 patients remained for analysis.

The descriptive statistics of the study population are listed in Table 1. From the 9'173 patients representing the study population 5'587 were male (60.9%, mean age 66.4 years) and 3'586 were female (39.1%, mean age 68.7 years).

Table 1 Descriptive statistics of the study population grouped into non-limited and limited access health care models (GK and MC)

				Limited access (n=3'915)						
				GK (n=1'816)			MC (n=2'099)			
	No NIIT (n=1'818)	With NIIT (n=3'440)		No NIIT (n=574)	With NIIT (n=1'242)		No NIIT (n=652)	With NIIT (n=1'447)		
High-Risk	1'006	1'692	*** 2	287	577	2	306	644	2	
Age (mean)	68.1 (12.8)	67.6 (10.9)	**	66.4 (12.5)	66.9 (10.6)	1	66.6 (13.1)	66.6 (11.4)	1	
Sex (fem)	738	1'351	2	213	483	2	254	547	2	
Deductible			3		,	3			3	
300	1'262	2'355		357	743		442	962		
500	394	749		134	310		116	290		
1000	45	71		26	65		28	48		
1500	59	127		24	51		23	55		
2000	5	14		2	14		3	16		
2500	53	124		31	59		40	76		

Private	493	925		120	288		142	316	
			2			2			2
Latin	541	1'066	2	195	466	2	55	116	2
Inpatient	1'166	1'765	***	357	584	***	441	798	***
ATC 1	704	1'738	***	219	648	***	241	732	***
2	576	1'216	** 2	175	465	**	195	512	2
3	1'114	2'192	2	316	755	**	365	931	***
4	277	510	2	72	152	2	80	185	2
5	281	544	2	89	162	2	79	178	2
6	1'038	2'429	***	319	840	***	348	985	***
PCG			**			3			3
<3	412	768		175	372		203	444	
3-4	624	1342		200	474		221	557	
5-6	478	893		145	295		150	304	
>6	304	437		54	101		78	142	

NIIT: Non-invasive ischemia testing. GK: Gate keeping, MC: Managed care: Deductible class in Swiss Francs. Private: supplementary private hospital insurance, Latin: French or Italian part of Switzerland compared to German part. CA: coronary angiography, ATC:

Anatomical-Therapeutic-Chemical-Classification group 1 = Aspirin, platelet aggregation inhibitors, 2 = statins, lipid modifying agents, 3 = antihypertensives, diuretics, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system, 4 = antidiabetics, 5 = antianginous drugs, 6: antithrombotics (Categorical variable, an individual can be positive for several ATC groups).

PCG: number of chronic conditions according to pharmaceutical cost groups. High-risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA. Significance no NIIT vs with NIIT within non-limited access and limited access group: *** p<0.0001, **p<0.001. *1) Kruskal-Wallis test, *2) Fisher exact test, *3) Chi-Square test, pairwise comparisons between NIIT and no NIIT for each health insurance model separately.

Patients insured in basic health care models were slightly older (67.7 (11.6) vs. 66.6 (11.6) years, p<0.0001), chose the lowest possible deductible of 300 Francs more often (3'617 (68.8%) vs. 2'504 (64.0%), p<0.001), were enrolled in a supplementary private hospital insurance more often (1'418 (27.0%) vs. 866 (22.1%), p<0.0001), had more antidiabetics (787 (15%) vs 489 (12.5%), p<0.0001) and antianginal medication (825 (15.7%) vs 508 (13.0%), p<0.0001), more PCGs (4.1 (2.1) vs. 3.6 (2.0), p<0.0001) and had more often a high-risk status (2'696 (51.3%) vs. 1'814 (46.3%), p<0.0001), compared to patients insured in limited access models (Appendix 2). Concerning the other patient characteristics, no differences existed.

Non-invasive ischemia testing

488 (33.8 %) of patients without NIIT had a conventional ECG prior to CA, in the high-risk population this was the case in 722 (45.2%) (p<0.0001, data not shown). The most NIITs stress-ECG + transthoracic echocardiography were performed significantly more often before CA in patients insured in limited access compared to non-limited access models (1'750 (44.7%) vs. 2'039 (38.8 %) p<0.0001, and 2'044 (52.2%) and 2'528 (48.1%), p<0.0001, data not shown). The remaining types of NIIT were rarely performed and only showed a significant difference in the use of scintigraphy (non-limited 131 (2.5%) vs. limited access models 64 (1.6%), p<0.001, data not shown). The distribution of the non-invasive ischemia testing are depicted in Appendix 3.

Determinants for non-invasive ischemia testing

Patients with MC models were 17% significantly more likely to receive NIIT before CA compared to patients with non-limited models, when controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular

medication, number of chronic comorbidities and high-risk status (OR 1.17, p<0.001).

GK models did not show any significant influence on the chance of receiving NIIT

(OR 1.11, p=0.071). The distribution of NIIT performed according to health care model can be appreciated in Figure 1.

Figure 1: Distribution of NIIT performed according to health care model.

OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high-risk status. * p<0.001 (OR 1.17) for managed care model compared to non-limited access model (Reference).

Following determinants were also independently significantly associated with receiving NIIT: the use of platelet aggregation inhibitors, antithrombotic and antihypertensive medication, being supplementary privately insured and a deductible of 2000 SFR. Following determinants were significantly associated with not receiving NIIT: high-risk status, a high number of chronic comorbidities as well as inpatient treatment (Table 2).

<u>Table 2: Determinants for receiving non-invasive ischemia testing before coronary angiography</u>

287		CI	OR	Sig
288	Age (years)	0.998 - 1.007	1.003	
289	Sex (female)	0.967 - 1.166	1.062	
290	Deductible Class (Swiss Francs, Refe	erence 300)		
291	500	0.912 - 1.141	1.020	
292	1000	0.667 - 1.120	0.865	

293	1500	0.841 - 1.374	1.075	
294	2000	1.082 - 4.381	2.177	*
295	2500	0.809 - 1.289	1.022	
296	Private	1.025 - 1.267	1.140	*
297	French or Italian part of Switzerland	0.841 - 1.044	0.937	
298	Inpatient CA	0.540 - 0.664	0.599	***
299	ATC group 1-6			
300	1	1.251 - 1.620	1.423	***
301	2	0.922 - 1.135	1.023	
302	3	1.002 - 1.218	1.104	*
303	4	0.851 - 1.115	0.974	
304	5	0.874 - 1.130	0.994	
305	6	1.034 - 1.356	1.184	*
306	PCG (reference <3)			
307	<5	0.940 - 1.192	1.058	
308	<7	0.809 - 1.064	0.928	
309	>=7	0.624 - 0.881	0.742	***
310	Limited access models (reference no	n-limited access)		
311	Managed Care	1.045 - 1.312	1.171	**
312	Gate Keeping	0.991 - 1.253	1.114	
313	High-risk cardiac status	0.046443 0.836	***	
314	CI: confidence interval, OR: odds ratio,	Sig: significance: **	* p<0.0001, *	* p<0.001
315	*p<0.01, Private: supplementary private	e hospital insurance,	CA: coronary	/
316	angiography, ATC: Anatomical-Therape	eutic-Chemical-Clas	sification grou	ıp 1 =
317	Aspirin, platelet aggregation inhibitors,	2 = statins, lipid mod	difying agents	, 3 =
318	antihypertensives, diuretics, beta block	ing agents, calcium	channel block	ers, agents
				1 7

acting on the renin-angiotensin system, 4 = antidiabetics, 5 = antianginous drugs, 6: antithrombotics (Categorical variable, an individual can be positive for several ATC groups). PCG: number of chronic conditions according to pharmaceutical cost groups. High-risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA.

Discussion

In our study population of elective CA with no therapeutic consequence (no coronary angioplasty/stenting or coronary artery bypass grafting) one third did not receive NIIT before diagnostic CA. MC was independently significantly associated with a higher proportion of NIIT when additionally controlled for potential confounders. GK models showed no significant association with the rate of NIIT.

Effects of limited access health care models on treatment quality

In our study, emergency CA were excluded and the study population consisted of patients undergoing purely diagnostic elective CA with no therapeutic consequence (e.g. no coronary angioplasty/stenting or coronary artery by-pass grafting). The study population therefore represents a selection of patients with at least stable CHD or no CHD at all. From a previous study among this selection of patients we know, that 37.5% did not receive any NIIT at all before elective CA with no therapeutic consequence, suggesting a substantial overuse of a potentially harmful and inappropriate diagnostic intervention ¹². It has been assumed that patients insured in limited access health care models undergo less diagnostic procedures or interventions due to budget considerations, especially in capitated health care models. In our study, this hypothesis is clearly refuted. Patients with stable angina pectoris insured in limited access health care models underwent a more appropriate

diagnostic pathway than regularly insured patients did, meaning in a stable clinical situation they were subjected to significantly more non-invasive diagnostic testing, therefore reducing inadequate CA. Our findings are in line with another study from the Swiss health care system, which also showed higher referral rates among MC patients compared to patients insured in basic health care models ²³. One reason for the more appropriate diagnostic pathway found in MC patients might be the aspect of membership in a general practitioners network. In most parts of Switzerland, general practitioners can only offer MC insurance models to their patients, if they are member in a general practitioners network. These networks offer evidence-based guidelines, which the general practitioners are obliged to respect when initiating treatment. Depending on the network, more or less rigorous quality control mechanisms exist to check whether the guidelines are followed, when applicable. General practitioners, which are not member in a network, therefore are less bound to evidence based treatment pathways.. Other studies showed that being insured in MC models is associated with a survival benefit by promoting better preventive and higher quality of care ²⁴⁻²⁶. Especially among Medicare beneficiaries, which are prone to multimorbidity, this effect has been shown ²⁷. These models have also shown lower prevalence of potentially inappropriate medication use in elderly patients and a lower disease specific hospitalization rate in chronically ill patients 16 17. Our study raises the question why patients in limited access health care models receive a more appropriate diagnostic pathway in this clinical situation of stable angina pectoris. There has been evidence for and against the theory that patients enrolled in a MC health care model are healthier due to biased selection ²⁸⁻³⁷ and commercial considerations of the MC insurer ^{38 39}. In our study population, patients insured in limited access models showed some evidence of being healthier than regularly insured patients. Nevertheless being insured only in MC but not GK models

was independently associated with a higher rate of NIIT, controlled for all the differences in patient characteristics. It is clear that physicians participating in MC models are obliged to keep diagnostic and treatment costs as low as possible while keeping up with quality concerns. One could therefore argue that it is cheaper to not to choose a diagnostic detour over NIIT instead of choosing the straight forward way of sending a patient to the more invasive CA, which offers a clear answer to an uncertain clinical situation including the option of therapeutic action. It seems that MC health care providers have understood what Meara et al. have summed up accurately: "Reductions in spending for patients must be a result of decreases in the provision of services. If these are needed services, quality of care will decline. Alternatively, quality of care might be higher in low expenditure areas if differences in spending result from reductions in unnecessary or inappropriate services ⁴⁰". Besides this intuitive statement there has been scientific evidence that a diagnostic detour is worthwhile taking, since it sums up in reduced peri and post interventional costs without loss in quality ¹¹. Our study is not able to answer the questions why patients in limited access models received a more appropriate diagnostic approach. One can only hypothesize that a more rigorous coordination of care, as performed in the MC models, is straighter forward and the indication for invasive and expensive diagnostic procedures is more thoroughly scrutinized.

Determinants for NIIT

Even though simple echocardiography with no stress testing does not actually qualify as a NIIT, we chose to include this diagnostic procedure due to following considerations: some cardiologists might argue that patients with dyskinesia in simple echocardiography are likely to have relevant coronary pathology therefore offering an argument for CA besides the clinical evaluation. Our theory is supported by the "2014"

ESC/EACTS Guidelines on Myocardial Revascularization which state: "regional wall motion abnormalities may be detected in simple echocardiography, which increase the likelihood of coronary artery disease". Since our study lacks clinical data, only indirect hints by means of PCG and ATC codes as well as other confounders are available to assess clinical reasoning. The association between the use of platelet aggregation inhibitors or antithrombotic agents and antihypertensive medication with receiving NIIT before CA suggest a reasonable deliberation in the sense of estimating pretest probability when deciding on optimal diagnostic strategy. The same counts for the association of high-risk status and a larger number of chronic comorbidities as determinants for not receiving NIIT prior to elective CA. This finding is consistent with two US studies indicating that risk stratification was performed, considering the higher likelihood of a coronary pathology in patients with known coronary heart disease 8 10. In our study, also nonclinical factors seem to influence decision-making processes concerning diagnostic pathways, reflected by the findings that being privately insured and a deductible of 2000 SFR were positively and inpatient treatment negatively independently associated with NIIT. As previously observed in another Swiss study analyzing inappropriate use of arthroscopic meniscal surgery in degenerative knee disease 41, a substantial amount of the patients in our sample underwent CA as inpatients in contrast to other health care settings. This finding is most likely explained by differences in the organization of the health care system in Switzerland. Here regional governments subsidize inpatient treatment covering approximately 50% of total costs, and patients with supplementary private insurance receive a substantially higher reimbursement when treated as inpatients. Nevertheless, in the regression analysis with the outcome proportion of NIIT, we controlled for potential confounders, such as inpatient

treatment as well. The results therefore seem robust concerning the question whether limited access health care models have a significant impact on the appropriateness of the diagnostic approach.

Reinforcing quality control mechanisms in a non-gate keeping health care system Besides the existing voluntary steering mechanisms such limited access health care models guided by patient's preferences only, more alternative steering mechanisms have to be implemented in non-gate keeping health care systems, in order to minimize the influence of non-clinical factors on medical decision making, which might lead to inappropriate and possibly dangerous health care utilization as well as increasing expenditures. A positive example for alternative steering mechanisms is the implementation of national registries ⁴² combined with quality initiatives, such as the in 2009 published Appropriate Use Criteria for Coronary Revascularization 9 42 43. In 2011, the registry started giving feedbacks on the participating hospital's performance concerning appropriateness of CA including a benchmarking against other participating institutions. At the same time the American Board of Internal Medicine's Choosing Wisely initiative launched national quality improvement campaigns, identifying CA appropriateness as a key area for intervention 44. As a consequence insurance companies incorporated measures of CA appropriateness into pay-for-performance programs ⁴⁵ and reimbursement was declined for certain CA identified as inappropriate ⁴⁶. The combination of implementing national registries combined with quality initiatives had been proven amazingly effective, showing a decrease of non-acute CA classified as inappropriate from 26.2% to 13.3% 47. In Switzerland currently no registries on CA exist, hence other solutions for influencing treatment pathways have to be developed, besides offering voluntary limited access health care models. A possible alternative solution to the conundrum of reducing

costs without cutting quality seems hence to be paying for outcomes instead of volume. As the findings of our study suggest, a possible approach is to raise the market share of MC to such a volume that it might also affect care for fee-for-service patients ⁴⁰. As Meara et al have summarized, the effects have been show to play in a variety of ways: more MC in a market might lower expenditures by reducing the number of specialists, and thereby the number of specialists' services provided ^{48 49} by encouraging more conservative practice patterns ^{48 49}, or by slowing the diffusion of more costly technologies ^{48 50}.

