BMJ Open

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or payper-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email editorial.bmjopen@bmj.com

BMJ Open

A global shortage of neonatal and pediatric antibiotic trials.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016293
Article Type:	Research
Date Submitted by the Author:	07-Feb-2017
Complete List of Authors:	Thompson, Georgina; St George's University of London, Infection and Immunity; University of Exeter Medical School Barker, Charlotte; St George's University of London, Infection and Immunity; University College London Institute of Child Health Folgori, Laura; St George's University of London, Paediatric Infectious Diseases Research Group Bielicki, Julia; St George's University London, Division of Clinical Sciences; University of Basel Children's Hospital Bradley, John; University of California San Diego School of Medicine, Department of Pediatrics Lutsar, Irja; University of Tartu, Department of Medical Microbiology sharland, mike; St George's University of London, Infection and Immunity; St Georges Hospital, Paedaitric Infectious Diseases Unit
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Infectious diseases
Keywords:	Paediatric infectious disease & immunisation < PAEDIATRICS, INFECTIOUS DISEASES, PAEDIATRICS

SCHOLARONE™ Manuscripts

A global shortage of neonatal and pediatric antibiotic trials.

G. Thompson^{1,2}, C. Barker^{1,3,4}, L. Folgori¹, J. Bielicki^{1,5}, J. Bradley^{6,7}, I. Lutsar⁸, M. Sharland^{1,4}

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Corresponding author

Georgina Thompson

Paediatric Infectious Diseases Research Group

St George's, University of London

Jenner Wing, Level 2, Room 2.216F, Mail Point J2C

London SW17 0RE

Telephone: 07880325494 Email: gethomps@sgul.ac.uk

Word count: 2607

¹Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, UK

²University of Exeter, Exeter, UK

³ Inflammation, Infection and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK

⁴ St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, UK

⁵ Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland

⁶ Department of Pediatrics, School of Medicine, University of California San Diego, CA, United States

⁷ Rady Children's Hospital San Diego, San Diego, CA, United States

⁸ Department of Medical Microbiology, University of Tartu, Tartu, Estonia

ABSTRACT

Objectives: There have been few clinical trials (CTs) on antibiotics which inform neonatal and pediatric drug labelling. Consequently, the rate of unlicensed and off-label prescribing in pediatrics remains high. This remains a major concern, particularly in neonates. It is unclear whether the current pediatric antibiotic research pipeline is adequate to inform optimal drug dosing. Using ClinicalTrials.gov registry, this review aims to establish the current global status of antibiotic CTs in children up to 18 years of age.

Results: Only 76 registered open CTs of antibiotics in children were identified globally; 23 (30%) were recruiting newborns (only 8 (11%) included preterm neonates), 52 (68%) infants and toddlers, 58 (76%) children, and 54 (71%) adolescents. The majority of registered trials were late phase (10 (15%) Phase 3 and 23 (35%) Phase 4/pharmacovigilance). Two-thirds were sponsored by non-profit organisations, with few sponsored by pharmaceutical companies (50 (66%) vs. 26 (34%) respectively). A greater proportion of non-profit funded trials were efficacy-based strategic trials (n= 34, 68%), in comparison to industry-led trials, which were most often focused on safety or pharmacokinetic data (n=17, 65%). Our search revealed that 2 of the 37 antibiotics listed on the May 2016 Pew Charitable Trusts antibiotic development pipeline, currently being studied in adults, appear to be recruiting in open pediatric CTs.

Conclusions: This review highlights that there are currently very few pediatric antibiotic CTs being conducted globally (especially in neonates). There is striking disparity noted between antibiotic drug development programmes involving adults and children.

Strengths and limitations of this study

- A narrative literature review of registered clinical trials in children.
- Explicit reproducible methodology.
- Search strategy limited to ClinicalTrials.gov and EudraCT. Entirety of clinical research in this field might not have been captured.
- Search strategy also limited to open clinical trials. Active but not yet recruiting trials were not captured.

INTRODUCTION

With the persistence of widespread unlicensed and off-label prescribing in pediatrics – as high as 11.4% and 46.5% respectively – the paucity of clinical research involving children that which is conducted to inform optimal drug dosing, licensing and labelling remains a problem.[1] For certain medicines, drug efficacy can be extrapolated from adult data provided that the pathology and pharmacology (including drug exposure) are the same, or sufficiently similar in children as in adults.[2,3] Advances in modelling and simulation mean smaller focussed studies can now be

performed to help obtain regulatory approval for most medicines, including antimicrobials.[4] Although differences in drug pharmacokinetics (PK) in neonates and children can lead to adverse reactions that are not seen in adult populations, these are very rare and extrapolation of safety data into the pediatric population can further reduce the need for complex study designs.[5]

Since antibiotics are the most commonly prescribed medicines in children, it is important to improve our currently limited understanding of their pharmacokinetic profiles to help determine optimal drug dosing and ultimately to improve patient outcomes.[6] Suboptimal antibiotic dosing, including both under- or over-dosing, can lead to toxicity or failure to meet therapeutic targets, which not only contributes to treatment failure, but may also drive antimicrobial resistance through encouragement of selection pressures on drug-resistant strains of bacteria.[7] In the last decade several initiatives have been established to encourage pediatric medicines research, thus bridge the gap between adult and pediatric drug development plans. Such initiatives include the Pediatric Regulation (Pediatric Investigation Plans (PIPs), introduced by the European Medicines Agency (EMA),[8] and Pediatric Study Plans (PSPs), by the U.S. Food and Drug Administration (FDA).[9] Despite this, there remain limited advances in the development of antibiotics for this population.[10]

The global status of clinical research on antibiotics in pediatrics is currently unknown. Using registered records of clinical trials (CTs) on *ClinicalTrials.gov*, this review aims (i) to summarise the current global status of registered antibiotic research in children and neonates, and (ii) to stimulate discussion and collaboration among the relevant stakeholders on the neglect of antibiotic research in pediatrics.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

METHODS

Data sources

The *ClinicalTrials.gov* registry (last accessed 8th November 2016) is an international platform for the registration of CTs. It is a web-based registry, developed in 2000 by the National Institute of Health (NIH) and the FDA, to which trials from 50 states and 163 countries around the world are registered. All information provided for each trial is updated periodically by the trial's sponsoring organisation. The database has a specific child filter, which uses a key word paradigm to select all registered trials recruiting patients/participants up to 18 years of age.

Study selection

Our records were identified using suitable key word searches, in which the search terms were (antimicrobial* OR antibiotic* OR antiinfective agent*) AND Child AND Open Studies. All identified trials were filtered manually using inclusion and exclusion criteria. Interventional and observational

trials on antimicrobials recruiting children up to 18 years of age were considered eligible for inclusion. No specific temporal filter was applied since only open or ongoing clinical trials were of interest. The following records, which were not investigating one or more antibiotics, were excluded: trials of antifungals, antivirals, antiprotozoal, antimycotics, pro- or pre- biotics, antiseptics, topical or inhalational treatments, prophylactic antibiotics, investigating alternative use for antibiotics (for example as anti-inflammatory agents), and trials involving pregnant women or cystic fibrosis, tuberculosis, HIV, febrile neutropenia, and malaria patients.

All eligible records were identified via manual filtering by GT CB, LF and MS.

Data extraction

The following information was collected from the included records: unique NCT number, recruitment status, study design, trial phase, study sponsor, age group and sex eligibility, clinical indication, geographic region of recruitment, antibiotic being investigated, and endpoint classification.

Outcomes were categorised as safety, efficacy or PK. Economic setting (based on geographic region of recruitment) was classified using The World Bank classification.[11]

The specific class of antibiotic studied in each trial was identified and classified using the World Health Organisation (WHO) ATC/DDD index.[12] To investigate whether novel antibiotics are being studied in pediatric and neonatal populations (as well as in adults), the antibiotics currently studied in children were compared with the *Pew Charitable Trusts Antibiotics Currently in Clinical Development* pipeline, which identifies novel antibiotics currently under development for the U.S. market.[13]

RESULTS

Our search identified 1056 records. 603 records were excluded on title because they were studies not involving an antimicrobial. 453 records were investigating one or more antimicrobials and recruiting children below 18 years of age. Among the 195 trials investigating antibiotics, 76 fulfilled our inclusion and exclusion criteria and were included in the final analysis. Reasons for exclusion are summarised in Figure 1.

All 76 CTs identified were open as of 8th November 2016, and 63 (83%) of these were recognised as recruiting participants on this date (Table 1). All trials stated recruitment of both male and female participants.

Table 1. Characteristics of clinical trials.

Characteristic	Category	Number of studies, n (%)
Age group	Preterm neonates	1 (1) ^a
	Neonates (total)	23 (30)
	Infants and toddlers	52 (68)
	Children	58 (76)
	Adolescents	54 (71)
Recruitment status	Recruiting	63 (83)
	Not yet recruiting	13 (17)
Study design	Interventional	66 (87)
* * * * * * * * * * * * * * * * * * * *	Observational	10 (13)
Trial phase ^b	Phase 1	10 (15)
	Phase 1-2	1 (2)
	Phase 2	9 (14)
	Phase 2-3	3 (5)
	Phase 3	10 (15)
	Phase 4	23 (39)
	Not specified	10 (15)
Sponsor	Industry	26 (34)
•	Non-profit	50 (66)
Geographic region	Africa	8 (11)
	Asia	16 (21)
	Europe	22 (29)
	Latin America	6 (8)
	North America	34 (45)
	Oceania	5 (7)
Antibiotic class	J01A Tetracycline	4 (5)
	J01C Beta-lactam, Penicillin	25 (33)
	J01D Other Beta-lactam	22 (29)
	J01E Sulfonamides and trimethoprim	7 (9)
	J01F Macrolide, Lincosamide, Streptogramin	14 (18)
	J01G Aminoglycoside	2 (3)
	J01M Quinolone	8 (11)
	J01X Other ^c	21 (28)
	J01 Not specified	2 (3)

Totals for Age group, Geographic region, and Antibiotic class do not add up to total number of clinical trials (76) as some trials contributed to more than one sub group.

Age group

On review of the age of participants being recruited, only 23 of the 76 trials (30%) were recruiting newborns (0 to 28 days). 1 of these 23 trials focused solely on recruiting preterm newborns (a further 7 CTs mentioned inclusion of preterm newborns in inclusion criteria). Of the remaining records, 52 (68%) were recruiting infants and toddlers (28 days to 23 months), 58 (76%) children (2

^a7 further trials mentioned inclusion of preterm babies in the inclusion criteria.

^b Trial phase % based on percentage of interventional trials.

^c J01X includes glycopeptides, polymixins, imidazole derivatives, and nitrofuran.

to 11 years), and 54 (71%) adolescents (11 up to 18 years). 29 (38%) trials did not focus solely on the recruitment of children or neonates, with age ranges also spanning across adult populations.

Study type

Interventional trials were most frequently identified (n=66, 87%) with only 10 (13%) observational trials noted. Of the interventional trials, the majority were in the later stages of development; 10 (13%) in Phase 1, 1 (2%) between Phase 1 and 2, 9 (14%) in Phase 2, 3 (5%) between Phase 2 and 3, 10 (15%) in Phase 3 and 23 (35%) in Phase 4. Phase 4 is defined as CTs occurring after an antibiotic has been approved in children. In 10 (15%) of cases, a trial phase had not been specified.

Sponsor and Endpoint Classification

Of the antibiotic clinical trials identified in our search, two-thirds (n=50, 66%) were sponsored by non-profit organisations (being University, Hospital or government funded), with many fewer trials sponsored by Industry (n=26, 34%). The endpoint classification of the majority of trials (n=43, 57%) was reported as efficacy (Table 2). A greater proportion (n=34, 68%) of non-profit studies measured the efficacy of the drugs as the primary endpoint, with less emphasis on collection of PK or safety data (n=16, 32%). In comparison pharmaceutical-led trials focussed on early PK and safety studies over the drug's efficacy (n=17, 65% vs. n=9, 35% respectively).

Table 2. Clinical trial endpoint classification of identified clinical trials stratified by trial sponsor. Endpoint classification determined by planned primary outcomes.

Endpoint classification	Industry	Non-profit	Total (%)
Efficacy	9	34	43 (57)
Safety	10	2	12 (16)
PK	7	14	21 (28)

Geographic region

Of the 76 antibiotic trials identified, the most frequently recruiting geographic region was North America (n=34, 45%). 22 (29%) trials recruiting in Europe and 16 (21%) in Asia were identified, 6 (8%) in Latin America, 8 (11%) in Africa, and 5 (7%) in Oceania. The great majority of trials were recruiting in High Income Countries (HICs) (n=54, 71%), with fewer trials recruiting in Low Income Countries (LICs) (n=4, 5%), Lower Middle Income Countries (LMICs) (n=4, 5%), Upper Middle Income Countries (UMICs) (n=11, 14%) or a combination of UMICs and HICs (n=3, 4%).

Indication

The most common treatment indications investigated in the 76 antibiotic trials were Lower Respiratory Tract Infection (n=12, 16%) and Sepsis (n=11, 14%), followed by Upper Respiratory Tract Infection (n=8, 11%), Intra-abdominal Infection (IAI) (n=8, 11%), Urinary Tract Infection (UTI) (n=7, 9%), complicated Skin and Soft Tissue Infection (cSSTI) (n=6, 8%), CNS infection (n=3, 4%), and Bone and Joint infection (n=1, 1%) (Table 3). 18 (24%) trials were investigations of unspecified bacterial infections and these were mainly phase 1 PK studies.

Antibiotic class

The majority of antibiotics (n=47, 62%) being investigated were beta-lactams, followed by other antibiotic classes (J01X, including vancomycin, telavancin and dalbavancin) (n=21, 28%). Macrolides or lincosamides (J01F) were the next most commonly studied antibiotic classes (n=14, 18%). Very few of the records reported investigations of tetracyclines (J01A) (n=4, 5%), Sulphonamides and trimethoprim (J01E) (n=7, 9%), aminoglycosides (J01G) (n=2, 3%), or quinolones (J01M) (n=8, 11%). 2 CTs (3%) did not specify the class of antibiotic being investigated. 16 (21%) trials were investigating more than one antibiotic; these trials counted towards more than one J01 category. The breakdown of J01 categories is described in Figure 1.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Antibiotic pipeline

Of the 37 antibiotics listed on the most recent May 2016 edition of the Pew Charitable Trusts Antibiotic Pipeline (last accessed 10th June 2016),[13] as noted by the EMA Opinions and Decisions on Pediatric Investigation Plans, 5 had an agreed PIP: Imipenem/Cilastatin+Relebactam, Cadazolid, Carbavance (Meropenem+Vaborbactam), Eravacycline, and Solithromycin.[8] As of 8th November 2016, our search found that only 2 of the 37 antibiotics listed on the Pew antibiotic pipeline (Carbavance and Solithromycin) was being investigated in 1 and 2 on-going CTs in pediatric patients, respectively (Table 4). A PIP was agreed for Carbavance in 2015 for treatment of Gramnegative infections, and for Solithromycin in 2016 for the treatment of gonococcal infection, and later for treatment of anthrax, tularaemia, and bacterial pneumonia. PIPs were established in 2015 for treatment of urinary tract infection and complicated intra-abdominal infection with Eravacycline, and in 2016 for treatment of Clostridium difficile infection with Cadazolid and of Gram-negative bacterial infection with Imipenem/Cilastin+Relebactam.[14] Despite this, we could not identify any registered trials of these antibiotics in our search.

Table 3. Clinical indication of identified clinical trials stratified by age group being recruited.

		Age group				
		Preterm	_	Infants and		
Indication	Total (%)	neonates	Neonates ^a	toddlers	Children	Adolescents
Unspecified Bacterial Infection	18 (24)	-	11	15	15	14
Lower Respiratory Tract Infection	12 (16)	1	3	12	13	5
Sepsis	11 (14)	-	6	9	9	11
Upper Respiratory Tract		-	1	5	9	7
Intra-abdominal Infection	8 (11)	-	3	5	5	7
Urinary Tract Infection	7 (9)	-	2	6	7	6
Skin and Soft Tissue Infection	6 (8)	-	3	4	4	8
CNS infection	3 (4)	-	1	4	4	4
Bone and Joint Infection	1 (1)		-	1	1	1
			30	61	67	63

Age group totals do not add up to total number of clinical trials (76) as some trials contributed to more than one age group.

a refers to total number of preterm and term neonates.

Table 4. Comparison of antibiotic development pipeline in adults and children. Adapted from Pew Charitable Trusts "Antibiotics currently in clinical development" pipeline (last accessed October 2016).[13]

901234	Antibiotic	Phase	Manufacturer	Indication	Drug development in Adults	Paediatric Investigation Plan for drug development in Children	Number of open clinical trials in children
5 6 7	WCK 4873	Phase 1	Wockhardt Ltd.	Bacterial infection	1	-	-
8 9 0	MGB – BP – 3	Phase 1	MGB Pharma Ltd.	Clostridium difficile infection	✓	-	-

,							
ļ 5	OP0595	Phase 1	Meiji Seika Pharma Co. Fedora Pharmaceuticals	Bacterial infection	1	-	-
3	BAL30072	Phase 1	Basilea Pharmaceuticals	Multidrug resistant gram negatives	✓	-	-
0 1 2	CRS3123	Phase 1	Crestone Inc.	Clostridium difficile infection	1	-	-
3 4 5 6	LCB01 - 0371	Phase 1	Legochem Biosciences Inc.	Bacterial infection	1	-	-
7 8 9	TD – 1607	Phase 1	Theravance Biopharma Inc.	Acute skin infection, HAP, VAP, bacteraemia	1	-	-
0 1 2	WCK 2349	Phase 1	Wockhardt Ltd.	Bacterial infection	1	-	-
3 4 5	WCK 771	Phase 1	Wockhardt Ltd.	Bacterial infection	1	-	-
678	Zidebactam+Cefepime	Phase 1	Wockhardt Ltd.	cUTI, HAP, VAP	1	-	-
9 0 1 2	TP – 271	Phase 1	Tetraphase Pharmaceuticals Inc.	CAP	1	-	-
3 4 5	Aztreonam – Avibactam	Phase 2	Astrazeneca PLC Allergan PLC	cIAI		-	-
6 7 8	MRX – 1	Phase 2	MicuRx Pharmaceuticals Inc.	Acute skin infection	1	-	-
9 .0 .1	Debio 1450	Phase 2	Debiopharm International SA	Acute skin infection, Staphylococcus spp. associated osteomyelitis	1	-	-
2			·			·	

ETX0914	Phase 2	Entasis Therapeutics Inc.	Uncomplicated gonorrhea		-	-
P0L7080	Phase 2	Polyphor Ltd.	Pseudomonas spp. associated VAP, lower respiratory tract infection, bronchiectasis	1	-	-
Brilacidin	Phase 2	Cellceutix Corporation	Acute skin infection	✓	-	-
Ceftaroline+Avibactam	Phase 2	AstraZeneca PLC Allergan PLC	Bacterial infection	1	-	-
CG400549	Phase 2	Crystal Genomics Inc.	Acute skin infection, osteomyleitis	1	-	-
Finafloxacin	Phase 2	MerLion Pharmaceuticals Pte Ltd.	cUTI, cIAI, acute skin infection, pyelonephritis	1	-	-
Geptidacin	Phase 2	GlaxoSmithKline PLC	cUTI, CAP, uncomplicated urogenital gonorrhea	1	-	-
Nemonoxacin	Phase 2	TaiGen Biotechnology Co. Ltd.	CAP, acute skin infection, diabetic foot	1	-	-
Ramoplanin	Phase 2	Nanotherapeutics Inc.	Prevent recurrent Clostridium difficile infection	\ \	-	-
Ridinilazole	Phase 2	Summet Therapeutics Inc.	Clostridium difficile		-	-
Zabofloxacin	Phase 3	Dong Wha Pharmaceuticals Co. Ltd.	CAP	1	-	-
S – 649266	Phase 3	Shionogi Inc.	HAP, VAP, cUTI, bloodstream infection	1	-	-
	P0L7080 Brilacidin Ceftaroline+Avibactam CG400549 Finafloxacin Geptidacin Nemonoxacin Ramoplanin Ridinilazole Zabofloxacin	P0L7080 Phase 2 Brilacidin Phase 2 Ceftaroline+Avibactam Phase 2 CG400549 Phase 2 Finafloxacin Phase 2 Geptidacin Phase 2 Nemonoxacin Phase 2 Ramoplanin Phase 2 Ridinilazole Phase 3	Priase 2 Inc. Polt 7080 Phase 2 Polyphor Ltd. Brilacidin Phase 2 Cellceutix Corporation Ceftaroline+Avibactam Phase 2 AstraZeneca PLC Allergan PLC CG400549 Phase 2 Crystal Genomics Inc. Finafloxacin Phase 2 MerLion Pharmaceuticals Pte Ltd. Geptidacin Phase 2 GlaxoSmithKline PLC Nemonoxacin Phase 2 TaiGen Biotechnology Co. Ltd. Ramoplanin Phase 2 Nanotherapeutics Inc. Ridinilazole Phase 3 Dong Wha Pharmaceuticals Co. Ltd.	Phase 2 Inc. Phase 2 Polyphor Ltd. Pseudomonas spp. associated VAP, lower respiratory tract infection, bronchiectasis Brilacidin Phase 2 Cellceutix Corporation Cettaroline+Avibactam Phase 2 AstraZeneca PLC Allergan PLC Galoo549 Phase 2 Crystal Genomics Inc. Acute skin infection Acute skin infection Acute skin infection, osteomyleitis Finafloxacin Phase 2 MerLion Pharmaceuticals Pte Ltd. Geptidacin Phase 2 GlaxoSmithKline PLC Cuttl, CAP, uncomplicated urogenital gonorrhea Nemonoxacin Phase 2 TaiGen Biotechnology Co. Ltd. Ramoplanin Phase 2 Nanotherapeutics Inc. Prevent recurrent Clostridium difficile infection. Phase 2 Summet Therapeutics Inc. Cap	Pol. 10	Pol. 7080 Phase 2 Polyphor Ltd. Pseudomonas spp. associated VAP, lower respiratory tract infection, bronchiectasis V -

3							
1 5 6	Omadacycline	Phase 3	Paratek Pharmaceuticals Inc.	CAP, cUTI, acute skin infection	✓	-	-
7 3 9	Lefamulin	Phase 3	Nabriva Therapeutics AC	CAP, HAP, VAP, acute skin infection, osteomyelitis, prosthetic joint infections	1	-	-
1 2	Imipenem / Cilastatin+Relebactam	Phase 3	Merck & Co. Inc.	cUTI, cIAI, HAP, VAP, acute pyelonephritis	1	1	-
3 4 5 6	Iclaprim	Phase 3	Motif Bio PLC	HAP, acute skin infection	1	-	-
7 8 9	Cadazolid	Phase 3	Actelion Pharmaceuticals Ltd.	Clostridium difficile	1	1	-
20	Taksta (fusidic acid)	Phase 3	Cempra Inc.	Acute skin infection, prosthetic joint infection	✓	-	-
23 24 25	Carbavance (Meropenem+Vaborbactam)	Phase 3	Rempex Pharmaceuticals Inc.	cUTI, cIAI, HAP, VAP, bacteraemia, pyelonephritis	✓	1	1
6 7 8	Delafloxacin (Baxdela)	Phase 3	Melinta Therapeutics Inc.	CAP, cUTI, acute skin infections ^a	1	Waiver granted	-
9 80 81	Eravacycline	Phase 3	Tetraphase Pharma Inc.	cIAI and cUTI	1	1	-
33 34 35	Plazomicin	Phase 3	Achaogen Inc.	cUTI, HAP, VAP, cIAI, catheter- associated bloodstream infection ^a		-	-
36 37 38	Solithromycin	Phase 3	Cempra Inc.	CAP, uncomplicated urogenital gonorrhea, urethritis	1	1	2

HAP, hospital-acquired pneumonia; VAP, ventilator-acquired pneumonia; cUTI, complicated Urinary Tract Infection; CAP, Community-acquired pneumonia; cIAI, complicated Intra-abdominal Infection.

a target carbapenem resistant enterobacteriacae

DISCUSSION

Our search on ClinicalTrials gov identified 76 clinical trials investigating one or more antibiotics recruiting children between 0 and 18 years of age. This is low in comparison to the number of ongoing trials in adults, with children representing around a quarter of the global population.[15,16] A review of completed CTs in the U.S. between 2000 and 2010 identified a total of 4078 adult trials compared to just 294 that had recruited children.[17] In our study, the lack of trials recruiting neonates is striking. Just 23 of the 76 trials identified were recruiting neonates, and remarkably just 8 CTs globally were recruiting preterm neonates. There are broadly two types of pediatric trials being conducted globally. Either pharmaceutical-led Phase 1/2 PK and safety trials (n=17) being conducted in the HIC setting, or investigator led, often pragmatic, late phase efficacy trials in the LMIC setting (n=34), with a greater proportion of the on-going trials sponsored by non-profit organisations than industry (66% compared to 34%). As of April 2016, there were 17 agreed antibiotic PIPs agreed by the EMA,[8] covering a range of indications, most commonly cSSTI. complicated IAI (cIAI), and complicated UTI (cUTI).[14] In contrast, treatments for respiratory and systemic infections, the most common indications in pediatrics, do not appear to currently being evaluated.[18] Although the introduction of PIPs on the whole has encouraged the study of medicines in children, the range of infectious indications covered therefore does not match the burden of disease in this age group. Thirty-seven antibiotics are currently being developed in adults. yet to our knowledge just 2 of these are being studied in children. However, some classes of antibiotics that may be of higher risk for children (tetracyclines and fluoroquinolones) may not be pursued as aggressively for pediatric approvals by either industry or regulatory agencies. The substantial lag time is a real concern, particularly for new antibiotics against resistant Gramnegative pathogens, although there is some value in generating substantial safety data in adults prior to exposing children and newborn infants to potentially toxic new agents. However, Gramnegative sepsis is a growing problem in neonates, with a significant increase in the proportion of multi-resistant Gram-negative pathogens.[19]

In 2013, a similar review of European pediatric clinical trials identified 31 trials of antibiotics approved by the EMA in 2000 that were recruiting children in Europe (compared to the 22 trials we found to be now recruiting in this region). They similarly found a very small proportion of neonatal trials (just 2 of 31), as well as a greater proportion of efficacy-based trials.[10] In 2012, a review of interventional trials registered with *ClinicalTrials.gov* between 2007 and 2010 found that only 17% had recruited children below 18 years of age.[20] A similar review of antimicrobial CTs conducted in the U.S. between 2000 and 2012 reported that just 5% had recruited only children compared to the 74% that had recruited only adults, and that, as we have found, the trials were sponsored primarily by non-profit organisations (60% compared to 30% by industry).[17] In our search of global trials, 39% of registered CTs reported collection of PK data in comparison to a similar review in 2009 of

PK research on medicines for children that reported 24% of registered CTs would be collecting PK data.[21] Collection of PK data is particularly important in neonates where developmental differences in physiology lead to significant changes in drug PK, which puts them at increased risk of adverse drug reactions.[3,22] Furthermore, off-label and unlicensed prescribing is at its greatest in neonatal populations (61% and 22% respectively)[14]. A recent review noted a striking lack of harmonisation in study design and outcomes among completed and on-going neonatal and pediatric antibiotic CTs which may make translation of trial data into clinical guidance more difficult.[23]

The search strategy used has some limitations. Since the search was limited to clinical trials registered to *ClinicalTrials.gov*, it is possible that a number of open or on-going trials registered with alternative platforms (for example ICTRP) will have been missed. Together with *ClinicalTrials.gov* these could help to establish the entirety of current clinical research in this field. We did however search EudraCT, and found no further studies to those captured on *ClinicalTrials.gov*. Our search was also limited to open CTs, which means that active but not yet recruiting trials were not captured, as well as those that had closed to recruitment previously. The information recorded for each trial registered with *ClinicalTrials.gov* is updated by the trial investigators, and therefore relies on them to periodically update the registry. On occasion, information such as recruitment status might not be updated in real time.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Concerns around the growing threat of antimicrobial resistance have prompted a number of new initiatives. In 2016, the EMA published the first draft of the Concept Paper to propose the development of an Addendum to the guideline on the evaluation of new anti-bacterial products for treatment of bacterial infections in children.[24] At the same time, the Clinical Trials Transformation Initiative (CTTI) is currently focused on the identification of key barriers in the conduct of pediatric antibacterial CTs, which hamper their successful implementation into clinical practice.[25] Recent evidence states that overall, antibiotic CTs make up less than 1% of all registered pediatric CTs, and that trial completion is slow, with an average time to completion of around two years.[26]

CONCLUSIONS

A number of issues contribute to the difficulties in conducting pediatric antibiotic clinical trials. The lack of regulatory guidance, vulnerability of this population, issues with informed consent and assent, and lack of research-experienced hospital personnel all present challenges in study design, delivery and recruitment. Delays in the initial start-up of CTs in pediatrics due to pediatric-specific protocol issues and complicated ethical approval continue to discourage both academic and pharmaceutical interest. The limited data presented here suggests that the dismal state of ongoing

pediatric antibiotic trials is still continuing. Earlier collaboration between academic research networks and pharmaceutical companies is now vital to accelerate progress.

ACKNOWLEDGEMENTS

Contributors MS, CB, GT, LF and JB designed the study, GT and CB conducted the search, IL and JB commented on study design and assisted with drafting the paper.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest None declared.

Data sharing statement Dataset is available on request.

REFERENCES

- 1. Corny J, Lebel D, Bailey B et al. Unlicensed and Off-Label Drug Use in Children Before and After Pediatric Governmental Initiatives. J Pediatr Pharmacol Ther. 2015;20(4):316–28.
- 2. European Medicines Agency. Concept paper on extrapolation of efficacy and safety in medicine development.
 - http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/04/WC5 00142358.pdf. (accessed May 2016)
- Kearns GL, Abdel-Rahman SM, Alander SW et al. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157– 67.
- Dunne J, Rodriguez WJ, Murphy MD et al. Extrapolation of Adult Data and Other Data in Pediatric Drug-Development Programs. Pediatrics. 2011; http://pediatrics.aappublications.org/content/early/2011/10/20/peds.2010-3487.abstract (accessed June 2016)
- The World Health Organisation. WHO Promoting Safety of Medicines for Children. 2007; http://www.who.int/medicines/publications/essentialmedicines/Promotion_safe_med_childrens.pdf (accessed October 2016)
- van der Meer JW, Gyssens IC. Quality of antimicrobial drug prescription in hospital. Clin Microbiol Infect. 2001;7:12–5.
- Theuretzbacher U, Van Bambeke F, Cantón R et al. Reviving old antibiotics. Internet J Antimicrob Chemother. 2015; http://jac.oxfordjournals.org/content/early/2015/06/10/jac.dkv157.abstract (accessed June 2016)

- 8. European Medicines Agency. EMA Opinions and decisions on Paediatric Investigation Plans. 2016;
 - http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/pip_search.jsp&mid =WC0b01ac058001d129. (accessed June 2016)
- Guidance for industry. Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm360507.pdf. (accessed June 2016)
- 10. Garazzino S, Lutsar I, Bertaina C et al. New antibiotics for paediatric use: a review of a decade of regulatory trials submitted to the European Medicines Agency from 2000--why aren't we doing better? Int J Antimicrob Agents. 2013;42(2):99–118.
- 11. The World Bank. The World Bank list of economies. 2015; http://siteresources.worldbank.org/DATASTATISTICS/Resources/CLASS.XLS (accessed October 2016)
- 12. The World Health Organisation. WHO ATC/DDD Index. 2016; http://www.whocc.no/atc_ddd_index/. (accessed March 2016)
- 13. The Pew Charitable Trusts. Antibiotics Currently in Clinical Development. 2016; http://www.pewtrusts.org/~/media/assets/2016/05/antibiotics-currently-in-clinical-development.pdf?la=en. (accessed May 2016)
- 14. Lutsar I. Often neglegted: paediatric drug development a regulatory and clinical view. In Amsterdam, Netherlands; 2016. (S219 Symposium lecture.).

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

- 15. Ceci A, Felisi M, Baiardi P et al. Medicines for children licensed by the European Medicines Agency (EMEA): the balance after 10 years. Eur J Clin Pharmacol. 2006;62(11):947–52.
- 16. Ruperto N, Eichler I, Herold R. A European Network of Paediatric Research at the European Medicines Agency (Enpr-EMA). Arch Dis Child. 2012;97:185–88.
- 17. Stockmann C, Sherwin CMT, Ampofo K et al. Characteristics of antimicrobial studies registered in the USA through ClinicalTrials.Gov. Int J Antimicrob Agents. 2013;42(2):161–6.
- 18. Versporten A, Bielicki J, Drapier N et al. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: developing hospital-quality indicators of antibiotic prescribing for children. J Antimicrob Chemother. 2016;71(4):1106–17.
- 19. Bielicki JA, Lundin R, Sharland M. Antibiotic Resistance Prevalence in Routine Bloodstream Isolates from Children's Hospitals Varies Substantially from Adult Surveillance Data in Europe. Pediatr Infect Dis J. 2015;34(7):734–41.
- 20. Califf RM, Zarin DA, Kramer JM et al. Characteristics of clinical trials registered in ClinicalTrials.gov, 2007-2010. JAMA. 2012;307(17):1838–47.

- 21. Viergever RF, Rademaker CMA, Ghersi D. Pharmacokinetic research in children: an analysis of registered records of clinical trials. BMJ Open. 2011;1(1):e000221.
- 22. Roberts JK, Stockmann C, Constance JE et al. Pharmacokinetics and pharmacodynamics of antibacterials, antifungals, and antivirals used most frequently in neonates and infants. Clin Pharmacokinet. 2014;53(7):581–610.
- 23. Folgori L, Bielicki J, Ruiz B, et al. Harmonisation in study design and outcomes in paediatric antibiotic clinical trials: a systematic review. Lancet Infect Dis. 2016;16(9):e178-89.
- 24. European Medicines Agency. Concept paper on an addendum to the guideline on the evaluation of medicinal products indicated for treatment of bacterial infections to address paediatric-specific clinical data requirements. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/04/WC5 00205026.pdf. (accessed July 2016)
- 25. Clinical Trials Transformation Initiative. https://www.ctti-clinicaltrials.org/projects/pediatrictrials. (accessed July 2016)
- 26. Clinical Trials Transformation Initiative. AACT database. https://www.ctti-clinicaltrials.org/aact-database. (accessed January 2017)

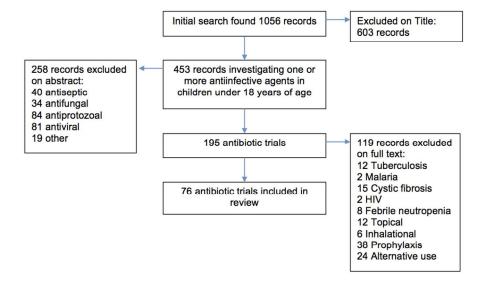


Figure 1. Flow chart. Clinical trial selection process.

195x118mm (150 x 150 DPI)

BMJ Open

A global shortage of neonatal and pediatric antibiotic trials: a narrative review.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016293.R1
Article Type:	Research
Date Submitted by the Author:	09-Jun-2017
Complete List of Authors:	Thompson, Georgina; St George's University of London, Infection and Immunity; University of Exeter Medical School Barker, Charlotte; St George's University of London, Infection and Immunity; University College London Institute of Child Health Folgori, Laura; St George's University of London, Paediatric Infectious Diseases Research Group Bielicki, Julia; St George's University London, Division of Clinical Sciences; University of Basel Children's Hospital Bradley, John; University of California San Diego School of Medicine, Department of Pediatrics Lutsar, Irja; University of Tartu, Department of Medical Microbiology sharland, mike; St George's University of London, Infection and Immunity; St Georges Hospital, Paedaitric Infectious Diseases Unit
 Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Infectious diseases
Keywords:	Paediatric infectious disease & immunisation < PAEDIATRICS, INFECTIOUS DISEASES, PAEDIATRICS

SCHOLARONE™ Manuscripts

A global shortage of neonatal and pediatric antibiotic trials: a narrative review.

G. Thompson^{1,2}, C. Barker^{1,3,4}, L. Folgori¹, J. Bielicki^{1,5}, J. Bradley^{6,7}, I. Lutsar⁸, M. Sharland^{1,4}

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Corresponding author

Georgina Thompson

Paediatric Infectious Diseases Research Group

St George's, University of London

Jenner Wing, Level 2, Room 2.216F, Mail Point J2C

London SW17 0RE

Telephone: 07880325494 Email: gethomps@sgul.ac.uk

Word count: 2764

¹Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, UK

²University of Exeter, Exeter, UK

³ Inflammation, Infection and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK

⁴ St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, UK

⁵ Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland

⁶ Department of Pediatrics, School of Medicine, University of California San Diego, CA, United States

⁷ Rady Children's Hospital San Diego, San Diego, CA, United States

⁸ Department of Medical Microbiology, University of Tartu, Tartu, Estonia

ABSTRACT

Objectives: There have been few clinical trials (CTs) on antibiotics which inform neonatal and pediatric drug labelling. Consequently, the rate of unlicensed and off-label prescribing in pediatrics remains high. This remains a major concern, particularly in neonates. It is unclear whether the current pediatric antibiotic research pipeline is adequate to inform optimal drug dosing. Using ClinicalTrials.gov registry, this review aims to establish the current global status of antibiotic CTs in children up to 18 years of age.

