BMJ Open

Reason for smoking cessation attempts among Japanese male smokers varies according to nicotine dependence level: cross-sectional study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006658
Article Type:	Research
Date Submitted by the Author:	17-Sep-2014
Complete List of Authors:	Tanihara, S.; School of Medicine, Fukuoka University, Preventive Medicine and Public Health Momose, Yoshito; School of Medicine, Fukuoka University, Preventive Medicine and Public Health
Primary Subject Heading :	Smoking and tobacco
Secondary Subject Heading:	Public health, Smoking and tobacco
Keywords:	smoking cessation, nicotine dependence, motivator, tobacco tax increase, Fagerström Test for Nicotine Dependence, male worker

SCHOLARONE™ Manuscripts

- 1 Reason for smoking cessation attempts among Japanese male
- 2 smokers varies according to nicotine dependence level:
- з cross-sectional study
- 5 Shinichi Tanihara, Yoshito Momose
- 6 Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka
- 7 University, Fukuoka, Japan

- 9 CORRESPONDING AUTHOR
- 10 Shinichi Tanihara, MD, PhD
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka
- 12 University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- 13 Telephone number: +81-92-801-1011 (Ext. 3301)
- 14 Fax number: +81-92-863-8892
- Email address: taniyan@cis.fukuoka-u.ac.jp
- 17 Keywords: smoking cessation, nicotine dependence, motivator, tobacco tax increase,
- 18 Fagerström Test for Nicotine Dependence, male worker
- 20 Word count: 3368

- Objectives: To examine the association between the smoking cessation attempts
- during the previous 12 months, motivator to quit smoking, and nicotine dependence
- 25 level.
- **Design:** Cross-sectional study.
- **Setting:** A self-reported questionnaire about smoking habits, nicotine dependence level,
- and factors that people identify as motivators to quit smoking was administered to
- 29 9,378 (as of October 1, 2011) employees working at a company located in Fukuoka
- 30 Prefecture in Japan.
- Participants: A total of 2,264 male current smokers 20–69 years.
- **Primary and secondary outcome measures:** Nicotine dependence level assessed by
- 33 Fagerström Test for Nicotine Dependence (FTND), attempts to quit smoking during
- the previous 12 months, and motivators for smoking cessation.
- Results: Nicotine dependence level of current smokers was negatively associated with
- 36 attempts to quit smoking during the previous 12 months. Motivators for smoking
- cessation differed according to nicotine dependence levels. 'The rise in cigarette prices
- since October 2010' as a motivator for smoking cessation increased significantly in
- medium nicotine dependence level (odds ratio (OR):1.44, 95% confidence interval

1		
2		
3		
4		
5		
6		
7		
8		
8 9		
10		
11		
12 13		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
20		
28		
29		
30		
31		
32		
33		
34		
35		
36		
27		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		

40	(CI) :1.09–1.90); however, this association was not statistically significant for
41	individuals with high nicotine dependence (OR:1.24, 95% CI:0.80–1.92). 'Feeling
42	unhealthy' was negatively and statistically significantly associated for both medium
43	(OR:0.42, 95% CI:0.27–0.65) and high (OR:0.31, 95% CI:0.14–0.71) nicotine
44	dependence levels. Trend associations assessed by assigning ordinal numbers a total
45	score of FTND for those two motivators were statistically significant.
46	Conclusions: For smokers with high and medium nicotine dependence level, more
47	effective strategies aimed at encouraging smoking cessation are needed, such as policy
48	interventions, which could include increasing tobacco taxes or stricter regulation of
49	tobacco products.
50	tobacco products.
51	

BMJ Open: first published as 10.1136/bmjopen-2014-006658 on 20 March 2015. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Strengths	and	limitations
-----------	-----	-------------

- This study provides information on the relation between smoking cessation attempts,
- motivators for quitting smoking, and nicotine dependence level. However, no
- 55 follow-up measures were taken to determine whether the study's respondents actually
- succeeded in their smoking cessation attempts.

INTRODUCTION

Smoking is the leading avoidable cause of death worldwide. Many countries take action to reduce smoking-related deaths by educating people about the harmful effects of tobacco; youth tobacco control, which is inclusive of passive smoking control;² disseminating information on tobacco cessation programs; and increasing and prices.⁴ These policies and programs appear to be effective—overall, the smoking rate is decreasing in both developed and developing countries.5,6 In the past two decades, Japan's tobacco tax has increased four times: in December 1998, July 2003, July 2006, and October 2010. The 1998, 2003, and 2006 increases were relatively low—the price of an ordinary 20-cigarette pack increased by about 20–30 JPY (about 0.2–0.3 USD) each time. Given the low taxes, in 2008, tobacco was still relatively inexpensive (priced at around 300 JPY [2–3 USD] per pack). Thus, smoking prevalence among men remained high in comparison to other Organisation for Economic Co-operation and Development (OECD) countries.⁷ However, in October 2010, the price of an ordinary 20-cigarette pack increased by 120 JPY (1.2 USD), roughly four times the increase of the previous three

tax hikes (or an estimated 40% increase in retail price). According to the National

Health and Nutrition Survey in Japan, the prevalence of regular smoking among men was 38.2%, 32.2% and 32.4% in 2009, 2010 and 2011, respectively, while that among women was 10.9%, 8.4%, and 9.7%, respectively. Thus, it appears that these increases in tobacco taxes may have contributed towards lower tobacco consumption in Japan, just as was reported in Western European countries. This may be in part attributable to the tax's dissuasion of many young people from smoking. However, the precise effect of this tax raise on people's intentions to quit smoking in Japan remains unknown.

People quit smoking for numerous reasons other than the increase in cigarette prices, such as health problems associated with smoking and anti-smoking social pressures. ^{10,11} Nevertheless, in order to implement effective strategies aimed at encouraging smoking cessation among smokers in Japan, it is important to determine the varying roles of factors leading to smoking cessation, including the intention to quit smoking, motivating factors for such intentions, the manner in which nicotine dependence levels affect these intentions, and motivating factors for such intentions.

Currently, there is limited availability of information on this topic from current smokers who intend to stop smoking. A Japanese national survey carried out in 1999 reported that personal health concerns and complications were major motivations for

quitting smoking; however, this survey did not give details on the type of personal health complications/concerns smokers had. ¹² Another survey ¹¹ reported on the factors related to smoking cessation in former smokers in rural areas of Japan; however, this study did not include current smokers attempting to quit, a population for which there is little data available. ¹³ Additionally, these studies ^{11,13,14} were conducted before the substantial tobacco tax hike of October 2010, the effect of which has not yet been evaluated. Although high nicotine dependence has been shown to be a strong predictor of failure to quit smoking, ¹⁵ the relationship between dependence levels and factors that people identify as motivators to quit smoking in Japan needs clarification. The present study, therefore, focused on the relationship between nicotine dependence level and factors that people identify as motivators to quit smoking among current smokers following the tobacco tax increase of October 2010.

METHODS AND PROCEDURES

Study population

A self-reported questionnaire assessing smoking habits, nicotine dependence level, and factors that people identify as motivators to quit smoking was administered to 9,378 (as of October 1, 2011) employees working at a company located in Fukuoka

Prefecture, Japan. Ethical approval for this study was obtained from the Institutional Review Committee of Fukuoka University.

Data collection and measurements

The questionnaire began with questions regarding respondents' age, sex, and smoking habits. Individuals who had never smoked were not required to complete the rest of the questionnaire. Former smokers were asked to answer the following additional questions: (1) the brand of cigarettes that they used to smoke, (2) the age at which they ceased smoking (years), (3) their motivators for quitting smoking, and (4) any pharmacological therapy that they used to alleviate nicotine withdrawal. In this study, the definition of former smoker is any person who had once smoked but currently does not. Current smokers were asked to: (1) specify the brand of cigarettes that they usually smoked, (2) complete the Fagerström Test for Nicotine Dependence (FTND), (3) indicate their intention to quit smoking in the previous 12 months, (4) specify their motivation for quitting smoking, and (5) indicate whether they were taking any form of medication for alleviating nicotine withdrawal symptoms in people attempting to quit.

The FTND, ¹⁶ a standard questionnaire for assessing physical dependence on nicotine, consists of the following six items: (1) *How soon after you wake up do you*

130	smoke your first cigarette? ('after 60 minutes', '31-60 minutes', '6-30 minutes',
131	'within 5 minutes'); (2) Do you find it difficult to refrain from smoking in places where
132	it is forbidden, e.g., in church, at the library, cinema, etc.? ('No/Yes'); (3) Which
133	cigarette would you hate most to give up? ('the first one in the morning', 'all others');
134	(4) How many cigarettes per day do you smoke? ('10 or less', '11-20', '21-30', '31 or
135	more'); (5) Do you smoke more frequently during the first hours of waking than during
136	the rest of the day? ('No/Yes'); and (6) Do you smoke if you are so ill that you are in
137	bed most of the day? ('No/Yes'). In scoring the FTND, the four dichotomous items are
138	scored as 0 or 1, while the two multiple-choice items are scored from 0 to 3. The items
139	are then summed to yield a total score of 0–10. The higher the score, the more
140	dependent the person is on nicotine.
141	We assessed whether the following nine items were respondents' motivators

We assessed whether the following nine items were respondents' motivators for quitting smoking, to which they could answer 'yes' or 'no': (1) health problems experienced by relatives or friends, (2) personal health problems, (3) recommendation by physicians, (4) feeling unhealthy, (5) in the interests of better health, (6) their preferred brand of cigarettes was no longer available for sale, (7) the rise in cigarette prices after October 2010, (8) having a child (or grandchild), and (9) any other motivators.

Page 10 of 32

Statistical analysis

149	Of the 9,378 candidates, 7,899 (84.2%), returned the questionnaire. Of the
150	7,899 participants, we excluded 302 with missing data for sex, age, or smoking habits,
151	76 aged < 19 because smoking is illegal among individuals under 20 years old in Japan,
152	and 19 individuals aged 70 or older because of the small number. We excluded 2830
153	females because of the low proportion of current smokers (320, 11.3%). Thus, 4,672
154	men aged 20-69 years old were selected for analysis.
155	Of the 4,672 men aged 20–69 years old that we surveyed, 1,116 individuals
156	who had never smoked and 1,268 former smokers were excluded from the analysis, as
157	FTND scores were available for current smokers only. Finally, we excluded 33 current
158	smokers with missing data for any of FTND components. Thus, the data of 2,251
159	current smokers were analysed in this study.
160	Responses to the questionnaire were stratified according to respondents'
161	nicotine dependence levels, as defined by the FTND: low (FTND score \leq 3), middle
162	$(4-6)$, and high (≥ 7) .
163	First, the proportion of respondents who reported that they had attempted to
164	quit smoking in the last year were expressed as percentages across nicotine dependence

levels. Next, the proportion of the motivators for quitting smoking assessed by the nine

items among the respondents who reported that they had attempted to quit smoking in the last year were expressed as percentages across nicotine dependence levels. Third, we selected three motivators for quitting smoking according to the number of respondents and examined the relation between nicotine dependence levels and each motivator for quitting smoking. A chi-square test was used to compare the proportion of respondents according to the three nicotine dependence levels. Multiple logistic regression analysis was used to estimate the odds ratios (OR) with 95% confidence intervals (CI) for the presence of each motivator to quit smoking in the previous 12 months, with low nicotine dependence subjects as the reference. We adjusted for age (10-year categories, 20- to 29-year-old group as the reference) in the model. Trend associations were assessed by assigning ordinal numbers a total FTND score (0–10). A two-tailed p-value of less than 5% was considered statistically significant. All analyses were performed using SPSS version 19 (International Business Machines Corporation, Armonk, NY, USA).

RESULTS

Of the 2,251 current smokers included in our analyses, 913 (40.6%), 1,005 (44.6%), and 333 (14.8%) had low, middle, and high FTND scores, respectively; 914

(40.6%) reported that they had attempted to quit smoking in the last year (Table 1). The 20–29 age group had the lowest proportion of respondents with high nicotine dependence (7.7%), while the 50–59 age group had the highest (22.2%). In general, the older groups had more respondents with high nicotine dependence. The 50–59 age group had the lowest proportion (18.0%) of respondents with low nicotine dependence, while the 20–29 age group had the highest (30.6%). Overall, the groups with older respondents had the lowest proportions of those with low nicotine dependence.