Strengths and limitations

Only scarce data on non-emergency CA exists in literature. The only data found originates from the US among Medicare as well as commercially insured patients and from Switzerland, both non-gate keeping health care systems. Whether the proportion of inappropriate diagnostic CA from our study can be translated to other non-gate keeping health care systems is difficult to estimate, since substantial variation in the proportion of non-acute PCIs considered inappropriate across hospitals can be found, ranging from about 6% to 70% 8 10 14 15 47. From a previous study from Switzerland ¹² similar proportions were found, suggesting generalizability of our data. The current study seems even more representative than the previous Swiss study, since it included data over a longer time-period with consecutively larger amount of patients and corresponding data. Nevertheless, caution should be used when generalizing to larger populations due to the data being limited to only one, even if the largest health insurance company in Switzerland, due to exclusion criteria and the retrospective study design. Since the study is based on insurance claims data, no data on socioeconomic status and clinical information is available. Given that this is a cross-sectional observational study, rather than an interventional one,

the only conclusions that we can draw are of association rather than causation. Due to the study design, unfortunately no estimations on clinical outcome parameters can be made. For example, in order to explore clinical appropriateness, the proportion of CA's avoided by performing NIIT would be of great interest. As a substitute for clinical data, ATC and PCG are used, offering only indirect information on comorbidities. On the other hand PCGs represent a strength, since they have been shown to directly correlate with associated health care costs ¹⁹. Due to data structure, it is not possible to distinguish between CT angiography (including intravenous contrast) and CT without intravenous contrast. Therefore, all CTs of the chest were included in analysis.

Conclusions

In a non-gate keeping health care system voluntary MC health care models with capitation were associated with a reduced inappropriate use of diagnostic CA compared to basic models.

References

1. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 2012;126(25):3097-137. doi: 10.1161/CIR.0b013e3182776f83

- Skinner JS, Smeeth L, Kendall JM, et al. NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. *Heart* 2010;96(12):974-8. doi: 10.1136/hrt.2009.190066
- Chest Pain of Recent Onset: Assessment and Diagnosis of Recent Onset Chest Pain or Discomfort of Suspected Cardiac Origin. London2010.
- 4. Task Force M, Montalescot G, Sechtem U, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European heart journal 2013;34(38):2949-3003. doi: 10.1093/eurheartj/eht296
- Archbold RA. Comparison between National Institute for Health and Care Excellence (NICE) and European Society of Cardiology (ESC) guidelines for the diagnosis and management of stable angina: implications for clinical practice. *Open Heart* 2016;3(1):e000406. doi: 10.1136/openhrt-2016-000406
- 6. Henderson RA, O'Flynn N, Guideline Development G. Management of stable angina: summary of NICE guidance. *Heart* 2012;98(6):500-7. doi: 10.1136/heartinl-2011-301436
- 7. N OF, Timmis A, Henderson R, et al. Management of stable angina: summary of NICE guidance. BMJ 2011;343:d4147. doi: 10.1136/bmj.d4147
- Lin GA, Dudley R, Lucas FL, et al. FRequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. *JAMA* 2008;300(15):1765-73. doi: 10.1001/jama.300.15.1765
- 9. Patel MR, Dehmer GJ, Hirshfeld JW, et al. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: A Report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology: Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. Circulation 2009;119(9):1330-52. doi: 10.1161/CIRCULATIONAHA.108.191768
- Topol EJ, Ellis SG, Cosgrove DM, et al. Analysis of coronary angioplasty practice in the United States with an insurance-claims data base. *Circulation* 1993;87(5):1489-97. doi: 10.1161/01.cir.87.5.1489
- 11. Shaw LJ, Hachamovitch R, Berman DS, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. *Journal of the American College of Cardiology* 1999:33(3):661-9.
- 12. Chmiel C, Reich O, Signorell A, et al. Appropriateness of diagnostic coronary angiography as a measure of cardiac ischemia testing in non-emergency patients a retrospective cross-sectional analysis. *PloS one* 2015;10(2):e0117172. doi: 10.1371/journal.pone.0117172
- 13. Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. *New Engl J Med* 2007;356(15):1503-16. doi: DOI 10.1056/NEJMoa070829
- 14. Chan PS, Patel MR, Klein LW, et al. APpropriateness of percutaneous coronary intervention. *JAMA* 2011;306(1):53-61. doi: 10.1001/jama.2011.916
- 15. Bradley SM, Maynard C, Bryson CL. Appropriateness of Percutaneous Coronary Interventions in Washington State. *Circ-Cardiovasc Qual* 2012;5(4):445-53. doi: 10.1161/Circoutcomes.111.964320
- Reich O, Rosemann T, Rapold R, et al. Potentially Inappropriate Medication Use in Older Patients in Swiss Managed Care Plans: Prevalence, Determinants and Association with Hospitalization. *PloS one* 2014;9(8) doi: ARTN e105425
 10.1371/journal.pone.0105425
- 17. Huber CA, Reich O, Fruh M, et al. Effects of Integrated Care on Disease-Related Hospitalisation and Healthcare Costs in Patients with Diabetes, Cardiovascular Diseases and Respiratory

Illnesses: A Propensity-Matched Cohort Study in Switzerland. *Int J Integr Care* 2016;16 doi:
 10.5334/ijic.2455
 Huber CA, Szucs TD, Rapold R, et al. Identifying patients with chronic conditions using pharmacy

- 18. Huber CA, Szucs TD, Rapold R, et al. Identifying patients with chronic conditions using pharmacy data in Switzerland: an updated mapping approach to the classification of medications. *BMC public health* 2013;13:1030. doi: 10.1186/1471-2458-13-1030
- 19. Lamers LM, van Vliet RC. The Pharmacy-based Cost Group model: validating and adjusting the classification of medications for chronic conditions to the Dutch situation. *Health policy* 2004;68(1):113-21. doi: 10.1016/j.healthpol.2003.09.001
- 20. Huber CA, Schneeweiss S, Signorell A, et al. Improved prediction of medical expenditures and health care utilization using an updated chronic disease score and claims data. *J Clin Epidemiol* 2013;66(10):1118-27. doi: 10.1016/j.jclinepi.2013.04.011
- 21. (2015) RCT. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. [Available from: http://www.R-project.org/.
- 22. DescTools: Tools for descriptive statistics. R package version 0.99.15 [program]: Signorell. A., 2016.
- Tandjung R, Morell S, Hanhart A, et al. Referral determinants in Swiss primary care with a special focus on managed care. PloS one 2017;12(11):e0186307. doi: 10.1371/journal.pone.0186307
- 24. DeLaet DE, Shea S, Carrasquillo O. Receipt of preventive services among privately insured minorities in managed care versus fee-for-service insurance plans. *J Gen Intern Med* 2002;17(6):451-57. doi: DOI 10.1046/j.1525-1497.2002.10512.x
- 25. Landon BE, Zaslavsky AM, Bernard SL, et al. Comparison of performance of traditional Medicare vs Medicare managed care. *Jama-J Am Med Assoc* 2004;291(14):1744-52. doi: DOI 10.1001/jama.291.14.1744
- 26. Miller RH, Luft HS. HMO plan performance update: an analysis of the literature, 1997-2001. *Health affairs* 2002;21(4):63-86.
- Huesch MD. Long-term impact of Medicare managed care on patients treated for coronary artery disease. Medical care 2012;50(1):18-26. doi: 10.1097/MLR.0b013e3182294a20
- 28. Maciejewski ML, Dowd B, Call KT, et al. Comparing mortality and time until death for medicare HMO and FFS beneficiaries. *Health services research* 2001;35(6):1245-65.
- 29. Park E. Informing the debate about curbing Medicare Advantage overpayments. Center on Budget and Policy Priorities 2007
- 30. Call KT, Dowd B, Feldman R, et al. Selection experiences in Medicare HMOs: pre-enrollment expenditures. *Health care financing review* 1999;20(4):197-209.
- 31. Deb P, Trivedi PK. Specification and simulated likelihood estimation of a non-normal treatment-outcome model with selection: Application to health care utilization. *Economet J* 2006;9(2):307-31. doi: DOI 10.1111/j.1368-423X.2006.00187.x
- 32. Mello MM, Stearns SC, Norton EC. Do Medicare HMOs still reduce health services use after controlling for selection bias? *Health Econ* 2002;11(4):323-40. doi: Doi 10.1002/Hec.664
- 33. Cao Z, McGuire TG. Service-level selection by HMOs in Medicare. *J Health Econ* 2003;22(6):915-31. doi: DOI 10.1016/j.healeco.2003.06.005
- 34. Nicholson S, Bundorf K, Stein RM, et al. The magnitude and nature of risk selection in employer-sponsored health plans. *Health services research* 2004;39(6):1817-U1. doi: DOI 10.1111/j.1475-6773.2004.00320.x
- 35. Chernew M, DeCicca P, Town R. Managed care and medical expenditures of Medicare beneficiaries. *J Health Econ* 2008;27(6):1451-61. doi: DOI 10.1016/j.jhealeco.2008.07.014
- 36. Atherly A, Dowd BE, Feldman R. The effect of benefits, premiums, and health risk on health plan choice in the Medicare program. *Health services research* 2004;39(4):847-64. doi: DOI 10.1111/j.1475-6773.2004.00261.x
- 37. Huesch MD. Managing care? Medicare managed care and patient use of cardiologists. *Health services research* 2010;45(2):329-54. doi: 10.1111/j.1475-6773.2009.01070.x
- 38. Bundorf MK, Schulman KA, Stafford JA, et al. Impact of managed care on the treatment, costs, and outcomes of fee-for-service Medicare patients with acute myocardial infarction. *Health services research* 2004;39(1):131-52.
- 39. Cutler DM, McClellan M, Newhouse JP. How does managed care do it? *Rand J Econ* 2000;31(3):526-48. doi: Doi 10.2307/2600999
- 40. Meara E, Landrum MB, Ayanian JZ, et al. The effect of managed care market share on appropriate use of coronary angiography among traditional medicare beneficiaries. *Inquiry-J Health Car* 2004;41(2):144-58.
- 41. Muheim LLS, Senn O, Fruh M, et al. Inappropriate use of arthroscopic meniscal surgery in degenerative knee disease An observational study from Switzerland. *Acta Orthop* 2017;88(5):550-55. doi: 10.1080/17453674.2017.1344915

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

- 42. Registry ACoCC. National Cardiovascular Data Registry.
- 43. website JC. Proceedings from the National Summit on Overuse 2012 [updated September 24. Available from: http://www.jointcommission.org/assets/1/6/National Summit Overuse.pdf accessed August 17 2016.
- 44. Interventions. SfCAa. Five Things Physicians and Patients Should Question. [Available from: http://www.choosingwisely.org/societies/society-for-cardiovascular-angiography-and-interventions/ accessed August 17 2016.
- 45. Michigan. BCBSo. Hospital Pay-for-Performance Program. [Available from: https://www.bcbsm.com/content/dam/public/Providers/Documents/value/p4p-hospital-cqi-performance-index-guide.pdf. accessed August 17 2016.
- 46. website. NYSDoH. [Available from: https://www.health.ny.gov/health-care/medicaid/program/update/2013/2013-06.htm#ous.accessed Agust 17 2016.
- 47. Desai N, Bradley S, Parzynski C, et al. Appropriate Use Criteria for Coronary Revascularization and Trends in Utilization, PatientSelection, and Appropriateness of Percutaneous Coronary Intervention - FindingsFrom the NCDR- CathPCI Registry. Circulation 2015;132(23):2278-78.
- 48. Baker LC. Managed care and technology adoption in health care: evidence from magnetic resonance imaging. *J Health Econ* 2001;20(3):395-421. doi: Doi 10.1016/S0167-6296(01)00072-8
- 49. Heidenreich PA, McClellan M, Frances C, et al. The relation between managed care market share and the treatment of elderly fee-for-service patients with myocardial infarction. *American Journal of Medicine* 2002;112(3):176-82. doi: Pii S0002-9343(01)01098-1
 Doi 10.1016/S0002-9343(01)01098-1
- 50. Cutler DM, Sheiner L. Managed care and the growth of medical expenditures. Nber Fr Hlth Pol Res 1998;1:77-115.

Sources of Funding

This work was supported by the Swiss Academy of Medical Sciences (SAMS), Switzerland. The funding source had no influence on study design; on the collection, analysis, and interpretation of the data; on the writing of the manuscript; and the decision to submit the manuscript for publication.

Competing interests

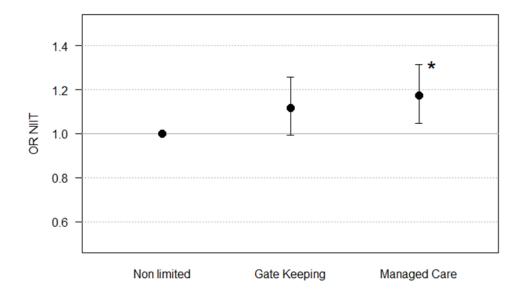
Oliver Reich and Andri Signorell are employed by the Helsana Group. The sponsor had no role in the planning, conducting or submission of this manuscript. These authors declare no conflict of interest. Helsana Group shall have no liability to any third party in respect to the contents of this article. All the other authors have no conflicts of interests or financial disclosures to declare.

Authors Contributions

Conceived and designed the experiments: CC, OR, AS, SNJ, TR, OS. Performed the experiments: CC, OR, AS. Analyzed the data: CC, OR, AS, SNJ, TR, OS. Wrote the paper: CC, edited and approved the paper: CC, OR, AS, SNJ, TR, OS.

Consent for publication

Since data were completely anonymized, no patient consent was necessary.


Availability of data and materials

Individual data cannot be made fully available on the internet because the study is based on claims data of the Helsana Group, the owner of the data. Thus, data underlie data protection and privacy restrictions. These restrictions prohibit the insurer from sharing the collected data. Data analysis was performed within the

premises of the Helsana research group by the statistician AS in collaboration with
the authors OR and CC and administrative permission was received to access de-
identified data by the researchers from the University of Zurich.

Figure Legend

- Figure 1: Distribution of NIIT performed according to health care model.
- OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders
- age, sex, language area, insurance coverage, inpatient treatment, cardiovascular
- 673 medication, number of chronic comorbidities and high-risk status. * p<0.001 (OR
- 1.17) for managed care model compared to non-limited access model (Reference).

OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high- risk status. * p<0.001 8 (OR 1.17) for managed care model compared to standard health care plannon-limited access model (Reference).

Supplemental Material

2 Supplemental Methods/Definitions

- 4 1) Inclusion Criteria
- 5 Tarmed 17.071
- 6 17.074
- 7 17.101
- 8 17.109
- 9 17.181
- 10 17.182
- 11 DRG F49D
- 12 F49E
- 13 F49F
- 14 If two coronary angiographies (CA) were performed on the same day at the same
- provider, the intervention is counted once.
- 16 If the CA was performed twice at the same day but different providers the CA counts
- twice (both concerning the inpatients positions (Diagnosis related Groups (DRG)) and
- the outpatient positions (Standard billing rate for outpatient medical care in
- 19 Switzerland (TARMED))
- 20 If during 2012-2015 patients received more than one CA, only the first CA was taken
- 21 into consideration.