Results: Only 76 registered open CTs of antibiotics in children were identified globally; 23 (30%) were recruiting newborns (only 8 (11%) included preterm neonates), 52 (68%) infants and toddlers, 58 (76%) children, and 54 (71%) adolescents. The majority of registered trials were late phase (10 (15%) Phase 3 and 23 (35%) Phase 4/pharmacovigilance). Two-thirds were sponsored by non-profit organisations, with few sponsored by pharmaceutical companies (50 (66%) vs. 26 (34%) respectively). A greater proportion of non-profit funded trials were efficacy-based strategic trials (n= 34, 68%), in comparison to industry-led trials, which were most often focused on safety or pharmacokinetic data (n=17, 65%). Our search revealed that 2 of the 37 antibiotics listed on the May 2016 Pew Charitable Trusts antibiotic development pipeline, currently being studied in adults, appear to be recruiting in open pediatric CTs.

Conclusions: This review highlights that there are currently very few pediatric antibiotic CTs being conducted globally (especially in neonates). There is striking disparity noted between antibiotic drug development programmes involving adults and children.

Strengths and limitations of this study

- A narrative literature review of registered clinical trials in children.
- Explicit reproducible methodology.
- Search strategy limited to ClinicalTrials.gov and EudraCT. Entirety of clinical research in this field might not have been captured.
- Search strategy also limited to open clinical trials. Active but not yet recruiting trials were not captured.

INTRODUCTION

With the persistence of widespread unlicensed and off-label prescribing in pediatrics – as high as 11.4% and 46.5% respectively – the paucity of clinical research involving children that which is conducted to inform optimal drug dosing, licensing and labelling remains a problem.[1] For certain medicines, drug efficacy can be extrapolated from adult data provided that the pathology and drug exposure are the same, or sufficiently similar in children as in adults.[2,3] Advances in modelling and simulation mean smaller focussed studies can now be performed to help obtain regulatory

approval for most medicines, including antimicrobials.[4] Although differences in drug pharmacokinetics (PK) in neonates and children can lead to adverse reactions that are not seen in adult populations, these are very rare and extrapolation of safety data into the pediatric population can further reduce the need for complex study designs.[5] Suboptimal antibiotic dosing, including under- and over-dosing, can lead to toxicity, treatment failure, and may drive antimicrobial resistance by encouraging selection pressures on drug-resistant strains of bacteria.[6]

Since antibiotics are the most commonly prescribed medicines in children, it is important to improve our currently limited understanding of their PK profiles to help determine optimal drug dosing and ultimately to improve patient outcomes.[7] In the last decade several initiatives have been established to encourage pediatric medicines research, thus bridge the gap between adult and pediatric drug development plans. Such initiatives include the Pediatric Regulation (Pediatric Investigation Plans (PIPs), introduced by the European Medicines Agency (EMA),[8] and Pediatric Study Plans (PSPs), by the U.S. Food and Drug Administration (FDA).[9] Despite this, there remain limited advances in the development of antibiotics for this population.[10]

The global status of clinical research on antibiotics in pediatrics is currently unknown. Using registered records of clinical trials (CTs) on *ClinicalTrials.gov*, this review aims (i) to summarise the current global status of registered antibiotic research in children and neonates, and (ii) to stimulate discussion and collaboration among the relevant stakeholders on the neglect of antibiotic research in pediatrics.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

METHODS

Data sources

The *ClinicalTrials.gov* registry (last accessed 8th November 2016) is an international platform for the registration of CTs. It is a web-based registry, developed in 2000 by the National Institute of Health (NIH) and the FDA, to which trials from 50 states and 163 countries around the world are registered. All information provided for each trial is updated periodically by the trial's sponsoring organisation. The database has a specific child filter, which uses a key word paradigm to select all registered trials recruiting patients/participants up to 18 years of age.

We were not able to capture all studies being planned in neonates, infants, and children by pharmaceutical companies in compliance with legislation that mandates studies of any drugs under investigation in adults that may have clinical utility in children. Discussions between companies and regulatory agencies are confidential, limiting our ability to fully understand the impact of the PIPs and PSP's noted above on antimicrobial compounds under development.

Study selection

Our records were identified using suitable key word searches, in which the final search terms were (antimicrobial* OR antibiotic* OR antiinfective agent*) AND Child AND Open Studies. All identified trials were filtered manually using inclusion and exclusion criteria. Interventional and observational trials on antimicrobials recruiting children up to 18 years of age were considered eligible for inclusion. No specific temporal filter was applied since only open or ongoing clinical trials were of interest. The following records, which were not investigating one or more antibiotics, were excluded: trials of antiseptics, antifungals, antiprotozoals, antivirals, and pro- or pre- biotics. The following records, which were investigating an antibiotic were excluded: trials involving tuberculosis, malaria, cystic fibrosis, HIV, febrile neutropenic patients, topical or inhalational treatments, prophylactic antibiotics, or records investigating alternative use for antibiotics (for example as an anti-inflammatory agent).

The searches were conducted by GT. All eligible records were identified via manual filtering by GT CB, LF and MS, and any disagreements regarding inclusion and exclusion of records were resolved through discussion.

Data extraction

The following information was collected from the included records: unique NCT number, recruitment status, study design, trial phase, study sponsor, age group and sex eligibility, clinical indication, geographic region of recruitment, antibiotic being investigated, and endpoint classification.

Outcomes were categorised as safety, efficacy or PK. Economic setting (based on geographic region of recruitment) was classified using The World Bank classification, where Low Income Countries (LICs) are defined as those with \$1,025 or less gross national income per capita, Lower Middle Income Countries (LMICs) \$1,026 – 4,035, Upper Middle Income Countries (UMICs) \$4,036 – 12,475, and High Income Countries (HICs) \$12,476 or more.[11]

The specific class of antibiotic studied in each trial was identified and classified using the World Health Organisation (WHO) ATC/DDD index.[12] To investigate whether novel antibiotics are being studied in pediatric and neonatal populations (as well as in adults), the antibiotics currently studied in children were compared with the *Pew Charitable Trusts Antibiotics Currently in Clinical Development* pipeline, which identifies novel antibiotics currently under development for the U.S. market.[13]

RESULTS

Our search identified 1056 records. 603 records were excluded on title because they were studies not involving an antimicrobial. 453 records were investigating one or more antimicrobials and

 recruiting children below 18 years of age. Among the 195 trials investigating antibiotics, 76 fulfilled our inclusion and exclusion criteria and were included in the final analysis. Reasons for exclusion are summarised in Figure 1. Details of included studies can be found in Supplementary file 1.

All 76 CTs identified were open as of 8th November 2016, and 63 (83%) of these were recognised as recruiting participants on this date (Table 1). All trials stated recruitment of both male and female participants.

Table 1. Characteristics of clinical trials.

Characteristic	Category	Number of studies, n (%)
Age group	Preterm neonates	1 (1) ^a
	Neonates (total)	23 (30)
	Infants and toddlers	52 (68)
	Children	58 (76)
	Adolescents	54 (71)
Recruitment status	Recruiting	63 (83)
	Not yet recruiting	13 (17)
Study design	Interventional	66 (87)
	Observational	10 (13)
Trial phase ^b	Phase 1	10 (15)
	Phase 1-2	1 (2)
	Phase 2	9 (14)
	Phase 2-3	3 (5)
	Phase 3	10 (15)
	Phase 4	23 (39)
	Not specified	10 (15)
Sponsor	Industry	26 (34)
	Non-profit	50 (66)
Geographic region	Africa	8 (11)
	Asia	16 (21)
	Europe	22 (29)
	Latin America	6 (8)
	North America	34 (45)
	Oceania	5 (7)
Antibiotic class		4 (5)
	J01C Beta-lactam, Penicillin	25 (33)
	J01D Other Beta-lactam	22 (29)
	J01E Sulfonamides and trimethoprim	7 (9)
	J01F Macrolide, Lincosamide, Streptogramin	14 (18)
	J01G Aminoglycoside	2 (3)
	J01M Quinolone	8 (11)
	J01X Other antibiotic classes ^c	21 (28)
	J01 Not specified	2 (3)

Totals for Age group, Geographic region, and Antibiotic class do not add up to total number of clinical trials (76) as some trials contributed to more than one sub group.

^à 7 further trials mentioned inclusion of preterm babies in the inclusion criteria.

^b Trial phase % based on percentage of interventional trials.

^c J01X includes glycopeptides, polymixins, imidazole derivatives, and nitrofuran

Age group

Twenty three of the 76 trials (30%) were recruiting newborns (0 to 28 days). One of these 23 trials focused solely on recruiting preterm newborns (a further 7 CTs mentioned inclusion of preterm newborns in inclusion criteria). Of the remaining records, 52 (68%) were recruiting infants and toddlers (28 days to 23 months), 58 (76%) children (2 to 11 years), and 54 (71%) adolescents (11 up to 18 years). 29 (38%) trials did not focus solely on the recruitment of children or neonates, with age ranges also spanning across adult populations.

Study type

Interventional trials were most frequently identified (n=66, 87%) with only 10 (13%) observational trials noted. Of the interventional trials, the majority were in the later stages of development; 10 (13%) in Phase 1, 1 (2%) between Phase 1 and 2, 9 (14%) in Phase 2, 3 (5%) between Phase 2 and 3, 10 (15%) in Phase 3 and 23 (35%) in Phase 4. In 10 (15%) cases, a trial phase had not been specified.

Sponsor and Endpoint Classification

Fifty (66%) trials were sponsored by non-profit organisations (being university, hospital or government funded), and 26 sponsored by industry (34%). The endpoint classification of the majority of trials (n=43, 57%) was reported as efficacy (Table 2). A greater proportion (n=34, 68%) of non-profit studies measured the efficacy of the drugs as the primary endpoint, with less emphasis on collection of PK or safety data (n=16, 32%). In comparison pharmaceutical-led trials focussed on early PK and safety studies over the drug's efficacy (n=17, 65% vs. n=9, 35% respectively).

Table 2. Clinical trial endpoint classification of identified clinical trials stratified by trial sponsor. Endpoint classification determined by planned primary outcomes.

Endpoint classification	Industry	Non-profit	Total (%)
Efficacy	9	34	43 (57)
Safety	10	2	12 (16)
PK	7	14	21 (28)

Geographic region

The most frequently recruiting geographic region was North America (n=34, 45%). 22 (29%) trials recruiting in Europe and 16 (21%) in Asia were identified, 6 (8%) in Latin America, 8 (11%) in Africa, and 5 (7%) in Oceania. Most trials were recruiting in HICs (n=54, 71%), with fewer trials recruiting in

LICs (n=4, 5%), LMICs (n=4, 5%), UMICs (n=11, 14%) or a combination of UMICs and HICs (n=3, 4%).

Indication

The most common treatment indications investigated were Lower Respiratory Tract Infection (n=12, 16%) and Sepsis (n=11, 14%), followed by Upper Respiratory Tract Infection (n=8, 11%), Intraabdominal Infection (IAI) (n=8, 11%), Urinary Tract Infection (UTI) (n=7, 9%), complicated Skin and Soft Tissue Infection (cSSTI) (n=6, 8%), CNS infection (n=3, 4%), and Bone and Joint infection (n=1, 1%) (Table 3).

Antibiotic class

The majority of antibiotics (n=47, 62%) being investigated were beta-lactams, followed by other antibiotic classes (J01X, including vancomycin, telavancin and dalbavancin) (n=21, 28%). Macrolides or lincosamides (J01F) were the next most commonly studied antibiotic classes (n=14, 18%). Very few of the records reported investigations of tetracyclines (J01A) (n=4, 5%), Sulphonamides and trimethoprim (J01E) (n=7, 9%), aminoglycosides (J01G) (n=2, 3%), or quinolones (J01M) (n=8, 11%). 2 CTs (3%) did not specify the class of antibiotic being investigated. 16 (21%) trials were investigating more than one antibiotic; these trials counted towards more than one J01 category. The breakdown of J01 categories, as per WHO ATC/DDD classification,[12] is described in Table 1.

Antibiotic pipeline

Of the 37 antibiotics listed on the most recent May 2016 edition of the Pew Charitable Trusts

Antibiotic Pipeline (last accessed 10th June 2016),[13] as noted by the EMA Opinions and Decisions on Pediatric Investigation Plans, 5 had an agreed PIP: Imipenem/Cilastatin+Relebactam, Cadazolid, Carbavance (Meropenem+Vaborbactam), Eravacycline, and Solithromycin.[8] As of 8th November 2016, our search found that only 2 of the 37 antibiotics listed on the Pew antibiotic pipeline (Carbavance and Solithromycin) was being investigated in 1 and 2 on-going CTs in pediatric patients, respectively (Table 4). A PIP was agreed for Carbavance in 2015 for treatment of Gramnegative infections, and for Solithromycin in 2016 for the treatment of gonococcal infection, and later for treatment of anthrax, tularaemia, and bacterial pneumonia. PIPs were agreed in 2015 for treatment of urinary tract infection and complicated intra-abdominal infection with Eravacycline, and in 2016 for treatment of Clostridium difficile infection with Cadazolid and of Gram-negative bacterial infection with Imipenem/Cilastin+Relebactam.[14] Despite this, we could not identify any registered trials of these antibiotics in our search.

Table 3. Clinical indication of identified clinical trials stratified by age group being recruited.

		Age group				
		Preterm		Infants and		
Indication	Total (%)	neonates	Neonates ^a	toddlers	Children	Adolescents
Unspecified Bacterial Infection	18 (24)	-	11	15	15	14
Lower Respiratory Tract Infection	12 (16)	1	3	12	13	5
Sepsis	11 (14)	-	6	9	9	11
Upper Respiratory Tract	8 (11)	•	1	5	9	7
Intra-abdominal Infection	8 (11)	-	3	5	5	7
Urinary Tract Infection	7 (9)	-	2	6	7	6
Skin and Soft Tissue Infection	6 (8)	-	3	4	4	8
CNS infection	3 (4)	-	1	4	4	4
Bone and Joint Infection	1 (1)		-	1	1	1
·			30	61	67	63

Age group totals do not add up to total number of clinical trials (76) as some trials contributed to more than one age group.

a refers to total number of preterm and term neonates.

Table 4. Comparison of antibiotic development pipeline in adults and children. Adapted from Pew Charitable Trusts "Antibiotics currently in clinical development" pipeline (last accessed October 2016).[13]

Antibiotic	Phase	Manufacturer	Indication	Drug development in Adults	Paediatric Investigation Plan for drug development in Children	Number of open clinical trials in children
WCK 4873	Phase 1	Wockhardt Ltd.	Bacterial infection	1	-	-
MGB – BP – 3	Phase 1	MGB Pharma Ltd.	Clostridium difficile infection	/	-	-

OP0595	Phase 1	Meiji Seika Pharma Co. Fedora Pharmaceuticals	Bacterial infection	1	-	-
BAL30072	Phase 1	Basilea Pharmaceuticals	Multidrug resistant gram negatives	✓	-	-
CRS3123	Phase 1	Crestone Inc.	Clostridium difficile infection	1	-	-
LCB01 - 0371	Phase 1	Legochem Biosciences Inc.	Bacterial infection	✓	-	-
TD – 1607	Phase 1	Theravance Biopharma Inc.	Acute skin infection, HAP, VAP, bacteraemia	1	-	-
WCK 2349	Phase 1	Wockhardt Ltd.	Bacterial infection	1	-	-
WCK 771	Phase 1	Wockhardt Ltd.	Bacterial infection	✓	-	-
Zidebactam+Cefepime	Phase 1	Wockhardt Ltd.	cUTI, HAP, VAP	/	-	-
TP – 271	Phase 1	Tetraphase Pharmaceuticals Inc.	CAP		-	-
Aztreonam – Avibactam	Phase 2	Astrazeneca PLC Allergan PLC	cIAI	7	-	-
MRX – 1	Phase 2	MicuRx Pharmaceuticals Inc.	Acute skin infection (systemic)	✓	-	-

Debio 1450	Phase 2	Debiopharm International SA	Acute skin infection, Staphylococcus <i>spp</i> . associated osteomyelitis	1	-	-
ETX0914	Phase 2	Entasis Therapeutics Inc.	Uncomplicated gonorrhoea	✓	-	-
P0L7080	Phase 2	Polyphor Ltd.	Pseudomonas spp. associated VAP, lower respiratory tract infection, bronchiectasis	1	-	-
Brilacidin	Phase 2	Cellceutix Corporation	Acute skin infection (systemic)	✓	-	-
Ceftaroline+Avibactam	Phase 2	AstraZeneca PLC Allergan PLC	Bacterial infection	✓	-	1
CG400549	Phase 2	Crystal Genomics Inc.	Acute skin infection, osteomyelitis	✓	-	-
Finafloxacin	Phase 2	MerLion Pharmaceuticals Pte Ltd.	cUTI, cIAI, acute skin infection, pyelonephritis	✓	-	-
Geptidacin	Phase 2	GlaxoSmithKline PLC	cUTI, CAP, uncomplicated urogenital gonorrhoea	1	-	-
Nemonoxacin	Phase 2	TaiGen Biotechnology Co. Ltd.	CAP, acute skin infection, diabetic foot		-	1
Ramoplanin	Phase 2	Nanotherapeutics Inc.	Prevent recurrent Clostridium difficile infection		-	-
Ridinilazole	Phase 2	Summet Therapeutics Inc.	Clostridium difficile	1	-	-

Zabofloxacin	Phase 3	Dong Wha Pharmaceuticals Co. Ltd.	CAP	1	-	-
S – 649266	Phase 3	Shionogi Inc.	HAP, VAP, cUTI, bloodstream infection	1	-	-
Omadacycline	Phase 3	Paratek Pharmaceuticals Inc.	CAP, cUTI, acute skin infection	*	-	-
Lefamulin	Phase 3	Nabriva Therapeutics AC	CAP, HAP, VAP, acute skin infection, osteomyelitis, prosthetic joint infections	✓	-	-
Imipenem / Cilastatin+Relebactam	Phase 3	Merck & Co. Inc.	cUTI, cIAI, HAP, VAP, acute pyelonephritis	1	✓	-
Iclaprim	Phase 3	Motif Bio PLC	HAP, acute skin infection	1	-	-
Cadazolid	Phase 3	Actelion Pharmaceuticals Ltd.	Clostridium difficile	1	✓	-
Taksta (fusidic acid)	Phase 3	Cempra Inc.	Acute skin infection, prosthetic joint infection	1	-	-
Carbavance (Meropenem+Vaborbactam)	Phase 3	Rempex Pharmaceuticals Inc.	cUTI, cIAI, HAP, VAP, febrile neutropenia, bacteraemia, acute pyelonephritis ^a	3	1	1
Delafloxacin (Baxdela)	Phase 3	Melinta Therapeutics Inc.	Acute skin infections, CAP, cUTI	1	Waiver granted	-
Eravacycline	Phase 3	Tetraphase Pharma Inc.	cIAI and cUTI	\	✓	-
Plazomicin	Phase 3	Achaogen Inc.	cUTI, HAP, VAP, cIAI, catheter-associated bloodstream infection ^a	1	-	-

Solithromycin	Phase 3	Cempra Inc.	CAP, uncomplicated urogenital gonorrhea, urethritis	1	√	2
IAP, hospital-acquired IAI, complicated Intra-a target carbapenem res	abdominal Infection		monia; cUTI, complicated Urinary Trac		• •	pneumonia
arget carbapenem res	sistant enteropacteria	ode				

DISCUSSION

Our search on ClinicalTrials gov identified 76 clinical trials investigating one or more antibiotics recruiting children between 0 and 18 years of age. This is low in comparison to the number of ongoing trials in adults, with children representing around a quarter of the global population.[15,16] A review of completed CTs in the U.S. between 2000 and 2010 identified a total of 4078 adult trials compared to just 294 that had recruited children.[17] In our study, the lack of trials recruiting neonates is striking. Just 23 of the 76 trials identified were recruiting neonates, and remarkably just 8 CTs globally were recruiting preterm neonates. There are broadly two types of pediatric trials being conducted globally. Either pharmaceutical-led Phase 1/2 PK and safety trials (n=17) being conducted in the HIC setting, or investigator led, often pragmatic, late phase efficacy trials in the LMIC setting (n=34), with a greater proportion of the on-going trials sponsored by non-profit organisations than industry (66% compared to 34%). The rarity of bacterial infections in children, and the ethical and practical barriers to running paediatric trials likely act as deterrents to pharmaceutical interest, resulting in academic investigators focusing on the larger efficacy trials. As of April 2016, there were 17 antibiotic PIPs agreed by the EMA,[8] covering a range of indications, most commonly cSSTI, complicated IAI (cIAI), and complicated UTI (cUTI).[14] In contrast, treatments for respiratory and systemic infections, the most common indications in pediatrics, are not currently being evaluated.[18] Although the introduction of PIPs on the whole has encouraged the study of medicines in children, the range of infectious indications covered therefore does not match the burden of disease in this age group. Thirty-seven antibiotics are currently being developed in adults, yet to our knowledge just 2 of these are being studied in children. However, some classes of antibiotics that may be of higher risk for children (tetracyclines and fluoroquinolones) may not be pursued as aggressively for pediatric approvals by either industry or regulatory agencies due to well-recognized issues of toxicity, particularly relevant in situations for which safer alternative therapy is widely available. The substantial lag time between the submission date (for PIP or waiver) and declared date of completion of PK studies in adults is a real concern. particularly for new antibiotics against resistant Gram-negative pathogens, although there is some value in generating substantial safety data in adults prior to exposing children and newborn infants to potentially toxic new agents. However, Gram-negative sepsis is a growing problem in neonates, with a significant increase in the proportion of multi-resistant Gram-negative pathogens.[19]

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

In 2013, a similar review of European pediatric clinical trials identified 31 trials of antibiotics approved for adults by the EMA in 2000 that were recruiting children in Europe (compared to the 22 trials we found to be now recruiting in this region). They included both published and ongoing trials, which likely accounts for the higher number of trials reported. They similarly found a very small proportion of neonatal trials (just 2 of 31), as well as a greater proportion of efficacy-based trials.[10] In 2012, a review of interventional trials registered with *ClinicalTrials.gov* between 2007 and 2010

found that only 17% had recruited children below 18 years of age.[20] A similar review of antimicrobial CTs conducted in the U.S. between 2000 and 2012 reported that just 5% had recruited only children compared to the 74% that had recruited only adults, and that, as we have found, the trials were sponsored primarily by non-profit organisations (60% compared to 30% by industry).[17] In our search of global trials, 39% of registered CTs reported collection of PK data in comparison to a similar review in 2009 of PK research on medicines for children that reported 24% of registered CTs would be collecting PK data.[21] Collection of PK data is particularly important in neonates where developmental differences in physiology lead to significant changes in drug PK, which puts them at increased risk of adverse drug reactions.[3,22] Furthermore, off-label and unlicensed prescribing is at its greatest in neonatal populations (61% and 22% respectively)[14]. A recent review noted a striking lack of harmonisation in study design and outcomes among completed and on-going neonatal and pediatric antibiotic CTs which may make translation of trial data into clinical guidance more difficult.[23]

The search strategy used has some limitations. Since the search was limited to clinical trials registered to *ClinicalTrials.gov*, it is possible that a number of open or on-going trials registered with alternative platforms (for example, the WHO International Clinical Trials Registry Platform [ICTRP]) will have been missed. Together with *ClinicalTrials.gov* these could help to establish the entirety of current clinical research in this field. We did however search EudraCT, and found no further studies to those captured on *ClinicalTrials.gov*. Our search was also limited to open CTs, which means that active but not yet recruiting trials were not captured, as well as those that had closed to recruitment previously. The information recorded for each trial registered with *ClinicalTrials.gov* is updated by the trial investigators, and therefore relies on them to periodically update the registry. On occasion, information such as recruitment status might not be updated in real time.

Concerns around the growing threat of antimicrobial resistance have prompted a number of new initiatives. In 2016, the EMA published the first draft of the Concept Paper to propose the development of an Addendum to the guideline on the evaluation of new anti-bacterial products for treatment of bacterial infections in children.[24] At the same time, the Clinical Trials Transformation Initiative (CTTI) is currently focused on the identification of key barriers in the conduct of pediatric antibacterial CTs, which hamper their successful implementation into clinical practice.[25] Recent evidence states that overall, antibiotic CTs make up less than 1% of all registered pediatric CTs, and that trial completion is slow, with an average time to completion of around two years.[26] There are a number of specific areas where there is potential for harmonisation and simplification in the design and conduct of paediatric antibiotic CTs. Standardisation of the inclusion and exclusion criteria for specific Clinical Infection Syndromes, and an improved bridging of safety and efficacy

data from other age groups, would allow improved comparison between studies, and potentially more simplified design of CTs, both of which will improve their conduct and efficiency in children.

CONCLUSIONS

A number of issues contribute to the difficulties in conducting pediatric antibiotic clinical trials. The lack of regulatory guidance, vulnerability of this population, issues with informed consent and assent, and lack of research-experienced hospital personnel all present challenges in study design, delivery and recruitment. Delays in the initial start-up of CTs in pediatrics due to pediatric-specific protocol issues and complicated ethical approval continue to discourage both academic and pharmaceutical interest. The limited data presented here suggests that the dismal state of ongoing pediatric antibiotic trials is still continuing. Earlier collaboration between academic research networks and pharmaceutical companies is now vital to accelerate progress.

ACKNOWLEDGEMENTS

Contributors MS, CB, GT, LF and JB designed the study, GT conducted the search, IL and JB commented on study design and assisted with drafting the paper.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest None declared.

Data sharing statement Full dataset is available on request.

REFERENCES

- 1. Corny J, Lebel D, Bailey B et al. Unlicensed and Off-Label Drug Use in Children Before and After Pediatric Governmental Initiatives. J Pediatr Pharmacol Ther. 2015;20(4):316–28.
- European Medicines Agency. Concept paper on extrapolation of efficacy and safety in medicine development.
 - http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/04/WC5 00142358.pdf. (accessed May 2016)
- Kearns GL, Abdel-Rahman SM, Alander SW et al. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157– 67.
- 4. Dunne J, Rodriguez WJ, Murphy MD et al. Extrapolation of Adult Data and Other Data in Pediatric Drug-Development Programs. Pediatrics. 2011;

- http://pediatrics.aappublications.org/content/early/2011/10/20/peds.2010-3487.abstract (accessed June 2016)
- The World Health Organisation. WHO Promoting Safety of Medicines for Children. 2007; http://www.who.int/medicines/publications/essentialmedicines/Promotion_safe_med_childrens.pdf (accessed October 2016)
- Theuretzbacher U, Van Bambeke F, Cantón R et al. Reviving old antibiotics. Internet J Antimicrob Chemother. 2015;
 http://jac.oxfordjournals.org/content/early/2015/06/10/jac.dkv157.abstract (accessed June 2016)
- 7. van der Meer JW, Gyssens IC. Quality of antimicrobial drug prescription in hospital. Clin Microbiol Infect. 2001;7:12–5.
- European Medicines Agency. EMA Opinions and decisions on Paediatric Investigation
 Plans. 2016;
 http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/pip_search.jsp&mid
- Guidance for industry. Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm360507.pdf. (accessed June 2016)
- 10. Garazzino S, Lutsar I, Bertaina C et al. New antibiotics for paediatric use: a review of a decade of regulatory trials submitted to the European Medicines Agency from 2000--why aren't we doing better? Int J Antimicrob Agents. 2013;42(2):99–118.
- 11. The World Bank. The World Bank list of economies. 2015; http://siteresources.worldbank.org/DATASTATISTICS/Resources/CLASS.XLS (accessed October 2016)
- The World Health Organisation. WHO ATC/DDD Index. 2016;
 http://www.whocc.no/atc_ddd_index/. (accessed March 2016)

=WC0b01ac058001d129. (accessed June 2016)

- 13. The Pew Charitable Trusts. Antibiotics Currently in Clinical Development. 2016; http://www.pewtrusts.org/~/media/assets/2016/05/antibiotics-currently-in-clinical-development.pdf?la=en. (accessed May 2016)
- Lutsar I. Often neglegted: paediatric drug development a regulatory and clinical view. In Amsterdam, Netherlands; 2016. (S219 - Symposium lecture.).
- 15. Ceci A, Felisi M, Baiardi P et al. Medicines for children licensed by the European Medicines Agency (EMEA): the balance after 10 years. Eur J Clin Pharmacol. 2006;62(11):947–52.
- 16. Ruperto N, Eichler I, Herold R. A European Network of Paediatric Research at the European Medicines Agency (Enpr-EMA). Arch Dis Child. 2012;97:185–88.

- 17. Stockmann C, Sherwin CMT, Ampofo K et al. Characteristics of antimicrobial studies registered in the USA through ClinicalTrials.Gov. Int J Antimicrob Agents. 2013;42(2):161–6.
- 18. Versporten A, Bielicki J, Drapier N et al. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: developing hospital-quality indicators of antibiotic prescribing for children. J Antimicrob Chemother. 2016;71(4):1106–17.
- 19. Bielicki JA, Lundin R, Sharland M. Antibiotic Resistance Prevalence in Routine Bloodstream Isolates from Children's Hospitals Varies Substantially from Adult Surveillance Data in Europe. Pediatr Infect Dis J. 2015;34(7):734–41.
- 20. Califf RM, Zarin DA, Kramer JM et al. Characteristics of clinical trials registered in ClinicalTrials.gov, 2007-2010. JAMA. 2012;307(17):1838–47.
- 21. Viergever RF, Rademaker CMA, Ghersi D. Pharmacokinetic research in children: an analysis of registered records of clinical trials. BMJ Open. 2011;1(1):e000221.
- 22. Roberts JK, Stockmann C, Constance JE et al. Pharmacokinetics and pharmacodynamics of antibacterials, antifungals, and antivirals used most frequently in neonates and infants. Clin Pharmacokinet. 2014;53(7):581–610.
- 23. Folgori L, Bielicki J, Ruiz B, et al. Harmonisation in study design and outcomes in paediatric antibiotic clinical trials: a systematic review. Lancet Infect Dis. 2016;16(9):e178-89.
- 24. European Medicines Agency. Concept paper on an addendum to the guideline on the evaluation of medicinal products indicated for treatment of bacterial infections to address paediatric-specific clinical data requirements.

 http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/04/WC5 00205026.pdf. (accessed July 2016)
- 25. Clinical Trials Transformation Initiative. https://www.ctti-clinicaltrials.org/projects/pediatric-trials. (accessed July 2016)
- 26. Clinical Trials Transformation Initiative. AACT database. https://www.ctti-clinicaltrials.org/aact-database. (accessed January 2017)

LIST OF FIGURES

- Figure 1. Flow chart. Clinical trial selection process.
- **Table 1.** Characteristics of clinical trials.
- **Table 2.** Clinical trial endpoint classification of identified clinical trials stratified by trial sponsor. Endpoint classification determined by planned primary outcomes.
- **Table 3.** Clinical indication of identified clinical trials stratified by age group being recruited.
- **Table 4.** Comparison of antibiotic development pipeline in adults and children. Adapted from Pew Charitable Trusts "Antibiotics currently in clinical development" pipeline (last accessed October 2016).[13]

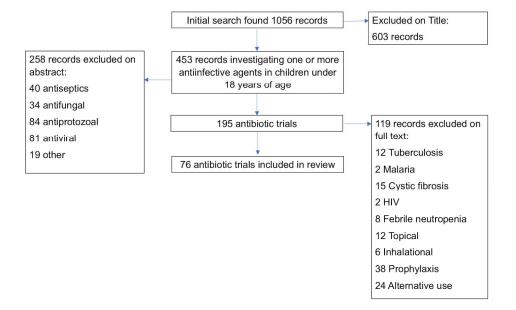


Figure 1. Flow Chart. Clinical trial selection process.