The proportion of current smokers who had attempted to quit smoking within the previous 12 months among the low, middle, and high nicotine dependence groups was 48.0%, 37.1%, and 30.9%, respectively, a statistically significant difference. For each age group, the proportion of current smokers who had attempted to quit smoking within the previous 12 months was highest in the low nicotine dependence group. This proportion was lowest in the high nicotine dependence group. This trend was observed across all age groups. For the 30–39, 50–59, and 60–69 age groups, there were significant inverse relations between the proportion of current smokers who had attempted to quit smoking within the previous 12 months and nicotine dependence level. Among the middle and high nicotine dependence groups, the highest proportion of current smokers who had attempted to quit smoking within the previous 12 months

was observed in the 20–29 age group (42.5% and 35.3%, respectively). Furthermore, in the group with low nicotine dependence, the highest proportion of current smokers who had attempted to quit smoking within the previous 12 months was observed in the 60–69 age group (55.0%).

BMJ Open

[INSERT TABLE 1 ABOUT HERE]

Table 2 shows the relationship between motivators and smoking cessation attempts within the previous 12 months according to respondents' nicotine dependence levels. About half of current smokers who had attempted smoking cessation reported that their motivations for doing so were 'for better health' and 'the rise in cigarette prices since October 2010', regardless of their nicotine dependence level. Only 10% of current smokers who had attempted smoking cessation reported that their reasons were for 'personal health problems', 'recommendation by physicians', and 'feeling unhealthy', regardless of their nicotine dependence level. In the high nicotine dependence group, a higher proportion of current smokers who had attempted smoking cessation within the previous 12 months reported the 'health problems of relatives or friends' and 'personal health problems' as two of their primary motivations for quitting smoking. However, the proportion of respondents who cited 'feeling unhealthy' and 'for better health' was highest in the group with low nicotine dependence. Furthermore,

in the group with low nicotine dependence, 'the rise in cigarette prices since October

2010' was the least reported reason, while 'for better health' was the most reported. No
respondent in the group with high nicotine dependence reported 'having a child (or
grandchild)' as their motivation for quitting smoking.

[INSERT TABLE 2 ABOUT HERE]

Age-adjusted logistic regression analysis indicating the associations between selected three motivators for quitting smoking and nicotine dependence levels is shown in Table 3. 'Feeling unhealthy' was negatively associated with increases in nicotine dependence levels; the odds ratio (OR) was statistically significant for both medium (OR = 0.42, 95% CI = [0.27-0.65]) and high (OR = 0.31, 95% CI = [0.14-0.71])nicotine dependence levels. 'For better health' was also negatively associated with increases in medium nicotine dependence levels (OR = 0.71, 95% CI = [0.54-0.94]); however, this association was not statistically significant for individuals with high nicotine dependence (OR = 0.88, 95% CI = [0.57-1.36]). 'The rise in cigarette prices since October 2010' was significantly positively associated with an increase in medium nicotine dependence level (OR = 1.44, 95% CI = [1.09-1.90]); however, this association was not statistically significant for individuals with high nicotine dependence (OR = 1.24, 95% CI = [0.80-1.92]). Furthermore, trend associations

assessed by assigning ordinal numbers a total score of FTND (0–10) for all three motivators were statistically significant.

[INSERT TABLE 3 ABOUT HERE]

BMJ Open

DISCUSSION

This study investigated the relations between nicotine dependence level, intention to quit smoking within the previous 12 months, and various motivators for quitting smoking among male workers in Japan. Three major findings emerged. First, nicotine dependence levels were negatively associated with smoking cessation attempts in the previous 12 months. Second, respondents' motivators for quitting smoking differed according to their nicotine dependence levels. Third, the proportion of smokers who reported 'the rise in cigarette prices since October 2010' as their motivator for quitting smoking increased with nicotine dependence level.

A national survey in Japan in 1999 showed that 64.7% of current smokers and 41.0% of former smokers acknowledged concerns or problems related to personal health as motivating factors for stopping smoking, respectively. Furthermore, these motivators were ranked as the first and second leading factors for current and former smokers, respectively. Previous studies 10,17 have also identified personal health

concerns, including mild-to-serious personal health problems, and a fear of future illness in the absence of immediate health concerns as predominant motivators for smoking cessation. The present study revealed the relationship between smokers' nicotine dependence levels and motivators for quitting smoking.

In Japan, smoking is still not as restricted in public spaces as it is in other countries. ¹⁸ In addition, the price of tobacco remains lower than in most developed Western countries. ⁷ However, in 2003, the Japanese national government enacted the Health Promotion Law, which requires managers of public facilities to make an effort to protect non-smokers from the environmental effects of tobacco smoke. Since then, greater restrictions have been placed on smoking in public spaces. In addition, the national government increased the tobacco tax in October 2010. The results of our study suggest that the individuals with medium and high nicotine dependence change their smoking cessation attempts according to the tobacco price. The present findings imply that further legislative changes aimed at increasing the cost of cigarettes could be effective in helping people quit smoking.

This study has two major strengths. First, it was conducted after the massive tobacco tax increase in October 2010, the effects of which had not been evaluated in previous studies. 11,13,14 The approximately 40% price increase constituted the highest in

Japan within the last two decades. The prevalence of regular smoking among both men and women decreased significantly after the price increase. ⁸ A one-year follow-up survey conducted in 2005 in Japan¹³ showed that 23.0% of smokers at the time reported that they had attempted to quit smoking at least once in the previous year. In a US study, ¹⁹ 29% of respondents reported that the 2009 federal tobacco tax increase helped initiate their attempts to quit smoking. In this study, 40% of current smokers reported that they had attempted to quit smoking in the previous 12 months. It can be estimated that the increase in tobacco tax changed smoking cessation attitudes among the Japanese male workers included in the current study sample. Smoking cessation intentions may have been affected by the extent of the tax increase and the resulting rise in cigarette retail prices. ^{3,4,6,9} Further examination of the influence of tobacco tax increases on smoking cessation in Japan is required.

BMJ Open

Second, this study revealed that the reasons for smoking cessation attempts vary according to nicotine dependence level. High nicotine dependence strongly predicted failure to quit smoking¹⁵ or the cost-effectiveness of smoking cessation programs.²⁰ As an employee who feels ready and capable of changing his behaviour has needs and preferences that significantly differ from one who is not at that stage,²¹ workplace smoking cessation interventions that employ only one method²² do not

generally have positive effects on the smoking cessation attempts of all employees.

According to the current results, which showed that nicotine dependence is related to reasons for smoking cessation attempts, the efficacy of any smoking cessation intervention can be improved by considering the target group's level of nicotine dependence.

Three major limitations were identified in this study. First, as this was a cross-sectional study, no follow-up measures were taken to determine whether respondents actually succeeded in their smoking cessation attempts. However, because this study was conducted after the tobacco tax increase in 2010, temporal relationships between the motivators and smoking cessation attempts do not affect the interpretation of the results of this study.

In the US, longitudinal studies have been conducted on the effects of a 10% increase in the retail price of a pack of cigarettes (following the 2009 federal tobacco tax increase); however, in Japan, prior investigations of the relationship between retail prices of cigarettes and motivations for smoking cessation among current smokers in Japan were conducted before the tobacco tax increase of 2010. 11,13,14 Thus, the effects of a one-off 40% increase in retail prices of cigarettes in Japan are still not sufficiently clear. Further, the association between the number of cigarettes smoked per

day and smoking cessation has previously been elucidated; ^{13,14,19,20} nevertheless, evaluations of the link between reasons behind smoking cessation and precise nicotine dependence are limited. ⁴ Although temporal relationships between the tobacco tax increase and smoking cessation attempts must be carefully evaluated, the method employed for measuring nicotine dependence in this study was widely recognized. A longitudinal evaluation that considers the amount of tax increase, nicotine dependence, and smoking cessation intentions must be undertaken.

BMJ Open

The second limitation is that the study sample consisted of only male Japanese workers at a specific company. Therefore, the data analysed were not necessarily representative of the total population. However, we can perhaps assume that the current results have broader applicability to the development and design of workplace smoking cessation interventions, as all respondents in this study were employed on a full-time basis.

Third, socio-economic status was not analysed in this study. It has previously been reported that socioeconomic status, especially income, is related to attitudes towards smoking cessation. However, the influence of wage differences on smoking cessation attempts could be disregarded in this study because an age-adjusted analysis (multiple logistic regression) was performed. Income levels are strongly

1		
2		
2 3		
4		
5		
6		
7		
7		
8		
-		
9		
10		
10		
11		
10		
12		
13		
4 4		
14		
15		
10		
16		
17		
11 12 13 14 15 16 17 18		
18		
10		
19		
20		
24		
21 22 23		
22		
23		
24		
25		
26		
26		
27		
27 28 29		
20		
29		
30		
31		
20		
32		
32 33 34 35		
24		
34		
35		
20		
36		
37		
<i>31</i>		
36 37 38		
39		
J		
40		
41		
4 I		

related to respondents' age because of Japan's traditional seniority-based wage system,
which had been adopted in the participating company. It has previously been
demonstrated that lower education levels, income levels, and cigarette consumption are
associated with perceptions that the tobacco tax increase is helpful in aiding smoking
cessation. ¹⁹
In conclusion, effective smoking cessation strategies among smokers with
high nicotine dependence levels are perhaps those involving stricter smoking
regulation policies, such as yet another increase in tobacco tax or stricter regulation of
tobacco products.

Contributors: ST conceived and coordinated the study, participated in its design, collected and interpreted the data, conducted data analysis, and drafted the manuscript. YM participated in the study design and data collection, interpreted the data, and helped to draft the manuscript. All the authors approved the final version of the paper.

Funding: This study was funded by a Grant-in-Aid from the Ministry of Health, Labour and Welfare of Japan (Comprehensive Research on Cardiovascular and Life-style Related Disease: H22-Junkankitou [Seisyuu]-Ippan-012).

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pdf and declare no competing interests.

Ethical approval: The research protocol was approved by the Institutional Review Committee of Fukuoka University.

Data sharing: No additional data are available.

Transparency: ST affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

References

- 1. Schane RE, Prochaska JJ, Glantz SA. Counseling nondaily smokers about secondhand smoke as a cessation message: a pilot randomized trial. *Nicotine Tob Res* 2013; 15:334-42.
- 2. Blanch C, Fernandez E, Martinez-Sanchez JM, et al. Impact of a multi-level intervention to prevent secondhand smoke exposure in schoolchildren: A randomized cluster community trial. *Prev Med* 2013; 57:585-90.
- 3. MacFarlane K, Paynter J, Arroll B, et al. Tax as a motivating factor to make a quit attempt from smoking: a study before and after the April 2010 tax increase.

 J Prim Health Care 2011; 3:283-88.
- 4. Ross H, Blecher E, Yan L, et al. Do cigarette prices motivate smokers to quit?

 New evidence from the ITC survey. *Addiction* 2011; 106:609-19.
- 5. Guindon GE. The impact of tobacco prices on smoking onset in Vietnam: duration analyses of retrospective data. *Eur J Health Econ* 2014; 15:19-39.
- 6. Salti N, Chaaban J, Nakkash R, et al. The effect of taxation on tobacco consumption and public revenues in Lebanon. *Tob Control* 2013. Published Online First: 20 June 2013 doi:10.1136/tobaccocontrol-2012-050703.
- 7. Organisation for Economic Co-operation and Development. OECD Health

- Statistics 2014. Available at:
- http://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT. Accessed 12 September 2014.
- 8. Ministry of Health, Labour and Welfare. The National Health and Nutrition

 Survey in Japan. Available at:

 http://www.mhlw.go.jp/stf/houdou/2r9852000002q1st-att/2r9852000002q1wo.p

 df. Accessed 12 September 2014.
- 9. Dunlop SM, Perez D, Cotter T. Australian smokers' and recent quitters' responses to the increasing price of cigarettes in the context of a tobacco tax increase. *Addiction* 2011;106:1687-95.
- 10. Aubin HJ, Peiffer G, Stoebner-Delbarre A, et al. The French Observational Cohort of Usual Smokers (FOCUS) cohort: French smokers perceptions and attitudes towards smoking cessation. *BMC Public Health* 2010;10:100.
- 11. Nakamura K, Sakurai M, Nishijo M, et al. Characteristics of smoking cessation in former smokers in a rural area of Japan. *Int J Prev Med* 2012;3:459-65.
- 12. Ministry of Health, Labour and Welfare. The survey for smoking and health problems in Japan. Available at: http://www1.mhlw.go.jp/houdou/1111/h1112

 11.html#n05. Accessed 12 September 2014.

