BMJ Open ## Adult Parenteral Nutrition in the North of England: A Region-wide Audit | Journal: | BMJ Open | |----------------------------------|--| | Manuscript ID | bmjopen-2016-012663 | | Article Type: | Research | | Date Submitted by the Author: | 22-May-2016 | | Complete List of Authors: | Dyson, Jessica; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital; Newcastle University, NIHR Newcastle Biomedical Research Centre Thompson, Nick; Freeman Hospital, Gastroenterology | | Primary Subject Heading : | Nutrition and metabolism | | Secondary Subject Heading: | Gastroenterology and hepatology | | Keywords: | AUDIT, Nutritional support < GASTROENTEROLOGY, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT | | | | SCHOLARONE™ Manuscripts BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright. | 1 | Title Page | |----------|---| | 2 | Full Title | | 3 | Adult Parenteral Nutrition in the North of England: A Region-wide Audit | | 4
5 | Running Title Parenteral Nutrition in the North of England | | 6 | Authors | | 7 | Jessica K Dyson, Honorary Consultant Hepatologist and Gastroenterologist ^{1,2} | | 8 | Nick Thompson, Consultant Gastroenterologist ¹ | | 9 | On behalf of the Northern Nutrition Network | | 10
11 | ¹ Gastroenterology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, High Heaton, Newcastle upon Tyne, NE7 7DN | | 12 | ² NIHR Newcastle Biomedical Research Centre, Newcastle University | | 13 | Corresponding Author | | 14 | Jessica Dyson, Gastroenterology Department, Freeman Hospital, Newcastle upon Tyne | | 15 | Hospitals NHS Foundation Trust, High Heaton, Newcastle upon Tyne, NE7 7DN | | 16 | jessica.dyson@nuth.nhs.uk | | 17 | Telephone: 0191 213 7209 | | 18 | jessica.dyson@nuth.nhs.uk Telephone: 0191 213 7209 Fax: 0191 223 1249 | | 19 | | | 20 | Keywords | | 21 | Adult parenteral nutrition; nutrition team; complications; assessment; monitoring | | 22 | Word Count = 3756 | | 23 | | | | | | | | | | | | | | - 25 Objectives - 26 Parenteral nutrition (PN) is widely used to provide nutritional support to patients with - 27 inaccessible or inadequate length of gut or non-functioning gut. The objective was to - 28 compare practice in parenteral nutrition (PN) administration to results of the NCEPOD - 29 report, 'A Mixed Bag', and to establish whether good practice was being followed within this - 30 part of the UK. - 31 Setting - 32 Using the Northern Nutrition Network (NNN), we examined the care of adult patients - receiving PN in all 10 secondary care hospitals in our region. - 34 Participants - 35 All patients receiving PN were included with no exclusions. Data was collected on 192 - patients (51% female, median age 65 years [range 18-96]). - 37 Outcome Measures - A data collection tool was designed based on the NCEPOD report recommendations. - 39 Results - 40 PN was used for a median of 7 days with a 30-day mortality rate of 8%. Metabolic - 41 complications occurred in 34%, of which only 13% were avoidable. The catheter sepsis rate - was 1.5 per 1000 PN days. The audit suggests that nutrition team input improves patient - 43 assessment prior to commencing PN and review once PN is established. Risk of refeeding - 44 syndrome was identified in 75%. Areas for improvement are: documentation of treatment - 45 goal (39%), review of PN constitution (38%), ensuring patients are weighed regularly (56%), - and documentation of line-tip position (52%). - 47 Conclusions - 48 This region-wide prospective audit suggests improved practice within the UK compared to - 49 the NCEPOD audit with lower mortality and line sepsis rates. However, documentation - 50 remains suboptimal. This work strengthens the case for introducing nutrition teams in - 51 hospitals without this service. These findings are likely to be reproduced across the UK and - 52 in other healthcare settings. We provide a template for similar audits of clinical practice. | | 9 | _ | _ | | |--|---|---|---|--| | 1 2 3 4 5 6 7 8 9 10 11 12 | | | | | | 13
14
15
16
17
18
19
20
21
22 | | | | | | 23
24
25
26
27
28
29
30 | | | | | | 31
33
34
35
36
37 | | | | | | 38 | | | | | | Article | Summary | |---------|---------| |---------|---------| ## Strengths and limitations of this study - This type of region-wide review of clinical practice is key to improving patient care in complex areas of healthcare delivery such as PN - The Northern Nutrition Network includes a range of hospital trusts in terms of size of population served, frequency of use of PN and level of consultant expertise in nutrition - The results of this audit will lead to improvements in patient care across the network to help deliver equity of care across the region - The advantages of this type of team approach can be to develop robust, evidencebased protocols - Data collection was retrospective and completeness of the audit relied on local reviewers identifying all patients who received PN in their hospitals. ## Adult Parenteral Nutrition in the North of England: A Region-wide Audit ## Background Parenteral nutrition (PN) is widely used to provide nutritional support to patients with inaccessible, inadequate length of gut or non-functioning gut (intestinal failure). However, PN can have potentially fatal complications and patients require an accurate assessment of nutritional requirements, dedicated intravenous access and careful monitoring for electrolyte imbalance and changing nutritional requirements. The importance of multi-disciplinary nutrition support teams has been described[1]. There are national and international (ESPEN) guidelines for nutritional support in adults[2] [3] [4] [5]. The American Society for Parenteral and Enteral Nutrition (ASPEN) has recently highlighted the need for frameworks to guide institutions in developing and maintaining competencies for safe PN due to its complexity and likely increasing use of this feeding route.[6] In 2010, there was a UK National Confidential Enquiry into Patient Outcome and Death (NCEPOD) report focussed on PN, 'A Mixed Bag'[7]. The primary aim of the study was to examine the process of care of patients receiving PN in hospital in order to identify remediable factors in the care received by these patients. There were 6 main themes in the report: indication for PN, type of PN, PN prescribing, catheter choice, insertion and care, complications and nutrition teams. 'A Mixed Bag' found that only 19% of adult patients had PN care considered to represent good practice. However, the response rate in this national audit was only 49% (questionnaires and case notes returned). This report has focussed attention on the in-hospital use of PN within all parts of the UK. The Northern Nutrition Network (NNN) was established in 2003 and is a collaboration of North East based multidisciplinary teams including physicians, surgeons, dieticians, nurses, pharmacists and biochemists, consisting of nine acute trusts including North Cumbria. NNN has previous experience of conducting region-wide audits with high response rates[8]. ## Aims and Methods The aim of this study was to compare practice in the administration of PN in hospitals in the North East of England to results of the recent NCEPOD study and whether there had been any improvements in care since that audit. The hospitals in our region serve a population of approximately 2.7 million people. Our findings were likely to be similar in different parts of the UK and other healthcare settings and would provide a template for other prospective audits of care. BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright Using the Northern Nutrition Network (NNN), we examined the assessment, administration, delivery and monitoring of adult patients receiving PN in our region. All hospitals in Northern England were invited to participate. A data collection tool was designed based on the recommendations from the recent NCEPOD report (see online supplemental data) collecting information on 5 aspects of PN care: patient and admission details, indication for PN, patient assessment, venous access/line care and metabolic complications. Our tool was slightly simplified from that used in the NCEPOD report in order to maximise participation in the audit with less focus on the location of the patient. Data were collected by a member of the clinical care team at each participating hospital on all adult patients receiving PN in participating centres over a 3 month period from June to August 2013. Local reviewers (different to the independent reviewers of NCEPOD) were asked to judge whether metabolic complications were avoidable. The data collection for NCEPOD occurred in 2008 so there was no overlap with this audit. Statistical analysis was performed using two-tailed Fisher's Exact Test, SPSS, version 21 with a significance level for statistical comparison of p<0.05. #### Results - There were 10 participating centres and 192 proforms were returned (94 males, 98 females). - 118 The median age of patients was 65 years (range 18-96). The total number of PN days - included in the audit was 2007. Weight on admission was documented in 95%: median 69kg - 120 (range 29-156). Height was documented in 84%: median 1.67m (range 1.5-1.9). It was - possible to calculate the body mass
index (BMI) in 83%: median 24.9kg/m² (range 10.3- - 122 48.8). - The types of admission were: emergency admission 76.0%, planned/elective 19.3%, inter- - hospital transfer 2.6% and unknown in 2.1%. An initial trial of enteral nutrition (EN) was not - possible in 58%, was unsuccessful in 26%, dual therapy was given in 6% and there was no - documentation about EN in 10%. The clinical indications for PN are shown in Table 1. #### 127 Patient Assessment - The decision to commence PN was made by a doctor or doctor and dietician in 91% of cases - 129 (Table 1). Only 28% of the clinicians making the decision to start PN were a member of a - multi-disciplinary nutrition team. The indication for PN was documented in the clinical notes - in 80%. A nutrition team was involved in the decision to start PN in 38% of cases. However, - only 5 (50%) of the participating hospitals in Northern England have a nutrition team in place. Of patients who received PN in a hospital where a nutrition team exists, 65% of cases had involvement of the nutrition team. The treatment goal was only documented in 39%. Once the decision to commence PN had been made, 84% of patients received PN within 24 hours. By far the commonest reason for the delay was difficulties with obtaining intravenous (IV) access (83%). It was not possible to establish the time of day when PN was commenced in 42%. However, for patients where this was clearly documented, 82% were started during daytime working hours (0800 - 2000 hours). The majority (88.5%) were started on PN during the working week (Monday to Friday). Only 9.9% of PN was started at a weekend or on a bank holiday. This information was unavailable for 1.6%. Table 1 shows the forms of assessment that were documented in patient notes prior to commencing PN. There were no electrolyte abnormalities prior to commencing PN in 14% of patients and this information was unavailable for 12%. Of the 74% who had documented electrolyte abnormalities they were appropriately corrected in 55% prior to starting PN. ## 146 Type of Parenteral nutrition The type of PN first given was documented in 98% and all but 1 patient were given 'off-theshelf' multi-chamber bags with (49%) or without (49%) additives. The PN prescription was documented in the notes in 81% and documentation was assessed as adequate in 78%. #### Vascular access and complications The type of intravenous access used for PN was documented in the notes in 87% of patients. The type of access used was: central line 53%, mid-line 22%, standard dedicated peripheral cannula 21%, PICC line 2% and unknown in 2%. Insertion of the feeding line was documented in the notes in 75%. Use of aseptic technique was recorded in 67%. Position of the line tip was documented in 52% of centrally placed catheters. The grade and job description of person inserting the line was documented in 55%. Line complications occurred in 29 patients (15%). We used a definition of line infection adapted from the ESPEN guidelines[9] and National Healthcare Safety Network (NHSN) Surveillance Definitions[10]. Three patients suffered a systemic line infection giving a line sepsis rate of 1.5 per 1000 PN days. Administration of PN was interrupted due to line 161 complications in 8% of patients. Table 2 shows the types of line complications encountered by patients. BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright ## 164 Monitoring after commencement of feeding - Following the commencement of PN, 88% of patients were reviewed by a doctor and at least 1 other member of a multi-disciplinary team (dietician, nutrition nurse or pharmacist). Only a doctor reviewed the patient in 8% and 2% were only reviewed by a dietician. This information was not available for 2%. Nearly a third (32%) of patients were reviewed daily (7 days a week), 35% were reviewed daily (Monday to Friday) and 28% were seen 3-4 days per week. The remaining 6% of patients were seen less than 1-2 times per week regarding their - PN. Figure 1 shows what was reviewed by the clinical team once PN was initiated. ## 172 Metabolic Complications - Metabolic complications were encountered in 43% of patients; 13% of these were felt to have been avoidable. Local reviewers judged that 94% of metabolic complications were managed - appropriately. Table 2 shows the metabolic complications that patients experienced. We - included abnormal LFTs as a metabolic complication. However, if this is excluded (as in the - NCEPOD audit) then the complication rate was 34%. ### 178 Intravenous Vitamins and Fluids - Additional IV vitamins were given in 51% of patients. IV fluids were given in addition to PN - in 70% of patients. Fluids were given to correct deficit in 36% and as routine maintenance - fluid provision in 24%. No indication was documented in 39%. The commonest fluids used - were normal saline and Hartmann's solution. The audit did not include an overall assessment - of volume of PN administered, fluid losses and the volume of IVT given. However, 28% of - patients were given more than 2 litres of IVT every 24 hours while also receiving PN. #### 185 Patient Outcomes - In our audit, at 30 days, 83% of patients had returned to oral or enteral nutrition, 4% had been - discharged on home PN, and 2% continued on inpatient PN. There was an overall 30-day - mortality rate of 8%. Cause of death was unavailable in 56% but 13% died in a hospice - setting after TPN had been withdrawn and 31% died of sepsis with multi-organ failure. ## 190 Role of nutrition teams - We looked at some parameters indicating good care for the cohort in terms of whether a - member of a nutrition team was involved in the care of the patient (Table 3). There was clear - improvement in assessment of patients commencing PN and documentation of nutritional - 194 goals. There was an increase in reported metabolic complications which may be related to - 195 greater complexity of those patients being seen by the nutrition team. The total number of - line complications was 13 per 1000 catheter days in the group where nutrition teams were involved compared to 20 per 1000 catheter days in patients without nutrition team involvement. ## 199 Discussion - In our region, we established the Northern Nutrition Network (NNN) in 2003 with the aim of improving outcomes for patients in need of nutritional support. Part of the role of the NNN is to conduct region-wide audits and this review of the use of parenteral nutrition (PN) in our region is one example of the NNN in action. All centres that are part of the NNN (n=10) participated in the audit. - The NCEPOD report asked Advisors to make an assessment of the quality of care delivered to adult patients receiving PN and grade it as: good, room for improvement (clinical, organisational, clinical and organisational) or less than satisfactory. It is difficult to repeat these assessments in a different cohort given the subjective nature of these measurements and the fact that local reviewers were collecting data and submitting the information to the authors. Therefore, we decided not to make a global assessment but to assess specific aspects of PN care. We have considered the individual recommendations made by the NCEPOD report 'A Mixed Bag' and reviewed our findings in the context of these: - 1. PN should only be given when enteral nutrition has been considered, and excluded, as either inappropriate and/or impracticable. - In the national report, inadequate consideration was given to enteral nutrition in a third of patients. This is compared to 10% of patients in this audit where consideration of enteral nutrition was not documented. Dual therapy (enteral and parenteral nutrition) was given in 6%. We found that an unsuccessful trial of EN was used in 26% which is much less than the 52% seen nationally. In our audit, an initial trial of enteral nutrition (EN) was not possible in 58%. - 2. Where the possibility exists that a patient may require PN this should be recognised early. Subsequently, should PN become a clinical necessity, this should be rapidly actioned and PN started at the earliest opportunity. However, there is rarely, if ever, an indication to start adult PN out of normal working hours. - In our audit, 88.5% were commenced on PN during the working week (Monday to Friday) which is comparable to the 84% seen in the national report. The time of day when PN was commenced was not recorded in 42% but when it was, PN was commenced between 0800 and 2000 hours in 82%. This is again similar to the 79% in the national study. There was an unreasonable delay in starting PN once the need was recognised in 9% in the NCEPOD report. In our region, 84% of patients received PN within 24 hours of the decision being made to commence treatment and 98% within 48 hours. 3. Patient assessment should be robust to ensure that PN is the appropriate nutritional intervention and that adequate PN is administered. The clinical purpose and goal of the PN should be documented. The indication for PN was documented in the clinical notes in 80% but the treatment goal was only documented in 39% (as compared to 53% nationally). The median duration of PN was 7 days (range 1-66); 7.5 days if a nutrition team was involved and 6 days if no nutrition team involvement. This compares with a median of 12.2 days nationally. In our cohort, 20% of patients received PN for 3 days or less which raises the question about whether PN was necessary. Alternatively, the clinical condition of patients may have changed more rapidly than anticipated. 4. Regular documented clinical monitoring, of the patient and PN prescription, should be mandatory. Monitoring should include daily weights (where possible) and documentation of the success of the PN within the overall clinical picture. The constitution of PN was not reviewed in 38% of patients in our audit. The majority of patients underwent