254x190mm (300 x 300 DPI)

2 [А		993	С	D
3	1	NCT Number	Title	, U	Recruitment	Study Results
4 5	2	NCT02539407	Population Pharmacokinetics of Anti-infectives in Critically III Children	13 (Recruiting	No Results Available
6	3	NCT02935374	Effect of Antimicrobial Treatment of Acute Otitis Media on the Intestinal Microbiome in Child	€eı	Not yet recruiting	No Results Available
7	4	NCT02899143	Short-course Antimicrobial Therapy in Sepsis	ber	Recruiting	No Results Available
8	5	NCT01595529	The SCOUT Study: Short Course Therapy for Urinary Tract Infections in Children	201	Recruiting	No Results Available
9 10	6	NCT02380352	Short-course Antimicrobial Therapy for Paediatric Respiratory Infections	7 [Not yet recruiting	No Results Available
11	7	NCT02891915	Trial to Evaluate Beta-Lactam Antimicrobial Therapy of Community Acquired Pneumonia in C	<u></u> ilc	Recruiting	No Results Available
12	8	NCT02746276	Optimising Antibiotic Treatment for Sick Malnourished Children	ปกล	Recruiting	No Results Available
13 14	9	NCT02917551	BALANCE on the Wards: A Pilot RCT	ded	Not yet recruiting	No Results Available
15	10	NCT01243437	A Clinical Trial to Evaluate the Safety and Efficacy of Ciprofloxacin in the Treatment of Plague	<u></u> jîn	Recruiting	No Results Available
16	11	NCT02635191	Tailored Therapy for Helicobacter Pylori in Children	ַ <u>.</u>	Recruiting	No Results Available
17	12	NCT01522105	Daptomycin in Pediatric Patients With Bacterial Meningitis	5 	Recruiting	No Results Available
19	13	NCT02456974	Antibiotic Dosing in Pediatric Intensive Care	3	Recruiting	No Results Available
20	14	NCT00579956	A Randomized Double Blinded Comparison of Ceftazidime and Meropenem in Severe Melioid	ps	Recruiting	No Results Available
21	15	NCT00545961	Middle Meatal Bacteriology During Acute Respiratory Infection in Children	p br	Not yet recruiting	No Results Available
22			Pharmacokinetics of Understudied Drugs Administered to Children Per Standard of Care	<u>შ</u> .	Recruiting	No Results Available
24	17	NCT02475876	PK of Clindamycin and Trimethoprim-sulfamethoxazole in Infants and Children	<u> </u>	Recruiting	No Results Available
25	18		Co-trimoxazole as Maintenance Therapy for Meliodosis		Recruiting	No Results Available
26 27	19	NCT02266706	Pharmacokinetic and Safety Study of Ceftolozane/Tazobactam in Pediatric Participants Recei	į	Recruiting	No Results Available
28	20	NCT00867789	Antibiotics Versus Placebo in the Treatment of Abscesses in the Emergency Department	2	Recruiting	No Results Available
29			A Safety Study of Balsamic Bactrim in Pediatric Participants With Acute Bronchitis	2	Not yet recruiting	No Results Available
30	22		MESS-study MRSA Eradication Study Skl´ne		Recruiting	No Results Available
31 32	23		Study of Tedizolid Phosphate in Adolescents With Complicated Skin and Soft Tissue Infection	=		No Results Available
33	24		Safety and TDM of Continuous Infusion Vancomycin Through Continuous Renal Replacement) h	Not yet recruiting	No Results Available
34			Special Drug Use Investigation of Ciproxan Injection in Pediatrics	Ţ	Recruiting	No Results Available
35 36			Comparative Effectiveness of Antibiotics for Respiratory Infections	<u>)</u>	Recruiting	No Results Available
37		NCT02224040	Typhoid Fever: Combined vs. Single Antibiotic Therapy	_	Recruiting	No Results Available
38			Population Pharmacokinetics of Cephalosporins and Macrolides in Chinese Children With Con			No Results Available
39		NCT02687906	Dose-finding, Pharmacokinetics, Safety, and Tolerability of Meropenem-Vaborbactam in Ped	á tr	Recruiting	No Results Available
40 41	30	NCT02783859	Hospitalised Pneumonia With Extended Treatment (HOPE) Study		Recruiting	No Results Available
42	31	NCT01994993	Antibiotic Safety (SCAMP)		Recruiting	No Results Available

1 _			T	<u>ි</u>		
2		Α		293	С	D
3	32	NCT02258763	Trial on the Ideal Duration of Oral Antibiotics in Children With Pneumonia	on 1	Recruiting	No Results Available
4 5	33	NCT02688790	Study Evaluate the PK Profile of Dalbavancin in Hospitalized Infants and Neonates Patients W	⁄ y th	Recruiting	No Results Available
6	34	NCT00323219	Oral Moxifloxacin Versus Cefazolin and Oral Probenecid in the Management of Skin and Soft	¥is:	Recruiting	No Results Available
7	35	NCT02750761	A Study of Oral and Intravenous (IV) Tedizolid Phosphate in Hospitalized Participants, Ages 2	d	Recruiting	No Results Available
8	36	NCT02466438	Safety and Pharmacokinetics of Piperacillin-tazobactam Extended Infusion in Infants and Chil	₫re	Recruiting	No Results Available
9	37	NCT02260102	Temocillin Pharmacokinetics in Paediatrics	7. D	Not yet recruiting	No Results Available
11	38	NCT02694458	Comparison of Two Dosage Adjustment Strategies of Vancomycin in Children) WO	Recruiting	No Results Available
12	39	NCT01540838	Slow Initial beta-lactam Infusion With High-dose Paracetamol to Improve the Outcomes of Cl	ซูี่ld	Recruiting	No Results Available
13	40	NCT00368498	A Trial to Evaluate the Loading Dose Required to Achieve Therapeutic Serum Teicoplanin Con	ger ger	Recruiting	No Results Available
15	41	NCT01785641	Single Versus Combined Antibiotic Therapy for Bacterial Peritonitis in CAPD Patients	fro	Recruiting	No Results Available
16	42	NCT02554383	Efficacy of Antibiotics in Children With Acute Sinusitis: Which Subgroups Benefit?	<u> </u>	Recruiting	No Results Available
17	43	NCT01265173	Comparison of Efficacy of Cefotaxime, Ceftriaxone, and Ciprofloxacin for the Treatment of Sp	อ ี่ท _ี ่	Recruiting	No Results Available
18 19	44	NCT02335905	Ceftaroline for Treatment of Hematogenously Acquired Staphylococcus Aureus Osteomyeliti	gin	Recruiting	No Results Available
20	45	NCT02922686	Penicillin for the Emergency Department Outpatient Treatment of CELLulitis	ope	Not yet recruiting	No Results Available
21	46	NCT02848820	Initial Non-operative Treatment Strategy Versus Appendectomy Treatment Strategy for Simp	ie A	Not yet recruiting	No Results Available
22 23	47	NCT02475733	Evaluation of Safety, Pharmacokinetics and Efficacy of CAZ-AVI With Metronidazole in Childer	n A	Recruiting	No Results Available
24	48	NCT02372461	Randomized Trial of Amoxicillin Versus Placebo for (Fast Breathing) Pneumonia	/wo	Recruiting	No Results Available
25	49	NCT01553006	Study of Cefditoren Pivoxil in Treatment of Childhood With Acute Rhinosinusitis	9	Recruiting	No Results Available
26	50	NCT02527681	Pharmacokinetics and Safety of Ceftobiprole in Neonates and Infants up to 3 Months Treated	₽₩	Recruiting	No Results Available
27 28	51	NCT02210169	RCT of Continuous Versus Intermittent Infusion of Vancomycin in Neonates	1 20	Recruiting	No Results Available
29	52	NCT02497781	Evaluation of Safety, Pharmacokinetics and Efficacy of Ceftazidime and Avibactam (CAZ-AVI)	œο	Recruiting	No Results Available
	53	NCT02814916	Dalbavancin for the Treatment of Acute Bacterial Skin and Skin Structure Infections in Childre	₽ <u>₽</u> ,	Not yet recruiting	No Results Available
31	54	NCT02210325	Efficacy and Safety Study of Oral Solithromycin Compared to Intramuscular Ceftriaxone Plus	ğra	Recruiting	No Results Available
33	55	NCT02801370	Phase 3 Study of OTO-201 in Acute Otitis Externa	nes.	Recruiting	No Results Available
34	56	NCT02760420	3 Days Amoxicillin Versus Placebo for Fast Breathing Childhood Pneumonia in Malawi		Recruiting	No Results Available
35	57	NCT02678195	3 Days Versus 5 Days Amoxicillin for Chest-indrawing Childhood Pneumonia in Malawi	ote	Recruiting	No Results Available
36 37	58	NCT02605122	Safety and Efficacy of Solithromycin in Adolescents and Children With Community-acquired E	∯icl	Recruiting	No Results Available
38	59	NCT02570490	Oral Sodium Fusidate (CEM-102) Versus Oral Linezolid for the Treatment of Acute Bacterial S	₽in	Recruiting	No Results Available
39	60	NCT02443285	Is Spontaneous Bacterial Peritonitis Still Responding to 3rd Generation Cephalosporins?	cop	Recruiting	No Results Available
40 11	61	NCT02334124	Comparing the Intravenous Treatment of Skin Infections in Children, Home Versus Hospital	yrigl	Recruiting	No Results Available
42	62	NCT02218372	A Study to Investigate the Safety and Efficacy of Fidaxomicin (Oral Suspension or Tablets) and	₹Va	Recruiting	No Results Available

2	
3	6
2 3 4 5 6 7 8 9 10 11 22 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	
5	66 66 67 77 77 77
7	-6
8	-6
9	_
10	C
11	6
12	7
13	7
14	
15	_
16	7
17	7
18	<u> </u>
19	
20	7
21	7
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
33 34 35	
35	
00	

			BMJ Open -2017-016		Page 22 o
2 [А	B 8	С	D
3	63	NCT01032499	Open and Comparative Study to Measure Tolerability and Efficacy of Taro Elixir	Not yet recruiting	No Results Available
4 [64	NCT02598362	Pharmacokinetics of Ciprofloxacin in Pediatric Patients	Recruiting	No Results Available
5 6	65	NCT02878031	Community Case Management of Chest Indrawing Pneumonia	Recruiting	No Results Available
7	66	NCT02790996	Neonatal Vancomycin Trial	Not yet recruiting	No Results Available
8	67	NCT02712307	Study of 5 and 10 Days Treatment With Penicillin Against Sore Throat Caused by Streptococci	Recruiting	No Results Available
9	68	NCT02424734	Safety, Tolerability and Efficacy of Ceftaroline in Paediatrics With Late-Onset Sepsis	Recruiting	No Results Available
11	69	NCT02134301	Open-Label, Dose-Finding, Pharmacokinetics, Safety and Tolerability Study of Oritavancin in	Recruiting	No Results Available
12	70	NCT02013141	An Open-Label Study of the Pharmacokinetics of a Single Dose of Telavancin in Pediatric Subject		No Results Available
13	71	NCT01427842	Dose Enhancement of Vancomycin IN Everyday Patients	Recruiting	No Results Available
14- 15	72	NCT01278017	The Role of Short-course Ceftriaxone Therapy in the Treatment of Severe Nontyphoidal Salmer	Recruiting	No Results Available
16	73	NCT00988026	Safety and Efficacy Comparison of Minocycline Microgranules Versus Lymecycline in the Treatr	Recruiting	No Results Available
17	74	NCT02288234	Telavancin Observational Use Registry (TOUR)	Recruiting	No Results Available
18 19	75	NCT01304459	Vancomycin Serum Concentrations in Pediatric Oncology Patients Under Intensive Care	Recruiting	No Results Available
20	76	NCT01173575	Assessment of the Efficacy of FOSFOMYCIN in Patients With Bacterial Infection	Recruiting	No Results Available
21	77	NCT01778634	Trial of Intravenous Azithromycin to Eradicate Ureaplasma Respiratory Tract Infection in Preter	Recruiting	No Results Available
22 ¹ 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 40 41 42			nj.com/ on April 20, 2024 by guest. Protected by copyright		

	E	F
1	Indication	Infection category
2	Proven or suspected infection (in patients on PICU)	9
3	Acute Otitis Media	3
4	Sepsis	8
5	Urinary Tract Infections (UTI)	7
6	Community-acquired Pneumonia (CAP)	4
7	Pneumonia	4
8	Proven or suspected infection in patients with malnutrition	9
9	Bacteremia	8
10	Plague	8
11	Helicobacter Pylori Infection	7
12	Meningitis	1
13	Proven or suspected bacterial infection (Pharmacokinetics)	9
14	Melioidosis	8
15	Acute Respiratory Infection Sinusitis	3
16	Various infections (including nosocomial Pneumonia, CAP, Acute Bac	Various
17	Bacterial Infections	9
18	Meliodosis	8
19	Proven or Suspected Gram-negative Bacterial Infection	9
20	Abscess	1
21	Bronchitis	4
22	Throatcarriers of MRSA	3
23	Acute Skin and Soft Tissue infections (aSSTIs)	2
24	Proven or suspected bacterial infection (in CRRT patients)	9
	Cystitis / Pyelonephritis	7
26	Acute Upper Respiratory Tract Infections (ARTIs)	3
27	Typhoid Fever	8
28	Community Acquired Pneumonia (CAP)	4
29	Bacterial Infections	9
30	Pneumonia	4
31	Complicated Intra Abdominal Infections (cIAIs)	6

en-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

44 45

1.			
2		E	F
3	32	Pneumonia	4
4 5	33	Bacterial Infections	9
6	34	Cellulitis	2
7	35	Gram-Positive Bacterial Infections	9
8	36	Infection	9
9	37	Urinary Tract Infection or suspected Cholangitis	7
11	38	Methicillin-resistant Staphylococcal Infections	9
12	39	Bacterial Meningitis	1
13 14	40	Staphylococcal Infections	9
15	41	Peritonitis (in CAPD patients)	6
16	42	Acute Sinusitis (Respiratory Tract Infections)	3
17	43	SBP in patients with Liver Cirrhosis	6
18 19	44	Hematogenously Acquired Staphylococcus Aureus Osteomyelitis	5
20	45	Cellulitis or Wound Infection	8
21	46	Appendicitis	6
22 23	47	Complicated Intra-abdominal Infections (cIAIs)	6
24	48	Pneumonia (fast-breathing)	4
25	49	Rhinosinusitis	3
26	50	Bacterial Infections	9
27 28	51	Sepsis	8
29	52	Complicated Urinary Tract Infections (cUTIs)	7
30	53	Methicillin-Resistant Staphylococcus Aureus Skin Infection	2
31 32	54	Uncomplicated Urogenital Gonorrhea	7
33	55	Acute Otitis Externa	3
34	56	Pneumonia	4
35	57	Pneumonia	4
36 37	58	Community-acquired Bacterial Pneumonia	4
38	59	Acute Bacterial Skin and Skin Structure Infections	2
39	60	Primary Bacterial Peritonitis	6
40 41	61	Cellulitis	8
42	62	Clostridium Difficile-associated Diarrhea (CDAD)	6
43			
4 4			

en-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1	
2	
3	6
4	6
5	6.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	6. 6. 6. 6. 6. 7. 7.
8	6
9	6
10	6
12	7
13	7
14	7
15 16	7
17	7:
18	7.
19	7
20 21	7
21 22 23 24 25 26 27 28 29 30 31	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33 34 35	
33	
34	
35	

		E	F
	63	Acne Vulgaris II or III Degree	2
	64	Urinary Tract Infection or Pyelonephritis	7
	65	Pneumonia	4
	66	Late Onset Neonatal Sepsis	8
	67	Tonsillitis	3
	68	Late-onset Sepsis	8
	69	Gram Positive Bacterial Infections	9
	70	Gram-Positive Bacterial Infections	9
3 ⊿ _	71	Vancomycin Therapy	9
<u>-</u> 5	72	Diarrhea	6
	73	Mild to Moderate Acne	2
7	74	Hospital Acquired Bacterial Pneumonia (HAP), Complicated Skin and	Various
8 . 9_	75	Infection	9
	76	Bacterial Infection	9
1 <u> </u>	77	Eradicate ureaplasma respiratory tract infection from preterm infant	4

		ВМЈ	Open	en-2017-016293	
1 2 [G	Н	16293	l j
3	1			Gender	Age
4	2	Antiinfectives (beta-lactam, aminoglycoside, glycopeptide, fluoroquinolone,	Various	Both D	Up to 18 Years
5 6	3	Amoxicillin, Amoxicillin-Potassium Clavulanate, Macrolide	Various	Both을	6 Months to 7 Years
7	4	Antibiotic	J01	Both	Up to 18 years
8	5	Trimethoprim sulfamethoxazole, cefixime, or cephalexin	Various	BothS	2 Months to 10 Years
9	6	Amoxicillin	J01C	Both:	6 Months to 10 Years
11	7	Amoxicillin, Amoxicillin-clavulanate, Cefdinir	Various	Both€	6 Months to 71 Months
12	8	Ceftriaxone, Metronidazole	J01D	Both	2 Months to 59 Months
13	9	7 days vs 14 days of adequate antibiotic treatment	J01	Both	Up to 18 years
15	10	Ciprofloxacin, doxyxcycline	Various	Both	8 Years and older
16	11	Tailored vs standard therapy (Amoxicillin, Clarithromycin, Metronidazole, Ra	Various	Both₅	4 Years to 18 Years
17	12	Daptomycin	J01X	Both	3 Months to 16 Years
18 19	13	Amoxicillin-clavulanate, Piperacilline-tazobactam, Vancomycin	Various	Both	Up to 16 Years
20	14	Meropenem, Ceftazidime	J01D	Both	15 Years and older
21	15	Amoxicillin clavulanate acid	J01C	Both	6 Years to 13 Years
22	16	Various drugs (Ceftazidime, Ciprofloxacin, Clindamycin, Doxycycline, Levoflo	Various	Both Both	Up to 18 years
24	17	Clindamycin, Trimethoprim-sulfamethoxazole	Various	Both	1 Month to 16 Years
25	18	Co-trimoxazole	J01E	Both≌	15 Years and older
26	19	Ceftolozane/Tazobactam	J01D	Bothg.	Up to 17 Years
27 28	20	Trimethoprim-sulfamethoxazole	J01E	Both ₈	3 Months to 17 Years
29	21	Guaifenesin, Sulfamethoxazole trimethoprim	J01E	Both	4 Years to 14 Years
30	22	Systemic Rifampin and Clindamycine/Trimehoprimsulfa, or Topical mupiroci	Various	Both ²	5 Years and older
31	23	Tedizolid Phophate	J01X	Both €	12 Years to 18 Years
33	24	Vancomycin	J01X	Both	Up to 18 years
34	25	Ciprofloxacin	J01F	Both _y	Up to 14 Years
35	26	Antibiotics (Amoxicillin-clavulanate, azithromycin, cefdinir, cefprozil, cefurox	Various	Both Both	6 Months to 18 Years
36 37	27	Ceftriaxone, Ceftriaxone/azithromycin, Azithromycin, Azithromycin/cefixime	Various	Both g	2 Years to 80 Years
38	28	Cephalosporins and Macrolides	Various	Both₹	1 Year to 18 Years
39	29	Carbavance	J01D	Bothg	Up to 17 Years
40 41	30	Amoxicillin-clavulanic Acid	J01C	Both	3 Months to 5 Years
42	31	Ampicillin/metronidazole/gentamicin/clindamycin/Piperacillin-tazobactam c	Various	Both [₹]	Up to 120 Days

44 45 46

Pa	ge 27	of 40 BM.	J Open	en-2017-016	
1 2 [G	Н)16 <u>2</u> 93	J
3	32	Amoxicillin-Potassium Clavulanate	J01C	Both≌	3 Months to 59 Months
4	33	Dalbavancin	J01X	Both O	Up to 28 Days
5 6	34	Cefazolin/Moxifloxacin	Various	Both을	Up to 18 Years
7	35	Tedizolid Phosphate	J01X	Both₫	2 Years to 11 Years
8	36	Piperacillin-tazobactam	J01C	Botho	2 Months to 6 Years
9	37	Temocillin	J01C	Both	6 Months to 3 Years
11	38	Vancomycin	J01X	Both€	1 Month to 16 Years
12	39	Beta-lactam	J01C	Both S	2 Months to 15 Years
13	40	Teicoplanin	J01X	Both	16 Years and older
15	41	Ceftazidime/ciprofloxacin, Ceftazidime, Cefazolin/gentamicin, Cefazolin	Various	Bothਰ	15 Years and older
16	42	Amoxicillin-clavulanate	J01C	Both ₂	2 Years to 11 Years
17	43	Cefotaxime, Ceftriaxone, Ciprofloxacin	Various	Both	16 Years and older
18 19	44	Ceftaroline Fosamil	J01D	Both	1 Year to 17 Years
20	45	Flucloxacillin, Phenoxymethylpenicillin	J01C	Both	16 Years and older
21	46	Augmentin/Gentamicin, Appendectomy	J01C	Both	7 Years to 17 Years
22 23	47	Ceftazidime-avibactam, Meropenem, Metronidazole	Various	Both Both	3 Months to 18 Years
24	48	Amoxicillin	J01C	Both€	2 Months to 59 Months
25	49	Cefditoren pivoxil	J01D	Both≌	1 Year to 15 Years
26	50	Ceftobiprole	J01D	Bothg	Up to 3 Months
27 28	51	Vancomycin	J01X	Both⊗	Up to 90 Days
29	52	Ceftazidime-avibactam, Cefepime	J01D	Both⊗	3 Months to 18 Years
30	53	Dalbavancin single dose	J01X	Both ²	3 Months to 17 Years
31 32	54	Solithromycin, Ceftriaxone, Azithromycin	Various	Both Both	15 Years and older
33	55	Ciprofloxacin	J01M	Both	6 Months and older
34	56	Amoxicillin	J01C	Both <u></u>	2 Months to 59 Months
35 36	57	Amoxicillin	J01C	Both ਨੂੰ	2 Months to 59 Months
37	58	Solithromycin	J01F	Both g	2 Months to 17 Years
38	59	Sodium fusidate, Linezolid	J01X	Both≅	12 Years and older
39	60	Cefotaxime, Ceftriaxone	J01D	Bothg	Up to 18 Years
40 41		Ceftriaxone, Flucloxacillin	Various	Both	6 Months to 18 Years
42	62	Fidaxomicin, Vancomycin	J01X	Both [₹]	Up to 17 Years

1	1	- 6		
2	G	Н	16293	J
3 63	Taro Elixir	J01A	Both≌	14 Years and older
4 64	Ciprofloxacin	J01M	Both Both	3 Months to 17 Years
6 65	Amoxicillin	J01C		2 Months to 59 Months
7 66	Vancomycin	J01X	Both⊠	Up to 90 Days
8 67	Phenoxymethylpenicillin	J01C	Both 2	6 Years and older
9 68	Ceftaroline Fosamil	J01D	Both Both	Up to 59 Days
11 69	Oritavancin	J01X	Both€	Up to 18 Years
12 70	Telavancin	J01X	Both	1 Year to 17 Years
13 71 14	Vancomycin	J01X	Both	16 Years and older
15 72	Ceftriaxone	J01D	Bothਰੂੰ	3 Months to 18 Years
16 73	Minocycline, Lymecycline	J01A	Both	14 Years to 30 Years
17 74	Telavancin	J01X	Both	Up to 18 Years
18 19 75	Vancomycin	J01X	Both≝	Up to 18 Years
20 76	Fosfomycin	J01X	Both	Up to 18 Years
21 77 22	Azithromycin	J01F	Both Both	0 to 72 hours
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43		JUIT	nj.com/ on April 20, 2024 by guest. Protected by copyright.	

	ge 29	en-2017-016				
1 2 [К	L	M	N	93 O
3	1		Estimated enrollment	Location	Income class	Geographic region
4	2	8	1850	France	High income	Europe
5 6	3	9	150	Finland	High income	Europæ
7	4	8	320	Italy	High income	Europe
8	5	9	746	United States	High income	North America
9 10	6	9	270	Canada	High income	North: America
11	7	9	400	United States	High income	NorthAmerica
12	8	9	80	Kenya	Lower middle income	Africa Africa
13	9	8	50	Canada	High income	North America
15	10	11	200	Uganda	Low income	Africa di
16	11	11	200	China	Upper middle income	Asia 🚆
17	12	10	5	Switzerland	High income	Europe
18 19	13	8	200	Belgium	High income	Europe
20	14	5	750	Thailand	Upper middle income	Asia 🖁
21	15	11	120	Finland	High income	Europe
22 23	16	8	3000	Various (United States, Canad	High income	International
24	17	10	54	United States	High income	North≝America
25	18	5	800	Thailand	Upper middle income	Asia ⁹
26	19	8	36	United States	High income	North <u>s</u> America
27 28	20	10	200	United States	High income	North <mark>A</mark> merica
29	21	11	50	Peru	Upper middle income	Latin America
30	22	11	69	Sweden	High income	North America
31 32	23	5	162	Various (United States, Argent	Upper middle to High income	International
33	24	8		United States	High income	North America
34	25	8	45	Japan	High income	Asia g
35 36	26	10	117000	United States	High income	North America
37	27	11		Nepal	Low income	Asia 💆
38	28	10		China		Asia 💆
39	29	8		United States	High income	NorthgAmerica
40 41	30	9			High income	Oceaत्र् <u>व</u> ेव
42	31	6	284	Various (United States, Canad	High income	North America
43						

				E	BMJ Open	o en-2017-016 2 93
1 2	I	К	L	M	N	116. 293 O
3	32	9	300	Malaysia	Upper middle income	Asia ⁹
4	33	2	24	United States	High income	North nerica
5 6	34	8	390	Canada	High income	North America
7	35	4	32	United States	High income	North∯America
8	36	9	141	Canada	High income	North ≧ America
9	37	9	45	Belgium	High income	Europe
11	38	10	100	France	High income	Europe
12	39	10	400	Angola	Upper middle income	Africa di
13	40	5	20	Taiwan, China	High income	Asia 👲
15	41	5	300	Thailand	Upper middle income	Asia ਰੂੰ
16	42	4	688	United States	High income	North∰America
17	43	5	261	Republic of Korea	High income	Asia 👯
18 19	44	10	18	United States	High income	North America
20	45	5	414	Ireland	High income	Europe
21	46	11	334	Netherlands	High income	Europe
22 23	47	10	102	Various (United States, Argent	Upper middle to High income	International
24	48	9	2500	Pakistan	Lower middle income	Asia 💆
25	49	10	120	Thailand	Upper middle income	Asia ⁹
26	50	6	45	Various (Belgium, Germany, Li	High income	Europ <u>€</u>
27 28	51	6	200	Australia	High income	Ocean <u>k</u> a
29	52	10	102	Various (United States, Czech	Upper middle to High income	
30	53	10	300	United States	High income	North America
31 32	54	5	300	Various (United States, Austra	High income	International
33	55	10	500	Various (United States, Canad	High income	North Merica
34	56	9	2000	Malawi	Low income	Africa g
35 36	57	9	2000	Malawi	Low income	Africa of Africa of Africa
37	58	10		Various (United States, Bulgar		International
38	59	5	712	Various (United States, Puerto		International
39	60	8	100	Egypt	Lower middle income	Africage Africage
40 41	61	10		Australia	High income	Oceaख़ेंa
42	62	8	144	Various (United States, Belgiu	High income	International

 en-2017-016

nj.com/ on April 20, 2024 by guest. Protected by copyright.

						N.
2		K	L	M	N	O 293
3	63	5	120	Brazil	Upper middle income	Latin America
4 5	64	10	20	Belgium	High income	Europe
6	65	9	308	Nigeria	Lower middle income	Africa [♀]
7	66	6	300	Various (United Kingdom, Fran	High income	Europe
8	67	11	432	Sweden	High income	Europe
9 10	68	7	24	Various (United States, Hunga	High income	International
11	69	8	60	United States	High income	North∰America
12	70	10	32	United States	High income	North America
13 1⊿	71	5	100	Australia	High income	Oceanga
15	72	10	200	Taiwan, China	High income	Asia ਨੂੰ
16	73	5	168	Mexico	High income	North∰America
17	74	8	1000	United States	High income	North America
18 19	75	8	50	Brazil	Upper middle income	Latin America
20	76	8	200	Various (Austria, Germany)	High income	Europe
21	77	1	180	United States	High income	North America
22						<u>ਤ</u> .

				BMJ Open		en-2017-016 2 93
				Sino opon		017
						-016
2		Р	Q	R	S	93 T
3	1	Collaborators		Study Types	Phase	Endpoint classification
4 5	2	Assistance Publique - Hopitaux de Paris	Hospital	Observational	Not applicable	Pharma c okinetics
6	3	University of Oulu Oulu University Hospital	University	Interventional	Phase 4	Efficacy €
7	4	Ospedale Santa Maria delle Croci	Hospital	Interventional	Phase 2	Safety/efficacy
8	5	Children's Hospital of Philadelphia Children's Ho	Hospital	Interventional	Phase 2	Safety/🚉 ficacy
9	6	Hamilton Health Sciences Corporation Children's	Hospital	Interventional	Phase 4	Safety/Efficacy
11	7	National Institute of Allergy and Infectious Diseas	NIH	Interventional	Phase 4	Efficacy≤
12	8	University of Oxford KEMRI Wellcome Trust Rese	University	Interventional	Phase 2	Pharmagokinetics
13 14	9	Sunnybrook Health Sciences Centre	Hospital	Interventional	Not specified	Efficacy (Efficacy)
15	10	Centers for Disease Control and Prevention MRC	CDC	Interventional	Phase 2	Safety/ਰੂੱficacy
16	11	Beijing Children's Hospital	Hospital	Interventional	Phase 4	Safety/ ficacy
17	12	University Hospital Inselspital, Berne	Hospital	Interventional	Phase 1	Pharmacokinetics
18 19	13	University Hospital, Ghent University Hospital, A	Hospital	Observational	Not applicable	Pharmagokinetics
20	14	University of Oxford Mahidol University Wellcor	University	Interventional	Not specified	Efficacy
21	15	Oulu University Hospital	University	Interventional	Phase 4	Safety/Efficacy
22 23	16	Daniel Benjamin Eunice Kennedy Shriver Nationa	University	Observational	Not applicable	Pharmacokinetics
24	17	Michael Cohen-Wolkowiez Eunice Kennedy Shriv	University	Interventional	Phase 1	Pharmagokinetics
25	18	Khon Kaen University	University	Interventional	Not specified	Efficacy ⁹
26	19	Cubist Pharmaceuticals LLC	Industry	Interventional	Phase 1	Pharma <u>€</u> okinetics
27 28	20	Children's Mercy Hospital Kansas City Blue Cross	Hospital	Interventional	Not specified	Efficacy 8
29	21	Hoffmann-La Roche	Industry	Observational	Not applicable	Safety 8
30	22	Region Skane	Hospital	Interventional	Not specified	Efficacy ²
31 32-	23	Cubist Pharmaceuticals LLC	Industry	Interventional	Phase 3	Safety 💆
33_	24	Drexel University The Center for Pediatric Pharm	University	Interventional	Phase 1	Safety 💆
34	25	Bayer	Industry	Observational	Not applicable	Safety/Efficacy
35	26	Children's Hospital of Philadelphia	Hospital	Observational	Not applicable	Safety/ଞ୍ଛିficacy
36 37	27	Sheba Medical Center	Hospital	Interventional	Phase 4	Efficacy <u>₹</u>
38	28	Beijing Children's Hospital	Hospital	Observational	Not applicable	Pharma E okinetics
39	-	Rempex Pharmaceuticals (a wholly owned subsid	· · · · · · · · · · · · · · · · · · ·	Interventional	Phase 1	Safety පි
40 41	30	Menzies School of Health Research Griffith Unive	University	Interventional	Phase 4	Safety/ ficacy
42	31	Michael Cohen-Wolkowiez The EMMES Corpora	University	Interventional	Phase 2-3	Safety ^并

Pa	ge 33	of 40		BMJ Open		en-2017-016 2 93
1						- -016:
2 [Р	Q	R	S	
3	32	University of Malaya Menzies School of Health R	University	Interventional	Phase 4	Efficacy ^S
4 5	33	Durata Therapeutics Inc., an affiliate of Allergan	Industry	Interventional	Phase 1	Pharma cokinetics
6	34	University of British Columbia	University	Interventional	Phase 3	Efficacy 8
7	35	Merck Sharp & Dohme Corp.	Industry	Interventional	Phase 1	Pharmagokinetics
8	36	St. Justine's Hospital	Hospital	Interventional	Phase 1	Pharma cokinetics
9	37	Universit̩ Catholique de Louvain	University	Interventional	Phase 4	Pharmacokinetics
11	38	Assistance Publique - Hì«pitaux de Paris	Hospital	Interventional	Not specified	Pharmagokinetics
12	39	Helsinki University Foundation for Paediatric Res	University	Interventional	Phase 4	Safety/@fficacy
13	40	National Taiwan University Hospital	University	Interventional	Phase 4	Pharmagokinetics
15	41	Chulalongkorn University	University	Interventional	Not specified	Efficacy <u>a</u>
16	42	University of Pittsburgh National Institute of Alle	University	Interventional	Phase 3	Safety/ fficacy
17	43	Korea University	University	Interventional	Phase 4	Efficacy
18 19	44	Baylor College of Medicine Forest Laboratories	University	Interventional	Phase 1-2	Safety/Efficacy
20	45	Royal College of Surgeons, Ireland Health Resear	University	Interventional	Phase 4	Efficacy
21	46	Ramon Gorter ZonMw: The Netherlands Organis	University	Interventional	Phase 4	Efficacy
22 23	47	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2	Safety/ fficacy
24	48	Aga Khan University	University	Interventional	Not specified	Efficacy
25	49	Thammasat University	University	Interventional	Phase 4	Safety/🖺 ficacy
26	50	Basilea Pharmaceutica	Industry	Interventional	Phase 1	Pharmagokinetics
27 28	51	Murdoch Childrens Research Institute Royal Chil	University	Interventional	Not specified	Pharmagokinetics
29	52	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2	Safety/Efficacy
30	53	Durata Therapeutics Inc., an affiliate of Allergan (Industry	Interventional	Phase 3	Safety/Hficacy
31 32	54	Cempra Inc National Institute of Allergy and Infe	Industry	Interventional	Phase 3	Efficacy
33	55	Otonomy, Inc.	Industry	Interventional	Phase 3	Efficacy
34	56	Save the Children University of North Carolina L	Health Organisat	Interventional	Phase 4	Efficacy
35	57	Save the Children University of North Carolina L	Health Organisat	Interventional	Phase 4	Efficacy 🛱
36 37	58	Cempra Inc	Industry	Interventional	Phase 2-3	Safety/officacy
38	59	Cempra Inc	Industry	Interventional	Phase 3	Safety/ Ø ficacy
39	60	Tanta University	University	Interventional	Phase 3	Efficacy
40 41	61	Murdoch Childrens Research Institute	University	Interventional	Not specified	Efficacy
42	62	Astellas Pharma Europe B.V. Merck Sharp & Doh	Industry	Interventional	Phase 3	Safety/Efficacy

1.						ဂ္ဂ
2		Р	Q	R	S	93 T
3	63	Laboratorios Goulart S.A.	Industry	Interventional	Phase 3	Safety/Efficacy
4 5	64	University Hospital, Ghent Universitair Ziekenhu	University	Interventional	Phase 4	Pharmagokinetics
6	65	Malaria Consortium World Health Organization	Health Organisat	Interventional	Phase 4	Safety 🖁
7	66	PENTA Foundation St George's, University of Lor	Health Organisat	Interventional	Phase 2	Safety/र्ल्डिficacy
8	67	Sigvard Mì¦lstad Public Health Agency of Swede	University	Interventional	Phase 4	Safety/🚉 ficacy
9 10	68	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2-3	Safety/Efficacy
11	69	The Medicines Company	Industry	Interventional	Phase 1	Pharma okinetics
12	70	Theravance Biopharma Antibiotics, Inc.	Industry	Interventional	Phase 4	Pharmagokinetics
13 14	71	The Canberra Hospital	Hospital	Interventional	Phase 2	Pharmagokinetics
15	72	Chang Gung Memorial Hospital	Hospital	Interventional	Phase 4	Efficacy 2
16	73	Darier	Industry	Interventional	Phase 4	Safety/ fficacy
17	74	Theravance Biopharma Antibiotics, Inc.	Industry	Observational	Not applicable	Safety/Efficacy
18 19	75	Grupo de Apoio ao Adolescente e a Crianca com	Hospital	Observational	Not applicable	Pharmagokinetics Pharmagokinetics
20	76	Infectopharm Arzneimittel GmbH J&P Medical R	Industry	Observational	Not applicable	Efficacy
21	77	University of Maryland	University	Interventional	Phase 2	Safety/ f ficacy
22						킂
23						Son Son
24 25						n/ o
25 26						n A
27						pril :
28						20,
29						202
30 31						4 0
32						Qu V
33						est
34						P
35						otec
36 37						Xted
38						nj.com/ on April 20, 2024 by guest. Protected by copyright
39						СОР
40						yrig
41 42						nt.
42 43						

Pa	ge 35	of 40			ВМЈ Оре	en		en-2017-		
1 2		U	T v	T w	Х	V	Z	016293	AA	AB
3	1	Primary outcome variable	PK data collected	First Receive		•				Results First Received
4		PK	PK study design	July 2, 2015	Sep-15		September 1			No Study Results Posted
5	3	Efficacy	No PK data	September 2	<u> </u>		October 12, 2			No Study Results Posted
6 7	4	Efficacy	No PK data	September 8			September 1	ober		No Study Results Posted
8	5	Efficacy	No PK data	May 8, 2012	May-12		June 27, 201		<u> </u>	No Study Results Posted
9	6	Efficacy	No PK data	March 2, 201		·	March 24, 20			No Study Results Posted
11	7	Efficacy	No PK data	September 1	Oct-16		October 13, 2	 V		No Study Results Posted
12	8	PK	PK study design	April 4, 2016	Apr-16	Sep-16	April 25, 201	nloa	Apr-16	No Study Results Posted
13	9	Efficacy	No PK data	September 2	Oct-16	Dec-17	September 2	dec	Sep-16	No Study Results Posted
15	10	Efficacy	No PK data	November 1	Dec-10	null	September 1		Sep-12	No Study Results Posted
16	11	Efficacy	No PK data	November 2	Mar-14	Jul-16	December 16	_₹	Nov-15	No Study Results Posted
17	12	PK	Primary PK data	January 26, 2	Apr-12	Apr-18	December 10	/: d	Dec-15	No Study Results Posted
18 19	13	PK	PK study design	May 18, 201	May-12	null	November 17	bmj	Nov-15	No Study Results Posted
20	14	Efficacy	No PK data	December 18	Dec-07	Sep-10	June 3, 2008	ope	Aug-07	No Study Results Posted
21	15	Efficacy	No PK data	October 17,	Nov-07	Dec-09	October 18, 2	n.br	Oct-07	No Study Results Posted
22 23	16	PK	PK study design	August 17, 2	Nov-11	Feb-17	February 4, 2	nj.c	Feb-16	No Study Results Posted
24	17	PK	PK study design	June 12, 201	Nov-15	Dec-17	August 1, 201)mo	Aug-16	No Study Results Posted
25	18	Efficacy	No PK data	August 18, 2	Aug-11	Dec-20	August 30, 20		Aug-16	No Study Results Posted
26 27	19	PK	PK study design	September 2	Sep-14	Nov-16	October 31, 2	Αpri	Oct-16	No Study Results Posted
28	20	Efficacy	No PK data	March 23, 20	Mar-09	Oct-12	June 21, 201	1 20,	Jun-11	No Study Results Posted
29	21	Safety	No PK data	August 23, 2	Aug-16		September 1	2024	Sep-16	No Study Results Posted
30		Efficacy	No PK data	January 3, 20			May 25, 201!			No Study Results Posted
31 32	23	Safety	Secondary PK data	October 9, 20	Mar-15	Jan-18	October 31, 2	y g	Oct-16	No Study Results Posted
33	24	Safety	Primary PK data	January 12, 2	Jan-17	Dec-18	September 8	Jest	Sep-16	No Study Results Posted
34	25	Safety	No PK data	September 1	Jul-16	Sep-18	October 19, 2		Oct-16	No Study Results Posted
35 36		Efficacy	No PK data	November 1			May 6, 2016	otec	May-16	No Study Results Posted
37	27	Efficacy	No PK data	August 21, 20	ļ		August 26, 20	 _	Aug-14	No Study Results Posted
38		PK	PK study design	May 11, 201	ļ		May 17, 2016			No Study Results Posted
39	29	Safety	Primary PK data	February 17,	Jul-16		October 6, 20			No Study Results Posted
40 41		Efficacy	No PK data	May 5, 2016	Jun-16		October 7, 20			No Study Results Posted
42	31	Safety	No PK data	November 1	Dec-13	Sep-17	August 1, 20:	.∺	Aug-16	No Study Results Posted
43										