13. Goto R, Takahashi Y, Ida T. Changes in smokers' attitudes toward intended cessation attempts in Japan. *Value Health* 2011, 14:785-91.

- 14. Hagimoto A, Nakamura M, Morita T, et al. Smoking cessation patterns and predictors of quitting smoking among the Japanese general population: a 1-year follow-up study. *Addiction* 2010;105:164-73.
- 15. Japuntich SJ, Leventhal AM, Piper ME, et al. Smoker characteristics and smoking-cessation milestones. *Am J Prev Med* 2011;40:286-94.
- 16. Heatherton TF, Kozlowski LT, Frecker RC, et al. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br J Addict 1991;86:1119-27.
- 17. McCaul KD, Hockemeyer JR, Johnson RJ, et al. Motivation to quit using cigarettes: a review. *Addict Behav* 2006;31:42-56.
- 18. Yorifuji T, Tanihara S, Takao S, et al. Regional disparities in compliance with tobacco control policy in Japan: an ecological analysis. *Tob Control* 2011; 20:374-79.
- 19. Choi K, Boyle RG. Minnesota smokers' perceived helpfulness of 2009 federal tobacco tax increase in assisting smoking cessation: a prospective cohort study.

 BMC Public Health* 2013;13:965.

- 20. Nakamura K, Sakurai M, Miura K, et al. Nicotine dependence and cost-effectiveness of individualized support for smoking cessation: evidence from practice at a worksite in Japan. *PLoS One* 2013;8:e55836. doi: 10.1371/journal.pone.0055836. Epub 2013 Jan 30.
- 21. Carroll C, Rick J, Leaviss J, et al. A qualitative evidence synthesis of employees' views of workplace smoking reduction or cessation interventions. *BMC Public Health* 2013;13:1095.
- 22. Hishida A, Terazawa T, Mamiya T, et al. Efficacy of genotype notification to Japanese smokers on smoking cessation--an intervention study at workplace.

 *Cancer Epidemiol 2010;34:96-100.
- 23. Douglas L, Szatkowski L. Socioeconomic variations in access to smoking cessation interventions in UK primary care: insights using the Mosaic classification in a large dataset of primary care records. *BMC Public Health* 2013;13:546.

Table 1. Proportion of smokers who attempted to quit smoking in the previous 12 months by age and nicotine dependence level

						Nic	cotine dep	pendence	level*					
			Low ¹		-	Medium ²			High ³			Total		-
	n(%)		913(40.6)		1	005(44.6))		333(14.8)	1		2251(100))	
-		Yes	No	Total	Yes	No	Total	Yes	No	Total	Yes	No	Total	P value
20, 20	N	104	108	212	88	119	207	12	22	34	204	249	453	0.200
20–29	(%)	(49.1)	(50.9)	(100)	(42.5)	(57.5)	(100)	(35.3)	(64.7)	(100)	(45.0)	(55.0)	(100)	0.200
20, 20	N	125	125	250	91	160	251	19	44	63	235	329	564	0.001
30–39	(%)	(50.0)	(50.0)	(100)	(36.3)	(63.7)	(100)	(30.2)	(69.8)	(100)	(41.7)	(58.3)	(100)	
40, 40	N	86	137	223	90	169	259	27	69	96	203	375	578	0.109
40–49	(%)	(38.6)	(61.4)	(100)	(34.7)	(65.3)	(100)	(28.1)	(71.9)	(100)	(35.1)	(64.9)	(100)	0.198
50. 50	N	101	87	188	95	159	254	39	81	120	235	327	562	< 0.001
30–39	(%)	(53.7)	(46.3)	(100)	(37.4)	(62.6)	(100)	(32.5)	(67.5)	(100)	(41.8)	(58.2)	(100)	\0.001
60, 60	N	22	18	40	9	25	34	6	14	20	37	57	94	0.027
00-09	(%)	(55.0)	(45.0)	(100)	(26.5)	(73.5)	(100)	(30.0)	(70.0)	(100)	(39.4)	(60.6)	(100)	0.027
Total	n	438	475	913	373	632	1005	103	230	333	914	1337	2251	< 0.001
Total	(%)	(48.0)	(52.0)	(100)	(37.1)	(62.9)	(100)	(30.9)	(69.1)	(100)	(40.6)	(59.4)	(100)	\0.001
	-	Attempted to quit smoking $20-29$ N $30-39$ N $40-49$ N $50-59$ N $60-69$ N Total n	Attempted to quit smoking 20–29 N 104 (%) (49.1) 30–39 (%) (50.0) 40–49 (%) (38.6) 50–59 N 101 (%) (53.7) (%) (55.0) N 22 (%) (55.0) Total	n(%) 913(40.6) Attempted to quit smoking Yes No 20-29 N 104 108 (%) (49.1) (50.9) 30-39 N 125 125 (%) (50.0) (50.0) 40-49 N 86 137 (%) (38.6) (61.4) 50-59 N 101 87 (%) (53.7) (46.3) 60-69 N 22 18 (%) (55.0) (45.0) Total n 438 475	n(%) 913(40.6) Attempted to quit smoking Yes No Total 20-29 N 104 108 212 (%) (49.1) (50.9) (100) 30-39 N 125 125 250 (%) (50.0) (50.0) (100) 40-49 N 86 137 223 (%) (38.6) (61.4) (100) 50-59 N 101 87 188 (%) (53.7) (46.3) (100) 60-69 N 22 18 40 (%) (55.0) (45.0) (100) Total n 438 475 913	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n(%) 913(40.6) 1005(44.6) 333(14.8) Attempted to quit smoking Yes No Total Yes No Total Yes No 20-29 N 104 108 212 88 119 207 12 22 (%) (49.1) (50.9) (100) (42.5) (57.5) (100) (35.3) (64.7) 30-39 N 125 125 250 91 160 251 19 44 40-49 (%) (50.0) (50.0) (100) (36.3) (63.7) (100) (30.2) (69.8) 40-49 N 86 137 223 90 169 259 27 69 (%) (38.6) (61.4) (100) (34.7) (65.3) (100) (28.1) (71.9) 50-59 N 101 87 188 95 159 254 39 81 60-69 N 22	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

^{*:} Nicotine dependence levels were classified according to results on the Fagerström Test for Nicotine Dependence (FTND).

^{1:} FTND score = 0–3; 2: FTND score = 4–6; 3: FTND score = 7–10.

Table 2. The proportion of respondents that replied the motivator is related to the smoking cessation challenge in the previous 12 months

			Nicoti								
	Low^1 $n = 438$		Medium2 $n = 373$		$High^3$ $n = 103$		Total n = 914		P for trend	P for trend	
									(crude)	(age adjusted)	
Motivators to smoking cessation	n	(%)	n	(%)	n	(%)	n	(%)			
Health problems of relatives or friends	24	(5.5)	21	(5.6)	8	(7.8)	53	(5.8)	0.489	0.469	
Personal health problems	35	(8.0)	33	(8.8)	12	(11.7)	80	(8.8)	0.372	0.805	
Recommended by physicians	39	(8.9)	33	(8.8)	12	(11.7)	84	(9.2)	0.407	0.950	
Feeling unhealthy	82	(18.7)	33	(8.8)	7	(6.8)	122	(13.3)	< 0.001	< 0.001	
For better health	244	(55.7)	176	(47.2)	55	(53.4)	475	(52.0)	0.028	0.018	
Stopped selling my brand of cigarettes	7	(1.6)	9	(2.4)	1	(1.0)	17	(1.9)	0.999	0.965	
Rise in cigarette prices since October 2010	207	(47.3)	209	(56.0)	51	(49.5)	467	(51.1)	0.092	0.023	
Having a child (or grandchild)	24 (5.5)		26	(7.0)	0	(0.0)	50	(5.5)	0.088	0.243	
Any other motivations	33	(7.5)	33	(8.8)	5	(5.8)	71	(7.9)	0.963	0.929	

^{*:} Nicotine dependence levels were classified according to the Fagerström Test for Nicotine Dependence (FTND). うりん

Age (by ten-year age groups) was adjusted by multiple logistic regression analysis.

^{1:} FTND score = 0-3; 2: FTND score = 4-6; 3: FTND score = 7-10.

Table 3. Nicotine dependence level and age distribution for the top three motivators that related to the smoking cessation challenge in the previous 12 months among current smokers

	Motivat	ors to quit	Fe	eling unheal	thy		For better he	alth		n cigarette p		
										October 201		
Nicoti	ne depend	lence level*	Low ¹	Medium ²	High ³	Low ¹	Medium ²	High ³	Low^1	Medium ²	High ³	
Age	20, 20	N	18	7	1	57	37	5	56	58	6	
	20–29	(%)	(17.3)	(8.0)	(8.3)	(54.8)	(42.0)	(41.7)	(53.8)	(65.9)	(50.0)	
	20, 20	N	22	9	2	64	47	11	63	52	10	
	30–39	(%)	(17.6)	(9.9)	(10.5)	(51.2)	(51.6)	(57.9)	(50.4)	(57.1)	(52.6)	
	40 40	N	16	10	1	49	38	16	43	55	16	
	40–49	(%)	(18.6)	(11.1)	(3.7)	(57.0)	(42.2)	(59.3)	(50.0)	(61.1)	(59.3)	
	50.50	N	23	7	3	63	48	23	41	41	16	
	50–59	(%)	(22.8)	(7.4)	(7.7)	(62.4)	(50.5)	(59.0)	(40.6)	(43.2)	(41.0)	
	(0, (0	N	3	0	0	11	6	0	4	3	3	
	60–69	(%)	(13.6)	(0.0)	(0.0)	(50.0)	(66.7)	(0.0)	(18.2)	(33.3)	(50.0)	
	Tatal	n	82	33	7	244	176	55	207	209	51	
	Total	(%) (18.7)	(8.8)	(6.8)	(55.7)	(47.2)	(53.4)	(47.3)	(56.0)	(49.5)		
	Odds ratio		0.42		0.31	(mafamamaa)	0.71	0.88	(112 f2 112 112 12)	1.44	1.24	
	95	%CI	(reference)	0.27-0.65	0.14-0.71	(reference)	0.54-0.94	0.57-1.36	(reference)	1.09-1.90	0.80-1.92	
	P fo	r trend		<0	.001		0.	018		0.023		

^{*:} Nicotine dependence levels were classified according to the Fagerström Test for Nicotine Dependence (FTND).

^{1:} FTND score = 0-3; 2: FTND score = 4-6; 3: FTND score = 7-10.

Odds ratio and p for trend was calculated by age-adjusted multiple logistic analysis model.