1	2) Exclusion Criteria				
2	Acute cardiac ischemia and/or	emergency pi	rocedures	Tarmed	0.2510
3					0.2520
4					0.2540
5					0.2560
6					0.2580
7					35.0610
8				DRG	F41A
9					F41B
10					
11	Therapeutic CA (coronary angio	oplasty/stentii	ng or coronar	y artery by-pa	ass grafting,
12	without myocardial infarction)	Tarmed	17.1110		
13			17.1240		
14		DRG	F15Z		
15			F19Z		
16			F24B		
17			F49A		
18			F49C		
19			F52A		
20			F52B		
21			F54Z		
22			F56A		
23			F56B		
24			F57A		
25			F57B		

F58Z

1		F59A					
2		F59B					
3	Incomplete	coverage of mandatory basic health insurance 18 months before and/or 1					
4	•	month after CA					
5	Patients <1	8 years					
6							
7							
8	3) Diagnos	tic Procedures					
9	Tarmed	17.0010: Electrocardiogram (ECG): not considered as NIIT, only in					
10		combination with other NIIT					
11		17.0050: Cardiac intervention with medication under continuous					
12		registration of ECG: not considered as NIIT, only in combination with					
13		another NIIT					
14		17.0060: ECG performed by specialist outside of the practice or					
15		hospital: not considered as NIIT, only in combination with another NIIT					
16		17.0080 and 17.0090: Stress-ECG					
17		17.0210: Echocardiography, transthoracic, qualitative and quantitative					
18		examination of adult					
19		17.0280: Stressechocardiography, physical stress					
20		17.0290: Stressechocardiography, medication stress					
21		31.0260: Scintigraphy physiologically triggered					
22		39.4060: Computed tomography of entire thorax and/or sternoclavicular					
		joint					
23							
24	DBC	39.5100 Heart MRI					
25	DRG	No separate codes available for inpatient diagnostic procedures, only					
26		for therapeutic interventions					

1 4) High risk patients

- 2 Patients having received therapeutic cardiac intervention within one month after or 18
- 3 months prior to diagnostic CA
- 4 Tarmed 0.2510
- 5 0.2520
- 6 0.2540
- 7 0.2560
- 8 0.2580
- 9 35.0610
- 10 17.1110
- 11 17.1240
- 12 And all 18.001until/including 18.0740
- 13 DRG all Chapter F

Appendix 2

Descriptive Differences in the study population non-limited vs. limited access modes

	Total	Non-limited	Limited	
		access	access	
n	9'173	5'258 (57.3%)	3'915 (42.7%)	
Sex (fem)	3'586 (39.1%)	2'089 (39.7%)	1'497 (38.2%)	2
Age (mean)	67.3 (11.610)	67.7 (11.582)	66.6 (11.620)	*** 1
Deductible				*** 3
300	6'121 (66.7%)	3'617 (68.8%)	2'504 (64.0%)	
500	1'993 (21.7%)	1'143 (21.7%)	850 (21.7%)	
1000	283 (3.1%)	116 (2.2%)	167 (4.3%)	
1500	339 (3.7%)	186 (3.5%)	153 (3.9%)	
2000	54 (0.6%)	19 (0.4%)	35 (0.9%)	
2500	383 (4.2%)	177 (3.4%)	206 (5.3%)	
Private	2'284 (24.9%)	1'418 (27.0%)	866 (22.1%)	*** 2
Canton				*** 3
AG	717 (7.8%)	377 (7.2%)	340 (8.7%)	
Al	13 (0.1%)	8 (0.2%)	5 (0.1%)	
AR	46 (0.5%)	26 (0.5%)	20 (0.5%)	
BE	1'489 (16.2%)	664 (12.6%)	825 (21.1%)	
BL	200 (2.2%)	129 (2.5%)	71 (1.8%)	
BS	72 (0.8%)	53 (1.0%)	19 (0.5%)	
FR	259 (2.8%)	196 (3.7%)	63 (1.6%)	
GE	427 (4.7%)	285 (5.4%)	142 (3.6%)	
GL	54 (0.6%)	29 (0.6%)	25 (0.6%)	
GR	152 (1.7%)	86 (1.6%)	66 (1.7%)	
JU	21 (0.2%)	13 (0.2%)	8 (0.2%)	
LU	304 (3.3%)	156 (3.0%)	148 (3.8%)	
NE	98 (1.1%)	69 (1.3%)	29 (0.7%)	
NW	37 (0.4%)	25 (0.5%)	12 (0.3%)	
OW	34 (0.4%)	17 (0.3%)	17 (0.4%)	
SG	343 (3.7%)	168 (3.2%)	175 (4.5%)	
SH	126 (1.4%)	67 (1.3%)	59 (1.5%)	
SO	473 (5.2%)	220 (4.2%)	253 (6.5%)	
SZ	194 (2.1%)	124 (2.4%)	70 (1.8%)	
TG	347 (3.8%)	152 (2.9%)	195 (5.0%)	
TI	721 (7.9%)	429 (8.2%)	292 (7.5%)	
UR	48 (0.5%)	22 (0.4%)	26 (0.7%)	
VD	598 (6.5%)	412 (7.8%)	186 (4.8%)	
VS	315 (3.4%)	203 (3.9%)	112 (2.9%)	
ZG	138 (1.5%)	84 (1.6%)	54 (1.4%)	
ZH	1'947 (21.2%)	1'244 (23.7%)	703 (18.0%)	2
atc_1	4'282 (46.7%)	2'442 (46.4%)	1'840 (47.0%)	
atc_2	3'139 (34.2%)	1'792 (34.1%)	1'347 (34.4%)	2
atc_3	5'693 (62.1%)	3'306 (62.9%)	2'387 (61.0%)	. 2 *** 2
atc_4	1'276 (13.9%)	787 (15.0%)	489 (12.5%)	*** 2
atc_5	1'333 (14.5%)	825 (15.7%)	508 (13.0%)	2
NIIT	4104.4 (E2.00()	01000 (50.70()	01000 (50, 40()	2
ekg	4'914 (53.6%)	2'822 (53.7%)	2'092 (53.4%)	2
kmedint	8 (0.1%)	4 (0.1%)	4 (0.1%)	2 2
ekgext	23 (0.3%)	15 (0.3%)	8 (0.2%)	2
bekgarb bekgarga	8 (0.1%)	3 (0.1%)	5 (0.1%)	*** 2
bekgergo	3'789 (41.3%)	2'039 (38.8%)	1'750 (44.7%)	*** 2
echokard	4'572 (49.8%)	2'528 (48.1%)	2'044 (52.2%)	2
echophys	137 (1.5%)	81 (1.5%)	56 (1.4%)	2
echomed	131 (1.4%)	69 (1.3%)	62 (1.6%)	** 2
szin	195 (2.1%)	131 (2.5%)	64 (1.6%)	2
Ct mri	643 (7.0%)	387 (7.4%)	256 (6.5%)	2
mri	283 (3.1%)	173 (3.3%)	110 (2.8%)	2

pcg_n pcg					
3 2'545 (27.7%) 1'277 (24.3%) 1'268 (32.4%) 3'43 (37.4%) 1'967 (37.4%) 1'463 (37	pcg_n	3.883 (2.029)	4.060 (2.058)	3.644 (1.965)	-
3-4 3'430 (37.4%) 1'967 (37.4%) 1'463 (37.4%) 5-6 2'179 (23.8%) 1'339 (25.5%) 840 (21.5%)	pcg				*** 3
S-6 2'179 (23.8%) 1'339 (25.5%) 840 (21.5%) 840 (21.5%) 86 1'019 (11.1%) 6'75 (12.8%) 344 (8.8%) 84 19hrisk 4'510 (49.2%) 2'696 (51.3%) 1814 (46.3%) 84 17.0710 12 (0.1%) 7 (0.1%) 5 (0.1%) 17.0710, 17.0740 6 (0.1%) 6 (0.1%) 0 (0.0%) 17.0710, 17.0740, 17.1010 218 (2.4%) 136 (2.6%) 82 (2.1%) 17.0710, 17.0740, 17.1010 218 (2.4%) 136 (2.6%) 82 (2.1%) 17.0710, 17.0740, 17.1010 2'960 (32.3%) 1'663 (31.6%) 1'297 (33.1%) 17.0710, 17.0740, 17.1010, 17.1810 2'960 (32.3%) 1'663 (31.6%) 1'297 (33.1%) 17.0710, 17.0740, 17.1010, 17.1840, F49E 2 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710, 17.0740, 17.1010, 17.1840, F49E 2 (0.0%) 1 (0.0%) 2 (0.1%) 17.0710, 17.0740, 17.1010, 17.1820 1 (0.0%) 4 (0.8%) 34 (0.9%) 17.0710, 17.0740, 17.1090, 17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710, 17.0740, 17.1010 17.0810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710, 17.010, 17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710, 17.1010, 17.1810 39 (0.4%) 20 (0.0%) 1 (0.0%) 17.0710, 17.1010, 17.1810 39 (0.4%) 5 (0.1%) 9 (0.2%) 17.0710, 17.1010, 17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0710, 17.1010, 17.1810 30 (0.0%) 1 (0.0%) 1 (0.0%) 17.0740, 17.1810 4 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740, 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0	<3	2'545 (27.7%)	1'277 (24.3%)		
S6	3-4	3'430 (37.4%)	1'967 (37.4%)	1'463 (37.4%)	
Highrisk 4'510 (49.2%) 2'696 (51.3%) 1'814 (46.3%) **** 2	5-6	2'179 (23.8%)	1'339 (25.5%)	840 (21.5%)	
Inpatient CA	>6	1'019 (11.1%)	675 (12.8%)	344 (8.8%)	
CA 17.0710 12 (0.1%) 7 (0.1%) 5 (0.1%) 17.0710,17.0740 6 (0.1%) 6 (0.1%) 0 (0.0%) 17.0710,17.0740,17.1010 218 (2.4%) 136 (2.6%) 82 (2.1%) 17.0710,17.0740,17.1010,17.1810 2 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1010,17.1810 2'960 (32.3%) 1'663 (31.6%) 1'297 (33.1%) 17.0710,17.0740,17.1010,17.1810,F49D 0 (0.0%) 0 (0.0%) 0 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49E 2 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1010,17.1820 1 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1010,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810 30 (0.9%) 2 (0.0%) 1 (0.0%) </td <td>Highrisk</td> <td>4'510 (49.2%)</td> <td>2'696 (51.3%)</td> <td>1'814 (46.3%)</td> <td>*** 2</td>	Highrisk	4'510 (49.2%)	2'696 (51.3%)	1'814 (46.3%)	*** 2
17.0710, 17.0740	Inpatient	5'111 (55.7%)	2'931 (55.7%)	2'180 (55.7%)	2
17.0710,17.0740, 6 (0.1%) 6 (0.1%) 0 (0.0%) 17.0710,17.0740,17.1010 218 (2.4%) 136 (2.6%) 82 (2.1%) 17.0710,17.0740,17.1010,17.1810 2 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1010,17.1810 2 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49D 0 (0.0%) 0 (0.0%) 0 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49E 2 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49F 2 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1010,17.1820 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1090 78 (0.9%) 44 (0.8%) 34 (0.9%) 17.0710,17.0740,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740,17.1810 9 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)					
17.0710,17.0740,17.1010 218 (2.4%) 136 (2.6%) 82 (2.1%) 17.0710,17.0740,17.1010,17.1090,17.1810 2 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1010,17.1810 2'960 (32.3%) 1'663 (31.6%) 1'297 (33.1%) 17.0710,17.0740,17.1010,17.1810,F49B 0 (0.0%) 0 (0.0%) 0 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49F 2 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1010,17.1820 1 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010,17.1810 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0740,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%)	17.0710	12 (0.1%)	7 (0.1%)	5 (0.1%)	
17.0710,17.0740,17.1010,17.1090,17.1810 2 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1010,17.1810 2'960 (32.3%) 1'663 (31.6%) 1'297 (33.1%) 17.0710,17.0740,17.1010,17.1810,F49D 0 (0.0%) 0 (0.0%) 0 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49E 2 (0.0%) 1 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1010,17.1820 1 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1010 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810 1 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1090,17.1810 1 (0.0%) 5 (0.1%) 9 (0.2%) 17.0740,17.1090,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) <td>17.0710,17.0740</td> <td>6 (0.1%)</td> <td>6 (0.1%)</td> <td>0 (0.0%)</td> <td></td>	17.0710,17.0740	6 (0.1%)	6 (0.1%)	0 (0.0%)	
17.0710,17.0740,17.1010,17.1810 2'960 (32.3%) 1'663 (31.6%) 1'297 (33.1%) 17.0710,17.0740,17.1010,17.1810,F49D 0 (0.0%) 0 (0.0%) 0 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49E 2 (0.0%) 1 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49F 2 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1010,17.1820 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1090 78 (0.9%) 44 (0.8%) 34 (0.9%) 17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1010 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810 39 (0.4%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1090,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740,17.1010 4 (0.0%) 5 (0.1%) 9 (0.2%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 1 (0.0%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 5 (0.1%) 3 (0.1%) 1 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E F49F 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.0740,17.1010	218 (2.4%)	136 (2.6%)	82 (2.1%)	
17.0710,17.0740,17.1010,17.1810,F49D	17.0710,17.0740,17.1010,17.1090,17.1810	2 (0.0%)	1 (0.0%)	1 (0.0%)	
17.0710,17.0740,17.1010,17.1810,F49E 2 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1010,17.1810,F49F 2 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1010,17.1820 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1090 78 (0.9%) 44 (0.8%) 34 (0.9%) 17.0710,17.0740,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010,17.1810 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1090,17.1810 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090,17.1810 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740,17.1810 4 (0.0%) 3 (0.1%) 9 (0.2%) 17.0740,17.1810 9 (0.1%) 5 (0.1%) 3 (0.1%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 3 (0.0%) 3 (0.	17.0710,17.0740,17.1010,17.1810	2'960 (32.3%)	1'663 (31.6%)	1'297 (33.1%)	
17.0710,17.0740,17.1010,17.1810,F49F 2 (0.0%) 0 (0.0%) 2 (0.1%) 17.0710,17.0740,17.1010,17.1820 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1090 78 (0.9%) 44 (0.8%) 34 (0.9%) 17.0710,17.0740,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740,17.1810 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) <td>17.0710,17.0740,17.1010,17.1810,F49D</td> <td>0 (0.0%)</td> <td>0 (0.0%)</td> <td>0 (0.0%)</td> <td></td>	17.0710,17.0740,17.1010,17.1810,F49D	0 (0.0%)	0 (0.0%)	0 (0.0%)	
17.0710,17.0740,17.1010,17.1820 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.0740,17.1090 78 (0.9%) 44 (0.8%) 34 (0.9%) 17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010,17.1810 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 9 (0.2%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 3 (0.0%) 3 (0.1%) 0 (0.	17.0710,17.0740,17.1010,17.1810,F49E	2 (0.0%)	1 (0.0%)	1 (0.0%)	
17.0710,17.0740,17.1090 78 (0.9%) 44 (0.8%) 34 (0.9%) 17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810 39 (0.0%) 1 (0.0%) 1 (0.0%) 17.0710,17.1090 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1010 4 (0.0%) 3 (0.1%) 2 (0.1%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) 17.49E 711 (7.8%) 373 (7.1%) 338 (8.6%) 17.49E,F49F 0 (0.0%) 0 (0.0%)	17.0710,17.0740,17.1010,17.1810,F49F	2 (0.0%)	0 (0.0%)	2 (0.1%)	
17.0710,17.0740,17.1090,17.1810 363 (4.0%) 219 (4.2%) 144 (3.7%) 17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 17.0740,17.1090,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1090,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.0740,17.1010,17.1820	1 (0.0%)	0 (0.0%)	1 (0.0%)	
17.0710,17.0740,17.1810 25 (0.3%) 17 (0.3%) 8 (0.2%) 17.0710,17.1010 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0710,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0740 7 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.0740,17.1090	78 (0.9%)	44 (0.8%)	34 (0.9%)	
17.0710,17.1010 1 (0.0%) 0 (0.0%) 1 (0.0%) 17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 1 (0.0%) 17.0710,17.1090 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740 7 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.0740,17.1090,17.1810	363 (4.0%)	219 (4.2%)	144 (3.7%)	
17.0710,17.1010,17.1810 39 (0.4%) 23 (0.4%) 16 (0.4%) 17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0710,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0740,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.0740,17.1810	25 (0.3%)	17 (0.3%)	8 (0.2%)	
17.0710,17.1010,17.1810,F49F 3 (0.0%) 2 (0.0%) 1 (0.0%) 17.0710,17.1090 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740,17.1010 7 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.1010	1 (0.0%)	0 (0.0%)	1 (0.0%)	
17.0710,17.1090 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740 7 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.1010,17.1810	39 (0.4%)	23 (0.4%)	16 (0.4%)	
17.0710,17.1090,17.1810 14 (0.2%) 5 (0.1%) 9 (0.2%) 17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740 7 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1010,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.1010,17.1810,F49F	3 (0.0%)	2 (0.0%)	1 (0.0%)	
17.0710,17.1810 232 (2.5%) 133 (2.5%) 99 (2.5%) 17.0740 7 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0710,17.1090	1 (0.0%)	1 (0.0%)	0 (0.0%)	
17.0740 7 (0.1%) 5 (0.1%) 2 (0.1%) 17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%)	17.0710,17.1090,17.1810	14 (0.2%)	5 (0.1%)	9 (0.2%)	
17.0740,17.1010 4 (0.0%) 3 (0.1%) 1 (0.0%) 17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%)	17.0710,17.1810	232 (2.5%)	133 (2.5%)	99 (2.5%)	
17.0740,17.1010,17.1810 9 (0.1%) 6 (0.1%) 3 (0.1%) 17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%)	17.0740	7 (0.1%)	5 (0.1%)	2 (0.1%)	
17.0740,17.1090,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.0740,17.1810 1 (0.0%) 1 (0.0%) 0 (0.0%) 17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%)	17.0740,17.1010	4 (0.0%)	3 (0.1%)	1 (0.0%)	
17.0740,17.1810	17.0740,17.1010,17.1810	9 (0.1%)	6 (0.1%)	3 (0.1%)	
17.1010,17.1810 3 (0.0%) 3 (0.1%) 0 (0.0%) 17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0740,17.1090,17.1810	3 (0.0%)	3 (0.1%)	0 (0.0%)	
17.1810 83 (0.9%) 51 (1.0%) 32 (0.8%) F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.0740,17.1810	1 (0.0%)	1 (0.0%)	0 (0.0%)	
F49D 475 (5.2%) 281 (5.3%) 194 (5.0%) F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.1010,17.1810	3 (0.0%)	3 (0.1%)	0 (0.0%)	
F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	17.1810	83 (0.9%)	51 (1.0%)	32 (0.8%)	
F49E 711 (7.8%) 373 (7.1%) 338 (8.6%) F49E,F49F 0 (0.0%) 0 (0.0%) 0 (0.0%)	F49D	475 (5.2%)	281 (5.3%)	194 (5.0%)	
	F49E	711 (7.8%)	373 (7.1%)	338 (8.6%)	
	F49E,F49F	0 (0.0%)	0 (0.0%)	0 (0.0%)	
	F49F	3'918 (42.7%)	2'274 (43.2%)	1'644 (42.0%)	