					BMJ Ope	n		en-201		
								17-016		
1 2		U	l v	l w l	Х	Υ	Z	16293	AA	AB
3	32	Efficacy	No PK data	September 2	Nov-14	Dec-18	December 20	9 9		No Study Results Posted
4	33	PK ,	PK study design	February 18,	Apr-16		October 19, 2	3		No Study Results Posted
5 6	34	Efficacy	No PK data	May 8, 2006	Jan-04	-	February 6, 2			No Study Results Posted
7	35	PK	PK study design	April 1, 2016	May-16		October 21, 2	ber		No Study Results Posted
8	36	PK	PK study design	June 2, 2015	Jan-16	Dec-17	April 18, 201	20,	Apr-16	No Study Results Posted
9	37	PK	PK study design	October 1, 20	Oct-16	Oct-17	October 24, 2	17.[Oct-16	No Study Results Posted
11	38	PK	PK study design	February 24,	Feb-16	Feb-17	March 8, 201	VOW	Mar-16	No Study Results Posted
12	39	Efficacy	No PK data	February 23,	Feb-12	Jul-17	February 19,	nlo:		No Study Results Posted
13	40	PK	PK study design	August 23, 20	Jun-06	Dec-07	August 23, 20	dec	Aug-06	No Study Results Posted
14 15	41	Efficacy	No PK data	January 30, 2	Dec-12	Dec-13	February 6, 2		Feb-13	No Study Results Posted
16	42	Efficacy	No PK data	September 8	Feb-16	Sep-20	October 3, 20	3	Oct-16	No Study Results Posted
17	43	Efficacy	No PK data	December 22	Apr-07	Apr-16	April 8, 2014	tp:/	Apr-14	No Study Results Posted
18 19	44	Safety	Secondary PK data	December 31	Jan-15	Jan-20	June 24, 201	mď	Jun-16	No Study Results Posted
20	45	Efficacy	No PK data	August 9, 20:	Dec-16	Dec-19	September 3	ope	Jul-16	No Study Results Posted
21	46	Efficacy	No PK data	July 24, 2016	Dec-16	Dec-20	July 26, 2016	n.b	Jul-16	No Study Results Posted
22 23	47	Safety	Secondary PK data	May 25, 2015	Jul-15	Oct-17	October 21, 2	mj.c	Oct-16	No Study Results Posted
23 24	48	Efficacy	No PK data	November 4,	Nov-14	Jul-17	June 3, 2016	om/	Jun-16	No Study Results Posted
25	49	Efficacy	No PK data	February 17,	Jan-12	Sep-12	March 13, 20	on	Mar-12	No Study Results Posted
26	50	PK	PK study design	August 5, 20:	Aug-14	Jun-17	October 20, 2	Apri	Oct-16	No Study Results Posted
27 28	51	PK	PK study design	August 5, 20:	Sep-14	Sep-17	March 17, 20	1 20	Mar-16	No Study Results Posted
29	52	Safety	Secondary PK data	June 16, 201!	Sep-15	Oct-17	October 21, 2	, 20	Oct-16	No Study Results Posted
30	53	Efficacy	No PK data	June 8, 2016	Jun-16	Jul-18	October 21, 2 June 23, 201	24 k	Jun-16	No Study Results Posted
31 32	54	Efficacy	No PK data	August 1, 20:	Aug-14	Apr-17	September 2	9	Sep-16	No Study Results Posted
33	55	Efficacy	No PK data	June 13, 201	Jun-16	Nov-16	June 13, 201	ues	Jun-16	No Study Results Posted
34		Efficacy	No PK data	May 1, 2016	Jun-16	Sep-18	June 10, 201	P	Jun-16	No Study Results Posted
35	57	Efficacy	No PK data	February 3, 2	Mar-16	null	June 10, 201	otec	Jun-16	No Study Results Posted
36 37	58	Safety	No PK data	November 10	Mar-16	Jan-18	September 1	ted	Sep-16	No Study Results Posted
38	59	Efficacy	No PK data	October 5, 20	Nov-15	Feb-17	October 5, 20	by		No Study Results Posted
39	60	Efficacy	No PK data	May 11, 2015	Jan-15		May 9, 2016	cop	May-16	No Study Results Posted
40 41	61	Efficacy	No PK data	January 4, 20	Jan-15		March 16, 20			No Study Results Posted
42	62	Efficacy	No PK data	August 11, 20	Oct-14	Feb-17	June 17, 201	.∺¯	Jun-16	No Study Results Posted
43										

Pa	ge 37	of 40			ВМЈ Оре	n		en-2017-016		
1 2		U	V	l w l	х	Υ	Z	16293	AA	AB
3	63	Efficacy	No PK data	December 14	May-10	Oct-10	March 18, 20			No Study Results Posted
4	64	PK	PK study design	November 4,	Apr-15		November 4,			No Study Results Posted
5 6	65	Safety	No PK data	August 17, 20	Oct-16	Jul-17	October 3, 20	Octo		No Study Results Posted
7	66	Efficacy	Secondary PK data	April 7, 2016	Jul-16	Mar-18	May 31, 2016	ber		No Study Results Posted
8	67	Efficacy	No PK data	March 4, 201	Sep-15	Oct-16	October 4, 20	20,		No Study Results Posted
9	68	Safety	Secondary PK data	February 23,	Aug-15	Oct-17	October 14, 2	17. [Oct-16	No Study Results Posted
11	69	PK	PK study design	May 7, 2014	May-14	Dec-16	November 4,	Vow		No Study Results Posted
12	70	РК	PK study design	December 11	Dec-14	Aug-16	June 24, 201	nlos		No Study Results Posted
13	71	РК	PK study design	August 31, 20	Aug-11	Jul-12	September 1	dec	Aug-11	No Study Results Posted
15	72	Efficacy	No PK data	November 25	Aug-10	Jul-12	January 14, 2	fro	Nov-10	No Study Results Posted
16	73	Efficacy	No PK data	September 3	Jun-09	Apr-10	September 3	3	Sep-09	No Study Results Posted
17	74	Efficacy	No PK data	November 5,	Nov-14	Sep-18	June 29, 201	tp:/	Jun-16	No Study Results Posted
18 19	75	PK	Primary PK data	February 24,	Jan-11	null	March 21, 20	mď	Mar-12	No Study Results Posted
20	76	Efficacy	No PK data	July 29, 2010	Aug-10	null	February 5, 2	ope	Feb-16	No Study Results Posted
21	77	Efficacy	Secondary PK data	January 22, 2	Jul-13	Dec-21	May 28, 2015	n.bı	May-15	No Study Results Posted
222 233 244 255 266 277 288 299 300 311 322 333 344 355 366 377 388 399 400 411 422 433								nj.com/ on April 20, 2024 by guest. Protected by copyright.		

Page 38 of 40

1,										
2		AC	AD	AE	AF	AG				
3	1	Primary Com								
4 5	2	Jul-18	https://Clinic	:alTrials.gov/s	how/NCT025	39407				
	6 Dec-18 https://ClinicalTrials.gov/show/NCT0293537									
7	4	Sep-18	https://Clinic	alTrials.gov/s	how/NCT028	99143				
8	5	Apr-18	https://Clinic	alTrials.gov/s	how/NCT015	95529				
10	6									
11	7	Jan-19	https://Clinic	alTrials.gov/s	how/NCT028	91915				
12	8	Sep-16	https://Clinic	alTrials.gov/s	how/NCT027	46276				
13 14	9	Aug-17	https://Clinic	alTrials.gov/s	how/NCT029	17551				
15	10	Jun-13	https://Clinic	alTrials.gov/s	how/NCT012	43437				
16	11	Mar-16	https://Clinic	alTrials.gov/s	how/NCT026	35191				
17	12	Dec-16	https://Clinic	alTrials.gov/s	how/NCT015	22105				
18 19	13	Dec-17	https://Clinic	alTrials.gov/s	how/NCT024	56974				
20	14	Sep-10	https://Clinic	alTrials.gov/s	how/NCT005	79956				
21	15	null	https://Clinic	alTrials.gov/s	how/NCT005	45961				
22 23	16	Feb-17	https://Clinic	alTrials.gov/s	how/NCT014	31326				
24	17	Nov-17	https://ClinicalTrials.gov/show/NCT02475876							
25	18	Dec-20	https://Clinic	alTrials.gov/s	how/NCT014	20341				
26	19	Nov-16	https://Clinic	alTrials.gov/s	how/NCT022	66706				
27 28	20	Sep-12	https://Clinic	alTrials.gov/s	how/NCT008	67789				
29	21	Dec-16	https://Clinic	alTrials.gov/s	how/NCT028	79981				
30	22	Jun-15	https://Clinic	alTrials.gov/s	how/NCT012	69541				
31 32	23	Jan-18	https://Clinic	alTrials.gov/s	how/NCT022	76482				
33	24	Dec-18	https://Clinic	alTrials.gov/s	how/NCT026	63596				
34	25	Sep-17	https://Clinic	alTrials.gov/s	how/NCT025	55059				
35	26	Apr-17	https://Clinic	alTrials.gov/s	how/NCT022	97815				
36 37	27	Dec-14	https://Clinic	alTrials.gov/s	how/NCT022	24040				
38	28	Aug-22	https://Clinic	alTrials.gov/s	how/NCT027	75968				
39	29				how/NCT026					
40 41	30	Dec-19	https://Clinic	alTrials.gov/s	how/NCT027	83859				
42	31	Apr-17	https://ClinicalTrials.gov/show/NCT01994993							

1,											
2		AC	AD	AE	AF	AG					
3	32			alTrials.gov/s							
4 5	33	May-17	https://Clinic	alTrials.gov/s	how/NCT026	88790					
6	34	Dec-12	https://Clinic	:alTrials.gov/s	how/NCT003	23219					
7	35	Feb-18	https://Clinic	alTrials.gov/s	how/NCT027	50761					
8	36	Dec-17	https://Clinic	alTrials.gov/s	how/NCT024	66438					
9	37	Sep-17	https://Clinic	os://ClinicalTrials.gov/show/NCT02260102							
11	38	Jun-16	https://Clinic	alTrials.gov/s	how/NCT026	94458					
12	39	Feb-17	https://Clinic	alTrials.gov/s	how/NCT015	40838					
13 14	40	null	https://Clinic	alTrials.gov/s	how/NCT003	68498					
15	41	Dec-13	https://Clinic	alTrials.gov/s	how/NCT017	85641					
16	42	Sep-20	https://Clinic	alTrials.gov/s	how/NCT025	54383					
17	43	Mar-16	https://Clinic	alTrials.gov/s	how/NCT012	65173					
18 19	44	Jan-17	https://Clinic	alTrials.gov/s	how/NCT023	35905					
20	45	Dec-19	https://Clinic	alTrials.gov/s	how/NCT029	22686					
21	46	Dec-20	https://Clinic	alTrials.gov/s	how/NCT028	48820					
22 23	47	Oct-17	https://Clinic	alTrials.gov/s	how/NCT024	75733					
24	48	May-17	https://Clinic	alTrials.gov/s	how/NCT023	72461					
25	49	Aug-12	https://Clinic	alTrials.gov/s	how/NCT015	53006					
26	50	Mar-17	https://Clinic	alTrials.gov/s	how/NCT025	27681					
27 28	51	Sep-17	https://Clinic	alTrials.gov/s	how/NCT022	10169					
29	52	Oct-17	https://Clinic	alTrials.gov/s	how/NCT024	97781					
30	53	Apr-18	https://Clinic	alTrials.gov/s	how/NCT028	14916					
31 32	54	Apr-17	https://Clinic	alTrials.gov/s	how/NCT022	10325					
33	55	Nov-16	https://Clinic	alTrials.gov/s	how/NCT028	01370					
34	56	Aug-18	https://Clinic	alTrials.gov/s	how/NCT027	60420					
35	57	Aug-18	https://Clinic	alTrials.gov/s	how/NCT026	78195					
36 37	58	Dec-17	https://Clinic	alTrials.gov/s	how/NCT026	05122					
38	59	Feb-17	https://Clinic	alTrials.gov/s	how/NCT025	70490					
39	60	Dec-16	https://Clinic	alTrials.gov/s	how/NCT024	43285					
40 41	61	Jan-17	https://Clinic	alTrials.gov/s	how/NCT023	34124					
42	62	Feb-17	https://Clinic	:alTrials.gov/s	how/NCT022	18372					

1,		•					0 N
2		AC	AD	AE	AF	AG	93
3	63	Jul-10	https://Clinic	calTrials.gov/s	show/NCT010	032499	on .
4 5	64	Feb-16	https://Clinic	alTrials.gov/s	show/NCT02!	598362	13 0
6	65	Mar-17	https://Clinic	alTrials.gov/s	show/NCT028	878031) Cto
7	66	Dec-17	https://Clinic	calTrials.gov/s	show/NCT02	790996	be _r
8	67	Oct-16	https://Clinic	calTrials.gov/s	show/NCT02	712307	201
9 10	68	Oct-17	https://Clinic	calTrials.gov/s	show/NCT024	424734	17. [
11	69		https://Clinic				Jo _w
12	70		https://Clinic				nloa
13	71	-	https://Clinic	-			ad ee
14 15			https://Clinic	_			d fro
16	73		https://Clinic	_			m r
17	74		https://Clinic				₹.
18 19	75		https://Clinic				//bm
20	76		https://Clinic				mjopen.bmj.com/ on April 20, ;
21	77		https://clinic				en.b
22				<u> </u>			i j
23 24							SOM SOM
25) on
26							Αp
27							r <u>i.</u> 2
28 29							0, 2
30							024
31							by
32							gue
33 34							6293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected
35							Prot
36							ect
37							Q .

BMJ Open

A global shortage of neonatal and pediatric antibiotic trials: a narrative review.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016293.R2
Article Type:	Research
Date Submitted by the Author:	25-Jul-2017
Complete List of Authors:	Thompson, Georgina; St George's University of London, Infection and Immunity; University of Exeter Medical School Barker, Charlotte; St George's University of London, Infection and Immunity; University College London Institute of Child Health Folgori, Laura; St George's University of London, Paediatric Infectious Diseases Research Group Bielicki, Julia; St George's University London, Division of Clinical Sciences; University of Basel Children's Hospital Bradley, John; University of California San Diego School of Medicine, Department of Pediatrics Lutsar, Irja; University of Tartu, Department of Medical Microbiology sharland, mike; St George's University of London, Infection and Immunity; St Georges Hospital, Paedaitric Infectious Diseases Unit
 Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Infectious diseases
Keywords:	Paediatric infectious disease & immunisation < PAEDIATRICS, INFECTIOUS DISEASES, PAEDIATRICS

SCHOLARONE™ Manuscripts

A global shortage of neonatal and pediatric antibiotic trials: rapid review.

G. Thompson^{1,2}, C.I.S. Barker^{1,3,4}, L. Folgori¹, J.A. Bielicki^{1,5}, J. Bradley^{6,7}, I. Lutsar⁸, M. Sharland^{1,4}

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Corresponding author

Georgina Thompson

Paediatric Infectious Diseases Research Group

Institute for Infection and Immunity

St George's, University of London

Jenner Wing, Level 2, Room 2.216F, Mail Point J2C

London SW17 0RE

Telephone: 020 8725 5382 Email: gt274@exeter.ac.uk

Word count: 2392

¹Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, UK

²University of Exeter, Exeter, UK

³ Inflammation, Infection and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK

⁴ St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, UK

⁵ Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland

⁶ Department of Pediatrics, School of Medicine, University of California San Diego, CA, United States

⁷ Rady Children's Hospital San Diego, San Diego, CA, United States

⁸ Department of Medical Microbiology, University of Tartu, Tartu, Estonia

ABSTRACT

Objectives: There have been few clinical trials (CTs) on antibiotics which inform neonatal and pediatric drug labelling. The rate of unlicensed and off-label prescribing in pediatrics remains high. It is unclear whether the current neonatal and pediatric antibiotic research pipeline is adequate to inform optimal drug dosing. Using the ClinicalTrials.gov registry, this review aims to establish the current global status of antibiotic CTs in children up to 18 years of age.

Results: 76 registered open CTs of antibiotics in children were identified globally; 23 (30%) were recruiting newborns (8 of which (11%) included preterm neonates), 52 (68%) infants and toddlers, 58 (76%) children, and 54 (71%) adolescents. The majority of registered trials were late phase (10 (15%) Phase 3 and 23 (35%) Phase 4/pharmacovigilance). Two-thirds were sponsored by non-profit organisations (n=50, 66%), compared to 26 (34%) by pharmaceutical companies. A greater proportion of non-profit funded trials were efficacy-based strategic trials (n= 34, 68%), in comparison to industry-led trials, which were most often focused on safety or pharmacokinetic data (n=17, 65%). Only 2 of the 37 antibiotics listed on the May 2016 Pew Charitable Trusts antibiotic development pipeline, currently being studied in adults, appear to be currently recruiting in open pediatric CTs. **Conclusions:** This review highlights that very few pediatric antibiotic CTs are being conducted globally, especially in neonates. There is a striking disparity noted between antibiotic drug development programmes in adults and children.

Strengths and limitations of this study

- A narrative literature review of registered clinical trials in children.
- Explicit reproducible methodology.
- Search strategy limited to ClinicalTrials.gov and EudraCT. Entirety of clinical research in this field might not have been captured.
- Search strategy was limited to open clinical trials. Active but not yet recruiting trials were not captured.

INTRODUCTION

Widespread unlicensed and off-label prescribing in pediatrics persists – as high as 11% and 46%, respectively – yet the paucity of clinical research involving children that is conducted to inform optimal drug dosing, licensing and labelling remains a problem.[1] For certain medicines, drug efficacy can be extrapolated from adult data provided that the pathology and drug exposure are the same, or sufficiently similar in children as in adults.[2,3]. Although differences in drug pharmacokinetics (PK) in neonates and children can lead to adverse reactions that are not seen in adult populations, these are very rare.[4] Suboptimal antibiotic dosing, including under- and over-

dosing, can lead to toxicity, treatment failure, and may drive antimicrobial resistance by encouraging selection pressures on drug-resistant strains of bacteria.[5]

Since antibiotics are the medicines most commonly prescribed for children, it is important to maximize our understanding of their PK profiles to help determine optimal drug dosing and ultimately to improve outcomes.[6] In the last decade several initiatives have been established to encourage pediatric medicines research, bridging the gap between adult and pediatric drug development plans. Such initiatives include the Pediatric Regulation (Pediatric Investigation Plans (PIPs), introduced by the European Medicines Agency (EMA),[7] and Pediatric Study Plans (PSPs), by the U.S. Food and Drug Administration (FDA)).[8] Despite this, there have been few advances in antibiotic development for this population.[9]

The global status of clinical research on antibiotics in pediatrics is unknown. Using registered records of clinical trials (CTs) on *ClinicalTrials.gov*, this review aims (i) to summarise the current global status of registered antibiotic research in children and neonates, and (ii) to stimulate discussion and collaboration among the relevant stakeholders on the neglect of antibiotic research in children.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

METHODS

Data sources

The *ClinicalTrials.gov* registry (last accessed 8th November 2016) is an international platform for the registration of CTs. It is a web-based registry, developed in 2000 by the National Institutes of Health (NIH) and the FDA, to which trials from 50 states and 163 countries around the world are registered. Information provided for each trial is updated periodically by the trial's sponsoring organisation. The database has a specific child filter, which uses a key word paradigm to select all registered trials recruiting patients/participants up to 18 years of age.

Study selection

Our records were identified using suitable key word searches, in which the final search terms were (antimicrobial* OR antibiotic* OR anti-infective agent*) AND Child AND Open Studies. All identified trials were filtered manually using inclusion and exclusion criteria. Interventional and observational trials on antimicrobials recruiting children up to 18 years of age were considered eligible for inclusion. No specific temporal filter was applied since only open or ongoing clinical trials were of interest. The following records, which were not investigating one or more antibiotics, were excluded: trials of antiseptics, antifungals, antiprotozoals, antivirals, and pro- or pre- biotics. The following records, which were investigating an antibiotic were excluded: trials involving tuberculosis, malaria,

cystic fibrosis, HIV, febrile neutropenic patients, topical or inhalational treatments, prophylactic antibiotics, or records investigating alternative use for antibiotics (for example as an anti-inflammatory agent).

The searches were conducted by GT. All eligible records were identified via manual filtering by GT CB, LF and MS, and any disagreements regarding inclusion and exclusion of records were resolved through discussion.

Data extraction

The following information was collected from the included records: unique NCT number, recruitment status, study design, trial phase, study sponsor, age group and sex eligibility, clinical indication, geographic region of recruitment, antibiotic being investigated, and endpoint classification.

Outcomes were categorised as safety, efficacy or PK. Economic setting (based on geographic region of recruitment) was classified using The World Bank classification to differentiate between Low Income Countries (LICs), Lower Middle Income Countries (LMICs), Upper Middle Income Countries (UMICs), and High Income Countries (HICs).[10]

The specific class of antibiotic studied in each trial was identified and classified using the World Health Organisation (WHO) ATC/DDD index.[11] To investigate whether novel antibiotics are being studied in pediatric populations, the antibiotics currently studied in children were compared with the *Pew Charitable Trusts Antibiotics Currently in Clinical Development* pipeline, which identifies novel antibiotics currently under development for the U.S. market.[12]

RESULTS

Our search identified 1056 records. 603 records were excluded on title because they were studies not involving an antimicrobial. 453 records were investigating one or more antimicrobials and recruiting children below 18 years of age. Among the 195 trials investigating antibiotics, 76 fulfilled our inclusion and exclusion criteria and were included in the final analysis. Reasons for exclusion are summarised in Figure 1. Details of included studies can be found in Supplementary file 1.

All 76 CTs identified were open as of 8th November 2016, and 63 (83%) of these were recognised as recruiting participants on this date (Table 1). All trials were recruiting both male and female participants.

Table 1. Characteristics of clinical trials.

Characteristic	Category	Number of studies, n (%)	
Age group	Preterm neonates	1 (1) ^a	
	Neonates (total)	23 (30)	
	Infants and toddlers	52 (68)	
	Children	58 (76)	
	Adolescents	54 (71)	
Recruitment status	Recruiting	63 (83)	
	Not yet recruiting	13 (17)	
Study design	Interventional	66 (87)	
, ,	Observational	10 (13)	
Trial phase ^b	Phase 1	10 (15)	
	Phase 1-2	1 (2)	
	Phase 2	9 (14)	
	Phase 2-3	3 (5)	
	Phase 3	10 (15)	
	Phase 4	23 (39)	
	Not specified	10 (15)	
Sponsor	Industry	26 (34)	
	Non-profit	50 (66)	
Geographic region	Africa	8 (11)	
<u> </u>	Asia	16 (21)	
	Europe	22 (29)	
	Latin America	6 (8)	
	North America	34 (45)	
	Oceania	5 (7)	
Antibiotic class	J01A Tetracycline	4 (5)	
	J01C Beta-lactam, Penicillin	25 (33)	
	J01D Other Beta-lactam	22 (29)	
	J01E Sulfonamides and trimethoprim	7 (9)	
	J01F Macrolide, Lincosamide, Streptogramin	14 (18)	
	J01G Aminoglycoside	2 (3)	
	J01M Quinolone	8 (11)	
	J01X Other antibiotic classes ^c	21 (28)	
	J01 Not specified	2 (3)	

(76) as some trials contributed to more than one sub group.

Age group

Only 23 of the 76 trials (30%) were recruiting newborns (0 to 28 days). One of these 23 trials focused solely on recruiting preterm newborns (a further 7 CTs mentioned inclusion of preterm newborns in inclusion criteria). Of the remaining records, 52 (68%) were recruiting infants and toddlers (28 days to 23 months), 58 (76%) children (2 to 11 years), and 54 (71%) adolescents (11

^à 7 further trials mentioned inclusion of preterm babies in the inclusion criteria.

^b Trial phase % based on percentage of interventional trials.

^c J01X includes glycopeptides, polymyxins, imidazole and nitrofuran derivatives.

up to 18 years). 29 (38%) trials did not focus solely on the recruitment of children or neonates, with age ranges also spanning across adult populations.

Study type

Interventional trials were most frequently identified (n=66, 87%) with only 10 (13%) observational trials noted. Of the interventional trials, the majority were in the later stages of development; 10 (13%) in Phase 1, 1 (2%) between Phase 1 and 2, 9 (14%) in Phase 2, 3 (5%) between Phase 2 and 3, 10 (15%) in Phase 3 and 23 (35%) in Phase 4. In 10 (15%) cases, a trial phase was not specified.

Sponsor and Endpoint Classification

Fifty trials (66%) were sponsored by non-profit organisations (being university, hospital or government funded), and 26 sponsored by industry (34%). The endpoint classification of the majority of trials (n=43, 57%) was reported as efficacy (Table 2). A greater proportion (n=34, 68%) of non-profit studies measured the efficacy of the drugs as the primary endpoint, with less emphasis on collection of PK or safety data (n=16, 32%). In comparison pharmaceutical-led trials focussed on early PK and safety studies over drug efficacy (n=17, 65% vs. n=9, 35% respectively).

Table 2. Clinical trial endpoint classification of identified clinical trials stratified by trial sponsor. Endpoint classification determined by planned primary outcomes.

Endpoint classification	Industry	Non-profit	Total (%)
Efficacy	9	34	43 (57)
Safety	10	2	12 (16)
PK	7	14	21 (28)

Geographic region

The most frequently recruiting geographic region was North America (n=34, 45%). 22 (29%) trials recruiting in Europe and 16 (21%) in Asia were identified, 6 (8%) in Latin America, 8 (11%) in Africa, and 5 (7%) in Oceania. Most trials were recruiting in HICs (n=54, 71%), with fewer trials recruiting in LICs (n=4, 5%), LMICs (n=4, 5%), UMICs (n=11, 14%) or a combination of UMICs and HICs (n=3, 4%).

Indication

The most common treatment indications investigated were lower respiratory tract infection (n=12, 16%) and sepsis (n=11, 14%), followed by upper respiratory tract infection (n=8, 11%), intra-

abdominal infection (IAI) (n=8, 11%), urinary tract infection (UTI) (n=7, 9%), complicated skin and soft tissue infection (cSSTI) (n=6, 8%), CNS (central nervous system) infection (n=3, 4%), and bone and joint infection (n=1, 1%) (Table 3).

Antibiotic class

The majority of antibiotics being investigated were beta-lactams (n=47, 62%), followed by other antibiotic classes (J01X, including vancomycin, telavancin and dalbavancin) (n=21, 28%), and macrolides or lincosamides (J01F) (n=14, 18%). Very few trials were investigating tetracyclines (J01A) (n=4, 5%), sulphonamides and trimethoprim (J01E) (n=7, 9%), aminoglycosides (J01G) (n=2, 3%), or quinolones (J01M) (n=8, 11%). 2 CTs (3%) did not specify the class of antibiotic being investigated. 16 (21%) trials were investigating more than one antibiotic; these trials counted towards more than one J01 category. The breakdown of J01 categories, as per WHO ATC/DDD classification,[11] is described in Table 1.

Antibiotic pipeline

Of the 37 antibiotics listed in the May 2016 edition of the Pew Charitable Trusts Antibiotic Pipeline (last accessed 10th June 2016),[12] as noted by the EMA Opinions and Decisions on Pediatric Investigation Plans, 5 had an agreed PIP: Imipenem/Cilastatin+Relebactam, Cadazolid, Carbavance (Meropenem+Vaborbactam), Eravacycline, and Solithromycin.[8] As of 8th November 2016, our search found that only 2 of these 37 antibiotics listed (Carbavance and Solithromycin) were currently being investigated in 1 and 2 on-going CTs in pediatric patients, respectively (Table 4). A PIP was agreed for Carbavance in 2015 for treatment of Gram-negative infections, and for Solithromycin in 2016 for the treatment of gonococcal infection, and later for treatment of anthrax, tularaemia, and bacterial pneumonia. PIPs were agreed in 2015 for treatment of UTI and complicated IAI with Eravacycline, and in 2016 for treatment of Clostridium difficile infection with Cadazolid and Gram-negative bacterial infections with Imipenem/Cilastin+Relebactam.[13] Despite this, we could not identify any registered trials of these antibiotics in our search.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Table 3. Clinical indication of identified clinical trials stratified by age group being recruited.

		Age group				
Indication	Total (%)	Preterm neonates ^a	Neonates ^b	Infants and toddlers	Children	Adolescents
Unspecified Bacterial Infection		-	11	15	15	14
Lower Respiratory Tract Infection	12 (16)	1	3	12	13	5
Sepsis	11 (14)	-	6	9	9	11
Upper Respiratory Tract	8 (11)	-	1	5	9	7
Intra-abdominal Infection	8 (11)	-	3	5	5	7
Urinary Tract Infection	7 (9)	-	2	6	7	6
Skin and Soft Tissue Infection	6 (8)	-	3	4	4	8
CNS (central nervous system) infection	3 (4)	10 -	1	4	4	4
Bone and Joint Infection	1 (1)		-	1	1	1
		1	30	61	67	63

Age group totals do not add up to total number of clinical trials (76) as some trials contributed to more than one age group.

Table 4. Comparison of antibiotic development pipeline in adults and children. Adapted from Pew Charitable Trusts "Antibiotics currently in clinical development" pipeline (last accessed October 2016).[12]

Antibiotic	Phase	Manufacturer	Indication	Drug development in Adults	Pediatric Investigation Plan for drug development in Children	Number of open clinical trials in children
WCK 4873	Phase 1	Wockhardt Ltd.	Bacterial infection	1	-	-

a studies conducted using preterm neonates exclusively. b refers to total number of preterm and term neonates.

		1	_			
MGB – BP – 3	Phase 1	MGB Pharma Ltd.	Clostridium difficile infection	✓	-	-
OP0595	Phase 1	Meiji Seika Pharma Co. Fedora Pharmaceuticals	Bacterial infection	1	-	-
BAL30072	Phase 1	Basilea Pharmaceuticals	Multidrug resistant Gram negative infections	√	-	-
CRS3123	Phase 1	Crestone Inc.	Clostridium difficile infection	✓	-	1
LCB01 - 0371	Phase 1	Legochem Biosciences Inc.	Bacterial infection	1	-	-
TD – 1607	Phase 1	Theravance Biopharma Inc.	Acute skin infection, HAP, VAP, bacteraemia	1	-	-
WCK 2349	Phase 1	Wockhardt Ltd.	Bacterial infection	1	-	-
WCK 771	Phase 1	Wockhardt Ltd.	Bacterial infection	1	1	1
Zidebactam+Cefepime	Phase 1	Wockhardt Ltd.	cUTI, HAP, VAP		-	-
TP – 271	Phase 1	Tetraphase Pharmaceuticals Inc.	CAP		-	-
Aztreonam – Avibactam	Phase 2	Astrazeneca PLC Allergan PLC	cIAI	1	-	-

MRX – 1	Phase 2	MicuRx Pharmaceuticals Inc.	Acute skin infection (systemic)	1	-	-
Debio 1450	Phase 2	Debiopharm International SA	Acute skin infection, Staphylococcus <i>spp</i> . associated osteomyelitis	1	-	-
ETX0914	Phase 2	Entasis Therapeutics Inc.	Uncomplicated gonorrhoea	✓	-	-
P0L7080	Phase 2	Polyphor Ltd.	Pseudomonas spp. associated VAP, lower respiratory tract infection, bronchiectasis	1	-	-
Brilacidin	Phase 2	Cellceutix Corporation	Acute skin infection (systemic)	1	-	-
Ceftaroline+Avibactam	Phase 2	AstraZeneca PLC Allergan PLC	Bacterial infection	✓	-	-
CG400549	Phase 2	Crystal Genomics Inc.	Acute skin infection, osteomyelitis	✓	-	-
Finafloxacin	Phase 2	MerLion Pharmaceuticals Pte Ltd.	cUTI, cIAI, acute skin infection, pyelonephritis	1	-	-
Geptidacin	Phase 2	GlaxoSmithKline PLC	cUTI, CAP, uncomplicated urogenital gonorrhoea		-	-
Nemonoxacin	Phase 2	TaiGen Biotechnology Co. Ltd.	CAP, acute skin infection, diabetic foot	7	-	-
Ramoplanin	Phase 2	Nanotherapeutics Inc.	Prevent recurrent Clostridium difficile infection	1	-	-

Ridinilazole	Phase 2	Summet Therapeutics Inc.	Clostridium difficile	✓	-	-
Zabofloxacin	Phase 3	Dong Wha Pharmaceuticals Co. Ltd.	CAP	1	-	-
S – 649266	Phase 3	Shionogi Inc.	HAP, VAP, cUTI, bloodstream infection	√	-	-
Omadacycline	Phase 3	Paratek Pharmaceuticals Inc.	CAP, cUTI, acute skin infection	✓	-	-
Lefamulin	Phase 3	Nabriva Therapeutics AC	CAP, HAP, VAP, acute skin infection, osteomyelitis, prosthetic joint infections	✓	-	-
Imipenem / Cilastatin+Relebactam	Phase 3	Merck & Co. Inc.	cUTI, cIAI, HAP, VAP, acute pyelonephritis	1	1	-
Iclaprim	Phase 3	Motif Bio PLC	HAP, acute skin infection	1	-	-
Cadazolid	Phase 3	Actelion Pharmaceuticals Ltd.	Clostridium difficile	✓	✓	-
Taksta (fusidic acid)	Phase 3	Cempra Inc.	Acute skin infection, prosthetic joint infection	1 01/2	-	-
Carbavance (Meropenem+Vaborbactam)	Phase 3	Rempex Pharmaceuticals Inc.	cUTI, cIAI, HAP, VAP, febrile neutropenia, bacteraemia, acute pyelonephritis ^a	•	✓	1
Delafloxacin (Baxdela)	Phase 3	Melinta Therapeutics Inc.	Acute skin infections, CAP, cUTI	✓	Waiver granted	-
Eravacycline	Phase 3	Tetraphase Pharma Inc.	cIAI and cUTI	1	✓	-

Plazomicin	Phase 3	Achaogen Inc.	cUTI, HAP, VAP, cIAI, catheter-associated bloodstream infection ^a	1	-	-
Solithromycin	Phase 3	Cempra Inc.	CAP, uncomplicated urogenital gonorrhoea, urethritis	1	√	2
CAP, Community-acquir neumonia; VAP, ventila			ominal Infection; UTI, complicated Urin			ıuired
target carbapenem resi	istant Enterobacteria	ceae				

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

DISCUSSION

Our search identified 76 clinical trials investigating one or more antibiotics recruiting children between birth and 18 years of age. This is low in comparison to the number of on-going trials in adults, despite children representing nearly a quarter of the global population.[14,15] A review of completed CTs in the U.S. between 2000 and 2010 identified a total of 4078 adult trials compared to just 294 that had recruited children.[16] In our study, the lack of trials recruiting neonates is striking. Just 23 of the 76 trials identified were recruiting neonates and just 8 CTs globally were recruiting preterm neonates. There are broadly two types of pediatric trials conducted globally: pharmaceutical-led Phase 1/2 PK and safety trials (n=17) in the HIC setting, or investigator-led. often pragmatic, late phase efficacy trials in the LMIC setting (n=34), with a greater proportion of ongoing trials being sponsored by non-profit organisations over industry (66% compared to 34%). As of April 2016, there were 17 antibiotic PIPs agreed by the EMA,[8] covering a range of indications, most commonly cSSTI, complicated IAI (cIAI), and complicated UTI (cUTI).[13] In contrast, treatments for respiratory and systemic infections, the most common clinical indications for antibiotics in pediatrics, are not currently being evaluated.[14] Thirty-seven antibiotics are being developed in adults, yet to our knowledge just 2 of these are being studied in children. Some classes of antibiotics that may be of higher risk for children (tetracyclines and fluoroguinolones) may not be pursued as aggressively for pediatric approvals due to well-recognized issues of toxicity. particularly when safer alternatives are widely available. Given that Gram-negative sepsis is a growing problem in neonates, with a significant increase in the proportion of multi-resistant Gramnegative pathogens.[15] the substantial lag time between the submission date (for PIP or waiver) and declared completion date of PK studies in adults is a real concern; however, there is value in generating substantial safety data in adults prior to exposing children and newborns to potentially toxic new agents.

In 2013, a similar review of European pediatric clinical trials identified 31 trials of antibiotics approved for adults by the EMA in 2000 that were recruiting children in Europe (compared to the 22 that we identified). They included both published and ongoing trials, which likely accounts for the higher number of trials reported. They also found a very small proportion of neonatal trials (2 of 31), as well as a greater proportion of efficacy-based trials.[9] A review of interventional trials registered with *ClinicalTrials.gov* between 2007 and 2010 found that only 17% had recruited children below 18 years of age.[17] A similar review of antimicrobial CTs conducted in the U.S. between 2000 and 2012 reported that just 5% had recruited only children compared to 74% that recruited only adults, and that, as we have found, the trials were sponsored primarily by non-profit organisations (60% versus 30% by industry).[16] In our search of global trials, 39% of registered CTs reported collection of PK data in comparison to the 24% identified in a 2009 paediatric PK research review.[18]

The search strategy used has clear limitations. Since the search was limited to clinical trials registered with *ClinicalTrials.gov*, it is possible that other open or on-going trials registered with alternative platforms (for example, the WHO International Clinical Trials Registry Platform [ICTRP]) will have been missed. Together with *ClinicalTrials.gov* these could help to establish the entirety of current clinical research in this field. We did however search EudraCT, and found no further studies beyond those captured on *ClinicalTrials.gov*. Our search was also limited to open CTs, thereby missing active but not yet recruiting trials, and those that had already closed to recruitment. The information recorded for each trial registered with *ClinicalTrials.gov* is updated by the trial investigators, and therefore relies on them to periodically update the registry. Occasionally, information such as recruitment status might not be updated in real time.

