Article Text

Download PDFPDF

Real-world effectiveness evaluation of budesonide/formoterol Spiromax for the management of asthma and chronic obstructive pulmonary disease in the UK
  1. Jaco Voorham1,
  2. Nicolas Roche2,
  3. Hicham Benhaddi3,
  4. Marianka van der Tol4,
  5. Victoria Carter1,
  6. Job F.M. van Boven5,
  7. Leif Bjermer6,
  8. Marc Miravitlles7,
  9. David B Price1,8
  1. 1 Observational and Pragmatic Research Institute Pte Ltd, Singapore, Singapore
  2. 2 Hôpitaux Universitaires Paris Centre, Cochin Hospital (APHP), University Paris Descartes (EA2511), Paris, France
  3. 3 Global Health Economics & Outcomes Research, Teva Pharmaceuticals, Wilrijk, Belgium
  4. 4 Respiratory Devices, Teva Pharmaceuticals Europe B.V, Amsterdam, The Netherlands
  5. 5 Department of General Practice & Elderly Care, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
  6. 6 Respiratory Medicine and Allergology, Skåne University Hospital, Lund, Sweden
  7. 7 Department of Pneumology, Hospital Universitari Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
  8. 8 Centre of Academic Primary Care, University of Aberdeen, Aberdeen, UK
  1. Correspondence to Dr Jaco Voorham; jaco{at}opri.sg

Abstract

Objectives Budesonide/formoterol (BF) Spiromax ® is an inhaled corticosteroid/long-acting β2-agonist fixed-dose combination (FDC) inhaler, designed to minimise common inhaler errors and provide reliable and consistent dose delivery in asthma and chronic obstructive pulmonary disease (COPD). We evaluated non-inferiority of BF Spiromax after changing from another FDC inhaler, compared with continuing the original inhaler.

Methods Patients with asthma and/or COPD who switched to BF Spiromax were matched (1:3) with non-switchers. Data were obtained from the Optimum Patient Care Research Database and Clinical Practice Research Datalink in the UK. The primary end point was the proportion of patients achieving disease control (using the risk domain control (RDC) algorithm); secondary end points were: exacerbation rate, short-acting β2-agonist (SABA) use and treatment stability (achieved RDC; no maintenance treatment change). Non-inferiority was defined as having 95% CI lower bound above −10%, using conditional logistic regression and adjusted for relevant confounders.

Results Comparing 385 matched patients (asthma 253; COPD 132) who switched to BF Spiromax with 1091 (asthma 743; COPD 348) non-switchers, non-inferiority of BF Spiromax in RDC was demonstrated (adjusted difference: +6.6%; 95% CI –0.3 to 13.5). Among patients with asthma, switchers to BF Spiromax versus BF Turbuhaler® reported fewer exacerbations (adjusted rate ratio (RR) 0.76;95% CI 0.60 to 0.99; p=0.044); were less likely to use high daily doses of SABA (adjusted OR 0.71;95% CI 0.52 to 0.98; p=0.034); used fewer SABA inhalers (adjusted RR 0.92;95% CI 0.86 to 0.99; p=0.019); and were more likely to achieve treatment stability (adjusted OR 1.44;95% CI 1.02 to 2.04; p=0.037). No significant differences in these end points were seen among patients with COPD.

Conclusions Among UK patients with asthma and COPD, real-world use of BF Spiromax was non-inferior to BF Turbuhaler in terms of disease control. Among patients with asthma, switching to BF Spiromax was associated with reduced exacerbations, reduced SABA use and improved treatment stability versus continuing on BF Turbuhaler.

  • asthma
  • budesonide/formoterol
  • chronic obstructive pulmonary disease
  • comparative effectiveness research
  • disease control
  • inhalation devices

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Contributors All authors (JV, NR, HB, MvdT, VC, JFMvB, LB, MM, DBP) were involved in the conception and design of the study. JV was responsible for the analysis of the data. All authors (JV, NR, HB, MvdT, VC, JFMvB, LB, MM, DBP) interpreted the data, were involved in development of the manuscript and completed critical reviews. The authors were fully responsible for all content and editorial decisions, were involved at all stages of manuscript development, and have approved the final version.All authors (JV, NR, HB, MvdT, VC, JFMvB, LB, MM, DBP) meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval to the version to be published. JV is guarantor of the study.