^{95%}CI: 95% confidence interval

STROBE Statement—checklist of items that should be included in reports of observational studies Title: Reason for smoking cessation attempts among Japanese male smokers varies according to nicotine dependence level: cross-sectional study

	Item No	Recommendation	Location in manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Line 1 on page 1 and line 26 on page 2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	What was done: line 27-34 on page 2 What was found: line 35-44 on page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Scientific background: line 59-83 on page 6 and 7 Rationale: Line 84-102 on page 6 and 7
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 102-105 on page 7
Methods			
Study design	4	Present key elements of study design early in the paper	Line 109-112 on page 7-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Line 109-112 on page 7-8
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the	N/A
Variables	7	number of controls per case Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic	Outcomes: Line122-127 on page 8 Exposures: Line 128-140 on page 8-9 Potential confounders: Line 115-116 on
Data agumaga /	-4 O*	criteria, if applicable	page 8
Data sources/ measuremen	nt 8*	For each variable of interest, give	Line 115-147 on page 8-9

		sources of data and details of methods	
		of assessment (measurement). Describe	
		comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address	Exclusion: line 149-159 on page 10
		potential sources of bias	Adjustment: line 171-177 on page 11
Study size	10	Explain how the study size was arrived	Not provided
		at	
Quantitative variables	11	Explain how quantitative variables	Adjustment: line 171-175 on page 11
		were handled in the analyses. If	
		applicable, describe which groupings	
		were chosen and why	
Statistical methods	12	(a) Describe all statistical methods,	Line 148-179 on page 10-11
		including those used to control for	
		confounding	
		(b) Describe any methods used to	Line 167-170 on page 11
		examine subgroups and interactions	
		(c) Explain how missing data were	We excluded participants who had
		addressed	missing data (line 149-159 on page 10)
		(d) Cohort study—If applicable,	N/A
		explain how loss to follow-up was	
		addressed	
		Case-control study—If applicable,	
		explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable,	
		describe analytical methods taking	
		account of sampling strategy	
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at	Line 149-159 on page 10
		each stage of study—eg numbers	
		potentially eligible, examined for	
		eligibility, confirmed eligible, included	
		in the study, completing follow-up, and	
		analysed	
		(b) Give reasons for non-participation	N/A
		at each stage	
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study	Table 1
		participants (eg demographic, clinical,	Line 182-205 on page 11-12
		social) and information on exposures	
		and potential confounders	
		(b) Indicate number of participants	N/A
		with missing data for each variable of	
		interest	
		(c) Cohort study—Summarise follow-	N/A
		•	

Outcome data Main results	15*	Cohort study—Report numbers of outcome events or summary measures over time Case-control study—Report numbers in each exposure category, or summary measures of exposure	
Main results		over time Case-control study—Report numbers in each exposure category, or summary measures of exposure	
Main results		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
Main results		each exposure category, or summary measures of exposure	
Main results		measures of exposure	
Main results			
Main results			
Main results		Cross-sectional study—Report	Table 1
Main results		numbers of outcome events or	Line 183-184 on page 11-12
Main results		summary measures	
	16	(a) Give unadjusted estimates and, if	Table2, Table 3
		applicable, confounder-adjusted	Line 207-239 on page 13-15
		estimates and their precision (eg, 95%	
		confidence interval). Make clear which	
		confounders were adjusted for and why	
		they were included	
		(b) Report category boundaries when	Table 1, Table 2, Table 3
		continuous variables were categorized	
		(c) If relevant, consider translating	N/A
		estimates of relative risk into absolute	
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg	Table 3
•		analyses of subgroups and interactions,	Line 225-239 on page 14-15
		and sensitivity analyses	1 0
Discussion			
Key results	18	Summarise key results with reference	Line 243-259 on page 14-15
		to study objectives	
Limitations	19	Discuss limitations of the study, taking	Line 297-332 on page 18-20
		into account sources of potential bias	
		or imprecision. Discuss both direction	
		and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation	Line 260-270 on page 16
		of results considering objectives,	
		limitations, multiplicity of analyses,	
		results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external	Line 317-322 on page 20
		validity) of the study results	, U
Other information			
Funding	22	Give the source of funding and the role	This study was funded by a Grant-in-Aid
		of the funders for the present study	from the Ministry of Health, Labour and
		and, if applicable, for the original study	Welfare of Japan (Comprehensive
		on which the present article is based	Research on Cardiovascular and Life-
		•	style Related Disease: H22-Junkankitou
			[Seisyuu]-Ippan-012).
rpretation neralisability ner information	20	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Discuss the generalisability (external validity) of the study results Give the source of funding and the role of the funders for the present study and, if applicable, for the original study	Line 260-270 on page 16 Line 317-322 on page 20 This study was funded by a Grant-in from the Ministry of Health, Labour Welfare of Japan (Comprehensive Research on Cardiovascular and Lift style Related Disease: H22-Junkank

BMJ Open: first published as 10.1136/bmjopen-2014-006658 on 20 March 2015. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Reasons for smoking cessation attempts among Japanese male smokers vary by nicotine dependence level: cross-sectional study after the 2010 tobacco tax increase

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006658.R1
Article Type:	Research
Date Submitted by the Author:	10-Jan-2015
Complete List of Authors:	Tanihara, S.; School of Medicine, Fukuoka University, Preventive Medicine and Public Health Momose, Yoshito; School of Medicine, Fukuoka University, Preventive Medicine and Public Health
Primary Subject Heading :	Smoking and tobacco
Secondary Subject Heading:	Public health, Smoking and tobacco
Keywords:	smoking cessation, nicotine dependence, motivator, tobacco tax increase, Fagerström Test for Cigarette Dependence, male workers

SCHOLARONE™ Manuscripts

- 1 Reasons for smoking cessation attempts among Japanese
- 2 male smokers vary by nicotine dependence level:
- **3 cross-sectional study after the 2010 tobacco tax increase**
- 5 Shinichi Tanihara, Yoshito Momose
- 6 Department of Preventive Medicine and Public Health,
- 7 Faculty of Medicine, Fukuoka University, Fukuoka, Japan

- 9 CORRESPONDING AUTHOR
- 10 Shinichi Tanihara, MD, PhD
- 11 Department of Preventive Medicine and Public Health,
- 12 Faculty of Medicine, Fukuoka University,
- 13 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- 14 Telephone number: +81-92-801-1011 (Ext. 3301)
- 15 Fax number: +81-92-863-8892
- 16 Email address: taniyan@cis.fukuoka-u.ac.jp
- 18 Keywords: smoking cessation, nicotine dependence, motivator, tobacco tax increase,
- 19 Fagerström Test for Cigarette Dependence, male workers
- 21 Word count: 3244

23	Abstrac

- Objectives: To examine the association between smoking cessation attempts during
- 25 the previous 12 months, motivators to quit smoking, and nicotine dependence levels
- among current male smoker after Japan's massive 2010 tobacco tax increase.
- **Design:** Cross-sectional study.
- **Setting:** A self-reported questionnaire about smoking habits, nicotine dependence
- 29 levels, and factors identified as motivators to quit smoking was administered to 9,378
- 30 employees working at a company located in Fukuoka Prefecture in Japan (as of
- 31 October 1, 2011).
- **Participants:** A total of 2,251 male current smokers 20–69 years old.
- **Primary and secondary outcome measures:** Nicotine dependence level assessed by
- 34 Fagerström Test for Cigarette Dependence (FTCD), smoking cessation attempts during
- 35 the previous 12 months, and motivators for smoking cessation.
- Results: The proportion of current smokers who had attempted to quit smoking within
- 37 the previous 12 months was 40.6%. Nicotine dependence level of current smokers was
- 38 negatively associated with cessation attempts during the previous 12 months.
- 39 Motivators for smoking cessation differed by nicotine dependence levels. 'The rise in
- 40 cigarette prices since October 2010' as a smoking cessation motivator increased

ı		
2		
2		
3 4		
4		
5 6		
6		
_		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
47		
17		
18		
19		
20		
20		
21		
22		
23		
23		
24		
25		
26		
20 21 22 23 24 25 26 27 28 29 30		
21		
28		
29		
30		
24		
31		
32		
33		
34		
35		
36		
37		
20		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
52		
53		

41	significantly at the medium nicotine dependence level (odds ratio (OR): 1.44, 95%
42	confidence interval (CI): 1.09–1.90); however, this association was not statistically
43	significant for individuals with high nicotine dependence (OR: 1.24, 95% CI: 0.80–
44	1.92). 'Feeling unhealthy' was significantly negatively associated for both medium
45	(OR: 0.42, 95% CI: 0.27–0.65) and high (OR: 0.31, 95% CI: 0.14–0.71) nicotine
46	dependence levels. Trend associations assessed by assigning ordinal numbers to total
47	FTCD score for those two motivators were statistically significant.
48	Conclusions: The efficacy of smoking cessation strategies can be improved by
49	considering the target group's nicotine dependence level. For smokers with medium
50	and high nicotine dependence levels, more effective strategies aimed at encouraging
51	smoking cessation are needed, such as policy interventions including increasing
52	tobacco taxes.
53	
54	

Strengths and limitations

This study provides information on the relationship between smoking cessation
attempts, motivators for quitting smoking, and nicotine dependence levels for current
smokers after Japan's massive 2010 tobacco tax hike. However, the impact of the tax
increase on the cessation attempts was not fully investigated because current smokers
before the tax increase were not included in the study. No follow-up measures were
taken to determine whether the study's respondents actually succeeded in their
smoking cessation attempts.

INTRODUCTION

Smoking is the leading avoidable cause of death worldwide. Many countries
take action to reduce smoking-related deaths by educating people about tobacco's
harmful effects; youth tobacco control, including passive smoking control; 2
disseminating information on tobacco cessation programs; and increasing tobacco
taxes ³ and prices. ⁴ These policies and programmes appear to be effective—overall, the
smoking rate is decreasing in both developed and developing countries. ^{5,6}
In the past two decades, Japan's tobacco tax has increased four times: in
December 1998, July 2003, July 2006, and October 2010. The first three increases
were relatively low—the price of an ordinary 20-cigarette pack increased by about 20-
30 JPY (about 0.2–0.3 USD) each time. Given the low taxes in 2008, tobacco was still
relatively inexpensive (priced at around 300 JPY [2-3 USD] per pack). Thus, smoking
prevalence among men remained high in comparison to other Organisation for
Economic Co-operation and Development (OECD) countries. ⁷
However, in October 2010, the price of an ordinary 20-cigarette pack
increased by 120 JPY (1.2 USD), roughly four times the increase of the previous three
tax hikes (or an estimated 40% increase in retail price). According to the National
Health and Nutrition Survey in Japan, ⁸ the prevalence of regular smoking among men

was 38.2%, 32.2% and 32.4% in 2009, 2010 and 2011, respectively, while that among women was 10.9%, 8.4%, and 9.7%, respectively. Thus, these increases in tobacco taxes may have contributed to lower tobacco consumption in Japan, just as was reported in Western European countries.^{4,9} This may be in part attributable to the tax's dissuasion of young people from smoking.⁵ However, the precise effect of this tax increase on people's smoking cessation attempts in Japan remains unknown. People quit smoking for numerous reasons other than cigarette price increases, such as health problems associated with smoking and anti-smoking social pressures. 10,11 Nevertheless, in order to implement effective strategies aimed at encouraging smoking cessation among Japanese smokers, it is important to determine the varying roles of factors leading to smoking cessation, including the smoking cessation attempts, motivating factors for such attempts, and the manner in which nicotine dependence levels affect these attempts. Currently, there is limited availability of information on this topic from current smokers who attempted to quit smoking. A Japanese national survey carried out in 1999 reported that personal health concerns and complications were major motivations for quitting smoking; however, this survey did not provide details on the type of personal health complications/concerns smokers had. ¹² Another survey ¹¹ reported on the factors related to smoking cessation in former

BMJ Open: first published as 10.1136/bmjopen-2014-006658 on 20 March 2015. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

attempting to quit, a population for whom there is little data available. ¹³ Additionally, these studies ^{11,13,14} were conducted before the substantial tobacco tax hike of October 2010, the effect of which has not yet been evaluated. In other words, there are few studies focusing on current smokers after Japan's 2010 tobacco tax hike. Although high nicotine dependence has been shown to be a strong predictor of failure to quit smoking, ¹⁵ the relationship between dependence levels and factors identified as motivators to quit smoking in Japan needs clarification. The present study, therefore, investigates the relationship between nicotine dependence levels and smoking cessation attempts among the current smokers and factors that current smokers identify as motivators to quit smoking following the October 2010 tobacco tax increase.

