Article Text
Abstract
Background The majority of people with dementia have other long-term diseases, the presence of which may affect the progression and management of dementia. This study aimed to identify subgroups with higher healthcare needs, by analysing how primary care consultations, number of prescriptions and hospital admissions by people with dementia varies with having additional long-term diseases (comorbidity).
Methods A retrospective cohort study based on health data from the Clinical Practice Research Datalink (CPRD) was conducted. Incident cases of dementia diagnosed in the year starting 1/3/2008 were selected and followed for up to 5 years. The number of comorbidities was obtained from a set of 34 chronic health conditions. Service usage (primary care consultations, hospitalisations and prescriptions) and time-to-death were determined during follow-up. Multilevel negative binomial regression and Cox regression, adjusted for age and gender, were used to model differences in service usage and death between differing numbers of comorbidities.
Results Data from 4999 people (14 866 person-years of follow-up) were analysed. Overall, 91.7% of people had 1 or more additional comorbidities. Compared with those with 2 or 3 comorbidities, people with ≥6 comorbidities had higher rates of primary care consultations (rate ratio (RR) 1.31, 95% CI 1.25 to 1.36), prescriptions (RR 1.68, 95% CI 1.57 to 1.81), and hospitalisation (RR 1.62, 95% CI 1.44 to 1.83), and higher risk of death (HR 1.56, 95% CI 1.37 to 1.78).
Discussion In the UK, people with dementia with higher numbers of comorbidities die earlier and have considerably higher health service usage in terms of primary care consultations, hospital admissions and prescribing. This study provides strong evidence that comorbidity is a key factor that should be considered when allocating resources and planning care for people with dementia.
- PRIMARY CARE
- comorbidity
- multimorbidity
- HEALTH SERVICES ADMINISTRATION & MANAGEMENT
- Service Use
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Statistics from Altmetric.com
Footnotes
Twitter Follow Jorge Browne @jorgebrowne
Collaborators Professor Carol Brayne Carol Wilson.
Contributors All authors fulfil the authorship criteria recommended by ICMJE. JB designed the methods, cleaned the data, contributed in the code selection, implemented the analysis and drafted the paper. He is the guarantor. DAE co-designed the methods, organised and contributed in the code selection, drafted and revised the paper. KMR co-designed and revised the statistical analysis. DJB managed the code selection and the database. RAP co-designed the methods, contributed in the code selection, drafted and revised the paper.
Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.
Competing interests None declared.
Ethics approval The study was approved by the CPRD Independent Scientific Advisory Committee (ISAC protocol number 15_106R).
Provenance and peer review Not commissioned; externally peer reviewed.
Data sharing statement Additional data are available by emailing jabrowne@uc.cl.
Request Permissions
If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.