  • Funding This study was supported by Teva Pharmaceuticals and undertaken by OPRI (http://opri.sg). Medical writing support was funded by Teva Pharmaceuticals.

  • Competing interests JV and VC are employees of OPRI, which has conducted paid research in respiratory disease on behalf of the following organisations in the past 5 years: Aerocrine, AKL Research and Development Ltd, Almirall, AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Meda, Mundipharma, Napp, Novartis, Orion, Takeda, Teva, Zentiva (a Sanofi company). NR reports grants and personal fees from BoehringerIngelheim, Novartis, and personal fees from Teva, GSK, AstraZeneca, Chiesi, Mundipharma, Cipla, Sanofi, Sandoz, 3M, Pfizer, Zambon, outside the presented work. HB is an employee of Teva Pharmaceuticals. MvdT was an employee of Teva Pharmaceuticals Europe BV at the time the study was conducted. JFMvB has received consultancy fees from AstraZeneca, speaker fees from Menarini, research support from GSK, Boehringer Ingelheim, Astrazeneca and Chiesi and travel support from the European COPD Coalition and the Respiratory Effectiveness Group. LB has during the last 3 years received honoraria to participate or to give lectures for the following companies: ALK, AstraZeneca, Boehringer, Chiesi, GlaxoSmithklein, Novartis and Teva. MM declares no relevant competing interests. DBP has board membership with Aerocrine, Amgen, AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Mundipharma, Napp, Novartis, and Teva Pharmaceuticals; consultancy agreements with Almirall, Amgen, AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Mylan, Mundipharma, Napp, Novartis, Pfizer, Teva Pharmaceuticals and Theravance; grants and unrestricted funding for investigator initiated studies (conducted through Observational and Pragmatic Research Institute Pte Ltd) from Aerocrine, AKL Research and Development Ltd, AstraZeneca, Boehringer Ingelheim, British Lung Foundation, Chiesi, Mylan, Mundipharma, Napp, Novartis, Pfizer, Respiratory Effectiveness Group, Teva Pharmaceuticals, Theravance, UK National Health Service, Zentiva; payment for lectures/speaking engagements from Almirall, AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, GlaxoSmithKline, Kyorin, Mylan, Merck, Mundipharma, Novartis, Pfizer, Skyepharma, and Teva Pharmaceuticals; payment for manuscript preparation from Mundipharma and Teva Pharmaceuticals; payment for the development of educational materials from Mundipharma and Novartis; payment for travel/accommodation/meeting expenses from Aerocrine, AstraZeneca, Boehringer Ingelheim, Mundipharma, Napp, Novartis, and Teva Pharmaceuticals; funding for patient enrolment or completion of research from Chiesi, Novartis, Teva Pharmaceuticals, and Zentiva; stock/stock options from AKL Research and Development Ltd which produces phytopharmaceuticals; owns 74% of the social enterprise Optimum Patient Care Ltd (Australia, Singapore and UK) and 74% of Observational and Pragmatic Research Institute Pte Ltd (Singapore); and is peer reviewer for grant committees of the Efficacy and Mechanism Evaluation programme, and Health Technology Assessment.

  • Patient consent Not required.

  • Ethics approval This study was approved by the Anonymised Data Ethics Protocols and Transparency (ADEPT) committee (reference ADEPT0816), the independent scientific advisory committee for the OPCRD, commissioned by the Respiratory Effectiveness Group, and the Independent Scientific Advisory Committee (ISAC) for the CPRD (registration number, 16_086), The study was designed, implemented, and registered in accordance with the criteria of the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCEPP/SDPP/13238). The CPRD has broad National Research Ethics Service Committee (NRES) ethics approval for purely observational research using the primary care data and established data linkages. The OPCRD has ethical approval from the National Health Service (NHS) Research Authority to hold and process anonymised research data (Research Ethics Committee reference: 15/EM/0150).

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data sharing statement All relevant data are within the paper and its Supporting Information files. The data set supporting the conclusions of this article was derived from the Clinical Practice Research Datalink (www.cprd.com) and the UK Optimum Patient Care Research Database (www.opcrd.co.uk). We do not have permission to give public access to these databases; however, researchers may request access for their own purposes.

Linked Articles