METHODS AND PROCEDURES

Study population

A self-reported questionnaire assessing smoking habits, nicotine dependence level, and factors identified as motivators to quit smoking was administered to 9,378 employees working at a company in Fukuoka Prefecture, Japan (as of October 1, 2011). Ethical approval for this study was obtained from the Institutional Review Committee

Data collection and measurements

The questionnaire began with questions regarding respondents' age, sex, and smoking habits. Individuals who had never smoked were not required to complete the rest of the questionnaire. Former smokers were asked to answer the following additional questions: (1) the brand of cigarettes that they used to smoke, (2) the age at which they ceased smoking (years), (3) their motivators for quitting smoking, and (4) any pharmacological therapy used to alleviate nicotine withdrawal. In this study, the definition of former smoker is any person who had once smoked but currently does not. Current smokers were asked to (1) specify the cigarette brand usually smoked, (2) complete the Fagerström Test for Cigarette Dependence (FTCD), (3) whether they had attempted smoking cessation in the previous 12 months ('No/Yes'), (4) specify their motivators for quitting smoking, and (5) indicate whether they were taking any form of medication for alleviating nicotine withdrawal symptoms in people attempting to quit. The FTCD, formerly described as Fagerström Test for Nicotine Dependence (FTND), ¹⁶ a standard questionnaire for assessing physical dependence on nicotine, consists of the following six items: (1) How soon after you wake up do you smoke your first cigarette? ('after 60 minutes', '31–60 minutes', '6–30 minutes', 'within 5

136	minutes'); (2) Do you find it difficult to refrain from smoking in places where it is
137	forbidden, e.g. in church, at the library, cinema, etc.? ('No/Yes'); (3) Which cigarette
138	would you hate most to give up? ('the first one in the morning', 'all others');
139	(4) How many cigarettes per day do you smoke? ('10 or less', '11–20', '21–30', '31 or
140	more'); (5) Do you smoke more frequently during the first hours of waking than during
141	the rest of the day? ('No/Yes'); and (6) Do you smoke if you are so ill that you are in
142	bed most of the day? ('No/Yes'). In scoring the FTCD, the four dichotomous items are
143	scored as 0 or 1, while the two multiple-choice items are scored from 0 to 3. The items
144	are then summed to yield a total score of 0–10. The higher the score, the more
145	dependent the person is on nicotine.
146	We assessed whether the following nine items were respondents' motivators
147	for quitting smoking with 'yes' or 'no' responses: (1) health problems experienced by
148	relatives or friends, (2) personal health problems, (3) physician recommendation, (4)
149	feeling unhealthy, (5) in the interests of better health, (6) their preferred brand of
150	cigarettes was no longer available for sale, (7) the rise in cigarette prices after October
151	2010, (8) having a child (or grandchild), and (9) any other motivators.
152	Statistical analysis
153	Of the 9,378 candidates, 7,899 (84.2%), returned the questionnaire. Of the

7,899 participants, we excluded 302 with missing data for sex, age, or smoking habits, 76 aged < 19 because smoking is illegal among individuals under 20 years old in Japan, and 19 individuals aged 70 or older because of the small number. We excluded 2830 females because of their low proportion of current smokers (320, 11.3%). Thus, 4,672 men aged 20–69 years old were selected for analysis.

Of the 4,672 men aged 20–69 years old surveyed, 1,116 individuals who had never smoked and 1,268 former smokers were excluded from the analysis, since FTCD scores were available for current smokers only. Finally, we excluded 33 current smokers with missing data for any of FTCD components. Thus, the data of 2,251 current smokers were analysed in this study.

Responses to the questionnaire were stratified according to respondents' nicotine dependence levels, as defined by the FTCD: low (FTCD score \leq 3), middle (4–6), and high (\geq 7). First, the proportion of respondents who reported that they had attempted smoking cessation in the previous 12 months (afterward, current smokers with cessation attempts) were expressed as percentages across nicotine dependence levels. Next, the proportion of the motivators for quitting smoking assessed by the nine items among the current smokers with cessation attempts was expressed as percentages across nicotine dependence levels. Third, we selected three motivators for quitting

smoking by number of respondents and examined the relationships between nicotine dependence levels and each motivator for quitting smoking. A chi-square test was used to compare the proportion of respondents by the three nicotine dependence levels. Multiple logistic regression analysis estimated the odds ratios (OR) with 95% confidence intervals (CI) for the presence of each motivator to quit smoking in the previous 12 months, with low nicotine dependence subjects as the reference. We adjusted for age (10-year categories, 20- to 29-year-old group as the reference) in the model. Trend associations were assessed by assigning ordinal numbers to a total FTCD score (0-10). A two-tailed p-value of less than 5% was considered statistically significant. All analyses were performed using SPSS version 19 (International Business Machines Corporation, Armonk, NY, USA).

RESULTS

Of the 2,251 current smokers included in our analyses, 913 (40.6%), 1,005 (44.6%), and 333 (14.8%) had low, middle, and high FTCD scores, respectively; 914 (40.6%) reported that they had attempted smoking cessation in the previous 12 months (Table 1). The 20–29 age group had the lowest proportion of respondents with high nicotine dependence (7.5%), while the 50–59 age group had the highest (21.4%). In

Page 12 of 32

general, the older groups had more respondents with high nicotine dependence. The 50–59 age group had the lowest proportion (33.5%) of respondents with low nicotine dependence, while the 20–29 age group had the highest (46.8%). Overall, the groups with older respondents had the lowest proportions of those with low nicotine dependence.

The proportion of current smokers with cessation attempts among the low, middle, and high nicotine dependence groups was 48.0%, 37.1%, and 30.9%, respectively, a statistically significant difference. For each age group, the proportion of current smokers with cessation attempts was highest in the low nicotine dependence group. This proportion was lowest in the high nicotine dependence group. This trend was observed across all age groups. For the 30–39, 50–59, and 60–69 age groups, there were significant inverse relations between the proportion of current smokers with cessation attempts and nicotine dependence level. Among the middle and high nicotine dependence groups, the highest proportion of current smokers with cessation attempts was observed in the 20–29 age group (42.5% and 35.3%, respectively). Furthermore, in the group with low nicotine dependence, the highest proportion of current smokers with cessation attempts was observed in the 60–69 age group (55.0%).

[INSERT TABLE 1 ABOUT HERE]

Table 2 shows the relationship between motivators and smoking cessation attempts within the previous 12 months by respondents' nicotine dependence levels. About half of current smokers with cessation attempts reported that their motivators were 'for better health' and 'the rise in cigarette prices since October 2010', regardless of their nicotine dependence level. Only 10% of current smokers with cessation attempts reported that their reasons were for 'personal health problems', 'physician recommendation', and 'feeling unhealthy', regardless of their nicotine dependence level. In the high nicotine dependence group, a higher proportion of current smokers with cessation attempts reported the 'health problems of relatives or friends' and 'personal health problems' as two of their primary motivators for quitting smoking. However, the proportion of respondents who cited 'feeling unhealthy' and 'for better health' was highest in the group with low nicotine dependence. Furthermore, in the group with low nicotine dependence, 'the rise in cigarette prices since October 2010' was the least reported reason, while 'for better health' was the most reported. No respondent in the group with high nicotine dependence reported 'having a child (or grandchild)' as their motivator for quitting smoking. [INSERT TABLE 2 ABOUT HERE]

Age-adjusted logistic regression analysis indicating the associations between

the three selected motivators for quitting smoking and nicotine dependence levels is shown in Table 3. 'Feeling unhealthy' was negatively associated with increases in nicotine dependence levels; the odds ratio (OR) was statistically significant for both medium (OR = 0.42, 95% CI = [0.27-0.65]) and high (OR = 0.31, 95% CI = [0.14-0.65]) 0.71]) nicotine dependence levels. 'For better health' was also negatively associated with increases in medium nicotine dependence levels (OR = 0.71, 95% CI = [0.54– 0.94]); however, this association was not statistically significant for individuals with high nicotine dependence (OR = 0.88, 95% CI = [0.57-1.36]). 'The rise in cigarette prices since October 2010' was significantly positively associated with an increase in medium nicotine dependence level (OR = 1.44, 95% CI = [1.09-1.90]); however, this association was not statistically significant for individuals with high nicotine dependence (OR = 1.24, 95% CI = [0.80-1.92]). Furthermore, trend associations assessed by assigning ordinal numbers to a total score of FTCD (0–10) for all three motivators were statistically significant.

[INSERT TABLE 3 ABOUT HERE]

DISCUSSION

This study investigated the relationships between nicotine dependence level,

cessation attempts within the previous 12 months, and various motivators for quitting smoking among male current smokers after Japan's 2010 tobacco tax hike. Three major findings emerged. First, 40.6% of current smokers had attempted smoking cessation within the previous 12 months and nicotine dependence levels were negatively associated with attempts. Second, respondents' motivators for quitting smoking differed according to their nicotine dependence levels. Third, the proportion of current smokers with cessation attempts who reported 'the rise in cigarette prices since October 2010' as their motivator for quitting smoking increased with nicotine dependence level.

A national survey in Japan in 1999 showed that 64.7% of current smokers and 41.0% of former smokers acknowledged concerns or problems related to personal health as motivating factors for stopping smoking, respectively. Furthermore, these motivators were ranked as the first and second leading factors for current and former smokers, respectively. Previous studies 10,17 have also identified personal health concerns, including mild-to-serious personal health problems, and a fear of future illness in the absence of immediate health concerns as predominant motivators for smoking cessation. The present study revealed the relationship between smokers' nicotine dependence levels and motivators for quitting smoking.

In Japan, smoking is still not as restricted in public spaces as it is in other countries. 18 In addition, the price of tobacco remains lower than in most developed Western countries. However, in 2003, the Japanese national government enacted the Health Promotion Law, which requires public facility managers to endeavour to protect non-smokers from the environmental effects of tobacco smoke. Since then, greater restrictions have been placed on smoking in public spaces. In addition, the national government increased the tobacco tax in October 2010. The results of our study suggest that individuals with medium and high nicotine dependence attempted smoking cessation by the tobacco price. The present findings imply that further legislative changes increasing the cost of cigarettes could be effective in helping people quit smoking.

This study has two major strengths. First, it was conducted after the massive tobacco tax increase in October 2010, the effects of which had not been evaluated in previous studies. 11,13,14 The approximately 40% price increase constituted the highest in Japan within the last two decades. The prevalence of regular smoking among both men and women decreased significantly after the price increase. 8 A one-year follow-up survey conducted from 2005 to 2006 in Japan 14 showed that 23.0% of smokers at the time reported that they had attempted to quit smoking at least once in the previous year.

In a U. S. study, ¹⁹ 29% of respondents reported that the 2009 federal tobacco tax increase helped initiate their attempts to quit smoking. In this study, 40% of current smokers reported that they had attempted smoking cessation in the previous 12 months. It can be hypothesized that the increase in tobacco tax changed smoking cessation attempts among the Japanese male workers included in the current study sample. Smoking cessation attempts may have been affected by the extent of the tax increase and the resulting rise in cigarette retail prices.^{3,4,6,9} Further examination of the influence of tobacco tax increases on smoking cessation in Japan is required. Second, this study revealed that the reasons for smoking cessation attempts vary by nicotine dependence level. High nicotine dependence strongly predicted failure to quit smoking 15 or the cost-effectiveness of smoking cessation programs. 20 As an employee who feels ready and capable of changing his behaviour has needs and preferences that significantly differ from one who is not at that stage, 21 workplace smoking cessation interventions that employ only one method²² do not generally have positive effects on the smoking cessation attempts of all employees. The current results showed that nicotine dependence is related to motivators for smoking cessation attempts. Thus, the efficacy of any smoking cessation intervention can be improved by

BMJ Open

considering the target group's level of nicotine dependence.