Deductible class in Swiss Francs. Private: supplementary private hospital insurance, ATC: Anatomical-Therapeutic-Chemical-Classification group 1 = Aspirin, platelet aggregation inhibitors, 2 = statins, lipid modifying agents, 3 = antihypertensives, diuretics, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system, 4 = antidiabetics, 5 = antianginous drugs, 6: antithrombotics. NIIT: Non-invasive ischemia testing, PCG: number of chronic conditions according to pharmaceutical cost groups. High-risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA. CA: coronary angiography. Significance non-limited vs limited access group: *** p<0.0001, ** p<0.001, *p<0.01. ¹) Kruskal-Wallis test, ²) Fisher exact test, ³) Chi-Square test

Detailed Tarmed positions can also be appreciated in Appendix 1.

```
NIIT:
                      17.0010 Electrocardiogram (ECG)
 ekg
 kmedint
                      17.0050 Cardiac intervention with medication under continuous registration of ECG
 ekgext
                      17.0060 ECG performed by specialist outside of the practice or hospital
                      17.0080 Stress-ECG
 bekgarb
                      17.0090 Stress-ECG
 bekgergo
 echokard
                      17.0210 Echocardiography, transthoracic, qualitative and quantitative
                      17.0280 Stressechocardiography, physical stress
 echophys
 echomed
                      17.0290 Stressechocardiography, medication stress
 szin
                      31.0260 Scintigraphy physiologically triggered
 ct
                      39.4060 Computed tomography of entire thorax and/or sternoclavicular joint
 mri
                      39.5100 Heart MRI
```

Appendix 3 a) and b)

a) Overall distribution of the non-invasive ischemia testing

level	freq	perc	cumfreq	cumperc
	3'044	33.2%	3'044	33.2%
bekgergo, echokard	2'360	25.7%	5'404	58.9%
echokard	1'494	16.3%	6'898	75.2%
bekgergo	952	10.4%	7'850	85.6%
ct	204	2.2%	8'054	87.8%
bekgergo, echokard, ct	165	1.8%	8'219	89.6%
echokard, ct	153	1.7%	8'372	91.3%
mri	120	1.3%	8'492	92.6%
echokard, echophys	70	0.8%	8'562	93.3%
echokard, mri	64	0.7%	8'626	94.0%
bekgergo, chokard, mri	62	0.7%	8'688	94.7%
bekgergo, ct	50	0.5%	8'738	95.3%
echokard, echomed	44	0.5%	8'782	95.7%
bekgergo, szin	43	0.5%	8'825	96.2%
bekgergo,echokard, szin	42	0.5%	8'867	96.7%
echophys	40	0.4%	8'907	97.1%
szin	39	0.4%	8'946	97.5%
echomed	37	0.4%	8'983	97.9%
bekgergo, echokard, echomed	35	0.4%	9'018	98.3%
echokard, szin	25	0.3%	9'043	98.6%
bekgergo, mri	23	0.3%	9'066	98.8%
bekgergo, echokard, szin, ct	15	0.2%	9'081	99.0%
echokard, szin, ct	14	0.2%	9'095	99.1%
bekgergo, echokard, echophys	11	0.1%	9'106	99.3%
bekgergo, szin, ct	10	0.1%	9'116	99.4%
bekgergo, echomed	7	0.1%	9'123	99.5%
bekgergo, echophys	7	0.1%	9'130	99.5%
ct, mri	6	0.1%	9'136	99.6%
echophys, ct	5	0.1%	9'141	99.7%
szin, ct	5	0.1%	9'146	99.7%
bekgarb, echokard	4	0.0%	9'150	99.7%
echomed, ct	4	0.0%	9'154	99.8%
echokard, ct, mri	3	0.0%	9'157	99.8%
echokard, echophys, ct	3	0.0%	9'160	99.9%
bekgarb	2	0.0%	9'162	99.9%
bekgergo, echokard, ct, mri	2	0.0%	9'164	99.9%
bekgergo, echokard, echomed, ct	2	0.0%	9'166	99.9%
bekgarb, bekgergo, echokard	1	0.0%	9'167	99.9%
bekgarb, bekgerg	1	0.0%	9'168	99.9%
bekgergo, ct, mri	1	0.0%	9'169	100.0%
echokard, echomed, ct	1	0.0%	9'170	100.0%
echokard, echomed, szin	1	0.0%	9'171	100.0%
echokard, echophys, mri	1	0.0%	9'172	100.0%
szin, mri	1	0.0%	9'173	100.0%
, -	_			

b) Distribution of the non-invasive ischemia testing according to health care model

	freq			p.col		
	MC	GK	Basic	MC	GK	Basic
	652	574	1'818	31.1%	31.6%	34.6%
bekgarb, bekgergo, echokard	1	0	0	0.0%	0.0%	0.0%
bekgarb, bekgergo	0	1	0	0.0%	0.1%	0.0%
bekgarb, echokard	0	1	3	0.0%	0.1%	0.1%
bekgarb	1	1	0	0.0%	0.1%	0.0%
bekgergo	237	181	534	11.3%	10.0%	10.2%
bekgergo, ct	10	12	28	0.5%	0.7%	0.5%
bekgergo, ct, mri	0	0	1	0.0%	0.0%	0.0%
bekgergo, echokard	647	488	1'225	30.8%	26.9%	23.3%
bekgergo, echokard, ct	48	22	95	2.3%	1.2%	1.8%
bekgergo, echokard, ct, mri	0	1	1	0.0%	0.1%	0.0%
bekgergo, echokard, echomed	12	10	13	0.6%	0.6%	0.2%
bekgergo, echokard, echomed, ct	1	1	0	0.0%	0.1%	0.0%
bekgergo, echokard, echophys	3	0	8	0.1%	0.0%	0.2%
bekgergo, echokard, mri	8	15	39	0.4%	0.8%	0.7%
bekgergo, echokard, szin	7	4	31	0.3%	0.2%	0.6%
bekgergo, echokard, szin, ct	3	2	10	0.1%	0.1%	0.2%
bekgergo, echomed	0	3	4	0.0%	0.2%	0.1%
bekgergo, echophys	1	1	5	0.0%	0.1%	0.1%
bekgergo, mri	3	4	16	0.1%	0.2%	0.3%
bekgergo, szin	8	9	26	0.4%	0.5%	0.5%
bekgergo, szin, ct	4	3	3	0.2%	0.2%	0.1%
ct	33	41	130	1.6%	2.3%	2.5%
ct, mri	0	1	5	0.0%	0.1%	0.1%
echokard	298	316	880	14.2%	17.4%	16.7%
echokard, ct	29	31	93	1.4%	1.7%	1.8%
echokard, ct, mri	3	0	0	0.1%	0.0%	0.0%
echokard, echomed	11	9	24	0.5%	0.5%	0.5%
echokard, echomed, ct	0	0	1	0.0%	0.0%	0.0%
echokard, echomed, szin	0	0	1	0.0%	0.0%	0.0%
echokard, echophys	14	15	41	0.7%	0.8%	0.8%
echokard, echophys, ct	1	1	1	0.0%	0.1%	0.0%
echokard, echophys, mri	1	0	0	0.0%	0.0%	0.0%
echokard, mri	12	19	33	0.6%	1.0%	0.6%
echokard, szin	1	4	20	0.0%	0.2%	0.4%
echokard, szin, ct	5	0	9	0.2%	0.0%	0.2%
echomed	9	5	23	0.4%	0.3%	0.4%
echomed, ct	1	0	3	0.0%	0.0%	0.1%
echophys	6	11	23	0.3%	0.6%	0.4%
echophys, ct	2	0	3	0.1%	0.0%	0.1%
mri	22	21	77	1.0%	1.2%	1.5%
szin	4	9	26	0.2%	0.5%	0.5%
szin, ct	1	0	4	0.0%	0.0%	0.1%
szin, mri	0	0	1	0.0%	0.0%	0.0%

MC: Managed Care, GK: Gate Keeping.

Detailed Tarmed positions can also be appreciated in Appendix 1:

NIIT ekg kmedint Ekgext bekgarb	Tarmed position 17.0010 Electrocardiogram (ECG) 17.0050 Cardiac intervention with medication under continuous registration of ECG 17.0060 ECG performed by specialist outside of the practice or hospital 17.0080 Stress-ECG
bekgergo echokard	17.0090 Stress-ECG 17.0210 Echocardiography, transthoracic, qualitative and quantitative
echophys	17.0210 Echocardiography, transmoracic, quantative and quantitative
echomed	17.0200 Stressechocardiography, medication stress
szin	31.0260 Scintigraphy physiologically triggered
ct	39.4060 Computed tomography of entire thorax and/or sternoclavicular joint
mri	
IIII	37.3100 Heart Piliti
	39.5100 Heart MRI

1 Reporting statement: STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1, 2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3, 4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3, 4
Objectives	3	State specific objectives, including any prespecified hypotheses	2, 4, 5
Methods			
Study design	4	Present key elements of study design early in the paper	5-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5-8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-8
Bias	9	Describe any efforts to address potential sources of bias	7, 8
Study size	10	Explain how the study size was arrived at	5, 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6, 7, 8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7, 8
		(b) Describe any methods used to examine subgroups and interactions	7, 8
		(c) Explain how missing data were addressed	7, 8
		(d) If applicable, describe analytical methods taking account of sampling strategy	6-8
		(e) Describe any sensitivity analyses	7, 8
Results			

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9-14
		(b) Give reasons for non-participation at each stage	9-14
		(c) Consider use of a flow diagram	Not applicable
Descriptive data 1		(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9-14
		(b) Indicate number of participants with missing data for each variable of interest	9-14
Outcome data	15*	Report numbers of outcome events or summary measures	9-14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-14
		(b) Report category boundaries when continuous variables were categorized	Not applicable
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-14
Discussion			
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15-19
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	23

^{*}Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org

BMJ Open

Effects of managed care on the proportion of inappropriate elective diagnostic coronary angiographies in non-emergency patients in Switzerland, a retrospective cross-sectional analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020388.R3
Article Type:	Research
Date Submitted by the Author:	09-Oct-2018
Complete List of Authors:	Chmiel, C; Universitat Zurich, Institute of Primary Care Reich, Oliver; Helsana Group, Department of Health Sciences Signorell, Andri; Helsana Group, Department of Health Sciences Neuner-Jehle, Stefan; Universitat Zurich, Institute of Primary Care Rosemann, Thomas; Universitat Zurich, Institute of Primary Care Senn, Oliver; Universitat Zurich, Institute of Primary Care
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Medical management, Cardiovascular medicine, Diagnostics
Keywords:	- Elective coronary angiography, - Managed care, - Inappropriate, - Voluntary health care plans, - Limited access insurance models, - Non-invasive ischemia testing

SCHOLARONE™ Manuscripts

1	Effects of managed	l care on th	e proportion of	f inappropriate e	lective diagnostic
---	--------------------	--------------	-----------------	-------------------	--------------------

- 2 coronary angiographies in non-emergency patients in Switzerland, a
- 3 retrospective cross-sectional analysis

- 6 Corinne Chmiel, PD Dr. med.^{1§}, Oliver Reich, PhD², Andri Signorell MSc³, Stefan
- Neuner-Jehle, Dr. med. MPH¹, Thomas Rosemann, Prof. Dr. med. PhD⁴, Oliver Senn
- 8 Prof. Dr. med. MPH⁵

- ¹Research Associate, ⁴Professor, Head of Department, ⁵Vice Director Institute of
- 11 Primary Care, University of Zurich, Zurich, Switzerland
- ²Head of Department, ³Statistician Department of Health Sciences, Helsana Group,
- 13 Zurich, Switzerland

- 15 § Corresponding author:
- University Hospital Zürich, Institute of Primary Care, University of Zurich,
- 17 Pestalozzistrasse 24, CH-8091 Zürich, Switzerland
- 18 Email: corinne.chmiel@usz.ch
- 19 Tel: 0041 44 255 98 55
- 20 Fax: 0041 44 255 90 97

22 Word count: 3533

Abstract

24 Objective

- 25 Guidelines recommend non-invasive ischemia testing (NIIT) for the majority of
- 26 patients with suspected ischemic heart disease in a non-emergency setting. A
- 27 substantial amount of these patients undergoes diagnostic coronary angiography
- 28 (CA) without therapeutic intervention inappropriately due to lacking preceding NIIT.
- The aim of this study was to evaluate the effect of voluntary health care models with
- 30 limited access on the proportion of patients without NIIT prior to elective purely
- 31 diagnostic CA.
- 32 <u>Design:</u>
- 33 Retrospective cross-sectional analysis of insurance claims data from 2012 to 2015.
- Data included claims of basic and voluntary health care models from approximately
- 1.2 million patients enrolled with the Helsana Insurance Group. Voluntary health care
- models with limited health access are divided into gate keeping (GK) and managed
- care (MC) capitation models. Inclusion criteria: patients undergoing CA. Exclusion
- criteria: Patients <18 years, incomplete health insurance data coverage, acute
- 39 cardiac ischemia and emergency procedures, therapeutic CA (coronary
- angioplasty/stenting or coronary artery by-pass grafting). The effect of voluntary
- 41 health care models on the proportion of NIIT undertaken within two months before
- diagnostic CA was assessed by means of multiple logistic regression analysis,
- 43 controlled for influencing factors.
- 44 Results
- 45 9173 patients matched inclusion criteria. 33.2% (3044) did not receive NIIT before
- 46 CA. Compared to basic health care models MC was independently associated with a
- 47 higher proportion of NIIT (p<0.001, OR 1.17, CI 1.045 1.312), when additionally
- 48 controlled for demographics, insurance coverage, inpatient treatment, cardiovascular

49	medication, chronic comorbidities, high-risk status (patients with therapeutic cardiac
50	intervention 1 month after or 18 months prior to diagnostic CA). GK models showed
51	no significant association with the rate of NIIT (p=0.07, OR 1.11, CI 0.991 - 1.253).