Concerns around the growing threat of antimicrobial resistance have prompted several new initiatives. In 2016, the EMA published a draft Concept Paper to propose the development of an Addendum to the guideline on the evaluation of new anti-bacterial products for treatment of bacterial infections in children.[19] At the same time, the Clinical Trials Transformation Initiative (CTTI) is currently focused on the identification of key barriers in the conduct of pediatric antibacterial CTs, which hamper their successful implementation into clinical practice.[20] Recent evidence states that overall, antibiotic CTs make up less than 1% of all registered pediatric CTs, and that trial completion is slow, with an average time to completion of around two years.[21] There are specific areas where the design and conduct of pediatric antibiotic CTs can be harmonized and simplified, such as the standardisation of the inclusion and exclusion criteria for specific Clinical Infection Syndromes, and improved bridging of safety and efficacy data from other age groups; these advances could improve trial conduct and efficiency in children.[22]

CONCLUSIONS

This review highlights that very few pediatric antibiotic CTs are being conducted globally, particularly in neonates. There is a marked disparity between antibiotic drug development programmes in adults and children. Many issues contribute to the difficulties in conducting pediatric antibiotic clinical trials. The lack of regulatory guidance, vulnerability of this population, issues with informed consent and assent, and lack of research-experienced hospital personnel all present challenges in study design, delivery and recruitment. Delays in the initial start-up of CTs in children due to pediatric-specific protocol issues and complicated ethical approval continue to discourage both academic and pharmaceutical interest. The limited data presented here suggest that the dismal state of pediatric antibiotic research continues. Earlier collaboration between global academic research networks and pharmaceutical companies is now vital to accelerate progress.

ACKNOWLEDGEMENTS

Contributors MS, CB, GT, LF and JB designed the study, GT conducted the search, IL and JB commented on study design and assisted with drafting the paper.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. CB was funded as a Clinical Research Fellow by the Global Research in Paediatrics (GRiP) Network of Excellence, part of the European Union's Seventh Framework Programme for research, technological development and demonstration (FP7/2007–2013, grant agreement number 261060).

Conflict of interest None declared.

Data sharing statement Full dataset is available on request.

REFERENCES

- 1. Corny J, Lebel D, Bailey B et al. Unlicensed and Off-Label Drug Use in Children Before and After Pediatric Governmental Initiatives. J Pediatr Pharmacol Ther. 2015;20(4):316–28.
- European Medicines Agency. Concept paper on extrapolation of efficacy and safety in medicine development.
 - http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/04/WC50 0142358.pdf. (accessed May 2016)

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

- Dunne J, Rodriguez WJ, Murphy MD et al. Extrapolation of Adult Data and Other Data in Pediatric Drug-Development Programs. Pediatrics. 2011; http://pediatrics.aappublications.org/content/early/2011/10/20/peds.2010-3487.abstract (accessed June 2016)
- 4. Kearns GL, Abdel-Rahman SM, Alander SW et al. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.
- Theuretzbacher U, Van Bambeke F, Cantón R et al. Reviving old antibiotics. Internet J Antimicrob Chemother. 2015;
 http://jac.oxfordjournals.org/content/early/2015/06/10/jac.dkv157.abstract (accessed June 2016)
- 6. van der Meer JW, Gyssens IC. Quality of antimicrobial drug prescription in hospital. Clin Microbiol Infect. 2001;7:12–5.
- 7. European Medicines Agency. EMA Opinions and decisions on Paediatric Investigation Plans. 2016:
 - http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/pip_search.jsp&mid =WC0b01ac058001d129. (accessed June 2016)

- Guidance for industry. Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/uc m360507.pdf. (accessed June 2016)
- Garazzino S, Lutsar I, Bertaina C et al. New antibiotics for paediatric use: a review of a decade of regulatory trials submitted to the European Medicines Agency from 2000--why aren't we doing better? Int J Antimicrob Agents. 2013;42(2):99–118.
- The World Bank. The World Bank list of economies. 2015;
 http://siteresources.worldbank.org/DATASTATISTICS/Resources/CLASS.XLS (accessed October 2016)
- The World Health Organisation. WHO ATC/DDD Index. 2016;
 http://www.whocc.no/atc ddd index/. (accessed March 2016)
- 12. The Pew Charitable Trusts. Antibiotics Currently in Clinical Development. 2016; http://www.pewtrusts.org/~/media/assets/2016/05/antibiotics-currently-in-clinical-development.pdf?la=en. (accessed May 2016)
- 13. Lutsar I. Often neglegted: paediatric drug development a regulatory and clinical view. In Amsterdam, Netherlands; 2016. (\$219 Symposium lecture.).
- 14. Versporten A, Bielicki J, Drapier N et al. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: developing hospital-quality indicators of antibiotic prescribing for children. J Antimicrob Chemother. 2016;71(4):1106–17.
- Bielicki JA, Lundin R, Sharland M. Antibiotic Resistance Prevalence in Routine Bloodstream Isolates from Children's Hospitals Varies Substantially from Adult Surveillance Data in Europe. Pediatr Infect Dis J. 2015;34(7):734–41.
- 16. Stockmann C, Sherwin CMT, Ampofo K et al. Characteristics of antimicrobial studies registered in the USA through ClinicalTrials.Gov. Int J Antimicrob Agents. 2013;42(2):161–6.
- 17. Califf RM, Zarin DA, Kramer JM et al. Characteristics of clinical trials registered in ClinicalTrials.gov, 2007-2010. JAMA. 2012;307(17):1838–47.
- 18. Viergever RF, Rademaker CMA, Ghersi D. Pharmacokinetic research in children: an analysis of registered records of clinical trials. BMJ Open. 2011;1(1):e000221.
- European Medicines Agency. Concept paper on an addendum to the guideline on the evaluation of medicinal products indicated for treatment of bacterial infections to address paediatric-specific clinical data requirements. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/04/WC50 0205026.pdf. (accessed July 2016)
- Clinical Trials Transformation Initiative. https://www.ctti-clinicaltrials.org/projects/pediatrictrials. (accessed July 2016)

- 21. Clinical Trials Transformation Initiative. AACT database. https://www.ctti-

LIST OF FIGURES

- Figure 1. Flow chart. Clinical trial selection process.
- **Table 1.** Characteristics of clinical trials.
- **Table 2.** Clinical trial endpoint classification of identified clinical trials stratified by trial sponsor. Endpoint classification determined by planned primary outcomes.
- **Table 3.** Clinical indication of identified clinical trials stratified by age group being recruited.
- **Table 4.** Comparison of antibiotic development pipeline in adults and children. Adapted from Pew Charitable Trusts "Antibiotics currently in clinical development" pipeline (last accessed October 2016).[12]

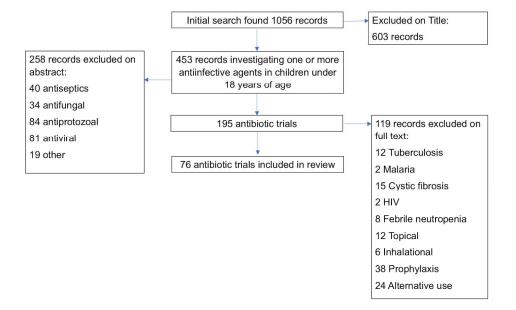


Figure 1. Flow Chart. Clinical trial selection process.

254x190mm (300 x 300 DPI)

2 [А		993	С	D
3	1	NCT Number	Title	, U	Recruitment	Study Results
4 5	2	NCT02539407	Population Pharmacokinetics of Anti-infectives in Critically III Children	13 (Recruiting	No Results Available
6	3	NCT02935374	Effect of Antimicrobial Treatment of Acute Otitis Media on the Intestinal Microbiome in Child	€eı	Not yet recruiting	No Results Available
7	4	NCT02899143	Short-course Antimicrobial Therapy in Sepsis	ber	Recruiting	No Results Available
8	5	NCT01595529	The SCOUT Study: Short Course Therapy for Urinary Tract Infections in Children	201	Recruiting	No Results Available
9 10	6	NCT02380352	Short-course Antimicrobial Therapy for Paediatric Respiratory Infections	7 [Not yet recruiting	No Results Available
11	7	NCT02891915	Trial to Evaluate Beta-Lactam Antimicrobial Therapy of Community Acquired Pneumonia in C	<u></u> ilc	Recruiting	No Results Available
12	8	NCT02746276	Optimising Antibiotic Treatment for Sick Malnourished Children	ปกล	Recruiting	No Results Available
13 14	9	NCT02917551	BALANCE on the Wards: A Pilot RCT	ded	Not yet recruiting	No Results Available
15	10	NCT01243437	A Clinical Trial to Evaluate the Safety and Efficacy of Ciprofloxacin in the Treatment of Plague	<u></u> jîn	Recruiting	No Results Available
16	11	NCT02635191	Tailored Therapy for Helicobacter Pylori in Children	ַ <u></u>	Recruiting	No Results Available
17	12	NCT01522105	Daptomycin in Pediatric Patients With Bacterial Meningitis	5 	Recruiting	No Results Available
19	13	NCT02456974	Antibiotic Dosing in Pediatric Intensive Care	3	Recruiting	No Results Available
20	14	NCT00579956	A Randomized Double Blinded Comparison of Ceftazidime and Meropenem in Severe Melioid	ps	Recruiting	No Results Available
21	15	NCT00545961	Middle Meatal Bacteriology During Acute Respiratory Infection in Children	D D	Not yet recruiting	No Results Available
22			Pharmacokinetics of Understudied Drugs Administered to Children Per Standard of Care	<u>შ</u> .	Recruiting	No Results Available
24	17	NCT02475876	PK of Clindamycin and Trimethoprim-sulfamethoxazole in Infants and Children	<u> </u>	Recruiting	No Results Available
25	18		Co-trimoxazole as Maintenance Therapy for Meliodosis		Recruiting	No Results Available
26 27	19	NCT02266706	Pharmacokinetic and Safety Study of Ceftolozane/Tazobactam in Pediatric Participants Recei	į	Recruiting	No Results Available
28	20	NCT00867789	Antibiotics Versus Placebo in the Treatment of Abscesses in the Emergency Department	2	Recruiting	No Results Available
29			A Safety Study of Balsamic Bactrim in Pediatric Participants With Acute Bronchitis	2	Not yet recruiting	No Results Available
30	22		MESS-study MRSA Eradication Study Skl´ne	-	Recruiting	No Results Available
31 32	23		Study of Tedizolid Phosphate in Adolescents With Complicated Skin and Soft Tissue Infection	=		No Results Available
33	24		Safety and TDM of Continuous Infusion Vancomycin Through Continuous Renal Replacement) h	Not yet recruiting	No Results Available
34			Special Drug Use Investigation of Ciproxan Injection in Pediatrics	Ţ	Recruiting	No Results Available
35 36			Comparative Effectiveness of Antibiotics for Respiratory Infections	<u>)</u>	Recruiting	No Results Available
37		NCT02224040	Typhoid Fever: Combined vs. Single Antibiotic Therapy	_	Recruiting	No Results Available
38			Population Pharmacokinetics of Cephalosporins and Macrolides in Chinese Children With Con			No Results Available
39		NCT02687906	Dose-finding, Pharmacokinetics, Safety, and Tolerability of Meropenem-Vaborbactam in Ped	á tr	Recruiting	No Results Available
40 41	30	NCT02783859	Hospitalised Pneumonia With Extended Treatment (HOPE) Study		Recruiting	No Results Available
42	31	NCT01994993	Antibiotic Safety (SCAMP)		Recruiting	No Results Available

1 _			T	<u>ි</u>		
2		Α		293	С	D
3	32	NCT02258763	Trial on the Ideal Duration of Oral Antibiotics in Children With Pneumonia	on 1	Recruiting	No Results Available
4 5	33	NCT02688790	Study Evaluate the PK Profile of Dalbavancin in Hospitalized Infants and Neonates Patients W	⁄ y th	Recruiting	No Results Available
6	34	NCT00323219	Oral Moxifloxacin Versus Cefazolin and Oral Probenecid in the Management of Skin and Soft	¥is:	Recruiting	No Results Available
7	35	NCT02750761	A Study of Oral and Intravenous (IV) Tedizolid Phosphate in Hospitalized Participants, Ages 2	d	Recruiting	No Results Available
8	36	NCT02466438	Safety and Pharmacokinetics of Piperacillin-tazobactam Extended Infusion in Infants and Chil	g re	Recruiting	No Results Available
9	37	NCT02260102	Temocillin Pharmacokinetics in Paediatrics	7. D	Not yet recruiting	No Results Available
11	38	NCT02694458	Comparison of Two Dosage Adjustment Strategies of Vancomycin in Children) WO	Recruiting	No Results Available
12	39	NCT01540838	Slow Initial beta-lactam Infusion With High-dose Paracetamol to Improve the Outcomes of Cl	ซูี่ld	Recruiting	No Results Available
13	40	NCT00368498	A Trial to Evaluate the Loading Dose Required to Achieve Therapeutic Serum Teicoplanin Con	ger ger	Recruiting	No Results Available
15	41	NCT01785641	Single Versus Combined Antibiotic Therapy for Bacterial Peritonitis in CAPD Patients	fro	Recruiting	No Results Available
16	42	NCT02554383	Efficacy of Antibiotics in Children With Acute Sinusitis: Which Subgroups Benefit?	<u> </u>	Recruiting	No Results Available
17	43	NCT01265173	Comparison of Efficacy of Cefotaxime, Ceftriaxone, and Ciprofloxacin for the Treatment of Sp	อ ี่ท _ี ่	Recruiting	No Results Available
18 19	44	NCT02335905	Ceftaroline for Treatment of Hematogenously Acquired Staphylococcus Aureus Osteomyeliti	gin	Recruiting	No Results Available
20	45	NCT02922686	Penicillin for the Emergency Department Outpatient Treatment of CELLulitis	ope	Not yet recruiting	No Results Available
21	46	NCT02848820	Initial Non-operative Treatment Strategy Versus Appendectomy Treatment Strategy for Simp	e A	Not yet recruiting	No Results Available
22 23	47	NCT02475733	Evaluation of Safety, Pharmacokinetics and Efficacy of CAZ-AVI With Metronidazole in Childer	n A	Recruiting	No Results Available
24	48	NCT02372461	Randomized Trial of Amoxicillin Versus Placebo for (Fast Breathing) Pneumonia	/wo	Recruiting	No Results Available
25	49	NCT01553006	Study of Cefditoren Pivoxil in Treatment of Childhood With Acute Rhinosinusitis	9	Recruiting	No Results Available
26	50	NCT02527681	Pharmacokinetics and Safety of Ceftobiprole in Neonates and Infants up to 3 Months Treated	₽₩	Recruiting	No Results Available
27 28	51	NCT02210169	RCT of Continuous Versus Intermittent Infusion of Vancomycin in Neonates	1 20	Recruiting	No Results Available
29	52	NCT02497781	Evaluation of Safety, Pharmacokinetics and Efficacy of Ceftazidime and Avibactam (CAZ-AVI)	œο	Recruiting	No Results Available
	53	NCT02814916	Dalbavancin for the Treatment of Acute Bacterial Skin and Skin Structure Infections in Childre	₽ <u>₽</u> ,	Not yet recruiting	No Results Available
31	54	NCT02210325	Efficacy and Safety Study of Oral Solithromycin Compared to Intramuscular Ceftriaxone Plus	ğra	Recruiting	No Results Available
33	55	NCT02801370	Phase 3 Study of OTO-201 in Acute Otitis Externa	nes.	Recruiting	No Results Available
34	56	NCT02760420	3 Days Amoxicillin Versus Placebo for Fast Breathing Childhood Pneumonia in Malawi		Recruiting	No Results Available
35	57	NCT02678195	3 Days Versus 5 Days Amoxicillin for Chest-indrawing Childhood Pneumonia in Malawi	ote	Recruiting	No Results Available
36 37	58	NCT02605122	Safety and Efficacy of Solithromycin in Adolescents and Children With Community-acquired E	∯icl	Recruiting	No Results Available
38	59	NCT02570490	Oral Sodium Fusidate (CEM-102) Versus Oral Linezolid for the Treatment of Acute Bacterial S	₽in	Recruiting	No Results Available
39	60	NCT02443285	Is Spontaneous Bacterial Peritonitis Still Responding to 3rd Generation Cephalosporins?	cop	Recruiting	No Results Available
40 11	61	NCT02334124	Comparing the Intravenous Treatment of Skin Infections in Children, Home Versus Hospital	yrigl	Recruiting	No Results Available
42	62	NCT02218372	A Study to Investigate the Safety and Efficacy of Fidaxomicin (Oral Suspension or Tablets) and	₹Va	Recruiting	No Results Available

2	
3	6
2 3 4 5 6 7 8 9 10 11 22 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	
5	66 66 67 77 77 77
7	-6
8	-6
9	_
10	C
11	6
12	7
13	7
14	
15	_
16	7
17	7
18	<u> </u>
19	
20	7
21	7
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
33 34 35	
35	
00	

			BMJ Open -2017-016		Page 22 o
2 [А	B 8	С	D
3	63	NCT01032499	Open and Comparative Study to Measure Tolerability and Efficacy of Taro Elixir	Not yet recruiting	No Results Available
4 [64	NCT02598362	Pharmacokinetics of Ciprofloxacin in Pediatric Patients	Recruiting	No Results Available
5 6	65	NCT02878031	Community Case Management of Chest Indrawing Pneumonia	Recruiting	No Results Available
7	66	NCT02790996	Neonatal Vancomycin Trial	Not yet recruiting	No Results Available
8	67	NCT02712307	Study of 5 and 10 Days Treatment With Penicillin Against Sore Throat Caused by Streptococci	Recruiting	No Results Available
9	68	NCT02424734	Safety, Tolerability and Efficacy of Ceftaroline in Paediatrics With Late-Onset Sepsis	Recruiting	No Results Available
11	69	NCT02134301	Open-Label, Dose-Finding, Pharmacokinetics, Safety and Tolerability Study of Oritavancin in Re	Recruiting	No Results Available
12	70	NCT02013141	An Open-Label Study of the Pharmacokinetics of a Single Dose of Telavancin in Pediatric Subject		No Results Available
13	71	NCT01427842	Dose Enhancement of Vancomycin IN Everyday Patients	Recruiting	No Results Available
14- 15	72	NCT01278017	The Role of Short-course Ceftriaxone Therapy in the Treatment of Severe Nontyphoidal Salmer	Recruiting	No Results Available
16	73	NCT00988026	Safety and Efficacy Comparison of Minocycline Microgranules Versus Lymecycline in the Treatr	Recruiting	No Results Available
17	74	NCT02288234	Telavancin Observational Use Registry (TOUR)	Recruiting	No Results Available
18 19	75	NCT01304459	Vancomycin Serum Concentrations in Pediatric Oncology Patients Under Intensive Care	Recruiting	No Results Available
20	76	NCT01173575	Assessment of the Efficacy of FOSFOMYCIN in Patients With Bacterial Infection	Recruiting	No Results Available
21	77	NCT01778634	Trial of Intravenous Azithromycin to Eradicate Ureaplasma Respiratory Tract Infection in Preter	Recruiting	No Results Available
22 ¹ 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 40 41 42			nj.com/ on April 20, 2024 by guest. Protected by copyright		

	E	F
1	Indication	Infection category
2	Proven or suspected infection (in patients on PICU)	9
3	Acute Otitis Media	3
4	Sepsis	8
5	Urinary Tract Infections (UTI)	7
6	Community-acquired Pneumonia (CAP)	4
7	Pneumonia	4
8	Proven or suspected infection in patients with malnutrition	9
9	Bacteremia	8
10	Plague	8
11	Helicobacter Pylori Infection	7
12	Meningitis	1
13	Proven or suspected bacterial infection (Pharmacokinetics)	9
14	Melioidosis	8
15	Acute Respiratory Infection Sinusitis	3
16	Various infections (including nosocomial Pneumonia, CAP, Acute Bac	Various
17	Bacterial Infections	9
18	Meliodosis	8
19	Proven or Suspected Gram-negative Bacterial Infection	9
20	Abscess	1
21	Bronchitis	4
22	Throatcarriers of MRSA	3
23	Acute Skin and Soft Tissue infections (aSSTIs)	2
24	Proven or suspected bacterial infection (in CRRT patients)	9
	Cystitis / Pyelonephritis	7
26	Acute Upper Respiratory Tract Infections (ARTIs)	3
27	Typhoid Fever	8
28	Community Acquired Pneumonia (CAP)	4
29	Bacterial Infections	9
30	Pneumonia	4
31	Complicated Intra Abdominal Infections (cIAIs)	6

en-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

44 45

1.			
2		E	F
3	32	Pneumonia	4
4 5	33	Bacterial Infections	9
6	34	Cellulitis	2
7	35	Gram-Positive Bacterial Infections	9
8	36	Infection	9
9	37	Urinary Tract Infection or suspected Cholangitis	7
11	38	Methicillin-resistant Staphylococcal Infections	9
12	39	Bacterial Meningitis	1
13 14	40	Staphylococcal Infections	9
15	41	Peritonitis (in CAPD patients)	6
16	42	Acute Sinusitis (Respiratory Tract Infections)	3
17	43	SBP in patients with Liver Cirrhosis	6
18 19	44	Hematogenously Acquired Staphylococcus Aureus Osteomyelitis	5
20	45	Cellulitis or Wound Infection	8
21	46	Appendicitis	6
22 23	47	Complicated Intra-abdominal Infections (cIAIs)	6
24	48	Pneumonia (fast-breathing)	4
25	49	Rhinosinusitis	3
26	50	Bacterial Infections	9
27 28	51	Sepsis	8
29	52	Complicated Urinary Tract Infections (cUTIs)	7
30	53	Methicillin-Resistant Staphylococcus Aureus Skin Infection	2
31 32	54	Uncomplicated Urogenital Gonorrhea	7
33	55	Acute Otitis Externa	3
34	56	Pneumonia	4
35	57	Pneumonia	4
36 37	58	Community-acquired Bacterial Pneumonia	4
38	59	Acute Bacterial Skin and Skin Structure Infections	2
39	60	Primary Bacterial Peritonitis	6
40 41	61	Cellulitis	8
42	62	Clostridium Difficile-associated Diarrhea (CDAD)	6
43			
4 4			

1			
2 [E	F
3	63	Acne Vulgaris II or III Degree	2
4 5	64	Urinary Tract Infection or Pyelonephritis	7
6	65	Pneumonia	4
7	66	Late Onset Neonatal Sepsis	8
8	67	Tonsillitis	3
9 1	68	Late-onset Sepsis	8
11	69	Gram Positive Bacterial Infections	9
12	70	Gram-Positive Bacterial Infections	9
13 14	71	Vancomycin Therapy	9
15	72	Diarrhea	6
16	73	Mild to Moderate Acne	2
17 18	74	Hospital Acquired Bacterial Pneumonia (HAP), Complicated Skin and	Various
19	75	Infection	9
20	76	Bacterial Infection	9
21	77	Eradicate ureaplasma respiratory tract infection from preterm infant	4
22 5 23 24			

		ВМЈ	Open	en-2017-016293	
1 2 [G	Н	16293	l j
3	1			Gender	Age
4	2	Antiinfectives (beta-lactam, aminoglycoside, glycopeptide, fluoroquinolone,	Various	Both D	Up to 18 Years
5 6	3	Amoxicillin, Amoxicillin-Potassium Clavulanate, Macrolide	Various	Both을	6 Months to 7 Years
7	4	Antibiotic	J01	Both	Up to 18 years
8	5	Trimethoprim sulfamethoxazole, cefixime, or cephalexin	Various	BothS	2 Months to 10 Years
9	6	Amoxicillin	J01C	Both:	6 Months to 10 Years
11	7	Amoxicillin, Amoxicillin-clavulanate, Cefdinir	Various	Both€	6 Months to 71 Months
12	8	Ceftriaxone, Metronidazole	J01D	Both	2 Months to 59 Months
13	9	7 days vs 14 days of adequate antibiotic treatment	J01	Both	Up to 18 years
15	10	Ciprofloxacin, doxyxcycline	Various	Both	8 Years and older
16	11	Tailored vs standard therapy (Amoxicillin, Clarithromycin, Metronidazole, Ra	Various	Both₅	4 Years to 18 Years
17	12	Daptomycin	J01X	Both	3 Months to 16 Years
18 19	13	Amoxicillin-clavulanate, Piperacilline-tazobactam, Vancomycin	Various	Both	Up to 16 Years
20	14	Meropenem, Ceftazidime	J01D	Both	15 Years and older
21	15	Amoxicillin clavulanate acid	J01C	Both	6 Years to 13 Years
22	16	Various drugs (Ceftazidime, Ciprofloxacin, Clindamycin, Doxycycline, Levoflo	Various	Both Both	Up to 18 years
24	17	Clindamycin, Trimethoprim-sulfamethoxazole	Various	Both	1 Month to 16 Years
25	18	Co-trimoxazole	J01E	Both≌	15 Years and older
26	19	Ceftolozane/Tazobactam	J01D	Bothg.	Up to 17 Years
27 28	20	Trimethoprim-sulfamethoxazole	J01E	Both ₈	3 Months to 17 Years
29	21	Guaifenesin, Sulfamethoxazole trimethoprim	J01E	Both	4 Years to 14 Years
30	22	Systemic Rifampin and Clindamycine/Trimehoprimsulfa, or Topical mupiroci	Various	Both ²	5 Years and older
31	23	Tedizolid Phophate	J01X	Both €	12 Years to 18 Years
33	24	Vancomycin	J01X	Both	Up to 18 years
34	25	Ciprofloxacin	J01F	Both _y	Up to 14 Years
35	26	Antibiotics (Amoxicillin-clavulanate, azithromycin, cefdinir, cefprozil, cefurox	Various	Both Both	6 Months to 18 Years
36 37	27	Ceftriaxone, Ceftriaxone/azithromycin, Azithromycin, Azithromycin/cefixime	Various	Both g	2 Years to 80 Years
38	28	Cephalosporins and Macrolides	Various	Both₹	1 Year to 18 Years
39	29	Carbavance	J01D	Bothg	Up to 17 Years
40 41	30	Amoxicillin-clavulanic Acid	J01C	Both	3 Months to 5 Years
42	31	Ampicillin/metronidazole/gentamicin/clindamycin/Piperacillin-tazobactam c	Various	Both [₹]	Up to 120 Days

44 45 46

Page 27 of 40 BM			J Open	en-2017-016	
1 2 [G	Н)16 <u>2</u> 93	J
3	32	Amoxicillin-Potassium Clavulanate	J01C	Both≌	3 Months to 59 Months
4	33	Dalbavancin	J01X	Both O	Up to 28 Days
5 6	34	Cefazolin/Moxifloxacin	Various	Both을	Up to 18 Years
7	35	Tedizolid Phosphate	J01X	Both₫	2 Years to 11 Years
8	36	Piperacillin-tazobactam	J01C	Botho	2 Months to 6 Years
9	37	Temocillin	J01C	Both	6 Months to 3 Years
11	38	Vancomycin	J01X	Both€	1 Month to 16 Years
12	39	Beta-lactam	J01C	Both S	2 Months to 15 Years
13	40	Teicoplanin	J01X	Both	16 Years and older
15	41	Ceftazidime/ciprofloxacin, Ceftazidime, Cefazolin/gentamicin, Cefazolin	Various	Bothਰੂੰ	15 Years and older
16	42	Amoxicillin-clavulanate	J01C	Both ₂	2 Years to 11 Years
17	43	Cefotaxime, Ceftriaxone, Ciprofloxacin	Various	Both	16 Years and older
18 19	44	Ceftaroline Fosamil	J01D	Both	1 Year to 17 Years
20	45	Flucloxacillin, Phenoxymethylpenicillin	J01C	Both	16 Years and older
21	46	Augmentin/Gentamicin, Appendectomy	J01C	Both	7 Years to 17 Years
22 23	47	Ceftazidime-avibactam, Meropenem, Metronidazole	Various	Both Both	3 Months to 18 Years
24	48	Amoxicillin	J01C	Both€	2 Months to 59 Months
25	49	Cefditoren pivoxil	J01D	Both≌	1 Year to 15 Years
26	50	Ceftobiprole	J01D	Bothg	Up to 3 Months
27 28	51	Vancomycin	J01X	Both⊗	Up to 90 Days
29	52	Ceftazidime-avibactam, Cefepime	J01D	Both⊗	3 Months to 18 Years
30	53	Dalbavancin single dose	J01X	Both ²	3 Months to 17 Years
31 32	54	Solithromycin, Ceftriaxone, Azithromycin	Various	Both Both	15 Years and older
33	55	Ciprofloxacin	J01M	Both	6 Months and older
34	56	Amoxicillin	J01C	Both <u></u>	2 Months to 59 Months
35 36	57	Amoxicillin	J01C	Both ਨੂੰ	2 Months to 59 Months
37	58	Solithromycin	J01F	Both g	2 Months to 17 Years
38	59	Sodium fusidate, Linezolid	J01X	Both♥	12 Years and older
39	60	Cefotaxime, Ceftriaxone	J01D	Bothg	Up to 18 Years
40 41		Ceftriaxone, Flucloxacillin	Various	Both	6 Months to 18 Years
42	62	Fidaxomicin, Vancomycin	J01X	Both [₹]	Up to 17 Years

1	1	T	- 6	
2	G	Н	16293	J
3 63	Taro Elixir	J01A	Both≌	14 Years and older
4 64	Ciprofloxacin	J01M	Both Both	3 Months to 17 Years
6 65	Amoxicillin	J01C		2 Months to 59 Months
7 66	Vancomycin	J01X	Both⊠	Up to 90 Days
8 67	Phenoxymethylpenicillin	J01C	Both 2	6 Years and older
9 68	Ceftaroline Fosamil	J01D	Both Both	Up to 59 Days
11 69	Oritavancin	J01X	Both€	Up to 18 Years
12 70	Telavancin	J01X	Both	1 Year to 17 Years
13 71 14	Vancomycin	J01X	Both B	16 Years and older
15 72	Ceftriaxone	J01D	Bothਰੂੰ	3 Months to 18 Years
16 73	Minocycline, Lymecycline	J01A	Both	14 Years to 30 Years
17 74	Telavancin	J01X	Both	Up to 18 Years
18 19 75	Vancomycin	J01X	Both≝	Up to 18 Years
20 76	Fosfomycin	J01X	Both	Up to 18 Years
21 77 22	Azithromycin	J01F	Both Both	0 to 72 hours
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43		JUIT	nj.com/ on April 20, 2024 by guest. Protected by copyright.	

	ge 29	en-2017-016				
1 2 [К	L	M	N	93 O
3	1		Estimated enrollment	Location	Income class	Geographic region
4	2	8	1850	France	High income	Europe
5 6	3	9	150	Finland	High income	Europæ
7	4	8	320	Italy	High income	Europe
8	5	9	746	United States	High income	North America
9 10	6	9	270	Canada	High income	North: America
11	7	9	400	United States	High income	NorthAmerica
12	8	9	80	Kenya	Lower middle income	Africa Africa
13	9	8	50	Canada	High income	North America
15	10	11	200	Uganda	Low income	Africa di
16	11	11	200	China	Upper middle income	Asia 🚆
17	12	10	5	Switzerland	High income	Europe
18 19	13	8	200	Belgium	High income	Europe
20	14	5	750	Thailand	Upper middle income	Asia 🖁
21	15	11	120	Finland	High income	Europe
22 23	16	8	3000	Various (United States, Canad	High income	International
24	17	10	54	United States	High income	North≝America
25	18	5	800	Thailand	Upper middle income	Asia ⁹
26	19	8	36	United States	High income	North <u>s</u> America
27 28	20	10	200	United States	High income	North <mark>A</mark> merica
29	21	11	50	Peru	Upper middle income	Latin America
30	22	11	69	Sweden	High income	North America
31 32	23	5	162	Various (United States, Argent	Upper middle to High income	International
33	24	8		United States	High income	North America
34	25	8	45	Japan	High income	Asia g
35 36	26	10	117000	United States	High income	North America
37	27	11		Nepal	Low income	Asia 💆
38	28	10		China		Asia 💆
39	29	8		United States	High income	NorthgAmerica
40 41	30	9			High income	Oceaत्र् <u>व</u> ेव
42	31	6	284	Various (United States, Canad	High income	North America
43						

				E	BMJ Open	o en-2017-016 2 93
1 2	I	К	L	M	N	116. 293 O
3	32	9	300	Malaysia	Upper middle income	Asia ⁹
4	33	2	24	United States	High income	North nerica
5 6	34	8	390	Canada	High income	North America
7	35	4	32	United States	High income	North∯America
8	36	9	141	Canada	High income	North ≧ America
9	37	9	45	Belgium	High income	Europe
11	38	10	100	France	High income	Europe
12	39	10	400	Angola	Upper middle income	Africa di
13	40	5	20	Taiwan, China	High income	Asia 👲
15	41	5	300	Thailand	Upper middle income	Asia ਰੂੰ
16	42	4	688	United States	High income	North₫America
17	43	5	261	Republic of Korea	High income	Asia 👯
18 19	44	10	18	United States	High income	North America
20	45	5	414	Ireland	High income	Europe
21	46	11	334	Netherlands	High income	Europe
22 23	47	10	102	Various (United States, Argent	Upper middle to High income	International
24	48	9	2500	Pakistan	Lower middle income	Asia 💆
25	49	10	120	Thailand	Upper middle income	Asia ⁹
26	50	6	45	Various (Belgium, Germany, Li	High income	Europ <u>€</u>
27 28	51	6	200	Australia	High income	Ocean <u>k</u> a
29	52	10	102	Various (United States, Czech	Upper middle to High income	
30	53	10	300	United States	High income	North America
31 32	54	5	300	Various (United States, Austra	High income	International
33	55	10	500	Various (United States, Canad	High income	North Merica
34	56	9	2000	Malawi	Low income	Africa g
35 36	57	9	2000	Malawi	Low income	Africa of Africa of Africa
37	58	10		Various (United States, Bulgar		International
38	59	5	712	Various (United States, Puerto		International
39	60	8	100	Egypt	Lower middle income	Africage Africage
40 41	61	10		Australia	High income	Oceaक्षे
42	62	8	144	Various (United States, Belgiu	High income	International

 en-2017-016

nj.com/ on April 20, 2024 by guest. Protected by copyright.

						N.
2		K	L	M	N	O 293
3	63	5	120	Brazil	Upper middle income	Latin America
4 5	64	10	20	Belgium	High income	Europe
6	65	9	308	Nigeria	Lower middle income	Africa [♀]
7	66	6	300	Various (United Kingdom, Fran	High income	Europe
8	67	11	432	Sweden	High income	Europe
9 10	68	7	24	Various (United States, Hunga	High income	International
11	69	8	60	United States	High income	North∰America
12	70	10	32	United States	High income	North America
13 1⊿	71	5	100	Australia	High income	Oceanga
15	72	10	200	Taiwan, China	High income	Asia ਨੂੰ
16	73	5	168	Mexico	High income	North∰America
17	74	8	1000	United States	High income	North America
18 19	75	8	50	Brazil	Upper middle income	Latin America
20	76	8	200	Various (Austria, Germany)	High income	Europe
21	77	1	180	United States	High income	North America
22						<u>ਤ</u> .