daily review of their clinical status (88%) and ongoing need for PN (86%). In our region, daily weights are not carried out as routine practice; 56% of patients were weighed once a week or more frequently. This is in line with NICE guidelines from 2006[2] that advise that patients should be weighed daily if there are concerns regarding fluid balance, but otherwise this can be reduced to weekly for clinical monitoring in patients requiring nutritional support. It was not possible to weigh patients in level 3 care. In the NCEPOD report there were deficiencies in the assessment and monitoring of clinical and biochemical status in 56.7% of patients. # 5. Regular documented biochemical monitoring should be mandatory to ensure avoidable metabolic complications never occur. Routine biochemistry was checked daily in 90% of our patients. In the NCEPOD report, metabolic complications occurred in 40% of patients and were judged to be avoidable in 49%. A very similar incidence of metabolic complications was seen in our cohort (43%) but only 13% were felt to have been avoidable. Risk of refeeding syndrome was documented in 75% of patients in our cohort (cf 50% nationally). However, in the national audit, abnormal liver function tests (LFTs) were not included as a 'metabolic complication'. If we exclude abnormal LFTs, then 34% experienced metabolic complications in our cohort, which compares favourably with the national audit. 6. Additional intravenous fluids should only be prescribed where there has been an active assessment of the volume of PN already being administered and there is clear indication that further fluids/electrolytes are required In the NCEPOD report, additional IV fluids were given to 75% of patients compared to 70% in our local audit. We found that 28% of patients may have received excess additional fluids which is the same as seen nationally. Documentation of the reasons for additional fluid administration was poor and this makes it difficult to comment on whether the administration of additional fluids was appropriate. This aspect requires further evaluation as total fluid losses and fluid balance were not recorded. ## 7. CVC insertion should be clearly documented in the case notes including the type of line and confirmation of position of the catheter tip. In our audit, the type of intravenous access used for PN was documented in the notes in 87% and insertion of the feeding line was documented in the notes in 75% (compared to 67% nationally). Position of the line tip was documented in 52% locally and 45% nationally. Line complications occurred in 29 patients (15%) which is significantly lower than 26% in the NCEPOD report. The benefits of nutrition teams have been widely discussed. The NCEPOD report found that when the overall PN-related care was correlated with whether nutrition teams were involved in the initial decision to give PN there was a difference seen in the good practice (27.4% vs 15.2%) and less than satisfactory (7.0% vs 11.5%) categories but very little difference in the middle ground represented by the other categories. They could not identify a clear benefit of nutrition teams in terms of good overall care but this was attributed to grading being based on a large number of parameters and NCEPOD still support a multi-disciplinary team approach to PN. It is difficult to assess the direct impact of nutrition teams as patient care is multifactorial. Interestingly the metabolic complications are significantly higher in the group under review by a nutrition team and it may be that these teams are reviewing more high risk and complicated cases. In our audit we also included abnormal LFTs as a metabolic complication unlike in the national audit. > Nationally, 40% of hospitals that administer PN to adult patients do not have a nutrition team and this is slightly higher in Northern England (50%). In our region, even in hospitals with a | 297 | nutrition team, 35% of patients did not have multi-disciplinary nutrition management. This is | |-----|---| | 298 | clearly an area to focus on. | It was reassuring to see that the majority of patients commenced PN during the working week and during 'normal' hours. This demonstrates a good understanding within the clinical teams that PN is not an emergency intervention and suggests that nutritional assessments are being carried out in a time-appropriate manner. NICE guidance states that all 'off-the-shelf' multichamber bags of PN should have vitamins added prior to administration.² This was only the case in approximately half of cases in our audit and highlights another area for improvement. Other strengths within our region demonstrated by the audit are the identification of risk and prevention of refeeding syndrome and a favourable catheter sepsis rate in comparison to national figures. Areas which we should look to improve regionally are: - documentation of treatment goal - review the constitution of PN once started - ensuring patients are weighed regularly where this is possible - better education of clinicians about fluid balance and need for additional intravenous fluids in the context of concurrent PN - documentation of position of line tip - Improvement in the quality and consistency of documentation related to PN. This work can be compared to a previous audit published by the NNN in 2007 examining the use of parenteral nutrition in hospitals in the North of England. The study group were very similar with 193 PN episodes being included and a median patient age of 67 years. There has been a dramatic improvement in the rate of line infections from 12% to 4% (including local line site infection/phlebitis and systemic line infection). This represents a decrease from 21 to 3.5 per 1000 catheter days. There has also been a decrease in overall mortality rates from 20% at 28 days to 8% at 30 days. NCEPOD reported an overall mortality in adults of 26% with little difference as to whether patients had received PN for more or less than 14 days. In 1997, 33% of hospitals in Northern England had a nutrition team and this has increased to 50% in 2015. There are limitations with this study. Patients were identified prospectively but data collection were retrospective which led to some difficulties in obtaining information due to poorly filed notes and practical problems locating the information required e.g. intensive care charts. The accuracy of the data collection depends on the individual completing the proforma. Some respondents did not complete all the fields on the proforma. The completeness of the audit relied on local reviewers identifying all patients who received PN in their hospitals during the study period. It is likely that some patients were not identified. However, most centres felt that all patients had been identified and others felt that only a very small number of patients receiving PN were not identified. Some of the data fields relied on local reviewers making an assessment of 'avoidable' or 'appropriateness' which opens the audit to individual variation in clinical opinion. This type of region-wide review of clinical practice is key to improving patient care in complex areas of healthcare delivery such as PN. The NNN includes a range of hospital trusts in terms of size of population served, frequency of use of PN and level of consultant expertise in nutrition. The sharing of knowledge and expertise is one of the strengths of the NNN and results of this audit will lead to improvements in patient care across the network to help deliver equity of care across the region. The results of this audit reveal areas where we need to improve the care of adult patients receiving PN. Individual centre results have been fed back to the clinical teams to highlight particular strengths and weaknesses. The advantages of this type of team approach can be to develop robust, evidence-based protocols. The results of this audit have been presented to the NNN and a repeat audit cycle will be completed after the implementation of targeted education and revised local protocols. It is also hoped that the results of this work will help strengthen the case for introducing nutrition teams in the 50% of our hospitals which do not currently have this service. The results of this audit may relate to the north-east of England, however, the lessons to be learnt are likely to be generisable to other areas of the UK and other healthcare systems. ### **Conclusions** A 3-month region-wide prospective audit was performed with all centres contributing and with a high completion rate. The outcomes suggest improved PN care with fewer line complications, reduced metabolic complications and lower 30-day mortality compared to a previous regional audit and a large national audit. However, documentation of some aspects of care and the use of added vitamins to standard PN bags remains suboptimal. There is evidence that multi-disciplinary team involvement contributes to better care in PN delivery. The complexities of PN and potential risks to patients receiving PN are the same in healthcare settings across the UK and elsewhere in the world and this study provides a template for other local or regional prospective audits to continue the cycle of care improvement for patients. | 367 | Acknowledgements | |-----|---| | 368 | We would like to thank all members of the Northern Nutrition Network who contributed to | | 369 | the audit: Jacqui Ross and Laura Neilson (North Cumbria University Hospitals), Lorraine | | 370 | McVie and David Oliver (James Cook University Hospital), Eileen O'Neill (Sunderland | | 371 | Royal Hospital), Wendy Cochrane (Northumbria NHS Trust), Helen Widdrington, Julie | | 372 | Higgins and Chris Wells (North Tees and Hartlepool), Sarah Harkess (Durham and | | 373 | Darlington), Chris
Mountford, Barbara Davidson and David Bourne (Freeman Hospital), | | 374 | Mimosa Wright (Royal Victoria Infirmary, Newcastle), Emma Johns and Kate Stoker (Queen | | 375 | Elizabeth Hospital, Gateshead) and Emma Sainsbury (South Tyneside District Hospital). | | 376 | | | 377 | Financial Support | | 378 | The Northern Nutrition Network received a SAGE (Shire Award for Gastrointestinal | | 379 | Excellence) for £7,500 which was used to support this work. | | 380 | | | 381 | Conflict of Interest | | 382 | None | | 383 | | | 384 | Authorship Statement | | 385 | Jessica Dyson helped with study design and was the lead author in data analysis and writing | | 386 | the manuscript. Nick Thompson helped with study design, data analysis and writing the | | 387 | manuscript. All authors approved the final version of the manuscript. | | 388 | manuscript. 7th additions approved the man version of the manuscript. | | 389 | Data Sharing Statement | | 390 | There is no additional unpublished data from the study. | | 330 | There is no additional unpublished data from the study. | | | | #### References - Nutrition BAfPaE. Organisation of Food and Nutritional Support in Hospitals. - 393 In: Powell-Tuck J, ed., 2007. - 2 Care NCCfA. Nutrition Support for Adults: Oral Nutrition Support, Enteral Tube - Feeding and Parenteral Nutrition. 2006. - 396 3 Bozzetti F, Forbes A. The ESPEN clinical practice Guidelines on Parenteral - Nutrition: present status and perspectives for future research. Clinical nutrition - 398 2009;**28**:359-64. - 399 4 Van Gossum A, Cabre E, Hebuterne X, Jeppesen P, Krznaric Z, Messing B, et al. - 400 ESPEN Guidelines on Parenteral Nutrition: gastroenterology. Clinical nutrition - 401 2009;**28**:415-27. - 402 5 American Society for P, Enteral Nutrition Board of D. Clinical Guidelines for the - Use of Parenteral and Enteral Nutrition in Adult and Pediatric Patients, 2009. JPEN - Journal of parenteral and enteral nutrition 2009;**33**:255-9. - 405 6 Guenter P, Boullata JI, Ayers P, Gervasio J, Malone A, Raymond E, et al. - Standardized Competencies for Parenteral Nutrition Prescribing: The American - Society for Parenteral and Enteral Nutrition Model. Nutr Clin Pract 2015;**30**:570-6. - Stewart JAD MD, Smith N et al. A Mixed Bag: An enquiry into the care of - 409 hospital patients receiving parenteral nutrition. A report by the National Confidential - 410 Enquiry into Patient Outcome and Death. 2010. - Hearnshaw SA, Thompson NP, Northern Nutrition N. Use of parenteral - nutrition in hospitals in the North of England. Journal of human nutrition and - dietetics: the official journal of the British Dietetic Association 2007;**20**:14-23; quiz 4- - 414 6. - 9 Pittiruti M, Hamilton H, Biffi R, MacFie J, Pertkiewicz M, Espen. ESPEN - 416 Guidelines on Parenteral Nutrition: central venous catheters (access, care, diagnosis - and therapy of complications). Clinical nutrition 2009;**28**:365-77. - 418 10 Prevention CfDCa. Surveillance for Central Line-associated Bloodstream - 419 Infections (CLABSI). 2012. ## 422 Tables ## Table 1. Baseline Assessment Variables for Patients | 4 | 2 | 3 | |---|---|---| | 4 | 2 | 4 | | Indication | No of patients | % | % in NCEPOD | | |--|--|------|-------------|--| | Post-surgical complications/ileus | 66 | 34.3 | 27 | | | Obstruction | 29 | 15.1 | 10 | | | Perforated/leaking gut | 26 | 13.5 | 8 | | | Non-functioning gut | 15 | 7.8 | 9 | | | No access for enteral nutrition or failed EN | 29 | 15.1 | 13 | | | Malabsorption | 7 | 3.7 | 2 | | | Crohn's disease | 6 | 3.1 | 1 | | | Short bowel | 3 | 1.6 | 2 | | | Cancer | 2 | 1.0 | 3 | | | Other | 9 | 4.8 | 25 | | | Assessment prior to commencing PN | Number of patients who had this form of assessment | % | | | | Nutritional Assessment | 166 | 87 | | | | Clinical Assessment | 166 | 87 | | | | Standard Electrolytes ^a | 154 | 80 | | | | Anthropometry ^b | 68 | 35 | | | | Nutritional Requirements | 149 | 78 | | | | MUST ^c | 98 | 51 | | | | Oral Intake | 90 | 47 | | | | Other | 31 | 16 | | | | Risk of Refeeding | 144 | 75 | 50 | | | Decision to commence | | % | % in | | | PN | | | NCEPOD | | | Doctor | | 54 | 49 | | | Doctor and dietician | | 37 | 22 | | | Dietician | 3 | 4 | |-----------------------------|---|----| | Doctor, dietician and other | 1 | 15 | | Unknown | 5 | 3 | | Other | 0 | 7 | - ^a Standard electrolytes = Sodium, potassium, magnesium, phosphate - ^b Anthropometry = grip strength and triceps skinfold thickness - ^c Malnutrition Universal Screening Tool ## Table 2. Types of line and metabolic complications | Type of line complication | No of patients | % | % in NCEPOD | |-------------------------------------|----------------|----|----------------| | Line misplacement/accidental | 9 | 5 | 3 | | removal | | | | | Line occlusion | 4 | 2 | 2 | | Local line site infection/phlebitis | 4 | 2 | 10 | | TPN extravasation | 4 | 2 | 1 | | Other | 3 | 2 | 1 | | Systemic line infection | 3 | 2 | 5 | | Not documented | 2 | 1 | 16 | | Type of metabolic | No of patients | % | % in NCEPOD | | complication | | | | | Abnormal LFTs | 35 | 18 | Not documented | | Hypomagnesaemia | 23 | 12 | 10 | | Hypophosphataemia | 18 | 9 | 18 | | Hypokalaemia | 16 | 8 | 11 | | Hyponatraemia | 14 | 7 | 6 | | Hyperphosphataemia | 9 | 5 | 4 | | Hyperkalaemia | 8 | 9 | 4 | | Hypermagnesaemia | 3 | 2 | 3 | | Hypernatraemia | 3 | 2 | 3 | | Hyperglycaemia | 1 | 1 | 8 | Table 3. Influence of nutrition team input on patient care | | Nutrition | n Team | Nutrition | n Team | P value | |------------------------------------|-----------------|--------|--------------|--------|---------| | | Involved (n=72) | | Not Involved | | | | | | | (n=1: | 20) | | | | n | % | n | % | | | PN commenced on weekday | 69 | 96 | 101 | 84 | p<0.05 | | Assessment prior to commencing PN | I | | l | | | | Nutritional assessment | 69 | 96 | 97 | 81 | p<0.05 | | Clinical assessment | 69 | 96 | 87 | 73 | p<0.05 | | Standard electrolytes | 67 | 93 | 87 | 73 | p<0.05 | | Nutritional needs | 66 | 92 | 83 | 69 | p<0.05 | | Risk of refeeding | 66 | 92 | 80 | 67 | p<0.05 | | Review once commenced PN | | | l | | | | Constitution of PN reviewed daily | 64 | 89 | 47 | 39 | p<0.05 | | Biochemistry checked daily | 65 | 90 | 109 | 91 | p=NS | | Clinical condition reviewed daily | 63 | 88 | 105 | 88 | p=NS | | Ongoing need for PN reviewed daily | 61 | 85 | 104 | 87 | P=NS | | Daily vascular access review | 49 | 68 | 47 | 57 | p<0.05 | | | ı | - CV | | ı | | | Treatment goal documented in notes | 44 | 61 | 30 | 25 | p<0.05 | | Line complications | 11 | 15 | 23 | 19 | p=NS | | Reported metabolic complications | 46 | 64 | 43 | 36 | p<0.05 | - Figure Legends ## Parenteral Nutrition Audit - Regional | Hospital: | | | | | | | | | |---|---------------|---|-----------|---------|----------|--------------------|---------------------|--| | Age: | | | | | | | | | | Gender: | Patient / Admission details | | | | | | | | | | Weight: | In
Kilos | | | | | | Not recorded | | | Height: | In cm | | | | | | Not recorded | | | Date of admission | | | | | | | | | | Was the admission: | Ар | olanned a | dmission | ١ | | Inte | r-hospital transfer | | | | An er | mergency | / admissi | on | | | Unknown | | | Date of referral for PN | | | | | | | Not available | | | Date of decision to commence of PN | | | | | • | | | | | Date and time infusion commenced | | | 4 | | | | | | | Was there a delay of more than patient required PN and the co | | | | decisio | n that t | he | Yes/No | | | If 'Yes', please expand on your | | | | | , | | | | | answer | | | | | | | | | | Day of week infusion commenced | | Week | day | | | Wee | kend/Bank holiday | | | | | | | | | | | | | Patient Assessment | | | | | | | | | | Was a nutritional assessment carried out before PN commenced | | | | | Yes/N | 0 | 1 | | | If 'Yes', what did the assessment involve (tick all | Clinica | Clinical assessment | | | | screening tool | | | | that apply)? | | Standard electrolytes
Magnesium, phosphate | | | | | al intake | | | | Anthropometry | | | | Other | | | | | | Nutritiona | Nutritional Requirements | | | | Risk of re-feeding | | | | Where any electrolyte abnorma | alities corre | ected bef | ore com | mencir | ng PN? | | | | | | | | | | | | Yes/No | | | Who made the decision that PN should be commenced | Nurs | se | | | | | ' | | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml | (tick multiple if required)? | Dietician | | Grad | e/Speciality | | | |---|--------------------------------------|-----------|------------------|----------------|-------------------------------------|--| | | Doctor | | Grade/Speciality | | | | | | Unknown | | | | | | | | Other | | | | | | | If 'Other', please state | | | | | | | | Were they members of the nut | trition team? | | | | Yes/No | | | | Multi-chamber bag ('off the shelf') | | | · · | g specially ordered
manufacturer | | | What type of PN was given first? | Multi-chamber bathe shelf') with add | | | | Other | | | | Bespoke bag (ma
hospital pharma | | | Not (| documented | | | Were intravenous vitamins (e. | | | I | | Yes/No | | | Were the PN prescription requ | | ed in the | case no | otes? | Yes/No | | | If 'Yes', were these of adequate | | | | | Yes/No | | | Who reviewed the patient during the period they were | Nurse | | | | · | | | on PN (tick multiple if required)? | Doctor | | Gr | ade/Speciality | | | | -4,. | Dietician | | Grade/Speciality | | | | | | Pharmacist | | | | | | | | Unknown | |) | | | | | | Other | | | | | | | If 'Other', please state | | | | | | | | How often was the patient reviewed with respect to PN | Daily (7 days) |) | | 1-2 days/week | | | | in the first 2 weeks? |