52 <u>Conclusions</u>

In a non-gate keeping health care system voluntary MC health care models with capitation were associated with a reduced inappropriate use of diagnostic CA compared to GK or basic models.

Strengths and Limitations

- Highly relevant topic concerning inappropriate use of a potentially harmful and expensive procedure such as the CA
- Only scarce data on non-emergency CA exists in literature originating from different health care settings
- Data originates from a single health insurance group in Switzerland, although
 one of the largest in the country, including data on health insurance claims
 from approximately 1.2 million patientsNo data on socioeconomic status and
 clinical information is available

Key Words

- Elective coronary angiography
- 69 Managed care
- 70 Gate keeping
- 71 Inappropriate
- Voluntary health care models
- Limited access insurance models
- Non-invasive ischemia testing

Introduction

Existing guidelines ¹⁻⁷ recommend non-invasive ischemia testing (NIIT) for the majority of patients with suspected ischemic heart disease in a non-emergency setting. Nevertheless, a substantial amount of these patients undergo diagnostic coronary angiography (CA) without therapeutic intervention inappropriately, and are therefore exposed to unnecessary risks without any clinical benefit 8-15. In a non-gate keeping health care system such as Switzerland, hardly any steering mechanisms exist to ensure that potentially harmful and expensive procedures are only performed in case of correct indication. The admitting physician (mainly general practitioner or cardiologist) usually sets the indication for the intervention and the performing invasive centers rarely decline assigned patients due to economic reasons or in order not to disagree with the admitting physician. Besides the basic healthcare models, offering unlimited access to almost all sectors of the health care system including specialist and emergency care, alternative voluntary health care models with various degrees of restriction in exchange to premium reduction can be chosen from. These voluntary health care models can be summarized into two main groups: 1) gate keeping (GK) models with steering mechanisms, such as basic consultation of an insurance hotline for example, and 2) managed care (MC) models with capitation. Previous studies showed a lower prevalence of potentially inappropriate medication use in elderly patients and a lower disease specific hospitalization rate in chronically ill patients enrolled in a MC model compared to non-MC patients ^{16 17}. No data on the association between NIIT and various types of health care models in Switzerland exist. The aim of this study was therefore to evaluate the effect of voluntary GK or MC health care models on the proportion of patients without NIIT prior to elective purely diagnostic CA without therapeutic intervention. The study includes a retrospective

analysis of insurance claims data on diagnostic procedures undertaken within two months before CA depending on the health care model.

Materials and Methods

Setting

Swiss residents are obliged to enroll in a basic health care model, which covers all costs besides deductibles. Depending on the model chosen, annual deductibles for adults vary between 300 and 2500 Swiss Francs. A patient copayment of 10% of all costs up to a maximum of 700 Swiss Francs per year is payable independent of the chosen health care model. Currently residents can chose a basic health care model from 53 different insurance companies. In general, in Switzerland no gate-keeping system exists, meaning that patients have unlimited access to all healthcare providers, unless they are voluntarily insured in a limited access model. Patients agree to a restriction of choice or limited access in exchange of lower premiums. In such limited access models, the general practitioner or an insurance telephone hotline have to be consulted before contacting a specialist or another institution such as a hospital. In case of emergency, this regulation is overruled. In Switzerland, the currently existing limited access models can be summarized into two types of models: 1) GK models with steering mechanisms, such as prior consultation of a telemedicine center for example, and 2) MC models with capitation. In the capitation system, the health insurance company reimburses the health care providers, usually physician networks, with a set amount for each enrolled patient assigned to them per period of time, whether or not that person seeks care. The remuneration is based on the average expected health care utilization of each individual patient, with greater payment for patients with significant medical history or chronic conditions. Compared

to other health care systems, the Swiss system is more inpatient treatment oriented due to co-financing of inpatient treatments by governmental institutions

Subjects, data collection and measurements

Data for this study included health insurance claims from approximately 1.2 million patients, which live all over Switzerland and were enrolled with the Helsana Group. Data on patients undergoing CA in the years 2012 to 2015 were retrospectively analyzed. Data was considered for analysis if insurance coverage was complete within 18 months before and/or 1 month after CA. 828 of 12'078 (6.8%) of patients were not considered due to incomplete coverage of health insurance data during the necessary observation period (due to e.g. change of insurance company, military services, death). Hence, data on 11'250 patients remained for analysis before exclusion criteria. Detailed TARMED (Standard billing rate for outpatient medical care in Switzerland, version 2014) and Diagnosis Related Groups (DRG, version 2012) positions are specified in Appendix 1.

Inclusion criteria Diagnostic CA performed in the years 2012 to 2015. If in this
time interval patients received more than one CA, only the first CA was taken
into consideration (n=11'250)

146 Exclusion criteria

- Patients <18 years
- Acute cardiac ischemia and/or emergency procedures
- Therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting)

Measurements

- Patient characteristics: sex, age, language area and type of insurance

153	coverage (deductible class, supplementary private hospital insurance, MC
154	health care model)
155	- Setting of CA: inpatient or outpatient
156	- NIIT performed within two months prior to CA (stress-ECG, echocardiography,
157	stress echocardiography, scintigraphy, computed tomography, cardiac MRI)
158	- Cardiovascular Medication grouped according to Anatomical-Therapeutic-
159	Chemical-Classification (ATC) 18
160	 Group 1: Aspirin, platelet aggregation inhibitors
161	 Group 2: statins, lipid modifying agents
162	o Group 3: antihypertensives, diuretics, beta blocking agents, calcium
163	channel blockers, agents acting on the renin-angiotensin system
164	Group 4: antidiabetics
165	Group 5: antianginous drugs
166	 Group 6: antithrombotics
167	 Number of chronic conditions according to Pharmaceutical cost groups PCG ¹⁹
168	20
169	o Group 1: pcg_n < 3 0, 1 or 2 PCGs
170	o Group 2: pcg_n < 5 3 to 4 PCGs
171	o Group 3: pcg_n < 7 5 to 6 PCGs
172	o Group 4: pcg_n ≥ 7 7 or more PCGs
173	Sensitivity Analysis with high-risk patients
174	We performed a sensitivity analysis of our data by defining a subgroup of patients as
175	high-risk with supposed cardiac disease, if having received therapeutic cardiac
176	intervention/diagnosis within one month after and/or 18 months prior to diagnostic
177	CA.
178	Patient and public involvement

Neither patients nor the public were involved in the study design.

Statistical analysis

Descriptive statistical techniques (Table 1) were used, to provide a general profile of the study population and grouped into totally three groups of patients: patients with non-limited and limited access health care models (GK and MC). The descriptive statistics were performed pairwise for each health care model separately. These data were presented as means in the case of continuous variables and as percentages in case of categorical variables. Differences within the health care models (Appendix 2) with respect to the continuous variable age were analyzed with a nonparametric analysis of variance Kruskal-Wallis test. The variables with two levels (sex, high-risk status (patients having received therapeutic cardiac intervention/diagnosis within one month after and/or 18 months prior to diagnostic CA), supplementary private hospital insurance coverage, language area, inpatient CA, cardiac medication class according to ATC) were analyzed with an exact fisher test. The number of chronic medical conditions identified using PCG and the deductible class were compared with a chi square test., We performed a logistic regression analysis to evaluate the independent association between receiving NIIT within two months prior to CA and the various health care models (Figure 1 and Table 2). In order to assess patient-level effects, the following additional independent variables were included in the regression analysis: age, sex, deductible class, supplementary private hospital insurance coverage, language area, inpatient CA, cardiac medication class according to ATC, number of chronic medical conditions identified using PCGs and high-risk status. Goodness of fit measures for the model were: Nagelkerke 0.05075414, BrierScore 0.2134051, C-Statistic 0.618. The strength of associations was measured by the odds ratio (OR) and the

205	respective 95% confidence intervals (CI). The level of significance was set at 0.05. All
206	statistical analyses were performed using R version 3.3.1 (2016-06-21) (R
207	Foundation for Statistical Computing, Vienna, Austria) ^{21 22} .
208	

Ethics approval

According to the national ethical and legal regulation, an ethical approval was not needed. Permission to access the study data was provided by the Helsana Group. Since data was anonymized, no consent of patients was required.

Results

Population

During the observed period a total of 19'032 therapeutic CA performed on 14'833 patients were registered in the Helsana data warehouse. 11'250 CA were eligible for analysis. According to the exclusion criteria (multiple exclusion criteria possible per person therefore the exclusions cannot be summed up), we excluded 5 patients since they were under the age of 18 years, 360 emergency procedures, 1'922 therapeutic CA (coronary angioplasty/stenting or coronary artery by-pass grafting). In total, 9'173 patients remained for analysis.

The descriptive statistics of the study population are listed in Table 1. From the 9'173

patients representing the study population 5'587 were male (60.9%, mean age 66.4

years) and 3'586 were female (39.1%, mean age 68.7 years).

Table 1 Descriptive statistics of the study population grouped into non-limited and limited access health care models (GK and MC)

	Non-limited access (n=5'258)			Limited access (n=3'915)					
				GK (n=1'816)			MC (n=2'099)		
	No NIIT (n=1'818)	With NIIT (n=3'440)		No NIIT (n=574)	With NIIT (n=1'242)		No NIIT (n=652)	With NIIT (n=1'447)	
High-Risk (= 1)	1'006	1'692	2	287	577	2	306	644	2
Age (mean)	68.1 (12.8)	67.6 (10.9)	**	66.4 (12.5)	66.9 (10.6)	1	66.6 (13.1)	66.6 (11.4)	1
Sex (fem)	738	1'351	2	213	483	2	254	547	2
Deductible			3		,	3			3
300	1'262	2'355		357	743		442	962	
500	394	749		134	310		116	290	
1000	45	71		26	65		28	48	
1500	59	127		24	51		23	55	
2000	5	14		2	14		3	16	
2500	53	124		31	59		40	76	

Private	493	925	2	120	288	2	142	316	2
			2			2			2
Latin	541	1'066	2	195	466	2	55	116	2
Inpatient	1'166	1'765	***	357	584	***	441	798	***
ATC 1	704	1'738	***	219	648	***	241	732	***
2	576	1'216	**	175	465	**	195	512	*
3	1'114	2'192	2	316	755	**	365	931	***
4	277	510	2	72	152	2	80	185	2
5	281	544	2	89	162	2	79	178	2
6	1'038	2'429	***	319	840	***	348	985	***
PCG			**			3			3
<3	412	768		175	372		203	444	
3-4	624	1342		200	474		221	557	
5-6	478	893		145	295		150	304	
>6	304	437		54	101		78	142	

NIIT: Non-invasive ischemia testing. GK: Gate keeping, MC: Managed care: Deductible class in Swiss Francs. Private: supplementary private hospital insurance, Latin: French or Italian part of Switzerland compared to German part. CA: coronary angiography, ATC:

Anatomical-Therapeutic-Chemical-Classification group 1 = Aspirin, platelet aggregation inhibitors, 2 = statins, lipid modifying agents, 3 = antihypertensives, diuretics, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system, 4 = antidiabetics, 5 = antianginous drugs, 6: antithrombotics (Categorical variable, an individual can be positive for several ATC groups).

PCG: number of chronic conditions according to pharmaceutical cost groups. High-risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA. Significance no NIIT vs with NIIT within nonlimited access and limited access group: *** p<0.0001, **p<0.001. **p<0.001.

Page 12 of 39

Patients insured in basic health care models were slightly older (67.7 (11.6) vs. 66.6 (11.6) years, p<0.0001), chose the lowest possible deductible of 300 Francs more often (3'617 (68.8%) vs. 2'504 (64.0%), p<0.001), were enrolled in a supplementary private hospital insurance more often (1'418 (27.0%) vs. 866 (22.1%), p<0.0001), had more antidiabetics (787 (15%) vs 489 (12.5%), p<0.0001) and antianginal medication (825 (15.7%) vs 508 (13.0%), p<0.0001), more PCGs (4.1 (2.1) vs. 3.6 (2.0), p<0.0001) and had more often a high-risk status (2'696 (51.3%) vs. 1'814 (46.3%), p<0.0001), compared to patients insured in limited access models (Appendix 2). Concerning the other patient characteristics, no differences existed.

Non-invasive ischemia testing

3'044 patients had no NIIT (1'455 without and 1'599 with high-risk). 488 of 1'445 (33.8 %) of patients without NIIT had a conventional ECG prior to CA, in the high-risk population this was the case in 722 of 1'599 (45.2%) (p<0.0001, data not shown). The most NIITs stress-ECG + transthoracic echocardiography were performed significantly more often before CA in patients insured in limited access compared to non-limited access models (1'750 (44.7%) vs. 2'039 (38.8 %) p<0.0001, and 2'044 (52.2%) and 2'528 (48.1%), p<0.0001, data not shown). The remaining types of NIIT were rarely performed and only showed a significant difference in the use of scintigraphy (non-limited 131 (2.5%) vs. limited access models 64 (1.6%), p<0.001, data not shown). The distribution of the non-invasive ischemia testing are depicted in Appendix 3).

<u>Determinants for non-invasive ischemia testing</u>

Patients with MC models had a significantly higher OR of 17% to receive NIIT before CA compared to patients with non-limited models, when controlled for the

confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high-risk status (OR 1.17, p<0.001). GK models did not show any significant influence on the chance of receiving NIIT (OR 1.11, p=0.071). The distribution of NIIT performed according to health care model can be appreciated in Figure 1.

Figure 1: Distribution of NIIT performed according to health care model.

OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high-risk status. * p<0.001 (OR 1.17) for managed care model compared to non-limited access model (Reference).