				BMJ Open		en-2017-016 2 93
				Sino opon		017
						-016
2 [Р	Q	R	S	93 T
3	1	Collaborators		Study Types	Phase	Endpoint classification
4 5	2	Assistance Publique - Hopitaux de Paris	Hospital	Observational	Not applicable	Pharma c okinetics
6	3	University of Oulu Oulu University Hospital	University	Interventional	Phase 4	Efficacy €
7	4	Ospedale Santa Maria delle Croci	Hospital	Interventional	Phase 2	Safety/efficacy
8	5	Children's Hospital of Philadelphia Children's Ho	Hospital	Interventional	Phase 2	Safety/🚉 ficacy
9	6	Hamilton Health Sciences Corporation Children's	Hospital	Interventional	Phase 4	Safety/Efficacy
11	7	National Institute of Allergy and Infectious Diseas	NIH	Interventional	Phase 4	Efficacy≤
12	8	University of Oxford KEMRI Wellcome Trust Rese	University	Interventional	Phase 2	Pharmagokinetics
13 14	9	Sunnybrook Health Sciences Centre	Hospital	Interventional	Not specified	Efficacy (Efficacy)
15	10	Centers for Disease Control and Prevention MRC	CDC	Interventional	Phase 2	Safety/ਊficacy
16	11	Beijing Children's Hospital	Hospital	Interventional	Phase 4	Safety/ ficacy
17	12	University Hospital Inselspital, Berne	Hospital	Interventional	Phase 1	Pharmacokinetics
18 19	13	University Hospital, Ghent University Hospital, A	Hospital	Observational	Not applicable	Pharmagokinetics
20	14	University of Oxford Mahidol University Wellcor	University	Interventional	Not specified	Efficacy
21	15	Oulu University Hospital	University	Interventional	Phase 4	Safety/Efficacy
22 23	16	Daniel Benjamin Eunice Kennedy Shriver Nationa	University	Observational	Not applicable	Pharmacokinetics
24	17	Michael Cohen-Wolkowiez Eunice Kennedy Shriv	University	Interventional	Phase 1	Pharmagokinetics
25	18	Khon Kaen University	University	Interventional	Not specified	Efficacy ⁹
26	19	Cubist Pharmaceuticals LLC	Industry	Interventional	Phase 1	Pharma <u>€</u> okinetics
27 28	20	Children's Mercy Hospital Kansas City Blue Cross	Hospital	Interventional	Not specified	Efficacy 8
29	21	Hoffmann-La Roche	Industry	Observational	Not applicable	Safety 8
30	22	Region Skane	Hospital	Interventional	Not specified	Efficacy ²
31 32-	23	Cubist Pharmaceuticals LLC	Industry	Interventional	Phase 3	Safety 💆
33_	24	Drexel University The Center for Pediatric Pharm	University	Interventional	Phase 1	Safety 💆
34	25	Bayer	Industry	Observational	Not applicable	Safety/Efficacy
35	26	Children's Hospital of Philadelphia	Hospital	Observational	Not applicable	Safety/ଞ୍ଛିficacy
36 37	27	Sheba Medical Center	Hospital	Interventional	Phase 4	Efficacy <u>₹</u>
38	28	Beijing Children's Hospital	Hospital	Observational	Not applicable	Pharma E okinetics
39	-	Rempex Pharmaceuticals (a wholly owned subsid	· · · · · · · · · · · · · · · · · · ·	Interventional	Phase 1	Safety පි
40 41	30	Menzies School of Health Research Griffith Unive	University	Interventional	Phase 4	Safety/ ficacy
42	31	Michael Cohen-Wolkowiez The EMMES Corpora	University	Interventional	Phase 2-3	Safety ^并

Pa	ge 33	of 40		BMJ Open		en-2017-016 2 93
1						- -016:
2 [Р	Q	R	S	
3	32	University of Malaya Menzies School of Health R	University	Interventional	Phase 4	Efficacy ^S
4 5	33	Durata Therapeutics Inc., an affiliate of Allergan p	Industry	Interventional	Phase 1	Pharma cokinetics
6	34	University of British Columbia	University	Interventional	Phase 3	Efficacy 8
7	35	Merck Sharp & Dohme Corp.	Industry	Interventional	Phase 1	Pharmagokinetics
8	36	St. Justine's Hospital	Hospital	Interventional	Phase 1	Pharma cokinetics
9	37	Universit̩ Catholique de Louvain	University	Interventional	Phase 4	Pharmacokinetics
11	38	Assistance Publique - Hì«pitaux de Paris	Hospital	Interventional	Not specified	Pharmagokinetics
12	39	Helsinki University Foundation for Paediatric Res	University	Interventional	Phase 4	Safety/@fficacy
13	40	National Taiwan University Hospital	University	Interventional	Phase 4	Pharmagokinetics
15	41	Chulalongkorn University	University	Interventional	Not specified	Efficacy <u>a</u>
16	42	University of Pittsburgh National Institute of Alle	University	Interventional	Phase 3	Safety/ fficacy
17	43	Korea University	University	Interventional	Phase 4	Efficacy
18 19	44	Baylor College of Medicine Forest Laboratories	University	Interventional	Phase 1-2	Safety/Efficacy
20	45	Royal College of Surgeons, Ireland Health Resear	University	Interventional	Phase 4	Efficacy
21	46	Ramon Gorter ZonMw: The Netherlands Organis	University	Interventional	Phase 4	Efficacy
22 23	47	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2	Safety/ fficacy
24	48	Aga Khan University	University	Interventional	Not specified	Efficacy
25	49	Thammasat University	University	Interventional	Phase 4	Safety/🖺 ficacy
26	50	Basilea Pharmaceutica	Industry	Interventional	Phase 1	Pharmagokinetics
27 28	51	Murdoch Childrens Research Institute Royal Chil	University	Interventional	Not specified	Pharmagokinetics
29	52	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2	Safety/Efficacy
30	53	Durata Therapeutics Inc., an affiliate of Allergan (Industry	Interventional	Phase 3	Safety/Hficacy
31 32	54	Cempra Inc National Institute of Allergy and Infe	Industry	Interventional	Phase 3	Efficacy
33	55	Otonomy, Inc.	Industry	Interventional	Phase 3	Efficacy
34	56	Save the Children University of North Carolina L	Health Organisat	Interventional	Phase 4	Efficacy
35	57	Save the Children University of North Carolina L	Health Organisat	Interventional	Phase 4	Efficacy 🛱
36 37	58	Cempra Inc	Industry	Interventional	Phase 2-3	Safety/officacy
38	59	Cempra Inc	Industry	Interventional	Phase 3	Safety/ Ø ficacy
39	60	Tanta University	University	Interventional	Phase 3	Efficacy
40 41	61	Murdoch Childrens Research Institute	University	Interventional	Not specified	Efficacy
42	62	Astellas Pharma Europe B.V. Merck Sharp & Doh	Industry	Interventional	Phase 3	Safety/Efficacy

1.						ဂ္ဂ
2		Р	Q	R	S	93 T
3	63	Laboratorios Goulart S.A.	Industry	Interventional	Phase 3	Safety/Efficacy
4 5	64	University Hospital, Ghent Universitair Ziekenhu	University	Interventional	Phase 4	Pharmagokinetics
6	65	Malaria Consortium World Health Organization	Health Organisat	Interventional	Phase 4	Safety 🖁
7	66	PENTA Foundation St George's, University of Lor	Health Organisat	Interventional	Phase 2	Safety/र्ल्डिficacy
8	67	Sigvard Mì¦lstad Public Health Agency of Swede	University	Interventional	Phase 4	Safety/🚉 ficacy
9 10	68	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2-3	Safety/Efficacy
11	69	The Medicines Company	Industry	Interventional	Phase 1	Pharma okinetics
12	70	Theravance Biopharma Antibiotics, Inc.	Industry	Interventional	Phase 4	Pharmagokinetics
13 14	71	The Canberra Hospital	Hospital	Interventional	Phase 2	Pharmagokinetics
15	72	Chang Gung Memorial Hospital	Hospital	Interventional	Phase 4	Efficacy 2
16	73	Darier	Industry	Interventional	Phase 4	Safety/ fficacy
17	74	Theravance Biopharma Antibiotics, Inc.	Industry	Observational	Not applicable	Safety/Efficacy
18 19	75	Grupo de Apoio ao Adolescente e a Crianca com	Hospital	Observational	Not applicable	Pharmagokinetics Pharmagokinetics
20	76	Infectopharm Arzneimittel GmbH J&P Medical R	Industry	Observational	Not applicable	Efficacy
21	77	University of Maryland	University	Interventional	Phase 2	Safety/ f ficacy
22						킂
23						Son Son
24 25						n/ o
25 26						n A
27						pril :
28						20,
29						202
30 31						4 0
32						Qu V
33						est
34						P
35						otec
36 37						Xted
38						nj.com/ on April 20, 2024 by guest. Protected by copyright
39						СОР
40						yrig
41 42						nt.
42 43						

Pa	ge 35	of 40			ВМЈ Оре	en		en-2017-		
1 2		U	T v	T w	Х	V	Z	016293	AA	AB
3	1	Primary outcome variable	PK data collected	First Receive		•				Results First Received
4		PK	PK study design	July 2, 2015	Sep-15		September 1			No Study Results Posted
5	3	Efficacy	No PK data	September 2	<u> </u>		October 12, 2			No Study Results Posted
6 7	4	Efficacy	No PK data	September 8			September 1	ober		No Study Results Posted
8	5	Efficacy	No PK data	May 8, 2012	May-12		June 27, 201		<u> </u>	No Study Results Posted
9	6	Efficacy	No PK data	March 2, 201		·	March 24, 20			No Study Results Posted
11	7	Efficacy	No PK data	September 1	Oct-16		October 13, 2	 V		No Study Results Posted
12	8	PK	PK study design	April 4, 2016	Apr-16	Sep-16	April 25, 201	nloa	Apr-16	No Study Results Posted
13	9	Efficacy	No PK data	September 2	Oct-16	Dec-17	September 2	dec	Sep-16	No Study Results Posted
15	10	Efficacy	No PK data	November 1	Dec-10	null	September 1		Sep-12	No Study Results Posted
16	11	Efficacy	No PK data	November 2	Mar-14	Jul-16	December 16	_₹	Nov-15	No Study Results Posted
17	12	PK	Primary PK data	January 26, 2	Apr-12	Apr-18	December 10	/: d	Dec-15	No Study Results Posted
18 19	13	PK	PK study design	May 18, 201	May-12	null	November 17	bmj	Nov-15	No Study Results Posted
20	14	Efficacy	No PK data	December 18	Dec-07	Sep-10	June 3, 2008	ope	Aug-07	No Study Results Posted
21	15	Efficacy	No PK data	October 17,	Nov-07	Dec-09	October 18, 2	n.br	Oct-07	No Study Results Posted
22 23	16	PK	PK study design	August 17, 2	Nov-11	Feb-17	February 4, 2	nj.c	Feb-16	No Study Results Posted
24	17	PK	PK study design	June 12, 201	Nov-15	Dec-17	August 1, 201)mo	Aug-16	No Study Results Posted
25	18	Efficacy	No PK data	August 18, 2	Aug-11	Dec-20	August 30, 20		Aug-16	No Study Results Posted
26 27	19	PK	PK study design	September 2	Sep-14	Nov-16	October 31, 2	Αpri	Oct-16	No Study Results Posted
28	20	Efficacy	No PK data	March 23, 20	Mar-09	Oct-12	June 21, 201	1 20,	Jun-11	No Study Results Posted
29	21	Safety	No PK data	August 23, 2	Aug-16		September 1	2024	Sep-16	No Study Results Posted
30		Efficacy	No PK data	January 3, 20			May 25, 201!			No Study Results Posted
31 32	23	Safety	Secondary PK data	October 9, 20	Mar-15	Jan-18	October 31, 2	y g	Oct-16	No Study Results Posted
33	24	Safety	Primary PK data	January 12, 2	Jan-17	Dec-18	September 8	Jest	Sep-16	No Study Results Posted
34	25	Safety	No PK data	September 1	Jul-16	Sep-18	October 19, 2		Oct-16	No Study Results Posted
35 36		Efficacy	No PK data	November 1			May 6, 2016	otec	May-16	No Study Results Posted
37	27	Efficacy	No PK data	August 21, 20	ļ		August 26, 20	 _	Aug-14	No Study Results Posted
38		PK	PK study design	May 11, 201	ļ		May 17, 2016			No Study Results Posted
39	29	Safety	Primary PK data	February 17,	Jul-16		October 6, 20			No Study Results Posted
40 41		Efficacy	No PK data	May 5, 2016	Jun-16		October 7, 20			No Study Results Posted
42	31	Safety	No PK data	November 1	Dec-13	Sep-17	August 1, 20:	.∺	Aug-16	No Study Results Posted
43										

					BMJ Ope	n		en-201		
								17-016		
1 2		U	l v	l w l	Х	Υ	Z	16293	AA	AB
3	32	Efficacy	No PK data	September 2	Nov-14	Dec-18	December 20	9 9		No Study Results Posted
4	33	PK ,	PK study design	February 18,	Apr-16		October 19, 2	3		No Study Results Posted
5 6	34	Efficacy	No PK data	May 8, 2006	Jan-04	-	February 6, 2			No Study Results Posted
7	35	PK	PK study design	April 1, 2016	May-16		October 21, 2	ber		No Study Results Posted
8	36	PK	PK study design	June 2, 2015	Jan-16	Dec-17	April 18, 201	20,	Apr-16	No Study Results Posted
9	37	PK	PK study design	October 1, 20	Oct-16	Oct-17	October 24, 2	17.[Oct-16	No Study Results Posted
11	38	PK	PK study design	February 24,	Feb-16	Feb-17	March 8, 201	VOW	Mar-16	No Study Results Posted
12	39	Efficacy	No PK data	February 23,	Feb-12	Jul-17	February 19,	nlo:		No Study Results Posted
13	40	PK	PK study design	August 23, 20	Jun-06	Dec-07	August 23, 20	dec	Aug-06	No Study Results Posted
14 15	41	Efficacy	No PK data	January 30, 2	Dec-12	Dec-13	February 6, 2		Feb-13	No Study Results Posted
16	42	Efficacy	No PK data	September 8	Feb-16	Sep-20	October 3, 20	3	Oct-16	No Study Results Posted
17	43	Efficacy	No PK data	December 22	Apr-07	Apr-16	April 8, 2014	tp:/	Apr-14	No Study Results Posted
18 19	44	Safety	Secondary PK data	December 31	Jan-15	Jan-20	June 24, 201	mď	Jun-16	No Study Results Posted
20	45	Efficacy	No PK data	August 9, 20:	Dec-16	Dec-19	September 3	ope	Jul-16	No Study Results Posted
21	46	Efficacy	No PK data	July 24, 2016	Dec-16	Dec-20	July 26, 2016	n.b	Jul-16	No Study Results Posted
22 23	47	Safety	Secondary PK data	May 25, 2015	Jul-15	Oct-17	October 21, 2	mj.c	Oct-16	No Study Results Posted
23 24	48	Efficacy	No PK data	November 4,	Nov-14	Jul-17	June 3, 2016	om/	Jun-16	No Study Results Posted
25	49	Efficacy	No PK data	February 17,	Jan-12	Sep-12	March 13, 20	on	Mar-12	No Study Results Posted
26	50	PK	PK study design	August 5, 20:	Aug-14	Jun-17	October 20, 2	Apri	Oct-16	No Study Results Posted
27 28	51	PK	PK study design	August 5, 20:	Sep-14	Sep-17	March 17, 20	1 20	Mar-16	No Study Results Posted
29	52	Safety	Secondary PK data	June 16, 201!	Sep-15	Oct-17	October 21, 2	, 20	Oct-16	No Study Results Posted
30	53	Efficacy	No PK data	June 8, 2016	Jun-16	Jul-18	October 21, 2 June 23, 201	24 k	Jun-16	No Study Results Posted
31 32	54	Efficacy	No PK data	August 1, 20:	Aug-14	Apr-17	September 2	9	Sep-16	No Study Results Posted
33	55	Efficacy	No PK data	June 13, 201	Jun-16	Nov-16	June 13, 201	ues	Jun-16	No Study Results Posted
34		Efficacy	No PK data	May 1, 2016	Jun-16	Sep-18	June 10, 201	P	Jun-16	No Study Results Posted
35	57	Efficacy	No PK data	February 3, 2	Mar-16	null	June 10, 201	otec	Jun-16	No Study Results Posted
36 37	58	Safety	No PK data	November 10	Mar-16	Jan-18	September 1	ted	Sep-16	No Study Results Posted
38	59	Efficacy	No PK data	October 5, 20	Nov-15	Feb-17	October 5, 20	by		No Study Results Posted
39	60	Efficacy	No PK data	May 11, 2015	Jan-15		May 9, 2016	cop	May-16	No Study Results Posted
40 41	61	Efficacy	No PK data	January 4, 20	Jan-15		March 16, 20			No Study Results Posted
42	62	Efficacy	No PK data	August 11, 20	Oct-14	Feb-17	June 17, 201	.∺¯	Jun-16	No Study Results Posted
43										

Pa	ge 37	of 40			ВМЈ Оре	n		en-2017-016		
1 2		U	V	l w l	х	Υ	Z	16293	AA	AB
3	63	Efficacy	No PK data	December 14	May-10	Oct-10	March 18, 20			No Study Results Posted
4	64	PK	PK study design	November 4,	Apr-15		November 4,			No Study Results Posted
5 6	65	Safety	No PK data	August 17, 20	Oct-16	Jul-17	October 3, 20	Octo		No Study Results Posted
7	66	Efficacy	Secondary PK data	April 7, 2016	Jul-16	Mar-18	May 31, 2016	ber		No Study Results Posted
8	67	Efficacy	No PK data	March 4, 201	Sep-15	Oct-16	October 4, 20	20,		No Study Results Posted
9	68	Safety	Secondary PK data	February 23,	Aug-15	Oct-17	October 14, 2	17. [Oct-16	No Study Results Posted
11	69	PK	PK study design	May 7, 2014	May-14	Dec-16	November 4,	Vow		No Study Results Posted
12	70	РК	PK study design	December 11	Dec-14	Aug-16	June 24, 201	nlos		No Study Results Posted
13	71	РК	PK study design	August 31, 20	Aug-11	Jul-12	September 1	dec	Aug-11	No Study Results Posted
15	72	Efficacy	No PK data	November 25	Aug-10	Jul-12	January 14, 2	fro	Nov-10	No Study Results Posted
16	73	Efficacy	No PK data	September 3	Jun-09	Apr-10	September 3	3	Sep-09	No Study Results Posted
17	74	Efficacy	No PK data	November 5,	Nov-14	Sep-18	June 29, 201	tp:/	Jun-16	No Study Results Posted
18 19	75	PK	Primary PK data	February 24,	Jan-11	null	March 21, 20	mď	Mar-12	No Study Results Posted
20	76	Efficacy	No PK data	July 29, 2010	Aug-10	null	February 5, 2	ope	Feb-16	No Study Results Posted
21	77	Efficacy	Secondary PK data	January 22, 2	Jul-13	Dec-21	May 28, 201	n.bı	May-15	No Study Results Posted
222 233 244 255 266 277 288 299 300 311 322 333 344 355 366 377 388 399 400 411 422 433								nj.com/ on April 20, 2024 by guest. Protected by copyright.		

Page 38 of 40

1,										
2		AC	AD	AE	AF	AG				
3	1	Primary Com								
4 5	2	Jul-18	https://Clinic	:alTrials.gov/s	how/NCT025	39407				
	6 Dec-18 https://ClinicalTrials.gov/show/NCT0293537									
7	4	Sep-18	https://Clinic	alTrials.gov/s	how/NCT028	99143				
8	5	Apr-18	https://Clinic	alTrials.gov/s	how/NCT015	95529				
10	6									
11	7	Jan-19	https://Clinic	alTrials.gov/s	how/NCT028	91915				
12	8	Sep-16	https://Clinic	alTrials.gov/s	how/NCT027	46276				
13 14	9	Aug-17	https://Clinic	alTrials.gov/s	how/NCT029	17551				
15	10	Jun-13	https://Clinic	alTrials.gov/s	how/NCT012	43437				
16	11	Mar-16	https://Clinic	alTrials.gov/s	how/NCT026	35191				
17	12	Dec-16	https://Clinic	alTrials.gov/s	how/NCT015	22105				
18 19	13	Dec-17	https://Clinic	alTrials.gov/s	how/NCT024	56974				
20	14	Sep-10	https://Clinic	alTrials.gov/s	how/NCT005	79956				
21	15	null	https://Clinic	alTrials.gov/s	how/NCT005	45961				
22 23	16	Feb-17	https://Clinic	alTrials.gov/s	how/NCT014	31326				
24	17	Nov-17	https://ClinicalTrials.gov/show/NCT02475876							
25	18	Dec-20	https://Clinic	alTrials.gov/s	how/NCT014	20341				
26	19	Nov-16	https://Clinic	alTrials.gov/s	how/NCT022	66706				
27 28	20	Sep-12	https://Clinic	alTrials.gov/s	how/NCT008	67789				
29	21	Dec-16	https://Clinic	alTrials.gov/s	how/NCT028	79981				
30	22	Jun-15	https://Clinic	alTrials.gov/s	how/NCT012	69541				
31 32	23	Jan-18	https://Clinic	alTrials.gov/s	how/NCT022	76482				
33	24	Dec-18	https://Clinic	alTrials.gov/s	how/NCT026	63596				
34	25	Sep-17	https://Clinic	alTrials.gov/s	how/NCT025	55059				
35	26	Apr-17	https://Clinic	alTrials.gov/s	how/NCT022	97815				
36 37	27	Dec-14	https://Clinic	alTrials.gov/s	how/NCT022	24040				
38	28	Aug-22	https://Clinic	alTrials.gov/s	how/NCT027	75968				
39	29				how/NCT026					
40 41	30	Dec-19	https://Clinic	alTrials.gov/s	how/NCT027	83859				
42	31	Apr-17	https://ClinicalTrials.gov/show/NCT01994993							

1,											
2		AC	AD	AE	AF	AG					
3	32			alTrials.gov/s							
4 5	33	May-17	https://Clinic	alTrials.gov/s	how/NCT026	88790					
6	34	Dec-12	https://Clinic	:alTrials.gov/s	how/NCT003	23219					
7	35	Feb-18	https://Clinic	alTrials.gov/s	how/NCT027	50761					
8	36	Dec-17	https://Clinic	alTrials.gov/s	how/NCT024	66438					
9	37	Sep-17	https://Clinic	os://ClinicalTrials.gov/show/NCT02260102							
11	38	Jun-16	https://Clinic	alTrials.gov/s	how/NCT026	94458					
12	39	Feb-17	https://Clinic	alTrials.gov/s	how/NCT015	40838					
13 14	40	null	https://Clinic	alTrials.gov/s	how/NCT003	68498					
15	41	Dec-13	https://Clinic	alTrials.gov/s	how/NCT017	85641					
16	42	Sep-20	https://Clinic	alTrials.gov/s	how/NCT025	54383					
17	43	Mar-16	https://Clinic	alTrials.gov/s	how/NCT012	65173					
18 19	44	Jan-17	https://Clinic	alTrials.gov/s	how/NCT023	35905					
20	45	Dec-19	https://Clinic	alTrials.gov/s	how/NCT029	22686					
21	46	Dec-20	https://Clinic	alTrials.gov/s	how/NCT028	48820					
22 23	47	Oct-17	https://Clinic	alTrials.gov/s	how/NCT024	75733					
24	48	May-17	https://Clinic	alTrials.gov/s	how/NCT023	72461					
25	49	Aug-12	https://Clinic	alTrials.gov/s	how/NCT015	53006					
26	50	Mar-17	https://Clinic	alTrials.gov/s	how/NCT025	27681					
27 28	51	Sep-17	https://Clinic	alTrials.gov/s	how/NCT022	10169					
29	52	Oct-17	https://Clinic	alTrials.gov/s	how/NCT024	97781					
30	53	Apr-18	https://Clinic	alTrials.gov/s	how/NCT028	14916					
31 32	54	Apr-17	https://Clinic	alTrials.gov/s	how/NCT022	10325					
33	55	Nov-16	https://Clinic	alTrials.gov/s	how/NCT028	01370					
34	56	Aug-18	https://Clinic	alTrials.gov/s	how/NCT027	60420					
35	57	Aug-18	https://Clinic	alTrials.gov/s	how/NCT026	78195					
36 37	58	Dec-17	https://Clinic	alTrials.gov/s	how/NCT026	05122					
38	59	Feb-17	https://Clinic	alTrials.gov/s	how/NCT025	70490					
39	60	Dec-16	https://Clinic	alTrials.gov/s	how/NCT024	43285					
40 41	61	Jan-17	https://Clinic	alTrials.gov/s	how/NCT023	34124					
42	62	Feb-17	https://Clinic	:alTrials.gov/s	how/NCT022	18372					

1,		•					0 N
2		AC	AD	AE	AF	AG	93
3	63	Jul-10	https://Clinic	calTrials.gov/s	show/NCT010	032499	on .
4 5	64	Feb-16	https://Clinic	alTrials.gov/s	show/NCT02!	598362	13 0
6	65	Mar-17	https://Clinic	alTrials.gov/s	show/NCT028	878031) Cto
7	66	Dec-17	https://Clinic	calTrials.gov/s	show/NCT02	790996	be _r
8	67	Oct-16	https://Clinic	calTrials.gov/s	show/NCT02	712307	201
9 10	68	Oct-17	https://Clinic	calTrials.gov/s	show/NCT024	424734	17. [
11	69		https://Clinic				Jo _w
12	70		https://Clinic				nloa
13	71	-	https://Clinic	-			ad ee
14 15			https://Clinic	_			d fro
16	73		https://Clinic	_			m r
17	74		https://Clinic				₹.
18 19	75		https://Clinic				//bm
20	76		https://Clinic				mjopen.bmj.com/ on April 20, ;
21	77		https://clinic				en.b
22				<u> </u>			i j
23 24							SOM SOM
25) on
26							Αp
27							r <u>i.</u> 2
28 29							0, 2
30							024
31							by
32							gue
33 34							6293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected
35							Prot
36							ect
37							Q .

BMJ Open

A global shortage of neonatal and pediatric antibiotic trials: rapid review.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016293.R3
Article Type:	Research
Date Submitted by the Author:	17-Aug-2017
Complete List of Authors:	Thompson, Georgina; St George's University of London, Infection and Immunity; University of Exeter Medical School Barker, Charlotte; St George's University of London, Infection and Immunity; University College London Institute of Child Health Folgori, Laura; St George's University of London, Paediatric Infectious Diseases Research Group Bielicki, Julia; St George's University London, Division of Clinical Sciences; University of Basel Children's Hospital Bradley, John; University of California San Diego School of Medicine, Department of Pediatrics Lutsar, Irja; University of Tartu, Department of Medical Microbiology sharland, mike; St George's University of London, Infection and Immunity; St Georges Hospital, Paedaitric Infectious Diseases Unit
 Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Infectious diseases
Keywords:	Paediatric infectious disease & immunisation < PAEDIATRICS, INFECTIOUS DISEASES, PAEDIATRICS

SCHOLARONE™ Manuscripts

A global shortage of neonatal and pediatric antibiotic trials: rapid review.

G. Thompson^{1,2}, C. I. Barker^{1,3,4}, L. Folgori¹, J. A. Bielicki^{1,5}, J. S. Bradley^{6,7}, I. Lutsar⁸, M. Sharland^{1,4}

Corresponding author

Georgina Thompson

Paediatric Infectious Diseases Research Group

St George's, University of London

Jenner Wing, Level 2, Room 2.216F, Mail Point J2C

London SW17 0RE

Telephone: 07880325494 Email: gt274@exeter.ac.uk

Word count: 2<u>4</u>3<u>4</u>

¹Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, UK

²University of Exeter, Exeter, UK

³ Inflammation, Infection and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK

⁴ St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, UK

⁵ Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland

⁶ Department of Pediatrics, School of Medicine, University of California San Diego, CA, United States

⁷ Rady Children's Hospital San Diego, San Diego, CA, United States

⁸ Department of Medical Microbiology, University of Tartu, Tartu, Estonia

ABSTRACT

Objectives: There have been few clinical trials (CTs) on antibiotics which inform neonatal and pediatric drug labelling. The rate of unlicensed and off-label prescribing in pediatrics remains high. It is unclear whether the current neonatal and pediatric antibiotic research pipeline is adequate to inform optimal drug dosing. Using the ClinicalTrials.gov registry, this review aims to establish the current global status of antibiotic CTs in children up to 18 years of age.

Methods: Studies were identified using key word searches of the ClinicalTrials.gov registry, and were manually filtered using pre-specified inclusion/exclusion criteria.

Results: 76 registered open CTs of antibiotics in children were identified globally; 23 (30%) were recruiting newborns (only 8 (11%) included preterm neonates), 52 (68%) infants and toddlers, 58 (76%) children, and 54 (71%) adolescents. The majority of registered trials were late phase (10 (15%) Phase 3 and 23 (35%) Phase 4/pharmacovigilance). Two-thirds were sponsored by non-profit organisations, compared to pharmaceutical companies (50 (66%) vs. 26 (34%) respectively). A greater proportion of non-profit funded trials were efficacy-based strategic trials (n= 34, 68%), in comparison to industry-led trials, which were most often focused on safety or pharmacokinetic data (n=17, 65%). Only 2 of the 37 antibiotics listed on the May 2016 Pew Charitable Trusts antibiotic development pipeline, currently being studied in adults, appear to be currently recruiting in open pediatric CTs.

Conclusions: This review highlights that very few pediatric antibiotic CTs are being conducted globally, especially in neonates. There is a striking disparity noted between antibiotic drug development programmes in adults and children.

Strengths and limitations of this study

- A narrative literature review of registered clinical trials in children.
- Explicit reproducible methodology.
- Search strategy limited to ClinicalTrials.gov and EudraCT. Entirety of clinical research in this field might not have been captured.
- Search strategy was limited to open clinical trials. Active but not yet recruiting trials were not captured.

INTRODUCTION

Widespread unlicensed and off-label prescribing in pediatrics persists – as high as 11.4% and 46.5%, respectively – yet the paucity of clinical research involving children that is conducted to inform optimal drug dosing, licensing and labelling remains a problem.[1] For certain medicines, drug efficacy can be extrapolated from adult data provided that the pathology and drug exposure are the same, or sufficiently similar in children as in adults.[2,3]. Although differences in drug

pharmacokinetics (PK) in neonates and children can lead to adverse reactions that are not seen in adult populations, these are very rare.[4] Suboptimal antibiotic dosing, including under- and overdosing, can lead to toxicity, treatment failure, and may drive antimicrobial resistance by encouraging selection pressures on drug-resistant strains of bacteria.[5]

Since antibiotics are the most commonly prescribed medicines in children, it is important to maximize our understanding of their PK profiles to help determine optimal drug dosing and ultimately to improve outcomes.[6] In the last decade several initiatives have been established to encourage pediatric medicines research, bridging the gap between adult and pediatric drug development plans. Such initiatives include the Pediatric Regulation (Pediatric Investigation Plans (PIPs), introduced by the European Medicines Agency (EMA),[7] and Pediatric Study Plans (PSPs), by the U.S. Food and Drug Administration (FDA)).[8] Despite this, there have been few advances in antibiotic development for this population.[9]

The global status of clinical research on antibiotics in pediatrics is unknown. Using registered records of clinical trials (CTs) on *ClinicalTrials.gov*, this review aims (i) to summarise the current global status of registered antibiotic research in children and neonates, and (ii) to stimulate discussion and collaboration among the relevant stakeholders on the neglect of antibiotic research in children.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

METHODS

Data sources

The *ClinicalTrials.gov* registry (last accessed 8th November 2016) is an international platform for the registration of CTs. It is a web-based registry, developed in 2000 by the National Institutes of Health (NIH) and the FDA, to which trials from 50 states and 163 countries around the world are registered. Information provided for each trial is updated periodically by the trial's sponsoring organisation. The database has a specific child filter, which uses a key word paradigm to select all registered trials recruiting patients/participants up to 18 years of age.

Study selection

Our records were identified using suitable key word searches, in which the final search terms were (antimicrobial* OR antibiotic* OR anti-infective agent*) AND Child AND Open Studies. All identified trials were filtered manually using inclusion and exclusion criteria. Interventional and observational trials on antimicrobials recruiting children up to 18 years of age were considered eligible for inclusion. No specific temporal filter was applied since only open or ongoing clinical trials were of interest. The following records, which were not investigating one or more antibiotics, were excluded:

trials of antiseptics, antifungals, antiprotozoals, antivirals, and pro- or pre- biotics. The following records, which were investigating an antibiotic were excluded: trials involving tuberculosis, malaria, cystic fibrosis, HIV, febrile neutropenic patients, topical or inhalational treatments, prophylactic antibiotics, or records investigating alternative use for antibiotics (for example as an anti-inflammatory agent).

The searches were conducted by GT. All eligible records were identified via manual filtering by GT CIB, LF and MS, and any disagreements regarding inclusion and exclusion of records were resolved through discussion.

Data extraction

The following information was collected from the included records: unique NCT number, recruitment status, study design, trial phase, study sponsor, age group and sex eligibility, clinical indication, geographic region of recruitment, antibiotic being investigated, and endpoint classification.

Outcomes were categorised as safety, efficacy or PK. Economic setting (based on geographic region of recruitment) was classified using The World Bank classification to differentiate between Low Income Countries (LICs), Lower Middle Income Countries (LMICs), Upper Middle Income Countries (UMICs), and High Income Countries (HICs).[10]

The specific class of antibiotic studied in each trial was identified and classified using the World Health Organisation (WHO) ATC/DDD index.[11] To investigate whether novel antibiotics are being studied in pediatric populations, the antibiotics currently studied in children were compared with the *Pew Charitable Trusts Antibiotics Currently in Clinical Development* pipeline, which identifies novel antibiotics currently under development for the U.S. market.[12]

RESULTS

Our search identified 1056 records. 603 records were excluded on title because they were studies not involving an antimicrobial. 453 records were investigating one or more antimicrobials and recruiting children below 18 years of age. Among the 195 trials investigating antibiotics, 76 fulfilled our inclusion and exclusion criteria and were included in the final analysis. Reasons for exclusion are summarised in Figure 1. Details of included studies can be found in Supplementary file 1.

All 76 CTs identified were open as of 8th November 2016, and 63 (83%) of these were recognised as recruiting participants on this date (Table 1). All trials stated recruitment of both male and female participants.

Table 1. Characteristics of clinical trials.

Characteristic	Category	Number of studies, n (%)
Age group	Preterm neonates	1 (1) ^a
	Neonates (total)	23 (30)
	Infants and toddlers	52 (68)
	Children	58 (76)
	Adolescents	54 (71)
Recruitment status	Recruiting	63 (83)
	Not yet recruiting	13 (17)
Study design	Interventional	66 (87)
	Observational	10 (13)
Trial phase ^b	Phase 1	10 (15)
	Phase 1-2	1 (2)
	Phase 2	9 (14)
	Phase 2-3	3 (5)
	Phase 3	10 (15)
	Phase 4	23 (39)
	Not specified	10 (15)
Sponsor	Industry	26 (34)
	Non-profit	50 (66)
Geographic region	Africa	8 (11)
	Asia	16 (21)
	Europe	22 (29)
	Latin America	6 (8)
	North America	34 (45)
	Oceania	5 (7)
Antibiotic class		4 (5)
	J01C Beta-lactam, Penicillin	25 (33)
	J01D Other Beta-lactam	22 (29)
	J01E Sulfonamides and trimethoprim	7 (9)
	J01F Macrolide, Lincosamide, Streptogramin	14 (18)
	J01G Aminoglycoside	2 (3)
	J01M Quinolone	8 (11)
	J01X Other antibiotic classes ^c	21 (28)
	J01 Not specified	2 (3)

Totals for Age group, Geographic region, and Antibiotic class do not add up to total number of clinical trials (76) as some trials contributed to more than one sub group.

Age group

Twenty three of the 76 trials (30%) were recruiting newborns (0 to 28 days). One of these 23 trials focused solely on recruiting preterm newborns (a further 7 CTs mentioned inclusion of preterm newborns in inclusion criteria). Of the remaining records, 52 (68%) were recruiting infants and toddlers (28 days to 23 months), 58 (76%) children (2 to 11 years), and 54 (71%) adolescents (11 up to 18 years). 29 (38%) trials did not focus solely on the recruitment of children or neonates, with age ranges also spanning across adult populations.

^à 7 further trials mentioned inclusion of preterm babies in the inclusion criteria.

^b Trial phase % based on percentage of interventional trials.

^c J01X includes glycopeptides, polymyxins, imidazole and nitrofuran derivatives.

Study type

Interventional trials were most frequently identified (n=66, 87%) with only 10 (13%) observational trials noted. Of the interventional trials, the majority were in the later stages of development; 10 (13%) in Phase 1, 1 (2%) between Phase 1 and 2, 9 (14%) in Phase 2, 3 (5%) between Phase 2 and 3, 10 (15%) in Phase 3 and 23 (35%) in Phase 4. In 10 (15%) cases, a trial phase was not specified.

Sponsor and Endpoint Classification

Fifty trials (66%) were sponsored by non-profit organisations (being university, hospital or government funded), and 26 sponsored by industry (34%). The endpoint classification of the majority of trials (n=43, 57%) was reported as efficacy (Table 2). A greater proportion (n=34, 68%) of non-profit studies measured the efficacy of the drugs as the primary endpoint, with less emphasis on collection of PK or safety data (n=16, 32%). In comparison pharmaceutical-led trials focussed on early PK and safety studies over the drug's efficacy (n=17, 65% vs. n=9, 35% respectively).

Table 2. Clinical trial endpoint classification of identified clinical trials stratified by trial sponsor. Endpoint classification determined by planned primary outcomes.

Endpoint classification	Industry	Non-profit	Total (%)
Efficacy	9	34	43 (57)
Safety	10	2	12 (16)
PK	7	14	21 (28)

Geographic region

The most frequently recruiting geographic region was North America (n=34, 45%). 22 (29%) trials recruiting in Europe and 16 (21%) in Asia were identified, 6 (8%) in Latin America, 8 (11%) in Africa, and 5 (7%) in Oceania. Most trials were recruiting in HICs (n=54, 71%), with fewer trials recruiting in LICs (n=4, 5%), LMICs (n=4, 5%), UMICs (n=11, 14%) or a combination of UMICs and HICs (n=3, 4%).