Three major limitations were identified in this study. First, as this was a cross-sectional study conducted retrospectively, the subjects may not recall all attempts for smoking cessation in the previous 12 months. However, we can interpret that their intention to quit is low when the subjects do not recall their attempts. Therefore, excluding the quit attempts that the subjects could not recall does not affect the interpretation of the study results. This study was conducted in October 2011 and analysed current smokers at that time because physical dependence on nicotine assessed by FTCD was available for current smokers only. The temporal relationship between the exposure and the outcome should be evaluated cautiously. However, because the subjects of this study were current smokers after the tobacco tax increase in 2010, we can interpret that fluctuation in nicotine dependence is negligible. Thus, temporal relationships between nicotine dependence level and the motivators and smoking cessation attempts do not affect the interpretation of the study results. In the U. S., longitudinal studies have been conducted on the effects of a 10% increase in the retail price of a pack of cigarettes (following the 2009 federal tobacco tax increase);¹⁹ however, in Japan, prior investigations of the relationship between retail prices of cigarettes and motivators for smoking cessation among current smokers in Japan were conducted before the 2010 tobacco tax increase. 11,13,14 Thus, the effects

of a single 40% increase in retail prices of cigarettes in Japan are still not sufficiently clear. Further, the association between the number of cigarettes smoked per day and smoking cessation has previously been elucidated; 13,14,19,20 nevertheless, evaluations of the link between reasons behind smoking cessation and precise nicotine dependence are limited. Although temporal relationships between the tobacco tax increase and smoking cessation attempts must be carefully evaluated, the method employed for measuring nicotine dependence in this study was widely recognized. A longitudinal evaluation that considers the amount of tax increase, nicotine dependence, and smoking cessation attempts must be undertaken.

The second limitation is that the study sample consisted of only male Japanese workers at a specific company. Therefore, the data analysed were not necessarily representative of the total population. However, we can perhaps assume that the current results have broader applicability to the development and design of workplace smoking cessation interventions, as all respondents in this study were employed on a full-time basis.

Third, socio-economic status was not analysed in this study. It has previously been reported that socioeconomic status, especially income, is related to attitudes towards smoking cessation. ^{19,23} However, the influence of wage differences on

smoking cessation challenges could be disregarded in this study because an
age-adjusted analysis (multiple logistic regression) was performed. Income levels are
strongly related to respondents' age because of Japan's traditional seniority-based wage
system, which had been adopted in the participating company. It has previously been
demonstrated that lower education levels, income levels, and cigarette consumption are
associated with perceptions that the tobacco tax increase is helpful in aiding smoking
cessation.¹⁹
In conclusion, the efficacy of smoking cessation strategies can be improved by

In conclusion, the efficacy of smoking cessation strategies can be improved by considering the target group's nicotine dependence level. A longitudinal evaluation of strategies focused on current smokers with high nicotine dependence levels should be undertaken.

 Contributors: ST conceived and coordinated the study, participated in its design, collected and interpreted the data, conducted data analysis, and drafted the manuscript. YM participated in the study design and data collection, interpreted the data, and helped to draft the manuscript. Both authors approved the final version of the paper.

Funding: This study was funded by a Grant-in-Aid from the Ministry of Health, Labour and Welfare of Japan (Comprehensive Research on Cardiovascular and Life-style Related Disease: H22-Junkankitou [Seisyuu]-Ippan-012).

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pdf and declare no competing interests.

Ethical approval: The research protocol was approved by the Institutional Review Committee of Fukuoka University.

Data sharing: No additional data are available.

Transparency: ST affirms that the manuscript is an honest, accurate, and transparent account of the study being reported, that no important aspects of the study have been omitted, and that any discrepancies from the study as planned have been explained.

References

- 1. Schane RE, Prochaska JJ, Glantz SA. Counseling nondaily smokers about secondhand smoke as a cessation message: a pilot randomized trial. *Nicotine Tob**Res 2013; 15:334-42.
- 2. Blanch C, Fernandez E, Martinez-Sanchez JM, et al. Impact of a multi-level intervention to prevent secondhand smoke exposure in schoolchildren: A randomized cluster community trial. *Prev Med* 2013; 57:585-90.
- 3. MacFarlane K, Paynter J, Arroll B, et al. Tax as a motivating factor to make a quit attempt from smoking: a study before and after the April 2010 tax increase.

 J Prim Health Care 2011; 3:283-88.
- 4. Ross H, Blecher E, Yan L, et al. Do cigarette prices motivate smokers to quit?

 New evidence from the ITC survey. *Addiction* 2011; 106:609-19.
- 5. Guindon GE. The impact of tobacco prices on smoking onset in Vietnam: duration analyses of retrospective data. *Eur J Health Econ* 2014; 15:19-39.
- 6. Salti N, Chaaban J, Nakkash R, et al. The effect of taxation on tobacco consumption and public revenues in Lebanon. *Tob Control* 2013. Published Online First: 20 June 2013 doi:10.1136/tobaccocontrol-2012-050703.
- 7. Organisation for Economic Co-operation and Development. OECD Health

- Statistics 2014. Available at:
- http://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT. Accessed 12 September 2014.
- 8. Ministry of Health, Labour and Welfare. The National Health and Nutrition

 Survey in Japan. Available at:

 http://www.mhlw.go.jp/stf/houdou/2r9852000002q1st-att/2r9852000002q1wo.p

 df. Accessed 12 September 2014.
- 9. Dunlop SM, Perez D, Cotter T. Australian smokers' and recent quitters' responses to the increasing price of cigarettes in the context of a tobacco tax increase. *Addiction* 2011;106:1687-95.
- 10. Aubin HJ, Peiffer G, Stoebner-Delbarre A, et al. The French Observational Cohort of Usual Smokers (FOCUS) cohort: French smokers perceptions and attitudes towards smoking cessation. *BMC Public Health* 2010;10:100.
- 11. Nakamura K, Sakurai M, Nishijo M, et al. Characteristics of smoking cessation in former smokers in a rural area of Japan. *Int J Prev Med* 2012;3:459-65.
- 12. Ministry of Health, Labour and Welfare. The survey for smoking and health problems in Japan. Available at: http://www1.mhlw.go.jp/houdou/1111/h1112

 11.html#n05. Accessed 12 September 2014.

13. Goto R, Takahashi Y, Ida T. Changes in smokers' attitudes toward intended cessation attempts in Japan. *Value Health* 2011, 14:785-91.

- 14. Hagimoto A, Nakamura M, Morita T, et al. Smoking cessation patterns and predictors of quitting smoking among the Japanese general population: a 1-year follow-up study. *Addiction* 2010;105:164-73.
- 15. Japuntich SJ, Leventhal AM, Piper ME, et al. Smoker characteristics and smoking-cessation milestones. *Am J Prev Med* 2011;40:286-94.
- 16. Heatherton TF, Kozlowski LT, Frecker RC, et al. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br J Addict 1991;86:1119-27.
- 17. McCaul KD, Hockemeyer JR, Johnson RJ, et al. Motivation to quit using cigarettes: a review. *Addict Behav* 2006;31:42-56.
- 18. Yorifuji T, Tanihara S, Takao S, et al. Regional disparities in compliance with tobacco control policy in Japan: an ecological analysis. *Tob Control* 2011; 20:374-79.
- 19. Choi K, Boyle RG. Minnesota smokers' perceived helpfulness of 2009 federal tobacco tax increase in assisting smoking cessation: a prospective cohort study.

 BMC Public Health* 2013;13:965.

- 20. Nakamura K, Sakurai M, Miura K, et al. Nicotine dependence and cost-effectiveness of individualized support for smoking cessation: evidence from practice at a worksite in Japan. *PLoS One* 2013;8:e55836. doi: 10.1371/journal.pone.0055836. Epub 2013 Jan 30.
- 21. Carroll C, Rick J, Leaviss J, et al. A qualitative evidence synthesis of employees' views of workplace smoking reduction or cessation interventions. *BMC Public Health* 2013;13:1095.
- 22. Hishida A, Terazawa T, Mamiya T, et al. Efficacy of genotype notification to Japanese smokers on smoking cessation--an intervention study at workplace.

 *Cancer Epidemiol 2010;34:96-100.
- 23. Douglas L, Szatkowski L. Socioeconomic variations in access to smoking cessation interventions in UK primary care: insights using the Mosaic classification in a large dataset of primary care records. *BMC Public Health* 2013;13:546.

Table 1. The distribution of age, nicotine dependence level, and cessation attempts of the subjects

							Nic	otine dep	endence	level*					
				Low ¹]	Medium ²			High ³			Total		-
		n(%)		913(40.6)		1	005(44.6)			333(14.8))		2251(100)	
	Cessa attem		Yes	No	Total	Yes	No	Total	Yes	No	Total	Yes	No	Total	P value
Age	20–29	N	104	108	212	88	119	207	12	22	34	204	249	453	0.200
	20–29	(%)	(49.1)	(50.9)	(100)	(42.5)	(57.5)	(100)	(35.3)	(64.7)	(100)	(45.0)	(55.0)	(100)	0.200
	30–39	N	125	125	250	91	160	251	19	44	63	235	329	564	0.001
	30-39	(%)	(50.0)	(50.0)	(100)	(36.3)	(63.7)	(100)	(30.2)	(69.8)	(100)	(41.7)	(58.3)	(100)	0.001
	40, 40	N	86	137	223	90	169	259	27	69	96	203	375	578	0.109
	40–49 (%)	(%)	(38.6)	(61.4)	(100)	(34.7)	(65.3)	(100)	(28.1)	(71.9)	(100)	(35.1)	(64.9)	(100)	0.198
	50–59	N	101	87	188	95	159	254	39	81	120	235	327	562	< 0.001
	30–39	(%)	(53.7)	(46.3)	(100)	(37.4)	(62.6)	(100)	(32.5)	(67.5)	(100)	(41.8)	(58.2)	(100)	<0.001
	60–69	N	22	18	40	9	25	34	6	14	20	37	57	94	0.027
00-09	00-09	(%)	(55.0)	(45.0)	(100)	(26.5)	(73.5)	(100)	(30.0)	(70.0)	(100)	(39.4)	(60.6)	(100)	0.027
	Total	n	438	475	913	373	632	1005	103	230	333	914	1337	2251	<0.001
Total	Total	(%)	(48.0)	(52.0)	(100)	(37.1)	(62.9)	(100)	(30.9)	(69.1)	(100)	(40.6)	(59.4)	(100)	< 0.001

^{*:} Nicotine dependence levels were classified according to results on the Fagerström Test for Cigarette Dependence (FTCD).

^{1:} FTCD score = 0-3; 2: FTCD score = 4-6; 3: FTCD score = 7-10.

Table 2. The proportion of respondents that replied the motivator is related to the smoking cessation attempts in the previous 12 months

			Nicot	ine deper	ndence	e level*				
	L	ow ¹	Med	ium ²	H	igh ³	То	tal	P for trend	P for trend
	n =	= 438	n =	373	n=	= 103	n =	914	(crude)	(age adjusted)
Motivators to smoking cessation	n	(%)	n	(%)	n	(%)	n	(%)		
Health problems of relatives or friends	24	(5.5)	21	(5.6)	8	(7.8)	53	(5.8)	0.489	0.469
Personal health problems	35	(8.0)	33	(8.8)	12	(11.7)	80	(8.8)	0.372	0.805
Physician recommendation	39	(8.9)	33	(8.8)	12	(11.7)	84	(9.2)	0.407	0.950
Feeling unhealthy	82	(18.7)	33	(8.8)	7	(6.8)	122	(13.3)	< 0.001	< 0.001
For better health	244	(55.7)	176	(47.2)	55	(53.4)	475	(52.0)	0.028	0.018
Stopped selling my brand of cigarettes	7	(1.6)	9	(2.4)	1	(1.0)	17	(1.9)	0.999	0.965
Rise in cigarette prices since October 2010	207	(47.3)	209	(56.0)	51	(49.5)	467	(51.1)	0.092	0.023
Having a child (or grandchild)	24	(5.5)	26	(7.0)	0	(0.0)	50	(5.5)	0.088	0.243
Any other motivations	33	(7.5)	33	(8.8)	5	(5.8)	71	(7.9)	0.963	0.929

^{*:} Nicotine dependence levels were classified according to the Fagerström Test for Cigarette Dependence (FTCD).

Age (by ten-year age groups) was adjusted by multiple logistic regression analysis.

^{1:} FTCD score = 0-3; 2: FTCD score = 4-6; 3: FTCD score = 7-10.