Following determinants were also independently significantly associated with receiving NIIT: the use of platelet aggregation inhibitors, antithrombotic and antihypertensive medication, being supplementary privately insured and a deductible of 2000 SFR. Following determinants were significantly associated with not receiving NIIT: high-risk status, a high number of chronic comorbidities as well as inpatient treatment (Table 2).

<u>Table 2: Determinants for receiving non-invasive ischemia testing before coronary</u> angiography

285		CI	OR	Sig
286	Age (years)	0.998 - 1.007	1.003	
287	Sex (female)	0.967 - 1.166	1.062	
288	Deductible Class (Swiss Francs, Refe	erence 300)		
289	500	0.912 - 1.141	1.020	

290	1000	0.667 - 1.120	0.865	
291	1500	0.841 - 1.374	1.075	
292	2000	1.082 - 4.381	2.177	*
293	2500	0.809 - 1.289	1.022	
294	Private	1.025 - 1.267	1.140	*
295	French or Italian part of Switzerland	0.841 - 1.044	0.937	
296	Inpatient CA	0.540 - 0.664	0.599	***
297	ATC group 1-6			
298	1	1.251 - 1.620	1.423	***
299	2	0.922 - 1.135	1.023	
300	3	1.002 - 1.218	1.104	*
301	4	0.851 - 1.115	0.974	
302	5	0.874 - 1.130	0.994	
303	6	1.034 - 1.356	1.184	*
304	PCG (reference <3)			
305	<5	0.940 - 1.192	1.058	
306	<7	0.809 - 1.064	0.928	
307	>=7	0.624 - 0.881	0.742	***
308	Limited access models (reference no	n-limited access)		
309	Managed Care	1.045 - 1.312	1.171	**
310	Gate Keeping	0.991 - 1.253	1.114	
311	High-risk cardiac status	0.046443	0.836	***
312	CI: confidence interval, OR: odds ratio,	Sig: significance: **	* p<0.0001, *	* p<0.001
313	*p<0.01, Private: supplementary private	e hospital insurance,	CA: coronary	/
314	angiography, ATC: Anatomical-Therape	eutic-Chemical-Clas	sification grou	ıp 1 =
315	Aspirin, platelet aggregation inhibitors,	2 = statins, lipid mod	difying agents	, 3 =

antihypertensives, diuretics, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system, 4 = antidiabetics, 5 = antianginous drugs, 6: antithrombotics (Categorical variable, an individual can be positive for several ATC groups). PCG: number of chronic conditions according to pharmaceutical cost groups. High-risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA.

Discussion

In our study population of elective CA with no therapeutic consequence (no coronary angioplasty/stenting or coronary artery bypass grafting) one third did not receive NIIT before diagnostic CA. MC was independently significantly associated with a higher proportion of NIIT when additionally controlled for potential confounders. GK models showed no significant association with the rate of NIIT.

Effects of limited access health care models on treatment quality

In our study, emergency CA were excluded and the study population consisted of patients undergoing purely diagnostic elective CA with no therapeutic consequence (e.g. no coronary angioplasty/stenting or coronary artery by-pass grafting). The study population therefore represents a selection of patients with at least stable CHD or no CHD at all. From a previous study among this selection of patients we know, that 37.5% did not receive any NIIT at all before elective CA with no therapeutic consequence, suggesting a substantial overuse of a potentially harmful and inappropriate diagnostic intervention ¹². It has been assumed that patients insured in limited access health care models undergo less diagnostic procedures or interventions due to budget considerations, especially in capitated health care models. In our study, this hypothesis is clearly refuted. Patients with stable angina

pectoris insured in limited access health care models underwent a more appropriate diagnostic pathway than regularly insured patients did, meaning in a stable clinical situation they were subjected to significantly more non-invasive diagnostic testing, therefore reducing inadequate CA. Our findings are in line with another study from the Swiss health care system, which also showed higher referral rates among MC patients compared to patients insured in basic health care models ²³. One reason for the more appropriate diagnostic pathway found in MC patients might be the aspect of membership in a general practitioners network. In most parts of Switzerland, general practitioners can only offer MC insurance models to their patients, if they are member in a general practitioners network. These networks offer evidence-based guidelines, which the general practitioners are obliged to respect when initiating treatment. Depending on the network, more or less rigorous quality control mechanisms exist to check whether the guidelines are followed, when applicable. General practitioners, which are not member in a network, therefore are less bound to evidence based treatment pathways.. Other studies showed that being insured in MC models is associated with a survival benefit by promoting better preventive and higher quality of care ²⁴⁻²⁶. Especially among Medicare beneficiaries, which are prone to multimorbidity, this effect has been shown ²⁷. These models have also shown lower prevalence of potentially inappropriate medication use in elderly patients and a lower disease specific hospitalization rate in chronically ill patients ^{16 17}. Our study raises the question why patients in limited access health care models receive a more appropriate diagnostic pathway in this clinical situation of stable angina pectoris. There has been evidence for and against the theory that patients enrolled in a MC health care model are healthier due to biased selection ²⁸⁻³⁷ and commercial considerations of the MC insurer ^{38 39}. In our study population, patients insured in limited access models showed some evidence of being healthier than

regularly insured patients. Nevertheless being insured only in MC but not GK models was independently associated with a higher rate of NIIT, controlled for all the differences in patient characteristics. It is clear that physicians participating in MC models are obliged to keep diagnostic and treatment costs as low as possible while keeping up with quality concerns. One could therefore argue that it is cheaper to not to choose a diagnostic detour over NIIT instead of choosing the straight forward way of sending a patient to the more invasive CA, which offers a clear answer to an uncertain clinical situation including the option of therapeutic action. It seems that MC health care providers have understood what Meara et al. have summed up accurately: "Reductions in spending for patients must be a result of decreases in the provision of services. If these are needed services, quality of care will decline. Alternatively, quality of care might be higher in low expenditure areas if differences in spending result from reductions in unnecessary or inappropriate services ⁴⁰". Besides this intuitive statement there has been scientific evidence that a diagnostic detour is worthwhile taking, since it sums up in reduced peri and post interventional costs without loss in quality ¹¹. Our study is not able to answer the questions why patients in limited access models received a more appropriate diagnostic approach. One can only hypothesize that a more rigorous coordination of care, as performed in the MC models, is straighter forward and the indication for invasive and expensive diagnostic procedures is more thoroughly scrutinized.

Determinants for NIIT

Even though simple echocardiography with no stress testing does not actually qualify as a NIIT, we chose to include this diagnostic procedure due to following considerations: some cardiologists might argue that patients with dyskinesia in simple echocardiography are likely to have relevant coronary pathology therefore offering an

argument for CA besides the clinical evaluation. Our theory is supported by the "2014" ESC/EACTS Guidelines on Myocardial Revascularization which state: "regional wall motion abnormalities may be detected in simple echocardiography, which increase the likelihood of coronary artery disease". Since our study lacks clinical data, only indirect hints by means of PCG and ATC codes as well as other confounders are available to assess clinical reasoning. The association between the use of platelet aggregation inhibitors or antithrombotic agents and antihypertensive medication with receiving NIIT before CA suggest a reasonable deliberation in the sense of estimating pretest probability when deciding on optimal diagnostic strategy. The same counts for the association of high-risk status and a larger number of chronic comorbidities as determinants for not receiving NIIT prior to elective CA. This finding is consistent with two US studies indicating that risk stratification was performed, considering the higher likelihood of a coronary pathology in patients with known coronary heart disease 8 10. In our study, also nonclinical factors seem to influence decision-making processes concerning diagnostic pathways, reflected by the findings that being privately insured and a deductible of 2000 SFR were positively and inpatient treatment negatively independently associated with NIIT. As previously observed in another Swiss study analyzing inappropriate use of arthroscopic meniscal surgery in degenerative knee disease 41, a substantial amount of the patients in our sample underwent CA as inpatients in contrast to other health care settings. This finding is most likely explained by differences in the organization of the health care system in Switzerland. Here regional governments subsidize inpatient treatment covering approximately 50% of total costs, and patients with supplementary private insurance receive a substantially higher reimbursement when treated as inpatients. Nevertheless, in the regression analysis with the outcome

proportion of NIIT, we controlled for potential confounders, such as inpatient treatment as well. The results therefore seem robust concerning the question whether limited access health care models have a significant impact on the appropriateness of the diagnostic approach.

Reinforcing quality control mechanisms in a non-gate keeping health care system Besides the existing voluntary steering mechanisms such limited access health care models guided by patient's preferences only, more alternative steering mechanisms have to be implemented in non-gate keeping health care systems, in order to minimize the influence of non-clinical factors on medical decision making, which might lead to inappropriate and possibly dangerous health care utilization as well as increasing expenditures. A positive example for alternative steering mechanisms is the implementation of national registries ⁴² combined with quality initiatives, such as the in 2009 published Appropriate Use Criteria for Coronary Revascularization 9 42 43. In 2011, the registry started giving feedbacks on the participating hospital's performance concerning appropriateness of CA including a benchmarking against other participating institutions. At the same time the American Board of Internal Medicine's Choosing Wisely initiative launched national quality improvement campaigns, identifying CA appropriateness as a key area for intervention 44. As a consequence insurance companies incorporated measures of CA appropriateness into pay-for-performance programs ⁴⁵ and reimbursement was declined for certain CA identified as inappropriate ⁴⁶. The combination of implementing national registries combined with quality initiatives had been proven amazingly effective, showing a decrease of non-acute CA classified as inappropriate from 26.2% to 13.3% ⁴⁷. In Switzerland currently no registries on CA exist, hence other solutions for influencing treatment pathways have to be developed, besides offering voluntary limited access

health care models. A possible alternative solution to the conundrum of reducing costs without cutting quality seems hence to be paying for outcomes instead of volume. As the findings of our study suggest, a possible approach is to raise the market share of MC to such a volume that it might also affect care for fee-for-service patients ⁴⁰. As Meara et al have summarized, the effects have been show to play in a variety of ways: more MC in a market might lower expenditures by reducing the number of specialists, and thereby the number of specialists' services provided ^{48 49} by encouraging more conservative practice patterns ^{48 49}, or by slowing the diffusion of more costly technologies ^{48 50}.

Strengths and limitations

Only scarce data on non-emergency CA exists in literature. The only data found originates from the US among Medicare as well as commercially insured patients and from Switzerland, both non-gate keeping health care systems. Whether the proportion of inappropriate diagnostic CA from our study can be translated to other non-gate keeping health care systems is difficult to estimate, since substantial variation in the proportion of non-acute PCIs considered inappropriate across hospitals can be found, ranging from about 6% to 70% ^{8 10 14 15 47}. From a previous study from Switzerland ¹² similar proportions were found, suggesting generalizability of our data. The current study seems even more representative than the previous Swiss study, since it included data over a longer time-period with consecutively larger amount of patients and corresponding data. Nevertheless, caution should be used when generalizing to larger populations due to the data being limited to only one, even if the largest health insurance company in Switzerland, due to exclusion criteria and the retrospective study design. Since the study is based on insurance claims data, no data on socioeconomic status and clinical information is available. Given

that this is a cross-sectional observational study, rather than an interventional one, the only conclusions that we can draw are of association rather than causation. Due to the study design, unfortunately no estimations on clinical outcome parameters can be made. For example, in order to explore clinical appropriateness, the proportion of CA's avoided by performing NIIT would be of great interest. As a substitute for clinical data, ATC and PCG are used, offering only indirect information on comorbidities. On the other hand PCGs represent a strength, since they have been shown to directly correlate with associated health care costs ¹⁹. Due to data structure, it is not possible to distinguish between CT angiography (including intravenous contrast) and CT without intravenous contrast. Therefore, all CTs of the chest were included in analysis.

Conclusions

In a non-gate keeping health care system voluntary MC health care models with capitation were associated with a reduced inappropriate use of diagnostic CA compared to GK or basic models.

References

- 1. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 2012;126(25):3097-137. doi: 10.1161/CIR.0b013e3182776f83
- Skinner JS, Smeeth L, Kendall JM, et al. NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. *Heart* 2010;96(12):974-8. doi: 10.1136/hrt.2009.190066
- Chest Pain of Recent Onset: Assessment and Diagnosis of Recent Onset Chest Pain or Discomfort of Suspected Cardiac Origin. London2010.
- 4. Task Force M, Montalescot G, Sechtem U, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European heart journal 2013;34(38):2949-3003. doi: 10.1093/eurheartj/eht296
- Archbold RA. Comparison between National Institute for Health and Care Excellence (NICE) and European Society of Cardiology (ESC) guidelines for the diagnosis and management of stable angina: implications for clinical practice. *Open Heart* 2016;3(1):e000406. doi: 10.1136/openhrt-2016-000406
- 6. Henderson RA, O'Flynn N, Guideline Development G. Management of stable angina: summary of NICE guidance. *Heart* 2012;98(6):500-7. doi: 10.1136/heartjnl-2011-301436
- 7. N OF, Timmis A, Henderson R, et al. Management of stable angina: summary of NICE guidance. BMJ 2011;343:d4147. doi: 10.1136/bmj.d4147
- 8. Lin GA, Dudley R, Lucas FL, et al. FRequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. *JAMA* 2008;300(15):1765-73. doi: 10.1001/jama.300.15.1765
- 9. Patel MR, Dehmer GJ, Hirshfeld JW, et al. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: A Report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology: Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. Circulation 2009;119(9):1330-52. doi: 10.1161/CIRCULATIONAHA.108.191768
- Topol EJ, Ellis SG, Cosgrove DM, et al. Analysis of coronary angioplasty practice in the United States with an insurance-claims data base. *Circulation* 1993;87(5):1489-97. doi: 10.1161/01.cir.87.5.1489
- 11. Shaw LJ, Hachamovitch R, Berman DS, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. *Journal of the American College of Cardiology* 1999:33(3):661-9.
- 12. Chmiel C, Reich O, Signorell A, et al. Appropriateness of diagnostic coronary angiography as a measure of cardiac ischemia testing in non-emergency patients a retrospective cross-sectional analysis. *PloS one* 2015;10(2):e0117172. doi: 10.1371/journal.pone.0117172
- 13. Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. *New Engl J Med* 2007;356(15):1503-16. doi: DOI 10.1056/NEJMoa070829
- 14. Chan PS, Patel MR, Klein LW, et al. APpropriateness of percutaneous coronary intervention. *JAMA* 2011;306(1):53-61. doi: 10.1001/jama.2011.916
- 15. Bradley SM, Maynard C, Bryson CL. Appropriateness of Percutaneous Coronary Interventions in Washington State. *Circ-Cardiovasc Qual* 2012;5(4):445-53. doi: 10.1161/Circoutcomes.111.964320
- Reich O, Rosemann T, Rapold R, et al. Potentially Inappropriate Medication Use in Older Patients in Swiss Managed Care Plans: Prevalence, Determinants and Association with Hospitalization. *PloS one* 2014;9(8) doi: ARTN e105425
- 10.1371/journal.pone.0105425
- 17. Huber CA, Reich O, Fruh M, et al. Effects of Integrated Care on Disease-Related Hospitalisation and Healthcare Costs in Patients with Diabetes, Cardiovascular Diseases and Respiratory

Illnesses: A Propensity-Matched Cohort Study in Switzerland. *Int J Integr Care* 2016;16 doi: 10.5334/ijic.2455
 Huber CA, Szucs TD, Rapold R, et al. Identifying patients with chronic conditions using pharmac

