Article Text

Download PDFPDF

Low alcohol consumption and pregnancy and childhood outcomes: time to change guidelines indicating apparently ‘safe’ levels of alcohol during pregnancy? A systematic review and meta-analyses
  1. Loubaba Mamluk1,2,3,
  2. Hannah B Edwards2,3,
  3. Jelena Savović2,3,
  4. Verity Leach2,3,
  5. Timothy Jones2,3,
  6. Theresa H M Moore2,3,
  7. Sharea Ijaz2,3,
  8. Sarah J Lewis2,
  9. Jenny L Donovan2,3,
  10. Debbie Lawlor1,2,3,
  11. George Davey Smith1,2,
  12. Abigail Fraser1,2,
  13. Luisa Zuccolo1,2
  1. 1MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
  2. 2School of Social and Community Medicine, University of Bristol, Bristol, UK
  3. 3NIHR CLAHRC West, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
  1. Correspondence to Loubaba Mamluk; l.mamluk{at}bristol.ac.uk

Abstract

Objectives To determine the effects of low-to-moderate levels of maternal alcohol consumption in pregnancy on pregnancy and longer-term offspring outcomes.

Search strategy Medline, Embase, Web of Science and Psychinfo from inception to 11 July 2016.

Selection criteria Prospective observational studies, negative control and quasiexperimental studies of pregnant women estimating effects of light drinking in pregnancy (≤32 g/week) versus abstaining. Pregnancy outcomes such as birth weight and features of fetal alcohol syndrome were examined.

Data collection and analysis One reviewer extracted data and another checked extracted data. Random effects meta-analyses were performed where applicable, and a narrative summary of findings was carried out otherwise.

Main results 24 cohort and two quasiexperimental studies were included. With the exception of birth size and gestational age, there was insufficient data to meta-analyse or make robust conclusions. Odds of small for gestational age (SGA) and preterm birth were higher for babies whose mothers consumed up to 32 g/week versus none, but estimates for preterm birth were also compatible with no association: summary OR 1.08, 95% CI (1.02 to 1.14), I2 0%, (seven studies, all estimates were adjusted) OR 1.10, 95% CI (0.95 to 1.28), I2 60%, (nine studies, includes one unadjusted estimates), respectively. The earliest time points of exposure were used in the analysis.

Conclusion Evidence of the effects of drinking ≤32 g/week in pregnancy is sparse. As there was some evidence that even light prenatal alcohol consumption is associated with being SGA and preterm delivery, guidance could advise abstention as a precautionary principle but should explain the paucity of evidence.

  • paediatrics
  • epidemiology
  • obstetrics

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Contributors LM: drafting the protocol, preparing the data extraction database, data screening and collection (lead reviewer), data analysis, figures, tables, data interpretation and drafting the manuscript. HBE: screening, data collection, data quality checking, data interpretation and preparation of final manuscript. THMM: advising on the protocol, preparing the protocol, screening title and abstract. TJ: data extraction and full- text screening. SI: abstract and full-text screening. JS: protocol development/study design (including the development of searching, article screening and data collection strategies), oversaw and managed the review process and the review team, provided methodological advice for the review and meta-analysis conduct and critically revised the manuscript. GDS: obtained funding, formulation of project plan, review of progress and of the manuscript. JLD: obtained funding and contributed to drafting the manuscript and approved the final version. VL: data extraction. DL: contributed to the study design, data interpretation and review of earlier manuscript drafts; approved the final version that has been submitted. SJL: contributed to the study design, data interpretation and review of earlier manuscript drafts; approved the final version that has been submitted. AF: contributed to the study design, data analysis and interpretation and drafting of manuscript. LZ: contributed to the study design, data analysis and interpretation and drafting of manuscript. I, LM, the corresponding author of this manuscript, certify that I have full access to all the data in the study and had final responsibility for the decision to submit for publication.

  • Funding The UK Medical Research Council (MC_UU_12013/1 and MC_UU_12013/5) and the University of Bristol provide core funding for the MRC Integrative Epidemiology Unit; LM, DL, GDS, AF and LZ are partially or fully funded through this. AF and LZ are UK Medical Research Council research fellowships (Grant refs: MR/M009351/1 and G0902144, respectively). LM, JS, HBE, VL, TJ, SI,THMM and JLD are fully or partially partly funded by National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care West (CLAHRC West) at University Hospitals Bristol NHS Foundation Trust. DL (NF-SI-0611-10196) and JLD (NF-SI-0512-10119) are NIHR Senior Investigators. SJL is a senior lecturer funded by HEFCE. The views expressed here are those of the author(s) and not necessarily those of the NHS, the MRC, NIHR or the Department of Health.

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.