Daily (working w | eek) | | <1 day/week | | | | | 3-4 days/wee | k | | unknown | | | | What was reviewed (tick multiple if required) and | Constitution of | PN | | | Daily /weekly | | | how frequently (delete as appropriate)? | Biochemical rev | iew | | Daily/ weekly | | | | Clinical status | | | Daily /weekly | | | | | | Ongoing need for PN | | | Daily/ weekly | | | | | Weight | | | Daily /weekly | | | | | Vascular acces | ss | | | Daily/ weekly | | | | Anthropomet | ry | | | Daily/ weekly | | ## **Indication for PN** | What was the indication (whether documented or not) | Congenital anomalies; gut | | No access for enteral nutrition | | | | |---|--------------------------------|--------|---------------------------------|--|--|--| | Please tick the box which is | Congenital anomalies; non gut | | Pre-operative nutrition | | | | | most appropriate | Necrotizing enterocolitis | | Radiation enteritis | | | | | | Non functioning gut | | Infection (e.g. C.difficile) | | | | | | Perforated / leaking gut | | Chemotherapy | | | | | | Short bowel | | Post-surgical complications | | | | | | Dysphagia | | Volvulus | | | | | | Obstruction | | Crohn's disease | | | | | | Dysmotility | | Cancer | | | | | | Fistulae | | Post-op ileus | | | | | | Malabsorption | | Other | | | | | If 'Other', please state | | | | | | | | Was an indication for PN recorde | d in the case notes? | | Yes/No | | | | | Was the Nutrition team involved | in the decision to commence PN | 1? | Yes/No/Unknown | | | | | If 'No', please expand on your answer | | | | | | | | Was a treatment goal documente | | Yes/No | | | | | | f 'Yes', what was this? e.g. optimisation of nutrition pre- surgery | | | | | | | | Was EN given to prior to PN? | Not possible | | Trial of EN unsuccessful | | | | | | Dual therapy | | Not documented | | | | | | • | | | | | | ## Venous Access / Line Care (where multiple, please use new page for each new line used) | | Was the type line used for PN docu | Yes/No | | | |--|------------------------------------|---|---|-------------------------| | What type of line used (delete details as appropriate for central Central line | | | [| Tunnelled/Not tunnelled | | | line)? | | | Single/Multilumen | | | | Peripherally inserted central line (PICC) | | | | | | Peripherally inserted long line (e.g. Mid-line) | | | | | Standard Per | ripheral cannula | | | | |--|--------------|--------------------------|---|----------------------------------|---| | Was the insertion of the feeding line | | Yes/No | | | | | Was aseptic technique documented | ? | | | Yes/No | | | Speciality and grade of the operator inserting the line? | | | | Not documented | | | Was the position of the tip documer | nted? | | | Yes/No | | | Did the patient develop any line-rela | | ons | | Yes/No | | | If 'Yes', which complications? | Line mis | placement | | Line occlusion | | | | Line site | e infection | | Venous thrombosis | | | | | systemic line
ection* | | Line fracture/rupture | | | | | systemic line
ction * | | Pneumothorax | | | | Phi | lebitis | | Haemathorax | | | | Accident | tal removal | | TPN extravasation | | | | Nerve | damage | | Other | | | Was PN interrupted by a line complication? | | Yes | | No | | | | | | | | | | Metabolic Complications | | | | | | | Did the patient develop any metabolic complications? | , | Yes | | No | | | If 'Yes', which complications? (Please your hospital's reference | Hypopho | sphataemia | | Hypermagnesaemia | | | range for electrolytes to define abnormal results) | Нурота | gnesaemia | | Hyperphosphataemia | | | | Нуро | kalaemia | | Hyperkalaemia | | | | Hypon | atraemia | | Hyperglycaemia | | | | Hyperr | natraemia | | Abnormal LFTs (but not jaundice) | | | | | | | Jaundice | | | If the patient had abnormal LFTs how glucose cal/kg body weight/day did from PN? | | | | | | | If the patient had abnormal LFTs how g/kg body weight/day did they recei | | | | | | | In your opinion were any of the | Yes | | П | No | | | | | | | l l | _ | | complications avoidable? | | known | | N/A | | | Were the complications managed appropriately? | Yes | | | | | No | | |--|---------------------------|-------------|------|--------|---------------------------|------------------------------|--| | | Unknown | | | | | N/A | | | If 'No', please expand on your answer | | | | | | | | | Were IV fluids given in addition to the PN during the first 2 weeks of PN therapy? | Yes/No/Unknown | | | | | | | | If 'Yes', was this: (tick all that apply) | To correct deficit | | | | flui | e maintenance
d provision | | | | To correct ongoing losses | | | | | indication
ocumented | | | | Other, please state | | | | | | | | What type of fluid was given? | Saline C | | Co | olliod | | Hartmanns | | | What volume of fluid was given? | | | | | | | | | Duration of PN (days) | Q_ | | | | | | | | What was the outcome for this patient at 30 days? (tick all that | Weaned onto feed | - | eral | | Discharged home | | | | apply) | Home parente | eral nutrit | ion | | Died during hospital stay | | | | | Transferred t | o other u | nit | | | | | | Comments: | | 4 | ^{*}Suspected line infection: Positive blood cultures and evidence of sepsis (fevers, hypotension etc) with no obvious source other than line. ^{*}Confirmed line infection: A recognised pathogen cultured from one or more blood cultures and the organism cultured from blood is not related to an infection at another site. Or a common commensal (i.e., diphtheroids [Corynebacterium spp. not C. diphtheriae], Bacillus spp. [not B. anthracis], Propionibacterium spp., coagulase-negative staphylococci [including S. epidermidis], viridans group streptococci, Aerococcus spp., and Micrococcus spp.) cultured from two or more blood cultures drawn on separate occasions and evidence of sepsis and positive laboratory results are not related to an infection at another site ## **BMJ Open** ## Adult Parenteral Nutrition in the North of England: A Region-wide Audit | Journal: | BMJ Open | |----------------------------------|--| | Manuscript ID | bmjopen-2016-012663.R1 | | Article Type: | Research | | Date Submitted by the Author: | 16-Sep-2016 | | Complete List of Authors: | Dyson, Jessica; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital; Newcastle University, NIHR Newcastle Biomedical Research Centre Thompson, Nick; Freeman Hospital, Gastroenterology | | Primary Subject Heading : | Nutrition and metabolism | | Secondary Subject Heading: | Gastroenterology and hepatology | | Keywords: | AUDIT, Nutritional support < GASTROENTEROLOGY, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT | | | | SCHOLARONE™ Manuscripts BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright. | 1 | Title Page | |--------|---| | 2 | Full Title | | 3 | Adult Parenteral Nutrition in the North of England: A Region-wide Audit | | 4
5 | Running Title Parenteral Nutrition in the North of England | | 6 | Authors | | 7 | Jessica K Dyson, Honorary Consultant Hepatologist and Gastroenterologist ^{1,2} | | 8 | Nick Thompson, Consultant Gastroenterologist ¹ | | 9 | On behalf of the Northern Nutrition Network | | 10 | ¹ Gastroenterology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS | | 11 | Foundation Trust, High Heaton, Newcastle upon Tyne, NE7 7DN | | 12 | ² NIHR Newcastle Biomedical Research Centre, Newcastle University | | 13 | Corresponding Author | | 14 | Jessica Dyson, Gastroenterology Department, Freeman Hospital, Newcastle upon Tyne | | 15 | Hospitals NHS Foundation Trust, High Heaton, Newcastle upon Tyne, NE7 7DN | | 16 | jessica.dyson@nuth.nhs.uk | | 17 | Telephone: 0191 213 7209 | | 18 | jessica.dyson@nuth.nhs.uk Telephone: 0191 213 7209 Fax: 0191 223 1249 | | 19 | | | 20 | Keywords | | 21 | Adult parenteral nutrition; nutrition team; complications; assessment; monitoring | | 22 | Word Count = 4179 (excluding references and tables) | | 23 | | | | | | | | | | | | | | 24 Abstract - 25 Objectives - 26 Parenteral nutrition (PN) is widely used to provide nutritional support to patients with - 27 inaccessible or inadequate length of gut or non-functioning gut. The objective was to - 28 compare practice in parenteral nutrition (PN) administration to results of the NCEPOD - 29 report, 'A Mixed Bag', and to establish whether good practice was being followed within this - part of the UK. - 31 Setting - 32 Using the Northern Nutrition Network (NNN), we examined the care of adult patients - receiving PN in all 10 secondary care hospitals in our region. - 34 Participants - 35 All patients receiving PN were included with no exclusions. Data were collected on 192 - patients (51% female, median age 65 years [range 18-96]). - 37 Outcome Measures - A data collection tool was designed based on the NCEPOD report recommendations. - 39 Results - 40 PN was used for a median of 7 days with a 30-day mortality rate of 8%. Metabolic - 41 complications occurred in 34%, of which only 13% were avoidable. The catheter sepsis rate - 42 was 1.5 per 1000 PN days. The audit suggests that nutrition team input improves patient - 43 assessment prior to commencing PN and review once PN is established. Risk of refeeding - 44 syndrome was
identified in 75%. Areas for improvement are: documentation of treatment - 45 goal (39%), review of PN constitution (38%), ensuring patients are weighed regularly (56%), - and documentation of line-tip position (52%). - 47 Conclusions - 48 This region-wide prospective audit suggests improved practice within the UK compared to - 49 the NCEPOD audit with lower mortality and line sepsis rates. However, documentation - 50 remains suboptimal. This work strengthens the case for introducing nutrition teams in - 51 hospitals without this service. These findings are likely to be reproduced across the UK and - 52 in other healthcare settings. We provide a template for similar audits of clinical practice. | F | \rt | icl | e | Sι | ım | ım | ar | y | |---|-----|-----|---|----|----|----|----|---| | | | | | | | | | | ## Strengths and limitations of this study - This type of region-wide review of clinical practice is key to improving patient care in complex areas of healthcare delivery such as PN - The Northern Nutrition Network includes a range of hospital trusts in terms of size of population served, frequency of use of PN and level of consultant expertise in nutrition - Dissemination of the audit results will hopefully help to improve equity of care across the region - The advantages of this type of team approach can be to develop robust, evidence-based protocols - Data collection was retrospective and completeness of the audit relied on local reviewers identifying all patients who received PN in their hospitals. ## Adult Parenteral Nutrition in the North of England: A Region-wide Audit ## Background Parenteral nutrition (PN) is widely used to provide nutritional support to patients with inaccessible, inadequate length of gut or non-functioning gut (intestinal failure). However, PN can have potentially fatal complications and patients require an accurate assessment of nutritional requirements, dedicated intravenous access and careful monitoring for electrolyte imbalance and changing nutritional requirements. The importance of multi-disciplinary nutrition support teams has been described¹. There are national and international (ESPEN; European Society for Clinical Nutrition and Metabolism) guidelines for nutritional support in adults^{2 3 4 5 6 7}. The American Society for Parenteral and Enteral Nutrition (ASPEN) has recently highlighted the need for frameworks to guide institutions in developing and maintaining competencies for safe PN due to its complexity and likely increasing use of this feeding route⁸. In 2010, there was a UK National Confidential Enquiry into Patient Outcome and Death (NCEPOD) report focussed on PN, 'A Mixed Bag'⁹. The primary aim of the study was to examine the process of care of patients receiving PN in hospital in order to identify remediable factors in the care received by these patients. There were 6 main themes in the report: indication for PN, type of PN, PN prescribing, catheter choice, insertion and care, complications and nutrition teams. 'A Mixed Bag' found that only 19% of adult patients had PN care considered to represent good practice. The response rate in this national audit was 49% (questionnaires and case notes returned). This report has focussed attention on the inhospital use of PN within all parts of the UK. 90 The Northern Nutrition Network (NNN) was established in 2003 and is a collaboration of North East based multidisciplinary nutrition teams including physicians, surgeons, dieticians, nurses, pharmacists and biochemists, consisting of nine acute trusts including North Cumbria. The NNN has previous experience of conducting region-wide audits with high response 94 rates¹⁰. ## Aims and Methods The aim of this study was to compare practice in the administration of PN in hospitals in the North of England to results of the recent NCEPOD study and whether there had been any improvements in care since that audit. The hospitals in our region serve a population of approximately 2.7 million people. Our findings are likely to be similar to those in different parts of the UK and other healthcare settings and may provide a template for other prospective audits of care. Using the NNN, we examined the assessment, administration, delivery and monitoring of adult patients receiving PN in our region. PN was defined as intravenous fluids for nutritional support beyond standard intravenous crystalloid fluids. All hospitals in Northern England were invited to participate. A data collection tool was designed by the NNN based on the recommendations from the recent NCEPOD report (see online supplemental data) collecting information on 5 aspects of PN care: patient and admission details, indication for PN, patient assessment, venous access/line care and metabolic complications. Our tool was slightly simplified from that used in the NCEPOD report in order to maximise participation in the audit with less focus on the location of the patient. Data were collected by a member of the clinical care team (doctor, dietician or nutrition specialist nurse) at each participating hospital on all adult patients receiving PN in participating centres over a 3 month period from June to August 2013. All members of the data collection team were given training in the use of the data collection tool via the Northern Nutrition Network. Local reviewers (different to the independent reviewers of NCEPOD) were asked to judge whether metabolic complications were avoidable. The data collection for NCEPOD occurred in 2008 so there was no overlap with this audit. No patient identifiable information was collected and each institution registered the audit with their relevant department. Statistical analysis was performed using two-tailed Fisher's Exact Test, SPSS, version 21 with a significance level for statistical comparison of p<0.05. The NCEPOD report asked Advisors to make an assessment of the quality of care delivered to adult patients receiving PN and grade it as: good, room for improvement (clinical, organisational, clinical and organisational) or less than satisfactory. It is difficult to repeat these assessments in a different cohort given the subjective nature of these measurements and the fact that local reviewers were collecting data and submitting the information to the authors. Therefore, we decided not to make a global assessment but to assess specific aspects of PN care. #### Results - There were 10 participating centres and 192 proformas were returned (94 males, 98 females). - 131 The median age of patients was 65 years (range 18-96). The total number of PN days - included in the audit was 2007 with the median duration of PN being 7 days (range 1-66). Using the ESPEN functional classification of intestinal failure¹¹, there were 168 (91%) patients with type I intestinal failure (acute, short-term and usually self-limiting condition requiring PN for <28 days) and 16 (9%) patients with type II intestinal failure (prolonged acute condition, often in metabolically unstable patients, requiring complex multidisciplinary care and intravenous supplementation for ≥28 days). This information was unavailable for 8 patients. Weight on admission was documented in 95%; median 69kg (range 29-156). Height was documented in 84%: median 1.67m (range 1.5-1.9). It was possible to calculate the body mass index (BMI) in 83%: median 24.9kg/m² (range 10.3-48.8). The types of admission were: emergency admission 76.0%, planned/elective 19.3%, interhospital transfer 2.6% and unknown in 2.1%. An initial trial of enteral nutrition (EN) was not possible in 58%, was unsuccessful in 26%, dual therapy was given in 6% and there was no documentation about EN in 10%. The clinical indications for PN are shown in Table 1. #### Patient Assessment The decision to commence PN was made by a doctor or doctor and dietician in 91% of cases (Table 1). Only 28% of the clinicians making the decision to start PN were a member of a multi-disciplinary nutrition team. The indication for PN was documented in the clinical notes in 80%. A nutrition team was involved in the decision to start PN in 38% of cases. However, only 5 (50%) of the participating hospitals in Northern England have a nutrition team in place. Of patients who received PN in a hospital where a nutrition team exists, 65% of cases had involvement of the nutrition team. The treatment goal was only documented in 39%. In hospitals with a nutrition team, 60 of 93 (65%) of patients with type I and 9 of 11 (82%) patients with type II intestinal failure had nutrition team involvement. Once the decision to commence PN had been made, 84% of patients received PN within 24 hours. By far the commonest reason for the delay was difficulties with obtaining intravenous (IV) access (83%). It was not possible to establish the time of day when PN was commenced in 42%. However, for patients where this was clearly documented, 82% were started during daytime working hours (0800 – 2000 hours). The majority (88.5%) were started on PN during the working week (Monday to Friday). Only 9.9% of PN was started at a weekend or on a bank holiday. This information was unavailable for 1.6%. Table 1 shows the forms of assessment that were documented in patient notes prior to commencing PN. There were no electrolyte abnormalities prior to commencing PN in 14% of patients and this information was unavailable for 12%. Of the 74% who had documented BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright | 1 | | | |----------|---------------------------------|--| | | | | | 2 | | | | 3 | | | | | | | | 4 | | | | _ | | | | 5
3 | | | | _ | | | | Э | | | | 7 | | | | <u>'</u> | | | | 739 | | | | า | | | | 7 | | | | 1 | 0 | | | • | ĭ | | | ı | 1 | | | 1 | 2
3 | | | • | _ | | | 1 | 3 | | | 4 | 1 | | | I | 4 | | | 1 | 5 | | | • | ~ | | | 1 | 6 | | | 1 | 7 | | | | 1 | | | 1 | 8 | | | 4 | ń | | | I | 9 | | | 2 | 0 | | | _ | 7 | | | 2 |
1 | | | ว | 2 | | | _ | _ | | | 2 | 3 | | | _ | 4 | | | _ | 4 | | | 2 | 5 | | | _ | - | | | 2 | 6 | | | ว | 1