- 18. Huber CA, Szucs TD, Rapold R, et al. Identifying patients with chronic conditions using pharmacy data in Switzerland: an updated mapping approach to the classification of medications. *BMC public health* 2013;13:1030. doi: 10.1186/1471-2458-13-1030
- 19. Lamers LM, van Vliet RC. The Pharmacy-based Cost Group model: validating and adjusting the classification of medications for chronic conditions to the Dutch situation. *Health policy* 2004;68(1):113-21. doi: 10.1016/j.healthpol.2003.09.001
- 20. Huber CA, Schneeweiss S, Signorell A, et al. Improved prediction of medical expenditures and health care utilization using an updated chronic disease score and claims data. *J Clin Epidemiol* 2013;66(10):1118-27. doi: 10.1016/j.jclinepi.2013.04.011
- 21. (2015) RCT. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. [Available from: http://www.R-project.org/.
- 22. DescTools: Tools for descriptive statistics. R package version 0.99.15 [program]: Signorell. A. , 2016.
- Tandjung R, Morell S, Hanhart A, et al. Referral determinants in Swiss primary care with a special focus on managed care. PloS one 2017;12(11):e0186307. doi: 10.1371/journal.pone.0186307
- 24. DeLaet DE, Shea S, Carrasquillo O. Receipt of preventive services among privately insured minorities in managed care versus fee-for-service insurance plans. *J Gen Intern Med* 2002;17(6):451-57. doi: DOI 10.1046/j.1525-1497.2002.10512.x
- 25. Landon BE, Zaslavsky AM, Bernard SL, et al. Comparison of performance of traditional Medicare vs Medicare managed care. *Jama-J Am Med Assoc* 2004;291(14):1744-52. doi: DOI 10.1001/jama.291.14.1744
- 26. Miller RH, Luft HS. HMO plan performance update: an analysis of the literature, 1997-2001. *Health affairs* 2002;21(4):63-86.
- Huesch MD. Long-term impact of Medicare managed care on patients treated for coronary artery disease. Medical care 2012;50(1):18-26. doi: 10.1097/MLR.0b013e3182294a20
- 28. Maciejewski ML, Dowd B, Call KT, et al. Comparing mortality and time until death for medicare HMO and FFS beneficiaries. *Health services research* 2001;35(6):1245-65.
- 29. Park E. Informing the debate about curbing Medicare Advantage overpayments. *Center on Budget and Policy Priorities* 2007
- 30. Call KT, Dowd B, Feldman R, et al. Selection experiences in Medicare HMOs: pre-enrollment expenditures. *Health care financing review* 1999;20(4):197-209.
- 31. Deb P, Trivedi PK. Specification and simulated likelihood estimation of a non-normal treatment-outcome model with selection: Application to health care utilization. *Economet J* 2006;9(2):307-31. doi: DOI 10.1111/j.1368-423X.2006.00187.x
- 32. Mello MM, Stearns SC, Norton EC. Do Medicare HMOs still reduce health services use after controlling for selection bias? *Health Econ* 2002;11(4):323-40. doi: Doi 10.1002/Hec.664
- 33. Cao Z, McGuire TG. Service-level selection by HMOs in Medicare. *J Health Econ* 2003;22(6):915-31. doi: DOI 10.1016/j.healeco.2003.06.005
- Nicholson S, Bundorf K, Stein RM, et al. The magnitude and nature of risk selection in employersponsored health plans. *Health services research* 2004;39(6):1817-U1. doi: DOI 10.1111/j.1475-6773.2004.00320.x
- 35. Chernew M, DeCicca P, Town R. Managed care and medical expenditures of Medicare beneficiaries. *J Health Econ* 2008;27(6):1451-61. doi: DOI 10.1016/j.jhealeco.2008.07.014
- 36. Atherly A, Dowd BE, Feldman R. The effect of benefits, premiums, and health risk on health plan choice in the Medicare program. *Health services research* 2004;39(4):847-64. doi: DOI 10.1111/j.1475-6773.2004.00261.x
- 37. Huesch MD. Managing care? Medicare managed care and patient use of cardiologists. *Health services research* 2010;45(2):329-54. doi: 10.1111/j.1475-6773.2009.01070.x
- 38. Bundorf MK, Schulman KA, Stafford JA, et al. Impact of managed care on the treatment, costs, and outcomes of fee-for-service Medicare patients with acute myocardial infarction. *Health services research* 2004;39(1):131-52.
- 39. Cutler DM, McClellan M, Newhouse JP. How does managed care do it? *Rand J Econ* 2000;31(3):526-48. doi: Doi 10.2307/2600999
- 40. Meara E, Landrum MB, Ayanian JZ, et al. The effect of managed care market share on appropriate use of coronary angiography among traditional medicare beneficiaries. *Inquiry-J Health Car* 2004;41(2):144-58.
- 41. Muheim LLS, Senn O, Fruh M, et al. Inappropriate use of arthroscopic meniscal surgery in degenerative knee disease An observational study from Switzerland. *Acta Orthop* 2017;88(5):550-55. doi: 10.1080/17453674.2017.1344915

610 611 612 613 614 615 616 617 618 620 621 622 623 624 625 626
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
615 616 617 618 619 620 621 622 623 624 625 626 627 628
616 617 618 619 620 621 622 623 624 625 626 627 628
617 618 619 620 621 622 623 624 625 626 627 628
619 620 621 622 623 624 625 626 627 628
620 621 622 623 624 625 626 627 628
621 622 623 624 625 626 627 628
622 623 624 625 626 627 628
623 624 625 626 627 628
624 625 626 627 628
625 626 627 628
626 627 628
627 628
628
629
630
631 632
633

- 42. Registry ACoCC. National Cardiovascular Data Registry.
- 43. website JC. Proceedings from the National Summit on Overuse 2012 [updated September 24. Available from: http://www.jointcommission.org/assets/1/6/National Summit Overuse.pdf accessed August 17 2016.
- 44. Interventions. SfCAa. Five Things Physicians and Patients Should Question. [Available from: http://www.choosingwisely.org/societies/society-for-cardiovascular-angiography-and-interventions/ accessed August 17 2016.
- 45. Michigan. BCBSo. Hospital Pay-for-Performance Program. [Available from: https://www.bcbsm.com/content/dam/public/Providers/Documents/value/p4p-hospital-cqi-performance-index-guide.pdf. accessed August 17 2016.
- 46. website. NYSDoH. [Available from: https://www.health.ny.gov/health-care/medicaid/program/update/2013/2013-06.htm#ous.accessed Agust 17 2016.
- 47. Desai N, Bradley S, Parzynski C, et al. Appropriate Use Criteria for Coronary Revascularization and Trends in Utilization, PatientSelection, and Appropriateness of Percutaneous Coronary Intervention - FindingsFrom the NCDR- CathPCI Registry. Circulation 2015;132(23):2278-78.
- 48. Baker LC. Managed care and technology adoption in health care: evidence from magnetic resonance imaging. *J Health Econ* 2001;20(3):395-421. doi: Doi 10.1016/S0167-6296(01)00072-8
- 49. Heidenreich PA, McClellan M, Frances C, et al. The relation between managed care market share and the treatment of elderly fee-for-service patients with myocardial infarction. *American Journal of Medicine* 2002;112(3):176-82. doi: Pii S0002-9343(01)01098-1 Doi 10.1016/S0002-9343(01)01098-1
- 50. Cutler DM, Sheiner L. Managed care and the growth of medical expenditures. Nber Fr Hlth Pol Res 1998;1:77-115.

Sources of Funding

This work was supported by the Swiss Academy of Medical Sciences (SAMS), Switzerland. The funding source had no influence on study design; on the collection, analysis, and interpretation of the data; on the writing of the manuscript; and the decision to submit the manuscript for publication.

Competing interests

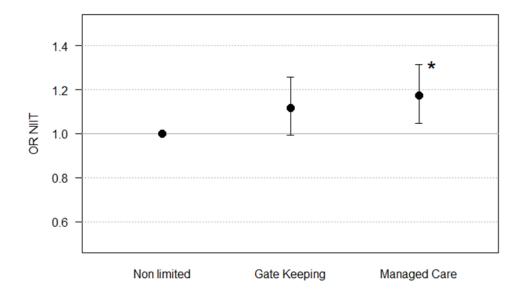
Oliver Reich and Andri Signorell are employed by the Helsana Group. The sponsor had no role in the planning, conducting or submission of this manuscript. These authors declare no conflict of interest. Helsana Group shall have no liability to any third party in respect to the contents of this article. All the other authors have no conflicts of interests or financial disclosures to declare.

Authors Contributions

Conceived and designed the experiments: CC, OR, AS, SNJ, TR, OS. Performed the experiments: CC, OR, AS. Analyzed the data: CC, OR, AS, SNJ, TR, OS. Wrote the paper: CC, edited and approved the paper: CC, OR, AS, SNJ, TR, OS.

Consent for publication

Since data were completely anonymized, no patient consent was necessary.


Availability of data and materials

Individual data cannot be made fully available on the internet because the study is based on claims data of the Helsana Group, the owner of the data. Thus, data underlie data protection and privacy restrictions. These restrictions prohibit the insurer from sharing the collected data. Data analysis was performed within the

premises of the Helsana research group by the statistician AS in collaboration with
the authors OR and CC and administrative permission was received to access de-
identified data by the researchers from the University of Zurich.

Figure Legend

- Figure 1: Distribution of NIIT performed according to health care model.
- OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders
- age, sex, language area, insurance coverage, inpatient treatment, cardiovascular
- 671 medication, number of chronic comorbidities and high-risk status. * p<0.001 (OR
- 672 1.17) for managed care model compared to non-limited access model (Reference).

OR NIIT: odds ratio for non-invasive ischemia testing controlled for the confounders age, sex, language area, insurance coverage, inpatient treatment, cardiovascular medication, number of chronic comorbidities and high- risk status. * p<0.001 8 (OR 1.17) for managed care model compared to standard health care plannon-limited access model (Reference).

Supplemental Material

2 Supplemental Methods/Definitions

- 4 1) Inclusion Criteria
- 5 Tarmed 17.071
- 6 17.074
- 7 17.101
- 8 17.109
- 9 17.181
- 10 17.182
- 11 DRG F49D
- 12 F49E
- 13 F49F
- 14 If two coronary angiographies (CA) were performed on the same day at the same
- provider, the intervention is counted once.
- 16 If the CA was performed twice at the same day but different providers the CA counts
- twice (both concerning the inpatients positions (Diagnosis related Groups (DRG)) and
- the outpatient positions (Standard billing rate for outpatient medical care in
- 19 Switzerland (TARMED))
- 20 If during 2012-2015 patients received more than one CA, only the first CA was taken
- 21 into consideration.

1	2) Exclusion Criteria				
2	Acute cardiac ischemia and/or	emergency pi	rocedures	Tarmed	0.2510
3					0.2520
4					0.2540
5					0.2560
6					0.2580
7					35.0610
8				DRG	F41A
9					F41B
10					
11	Therapeutic CA (coronary angio	oplasty/stentii	ng or coronar	y artery by-pa	ass grafting,
12	without myocardial infarction)	Tarmed	17.1110		
13			17.1240		
14		DRG	F15Z		
15			F19Z		
16			F24B		
17			F49A		
18			F49C		
19			F52A		
20			F52B		
21			F54Z		
22			F56A		
23			F56B		
24			F57A		
25			F57B		

F58Z

1		F59A
2		F59B
3	Incomplete	coverage of mandatory basic health insurance 18 months before and/or 1
4	month after	
5	Patients <1	8 years
6		
7		
8	3) Diagnos	tic Procedures
9	Tarmed	17.0010: Electrocardiogram (ECG): not considered as NIIT, only in
10		combination with other NIIT
11		17.0050: Cardiac intervention with medication under continuous
12		registration of ECG: not considered as NIIT, only in combination with
13		another NIIT
14		17.0060: ECG performed by specialist outside of the practice or
15		hospital: not considered as NIIT, only in combination with another NIIT
16		17.0080 and 17.0090: Stress-ECG
17		17.0210: Echocardiography, transthoracic, qualitative and quantitative
18		examination of adult
19		17.0280: Stressechocardiography, physical stress
20		17.0290: Stressechocardiography, medication stress
21		31.0260: Scintigraphy physiologically triggered
22		39.4060: Computed tomography of entire thorax and/or sternoclavicular
		joint
23		
24	DBC	39.5100 Heart MRI
25	DRG	No separate codes available for inpatient diagnostic procedures, only
26		for therapeutic interventions

1 4) High risk patients

- 2 Patients having received therapeutic cardiac intervention within one month after or 18
- 3 months prior to diagnostic CA
- 4 Tarmed 0.2510
- 5 0.2520
- 6 0.2540
- 7 0.2560
- 8 0.2580
- 9 35.0610
- 10 17.1110
- 11 17.1240
- 12 And all 18.001until/including 18.0740
- 13 DRG all Chapter F

Appendix 2

Descriptive Differences in the study population non-limited vs. limited access modes

	Total	Non-limited	Limited	
		access	access	
n	9'173	5'258 (57.3%)	3'915 (42.7%)	
Sex (fem)	3'586 (39.1%)	2'089 (39.7%)	1'497 (38.2%)	2
Age (mean)	67.3 (11.610)	67.7 (11.582)	66.6 (11.620)	*** 1
Deductible				*** 3
300	6'121 (66.7%)	3'617 (68.8%)	2'504 (64.0%)	
500	1'993 (21.7%)	1'143 (21.7%)	850 (21.7%)	
1000	283 (3.1%)	116 (2.2%)	167 (4.3%)	
1500	339 (3.7%)	186 (3.5%)	153 (3.9%)	
2000	54 (0.6%)	19 (0.4%)	35 (0.9%)	
2500	383 (4.2%)	177 (3.4%)	206 (5.3%)	
Private	2'284 (24.9%)	1'418 (27.0%)	866 (22.1%)	*** 2
Canton				*** 3
AG	717 (7.8%)	377 (7.2%)	340 (8.7%)	
Al	13 (0.1%)	8 (0.2%)	5 (0.1%)	
AR	46 (0.5%)	26 (0.5%)	20 (0.5%)	
BE	1'489 (16.2%)	664 (12.6%)	825 (21.1%)	
BL	200 (2.2%)	129 (2.5%)	71 (1.8%)	
BS	72 (0.8%)	53 (1.0%)	19 (0.5%)	
FR	259 (2.8%)	196 (3.7%)	63 (1.6%)	
GE	427 (4.7%)	285 (5.4%)	142 (3.6%)	
GL	54 (0.6%)	29 (0.6%)	25 (0.6%)	
GR	152 (1.7%)	86 (1.6%)	66 (1.7%)	
JU	21 (0.2%)	13 (0.2%)	8 (0.2%)	
LU	304 (3.3%)	156 (3.0%)	148 (3.8%)	
NE	98 (1.1%)	69 (1.3%)	29 (0.7%)	
NW	37 (0.4%)	25 (0.5%)	12 (0.3%)	
OW	34 (0.4%)	17 (0.3%)	17 (0.4%)	
SG	343 (3.7%)	168 (3.2%)	175 (4.5%)	
SH	126 (1.4%)	67 (1.3%)	59 (1.5%)	
SO	473 (5.2%)	220 (4.2%)	253 (6.5%)	
SZ	194 (2.1%)	124 (2.4%)	70 (1.8%)	
TG	347 (3.8%)	152 (2.9%)	195 (5.0%)	
TI	721 (7.9%)	429 (8.2%)	292 (7.5%)	
UR	48 (0.5%)	22 (0.4%)	26 (0.7%)	
VD	598 (6.5%)	412 (7.8%)	186 (4.8%)	
VS	315 (3.4%)	203 (3.9%)	112 (2.9%)	
ZG	138 (1.5%)	84 (1.6%)	54 (1.4%)	
ZH	1'947 (21.2%)	1'244 (23.7%)	703 (18.0%)	2
atc_1	4'282 (46.7%)	2'442 (46.4%)	1'840 (47.0%)	
atc_2	3'139 (34.2%)	1'792 (34.1%)	1'347 (34.4%)	2
atc_3	5'693 (62.1%)	3'306 (62.9%)	2'387 (61.0%)	. 2 *** 2
atc_4	1'276 (13.9%)	787 (15.0%)	489 (12.5%)	*** 2
atc_5	1'333 (14.5%)	825 (15.7%)	508 (13.0%)	2
NIIT	4104.4 (E2.00()	01000 (50.70()	01000 (50, 40()	2
ekg	4'914 (53.6%)	2'822 (53.7%)	2'092 (53.4%)	2
kmedint	8 (0.1%)	4 (0.1%)	4 (0.1%)	2 2
ekgext	23 (0.3%)	15 (0.3%)	8 (0.2%)	2
bekgarb	8 (0.1%)	3 (0.1%)	5 (0.1%)	*** 2
bekgergo	3'789 (41.3%)	2'039 (38.8%)	1'750 (44.7%)	*** 2
echokard	4'572 (49.8%)	2'528 (48.1%)	2'044 (52.2%)	2
echophys	137 (1.5%)	81 (1.5%)	56 (1.4%)	2
echomed	131 (1.4%)	69 (1.3%)	62 (1.6%)	** 2
szin	195 (2.1%)	131 (2.5%)	64 (1.6%)	2
Ct	643 (7.0%)	387 (7.4%)	256 (6.5%)	2
mri	283 (3.1%)	173 (3.3%)	110 (2.8%)	2