Table 3. Nicotine dependence level and age distribution for the top three motivators that related to the smoking cessation attempts in the previous 12 months among current smokers

Motivotors to guit			For better health			The rise in cigarette prices since					
	Motivators to quit Feeling unhealthy			ıny		•	October 2010				
Nicot	ine depend	lence level*	Low ¹	Medium ²	High ³	Low ¹	Medium ²	High ³	Low ¹	Medium ²	High ³
Age	20, 20	N	18	7	1	57	37	5	56	58	6
	20–29	(%)	(17.3)	(8.0)	(8.3)	(54.8)	(42.0)	(41.7)	(53.8)	(65.9)	(50.0)
	20. 20	N	22	9	2	64	47	11	63	52	10
	30–39	(%)	(17.6)	(9.9)	(10.5)	(51.2)	(51.6)	(57.9)	(50.4)	(57.1)	(52.6)
	10 10	N	16	10	1	49	38	16	43	55	16
	40–49	(%)	(18.6)	(11.1)	(3.7)	(57.0)	(42.2)	(59.3)	(50.0)	(61.1)	(59.3)
	50.50	N	23	7	3	63	48	23	41	41	16
	50–59	(%)	(22.8)	(7.4)	(7.7)	(62.4)	(50.5)	(59.0)	(40.6)	(43.2)	(41.0)
	60–69	N	3	0	0	11	6	0	4	3	3
	00-09	(%)	(13.6)	(0.0)	(0.0)	(50.0)	(66.7)	(0.0)	(18.2)	(33.3)	(50.0)
	Taka1	n	82	33	7	244	176	55	207	209	51
	Total	(%)	(18.7)	(8.8)	(6.8)	(55.7)	(47.2)	(53.4)	(47.3)	(56.0)	(49.5)
	Odd	s ratio	(reference)	0.42	0.31	(reference)	0.71	0.88	(reference)	1.44	1.24
	95	%CI	(reference)	0.27-0.65	0.14-0.71	(reference)	0.54-0.94	0.57-1.36	(reference)	1.09-1.90	0.80-1.92
	P for	r trend		<0	.001		0.018			0.023	

^{*:} Nicotine dependence levels were classified according to the Fagerström Test for Cigarette Dependence (FTCD).

Odds ratio and p for trend was calculated by age-adjusted multiple logistic analysis model.

^{1:} FTCD score = 0-3; 2: FTCD score = 4-6; 3: FTCD score = 7-10.

^{95%}CI: 95% confidence interval

STROBE Statement—checklist of items that should be included in reports of observational studies Title: Reason for smoking cessation attempts among Japanese male smokers varies according to nicotine dependence level: cross-sectional study

	Item No	Recommendation	Location in manuscript		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Line 1-3 on page 1 and line 27 on page		
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	What was done: line 28-35 on page 2 What was found: line 36-47 on page 2		
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Scientific background: line 65-87 on page 5 and 6 Rationale: Line 88-107 on page 6 and 7		
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 107-110 on page 7		
Methods					
Study design	4	Present key elements of study design early in the paper	Line 114-116 on page 7		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Line 114-116 on page 7		
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	N/A		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Outcomes: Line127-131 on page 8 Exposures: Line 132-145 on page 8-9 Potential confounders: Line 120-121 on page 8		
		, upp	r-0- v		

		sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address	Exclusion: line 153-163 on page 9-10
		potential sources of bias	Adjustment: line 175-181 on page 11
Study size	10	Explain how the study size was arrived at	Not provided
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Adjustment: line 175-181 on page 11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Line 153-182 on page 9-11
		(b) Describe any methods used to examine subgroups and interactions	Line 171-173 on page 10-11
		(c) Explain how missing data were	We excluded participants who had
		addressed	missing data (line 153-163 on page 10).
		(d) Cohort study—If applicable,	N/A
		explain how loss to follow-up was addressed	
		Case-control study—If applicable,	
		explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable,	
		describe analytical methods taking	
		account of sampling strategy	
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at	Line 153-163 on page 10
		each stage of study—eg numbers	
		potentially eligible, examined for	
		eligibility, confirmed eligible, included	
		in the study, completing follow-up, and	
		analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study	Table 1
		participants (eg demographic, clinical,	Line 185-206 on page 11-12
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants	N/A
		with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-	N/A
		()	

		up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of	
		outcome events or summary measures	
		over time	
		Case-control study—Report numbers in	
		each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report	Table 1
		numbers of outcome events or	Line 185-188 on page 11
		summary measures	1 5
Main results	16	(a) Give unadjusted estimates and, if	Table2, Table 3
		applicable, confounder-adjusted	Line 208-239 on page 13-14
		estimates and their precision (eg, 95%	12
		confidence interval). Make clear which	
		confounders were adjusted for and why	
		they were included	
		(b) Report category boundaries when	Table 1, Table 2, Table 3
		continuous variables were categorized	Tuble 1, Tuble 2, Tuble 3
		(c) If relevant, consider translating	N/A
		estimates of relative risk into absolute	IV/A
Othononolygon	17	risk for a meaningful time period	Table 3
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions,	
			Line 225-239 on page 13-14
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference	Line 243-261 on page 14-15
		to study objectives	
Limitations	19	Discuss limitations of the study, taking	Line 298-340 on page 18-20
		into account sources of potential bias	
		or imprecision. Discuss both direction	
		and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation	Line 262-272 on page 16
		of results considering objectives,	
		limitations, multiplicity of analyses,	
		results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external	Line 325-330 on page 19
		validity) of the study results	
Other information		•	
Funding	22	Give the source of funding and the role	This study was funded by a Grant-in-Aid
		of the funders for the present study	from the Ministry of Health, Labour and
		and, if applicable, for the original study	Welfare of Japan (Comprehensive
		on which the present article is based	Research on Cardiovascular and Life-
			style Related Disease: H22-Junkankitou
			Style Related Discuse. 1122 Julikalikitou

BMJ Open: first published as 10.1136/bmjopen-2014-006658 on 20 March 2015. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Reasons for smoking cessation attempts among Japanese male smokers vary by nicotine dependence level: cross-sectional study after the 2010 tobacco tax increase

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006658.R2
Article Type:	Research
Date Submitted by the Author:	14-Feb-2015
Complete List of Authors:	Tanihara, S.; School of Medicine, Fukuoka University, Preventive Medicine and Public Health Momose, Yoshito; School of Medicine, Fukuoka University, Preventive Medicine and Public Health
Primary Subject Heading :	Smoking and tobacco
Secondary Subject Heading:	Public health, Smoking and tobacco
Keywords:	smoking cessation, nicotine dependence, motivator, tobacco tax increase, Fagerström Test for Cigarette Dependence, male workers

SCHOLARONE™ Manuscripts

- 1 Reasons for smoking cessation attempts among Japanese
- 2 male smokers vary by nicotine dependence level:
- 3 cross-sectional study after the 2010 tobacco tax increase
- 5 Shinichi Tanihara, Yoshito Momose
- 6 Department of Preventive Medicine and Public Health,
- 7 Faculty of Medicine, Fukuoka University, Fukuoka, Japan

- 9 CORRESPONDING AUTHOR
- 10 Shinichi Tanihara, MD, PhD
- 11 Department of Preventive Medicine and Public Health,
- 12 Faculty of Medicine, Fukuoka University,
- 13 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- 14 Telephone number: +81-92-801-1011 (Ext. 3301)
- 15 Fax number: +81-92-863-8892
- 16 Email address: taniyan@cis.fukuoka-u.ac.jp
- 18 Keywords: smoking cessation, nicotine dependence, motivator, tobacco tax increase,
- 19 Fagerström Test for Cigarette Dependence, male workers
- 21 Word count: 3407

23	Abstract
23	Abstract

- **Objectives:** To examine the association between smoking cessation attempts during
- 25 the previous 12 months, motivators to quit smoking, and nicotine dependence levels
- among current male smoker after Japan's massive 2010 tobacco tax increase.
- **Design:** Cross-sectional study.
- **Setting:** A self-reported questionnaire about smoking habits, nicotine dependence
- 29 levels, and factors identified as motivators to quit smoking was administered to 9,378
- 30 employees working at a company located in Fukuoka Prefecture in Japan (as of
- 31 October 1, 2011).
- **Participants:** A total of 2,251 male current smokers 20–69 years old.
- **Primary and secondary outcome measures:** Nicotine dependence level assessed by
- 34 Fagerström Test for Cigarette Dependence (FTCD), smoking cessation attempts during
- 35 the previous 12 months, and motivators for smoking cessation.
- Results: The proportion of current smokers who had attempted to quit smoking within
- 37 the previous 12 months was 40.6%. Nicotine dependence level of current smokers was
- as negatively associated with cessation attempts during the previous 12 months.
- 39 Motivators for smoking cessation differed by nicotine dependence levels. 'The rise in
- 40 cigarette prices since October 2010' as a smoking cessation motivator increased

3		
4		
3 4 5 6 7	41	si
8 9 10	42	C
11 12 13	43	si
14 15 16	44	1.
17 18	45	((
19 20 21	46	de
22 23 24	47	F
25 26 27	48	C
28 29 30	49	C
31 32 33	50	aı
34 35 36	51	SI
37 38 39	52	to
40 41 42	53	
43 44	54	
45 46		
47 48		
49 50		

significantly at the medium nicotine dependence level (odds ratio (OR): 1.44, 95%
confidence interval (CI): 1.09–1.90); however, this association was not statistically
significant for individuals with high nicotine dependence (OR: 1.24, 95% CI: 0.80-
1.92). 'Feeling unhealthy' was significantly negatively associated for both medium
(OR: 0.42, 95% CI: 0.27–0.65) and high (OR: 0.31, 95% CI: 0.14–0.71) nicotine
dependence levels. Trend associations assessed by assigning ordinal numbers to total
FTCD score for those two motivators were statistically significant.
Conclusions: The efficacy of smoking cessation strategies can be improved by
considering the target group's nicotine dependence level. For smokers with medium
and high nicotine dependence levels, more effective strategies aimed at encouraging
smoking cessation are needed, such as policy interventions including increasing
tobacco taxes.

Strengths and limitations

This study provides information on the relationship between smoking cessation
attempts, motivators for quitting smoking, and nicotine dependence levels for current
smokers after Japan's massive 2010 tobacco tax hike. However, the impact of the tax
increase on the cessation attempts was not fully investigated because current smokers
before the tax increase were not included in the study. No follow-up measures were
taken to determine whether the study's respondents actually succeeded in their
smoking cessation attempts.

INTRODUCTION

Smoking is the leading avoidable cause of death worldwide. Many countries
take action to reduce smoking-related deaths by educating people about tobacco's
harmful effects; ¹ youth tobacco control, including passive smoking control; ²
disseminating information on tobacco cessation programs; and increasing tobacco
taxes ³ and prices. ⁴ These policies and programmes appear to be effective—overall, the
smoking rate is decreasing in both developed and developing countries. ^{5,6}
In the past two decades, Japan's tobacco tax has increased four times: in
December 1998, July 2003, July 2006, and October 2010. The first three increases
were relatively low—the price of an ordinary 20-cigarette pack increased by about 20-
30 JPY (about 0.2–0.3 USD) each time. Given the low taxes in 2008, tobacco was still
relatively inexpensive (priced at around 300 JPY [2–3 USD] per pack). Thus, smoking
prevalence among men remained high in comparison to other Organisation for
Economic Co-operation and Development (OECD) countries. ⁷
However, in October 2010, the price of an ordinary 20-cigarette pack
increased by 120 JPY (1.2 USD), roughly four times the increase of the previous three
tax hikes (or an estimated 40% increase in retail price). According to the National
Health and Nutrition Survey in Japan, ⁸ the prevalence of regular smoking among men

was 38.2%, 32.2% and 32.4% in 2009, 2010 and 2011, respectively, while that among women was 10.9%, 8.4%, and 9.7%, respectively. Thus, these increases in tobacco taxes may have contributed to lower tobacco consumption in Japan, just as was reported in Western European countries. ^{4,9} This may be in part attributable to the tax's dissuasion of young people from smoking. ⁵ However, the precise effect of this tax increase on people's smoking cessation attempts in Japan remains unknown.