2
3
4
5
6
7 | | | _ | 1 | | | 2 | 8
9 | | | _ | ~ | | | _ | 9 | | | 2 | Λ | | | _ | • | | | 3 | 1 | | | 2 | 2 | | |) | _ | | | 3 | 3 | | | _ | 4 | | | 3 | 0
1
2
3
4 | | | 2 | 5 | | | _ | 5 | | | 3 | 6 | | | 2 | 7 | | | ر | 4
5
6
7
8 | | | 3 | 8 | | | , | 9 | | | 3 | 9 | | | 1 | 0 | | | : | ĭ | | | 4 | 1 | | | 1 | 2 | | | + | _ | | | 4 | 3 | | | 'n | 1 | | | | 4 | | | 4 | 5 | | | | | | | 4 | 6 | | | 1 | 7 | | | + | 1 | | | 4 | 8 | | | 1 | 9 | | | + | 9 | | | 5 | n | | | _ | ĭ | | | Ó | 0 | | | | | | - 166 electrolyte abnormalities they were appropriately corrected (to within standard normal 167 ranges) in 55% prior to starting PN. - 168 Type of Parenteral nutrition - The type of PN first given was documented in 98% and all but 1 patient were given 'off-the-169 - shelf' multi-chamber bags with (49%) or without (49%) additives. The PN prescription was 170 - 171 documented in the notes in 81% and documentation was assessed as adequate in 78%. This - was defined as stipulating a specific "off the shelf" bag or a locally manufactured "bespoke" 172 - 173 bag with defined constituents. - 174 Vascular access and complications - The type of intravenous access used for PN was documented in the notes in 87% of patients. 175 - The type of access used was: central line 53%, mid-line 22%, standard dedicated peripheral 176 - cannula 21%, PICC line 2% and unknown in 2%. Insertion of the feeding line was 177 - documented in the notes in 75%. Use of aseptic technique was recorded in 67%. 178 - 179 Radiographic confirmation of position of the line tip was documented in the patient notes in - 180 only 52% of centrally placed catheters. The grade and job description of person inserting the - 181 line was documented in 55%. - Line complications occurred in 29 patients (15%). We used a definition of line infection 182 - adapted from the ESPEN guidelines¹² and National Healthcare Safety Network (NHSN) 183 - Surveillance Definitions¹³. Three patients suffered a systemic line infection giving a line 184 - sepsis rate of 1.5 per 1000 PN days. Administration of PN was interrupted due to line 185 - complications in 8% of patients. Table 2 shows the types of line complications encountered 186 - by patients. 187 - 188 Monitoring after commencement of feeding - 189 Following the commencement of PN, 88% of patients were reviewed by a doctor and at least - 1 other member of a multi-disciplinary team (dietician, nutrition nurse or pharmacist). Only a 190 - doctor reviewed the patient in 8% and 2% were only reviewed by a dietician. This 191 - information was not available for 2%. Nearly a third (32%) of patients were reviewed daily (7 192 - days a week), 35% were reviewed daily (Monday to Friday) and 28% were seen 3-4 days per 193 - 194 week. The remaining 6% of patients were seen less than 1-2 times per week regarding their - 195 PN. BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright | 196 | Metabo | ic Comp | lications | |-----|--------|---------|-----------| |-----|--------|---------|-----------| - Metabolic complications were encountered in 43% of patients; 13% of these were felt to have been avoidable. Local reviewers judged that 94% of metabolic complications were managed appropriately. Table 2 shows the metabolic complications that patients experienced. We included abnormal liver function tests (LFTs) as a metabolic complication. However, if this is - excluded (as in the NCEPOD audit) then the complication rate was 34%. ## 202 Intravenous Vitamins and Fluids - Additional intravenous (IV) vitamins were given in 51% of patients. IV fluids were given in addition to PN in 70% of patients. Fluids were given to correct deficit in 36% and as routine maintenance fluid provision in 24%. No indication was documented in 39%. The commonest fluids used were normal saline and compound sodium lactate (Hartmann's solution). The audit did not include an overall assessment of volume of PN administered, fluid losses and the volume of intravenous therapy (IVT) given. However, 28% of patients were given more - 209 than 2 litres of IVT every 24 hours while also receiving PN. ### 210 Patient Outcomes - In our audit, at 30 days, 83% of patients had returned to oral or enteral nutrition, 4% had been - discharged on home PN, and 2% continued on inpatient PN. There was an overall 30-day - 213 mortality rate of 8%. Cause of death was unavailable in 56% but 13% died in a hospice - setting after PN had been withdrawn and 31% died of sepsis with multi-organ failure. ### 215 Role of nutrition teams - We examined some parameters indicating good care of the cohort in terms of whether a - 217 member of a nutrition team was involved in the care of the patient (Table 3). There was a - 218 clear difference in assessment of patients commencing PN and documentation of nutritional - goals. The total number of line complications was 13 per 1000 catheter days in the group - 220 where nutrition teams were involved compared to 20 per 1000 catheter days in patients - 221 without nutrition team involvement. #### 222 Discussion - In our region, we established the Northern Nutrition Network (NNN) in 2003 with the aim of - improving outcomes for patients in need of nutritional support. Part of the role of the NNN is - 225 to conduct region-wide audits and this review of the use of parenteral nutrition (PN) in our - region is one example of the NNN in action. All centres that are part of the NNN (n=10) - participated in the audit. - We have considered the individual recommendations made by the NCEPOD report 'A Mixed Bag' and reviewed our findings in the context of these: - 1. PN should only be given when enteral nutrition has been considered, and excluded, as either inappropriate and/or impracticable. - In the national report, inadequate consideration was given to enteral nutrition in a third of patients. This is compared to 10% of patients in this audit where consideration of enteral nutrition was not documented. We found that an unsuccessful trial of EN was used in 26% which is much less than the 52% seen nationally. - 2. Where the possibility exists that a patient may require PN this should be recognised early. Subsequently, should PN become a clinical necessity, this should be rapidly actioned and PN started at the earliest opportunity. However, there is rarely, if ever, an indication to start adult PN out of normal working hours. In our audit, 88.5% were commenced on PN during the working week (Monday to Friday) which is comparable to the 84% seen in the national report. The time of day when PN was commenced was not recorded in 42% but when it was, PN was commenced between 0800 and 2000 hours in 82%. This is again similar to the 79% in the national study. There was an unreasonable delay in starting PN once the need was recognised in 9% in the NCEPOD report. In our region, 84% of patients received PN within 24 hours of the decision being made to commence treatment and 98% within 48 hours. 3. Patient assessment should be robust to ensure that PN is the appropriate nutritional intervention and that adequate PN is administered. The clinical purpose and goal of the PN should be documented. The indication for PN was documented in the clinical notes in 80% but the treatment goal was only documented in 39% (as compared to 53% nationally). The median duration of PN was 7.5 (range 1-62) days if a nutrition team was involved and 6 (1-66) days if no nutrition team involvement. This compares with a median of 12.2 days nationally. In our cohort, 20% of patients received PN for 3 days or less which raises the question about whether PN was necessary. Alternatively, the clinical condition of patients may have changed more rapidly than anticipated. 4. Regular documented clinical monitoring, of the patient and PN prescription, should be mandatory. Monitoring should include daily weights (where possible) and documentation of the success of the PN within the overall clinical picture. The constitution of PN was not reviewed in 38% of patients in our audit. The majority of patients underwent daily review of their clinical status (88%) and ongoing need for PN (86%). In our region, daily weights are not carried out as routine practice; 56% of patients were weighed once a week or more frequently. This is in line with NICE guidelines from 2006² that advise that patients should be weighed daily if there are concerns regarding fluid balance, but otherwise this can be reduced to weekly for clinical monitoring in patients requiring nutritional support. It was not possible to weigh patients in level 3 care (those receiving advanced respiratory support alone or receiving a minimum of 2 organ support)¹⁴. In the NCEPOD report there were deficiencies in the assessment and monitoring of clinical and biochemical status in 56.7% of patients. # 5. Regular documented biochemical monitoring should be mandatory to ensure avoidable metabolic complications never occur. Routine biochemistry was checked daily in 90% of our patients. In the NCEPOD report, metabolic complications occurred in 40% of patients and were judged to be avoidable in 49%. A very similar incidence of metabolic complications was seen in our cohort (43%) but only 13% were felt to have been avoidable. The primary aim of this aspect of the audit was to describe complications of PN. We asked, as in NCEPOD, whether these were avoidable. However, this is a subjective judgement by a member of the team involved and so may be an underestimate. Risk of refeeding syndrome was documented in 75% of patients in our cohort (cf 50% nationally). However, in the national audit, abnormal LFTs were not included as a 'metabolic complication'. If we exclude abnormal LFTs, then 34% experienced metabolic
complications in our cohort, which compares favourably with the national audit. # 6. Additional intravenous fluids should only be prescribed where there has been an active assessment of the volume of PN already being administered and there is clear indication that further fluids/electrolytes are required In the NCEPOD report, additional IV fluids were given to 75% of patients compared to 70% in our local audit. We found that 28% of patients may have received excess additional fluids which is the same as seen nationally. Documentation of the reasons for additional fluid administration was poor and this makes it difficult to comment on whether the administration of additional fluids was appropriate. This aspect requires further evaluation as total fluid losses and fluid balance were not recorded. 7. CVC insertion should be clearly documented in the case notes including the type of line and confirmation of position of the catheter tip. Attempts to reduce line sepsis over recent years have emphasised the importance of careful aseptic technique which is properly documented¹⁵. In our audit, the type of intravenous access used for PN was documented in the notes in 87% and insertion of the feeding line was documented in the notes in 75% (compared to 67% nationally). Thrombosis complicating longer term central lines is higher when the line tip is in the proximal superior vena cava and so documentation of line tip is strongly recommended. Position of the line tip was documented in 52% locally and 45% nationally. Overall line complications occurred in 29 patients (15%) which is significantly lower than 26% in the NCEPOD report. The benefits of nutrition teams have been widely discussed. The NCEPOD report found that when the overall PN-related care was correlated with whether nutrition teams were involved in the initial decision to give PN there was a difference seen in the good practice (27.4% vs 15.2%) and less than satisfactory (7.0% vs 11.5%) categories but very little difference in the middle ground represented by the other categories. They could not identify a clear benefit of nutrition teams in terms of good overall care but this was attributed to grading being based on a large number of parameters and NCEPOD still support a multi-disciplinary team approach to PN. It is difficult to assess the direct impact of nutrition teams as patient care is multifactorial. Table 3 shows parameters indicating good care for the cohort in terms of whether a member of a nutrition team was involved in the care of the patient. Assessment prior to commencing PN, daily PN and vascular access review, treatment goal documentation and reporting of metabolic complications were greater with nutrition team involvement than without. Interestingly, the reported metabolic complications were significantly higher in the group under review by a nutrition team. This may be due to nutrition teams being involved in the care of higher risk, more complex patients. In our audit we also included abnormal LFTs as a metabolic complication unlike in the national audit. Nationally, 40% of hospitals that administer PN to adult patients do not have a nutrition team and this is slightly higher in Northern England (50%). In our region, even in hospitals with a nutrition team, 35% of patients did not have multi-disciplinary nutrition management. This is clearly an area to focus on. In our audit, 91% of patients had type I and 9% had type II intestinal failure. Nutrition teams appear to be more involved with the complex type II patients, with 82% having nutrition team involvement, as compared to 65% of type 1 patients. It was reassuring to see that the majority of patients commenced PN during the working week and during 'normal' hours. This demonstrates a good understanding within the clinical teams that PN is not an emergency intervention and suggests that nutritional assessments are being carried out in a time-appropriate manner. NICE guidance states that all 'off-the-shelf' multichamber bags of PN should have vitamins added prior to administration². This was only the case in approximately half of cases in our audit and highlights another area for improvement. Other strengths within our region demonstrated by the audit are the identification of risk and prevention of refeeding syndrome and a favourable catheter sepsis rate in comparison to national figures. **BMJ Open** - Areas which we should look to improve regionally are: - documentation of treatment goal - review of the constitution of PN once started - ensuring patients are weighed regularly where this is possible - better education of clinicians about fluid balance and need for additional intravenous fluids in the context of concurrent PN - documentation of position of line tip - improvement in the quality and consistency of documentation related to PN. This work can be compared to a previous audit published by the NNN in 2007 examining the use of parenteral nutrition in hospitals in the North of England¹⁰. The study group were very similar with 193 PN episodes being included and a median patient age of 67 years. There has been a dramatic improvement in the rate of line infections from 12% to 4% (including local line site infection/phlebitis and systemic line infection). This represents a decrease from 21 to 3.5 per 1000 catheter days. There has also been a decrease in overall mortality rates from 20% at 28 days to 8% at 30 days. NCEPOD reported an overall mortality in adults of 26% with little difference as to whether patients had received PN for more or less than 14 days. In 1997, 33% of hospitals in Northern England had a nutrition team and this has increased to 50% in 2015. There are limitations with this study. Patients were identified prospectively but data collection were retrospective which led to some difficulties in obtaining information due to poorly filed notes and practical problems locating the information required e.g. intensive care charts. The accuracy of the data collection depends on the individual completing the proforma. Some respondents did not complete all the fields on the proforma. The completeness of the audit relied on local reviewers identifying all patients who received PN in their hospitals during the study period. It is likely that some patients were not identified. BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright However, most centres felt that all patients had been identified and others felt that only a very small number of patients receiving PN were not identified. We believe the completion rate to have been considerably greater than 90% for all patients receiving in-patient PN in the region in the 3 month period. Some of the data fields relied on local reviewers making an assessment of 'avoidable' or 'appropriateness' which opens the audit to individual variation in clinical opinion. However, all members of the data collection team and reviewers were given training in the use of the data collection tool via the NNN and were experienced members of multi-disciplinary nutrition teams and involved in managing patients receiving PN. This type of region-wide review of clinical practice is key to improving patient care in complex areas of healthcare delivery such as PN. The NNN includes a range of hospital trusts in terms of size of population served, frequency of use of PN and level of consultant expertise in nutrition. The sharing of knowledge and expertise is one of the strengths of the NNN and results of this audit will lead to improvements in patient care across the network to help deliver equity of care across the region. The results of this audit reveal areas where we need to improve the care of adult patients receiving PN. Individual centre results have been fed back to the clinical teams to highlight particular strengths and weaknesses. The advantages of this type of team approach can be to develop robust, evidence-based protocols. The results of this audit have been presented to the NNN and a repeat audit cycle will be completed after the implementation of targeted education and revised local protocols. It is also hoped that the results of this work will help strengthen the case for introducing nutrition teams in the 50% of our hospitals which do not currently have this service. The results of this audit may relate to the North of England, however, the lessons to be learnt are likely to be generizable to other areas of the UK and other healthcare systems. #### **Conclusions** A 3-month region-wide prospective audit was performed with all centres contributing and with a high completion rate. The outcomes suggest improved PN care with fewer line complications, reduced metabolic complications and lower 30-day mortality compared to a previous regional audit and a large national audit. However, documentation of some aspects of care and the use of added vitamins to standard PN bags remains suboptimal. There is evidence that multi-disciplinary team involvement contributes to better documentation of care in PN delivery. The complexities of PN and potential risks to patients receiving PN are the same in healthcare settings across the UK and elsewhere in the world and this study provides a template for other local or regional prospective audits to continue the cycle of care improvement for patients. | 397 | Acknowledgements | |------|---| | 398 | We would like to thank all members of the Northern Nutrition Network who contributed to | | 399 | the audit: Jacqui Ross and Laura Neilson (North Cumbria University Hospitals), Lorraine | | 400 | McVie and David Oliver (James Cook University Hospital), Eileen O'Neill (Sunderland | | 401 | Royal Hospital), Wendy Cochrane (Northumbria NHS Trust), Helen Widdrington, Julie | | 402 | Higgins and Chris Wells (North Tees and Hartlepool),