pcg_n	3.883 (2.029)	4.060 (2.058)	3.644 (1.965)	*** 1
pcg				*** 3
<3	2'545 (27.7%)	1'277 (24.3%)	1'268 (32.4%)	
3-4	3'430 (37.4%)	1'967 (37.4%)	1'463 (37.4%)	
5-6	2'179 (23.8%)	1'339 (25.5%)	840 (21.5%)	
>6	1'019 (11.1%)	675 (12.8%)	344 (8.8%)	
Highrisk	4'510 (49.2%)	2'696 (51.3%)	1'814 (46.3%)	*** 2
Inpatient	5'111 (55.7%)	2'931 (55.7%)	2'180 (55.7%)	2
CA				
17.0710	12 (0.1%)	7 (0.1%)	5 (0.1%)	
17.0710,17.0740	6 (0.1%)	6 (0.1%)	0 (0.0%)	
17.0710,17.0740,17.1010	218 (2.4%)	136 (2.6%)	82 (2.1%)	
17.0710,17.0740,17.1010,17.1090,17.1810	2 (0.0%)	1 (0.0%)	1 (0.0%)	
17.0710,17.0740,17.1010,17.1810	2'960 (32.3%)	1'663 (31.6%)	1'297 (33.1%)	
17.0710,17.0740,17.1010,17.1810,F49D	0 (0.0%)	0 (0.0%)	0 (0.0%)	
17.0710,17.0740,17.1010,17.1810,F49E	2 (0.0%)	1 (0.0%)	1 (0.0%)	
17.0710,17.0740,17.1010,17.1810,F49F	2 (0.0%)	0 (0.0%)	2 (0.1%)	
17.0710,17.0740,17.1010,17.1820	1 (0.0%)	0 (0.0%)	1 (0.0%)	
17.0710,17.0740,17.1090	78 (0.9%)	44 (0.8%)	34 (0.9%)	
17.0710,17.0740,17.1090,17.1810	363 (4.0%)	219 (4.2%)	144 (3.7%)	
17.0710,17.0740,17.1810	25 (0.3%)	17 (0.3%)	8 (0.2%)	
17.0710,17.1010	1 (0.0%)	0 (0.0%)	1 (0.0%)	
17.0710,17.1010,17.1810	39 (0.4%)	23 (0.4%)	16 (0.4%)	
17.0710,17.1010,17.1810,F49F	3 (0.0%)	2 (0.0%)	1 (0.0%)	
17.0710,17.1090	1 (0.0%)	1 (0.0%)	0 (0.0%)	
17.0710,17.1090,17.1810	14 (0.2%)	5 (0.1%)	9 (0.2%)	
17.0710,17.1810	232 (2.5%)	133 (2.5%)	99 (2.5%)	
17.0740	7 (0.1%)	5 (0.1%)	2 (0.1%)	
17.0740,17.1010	4 (0.0%)	3 (0.1%)	1 (0.0%)	
17.0740,17.1010,17.1810	9 (0.1%)	6 (0.1%)	3 (0.1%)	
17.0740,17.1090,17.1810	3 (0.0%)	3 (0.1%)	0 (0.0%)	
17.0740,17.1810	1 (0.0%)	1 (0.0%)	0 (0.0%)	
17.1010,17.1810	3 (0.0%)	3 (0.1%)	0 (0.0%)	
17.1810	83 (0.9%)	51 (1.0%)	32 (0.8%)	
F49D	475 (5.2%)	281 (5.3%)	194 (5.0%)	
F49E	711 (7.8%)	373 (7.1%)	338 (8.6%)	
F49E,F49F	0 (0.0%)	0 (0.0%)	0 (0.0%)	
F49F	3'918 (42.7%)	2'274 (43.2%)	1'644 (42.0%)	

Deductible class in Swiss Francs. Private: supplementary private hospital insurance, ATC: Anatomical-Therapeutic-Chemical-Classification group 1 = Aspirin, platelet aggregation inhibitors, 2 = statins, lipid modifying agents, 3 = antihypertensives, diuretics, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system, 4 = antidiabetics, 5 = antianginous drugs, 6: antithrombotics. NIIT: Non-invasive ischemia testing, PCG: number of chronic conditions according to pharmaceutical cost groups. High-risk patients: having received therapeutic cardiac intervention within one month after or 18 months prior to diagnostic CA. CA: coronary angiography. Significance non-limited vs limited access group: *** p<0.0001, ** p<0.001, *p<0.01. ¹) Kruskal-Wallis test, ²) Fisher exact test, ³) Chi-Square test

Detailed Tarmed positions can also be appreciated in Appendix 1.

```
NIIT:
                      17.0010 Electrocardiogram (ECG)
 ekg
 kmedint
                      17.0050 Cardiac intervention with medication under continuous registration of ECG
 ekgext
                      17.0060 ECG performed by specialist outside of the practice or hospital
                      17.0080 Stress-ECG
 bekgarb
                      17.0090 Stress-ECG
 bekgergo
 echokard
                      17.0210 Echocardiography, transthoracic, qualitative and quantitative
                      17.0280 Stressechocardiography, physical stress
 echophys
 echomed
                      17.0290 Stressechocardiography, medication stress
 szin
                      31.0260 Scintigraphy physiologically triggered
 ct
                      39.4060 Computed tomography of entire thorax and/or sternoclavicular joint
 mri
                      39.5100 Heart MRI
```

Appendix 3 a) and b)

a) Overall distribution of the non-invasive ischemia testing

level	freq	perc	cumfreq	cumperc
	3'044	33.2%	3'044	33.2%
bekgergo, echokard	2'360	25.7%	5'404	58.9%
echokard	1'494	16.3%	6'898	75.2%
bekgergo	952	10.4%	7'850	85.6%
ct	204	2.2%	8'054	87.8%
bekgergo, echokard, ct	165	1.8%	8'219	89.6%
echokard, ct	153	1.7%	8'372	91.3%
mri	120	1.3%	8'492	92.6%
echokard, echophys	70	0.8%	8'562	93.3%
echokard, mri	64	0.7%	8'626	94.0%
bekgergo, chokard, mri	62	0.7%	8'688	94.7%
bekgergo, ct	50	0.5%	8'738	95.3%
echokard, echomed	44	0.5%	8'782	95.7%
bekgergo, szin	43	0.5%	8'825	96.2%
bekgergo,echokard, szin	42	0.5%	8'867	96.7%
echophys	40	0.4%	8'907	97.1%
szin	39	0.4%	8'946	97.5%
echomed	37	0.4%	8'983	97.9%
bekgergo, echokard, echomed	35	0.4%	9'018	98.3%
echokard, szin	25	0.3%	9'043	98.6%
bekgergo, mri	23	0.3%	9'066	98.8%
bekgergo, echokard, szin, ct	15	0.2%	9'081	99.0%
echokard, szin, ct	14	0.2%	9'095	99.1%
bekgergo, echokard, echophys	11	0.1%	9'106	99.3%
bekgergo, szin, ct	10	0.1%	9'116	99.4%
bekgergo, echomed	7	0.1%	9'123	99.5%
bekgergo, echophys	7	0.1%	9'130	99.5%
ct, mri	6	0.1%	9'136	99.6%
echophys, ct	5	0.1%	9'141	99.7%
szin, ct	5	0.1%	9'146	99.7%
bekgarb, echokard	4	0.0%	9'150	99.7%
echomed, ct	4	0.0%	9'154	99.8%
echokard, ct, mri	3	0.0%	9'157	99.8%
echokard, echophys, ct	3	0.0%	9'160	99.9%
bekgarb	2	0.0%	9'162	99.9%
bekgergo, echokard, ct, mri	2	0.0%	9'164	99.9%
bekgergo, echokard, echomed, ct	2	0.0%	9'166	99.9%
bekgarb, bekgergo, echokard	1	0.0%	9'167	99.9%
bekgarb, bekgerg	1	0.0%	9'168	99.9%
bekgergo, ct, mri	1	0.0%	9'169	100.0%
echokard, echomed, ct	1	0.0%	9'170	100.0%
echokard, echomed, szin	1	0.0%	9'171	100.0%
echokard, echophys, mri	1	0.0%	9'172	100.0%
szin, mri	1	0.0%	9'173	100.0%
, -	_			

b) Distribution of the non-invasive ischemia testing according to health care model

	freq			p.col		
	MC	GK	Basic	MC	GK	Basic
	652	574	1'818	31.1%	31.6%	34.6%
bekgarb, bekgergo, echokard	1	0	0	0.0%	0.0%	0.0%
bekgarb, bekgergo	0	1	0	0.0%	0.1%	0.0%
bekgarb, echokard	0	1	3	0.0%	0.1%	0.1%
bekgarb	1	1	0	0.0%	0.1%	0.0%
bekgergo	237	181	534	11.3%	10.0%	10.2%
bekgergo, ct	10	12	28	0.5%	0.7%	0.5%
bekgergo, ct, mri	0	0	1	0.0%	0.0%	0.0%
bekgergo, echokard	647	488	1'225	30.8%	26.9%	23.3%
bekgergo, echokard, ct	48	22	95	2.3%	1.2%	1.8%
bekgergo, echokard, ct, mri	0	1	1	0.0%	0.1%	0.0%
bekgergo, echokard, echomed	12	10	13	0.6%	0.6%	0.2%
bekgergo, echokard, echomed, ct	1	1	0	0.0%	0.1%	0.0%
bekgergo, echokard, echophys	3	0	8	0.1%	0.0%	0.2%
bekgergo, echokard, mri	8	15	39	0.4%	0.8%	0.7%
bekgergo, echokard, szin	7	4	31	0.3%	0.2%	0.6%
bekgergo, echokard, szin, ct	3	2	10	0.1%	0.1%	0.2%
bekgergo, echomed	0	3	4	0.0%	0.2%	0.1%
bekgergo, echophys	1	1	5	0.0%	0.1%	0.1%
bekgergo, mri	3	4	16	0.1%	0.2%	0.3%
bekgergo, szin	8	9	26	0.4%	0.5%	0.5%
bekgergo, szin, ct	4	3	3	0.2%	0.2%	0.1%
ct	33	41	130	1.6%	2.3%	2.5%
ct, mri	0	1	5	0.0%	0.1%	0.1%
echokard	298	316	880	14.2%	17.4%	16.7%
echokard, ct	29	31	93	1.4%	1.7%	1.8%
echokard, ct, mri	3	0	0	0.1%	0.0%	0.0%
echokard, echomed	11	9	24	0.5%	0.5%	0.5%
echokard, echomed, ct	0	0	1	0.0%	0.0%	0.0%
echokard, echomed, szin	0	0	1	0.0%	0.0%	0.0%
echokard, echophys	14	15	41	0.7%	0.8%	0.8%
echokard, echophys, ct	1	1	1	0.0%	0.1%	0.0%
echokard, echophys, mri	1	0	0	0.0%	0.0%	0.0%
echokard, mri	12	19	33	0.6%	1.0%	0.6%
echokard, szin	1	4	20	0.0%	0.2%	0.4%
echokard, szin, ct	5	0	9	0.2%	0.0%	0.2%
echomed	9	5	23	0.4%	0.3%	0.4%
echomed, ct	1	0	3	0.0%	0.0%	0.1%
echophys	6	11	23	0.3%	0.6%	0.4%
echophys, ct	2	0	3	0.1%	0.0%	0.1%
mri	22	21	77	1.0%	1.2%	1.5%
szin	4	9	26	0.2%	0.5%	0.5%
szin, ct	1	0	4	0.0%	0.0%	0.1%
szin, mri	0	0	1	0.0%	0.0%	0.0%

MC: Managed Care, GK: Gate Keeping.

Detailed Tarmed positions can also be appreciated in Appendix 1:

NIIT ekg kmedint Ekgext bekgarb	Tarmed position 17.0010 Electrocardiogram (ECG) 17.0050 Cardiac intervention with medication under continuous registration of ECG 17.0060 ECG performed by specialist outside of the practice or hospital 17.0080 Stress-ECG
bekgergo	17.0090 Stress-ECG
echokard	17.0210 Echocardiography, transthoracic, qualitative and quantitative
echophys	17.0280 Stressechocardiography, physical stress
echomed	17.0290 Stressechocardiography, medication stress
szin	31.0260 Scintigraphy physiologically triggered
ct	39.4060 Computed tomography of entire thorax and/or sternoclavicular joint
mri	39.5100 Heart MRI
	39.5100 Heart MRI

1 Reporting statement: STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1, 2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3, 4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3, 4
Objectives	3	State specific objectives, including any prespecified hypotheses	2, 4, 5
Methods			
Study design	4	Present key elements of study design early in the paper	5-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5-8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-8
Bias	9	Describe any efforts to address potential sources of bias	7, 8
Study size	10	Explain how the study size was arrived at	5, 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6, 7, 8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7, 8
		(b) Describe any methods used to examine subgroups and interactions	7, 8
		(c) Explain how missing data were addressed	7, 8
		(d) If applicable, describe analytical methods taking account of sampling strategy	6-8
		(e) Describe any sensitivity analyses	7, 8
Results			

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9-14
		(b) Give reasons for non-participation at each stage	9-14
		(c) Consider use of a flow diagram	Not applicable
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9-14
		(b) Indicate number of participants with missing data for each variable of interest	9-14
Outcome data	15*	Report numbers of outcome events or summary measures	9-14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-14
		(b) Report category boundaries when continuous variables were categorized	Not applicable
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-14
Discussion			
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15-19
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	23

^{*}Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org