Indication

The most common treatment indications investigated were lower respiratory tract infection (n=12, 16%) and sepsis (n=11, 14%), followed by upper respiratory tract infection (n=8, 11%), intraabdominal infection (IAI) (n=8, 11%), urinary tract infection (UTI) (n=7, 9%), complicated skin and soft tissue infection (cSSTI) (n=6, 8%), CNS infection (n=3, 4%), and bone and joint infection (n=1, 1%) (Table 3).

Table 3. Clinical indication of identified clinical trials stratified by age group being recruited.

				Age group		
		Preterm		Infants and		
Indication	Total (%)	neonates	Neonates ^a	toddlers	Children	Adolescents
Unspecified Bacterial Infection	18 (24)	-	11	15	15	14
Lower Respiratory Tract Infection	12 (16)	1	3	12	13	5
Sepsis	11 (14)	-	6	9	9	11
Upper Respiratory Tract	8 (11)	1	1	5	9	7
Intra-abdominal Infection	8 (11)	-	3	5	5	7
Urinary Tract Infection	7 (9)	-	2	6	7	6
Skin and Soft Tissue Infection	6 (8)	-	3	4	4	8
CNS infection	3 (4)		1	4	4	4
Bone and Joint Infection	1 (1)		-	1	1	1
			30	61	67	63

Age group totals do not add up to total number of clinical trials (76) as some trials contributed to more than one age group.

a refers to total number of preterm and term neonates. i) as some

Antibiotic class

The majority of antibiotics being investigated were beta-lactams (n=47, 62%), followed by other antibiotic classes (J01X, including vancomycin, telavancin and dalbavancin) (n=21, 28%). Macrolides or lincosamides (J01F) were the next most commonly studied antibiotic classes (n=14, 18%). Very few trials were investigating of tetracyclines (J01A) (n=4, 5%), Sulphonamides and trimethoprim (J01E) (n=7, 9%), aminoglycosides (J01G) (n=2, 3%), or quinolones (J01M) (n=8, 11%). 2 CTs (3%) did not specify the class of antibiotic being investigated. 16 (21%) trials were investigating more than one antibiotic; these trials counted towards more than one J01 category. The breakdown of J01 categories, as per WHO ATC/DDD classification.[11] is described in Table 1.

Antibiotic pipeline

Of the 37 antibiotics listed in the May 2016 edition of the Pew Charitable Trusts Antibiotic Pipeline (last accessed 10th June 2016),[12] as noted by the EMA Opinions and Decisions on Pediatric Investigation Plans, 5 had an agreed PIP: Imipenem/Cilastatin+Relebactam, Cadazolid, Carbavance (Meropenem+Vaborbactam), Eravacycline, and Solithromycin.[8] As of 8th November 2016, our search found that only 2 of these 37 antibiotics listed (Carbavance and Solithromycin) were being investigated in 1 and 2 on-going CTs in pediatric patients, respectively (Table 4). A PIP was agreed for Carbavance in 2015 for treatment of Gram-negative infections, and for Solithromycin in 2016 for the treatment of gonococcal infection, and later for treatment of anthrax, tularaemia, and bacterial pneumonia. PIPs were agreed in 2015 for treatment of UTI and complicated IAI with Eravacycline, and in 2016 for treatment of Clostridium difficile infection with Cadazolid and of Gramnegative bacterial infection with Imipenem/Cilastin+Relebactam.[13] Despite this, we could not identify any registered trials of these antibiotics in our search.

Table 4. Comparison of antibiotic development pipeline in adults and children. Adapted from Pew Charitable Trusts "Antibiotics currently in clinical development" pipeline (last accessed October 2016).[12]

Antibiotic	Phase	Manufacturer	Indication	Drug development in Adults	Pediatric Investigation Plan for drug development in Children	Number of open clinical trials in children
WCK 4873	Phase 1	Wockhardt Ltd.	Bacterial infection	√ √	-	-
MGB – BP – 3	Phase 1	MGB Pharma Ltd.	Clostridium difficile infection	✓	-	-
OP0595	Phase 1	Meiji Seika Pharma Co. Fedora Pharmaceuticals	Bacterial infection	1	-	-
BAL30072	Phase 1	Basilea Pharmaceuticals	Multidrug resistant gram negatives	✓	-	-
CRS3123	Phase 1	Crestone Inc.	Clostridium difficile infection	1	-	-
LCB01 - 0371	Phase 1	Legochem Biosciences Inc.	Bacterial infection		-	-
TD – 1607	Phase 1	Theravance Biopharma Inc.	Acute skin infection, HAP, VAP, bacteraemia	/	-	-
WCK 2349	Phase 1	Wockhardt Ltd.	Bacterial infection	✓	-	-
WCK 771	Phase 1	Wockhardt Ltd.	Bacterial infection	1	-	-

Zidebactam+Cefepime	Phase 1	Wockhardt Ltd.	cUTI, HAP, VAP	✓	-	-
TP – 271	Phase 1	Tetraphase Pharmaceuticals Inc.	CAP	1	-	-
Aztreonam – Avibactam	Phase 2	Astrazeneca PLC Allergan PLC	cIAI	1	-	-
MRX – 1	Phase 2	MicuRx Pharmaceuticals Inc.	Acute skin infection (systemic)	1	-	-
Debio 1450	Phase 2	Debiopharm International SA	Acute skin infection, Staphylococcus <i>spp</i> . associated osteomyelitis	1	-	-
ETX0914	Phase 2	Entasis Therapeutics Inc.	Uncomplicated gonorrhoea	1	-	-
P0L7080	Phase 2	Polyphor Ltd.	Pseudomonas spp. associated VAP, lower respiratory tract infection, bronchiectasis	1	-	-
Brilacidin	Phase 2	Cellceutix Corporation	Acute skin infection (systemic)	1	-	-
Ceftaroline+Avibactam	Phase 2	AstraZeneca PLC Allergan PLC	Bacterial infection		-	-
CG400549	Phase 2	Crystal Genomics Inc.	Acute skin infection, osteomyelitis	7	-	-
Finafloxacin	Phase 2	MerLion Pharmaceuticals Pte Ltd.	cUTI, cIAI, acute skin infection, pyelonephritis	1	-	-

Geptidacin	Phase 2	GlaxoSmithKline PLC	cUTI, CAP, uncomplicated urogenital gonorrhoea	~	-	-
Nemonoxacin	Phase 2	TaiGen Biotechnology Co. Ltd.	CAP, acute skin infection, diabetic foot	1	-	-
Ramoplanin	Phase 2	Nanotherapeutics Inc.	Prevent recurrent Clostridium difficile infection	>	-	1
Ridinilazole	Phase 2	Summet Therapeutics Inc.	Clostridium difficile	~	-	1
Zabofloxacin	Phase 3	Dong Wha Pharmaceuticals Co. Ltd.	CAP	>	-	-
S – 649266	Phase 3	Shionogi Inc.	HAP, VAP, cUTI, bloodstream infection	✓	-	-
Omadacycline	Phase 3	Paratek Pharmaceuticals Inc.	CAP, cUTI, acute skin infection	✓	-	-
Lefamulin	Phase 3	Nabriva Therapeutics AC	CAP, HAP, VAP, acute skin infection, osteomyelitis, prosthetic joint infections	✓	-	-
Imipenem / Cilastatin+Relebactam	Phase 3	Merck & Co. Inc.	cUTI, cIAI, HAP, VAP, acute pyelonephritis		✓	-
Iclaprim	Phase 3	Motif Bio PLC	HAP, acute skin infection	>	-	-
Cadazolid	Phase 3	Actelion Pharmaceuticals Ltd.	Clostridium difficile	√	1	-
Taksta (fusidic acid)	Phase 3	Cempra Inc.	Acute skin infection, prosthetic joint infection	✓	-	-

Carbavance (Meropenem+Vaborbactam)	Phase 3	Rempex Pharmaceuticals Inc.	cUTI, cIAI, HAP, VAP, febrile neutropenia, bacteraemia, acute pyelonephritis ^a	1	1	1
Delafloxacin (Baxdela)	Phase 3	Melinta Therapeutics Inc.	Acute skin infections, CAP, cUTI	✓	Waiver granted	1
Eravacycline	Phase 3	Tetraphase Pharma Inc.	clAl and cUTI	1	1	-
Plazomicin	Phase 3	Achaogen Inc.	cUTI, HAP, VAP, cIAI, catheter-associated bloodstream infection ^a	✓	-	-
Solithromycin	Phase 3	Cempra Inc.	CAP, uncomplicated urogenital gonorrhoea, urethritis	1	1	2

HAP, hospital-acquired pneumonia; VAP, ventilator-acquired pneumonia; cUTI, complicated Urinary Tract Infection; CAP, Community-acquired pneumonia; IOIIIa, CC. cIAI, complicated Intra-abdominal Infection.

^a target carbapenem resistant enterobacteriaceae

3 4

5 6

7

8 9

10

11

17

21

23

25

27

31

37

39

41

47

49

51

57

DISCUSSION

Our search identified 76 clinical trials investigating one or more antibiotics recruiting children between 0 and 18 years of age. This is low in comparison to the number of on-going trials in adults, despite children representing around a quarter of the global population.[14, 15] A review of completed CTs in the U.S. between 2000 and 2010 identified a total of 4078 adult trials compared to just 294 that had recruited children.[16] In our study, the lack of trials recruiting neonates is striking. Just 23 of the 76 trials identified were recruiting neonates, and remarkably just 8 CTs globally were recruiting preterm neonates. There are broadly two types of pediatric trials conducted globally. Either pharmaceutical-led Phase 1/2 PK and safety trials (n=17) being conducted in the HIC setting. or investigator led, often pragmatic, late phase efficacy trials in the LMIC setting (n=34), with a greater proportion of on-going trials being sponsored by non-profit organisations over industry (66% compared to 34%).. As of April 2016, there were 17 antibiotic PIPs agreed by the EMA,[8] covering a range of indications, most commonly cSSTI, complicated IAI (cIAI), and complicated UTI (cUTI).[13] In contrast, treatments for respiratory and systemic infections, the most common clinical indications for antibiotics in pediatrics, are not currently being evaluated.[14] Thirty-seven antibiotics are currently being developed in adults, yet to our knowledge just 2 of these are being studied in children. Some classes of antibiotics that may be of higher risk for children (tetracyclines and fluoroguinolones) may not be pursued as aggressively for pediatric approvals due to wellrecognized issues of toxicity, particularly when safer alternatives are widely available. Given that Gram-negative sepsis is a growing problem in neonates, with a significant increase in the proportion of multi-resistant Gram-negative pathogens,[15] the substantial lag time between the submission date (for PIP or waiver) and declared completion date of PK studies in adults is a real concern: although, there is value in generating substantial safety data in adults prior to exposing children and newborns to potentially toxic new agents.

BMJ Open: first published as 10.1136/bmjopen-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

In 2013, a similar review of European pediatric clinical trials identified 31 trials of antibiotics approved for adults by the EMA in 2000 that were recruiting children in Europe (compared to the 22 trials we found recruiting in Europe). They included both published and ongoing trials, which likely accounts for the higher number of trials reported. They similarly found a very small proportion of neonatal trials (2 of 31), as well as a greater proportion of efficacy-based trials.[9] A review of interventional trials registered with ClinicalTrials.gov between 2007 and 2010 found that only 17% had recruited children below 18 years of age.[17] A similar review of antimicrobial CTs conducted in the U.S. between 2000 and 2012 reported that just 5% had recruited only children compared to 74% that recruited only adults, and that, as we have found, the trials were sponsored primarily by nonprofit organisations (60% versus 30% by industry).[14] In our search of global trials, 39% of registered CTs reported collection of PK data in comparison to a 2009 paediatrc PK research review that reported 24% of registered CTs would be collecting PK data.[18]

The search strategy used has some limitations. Since the search was limited to clinical trials registered with *ClinicalTrials.gov*, it is possible other open or on-going trials registered with alternative platforms (for example, the WHO International Clinical Trials Registry Platform [ICTRP]) will have been missed. Together with *ClinicalTrials.gov* these could help to establish the entirety of current clinical research in this field. We did however search EudraCT, and found no further studies beyond those captured on *ClinicalTrials.gov*. Our search was also limited to open CTs, thereby missing active but not yet recruiting trials, and those that had already closed to recruitment. The information recorded for each trial registered with *ClinicalTrials.gov* is updated by the trial investigators, and therefore relies on them to periodically update the registry. Occasionally, information such as recruitment status might not be updated in real time.

Concerns around the growing threat of antimicrobial resistance have prompted several new initiatives. In 2016, the EMA published a draft Concept Paper to propose the development of an Addendum to the guideline on the evaluation of new anti-bacterial products for treatment of bacterial infections in children.[19] At the same time, the Clinical Trials Transformation Initiative (CTTI) is currently focused on the identification of key barriers in the conduct of pediatric antibacterial CTs, which hamper their successful implementation into clinical practice.[20] Recent evidence states that overall, antibiotic CTs make up less than 1% of all registered pediatric CTs, and that trial completion is slow, with an average time to completion of around two years.[21] There are specific areas where the design and conduct of pediatric antibiotic CTs can be harmonized and simplified, such as the standardisation of the inclusion and exclusion criteria for specific Clinical Infection Syndromes, and improved bridging of safety and efficacy data from other age groups; these advances could improve trial conduct and efficiency in children.[22]

CONCLUSIONS

This review highlights that very few pediatric antibiotic CTs are being conducted globally, particularly in neonates. There is a marked disparity between antibiotic drug development programmes in adults and children. Many issues contribute to the difficulties in conducting pediatric antibiotic clinical trials. The lack of regulatory guidance, vulnerability of this population, issues with informed consent and assent, and lack of research-experienced hospital personnel all present challenges in study design, delivery and recruitment. Delays in the initial start-up of CTs in pediatrics due to pediatric-specific protocol issues and complicated ethical approval continue to discourage both academic and pharmaceutical interest. The limited data presented here suggest that the dismal state of pediatric antibiotic research continues. Earlier collaboration between global academic research networks and pharmaceutical companies is now vital to accelerate progress.

ACKNOWLEDGEMENTS

Contributors MS, CIB, GT, LF and JAB designed the study. Searches were conducted by GT. Eligible records were identified via manual filtering by GT CIB, LF and MS. IL and JSB commented on study design and assisted with drafting the manuscript.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. CIB was funded as a Clinical Research Fellow by the Global Research in Paediatrics (GRiP) Network of Excellence, part of the European Union's Seventh Framework Programme for research, technological development and demonstration (FP7/2007–2013, grant agreement number 261060).

Conflict of interest None declared.

Data sharing statement Full dataset is available on request.

REFERENCES

- 1. Corny J, Lebel D, Bailey B et al. Unlicensed and Off-Label Drug Use in Children Before and After Pediatric Governmental Initiatives. J Pediatr Pharmacol Ther. 2015;20(4):316–28.
- European Medicines Agency. Concept paper on extrapolation of efficacy and safety in medicine development.
 - http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/04/WC50 0142358.pdf. (accessed May 2016)
- Dunne J, Rodriguez WJ, Murphy MD et al. Extrapolation of Adult Data and Other Data in Pediatric Drug-Development Programs. Pediatrics. 2011; http://pediatrics.aappublications.org/content/early/2011/10/20/peds.2010-3487.abstract (accessed June 2016)
- 4. Kearns GL, Abdel-Rahman SM, Alander SW et al. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.
- Theuretzbacher U, Van Bambeke F, Cantón R et al. Reviving old antibiotics. Internet J Antimicrob Chemother. 2015;
 http://jac.oxfordjournals.org/content/early/2015/06/10/jac.dkv157.abstract (accessed June 2016)
- 6. van der Meer JW, Gyssens IC. Quality of antimicrobial drug prescription in hospital. Clin Microbiol Infect. 2001;7:12–5.
- 7. European Medicines Agency. EMA Opinions and decisions on Paediatric Investigation Plans. 2016:
 - http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/pip_search.jsp&mid =WC0b01ac058001d129. (accessed June 2016)

- Guidance for industry. Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/uc m360507.pdf. (accessed June 2016)
- Garazzino S, Lutsar I, Bertaina C et al. New antibiotics for paediatric use: a review of a decade of regulatory trials submitted to the European Medicines Agency from 2000--why aren't we doing better? Int J Antimicrob Agents. 2013;42(2):99–118.
- The World Bank. The World Bank list of economies. 2015;
 http://siteresources.worldbank.org/DATASTATISTICS/Resources/CLASS.XLS (accessed October 2016)
- The World Health Organisation. WHO ATC/DDD Index. 2016;
 http://www.whocc.no/atc_ddd_index/. (accessed March 2016)
- 12. The Pew Charitable Trusts. Antibiotics Currently in Clinical Development. 2016; http://www.pewtrusts.org/~/media/assets/2016/05/antibiotics-currently-in-clinical-development.pdf?la=en. (accessed May 2016)
- 13. Lutsar I. Often neglegted: paediatric drug development a regulatory and clinical view. In Amsterdam, Netherlands; 2016. (\$219 Symposium lecture.).
- 14. Stockmann C, Sherwin CMT, Ampofo K et al. Characteristics of antimicrobial studies registered in the USA through ClinicalTrials.Gov. Int J Antimicrob Agents. 2013;42(2):161–6.
- 15. Versporten A, Bielicki J, Drapier N et al. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: developing hospital-quality indicators of antibiotic prescribing for children. J Antimicrob Chemother. 2016;71(4):1106–17.
- 16. Bielicki JA, Lundin R, Sharland M. Antibiotic Resistance Prevalence in Routine Bloodstream Isolates from Children's Hospitals Varies Substantially from Adult Surveillance Data in Europe. Pediatr Infect Dis J. 2015;34(7):734–41.
- 17. Califf RM, Zarin DA, Kramer JM et al. Characteristics of clinical trials registered in ClinicalTrials.gov, 2007-2010. JAMA. 2012;307(17):1838–47.
- 18. Viergever RF, Rademaker CMA, Ghersi D. Pharmacokinetic research in children: an analysis of registered records of clinical trials. BMJ Open. 2011;1(1):e000221.
- European Medicines Agency. Concept paper on an addendum to the guideline on the evaluation of medicinal products indicated for treatment of bacterial infections to address paediatric-specific clinical data requirements. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/04/WC50 0205026.pdf. (accessed July 2016)
- Clinical Trials Transformation Initiative. https://www.ctti-clinicaltrials.org/projects/pediatrictrials. (accessed July 2016)

- 21. Clinical Trials Transformation Initiative. AACT database. https://www.ctti-

LIST OF FIGURES

- Figure 1. Flow chart. Clinical trial selection process.
- **Table 1.** Characteristics of clinical trials.
- **Table 2.** Clinical trial endpoint classification of identified clinical trials stratified by trial sponsor. Endpoint classification determined by planned primary outcomes.
- **Table 3.** Clinical indication of identified clinical trials stratified by age group being recruited.
- **Table 4.** Comparison of antibiotic development pipeline in adults and children. Adapted from Pew Charitable Trusts "Antibiotics currently in clinical development" pipeline (last accessed October 2016).[12]

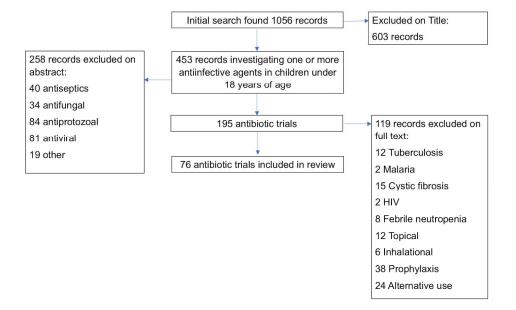


Figure 1. Flow Chart. Clinical trial selection process.

254x190mm (300 x 300 DPI)

2 [А		993	С	D
3	1	NCT Number	Title	, U	Recruitment	Study Results
4 5	2	NCT02539407	Population Pharmacokinetics of Anti-infectives in Critically III Children	13 (Recruiting	No Results Available
6	3	NCT02935374	Effect of Antimicrobial Treatment of Acute Otitis Media on the Intestinal Microbiome in Child	€eı	Not yet recruiting	No Results Available
7	4	NCT02899143	Short-course Antimicrobial Therapy in Sepsis	ber	Recruiting	No Results Available
8	5	NCT01595529	The SCOUT Study: Short Course Therapy for Urinary Tract Infections in Children	201	Recruiting	No Results Available
9 10	6	NCT02380352	Short-course Antimicrobial Therapy for Paediatric Respiratory Infections	7 [Not yet recruiting	No Results Available
11	7	NCT02891915	Trial to Evaluate Beta-Lactam Antimicrobial Therapy of Community Acquired Pneumonia in C	<u></u> ilc	Recruiting	No Results Available
12	8	NCT02746276	Optimising Antibiotic Treatment for Sick Malnourished Children	ปกล	Recruiting	No Results Available
13 14	9	NCT02917551	BALANCE on the Wards: A Pilot RCT	ded	Not yet recruiting	No Results Available
15	10	NCT01243437	A Clinical Trial to Evaluate the Safety and Efficacy of Ciprofloxacin in the Treatment of Plague	<u></u> jîn	Recruiting	No Results Available
16	11	NCT02635191	Tailored Therapy for Helicobacter Pylori in Children	ַ <u></u>	Recruiting	No Results Available
17	12	NCT01522105	Daptomycin in Pediatric Patients With Bacterial Meningitis	5 	Recruiting	No Results Available
19	13	NCT02456974	Antibiotic Dosing in Pediatric Intensive Care	3	Recruiting	No Results Available
20	14	NCT00579956	A Randomized Double Blinded Comparison of Ceftazidime and Meropenem in Severe Melioid	ps	Recruiting	No Results Available
21	15	NCT00545961	Middle Meatal Bacteriology During Acute Respiratory Infection in Children	D D	Not yet recruiting	No Results Available
22			Pharmacokinetics of Understudied Drugs Administered to Children Per Standard of Care	<u>შ</u> .	Recruiting	No Results Available
24	17	NCT02475876	PK of Clindamycin and Trimethoprim-sulfamethoxazole in Infants and Children	<u> </u>	Recruiting	No Results Available
25	18		Co-trimoxazole as Maintenance Therapy for Meliodosis		Recruiting	No Results Available
26 27	19	NCT02266706	Pharmacokinetic and Safety Study of Ceftolozane/Tazobactam in Pediatric Participants Recei	į	Recruiting	No Results Available
28	20	NCT00867789	Antibiotics Versus Placebo in the Treatment of Abscesses in the Emergency Department	2	Recruiting	No Results Available
29			A Safety Study of Balsamic Bactrim in Pediatric Participants With Acute Bronchitis	2	Not yet recruiting	No Results Available
30	22		MESS-study MRSA Eradication Study Skl´ne		Recruiting	No Results Available
31 32	23		Study of Tedizolid Phosphate in Adolescents With Complicated Skin and Soft Tissue Infection	=		No Results Available
33	24		Safety and TDM of Continuous Infusion Vancomycin Through Continuous Renal Replacement) h	Not yet recruiting	No Results Available
34			Special Drug Use Investigation of Ciproxan Injection in Pediatrics	Ţ	Recruiting	No Results Available
35 36			Comparative Effectiveness of Antibiotics for Respiratory Infections	<u>)</u>	Recruiting	No Results Available
37		NCT02224040	Typhoid Fever: Combined vs. Single Antibiotic Therapy	_	Recruiting	No Results Available
38			Population Pharmacokinetics of Cephalosporins and Macrolides in Chinese Children With Con			No Results Available
39		NCT02687906	Dose-finding, Pharmacokinetics, Safety, and Tolerability of Meropenem-Vaborbactam in Ped	á tr	Recruiting	No Results Available
40 41	30	NCT02783859	Hospitalised Pneumonia With Extended Treatment (HOPE) Study		Recruiting	No Results Available
42	31	NCT01994993	Antibiotic Safety (SCAMP)		Recruiting	No Results Available

1 _			T	<u>ි</u>		
2		Α		293	С	D
3	32	NCT02258763	Trial on the Ideal Duration of Oral Antibiotics in Children With Pneumonia	on 1	Recruiting	No Results Available
4 5	33	NCT02688790	Study Evaluate the PK Profile of Dalbavancin in Hospitalized Infants and Neonates Patients W	⁄ y th	Recruiting	No Results Available
6	34	NCT00323219	Oral Moxifloxacin Versus Cefazolin and Oral Probenecid in the Management of Skin and Soft	¥is:	Recruiting	No Results Available
7	35	NCT02750761	A Study of Oral and Intravenous (IV) Tedizolid Phosphate in Hospitalized Participants, Ages 2	d	Recruiting	No Results Available
8	36	NCT02466438	Safety and Pharmacokinetics of Piperacillin-tazobactam Extended Infusion in Infants and Chil	g re	Recruiting	No Results Available
9	37	NCT02260102	Temocillin Pharmacokinetics in Paediatrics	7. D	Not yet recruiting	No Results Available
11	38	NCT02694458	Comparison of Two Dosage Adjustment Strategies of Vancomycin in Children) WO	Recruiting	No Results Available
12	39	NCT01540838	Slow Initial beta-lactam Infusion With High-dose Paracetamol to Improve the Outcomes of Cl	ซูี่ld	Recruiting	No Results Available
13	40	NCT00368498	A Trial to Evaluate the Loading Dose Required to Achieve Therapeutic Serum Teicoplanin Con	ger ger	Recruiting	No Results Available
15	41	NCT01785641	Single Versus Combined Antibiotic Therapy for Bacterial Peritonitis in CAPD Patients	fro	Recruiting	No Results Available
16	42	NCT02554383	Efficacy of Antibiotics in Children With Acute Sinusitis: Which Subgroups Benefit?	<u> </u>	Recruiting	No Results Available
17	43	NCT01265173	Comparison of Efficacy of Cefotaxime, Ceftriaxone, and Ciprofloxacin for the Treatment of Sp	อ ี่ท _ี ่	Recruiting	No Results Available
18 19	44	NCT02335905	Ceftaroline for Treatment of Hematogenously Acquired Staphylococcus Aureus Osteomyeliti	gin	Recruiting	No Results Available
20	45	NCT02922686	Penicillin for the Emergency Department Outpatient Treatment of CELLulitis	ope	Not yet recruiting	No Results Available
21	46	NCT02848820	Initial Non-operative Treatment Strategy Versus Appendectomy Treatment Strategy for Simp	e A	Not yet recruiting	No Results Available
22 23	47	NCT02475733	Evaluation of Safety, Pharmacokinetics and Efficacy of CAZ-AVI With Metronidazole in Childer	n A	Recruiting	No Results Available
24	48	NCT02372461	Randomized Trial of Amoxicillin Versus Placebo for (Fast Breathing) Pneumonia	/wo	Recruiting	No Results Available
25	49	NCT01553006	Study of Cefditoren Pivoxil in Treatment of Childhood With Acute Rhinosinusitis	9	Recruiting	No Results Available
26	50	NCT02527681	Pharmacokinetics and Safety of Ceftobiprole in Neonates and Infants up to 3 Months Treated	₽₩	Recruiting	No Results Available
27 28	51	NCT02210169	RCT of Continuous Versus Intermittent Infusion of Vancomycin in Neonates	1 20	Recruiting	No Results Available
29	52	NCT02497781	Evaluation of Safety, Pharmacokinetics and Efficacy of Ceftazidime and Avibactam (CAZ-AVI)	œο	Recruiting	No Results Available
	53	NCT02814916	Dalbavancin for the Treatment of Acute Bacterial Skin and Skin Structure Infections in Childre	₽ <u>₽</u> ,	Not yet recruiting	No Results Available
31	54	NCT02210325	Efficacy and Safety Study of Oral Solithromycin Compared to Intramuscular Ceftriaxone Plus	ğra	Recruiting	No Results Available
33	55	NCT02801370	Phase 3 Study of OTO-201 in Acute Otitis Externa	nes.	Recruiting	No Results Available
34	56	NCT02760420	3 Days Amoxicillin Versus Placebo for Fast Breathing Childhood Pneumonia in Malawi		Recruiting	No Results Available
35	57	NCT02678195	3 Days Versus 5 Days Amoxicillin for Chest-indrawing Childhood Pneumonia in Malawi	ote	Recruiting	No Results Available
36 37	58	NCT02605122	Safety and Efficacy of Solithromycin in Adolescents and Children With Community-acquired E	∯icl	Recruiting	No Results Available
38	59	NCT02570490	Oral Sodium Fusidate (CEM-102) Versus Oral Linezolid for the Treatment of Acute Bacterial S	₽in	Recruiting	No Results Available
39	60	NCT02443285	Is Spontaneous Bacterial Peritonitis Still Responding to 3rd Generation Cephalosporins?	cop	Recruiting	No Results Available
40 11	61	NCT02334124	Comparing the Intravenous Treatment of Skin Infections in Children, Home Versus Hospital	yrigl	Recruiting	No Results Available
42	62	NCT02218372	A Study to Investigate the Safety and Efficacy of Fidaxomicin (Oral Suspension or Tablets) and	₹Va	Recruiting	No Results Available

2	
3	6
2 3 4 5 6 7 8 9 10 11 22 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	
5	66 66 67 77 77 77
7	-6
8	-6
9	_
10	C
11	6
12	7
13	7
14	
15	_
16	7
17	7
18	<u> </u>
19	
20	7
21	7
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
33 34 35	
35	
00	

			BMJ Open -2017-016		Page 22 o
2 [А	B 8	С	D
3	63	NCT01032499	Open and Comparative Study to Measure Tolerability and Efficacy of Taro Elixir	Not yet recruiting	No Results Available
4 [64	NCT02598362	Pharmacokinetics of Ciprofloxacin in Pediatric Patients	Recruiting	No Results Available
5 6	65	NCT02878031	Community Case Management of Chest Indrawing Pneumonia	Recruiting	No Results Available
7	66	NCT02790996	Neonatal Vancomycin Trial	Not yet recruiting	No Results Available
8	67	NCT02712307	Study of 5 and 10 Days Treatment With Penicillin Against Sore Throat Caused by Streptococci	Recruiting	No Results Available
9	68	NCT02424734	Safety, Tolerability and Efficacy of Ceftaroline in Paediatrics With Late-Onset Sepsis	Recruiting	No Results Available
11	69	NCT02134301	Open-Label, Dose-Finding, Pharmacokinetics, Safety and Tolerability Study of Oritavancin in	Recruiting	No Results Available
12	70	NCT02013141	An Open-Label Study of the Pharmacokinetics of a Single Dose of Telavancin in Pediatric Subject		No Results Available
13	71	NCT01427842	Dose Enhancement of Vancomycin IN Everyday Patients	Recruiting	No Results Available
14- 15	72	NCT01278017	The Role of Short-course Ceftriaxone Therapy in the Treatment of Severe Nontyphoidal Salmer	Recruiting	No Results Available
16	73	NCT00988026	Safety and Efficacy Comparison of Minocycline Microgranules Versus Lymecycline in the Treatr	Recruiting	No Results Available
17	74	NCT02288234	Telavancin Observational Use Registry (TOUR)	Recruiting	No Results Available
18 19	75	NCT01304459	Vancomycin Serum Concentrations in Pediatric Oncology Patients Under Intensive Care	Recruiting	No Results Available
20	76	NCT01173575	Assessment of the Efficacy of FOSFOMYCIN in Patients With Bacterial Infection	Recruiting	No Results Available
21	77	NCT01778634	Trial of Intravenous Azithromycin to Eradicate Ureaplasma Respiratory Tract Infection in Preter	Recruiting	No Results Available
22 ¹ 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 40 41 42			nj.com/ on April 20, 2024 by guest. Protected by copyright		

	E	F
1	Indication	Infection category
2	Proven or suspected infection (in patients on PICU)	9
3	Acute Otitis Media	3
4	Sepsis	8
5	Urinary Tract Infections (UTI)	7
6	Community-acquired Pneumonia (CAP)	4
7	Pneumonia	4
8	Proven or suspected infection in patients with malnutrition	9
9	Bacteremia	8
10	Plague	8
11	Helicobacter Pylori Infection	7
12	Meningitis	1
13	Proven or suspected bacterial infection (Pharmacokinetics)	9
14	Melioidosis	8
15	Acute Respiratory Infection Sinusitis	3
16	Various infections (including nosocomial Pneumonia, CAP, Acute Bac	Various
17	Bacterial Infections	9
18	Meliodosis	8
19	Proven or Suspected Gram-negative Bacterial Infection	9
20	Abscess	1
21	Bronchitis	4
22	Throatcarriers of MRSA	3
23	Acute Skin and Soft Tissue infections (aSSTIs)	2
24	Proven or suspected bacterial infection (in CRRT patients)	9
	Cystitis / Pyelonephritis	7
26	Acute Upper Respiratory Tract Infections (ARTIs)	3
27	Typhoid Fever	8
28	Community Acquired Pneumonia (CAP)	4
29	Bacterial Infections	9
30	Pneumonia	4
31	Complicated Intra Abdominal Infections (cIAIs)	6

en-2017-016293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

44 45

1.			
2		E	F
3	32	Pneumonia	4
4 5	33	Bacterial Infections	9
6	34	Cellulitis	2
7	35	Gram-Positive Bacterial Infections	9
8	36	Infection	9
9	37	Urinary Tract Infection or suspected Cholangitis	7
11	38	Methicillin-resistant Staphylococcal Infections	9
12	39	Bacterial Meningitis	1
13 14	40	Staphylococcal Infections	9
15	41	Peritonitis (in CAPD patients)	6
16	42	Acute Sinusitis (Respiratory Tract Infections)	3
17	43	SBP in patients with Liver Cirrhosis	6
18 19	44	Hematogenously Acquired Staphylococcus Aureus Osteomyelitis	5
20	45	Cellulitis or Wound Infection	8
21	46	Appendicitis	6
22 23	47	Complicated Intra-abdominal Infections (cIAIs)	6
24	48	Pneumonia (fast-breathing)	4
25	49	Rhinosinusitis	3
26	50	Bacterial Infections	9
27 28	51	Sepsis	8
29	52	Complicated Urinary Tract Infections (cUTIs)	7
30	53	Methicillin-Resistant Staphylococcus Aureus Skin Infection	2
31 32	54	Uncomplicated Urogenital Gonorrhea	7
33	55	Acute Otitis Externa	3
34	56	Pneumonia	4
35	57	Pneumonia	4
36 37	58	Community-acquired Bacterial Pneumonia	4
38	59	Acute Bacterial Skin and Skin Structure Infections	2
39	60	Primary Bacterial Peritonitis	6
40 41	61	Cellulitis	8
42	62	Clostridium Difficile-associated Diarrhea (CDAD)	6
43			
4 4			

1			
2 [E	F
3	63	Acne Vulgaris II or III Degree	2
4 5	64	Urinary Tract Infection or Pyelonephritis	7
6	65	Pneumonia	4
7	66	Late Onset Neonatal Sepsis	8
8	67	Tonsillitis	3
9 1	68	Late-onset Sepsis	8
11	69	Gram Positive Bacterial Infections	9
12	70	Gram-Positive Bacterial Infections	9
13 14	71	Vancomycin Therapy	9
15	72	Diarrhea	6
16	73	Mild to Moderate Acne	2
17 18	74	Hospital Acquired Bacterial Pneumonia (HAP), Complicated Skin and	Various
19	75	Infection	9
20	76	Bacterial Infection	9
21	77	Eradicate ureaplasma respiratory tract infection from preterm infant	4
22 5 23 24			