Sarah Harkess (Durham and | | 403 | Darlington), Chris Mountford, Barbara Davidson and David Bourne (Freeman Hospital), | | 404 | Mimosa Wright (Royal Victoria Infirmary, Newcastle), Emma Johns and Kate Stoker (Queen | | 405 | Elizabeth Hospital, Gateshead) and Emma Sainsbury (South Tyneside District Hospital). | | 406 | Jessica Dyson is supported by the NIHR Newcastle Biomedical Research Centre. | | 407 | | | 408 | Financial Support | | 409 | The Northern Nutrition Network received a SAGE (Shire Award for Gastrointestinal | | 410 | Excellence) for £7,500 which was used to support this work. | | 411 | | | 412 | Conflict of Interest | | 413 | Conflict of Interest None Authorship Statement | | 44.4 | | | 414 | Authorship Statement | | 415 | | | 416 | Jessica Dyson helped with study design and was the lead author in data analysis and writing | | 417 | the manuscript. Nick Thompson helped with study design, data analysis and writing the | | 418 | manuscript. All authors approved the final version of the manuscript. | | 419 | | 420 Data Sharing Statement There is no additional unpublished data from the study. | | | _ | | | | |-----|-------|---|-----|-----|----| | - Н | 2 O 1 | ם | rΔI | nc | es | | - 1 | 10 | | | ııc | C3 | - 1. BAPEN. Organisation of Food and Nutritional Support in Hospitals 2007. Available from: - http://www.bapen.org.uk/ofnsh/OrganizationOfNutritionalSupportWithinHospitals.pdf. - 427 2. NICE Guidelines CG32. Nutrition Support for Adults: Oral Nutrition Support, Enteral 428 Tube Feeding and Parenteral Nutrition 2006. Available from: 429 https://www.nice.org.uk/guidance/cg32 - 3. Bozzetti F, Forbes A. The ESPEN clinical practice Guidelines on Parenteral Nutrition: present status and perspectives for future research. Clinical nutrition 2009;**28**(4):359-64. - 4. Van Gossum A, Cabre E, Hebuterne X, et al. ESPEN Guidelines on Parenteral Nutrition: gastroenterology. Clinical nutrition 2009;**28**(4):415-27. - 5. Ayers P, Adams S, Boullata J, et al. A.S.P.E.N. parenteral nutrition safety consensus recommendations. JPEN Journal of parenteral and enteral nutrition 2014;**38**(3):296-333. - 6. Boullata JI, Gilbert K, Sacks G, et al. A.S.P.E.N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing. JPEN Journal of parenteral and enteral nutrition 2014;38(3):334-77. - 7. Ukleja A, Freeman KL, Gilbert K, et al. Standards for nutrition support: adult hospitalized patients. Nutr Clin Pract 2010;**25**(4):403-14. - 8. Guenter P, Boullata JI, Ayers P, et al. Standardized Competencies for Parenteral Nutrition Prescribing: The American Society for Parenteral and Enteral Nutrition Model. Nutr Clin Pract 2015;30(4):570-6. - 9. Stewart JAD MD, Smith N et al. A Mixed Bag: An enquiry into the care of hospital patients receiving parenteral nutrition. A report by the National Confidential Enquiry into Patient Outcome and Death 2010. Available from: http://www.ncepod.org.uk/2010report1/downloads/PN_report.pdf. - 10. Hearnshaw SA, Thompson NP, Northern Nutrition N. Use of parenteral nutrition in hospitals in the North of England. Journal of human nutrition and dietetics: the official journal of the British Dietetic Association 2007;**20**(1):14-23; quiz 24-6. - 11. Pironi L, Arends J, Baxter J, et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clinical nutrition 2015;34(2):171-80. Available from: http://www.espen.org/files/PIIS0261561414002349.pdf - 12. Pittiruti M, Hamilton H, Biffi R, et al. ESPEN Guidelines on Parenteral Nutrition: central venous catheters (access, care, diagnosis and therapy of complications). Clinical nutrition 2009;**28**(4):365-77. - 13. Prevention CfDCa. Surveillance for Central Line-associated Bloodstream Infections (CLABSI) 2012. Available from: - http://www.cdc.gov/nhsn/acute-care-hospital/clabsi/index.html. | ١ | | | | |----------|----------------------------|--|--| | _ | | | | | 3 | | | | | 1 | | | | | 5 | | | | | 6 | | | | | 7 | | | | | 2 | | | | | ì | | | | | 1 | _ | | | | ı | U | | | | l | 1 | | | | ı | 2 | | | | ı | 3 | | | | ı | 4 | | | | ı | 5 | | | | | 6 | | | | | o
ァ | | | | | 1 | | | | ١ | 0123456789 | | | | ı | 9 | | | | 2 | 0
1
2
3
4
5 | | | | 2 | 1 | | | |) | 2 | | | | > | _
て | | | | -
) | о
1 | | | | <u>'</u> | 4 | | | | _ | 5 | | | | 2 | 6 | | | | 2 | 67890123 | | | | 2 | 8 | | | |) | 9 | | | | ₹ | n | | | | , | 1 | | | | ,
, | ı
ص | | | | 5 | _ | | | | 3 | 3 | | | | 3 | 4 | | | | 3 | 5
6
7 | | | | 3 | 6 | | | | 3 | 7 | | | | | 8 | | | | | 9 | | | | | | | | | | 0 | | | | ł | 1 | | | | 1 | | | | | 1 | 3 | | | | 1 | 4 | | | | | 5 | | | | | 6 | | | | | | | | | + | 7 | | | | | 8 | | | | | 9 | | | | 5 | 0 | | | | 5 | 0
1 | | | | 5 | 2 | | | | 5 | 3 | | | | ; | 4 | | | | | | | | | 5 | 5 | | | | 14. Eddleston J GD, Morris J. On behalf of the Council of the Intensive Care Society. | |---| | Levels of Critical Care for Adult Patients 2009. Available from: | | https://www2.rcn.org.uk/data/assets/pdf_file/0005/435587/ICS_Levels_of | | _Critical_Care_for_Adult_Patients_2009.pdf. | - 15. Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. The New England journal of medicine 2006;355(26):2725-32. - 16. BAPEN Malnutrition Advisory Group. Malnutrition Universal Screening Tool, ### 475 Tables Table 1. Baseline Assessment Variables for Patients | 477 | |-----| |-----| | Indication | No of patients | % | % in | |------------------------------------|----------------------|------|---------| | | | | NCEPOD* | | Post-surgical complications/ileus | 66 | 34.3 | 27 | | Obstruction | 29 | 15.1 | 10 | | Perforated/leaking gut | 26 | 13.5 | 8 | | Non-functioning gut | 15 | 7.8 | 9 | | No access for enteral nutrition or | 29 | 15.1 | 13 | | failed EN | | | | | Malabsorption | 7 | 3.7 | 2 | | Crohn's disease | 6 | 3.1 | 1 | | Short bowel | 3 | 1.6 | 2 | | Cancer | 2 | 1.0 | 3 | | Other | 9 | 4.8 | 25 | | Assessment prior to | Number of patients | % | | | commencing PN | who had this form of | | | | commencing 1 iv | assessment | | | | Nutritional Assessment | 166 | 87 | | | Clinical Assessment | 166 | 87 | | | Standard Electrolytes ^a | 154 | 80 | | | Anthropometry ^b | 68 | 35 | | | Nutritional Requirements | 149 | 78 | | | MUST ^c | 98 | 51 | | | Oral Intake | 90 | 47 | | | Other | 31 | 16 | | | Risk of Refeeding ^d | 144 | 75 | 50 | | Decision to commence | | % | % in | | PN | | | NCEPOD | | Doctor | | 54 | 49 | | Doctor and dietician | | 37 | 22 | | Dietician | 3 | 4 | |-----------------------------|---|----| | Doctor, dietician and other | 1 | 15 | | Unknown | 5 | 3 | | Other | 0 | 7 | - ^a Standard electrolytes = Sodium, potassium, magnesium, phosphate - ^b Anthropometry = grip strength and triceps skinfold thickness - ^c Malnutrition Universal Screening Tool¹⁶ - ^d Based on NICE guidance² - dential Enquiry 1. *NCEPOD; National Confidential Enquiry into Patient Outcome and Death Table 2. Types of line and metabolic complications | Type of line complication | No of patients | % | % in NCEPOD | |-------------------------------------|----------------|----|----------------| | Line misplacement/accidental | 9 | 5 | 3 | | removal | | | | | Line occlusion | 4 | 2 | 2 | | Local line site infection/phlebitis | 4 | 2 | 10 | | TPN extravasation | 4 | 2 | 1 | | Other | 3 | 2 | 1 | | Systemic line infection | 3 | 2 | 5 | | Not documented | 2 | 1 | 16 | | Type of metabolic | No of patients | % | % in NCEPOD | | complication | | | | | Abnormal LFTs | 35 | 18 | Not documented | | Hypomagnesaemia | 23 | 12 | 10 | | Hypophosphataemia | 18 | 9 | 18 | | Hypokalaemia | 16 | 8 | 11 | | Hyponatraemia | 14 | 7 | 6 | | Hyperphosphataemia | 9 | 5 | 4 | | Hyperkalaemia | 8 | 9 | 4 | | Hypermagnesaemia | 3 | 2 | 3 | | Hypernatraemia | 3 | 2 | 3 | | Hyperglycaemia | 1 | 1 | 8 | Table 3. Influence of nutrition team input on patient care | | Nutrition | n Team | Nutrition | 1 Team | P value | |------------------------------------|-----------------|--------|--------------|--------|---------| | | Involved (n=72) | | Not Involved | | | | | | | (n=1) | 20) | | | | n | % | n | % | | | PN commenced on weekday | 69 | 96 | 101 | 84 | p<0.05 | | Assessment prior to commencing PN | Ī | | | | | | Nutritional assessment | 69 | 96 | 97 | 81 | p<0.05 | | Clinical assessment | 69 | 96 | 87 | 73 | p<0.05 | | Standard electrolytes | 67 | 93 | 87 | 73 | p<0.05 | | Nutritional needs | 66 | 92 | 83 | 69 | p<0.05 | | Risk of refeeding | 66 | 92 | 80 | 67 | p<0.05 | | Review once commenced PN | | | l | | | | Constitution of PN reviewed daily | 64 | 89 | 47 | 39 | p<0.05 | | Biochemistry checked daily | 65 | 90 | 109 | 91 | p=NS | | Clinical condition reviewed daily | 63 | 88 | 105 | 88 | p=NS | | Ongoing need for PN reviewed daily | 61 | 85 | 104 | 87 | P=NS | | Daily vascular access review | 49 | 68 | 47 | 57 | p<0.05 | | | | | | | | | Treatment goal documented in notes | 44 | 61 | 30 | 25 | p<0.05 | | Line complications | 11 | 15 | 23 | 19 | p=NS | | Reported metabolic complications | 46 | 64 | 43 | 36 | p<0.05 | ### Parenteral Nutrition Audit - Regional | | _ | | | | | | | | |--|--------------------|-----------|----------|---------|--------|--------------------|---------------------|--| | Hospital: | | | | | | | | | | Age: | | | | | | | | | | Gender: | Patient / Admission details | | | | | | | | | | Weight: | In
Kilos | | | | | | Not recorded | | | Height: | In cm | | | | | | Not recorded | | | Date of admission | | | | | | _ | | | | Was the admission: | Ар | lanned a | dmissio | า | | Inte | r-hospital transfer | | | was the damission. | An er | mergency | / admiss | ion | | | Unknown | | | Date of referral for PN | | | | | | | Not available | |
| Date of decision to commence of PN | | | | | | | | | | Date and time infusion commenced | | | A | | | | | | | Was there a delay of more than | l
n 24hr betw | veen mak | king the | decisio | n that | the | Yes/No | | | patient required PN and the co | mmencem | ent of PN | 1? | | | | Tes/No | | | If 'Yes', please expand on your answer | | | | | | | | | | diiswei | | | | | | | | | | Day of week infusion commenced | | Week | day | | | Wee | kend/Bank holiday | | | | | | | | | | | | | Patient Assessment | | | | | | | | | | Was a nutritional assessment carried out before PN commenced | | | | | Yes/N | No | 4 | | | If 'Yes', what did the assessment involve (tick all | Clinica | l assessn | nent | | l l | nutrition
MUST) | screening tool | | | that apply)? | Standar
Magnesi | d electro | - | | (-8 | | al intake | | | | | ropomet | | | | | Other | | | | Nutrition | al Requir | ements | | | Risk o | f re-feeding | | | Where any electrolyte abnorm | alities corre | ected bef | ore com | menci | ng PN? | | | | | | | | | | | | Yes/No | | | Who made the decision that PN should be commenced | Nurs | se | | | | | • | | | (tick multiple if required)? | Dietician | | Grad | de/Speciality | | | | |---|---------------------------------|-------------|--------|-----------------|-------------------------------------|----------|--| | | Doctor | | Grad | de/Speciality | | | | | | Unknown | | | | | | | | | Other | | | | | | | | If 'Other', please state | | | | | | | | | Were they members of the nu | trition team? | | | | Yes/No | | | | | Multi-chamber ba
the shelf') | ng ('off | | | g specially ordered
nanufacturer | | | | What type of PN was given | Multi-chamber ba | g ('off | | | 5.1 | | | | first? | the shelf') with ad | | | | Other | | | | | Bespoke bag (ma | | | | | | | | | hospital pharm | | | Not o | documented | | | | Were intravenous vitamins (e. | | // | 1 | 1 | Yes/No | <u>l</u> | | | Were the PN prescription requ | | ed in the | case n | intes? | Yes/No | | | | If 'Yes', were these of adequat | | ca iii tiic | case i | | Yes/No | | | | Who reviewed the patient | e detail | | | | 163/100 | | | | during the period they were | Nurse | | | | | | | | on PN (tick multiple if required)? | Doctor | | G | rade/Speciality | | | | | | Dietician | | G | rade/Speciality | | | | | | Pharmacist | | | | | | | | | Unknown | | • | | | | | | | Other | | | | | | | | If 'Other', please state | | | | | | | | | How often was the patient reviewed with respect to PN | Daily (7 days | s) | | 1-2 | days/week | | | | in the first 2 weeks? | Daily (working week) | | | <1 day/week | | | | | | 3-4 days/week | | | unknown | | | | | What was reviewed (tick multiple if required) and | Constitution of | PN | | | Daily /weekly | | | | how frequently (delete as appropriate)? | Biochemical rev | /iew | | | Daily/ weekly | | | | | Clinical statu | IS | | | Daily /weekly | | | | | Ongoing need for PN | | | ☐ Daily/ weekly | | | | | | Weight | | | | Daily /weekly | | | | | Vascular acce | ss | | | Daily/ weekly | | | | | Anthropomet | ry | | | Daily/ weekly | | | #### **Indication for PN** | What was the indication (whether documented or not) | Congenital anomalies; gut | | No access for enteral nutrition | | |--|--------------------------------|--------------|---------------------------------|--| | Please tick the box which is | Congenital anomalies; non gut | | Pre-operative nutrition | | | most appropriate | Necrotizing enterocolitis | | Radiation enteritis | | | | Non functioning gut | | Infection (e.g. C.difficile) | | | | Perforated / leaking gut | Chemotherapy | | | | | Short bowel | | Post-surgical complications | | | | Dysphagia | | Volvulus | | | | Obstruction | | Crohn's disease | | | | Dysmotility | | Cancer | | | | Fistulae | | Post-op ileus | | | | Malabsorption | | Other | | | If 'Other', please state | | | | | | Was an indication for PN recorde | d in the case notes? | | Yes/No | | | Was the Nutrition team involved | in the decision to commence PN | 1? | Yes/No/Unknown | | | If 'No', please expand on your answer | | | | | | Was a treatment goal documente | ed? | | Yes/No | | | If 'Yes', what was this? e.g. optimisation of nutrition presurgery | | | | | | Was EN given to prior to PN? | Not possible | | Trial of EN unsuccessful | | | | Dual therapy | | Not documented | | | | <u>l</u> | | | | #### Venous Access / Line Care (where multiple, please use new page for each new line used) | Was the type line used for PN docu | | Yes/No | | |------------------------------------|---|--------|-------------------------| | What type of line used (delete | | | Tunnelled/Not tunnelled | | details as appropriate for central | or central Central line | | | | line)? | | Ш | Single/Multilumen | | | | | | | | Peripherally inserted central line (PICC) | | | | | Peripherally inserted long line (e.g. Mid-line) | | | | | Standard Pe | ripheral cannula | | | | | |---|----------------|----------------------------|----------------------------------|--|--|--| | Was the insertion of the feeding line | e documented i | n the case notes? | Yes/No | | | | | Was aseptic technique documented | l? | | Yes/No | | | | | Speciality and grade of the operator inserting the line? | | | Not documented | | | | | Was the position of the tip docume | nted? | | Yes/No | | | | | Did the patient develop any line-rel | | ons | Yes/No | | | | | If 'Yes', which complications? | Line mi | splacement | Line occlusion | | | | | | | e infection | Venous thrombosis | | | | | | infe | l systemic line
ection* | Line fracture/rupture | | | | | | | d systemic line ection * | Pneumothorax | | | | | | Ph | lebitis | Haemathorax | | | | | | Acciden | tal removal | TPN extravasation | | | | | | Nerve | e damage | Other | | | | | Was PN interrupted by a line complication? | | Yes | No | | | | | Metabolic Complications | | Ò, | | | | | | Did the patient develop any metabolic complications? | | Yes | No | | | | | If 'Yes', which complications? (Please your hospital's reference | Hypopho | osphataemia | Hypermagnesaemia | | | | | range for electrolytes to define abnormal results) | Hypoma | agnesaemia | Hyperphosphataemia | | | | | | Нуро | kalaemia | Hyperkalaemia | | | | | | Hypor | natraemia | Hyperglycaemia | | | | | | Hyper | natraemia | Abnormal LFTs (but not jaundice) | | | | | | | | Jaundice | | | | | If the patient had abnormal LFTs ho glucose cal/kg body weight/day did from PN? | they receive | | | | | | | If the patient had abnormal LFTs ho g/kg body weight/day did they rece | | | | | | | | In your opinion were any of the complications avoidable? | | Yes | No | | | | | | Un | known | N/A | | | | | If 'Yes', please expand on your | | | | | | | | Were the complications managed appropriately? | Yes | | | | | No | | |--|----------------------------------|--------------|-------|---------|---------------------------|-------------------------------|--| | | Unknown | | | | | N/A | | | If 'No', please expand on your answer | | | | | | | | | Were IV fluids given in addition to the PN during the first 2 weeks of PN therapy? | | | Yes | /No/Unk | | | | | If 'Yes', was this: (tick all that apply) | To correc | t deficit | | | flui | e maintenance
id provision | | | | To correct on | going lo | sses | | | indication
ocumented | | | | Other, plea | ase state | е | | | | | | What type of fluid was given? | Saline | Saline Col | | olliod | | Hartmanns | | | What volume of fluid was given? | | | | | | - | | | Duration of PN (days) | 6 | | | | | | | | What was the outcome for this patient at 30 days? (tick all that | Weaned onto oral/enteral feeding | | | | Disch | harged home | | | apply) | Home parente | eral nutr | ition | | Died during hospital stay | | | | | Transferred to | o other | unit | | | | | | Comments: | ^{*}Suspected line infection: Positive blood cultures and evidence of sepsis (fevers, hypotension etc) with no obvious source other than line. ^{*}Confirmed line infection: A recognised pathogen cultured from one or more blood cultures and the organism cultured from blood is not related to an infection at another site. Or a common commensal (i.e., diphtheroids [Corynebacterium spp. not C. diphtheriae], Bacillus spp. [not B. anthracis], Propionibacterium spp., coagulase-negative staphylococci [including S. epidermidis], viridans group streptococci, Aerococcus spp., and Micrococcus spp.) cultured from two or more blood cultures drawn on separate occasions and evidence of sepsis and positive laboratory results are not related to an infection at another site ## **BMJ Open** ## Adult Parenteral Nutrition in the North of England: A Region-wide Audit | Journal: | BMJ Open | |----------------------------------|--| | Manuscript ID | bmjopen-2016-012663.R2 | | Article Type: | Research | | Date Submitted by the Author: | 03-Nov-2016 | | Complete List of Authors: | Dyson, Jessica; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital; Newcastle University, NIHR Newcastle Biomedical Research Centre Thompson, Nick; Freeman Hospital, Gastroenterology | | Primary Subject Heading : | Nutrition and metabolism | | Secondary Subject Heading: | Gastroenterology and hepatology | | Keywords: | AUDIT, Nutritional support < GASTROENTEROLOGY, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT | | | | BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017.
Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright. | 1 | Title Page | |--------|---| | 2 | Full Title | | 3 | Adult Parenteral Nutrition in the North of England: A Region-wide Audit | | 4
5 | Running Title Parenteral Nutrition in the North of England | | 6 | Authors | | 7 | Jessica K Dyson, Honorary Consultant Hepatologist and Gastroenterologist ^{1,2} | | 8 | Nick Thompson, Consultant Gastroenterologist ¹ | | 9 | On behalf of the Northern Nutrition Network | | 10 | ¹ Gastroenterology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS | | 11 | Foundation Trust, High Heaton, Newcastle upon Tyne, NE7 7DN | | 12 | ² NIHR Newcastle Biomedical Research Centre, Newcastle University | | 13 | Corresponding Author | | 14 | Jessica Dyson, Gastroenterology Department, Freeman Hospital, Newcastle upon Tyne | | 15 | Hospitals NHS Foundation Trust, High Heaton, Newcastle upon Tyne, NE7 7DN | | 16 | jessica.dyson@nuth.nhs.uk | | 17 | Telephone: 0191 213 7209 | | 18 | jessica.dyson@nuth.nhs.uk Telephone: 0191 213 7209 Fax: 0191 223 1249 | | 19 | | | 20 | Keywords | | 21 | Adult parenteral nutrition; nutrition team; complications; assessment; monitoring | | 22 | Word Count = 4179 (excluding references and tables) | | 23 | | | | | | | | | | | | | | 24 Abstract - 25 Objectives - 26 Parenteral nutrition (PN) is widely used to provide nutritional support to patients with - 27 inaccessible or inadequate length of gut or non-functioning gut. The objective was to - 28 compare practice in parenteral nutrition (PN) administration to results of the NCEPOD - 29 report, 'A Mixed Bag', and to establish whether good practice was being followed within this - part of the UK. - 31 Setting - 32 Using the Northern Nutrition Network (NNN), we examined the care of adult patients - receiving PN in all 10 secondary care hospitals in our region. - 34 Participants - 35 All patients receiving PN were included with no exclusions. Data were collected on 192 - patients (51% female, median age 65 years [range 18-96]). - 37 Outcome Measures - A data collection tool was designed based on the NCEPOD report recommendations. - 39 Results - 40 PN was used for a median of 7 days with a 30-day mortality rate of 8%. Metabolic - 41 complications occurred in 34%, of which only 13% were avoidable. The catheter sepsis rate - 42 was 1.5 per 1000 PN days. The audit suggests that nutrition team input improves patient - 43 assessment prior to commencing PN and review once PN is established. Risk of refeeding - 44 syndrome was identified in 75%. Areas for improvement are: documentation of treatment - 45 goal (39%), review of PN constitution (38%), ensuring patients are weighed regularly (56%), - and documentation of line-tip position (52%). - 47 Conclusions - 48 This region-wide prospective audit suggests improved practice within the UK compared to - 49 the NCEPOD audit with lower mortality and line sepsis rates. However, documentation - 50 remains suboptimal. This work strengthens the case for introducing nutrition teams in - 51 hospitals without this service. These findings are likely to be reproduced across the UK and - 52 in other healthcare settings. We provide a template for similar audits of clinical practice. | F | \rt | icl | e | Sι | ım | m | ar | У | | |---|-----|-----|---|----|----|---|----|---|--| | | | | | | | | | | | #### Strengths and limitations of this study - This type of region-wide review of clinical practice is key to improving patient care in complex areas of healthcare delivery such as PN - The Northern Nutrition Network includes a range of hospital trusts in terms of size of population served, frequency of use of PN and level of consultant expertise in nutrition - Dissemination of the audit results will hopefully help to improve equity of care across the region - The advantages of this type of team approach can be to develop robust, evidence-based protocols - Data collection was retrospective and completeness of the audit relied on local reviewers identifying all patients who received PN in their hospitals. ### Adult Parenteral Nutrition in the North of England: A Region-wide Audit #### Background Parenteral nutrition (PN) is widely used to provide nutritional support to patients with inaccessible, inadequate length of gut or non-functioning gut (intestinal failure). However, PN can have potentially fatal complications and patients require an accurate assessment of nutritional requirements, dedicated intravenous access and careful monitoring for electrolyte imbalance and changing nutritional requirements. The importance of multi-disciplinary nutrition support teams has been described¹. There are national and international (ESPEN; European Society for Clinical Nutrition and Metabolism) guidelines for nutritional support in adults^{2 3 4 5 6 7}. The American Society for Parenteral and Enteral Nutrition (ASPEN) has recently highlighted the need for frameworks to guide institutions in developing and maintaining competencies for safe PN due to its complexity and likely increasing use of this feeding route⁸. In 2010, there was a UK National Confidential Enquiry into Patient Outcome and Death (NCEPOD) report focussed on PN, 'A Mixed Bag'⁹. The primary aim of the study was to examine the process of care of patients receiving PN in hospital in order to identify remediable factors in the care received by these patients. There were 6 main themes in the report: indication for PN, type of PN, PN prescribing, catheter choice, insertion and care, complications and nutrition teams. 'A Mixed Bag' found that only 19% of adult patients had PN care considered to represent good practice. The response rate in this national audit was 49% (questionnaires and case notes returned). This report has focussed attention on the inhospital use of PN within all parts of the UK. 90 The Northern Nutrition Network (NNN) was established in 2003 and is a collaboration of North East based multidisciplinary nutrition teams including physicians, surgeons, dieticians, nurses, pharmacists and biochemists, consisting of nine acute trusts including North Cumbria. The NNN has previous experience of conducting region-wide audits with high response 94 rates¹⁰. #### Aims and Methods The aim of this study was to compare practice in the administration of PN in hospitals in the North of England to results of the recent NCEPOD study and whether there had been any improvements in care since that audit. The hospitals in our region serve a population of approximately 2.7 million people. Our findings are likely to be similar to those in different BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright parts of the UK and other healthcare settings and may provide a template for other prospective audits of care. Using the NNN, we examined the assessment, administration, delivery and monitoring of adult patients receiving PN in our region. PN was defined as intravenous fluids for nutritional support beyond standard intravenous crystalloid fluids. All hospitals in Northern England were invited to participate. A data collection tool was designed by the NNN based on the recommendations from the recent NCEPOD report (see online supplemental data) collecting information on 5 aspects of PN care: patient and admission details, indication for PN, patient assessment, venous access/line care and metabolic complications. Our tool was slightly simplified from that used in the NCEPOD report in order to maximise participation in the audit with less focus on the location of the patient. Data were collected by a member of the clinical care team (doctor, dietician or nutrition specialist nurse) at each participating hospital on all adult patients receiving PN in participating centres over a 3 month period from June to August 2013. All members of the data collection team were given training in the use of the data collection tool via the Northern Nutrition Network. Local reviewers (different to the independent reviewers of NCEPOD) were asked to judge whether metabolic complications were avoidable. The data collection for NCEPOD occurred in 2008 so there was no overlap with this audit. The aim of this audit was to assess if hospitals in the Northern Nutrition Network are providing parenteral nutrition in line with the standards outlined in the NCEPOD report, 'A Mixed Bag'. No patient identifiable information was collected, there was no change to direct patient care as a result of the data collected and individual patient consent was not required. As this work is audit, rather than research, a favourable ethical opinion from an NHS Research Ethics Committee (REC) was not required, in line with guidance from the NHS Health Research Authority. Statistical analysis was performed using two-tailed Fisher's Exact Test, SPSS, version 21 with a significance level for statistical comparison of p<0.05. The NCEPOD report asked Advisors to make an assessment of the quality of care delivered to adult patients receiving PN and grade it as: good, room for improvement (clinical, organisational, clinical and organisational) or less than satisfactory. It is difficult to repeat these assessments in a different cohort given the subjective nature of these measurements and the fact that local reviewers were collecting data and submitting the information to the authors. Therefore, we decided not to make a global assessment but to assess specific aspects of PN care. #### 134 Results - There were 10 participating centres and 192 proformas were returned (94 males, 98 females). - The median age of patients was 65 years (range 18-96). The total number of PN days - included in the audit was 2007 with the median duration of PN being 7 days (range 1-66). - Using the ESPEN functional classification of
intestinal failure¹¹, there were 168 (91%) - patients with type I intestinal failure (acute, short-term and usually self-limiting condition - requiring PN for <28 days) and 16 (9%) patients with type II intestinal failure (prolonged - acute condition, often in metabolically unstable patients, requiring complex multi- - disciplinary care and intravenous supplementation for ≥28 days). This information was - unavailable for 8 patients. Weight on admission was documented in 95%: median 69kg - 144 (range 29-156). Height was documented in 84%: median 1.67m (range 1.5-1.9). It was - possible to calculate the body mass index (BMI) in 83%: median 24.9kg/m² (range 10.3- - 146 48.8). - The types of admission were: emergency admission 76.0%, planned/elective 19.3%, inter- - hospital transfer 2.6% and unknown in 2.1%. An initial trial of enteral nutrition (EN) was not - possible in 58%, was unsuccessful in 26%, dual therapy was given in 6% and there was no - documentation about EN in 10%. The clinical indications for PN are shown in Table 1. #### 151 Patient Assessment - The decision to commence PN was made by a doctor or doctor and dietician in 91% of cases - 153 (Table 1). Only 28% of the clinicians making the decision to start PN were a member of a - multi-disciplinary nutrition team. The indication for PN was documented in the clinical notes - in 80%. A nutrition team was involved in the decision to start PN in 38% of cases. However, - only 5 (50%) of the participating hospitals in Northern England have a nutrition team in - place. Of patients who received PN in a hospital where a nutrition team exists, 65% of cases - had involvement of the nutrition team. The treatment goal was only documented in 39%. In - hospitals with a nutrition team, 60 of 93 (65%) of patients with type I and 9 of 11 (82%) - patients with type II intestinal failure had nutrition team involvement. - Once the decision to commence PN had been made, 84% of patients received PN within 24 - hours. By far the commonest reason for the delay was difficulties with obtaining intravenous - (IV) access (83%). It was not possible to establish the time of day when PN was commenced - in 42%. However, for patients where this was clearly documented, 82% were started during BMJ Open: first published as 10.1136/bmjopen-2016-012663 on 10 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 9, 2024 by guest. Protected by copyright | 165 | daytime working hours ($0800 - 2000$ hours). The majority (88.5%) were started on PN during | |-----|---| | 166 | the working week (Monday to Friday). Only 9.9% of PN was started at a weekend or on a | | 167 | bank holiday. This information was unavailable for 1.6%. | | 168 | Table 1 shows the forms of assessment that were documented in patient notes prior to | | 169 | commencing PN. There were no electrolyte abnormalities prior to commencing PN in 14% of | | 170 | patients and this information was unavailable for 12%. Of the 74% who had documented | | 171 | electrolyte abnormalities they were appropriately corrected (to within standard normal | | 172 | ranges) in 55% prior to starting PN. | | 173 | Type of Parenteral nutrition | | 174 | The type of PN first given was documented in 98% and all but 1 patient were given 'off-the- | | 175 | shelf' multi-chamber bags with (49%) or without (49%) additives. The PN prescription was | | 176 | documented in the notes in 81% and documentation was assessed as adequate in 78%. This | | 177 | was defined as stipulating a specific "off the shelf" bag or a locally manufactured "bespoke" | | 178 | bag with defined constituents. | | 179 | Vascular access and complications | | 180 | The type of intravenous access used for PN was documented in the notes in 87% of patients. | | 181 | The type of access used was: central line 53%, mid-line 22%, standard dedicated peripheral | | 182 | cannula 21%, PICC line 2% and unknown in 2%. Insertion of the feeding line was | | 183 | documented in the notes in 75%. Use of aseptic technique was recorded in 67%. | | 184 | Radiographic confirmation of position of the line tip was documented in the patient notes in | | 185 | only 52% of centrally placed catheters. The grade and job description of person inserting the | | 186 | line was documented in 55%. | | | 1 | | 187 | Line complications occurred in 29 patients (15%). We used a definition of line infection | | 188 | adapted from the ESPEN guidelines ¹² and National Healthcare Safety Network (NHSN) | - Line complications occurred in 29 patients (15%). We used a definition of line infection adapted from the ESPEN guidelines¹² and National Healthcare Safety Network (NHSN) Surveillance Definitions¹³. Three patients suffered a systemic line infection giving a line sepsis rate of 1.5 per 1000 PN days. Administration of PN was interrupted due to line complications in 8% of patients. Table 2 shows the types of line complications encountered by patients. - 193 Monitoring after commencement of feeding - Following the commencement of PN, 88% of patients were reviewed by a doctor and at least 1 other member of a multi-disciplinary team (dietician, nutrition nurse or pharmacist). Only a doctor reviewed the patient in 8% and 2% were only reviewed by a dietician. This | 1 | | |--|--| | 2 | | | | | | 3
