Responses

Download PDFPDF

Does more education mean less disability in people with dementia? A large cross-sectional study in Taiwan
Compose Response

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

PLEASE NOTE:

  • A rapid response is a moderated but not peer reviewed online response to a published article in a BMJ journal; it will not receive a DOI and will not be indexed unless it is also republished as a Letter, Correspondence or as other content. Find out more about rapid responses.
  • We intend to post all responses which are approved by the Editor, within 14 days (BMJ Journals) or 24 hours (The BMJ), however timeframes cannot be guaranteed. Responses must comply with our requirements and should contribute substantially to the topic, but it is at our absolute discretion whether we publish a response, and we reserve the right to edit or remove responses before and after publication and also republish some or all in other BMJ publications, including third party local editions in other countries and languages
  • Our requirements are stated in our rapid response terms and conditions and must be read. These include ensuring that: i) you do not include any illustrative content including tables and graphs, ii) you do not include any information that includes specifics about any patients,iii) you do not include any original data, unless it has already been published in a peer reviewed journal and you have included a reference, iv) your response is lawful, not defamatory, original and accurate, v) you declare any competing interests, vi) you understand that your name and other personal details set out in our rapid response terms and conditions will be published with any responses we publish and vii) you understand that once a response is published, we may continue to publish your response and/or edit or remove it in the future.
  • By submitting this rapid response you are agreeing to our terms and conditions for rapid responses and understand that your personal data will be processed in accordance with those terms and our privacy notice.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

Other responses

Jump to comment:

  • Published on:
    Response to comment on statistic
    • ShihWei Huang Huang, Physician of Physical Medicine and Rehabilitation Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taiwan
    • Other Contributors:
      • TsanHon Liou, Physician of Physical Medicine and Rehabilitation

    Thank you for raising this important point. Actually, the Poisson regression is usually used for count data with the variance equal to the mean. And Likert scale data is not suited to this statistic method directly. However, we standardized the scale and the data acquisition for the disability status within 30 days. We assumed that the standardized scores of each domain and summary score (from 0 to 100) as the count of disability status event in 30 days. For analysis the association between the variables of demographic data and standardized WHODAS 2.0 score, we choose the Poisson regression analysis, which could not be perfect for this study. (And the data is near to 1 even statistical significant) Therefore, we didn’t mention the outcome of table 3 in discussion part and conclusion part (merely, mentioned in result part). Our study finding is based on table 2 and we discussed this finding (lower disability status in the WHODAS 2.0 domains of getting along and social participation for patients with dementia with formal education compared with those without formal education) in discussion and conclusion part.

    Thank you again for your precious suggestion. We agree that Multi-level IRT could be an appropriate way to analyze multiple Likert scales. The following studies of original Likert scales of WHODAS 2.0 will be analyzed as your suggestion and this could lead our study to be more convincing.

    Sincerely,

    Conflict of Interest:
    None declared.
  • Published on:
    Comment on statistics

    Poisson regression is unsuitable for analysing data from Likert scales, even in aggregate (see http://rcompanion.org/handbook/E_01.html).

    Summing enough Likert scales (as when summing enough random variables) might result in summary data which are suitable for least squares regression, via the central limit theorem. But, Poisson regression is suitable for count data where the variance is equal to the mean (count data that violate this equality may require negative binomial regression).

    Since the statistical analysis is inappropriate, the Results and Conclusions may be unsound.

    Multi-level IRT is probably an appropriate way to analyse multiple Likert scales (e.g. Luo & Wang, Stat Med. 2014 Oct 30; 33(24): 4279–4291)

    Conflict of Interest:
    None declared.