		ВМЈ	Open	en-2017-016293	
1 2 [G	Н	16293	l j
3	1			Gender	Age
4	2	Antiinfectives (beta-lactam, aminoglycoside, glycopeptide, fluoroquinolone,	Various	Both D	Up to 18 Years
5 6	3	Amoxicillin, Amoxicillin-Potassium Clavulanate, Macrolide	Various	Both을	6 Months to 7 Years
7	4	Antibiotic	J01	Both	Up to 18 years
8	5	Trimethoprim sulfamethoxazole, cefixime, or cephalexin	Various	BothS	2 Months to 10 Years
9	6	Amoxicillin	J01C	Both:	6 Months to 10 Years
11	7	Amoxicillin, Amoxicillin-clavulanate, Cefdinir	Various	Both€	6 Months to 71 Months
12	8	Ceftriaxone, Metronidazole	J01D	Both	2 Months to 59 Months
13	9	7 days vs 14 days of adequate antibiotic treatment	J01	Both	Up to 18 years
15	10	Ciprofloxacin, doxyxcycline	Various	Both	8 Years and older
16	11	Tailored vs standard therapy (Amoxicillin, Clarithromycin, Metronidazole, Ra	Various	Both₅	4 Years to 18 Years
17	12	Daptomycin	J01X	Both	3 Months to 16 Years
18 19	13	Amoxicillin-clavulanate, Piperacilline-tazobactam, Vancomycin	Various	Both	Up to 16 Years
20	14	Meropenem, Ceftazidime	J01D	Both	15 Years and older
21	15	Amoxicillin clavulanate acid	J01C	Both	6 Years to 13 Years
22	16	Various drugs (Ceftazidime, Ciprofloxacin, Clindamycin, Doxycycline, Levoflo	Various	Both Both	Up to 18 years
24	17	Clindamycin, Trimethoprim-sulfamethoxazole	Various	Both	1 Month to 16 Years
25	18	Co-trimoxazole	J01E	Both≌	15 Years and older
26	19	Ceftolozane/Tazobactam	J01D	Bothg.	Up to 17 Years
27 28	20	Trimethoprim-sulfamethoxazole	J01E	Both ₈	3 Months to 17 Years
29	21	Guaifenesin, Sulfamethoxazole trimethoprim	J01E	Both	4 Years to 14 Years
30	22	Systemic Rifampin and Clindamycine/Trimehoprimsulfa, or Topical mupiroci	Various	Both ²	5 Years and older
31	23	Tedizolid Phophate	J01X	Both €	12 Years to 18 Years
33	24	Vancomycin	J01X	Both	Up to 18 years
34	25	Ciprofloxacin	J01F	Both _y	Up to 14 Years
35	26	Antibiotics (Amoxicillin-clavulanate, azithromycin, cefdinir, cefprozil, cefurox	Various	Both Both	6 Months to 18 Years
36 37	27	Ceftriaxone, Ceftriaxone/azithromycin, Azithromycin, Azithromycin/cefixime	Various	Both g	2 Years to 80 Years
38	28	Cephalosporins and Macrolides	Various	Both₹	1 Year to 18 Years
39	29	Carbavance	J01D	Bothg	Up to 17 Years
40 41	30	Amoxicillin-clavulanic Acid	J01C	Both	3 Months to 5 Years
42	31	Ampicillin/metronidazole/gentamicin/clindamycin/Piperacillin-tazobactam c	Various	Both [₹]	Up to 120 Days

44 45 46

Pa	ge 27	of 40 BM.	J Open	en-2017-016	
1 2 [G	Н)16 <u>2</u> 93	J
3	32	Amoxicillin-Potassium Clavulanate	J01C	Both≌	3 Months to 59 Months
4	33	Dalbavancin	J01X	Both O	Up to 28 Days
5 6	34	Cefazolin/Moxifloxacin	Various	Both을	Up to 18 Years
7	35	Tedizolid Phosphate	J01X	Both₫	2 Years to 11 Years
8	36	Piperacillin-tazobactam	J01C	Botho	2 Months to 6 Years
9	37	Temocillin	J01C	Both	6 Months to 3 Years
11	38	Vancomycin	J01X	Both€	1 Month to 16 Years
12	39	Beta-lactam	J01C	Both S	2 Months to 15 Years
13	40	Teicoplanin	J01X	Both	16 Years and older
15	41	Ceftazidime/ciprofloxacin, Ceftazidime, Cefazolin/gentamicin, Cefazolin	Various	Bothਰ	15 Years and older
16	42	Amoxicillin-clavulanate	J01C	Both ₂	2 Years to 11 Years
17	43	Cefotaxime, Ceftriaxone, Ciprofloxacin	Various	Both	16 Years and older
18 19	44	Ceftaroline Fosamil	J01D	Both	1 Year to 17 Years
20	45	Flucloxacillin, Phenoxymethylpenicillin	J01C	Both	16 Years and older
21	46	Augmentin/Gentamicin, Appendectomy	J01C	Both	7 Years to 17 Years
22 23	47	Ceftazidime-avibactam, Meropenem, Metronidazole	Various	Both Both	3 Months to 18 Years
24	48	Amoxicillin	J01C	Both€	2 Months to 59 Months
25	49	Cefditoren pivoxil	J01D	Both≌	1 Year to 15 Years
26	50	Ceftobiprole	J01D	Bothg	Up to 3 Months
27 28	51	Vancomycin	J01X	Both⊗	Up to 90 Days
29	52	Ceftazidime-avibactam, Cefepime	J01D	Both⊗	3 Months to 18 Years
30	53	Dalbavancin single dose	J01X	Both ²	3 Months to 17 Years
31 32	54	Solithromycin, Ceftriaxone, Azithromycin	Various	Both Both	15 Years and older
33	55	Ciprofloxacin	J01M	Both	6 Months and older
34	56	Amoxicillin	J01C	Both <u></u>	2 Months to 59 Months
35 36	57	Amoxicillin	J01C	Both ਨੂੰ	2 Months to 59 Months
37	58	Solithromycin	J01F	Bothg	2 Months to 17 Years
38	59	Sodium fusidate, Linezolid	J01X	Both♥	12 Years and older
39	60	Cefotaxime, Ceftriaxone	J01D	Bothg	Up to 18 Years
40 41		Ceftriaxone, Flucloxacillin	Various	Both	6 Months to 18 Years
42	62	Fidaxomicin, Vancomycin	J01X	Both [₹]	Up to 17 Years

1	1	T	- 6	
2	G	Н	16293	J
3 63	Taro Elixir	J01A	Both≌	14 Years and older
4 64	Ciprofloxacin	J01M	Both Both	3 Months to 17 Years
6 65	Amoxicillin	J01C		2 Months to 59 Months
7 66	Vancomycin	J01X	Both⊠	Up to 90 Days
8 67	Phenoxymethylpenicillin	J01C	Both 2	6 Years and older
9 68	Ceftaroline Fosamil	J01D	Both Both	Up to 59 Days
11 69	Oritavancin	J01X	Both€	Up to 18 Years
12 70	Telavancin	J01X	Both	1 Year to 17 Years
13 71 14	Vancomycin	J01X	Both	16 Years and older
15 72	Ceftriaxone	J01D	Bothਰੂੰ	3 Months to 18 Years
16 73	Minocycline, Lymecycline	J01A	Both	14 Years to 30 Years
17 74	Telavancin	J01X	Both	Up to 18 Years
18 19 75	Vancomycin	J01X	Both≝	Up to 18 Years
20 76	Fosfomycin	J01X	Both	Up to 18 Years
21 77 22	Azithromycin	J01F	Both Both	0 to 72 hours
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43		JUIT	nj.com/ on April 20, 2024 by guest. Protected by copyright.	

	ge 29	of 40	BMJ Open	en-2017-016		
1 2 [К	L	M	N	93 O
3	1		Estimated enrollment	Location	Income class	Geographic region
4	2	8	1850	France	High income	Europe
5 6	3	9	150	Finland	High income	Europæ
7	4	8	320	Italy	High income	Europe
8	5	9	746	United States	High income	North America
9 10	6	9	270	Canada	High income	North: America
11	7	9	400	United States	High income	NorthAmerica
12	8	9	80	Kenya	Lower middle income	Africa Africa
13	9	8	50	Canada	High income	North America
15	10	11	200	Uganda	Low income	Africa di
16	11	11	200	China	Upper middle income	Asia 🚆
17	12	10	5	Switzerland	High income	Europe
18 19	13	8	200	Belgium	High income	Europe
20	14	5	750	Thailand	Upper middle income	Asia 🖁
21	15	11	120	Finland	High income	Europe
22 23	16	8	3000	Various (United States, Canad	High income	International
24	17	10	54	United States	High income	North≝America
25	18	5	800	Thailand	Upper middle income	Asia ⁹
26	19	8	36	United States	High income	North <u>s</u> America
27 28	20	10	200	United States	High income	North <mark>A</mark> merica
29	21	11	50	Peru	Upper middle income	Latin America
30	22	11	69	Sweden	High income	North America
31 32	23	5	162	Various (United States, Argent	Upper middle to High income	International
33	24	8		United States	High income	North America
34	25	8	45	Japan	High income	Asia g
35 36	26	10	117000	United States	High income	North America
37	27	11		Nepal	Low income	Asia 💆
38	28	10		China		Asia 💆
39	29	8		United States	High income	NorthgAmerica
40 41	30	9			High income	Oceaत्र् <u>व</u> ेव
42	31	6	284	Various (United States, Canad	High income	North America
43						

				E	BMJ Open	o en-2017-016 2 93
1 2	I	К	L	M	N	116. 293 O
3	32	9	300	Malaysia	Upper middle income	Asia ⁹
4	33	2	24	United States	High income	North nerica
5 6	34	8	390	Canada	High income	North America
7	35	4	32	United States	High income	North∯America
8	36	9	141	Canada	High income	North ≧ America
9	37	9	45	Belgium	High income	Europe
11	38	10	100	France	High income	Europe
12	39	10	400	Angola	Upper middle income	Africa di
13	40	5	20	Taiwan, China	High income	Asia 👲
15	41	5	300	Thailand	Upper middle income	Asia ਰੂੰ
16	42	4	688	United States	High income	North∰America
17	43	5	261	Republic of Korea	High income	Asia 👯
18 19	44	10	18	United States	High income	North America
20	45	5	414	Ireland	High income	Europe
21	46	11	334	Netherlands	High income	Europe
22 23	47	10	102	Various (United States, Argent	Upper middle to High income	International
24	48	9	2500	Pakistan	Lower middle income	Asia 💆
25	49	10	120	Thailand	Upper middle income	Asia ⁹
26	50	6	45	Various (Belgium, Germany, Li	High income	Europ <u>€</u>
27 28	51	6	200	Australia	High income	Ocean <u>k</u> a
29	52	10	102	Various (United States, Czech	Upper middle to High income	
30	53	10	300	United States	High income	North America
31 32	54	5	300	Various (United States, Austra	High income	International
33	55	10	500	Various (United States, Canad	High income	North <mark>@</mark> America
34	56	9	2000	Malawi	Low income	Africa g
35 36	57	9	2000	Malawi	Low income	Africa of Africa of Africa
37	58	10		Various (United States, Bulgar		International
38	59	5	712	Various (United States, Puerto		International
39	60	8	100	Egypt	Lower middle income	Africage Africage
40 41	61	10		Australia	High income	Oceaक्षे
42	62	8	144	Various (United States, Belgiu	High income	International

 en-2017-016

nj.com/ on April 20, 2024 by guest. Protected by copyright.

						N.
2		K	L	M	N	O 293
3	63	5	120	Brazil	Upper middle income	Latin America
4 5	64	10	20	Belgium	High income	Europe
6	65	9	308	Nigeria	Lower middle income	Africa [♀]
7	66	6	300	Various (United Kingdom, Fran	us (United Kingdom, Frai High income	
8	67	11	432	Sweden	High income	Europe
9 10	68	7	24	Various (United States, Hunga	High income	International
11	69	8	60	United States	High income	North∰America
12	70	10	32	United States	High income	North America
13 1⊿	71	5	100	Australia	High income	Oceanga
15	72	10	200	Taiwan, China	High income	Asia ਨੂੰ
16	73	5	168	Mexico	High income	North∰America
17	74	8	1000	United States	High income	North America
18 19	75	8	50	Brazil	Upper middle income	Latin America
20	76	8	200	Various (Austria, Germany)	High income	Europe
21	77	1	180	United States	High income	North America
22						<u>ਤ</u> .

				BMJ Open		en-2017-016 2 93
				Sino opon		017
						-016
2		Р	Q	R	S	93 T
3	1	Collaborators		Study Types	Phase	Endpoint classification
4 5	2	Assistance Publique - Hopitaux de Paris	Hospital	Observational	Not applicable	Pharma c okinetics
6	3	University of Oulu Oulu University Hospital	University	Interventional	Phase 4	Efficacy €
7	4	Ospedale Santa Maria delle Croci	Hospital	Interventional	Phase 2	Safety/efficacy
8	5	Children's Hospital of Philadelphia Children's Ho	Hospital	Interventional	Phase 2	Safety/🚉 ficacy
9	6	Hamilton Health Sciences Corporation Children's	Hospital	Interventional	Phase 4	Safety/Efficacy
11	7	National Institute of Allergy and Infectious Diseas	NIH	Interventional	Phase 4	Efficacy≤
12	8	University of Oxford KEMRI Wellcome Trust Rese	University	Interventional	Phase 2	Pharmagokinetics
13 14	9	Sunnybrook Health Sciences Centre	Hospital	Interventional	Not specified	Efficacy (Efficacy)
15	10	Centers for Disease Control and Prevention MRC	CDC	Interventional	Phase 2	Safety/ਰੂੱficacy
16	11	Beijing Children's Hospital	Hospital	Interventional	Phase 4	Safety/ ficacy
17	12	University Hospital Inselspital, Berne	Hospital	Interventional	Phase 1	Pharmacokinetics
18 19	13	University Hospital, Ghent University Hospital, A	Hospital	Observational	Not applicable	Pharmagokinetics
20	14	University of Oxford Mahidol University Wellcor	University	Interventional	Not specified	Efficacy
21	15	Oulu University Hospital	University	Interventional	Phase 4	Safety/Efficacy
22 23	16	Daniel Benjamin Eunice Kennedy Shriver Nationa	University	Observational	Not applicable	Pharmacokinetics
24	17	Michael Cohen-Wolkowiez Eunice Kennedy Shriv	University	Interventional	Phase 1	Pharmagokinetics
25	18	Khon Kaen University	University	Interventional	Not specified	Efficacy ⁹
26	19	Cubist Pharmaceuticals LLC	Industry	Interventional	Phase 1	Pharma <u>€</u> okinetics
27 28	20	Children's Mercy Hospital Kansas City Blue Cross	Hospital	Interventional	Not specified	Efficacy 8
29	21	Hoffmann-La Roche	Industry	Observational	Not applicable	Safety 8
30	22	Region Skane	Hospital	Interventional	Not specified	Efficacy ²
31 32-	23	Cubist Pharmaceuticals LLC	Industry	Interventional	Phase 3	Safety 💆
33_	24	Drexel University The Center for Pediatric Pharm	University	Interventional	Phase 1	Safety 💆
34	25	Bayer	Industry	Observational	Not applicable	Safety/Efficacy
35	26	Children's Hospital of Philadelphia	Hospital	Observational	Not applicable	Safety/ଞ୍ଛିficacy
36 37	27	Sheba Medical Center	Hospital	Interventional	Phase 4	Efficacy <u>₹</u>
38	28	Beijing Children's Hospital	Hospital	Observational	Not applicable	Pharma E okinetics
39	-	Rempex Pharmaceuticals (a wholly owned subsid	· · · · · · · · · · · · · · · · · · ·	Interventional	Phase 1	Safety පි
40 41	30	Menzies School of Health Research Griffith Unive	University	Interventional	Phase 4	Safety/ ficacy
42	31	Michael Cohen-Wolkowiez The EMMES Corpora	University	Interventional	Phase 2-3	Safety ^并

Pa	ge 33	of 40		BMJ Open 2017-016.293 T			
1						- -016:	
2 [Р	Q	R	S		
3	32	University of Malaya Menzies School of Health R	University	Interventional	Phase 4	Efficacy ^S	
4 5	33	Durata Therapeutics Inc., an affiliate of Allergan p	Industry	Interventional	Phase 1	Pharma cokinetics	
6	34	University of British Columbia	University	Interventional	Phase 3	Efficacy 8	
7	35	Merck Sharp & Dohme Corp.	Industry	Interventional	Phase 1	Pharmagokinetics	
8	36	St. Justine's Hospital	Hospital	Interventional	Phase 1	Pharma cokinetics	
9	37	Universit̩ Catholique de Louvain	University	Interventional	Phase 4	Pharmacokinetics	
11	38	Assistance Publique - Hì«pitaux de Paris	Hospital	Interventional	Not specified	Pharmagokinetics	
12	39	Helsinki University Foundation for Paediatric Res	University	Interventional	Phase 4	Safety/@fficacy	
13	40	National Taiwan University Hospital	University	Interventional	Phase 4	Pharmagokinetics	
15	41	Chulalongkorn University	University	Interventional	Not specified	Efficacy <u>a</u>	
16	42	University of Pittsburgh National Institute of Alle	University	Interventional	Phase 3	Safety/ fficacy	
17	43	Korea University	University	Interventional	Phase 4	Efficacy	
18 19	44	Baylor College of Medicine Forest Laboratories	University	Interventional	Phase 1-2	Safety/Efficacy	
20	45	Royal College of Surgeons, Ireland Health Resear	University	Interventional	Phase 4	Efficacy	
21	46	Ramon Gorter ZonMw: The Netherlands Organis	University	Interventional	Phase 4	Efficacy	
22 23	47	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2	Safety/ fficacy	
24	48	Aga Khan University	University	Interventional	Not specified	Efficacy	
25	49	Thammasat University	University	Interventional	Phase 4	Safety/🖺 ficacy	
26	50	Basilea Pharmaceutica	Industry	Interventional	Phase 1	Pharmagokinetics	
27 28	51	Murdoch Childrens Research Institute Royal Chil	University	Interventional	Not specified	Pharmagokinetics	
29	52	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2	Safety/Efficacy	
30	53	Durata Therapeutics Inc., an affiliate of Allergan (Industry	Interventional	Phase 3	Safety/Hficacy	
31 32	54	Cempra Inc National Institute of Allergy and Infe	Industry	Interventional	Phase 3	Efficacy	
33	55	Otonomy, Inc.	Industry	Interventional	Phase 3	Efficacy	
34	56	Save the Children University of North Carolina L	Health Organisat	Interventional	Phase 4	Efficacy	
35	57	Save the Children University of North Carolina L	Health Organisat	Interventional	Phase 4	Efficacy 🛱	
36 37	58	Cempra Inc	Industry	Interventional	Phase 2-3	Safety/officacy	
38	59	Cempra Inc	Industry	Interventional	Phase 3	Safety/ ficacy	
39	60	Tanta University	University	Interventional	Phase 3	Efficacy	
40 41	61	Murdoch Childrens Research Institute	University	Interventional	Not specified	Efficacy	
42	62	Astellas Pharma Europe B.V. Merck Sharp & Doh	Industry	Interventional	Phase 3	Safety/Efficacy	

1.						ဂ္ဂ
2		Р	Q	R	S	93 T
3	63	Laboratorios Goulart S.A.	Industry	Interventional	Phase 3	Safety/Efficacy
4 5	64	University Hospital, Ghent Universitair Ziekenhu	University	Interventional	Phase 4	Pharmagokinetics
6	65	Malaria Consortium World Health Organization	Health Organisat	Interventional	Phase 4	Safety 🖁
7	66	PENTA Foundation St George's, University of Lor	Health Organisat	Interventional	Phase 2	Safety/र्ल्डिficacy
8	67	Sigvard Mì¦lstad Public Health Agency of Swede	University	Interventional	Phase 4	Safety/🚉 ficacy
9 10	68	AstraZeneca PRA Health Sciences	Industry	Interventional	Phase 2-3	Safety/Efficacy
11	69	The Medicines Company	Industry	Interventional	Phase 1	Pharma okinetics
12	70	Theravance Biopharma Antibiotics, Inc.	Industry	Interventional	Phase 4	Pharmagokinetics
13 14	71	The Canberra Hospital	Hospital	Interventional	Phase 2	Pharmagokinetics
15	72	Chang Gung Memorial Hospital	Hospital	Interventional	Phase 4	Efficacy 2
16	73	Darier	Industry	Interventional	Phase 4	Safety/ fficacy
17	74	Theravance Biopharma Antibiotics, Inc.	Industry	Observational	Not applicable	Safety/Efficacy
18 19	75	Grupo de Apoio ao Adolescente e a Crianca com	Hospital	Observational	Not applicable	Pharmagokinetics Pharmagokinetics
20	76	Infectopharm Arzneimittel GmbH J&P Medical R	Industry	Observational	Not applicable	Efficacy
21	77	University of Maryland	University	Interventional	Phase 2	Safety/ f ficacy
22						킂
23						Son Son
24 25						n/ o
25 26						n A
27						pril :
28						20,
29						202
30 31						4 0
32						Qu V
33						est
34						P
35						otec
36 37						Xted
38						nj.com/ on April 20, 2024 by guest. Protected by copyright
39						СОР
40						yrig
41 42						nt.
42 43						

Pa	ge 35	of 40		BMJ Open			en-2017-			
1 2		U	T v	T w	Х	V	Z	016293	AA	AB
3	1	Primary outcome variable	PK data collected	First Receive		•				Results First Received
4		PK	PK study design	July 2, 2015	Sep-15		September 1			No Study Results Posted
5	3	Efficacy	No PK data	September 2	<u> </u>		October 12, 2			No Study Results Posted
6 7	4	Efficacy	No PK data	September 8			September 1	ober		No Study Results Posted
8	5	Efficacy	No PK data	May 8, 2012	May-12		June 27, 201		<u> </u>	No Study Results Posted
9	6	Efficacy	No PK data	March 2, 201		·	March 24, 20			No Study Results Posted
11	7	Efficacy	No PK data	September 1	Oct-16		October 13, 2	 V		No Study Results Posted
12	8	PK	PK study design	April 4, 2016	Apr-16	Sep-16	April 25, 201	nloa	Apr-16	No Study Results Posted
13	9	Efficacy	No PK data	September 2	Oct-16	Dec-17	September 2	dec	Sep-16	No Study Results Posted
15	10	Efficacy	No PK data	November 1	Dec-10	null	September 1		Sep-12	No Study Results Posted
16	11	Efficacy	No PK data	November 2	Mar-14	Jul-16	December 16	_₹	Nov-15	No Study Results Posted
17	12	PK	Primary PK data	January 26, 2	Apr-12	Apr-18	December 10	/: d	Dec-15	No Study Results Posted
18 19	13	PK	PK study design	May 18, 201	May-12	null	November 17	bmj	Nov-15	No Study Results Posted
20	14	Efficacy	No PK data	December 18	Dec-07	Sep-10	June 3, 2008	ope	Aug-07	No Study Results Posted
21	15	Efficacy	No PK data	October 17,	Nov-07	Dec-09	October 18, 2	n.br	Oct-07	No Study Results Posted
22 23	16	PK	PK study design	August 17, 2	Nov-11	Feb-17	February 4, 2	nj.c	Feb-16	No Study Results Posted
24	17	PK	PK study design	June 12, 201	Nov-15	Dec-17	August 1, 201)mo	Aug-16	No Study Results Posted
25	18	Efficacy	No PK data	August 18, 2	Aug-11	Dec-20	August 30, 20		Aug-16	No Study Results Posted
26 27	19	PK	PK study design	September 2	Sep-14	Nov-16	October 31, 2	Αpri	Oct-16	No Study Results Posted
28	20	Efficacy	No PK data	March 23, 20	Mar-09	Oct-12	June 21, 201	1 20,	Jun-11	No Study Results Posted
29	21	Safety	No PK data	August 23, 2	Aug-16		September 1	2024	Sep-16	No Study Results Posted
30		Efficacy	No PK data	January 3, 20			May 25, 201!			No Study Results Posted
31 32	23	Safety	Secondary PK data	October 9, 20	Mar-15	Jan-18	October 31, 2	y g	Oct-16	No Study Results Posted
33	24	Safety	Primary PK data	January 12, 2	Jan-17	Dec-18	September 8	Jest	Sep-16	No Study Results Posted
34	25	Safety	No PK data	September 1	Jul-16	Sep-18	October 19, 2		Oct-16	No Study Results Posted
35 36		Efficacy	No PK data	November 1			May 6, 2016	otec	May-16	No Study Results Posted
37	27	Efficacy	No PK data	August 21, 20	ļ		August 26, 20	 _	Aug-14	No Study Results Posted
38		PK	PK study design	May 11, 201	ļ		May 17, 2016			No Study Results Posted
39	29	Safety	Primary PK data	February 17,	Jul-16		October 6, 20			No Study Results Posted
40 41		Efficacy	No PK data	May 5, 2016	Jun-16		October 7, 20			No Study Results Posted
42	31	Safety	No PK data	November 1	Dec-13	Sep-17	August 1, 20:	.∺	Aug-16	No Study Results Posted
43										

					BMJ Ope	n		en-201		
								17-016		
1 2		U	l v	l w l	Х	Υ	Z	16293	AA	AB
3	32	Efficacy	No PK data	September 2	Nov-14	Dec-18	December 20	9 9		No Study Results Posted
4	33	PK ,	PK study design	February 18,	Apr-16		October 19, 2	3		No Study Results Posted
5 6	34	Efficacy	No PK data	May 8, 2006	Jan-04	-	February 6, 2			No Study Results Posted
7	35	PK	PK study design	April 1, 2016	May-16		October 21, 2	ber		No Study Results Posted
8	36	PK	PK study design	June 2, 2015	Jan-16	Dec-17	April 18, 201	20,	Apr-16	No Study Results Posted
9	37	PK	PK study design	October 1, 20	Oct-16	Oct-17	October 24, 2	17.[Oct-16	No Study Results Posted
11	38	PK	PK study design	February 24,	Feb-16	Feb-17	March 8, 201	VOW	Mar-16	No Study Results Posted
12	39	Efficacy	No PK data	February 23,	Feb-12	Jul-17	February 19,	nlo:		No Study Results Posted
13	40	PK	PK study design	August 23, 20	Jun-06	Dec-07	August 23, 20	dec	Aug-06	No Study Results Posted
14 15	41	Efficacy	No PK data	January 30, 2	Dec-12	Dec-13	February 6, 2		Feb-13	No Study Results Posted
16	42	Efficacy	No PK data	September 8	Feb-16	Sep-20	October 3, 20	3	Oct-16	No Study Results Posted
17	43	Efficacy	No PK data	December 22	Apr-07	Apr-16	April 8, 2014	tp:/	Apr-14	No Study Results Posted
18 19	44	Safety	Secondary PK data	December 31	Jan-15	Jan-20	June 24, 201	mď	Jun-16	No Study Results Posted
20	45	Efficacy	No PK data	August 9, 20:	Dec-16	Dec-19	September 3	ope	Jul-16	No Study Results Posted
21	46	Efficacy	No PK data	July 24, 2016	Dec-16	Dec-20	July 26, 2016	n.b	Jul-16	No Study Results Posted
22 23	47	Safety	Secondary PK data	May 25, 2015	Jul-15	Oct-17	October 21, 2	mj.c	Oct-16	No Study Results Posted
23 24	48	Efficacy	No PK data	November 4,	Nov-14	Jul-17	June 3, 2016	om/	Jun-16	No Study Results Posted
25	49	Efficacy	No PK data	February 17,	Jan-12	Sep-12	March 13, 20	on	Mar-12	No Study Results Posted
26	50	PK	PK study design	August 5, 20:	Aug-14	Jun-17	October 20, 2	Apri	Oct-16	No Study Results Posted
27 28	51	PK	PK study design	August 5, 20:	Sep-14	Sep-17	March 17, 20	1 20	Mar-16	No Study Results Posted
29	52	Safety	Secondary PK data	June 16, 201!	Sep-15	Oct-17	October 21, 2	, 20	Oct-16	No Study Results Posted
30	53	Efficacy	No PK data	June 8, 2016	Jun-16	Jul-18	October 21, 2 June 23, 201	24 k	Jun-16	No Study Results Posted
31 32	54	Efficacy	No PK data	August 1, 20:	Aug-14	Apr-17	September 2	9	Sep-16	No Study Results Posted
33	55	Efficacy	No PK data	June 13, 201	Jun-16	Nov-16	June 13, 201	ues	Jun-16	No Study Results Posted
34		Efficacy	No PK data	May 1, 2016	Jun-16	Sep-18	June 10, 201	P	Jun-16	No Study Results Posted
35	57	Efficacy	No PK data	February 3, 2	Mar-16	null	June 10, 201	otec	Jun-16	No Study Results Posted
36 37	58	Safety	No PK data	November 10	Mar-16	Jan-18	September 1	ted	Sep-16	No Study Results Posted
38	59	Efficacy	No PK data	October 5, 20	Nov-15	Feb-17	October 5, 20	by		No Study Results Posted
39	60	Efficacy	No PK data	May 11, 2015	Jan-15		May 9, 2016	cop	May-16	No Study Results Posted
40 41	61	Efficacy	No PK data	January 4, 20	Jan-15		March 16, 20			No Study Results Posted
42	62	Efficacy	No PK data	August 11, 20	Oct-14	Feb-17	June 17, 201	.∺¯	Jun-16	No Study Results Posted
43										

Pa	Page 37 of 40					n		en-2017-016		
1 2		U	V	l w l	х	Υ	Z	16293	AA	AB
3	63	Efficacy	No PK data	December 14	May-10	Oct-10	March 18, 20			No Study Results Posted
4	64	PK	PK study design	November 4,	Apr-15		November 4,			No Study Results Posted
5 6	65	Safety	No PK data	August 17, 20	Oct-16	Jul-17	October 3, 20	Octo		No Study Results Posted
7	66	Efficacy	Secondary PK data	April 7, 2016	Jul-16	Mar-18	May 31, 2016	ber		No Study Results Posted
8	67	Efficacy	No PK data	March 4, 201	Sep-15	Oct-16	October 4, 20	20,		No Study Results Posted
9	68	Safety	Secondary PK data	February 23,	Aug-15	Oct-17	October 14, 2	17. [Oct-16	No Study Results Posted
11	69	PK	PK study design	May 7, 2014	May-14	Dec-16	November 4,	Vow		No Study Results Posted
12	70	РК	PK study design	December 11	Dec-14	Aug-16	June 24, 201	nlos		No Study Results Posted
13	71	РК	PK study design	August 31, 20	Aug-11	Jul-12	September 1	dec	Aug-11	No Study Results Posted
15	72	Efficacy	No PK data	November 25	Aug-10	Jul-12	January 14, 2	fro	Nov-10	No Study Results Posted
16	73	Efficacy	No PK data	September 3	Jun-09	Apr-10	September 3	3	Sep-09	No Study Results Posted
17	74	Efficacy	No PK data	November 5,	Nov-14	Sep-18	June 29, 201	tp:/	Jun-16	No Study Results Posted
18 19	75	PK	Primary PK data	February 24,	Jan-11	null	March 21, 20	mď	Mar-12	No Study Results Posted
20	76	Efficacy	No PK data	July 29, 2010	Aug-10	null	February 5, 2	ope	Feb-16	No Study Results Posted
21	77	Efficacy	Secondary PK data	January 22, 2	Jul-13	Dec-21	May 28, 2015	n.bı	May-15	No Study Results Posted
222 233 244 255 266 277 288 299 300 311 322 333 344 355 366 377 388 399 400 411 422 433								nj.com/ on April 20, 2024 by guest. Protected by copyright.		

Page 38 of 40

1,								
2		AC	AD	AE	AF	AG		
3	1	Primary Com						
4 5	2	Jul-18	https://ClinicalTrials.gov/show/NCT02539407					
6	3	Dec-18	how/NCT029	35374				
7	4	Sep-18	https://ClinicalTrials.gov/show/NCT02899143					
8	5	Apr-18	https://Clinic	https://ClinicalTrials.gov/show/NCT01595529				
10	6	80352						
11	7 Jan-19 https://ClinicalTrials.gov/show/NCT02891					91915		
12 8 Sep-16 https://ClinicalTrials.gov/show/NCT0274						46276		
13 14	9	Aug-17	https://Clinic	alTrials.gov/s	how/NCT029	17551		
15	10	Jun-13	https://ClinicalTrials.gov/show/NCT01243437					
16	11	Mar-16	https://ClinicalTrials.gov/show/NCT02635191					
17	12	Dec-16	https://ClinicalTrials.gov/show/NCT01522105					
18 19	13	Dec-17	https://ClinicalTrials.gov/show/NCT02456974					
20	14	Sep-10	https://ClinicalTrials.gov/show/NCT00579956					
21	15	null	https://ClinicalTrials.gov/show/NCT00545961					
22 23	16	Feb-17	https://ClinicalTrials.gov/show/NCT01431326					
24	17	Nov-17	https://ClinicalTrials.gov/show/NCT02475876					
25	18	Dec-20	https://ClinicalTrials.gov/show/NCT01420341 https://ClinicalTrials.gov/show/NCT02266706					
26	19	Nov-16						
27 28	20	Sep-12	https://ClinicalTrials.gov/show/NCT00867789					
29	21	Dec-16	https://ClinicalTrials.gov/show/NCT02879981					
30	22	Jun-15	https://Clinic	alTrials.gov/s	how/NCT012	69541		
31 32	23	Jan-18	https://Clinic	alTrials.gov/s	how/NCT022	76482		
33	24	Dec-18	https://ClinicalTrials.gov/show/NCT02663596					
34	25	Sep-17	https://ClinicalTrials.gov/show/NCT02555059					
35	26	Apr-17	https://Clinic	alTrials.gov/s	how/NCT022	97815		
36 37	27	Dec-14	https://ClinicalTrials.gov/show/NCT02224040					
38	28	Aug-22	https://ClinicalTrials.gov/show/NCT02775968					
39	29	Aug-19	https://ClinicalTrials.gov/show/NCT02687906					
40 41	30	Dec-19	https://Clinic	alTrials.gov/s	how/NCT027	83859		
42	31	Apr-17	https://Clinic	alTrials.gov/s	how/NCT019	94993		

1,								
2		AC	AD	AE	AF	AG		
3	32		https://ClinicalTrials.gov/show/NCT02258763					
4 5	33	May-17	https://ClinicalTrials.gov/show/NCT02688790					
6	34	Dec-12	https://ClinicalTrials.gov/show/NCT00323219					
7	35	Feb-18	https://ClinicalTrials.gov/show/NCT02750761					
8	36	Dec-17	https://Clinic	alTrials.gov/s	how/NCT024	66438		
9	37	Sep-17	https://Clinic	https://ClinicalTrials.gov/show/NCT02260102				
11	38	Jun-16	https://ClinicalTrials.gov/show/NCT02694458					
12	39	Feb-17	https://Clinic	alTrials.gov/s	how/NCT015	40838		
13 14	40	null	https://ClinicalTrials.gov/show/NCT00368498					
15	41	Dec-13	https://Clinic	alTrials.gov/s	how/NCT017	85641		
16	42	Sep-20	https://Clinic	alTrials.gov/s	how/NCT025	54383		
17	43	Mar-16	https://Clinic	alTrials.gov/s	how/NCT012	65173		
18 19	44	Jan-17	https://Clinic	alTrials.gov/s	how/NCT023	35905		
20	45	Dec-19	https://Clinic	alTrials.gov/s	how/NCT029	22686		
21	46	Dec-20	https://Clinic	alTrials.gov/s	how/NCT028	48820		
22 23	47	Oct-17	https://Clinic	alTrials.gov/s	how/NCT024	75733		
24	48	May-17	https://Clinic	alTrials.gov/s	how/NCT023	72461		
25	49	Aug-12	https://Clinic	alTrials.gov/s	how/NCT015	53006		
26	50	Mar-17	https://Clinic	alTrials.gov/s	how/NCT025	27681		
27 28	51	Sep-17	https://Clinic	alTrials.gov/s	how/NCT022	10169		
29	52	Oct-17	https://Clinic	alTrials.gov/s	how/NCT024	97781		
30	53	Apr-18	https://Clinic	alTrials.gov/s	how/NCT028	14916		
31 32	54	Apr-17	https://Clinic	alTrials.gov/s	how/NCT022	10325		
33	55	Nov-16	https://Clinic	alTrials.gov/s	how/NCT028	01370		
34	56	Aug-18	https://Clinic	alTrials.gov/s	how/NCT027	60420		
35	57	Aug-18	https://Clinic	alTrials.gov/s	how/NCT026	78195		
36 37	58	Dec-17	https://Clinic	alTrials.gov/s	how/NCT026	05122		
38	59	Feb-17	https://Clinic	alTrials.gov/s	how/NCT025	70490		
39	60	Dec-16	https://Clinic	alTrials.gov/s	how/NCT024	43285		
40 41	61	Jan-17	https://Clinic	alTrials.gov/s	how/NCT023	34124		
42	62	Feb-17	https://Clinic	:alTrials.gov/s	how/NCT022	18372		

1,		•					0 N
2		AC	AD	AE	AF	AG	93
3	63	Jul-10	https://Clinic	calTrials.gov/s	show/NCT010	032499	on .
4 5	64	Feb-16	https://Clinic	calTrials.gov/s	show/NCT02!	598362	13 0
6	65	Mar-17	https://Clinic	alTrials.gov/s	show/NCT028	878031) Cto
7	66	Dec-17	https://Clinic	calTrials.gov/s	show/NCT02	790996	be _r
8	67	Oct-16	https://Clinic	calTrials.gov/s	show/NCT02	712307	201
9 10	68	Oct-17	https://Clinic	calTrials.gov/s	show/NCT024	424734	7. [
11	69		https://Clinic				Jo _w
12	70		https://Clinic				nloa
13	71	-	https://Clinic	-			ad ee
14 15			https://Clinic	_			d fro
16	73		https://Clinic	_			m r
17	74		https://Clinic				₹.
18 19	75		https://Clinic				//bm
20	76		https://Clinic				mjopen.bmj.com/ on April 20, ;
21	77		https://clinic				en.b
22				<u> </u>			i j
23 24							SOM SOM
25							on on
26							Αp
27							r <u>i.</u> 2
28 29							0, 2
30							024
31							by
32							6293 on 13 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected
33 34							St
35							∍rot
36							ecte
37							Đ.