4
5
6
7 | | | 4 | | | 5 | | | 9 | | | 6 | | | 7 | | | 0 | | | 8 | | | 9 | | | 10 | | | 10 | | | 11 | | | 12 | | | 12 | | | 13 | | | 14 | | | 15 | | | 13 | | | 16 | | | 17 | | | 12
13
14
15
16
17
18 | | | 18 | | | 19 | | | 20 | | | 20 | | | 21 | | | 22 | | | 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | | | 23 | | | 24 | | | 25 | | | 20 | | | 26 | | | 27 | | | 20 | | | 28 | | | 29 | | | 30 | | | 30 | | | 31 | | | 32 | | | 02 | | | 33 | | | 34 | | | 25 | | | 33 | | | 36 | | | 37 | | | 01 | | | 38 | | | 39 | | | 40 | | | 40 | | | 41 | | | 42 | | | 43 | | | | | | 44 | | | 45 | | | | | | 46 | | | 47 | | | 10 | | | 48
49 | | | 49 | | | 50
51
52 | | | E4 | | | ЭI | | | 52 | | | 53 | | | 55 | | | 54 | | | 55 | | | 56 | | | ЭÖ | | | 57
58
59 | | | 52 | | | 50 | | | 59 | | | 60 | | | 197 | information was not available for 2%. Nearly a third (32%) of patients were reviewed daily (7 | |-----|---| | 198 | days a week), 35% were reviewed daily (Monday to Friday) and 28% were seen 3-4 days per | | 199 | week. The remaining 6% of patients were seen less than 1-2 times per week regarding their | 200 PN. #### 201 Metabolic Complications - Metabolic complications were encountered in 43% of patients; 13% of these were felt to have - been avoidable. Local reviewers judged that 94% of metabolic complications were managed - appropriately. Table 2 shows the metabolic complications that patients experienced. We - included abnormal liver function tests (LFTs) as a metabolic complication. However, if this is - excluded (as in the NCEPOD audit) then the complication rate was 34%. #### 207 Intravenous Vitamins and Fluids - Additional intravenous (IV) vitamins were given in 51% of patients. IV fluids were given in - addition to PN in 70% of patients. Fluids were given to correct deficit in 36% and as routine - maintenance fluid provision in 24%. No indication was documented in 39%. The commonest - 211 fluids used were normal saline and compound sodium lactate (Hartmann's solution). The - audit did not include an overall assessment of volume of PN administered, fluid losses and - 213 the volume of intravenous therapy (IVT) given. However, 28% of patients were given more - 214 than 2 litres of IVT every 24 hours while also receiving PN. #### 215 Patient Outcomes - 216 In our audit, at 30 days, 83% of patients had returned to oral or enteral nutrition, 4% had been - 217 discharged on home PN, and 2% continued on inpatient PN. There was an overall 30-day - 218 mortality rate of 8%. Cause of death was unavailable in 56% but 13% died in a hospice - setting after PN had been withdrawn and 31% died of sepsis with multi-organ failure. #### 220 Role of nutrition teams - We examined some parameters indicating good care of the cohort in terms of whether a - member of a nutrition team was involved in the care of the patient (Table 3). There was a - clear difference in assessment of patients commencing PN and documentation of nutritional - goals. The total number of line complications was 13 per 1000 catheter days in the group - 225 where nutrition teams were involved compared to 20 per 1000 catheter days in patients - 226 without nutrition team involvement. #### 227 Discussion - In our region, we established the Northern Nutrition Network (NNN) in 2003 with the aim of - improving outcomes for patients in need of nutritional support. Part of the role of the NNN is - to conduct region-wide audits and this review of the use of parenteral nutrition (PN) in our region is one example of the NNN in action. All centres that are part of the NNN (n=10) participated in the audit. We have considered the individual recommendations made by the NCEPOD report 'A Mixed Bag' and reviewed our findings in the context of these: - 1. PN should only be given when enteral nutrition has been considered, and excluded, as either inappropriate and/or impracticable. In the national report, inadequate consideration was given to enteral nutrition in a third of patients. This is compared to 10% of patients in this audit where consideration of enteral nutrition was not documented. We found that an unsuccessful trial of EN was used in 26% which is much less than the 52% seen nationally. 2. Where the possibility exists that a patient may require PN this should be recognised early. Subsequently, should PN become a
clinical necessity, this should be rapidly actioned and PN started at the earliest opportunity. However, there is rarely, if ever, an indication to start adult PN out of normal working hours. In our audit, 88.5% were commenced on PN during the working week (Monday to Friday) which is comparable to the 84% seen in the national report. The time of day when PN was commenced was not recorded in 42% but when it was, PN was commenced between 0800 and 2000 hours in 82%. This is again similar to the 79% in the national study. There was an unreasonable delay in starting PN once the need was recognised in 9% in the NCEPOD report. In our region, 84% of patients received PN within 24 hours of the decision being made to commence treatment and 98% within 48 hours. 3. Patient assessment should be robust to ensure that PN is the appropriate nutritional intervention and that adequate PN is administered. The clinical purpose and goal of the PN should be documented. The indication for PN was documented in the clinical notes in 80% but the treatment goal was only documented in 39% (as compared to 53% nationally). The median duration of PN was 7.5 (range 1-62) days if a nutrition team was involved and 6 (1-66) days if no nutrition team involvement. This compares with a median of 12.2 days nationally. In our cohort, 20% of patients received PN for 3 days or less which raises the question about whether PN was necessary. Alternatively, the clinical condition of patients may have changed more rapidly than anticipated. 4. Regular documented clinical monitoring, of the patient and PN prescription, should be mandatory. Monitoring should include daily weights (where possible) and documentation of the success of the PN within the overall clinical picture. The constitution of PN was not reviewed in 38% of patients in our audit. The majority of patients underwent daily review of their clinical status (88%) and ongoing need for PN (86%). In our region, daily weights are not carried out as routine practice; 56% of patients were weighed once a week or more frequently. This is in line with NICE guidelines from 2006² that advise that patients should be weighed daily if there are concerns regarding fluid balance, but otherwise this can be reduced to weekly for clinical monitoring in patients requiring nutritional support. It was not possible to weigh patients in level 3 care (those receiving advanced respiratory support alone or receiving a minimum of 2 organ support)¹⁴. In the NCEPOD report there were deficiencies in the assessment and monitoring of clinical and biochemical status in 56.7% of patients. # 5. Regular documented biochemical monitoring should be mandatory to ensure avoidable metabolic complications never occur. Routine biochemistry was checked daily in 90% of our patients. In the NCEPOD report, metabolic complications occurred in 40% of patients and were judged to be avoidable in 49%. A very similar incidence of metabolic complications was seen in our cohort (43%) but only 13% were felt to have been avoidable. The primary aim of this aspect of the audit was to describe complications of PN. We asked, as in NCEPOD, whether these were avoidable. However, this is a subjective judgement by a member of the team involved and so may be an underestimate. Risk of refeeding syndrome was documented in 75% of patients in our cohort (cf 50% nationally). However, in the national audit, abnormal LFTs were not included as a 'metabolic complication'. If we exclude abnormal LFTs, then 34% experienced metabolic complications in our cohort, which compares favourably with the national audit. # 6. Additional intravenous fluids should only be prescribed where there has been an active assessment of the volume of PN already being administered and there is clear indication that further fluids/electrolytes are required In the NCEPOD report, additional IV fluids were given to 75% of patients compared to 70% in our local audit. We found that 28% of patients may have received excess additional fluids which is the same as seen nationally. Documentation of the reasons for additional fluid administration was poor and this makes it difficult to comment on whether the administration of additional fluids was appropriate. This aspect requires further evaluation as total fluid losses and fluid balance were not recorded. # 7. CVC insertion should be clearly documented in the case notes including the type of line and confirmation of position of the catheter tip. Attempts to reduce line sepsis over recent years have emphasised the importance of careful aseptic technique which is properly documented¹⁵. In our audit, the type of intravenous access used for PN was documented in the notes in 87% and insertion of the feeding line was documented in the notes in 75% (compared to 67% nationally). Thrombosis complicating longer term central lines is higher when the line tip is in the proximal superior vena cava and so documentation of line tip is strongly recommended. Position of the line tip was documented in 52% locally and 45% nationally. Overall line complications occurred in 29 patients (15%) which is significantly lower than 26% in the NCEPOD report. The benefits of nutrition teams have been widely discussed. The NCEPOD report found that when the overall PN-related care was correlated with whether nutrition teams were involved in the initial decision to give PN there was a difference seen in the good practice (27.4% vs 15.2%) and less than satisfactory (7.0% vs 11.5%) categories but very little difference in the middle ground represented by the other categories. They could not identify a clear benefit of nutrition teams in terms of good overall care but this was attributed to grading being based on a large number of parameters and NCEPOD still support a multi-disciplinary team approach to PN. It is difficult to assess the direct impact of nutrition teams as patient care is multifactorial. Table 3 shows parameters indicating good care for the cohort in terms of whether a member of a nutrition team was involved in the care of the patient. Assessment prior to commencing PN, daily PN and vascular access review, treatment goal documentation and reporting of metabolic complications were greater with nutrition team involvement than without. Interestingly, the reported metabolic complications were significantly higher in the group under review by a nutrition team. This may be due to nutrition teams being involved in the care of higher risk, more complex patients. In our audit we also included abnormal LFTs as a metabolic complication unlike in the national audit. Nationally, 40% of hospitals that administer PN to adult patients do not have a nutrition team and this is slightly higher in Northern England (50%). In our region, even in hospitals with a nutrition team, 35% of patients did not have multi-disciplinary nutrition management. This is clearly an area to focus on. In our audit, 91% of patients had type I and 9% had type II intestinal failure. Nutrition teams appear to be more involved with the complex type II patients, with 82% having nutrition team involvement, as compared to 65% of type 1 patients. It was reassuring to see that the majority of patients commenced PN during the working week and during 'normal' hours. This demonstrates a good understanding within the clinical teams that PN is not an emergency intervention and suggests that nutritional assessments are being carried out in a time-appropriate manner. NICE guidance states that all 'off-the-shelf' multichamber bags of PN should have vitamins added prior to administration². This was only the case in approximately half of cases in our audit and highlights another area for improvement. Other strengths within our region demonstrated by the audit are the identification of risk and prevention of refeeding syndrome and a favourable catheter sepsis rate in comparison to national figures. - Areas which we should look to improve regionally are: - documentation of treatment goal - review of the constitution of PN once started - ensuring patients are weighed regularly where this is possible - better education of clinicians about fluid balance and need for additional intravenous fluids in the context of concurrent PN - documentation of position of line tip - improvement in the quality and consistency of documentation related to PN. This work can be compared to a previous audit published by the NNN in 2007 examining the use of parenteral nutrition in hospitals in the North of England¹⁰. The study group were very similar with 193 PN episodes being included and a median patient age of 67 years. There has been a dramatic improvement in the rate of line infections from 12% to 4% (including local line site infection/phlebitis and systemic line infection). This represents a decrease from 21 to 3.5 per 1000 catheter days. There has also been a decrease in overall mortality rates from 20% at 28 days to 8% at 30 days. NCEPOD reported an overall mortality in adults of 26% with little difference as to whether patients had received PN for more or less than 14 days. In 1997, 33% of hospitals in Northern England had a nutrition team and this has increased to 50% in 2015. There are limitations with this study. Patients were identified prospectively but data collection were retrospective which led to some difficulties in obtaining information due to poorly filed notes and practical problems locating the information required e.g. intensive care charts. The accuracy of the data collection depends on the individual completing the proforma. Some respondents did not complete all the fields on the proforma. The completeness of the audit relied on local reviewers identifying all patients who received PN in their hospitals during the study period. It is likely that some patients were not identified. However, most centres felt that all patients had been identified and others felt that only a very small number of patients receiving PN were not identified.
We believe the completion rate to have been considerably greater than 90% for all patients receiving in-patient PN in the region in the 3 month period. Some of the data fields relied on local reviewers making an assessment of 'avoidable' or 'appropriateness' which opens the audit to individual variation in clinical opinion. However, all members of the data collection team and reviewers were given training in the use of the data collection tool via the NNN and were experienced members of multi-disciplinary nutrition teams and involved in managing patients receiving PN. This type of region-wide review of clinical practice is key to improving patient care in complex areas of healthcare delivery such as PN. The NNN includes a range of hospital trusts in terms of size of population served, frequency of use of PN and level of consultant expertise in nutrition. The sharing of knowledge and expertise is one of the strengths of the NNN and results of this audit will hopefully lead to improvements in patient care across the network to help deliver equity of care across the region. The results of this audit reveal areas where we need to improve the care of adult patients receiving PN. Individual centre results have been fed back to the clinical teams to highlight particular strengths and weaknesses. The advantages of this type of team approach can be to develop robust, evidence-based protocols. The results of this audit have been presented to the NNN and a repeat audit cycle will be completed after the implementation of targeted education and revised local protocols. It is also hoped that the results of this work will help strengthen the case for introducing nutrition teams in the 50% of our hospitals which do not currently have this service. The results of this audit may relate to the North of England, however, the lessons to be learnt are likely to be generizable to other areas of the UK and other healthcare systems. #### Conclusions A 3-month region-wide prospective audit was performed with all centres contributing and with a high completion rate. The outcomes suggest improved PN care with fewer line complications, reduced metabolic complications and lower 30-day mortality compared to a previous regional audit and a large national audit. However, documentation of some aspects of care and the use of added vitamins to standard PN bags remains suboptimal. There is evidence that multi-disciplinary team involvement contributes to better documentation of care in PN delivery. The complexities of PN and potential risks to patients receiving PN are the same in healthcare settings across the UK and elsewhere in the world and this study provides a template for other local or regional prospective audits to continue the cycle of care improvement for patients. | 402 | Acknowledgements | |-----|---| | 403 | We would like to thank all members of the Northern Nutrition Network who contributed to | | 404 | the audit: Jacqui Ross and Laura Neilson (North Cumbria University Hospitals), Lorraine | | 405 | McVie and David Oliver (James Cook University Hospital), Eileen O'Neill (Sunderland | | 406 | Royal Hospital), Wendy Cochrane (Northumbria NHS Trust), Helen Widdrington, Julie | | 407 | Higgins and Chris Wells (North Tees and Hartlepool), Sarah Harkess (Durham and | | 408 | Darlington), Chris Mountford, Barbara Davidson and David Bourne (Freeman Hospital) | | 409 | Mimosa Wright (Royal Victoria Infirmary, Newcastle), Emma Johns and Kate Stoker (Queen | | 410 | Elizabeth Hospital, Gateshead) and Emma Sainsbury (South Tyneside District Hospital) | | 411 | Jessica Dyson is supported by the NIHR Newcastle Biomedical Research Centre. | | 412 | | | 413 | Financial Support | | 414 | The Northern Nutrition Network received a SAGE (Shire Award for Gastrointestinal | | 415 | Excellence) for £7,500 which was used to support this work. | | 416 | | | 417 | Conflict of Interest | | 418 | None | | | | | 419 | | | 420 | Authorship Statement | | 421 | Jessica Dyson helped with study design and was the lead author in data analysis and writing | | 422 | the manuscript. Nick Thompson helped with study design, data analysis and writing the | | 423 | manuscript. All authors approved the final version of the manuscript. | | 424 | | There is no additional unpublished data from the study. **Data Sharing Statement** #### References - 1. BAPEN. Organisation of Food and Nutritional Support in Hospitals 2007. Available from: http://www.bapen.org.uk/ofnsh/OrganizationOfNutritionalSupportWithin - http://www.bapen.org.uk/ofnsh/OrganizationOfNutritionalSupportWithin Hospitals.pdf. - NICE Guidelines CG32. Nutrition Support for Adults: Oral Nutrition Support, Enteral Tube Feeding and Parenteral Nutrition 2006. Available from: https://www.nice.org.uk/guidance/cg32 - 3. Bozzetti F, Forbes A. The ESPEN clinical practice Guidelines on Parenteral Nutrition: present status and perspectives for future research. Clinical nutrition 2009;**28**(4):359-64. - Van Gossum A, Cabre E, Hebuterne X, et al. ESPEN Guidelines on Parenteral Nutrition: gastroenterology. Clinical nutrition 2009;28(4):415-27. - 5. Ayers P, Adams S, Boullata J, et al. A.S.P.E.N. parenteral nutrition safety consensus recommendations. JPEN Journal of parenteral and enteral nutrition 2014;**38**(3):296-333. - Boullata JI, Gilbert K, Sacks G, et al. A.S.P.E.N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing. JPEN Journal of parenteral and enteral nutrition 2014;38(3):334-77. - 7. Ukleja A, Freeman KL, Gilbert K, et al. Standards for nutrition support: adult hospitalized patients. Nutr Clin Pract 2010;**25**(4):403-14. - 8. Guenter P, Boullata JI, Ayers P, et al. Standardized Competencies for Parenteral Nutrition Prescribing: The American Society for Parenteral and Enteral Nutrition Model. Nutr Clin Pract 2015;**30**(4):570-6. - Stewart JAD MD, Smith N et al. A Mixed Bag: An enquiry into the care of hospital patients receiving parenteral nutrition. A report by the National Confidential Enquiry into Patient Outcome and Death 2010. Available from: http://www.ncepod.org.uk/2010report1/downloads/PN_report.pdf. - 10. Hearnshaw SA, Thompson NP, Northern Nutrition N. Use of parenteral nutrition in hospitals in the North of England. Journal of human nutrition and dietetics: the official journal of the British Dietetic Association 2007;**20**(1):14-23; quiz 24-6. - 11. Pironi L, Arends J, Baxter J, et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clinical nutrition 2015;34(2):171-80. Available from: http://www.espen.org/files/PIIS0261561414002349.pdf - 12. Pittiruti M, Hamilton H, Biffi R, et al. ESPEN Guidelines on Parenteral Nutrition: central venous catheters (access, care, diagnosis and therapy of complications). Clinical nutrition 2009;**28**(4):365-77. - 13. Prevention CfDCa. Surveillance for Central Line-associated Bloodstream Infections (CLABSI) 2012. Available from: http://www.cdc.gov/nhsn/acute-care-hospital/clabsi/index.html. - 14. Eddleston J GD, Morris J. On behalf of the Council of the Intensive Care Society. Levels of Critical Care for Adult Patients 2009. Available from: | Page | 17 | ' (| |----------|----|-----| | 1
2 | | | | 3 | | | | 4
5 | | | | 6 | | | | 7 | | | | 8
9 | | | | 10 | | | | 11 | | | | 12 | | | | 13
14 | | | | 15 | | | | 16 | | | | 17
18 | | | | 19 | | | | 20 | | | | 21
22 | | | | 23 | | | | 24 | | | | 25
26 | | | | 27 | | | | 28 | | | | 29
30 | | | | 31 | | | | 32 | | | | 33
34 | | | | - | | | | ht | tps | ://www2 | .rcn.or | g.uk | x/dat | ta/assets/ | pdf_ | file/0005/435587/ICS_ | Level | |----|-----|----------|---------|------|-------|-----------------|------|-----------------------|-------| | S | of | Critical | Care | for | Adult | Patients | 200 | 9.pdf. | _ | - 15. Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. The New England - 16. BAPEN Malnutrition Advisory Group. Malnutrition Universal Screening ### **Tables** #### Table 1. Baseline Assessment Variables for Patients | 484 | | |-----|--| | 485 | | | Indication | No of patients | % | % in NCEPOD* | |------------------------------------|----------------------|------|--------------| | Post-surgical complications/ileus | 66 | 34.3 | 27 | | Obstruction | 29 | 15.1 | 10 | | Perforated/leaking gut | 26 | 13.5 | 8 | | Non-functioning gut | 15 | 7.8 | 9 | | No access for enteral nutrition or | 29 | 15.1 | 13 | | failed EN | | | | | Malabsorption | 7 | 3.7 | 2 | | Crohn's disease | 6 | 3.1 | 1 | | Short bowel | 3 | 1.6 | 2 | | Cancer | 2 | 1.0 | 3 | | Other | 9 | 4.8 | 25 | | Assessment prior to | Number of patients | % | | | | who had this form of | | | | commencing PN | assessment | | | | Nutritional Assessment | 166 | 87 | | | Clinical Assessment | 166 | 87 | | | Standard Electrolytes ^a | 154 | 80 | | | Anthropometry ^b | 68 | 35 | | | Nutritional Requirements | 149 | 78 | | | MUST ^c | 98 | 51 | | | Oral Intake | 90 | 47 | | | Other | 31 | 16 | | | Risk of Refeeding ^d | 144 | 75 | 50 | | Decision to commence | | % | % in | | PN | | | NCEPOD | | Doctor | | 54 | 49 | | Doctor and dietician | | 37 | 22 | | Dietician | 3 | 4 | |-----------------------------|---|----| | Doctor, dietician and other | 1 | 15 | | Unknown | 5 | 3 | | Other | 0 | 7 | - ^a Standard electrolytes = Sodium, potassium, magnesium, phosphate - ^b Anthropometry = grip strength and triceps skinfold thickness - ^c Malnutrition Universal Screening Tool¹⁶ - ^d Based on NICE guidance² - dential Enquiry 1. *NCEPOD; National Confidential Enquiry into Patient Outcome and Death Table 2. Types of line and metabolic complications | Type of line complication | No of patients | % | % in NCEPOD |
-------------------------------------|----------------|----|----------------| | Line misplacement/accidental | 9 | 5 | 3 | | removal | | | | | Line occlusion | 4 | 2 | 2 | | Local line site infection/phlebitis | 4 | 2 | 10 | | TPN extravasation | 4 | 2 | 1 | | Other | 3 | 2 | 1 | | Systemic line infection | 3 | 2 | 5 | | Not documented | 2 | 1 | 16 | | Type of metabolic | No of patients | % | % in NCEPOD | | complication | | | | | Abnormal LFTs | 35 | 18 | Not documented | | Hypomagnesaemia | 23 | 12 | 10 | | Hypophosphataemia | 18 | 9 | 18 | | Hypokalaemia | 16 | 8 | 11 | | Hyponatraemia | 14 | 7 | 6 | | Hyperphosphataemia | 9 | 5 | 4 | | Hyperkalaemia | 8 | 9 | 4 | | Hypermagnesaemia | 3 | 2 | 3 | | Hypernatraemia | 3 | 2 | 3 | | Hyperglycaemia | 1 | 1 | 8 | Table 3. Influence of nutrition team input on patient care | | Nutritio | | Nutritio | | P value | |------------------------------------|----------|----------|-----------------|----|---------| | | Involved | d (n=72) | Not Inv
(n=1 | | | | | n | % | n | % | | | PN commenced on weekday | 69 | 96 | 101 | 84 | p<0.05 | | Assessment prior to commencing PN | 1 | | | | | | Nutritional assessment | 69 | 96 | 97 | 81 | p<0.05 | | Clinical assessment | 69 | 96 | 87 | 73 | p<0.05 | | Standard electrolytes | 67 | 93 | 87 | 73 | p<0.05 | | Nutritional needs | 66 | 92 | 83 | 69 | p<0.05 | | Risk of refeeding | 66 | 92 | 80 | 67 | p<0.05 | | Review once commenced PN | | | l | | | | Constitution of PN reviewed daily | 64 | 89 | 47 | 39 | p<0.05 | | Biochemistry checked daily | 65 | 90 | 109 | 91 | p=NS | | Clinical condition reviewed daily | 63 | 88 | 105 | 88 | p=NS | | Ongoing need for PN reviewed daily | 61 | 85 | 104 | 87 | P=NS | | Daily vascular access review | 49 | 68 | 47 | 57 | p<0.05 | | | | | | | | | Treatment goal documented in notes | 44 | 61 | 30 | 25 | p<0.05 | | Line complications | 11 | 15 | 23 | 19 | p=NS | | | 46 | 64 | 43 | 36 | p<0.05 | ### Parenteral Nutrition Audit - Regional | | | | | | | 1 | | | |--|--------------------|------------------------|----------|---------|--------|--------------------|---------------------|--| | Hospital: | | | | | | | | | | Age: | | | | | | | | | | Gender: | Patient / Admission details | | | | | | | | | | Weight: | In
Kilos | | | | | | Not recorded | | | Height: | In cm | | | | | | Not recorded | | | Date of admission | | | | | | _ | | | | Was the admission: | Ар | lanned a | dmissio | า | | Inte | r-hospital transfer | | | was the damission. | An er | An emergency admission | | | | Unknown | | | | Date of referral for PN | | | | | | | Not available | | | Date of decision to commence of PN | | 4 | | | | | | | | Date and time infusion commenced | | | A | | | | | | | Was there a delay of more than | l
n 24hr betw | veen mak | king the | decisio | n that | the | Yes/No | | | patient required PN and the co | mmencem | ent of PN | 1? | | | | Tes/No | | | If 'Yes', please expand on your answer | | | | | | | | | | diiswei | | | | | | | | | | Day of week infusion commenced | | Week | day | | | Wee | kend/Bank holiday | | | | | | | | | | | | | Patient Assessment | | | | | | | | | | Was a nutritional assessment carried out before PN commenced | | | | | Yes/N | No | 4 | | | If 'Yes', what did the assessment involve (tick all | Clinica | l assessn | nent | | l l | nutrition
MUST) | screening tool | | | that apply)? | Standar
Magnesi | d electro | - | | (-8 | | al intake | | | | | ropomet | | | | Other | | | | | Nutrition | al Requir | ements | | | Risk o | f re-feeding | | | Where any electrolyte abnorm | alities corre | ected bef | ore com | menci | ng PN? | | | | | | | | | | | | Yes/No | | | Who made the decision that PN should be commenced | Nurs | se | | | | | • | | | (tick multiple if required)? | Dietician | | Grad | de/Speciality | | | | |---|--|-----------|--------|-----------------|-------------------------------------|---|--| | | Doctor | | Grad | de/Speciality | | | | | | Unknown | | | | | | | | | Other | | | | | | | | If 'Other', please state | | | | | | | | | Were they members of the nu | trition team? | | | | Yes/No | | | | | Multi-chamber ba
the shelf') | ng ('off | | | g specially ordered
manufacturer | | | | What type of PN was given | Multi-chamber ba | g ('off | | | 0.1 | | | | first? | the shelf') with additives Bespoke bag (made in | | | | Other | | | | | | | | | | | | | | hospital pharm | | | Not o | documented | Ш | | | Were intravenous vitamins (e. | | | | | Yes/No | I | | | Were the PN prescription requ | | ed in the | case n | notes? | Yes/No | | | | If 'Yes', were these of adequat | | | | | Yes/No | | | | Who reviewed the patient | | | | | 100,110 | | | | during the period they were | Nurse | | | | | | | | on PN (tick multiple if required)? | Doctor | | G | rade/Speciality | | | | | | Dietician | | G | rade/Speciality | | | | | | Pharmacist | | | | | | | | | Unknown | | • | | | | | | | Other | | | | | | | | If 'Other', please state | | | | | | | | | How often was the patient reviewed with respect to PN | Daily (7 days | ;) | | 1-2 | days/week | | | | in the first 2 weeks? | Daily (working w | veek) | | <1 | day/week | | | | | 3-4 days/wee | ek | | unknown | | | | | What was reviewed (tick multiple if required) and | Constitution of | PN | | | Daily /weekly | | | | how frequently (delete as appropriate)? | Biochemical rev | view | | Daily/ weekly | | | | | , | Clinical statu | IS | | Daily /weekly | | | | | | Ongoing need fo | or PN | | | Daily/ weekly | | | | | Weight | | | | Daily /weekly | | | | | Vascular acce | SS | | | Daily/ weekly | | | | | Anthropomet | ry | | | Daily/ weekly | | | #### **Indication for PN** | What was the indication (whether documented or not) | Congenital anomalies; gut | | No access for enteral nutrition | | |--|--------------------------------|-----|---------------------------------|--| | Please tick the box which is | Congenital anomalies; non gut | | Pre-operative nutrition | | | most appropriate | Necrotizing enterocolitis | | Radiation enteritis | | | | Non functioning gut | | Infection (e.g. C.difficile) | | | | Perforated / leaking gut | | Chemotherapy | | | | Short bowel | | Post-surgical complications | | | | Dysphagia | | Volvulus | | | | Obstruction | | Crohn's disease | | | | Dysmotility | | Cancer | | | | Fistulae | | Post-op ileus | | | | Malabsorption | | Other | | | If 'Other', please state | | | | | | Was an indication for PN recorde | d in the case notes? | | Yes/No | | | Was the Nutrition team involved | in the decision to commence PN | 1? | Yes/No/Unknown | | | If 'No', please expand on your answer | | | | | | Was a treatment goal documente | ed? | | Yes/No | | | If 'Yes', what was this? e.g. optimisation of nutrition presurgery | | | | | | Was EN given to prior to PN? | Not possible | | Trial of EN unsuccessful | | | | Dual therapy | | Not documented | | | | <u>l</u> | l l | | | #### Venous Access / Line Care (where multiple, please use new page for each new line used) | Was the type line used for PN docu | Yes/No | | | |------------------------------------|---|---|-------------------------| | What type of line used (delete | | | Tunnelled/Not tunnelled | | details as appropriate for central | Central line | | | | line)? | | Ш | Single/Multilumen | | | | | | | | Peripherally inserted central line (PICC) | | | | | Peripherally inserted long line (e.g. Mid-line) | | | | | Standard Pe | ripheral cannula | | | | | |--|----------------|--------------------------|----------------------------------|--|--|--| | Was the insertion of the feeding line | e documented i | n the case notes? | Yes/No | | | | | Was aseptic technique documented | Yes/No | | | | | | | Speciality and grade of the operator inserting the line? | | | Not documented | | | | | Was the position of the tip docume | nted? | | Yes/No | | | | | Did the patient develop any line-rel | ons | Yes/No | | | | | | If 'Yes', which complications? | Line mi | splacement | Line occlusion | | | | | | | e infection | Venous thrombosis | | | | | | infe | I systemic line ection* | Line fracture/rupture | | | | | | | d systemic line ection * | Pneumothorax | | | | | | Ph | lebitis | Haemathorax | | | | | | Acciden | tal removal | TPN extravasation | | | | | | Nerve | e damage | Other | | | | | Was PN interrupted by a line complication? | | Yes | No | | | | | Metabolic Complications | | Ò, | | | | | | Did the patient develop any metabolic complications? | | Yes | No | | | | | If 'Yes', which complications? (Please your hospital's reference | Hypopho | osphataemia | Hypermagnesaemia | | | | | range for electrolytes to define abnormal results) | Hypoma | agnesaemia | Hyperphosphataemia | | | | | | Нуро | kalaemia | Hyperkalaemia | | | | | | Hypor | natraemia | Hyperglycaemia | | | | | | Hyperi | natraemia | Abnormal LFTs (but not jaundice) | | | | | | | | Jaundice | | | | | If the patient had abnormal LFTs how much glucose cal/kg body weight/day did they receive from PN? | | | | | | | | If the patient had abnormal LFTs ho g/kg body weight/day did they rece | | |
 | | | | | In your opinion were any of the complications avoidable? | | Yes | No | | | | | | Un | known | N/A | | | | | If 'Yes', please expand on your | | | | | | | | Were the complications managed appropriately? | Yes | S | | | | No | | |--|---------------------------|-----------|---------|--------|-----------------|-------------------------------|--| | | Unkno | own | | | | N/A | | | If 'No', please expand on your answer | | | | | | | | | Were
IV fluids given in addition to the PN during the first 2 weeks of PN therapy? | | Yes | /No/Unk | | | | | | If 'Yes', was this: (tick all that apply) | To correct deficit | | | | flui | e maintenance
id provision | | | | To correct ongoing losses | | | | | indication
ocumented | | | | Other, please state | | | | | | | | What type of fluid was given? | Saline | | | olliod | | Hartmanns | | | What volume of fluid was given? | | | | | | | | | Duration of PN (days) | 6 | | | | | | | | What was the outcome for this patient at 30 days? (tick all that | Weaned onto feedi | • | teral | | Discharged home | | | | apply) | Home parente | eral nutr | ition | | Died c | | | | | Transferred to | o other | unit | | | | | | Comments: | | 4 | ^{*}Suspected line infection: Positive blood cultures and evidence of sepsis (fevers, hypotension etc) with no obvious source other than line. ^{*}Confirmed line infection: A recognised pathogen cultured from one or more blood cultures and the organism cultured from blood is not related to an infection at another site. Or a common commensal (i.e., diphtheroids [Corynebacterium spp. not C. diphtheriae], Bacillus spp. [not B. anthracis], Propionibacterium spp., coagulase-negative staphylococci [including S. epidermidis], viridans group streptococci, Aerococcus spp., and Micrococcus spp.) cultured from two or more blood cultures drawn on separate occasions and evidence of sepsis and positive laboratory results are not related to an infection at another site