People quit smoking for numerous reasons other than cigarette price increases, such as health problems associated with smoking and anti-smoking social pressures. ^{10,11} Nevertheless, in order to implement effective strategies aimed at encouraging smoking cessation among Japanese smokers, it is important to determine the varying roles of factors leading to smoking cessation, including the smoking cessation attempts, motivating factors for such attempts, and the manner in which nicotine dependence levels affect these attempts. Currently, there is limited availability of information on this topic from current smokers who attempted to quit smoking. A Japanese national survey carried out in 1999 reported that personal health concerns and complications were major motivations for quitting smoking; however, this survey did not provide details on the type of personal health complications/concerns smokers had. ¹² Another survey¹¹ reported on the factors related to smoking cessation in former

attempting to quit, a population for whom there is little data available. ¹³ Additionally, these studies ^{11,13,14} were conducted before the substantial tobacco tax hike of October 2010, the effect of which has not yet been evaluated. In other words, there are few studies focusing on current smokers after Japan's 2010 tobacco tax hike. Although high nicotine dependence has been shown to be a strong predictor of failure to quit smoking, ¹⁵ the relationship between dependence levels and factors identified as motivators to quit smoking in Japan needs clarification. The present study, therefore, investigates the relationship between nicotine dependence levels and smoking cessation attempts among the current smokers and factors that current smokers identify as motivators to quit smoking following the October 2010 tobacco tax increase.

METHODS AND PROCEDURES

Study population

A self-reported questionnaire assessing smoking habits, nicotine dependence level, and factors identified as motivators to quit smoking was administered to 9,378 employees working at a company in Fukuoka Prefecture, Japan (as of October 1, 2011). Ethical approval for this study was obtained from the Institutional Review Committee

of Fukuoka University.

Data collection and measurements

The questionnaire began with questions regarding respondents' age, sex, and smoking habits. Individuals who had never smoked were not required to complete the rest of the questionnaire. Former smokers were asked to answer the following additional questions: (1) the brand of cigarettes that they used to smoke, (2) the age at which they ceased smoking (years), (3) their motivators for quitting smoking, and (4) any pharmacological therapy used to alleviate nicotine withdrawal. In this study, the definition of former smoker is any person who had once smoked but currently does not. Current smokers were asked to (1) specify the cigarette brand usually smoked, (2) complete the Fagerström Test for Cigarette Dependence (FTCD), (3) whether they had attempted smoking cessation in the previous 12 months ('No/Yes'), (4) specify their motivators for quitting smoking, and (5) indicate whether they were taking any form of medication for alleviating nicotine withdrawal symptoms in people attempting to quit. The FTCD, formerly described as Fagerström Test for Nicotine Dependence (FTND), ¹⁶ a standard questionnaire for assessing physical dependence on nicotine, consists of the following six items: (1) How soon after you wake up do you smoke your first cigarette? ('after 60 minutes', '31–60 minutes', '6–30 minutes', 'within 5

136	minutes'); (2) Do you find it difficult to refrain from smoking in places where it is
137	forbidden, e.g. in church, at the library, cinema, etc.? ('No/Yes'); (3) Which cigarette
138	would you hate most to give up? ('the first one in the morning', 'all others');
139	(4) How many cigarettes per day do you smoke? ('10 or less', '11-20', '21-30', '31 or
140	more'); (5) Do you smoke more frequently during the first hours of waking than during
141	the rest of the day? ('No/Yes'); and (6) Do you smoke if you are so ill that you are in
142	bed most of the day? ('No/Yes'). In scoring the FTCD, the four dichotomous items are
143	scored as 0 or 1, while the two multiple-choice items are scored from 0 to 3. The items
144	are then summed to yield a total score of 0–10. The higher the score, the more
145	dependent the person is on nicotine.
146	We assessed whether the following nine items were respondents' motivators
147	for quitting smoking with 'yes' or 'no' responses: (1) health problems experienced by
148	relatives or friends, (2) personal health problems, (3) physician recommendation, (4)
149	feeling unhealthy, (5) in the interests of better health, (6) their preferred brand of
150	cigarettes was no longer available for sale, (7) the rise in cigarette prices after October
151	2010, (8) having a child (or grandchild), and (9) any other motivators.
152	Statistical analysis

Of the 9,378 candidates, 7,899 (84.2%), returned the questionnaire. Of the

7,899 participants, we excluded 302 with missing data for sex, age, or smoking habits,
76 aged < 19 because smoking is illegal among individuals under 20 years old in Japan,
and 19 individuals aged 70 or older because of the small number. We excluded 2830
females because of their low proportion of current smokers (320, 11.3%). Thus, 4,672
men aged 20–69 years old were selected for analysis.

Of the 4,672 men aged 20–69 years old surveyed, 1,116 individuals who had

Of the 4,672 men aged 20–69 years old surveyed, 1,116 individuals who had never smoked and 1,268 former smokers were excluded from the analysis, since FTCD scores were available for current smokers only. Finally, we excluded 33 current smokers with missing data for any of FTCD components and four current smokers with missing data for cessation attempts or motivators for quitting smoking. Thus, the data of 2,251 current smokers were analysed in this study.

Responses to the questionnaire were stratified according to respondents' nicotine dependence levels, as defined by the FTCD: low (FTCD score \leq 3), middle (4–6), and high (\geq 7). First, the proportion of respondents who reported that they had attempted smoking cessation in the previous 12 months (afterward, current smokers with cessation attempts) were expressed as percentages across nicotine dependence levels. Next, the proportion of the motivators for quitting smoking assessed by the nine items among the current smokers with cessation attempts was expressed as percentages

across nicotine dependence levels. Third, we selected three motivators for quitting smoking by number of respondents and examined the relationships between nicotine dependence levels and each motivator for quitting smoking. A chi-square test was used to compare the proportion of respondents by the three nicotine dependence levels.

Multiple logistic regression analysis estimated the odds ratios (OR) with 95% confidence intervals (CI) for the presence of each motivator to quit smoking in the previous 12 months, with low nicotine dependence subjects as the reference. We adjusted for age (10-year categories, 20- to 29-year-old group as the reference) in the model. Trend associations were assessed by assigning ordinal numbers to a total FTCD score (0–10). A two-tailed *p*-value of less than 5% was considered statistically significant. All analyses were performed using SPSS version 19 (International Business Machines Corporation, Armonk, NY, USA).

RESULTS

Of the 2,251 current smokers included in our analyses, 913 (40.6%), 1,005

(44.6%), and 333 (14.8%) had low, middle, and high FTCD scores, respectively; 914

(40.6%) reported that they had attempted smoking cessation in the previous 12 months

(Table 1). The 20–29 age group had the lowest proportion of respondents with high

nicotine dependence (7.5%), while the 50–59 age group had the highest (21.4%). In general, the older groups had more respondents with high nicotine dependence. The 50–59 age group had the lowest proportion (33.5%) of respondents with low nicotine dependence, while the 20–29 age group had the highest (46.8%). Overall, the groups with older respondents had the lowest proportions of those with low nicotine dependence.

The proportion of current smokers with cessation attempts among the low, middle, and high nicotine dependence groups was 48.0%, 37.1%, and 30.9%, respectively, a statistically significant difference. For each age group, the proportion of current smokers with cessation attempts was highest in the low nicotine dependence group. This proportion was lowest in the high nicotine dependence group. This trend was observed across all age groups. For the 30–39, 50–59, and 60–69 age groups, there were significant inverse relations between the proportion of current smokers with cessation attempts and nicotine dependence level. Among the middle and high nicotine dependence groups, the highest proportion of current smokers with cessation attempts was observed in the 20–29 age group (42.5% and 35.3%, respectively). Furthermore, in the group with low nicotine dependence, the highest proportion of current smokers with cessation attempts was observed in the 60–69 age group (55.0%).

[INSERT TABLE 1 ABOUT HERE]

Table 2 shows the relationship between motivators and smoking cessation attempts within the previous 12 months by respondents' nicotine dependence levels. About half of current smokers with cessation attempts reported that their motivators were 'for better health' and 'the rise in cigarette prices since October 2010', regardless of their nicotine dependence level. Only 10% of current smokers with cessation attempts reported that their reasons were for 'personal health problems', 'physician recommendation', and 'feeling unhealthy', regardless of their nicotine dependence level. In the high nicotine dependence group, a higher proportion of current smokers with cessation attempts reported the 'health problems of relatives or friends' and 'personal health problems' as two of their primary motivators for quitting smoking. However, the proportion of respondents who cited 'feeling unhealthy' and 'for better health' was highest in the group with low nicotine dependence. Furthermore, in the group with low nicotine dependence, 'the rise in cigarette prices since October 2010' was the least reported reason, while 'for better health' was the most reported. No respondent in the group with high nicotine dependence reported 'having a child (or grandchild)' as their motivator for quitting smoking.

[INSERT TABLE 2 ABOUT HERE]

Age-adjusted logistic regression analysis indicating the associations between the three selected motivators for quitting smoking and nicotine dependence levels is shown in Table 3. 'Feeling unhealthy' was negatively associated with increases in nicotine dependence levels; the odds ratio (OR) was statistically significant for both medium (OR = 0.42, 95% CI = [0.27-0.65]) and high (OR = 0.31, 95% CI = [0.14-0.65]) 0.71]) nicotine dependence levels. 'For better health' was also negatively associated with increases in medium nicotine dependence levels (OR = 0.71, 95% CI = [0.54-0.94]); however, this association was not statistically significant for individuals with high nicotine dependence (OR = 0.88, 95% CI = [0.57-1.36]). 'The rise in cigarette prices since October 2010' was significantly positively associated with an increase in medium nicotine dependence level (OR = 1.44, 95% CI = [1.09-1.90]); however, this association was not statistically significant for individuals with high nicotine dependence (OR = 1.24, 95% CI = [0.80-1.92]). Furthermore, trend associations assessed by assigning ordinal numbers to a total score of FTCD (0–10) for all three motivators were statistically significant. [INSERT TABLE 3 ABOUT HERE]

DISCUSSION

This study investigated the relationships between nicotine dependence level, cessation attempts within the previous 12 months, and various motivators for quitting smoking among male current smokers after Japan's 2010 tobacco tax hike. Three major findings emerged. First, 40.6% of current smokers had attempted smoking cessation within the previous 12 months and nicotine dependence levels were negatively associated with attempts. Second, respondents' motivators for quitting smoking differed according to their nicotine dependence levels. Third, the proportion of current smokers with cessation attempts who reported 'the rise in cigarette prices since October 2010' as their motivator for quitting smoking increased with nicotine dependence level.

A national survey in Japan in 1999 showed that 64.7% of current smokers and 41.0% of former smokers acknowledged concerns or problems related to personal health as motivating factors for stopping smoking, respectively. Furthermore, these motivators were ranked as the first and second leading factors for current and former smokers, respectively. Previous studies 10,17 have also identified personal health concerns, including mild-to-serious personal health problems, and a fear of future illness in the absence of immediate health concerns as predominant motivators for smoking cessation. The present study revealed the relationship between smokers'

nicotine dependence levels and motivators for quitting smoking.

In Japan, smoking is still not as restricted in public spaces as it is in other countries. ¹⁸ In addition, the price of tobacco remains lower than in most developed Western countries. ⁷ However, in 2003, the Japanese national government enacted the Health Promotion Law, which requires public facility managers to endeavour to protect non-smokers from the environmental effects of tobacco smoke. Since then, greater restrictions have been placed on smoking in public spaces. In addition, the national government increased the tobacco tax in October 2010. The results of our study suggest that individuals with medium and high nicotine dependence attempted smoking cessation by the tobacco price. The present findings imply that further legislative changes increasing the cost of cigarettes could be effective in helping people quit smoking.

This study has two major strengths. First, it was conducted after the massive tobacco tax increase in October 2010, the effects of which had not been evaluated in previous studies. ^{11,13,14} The approximately 40% price increase constituted the highest in Japan within the last two decades. The prevalence of regular smoking among both men and women decreased significantly after the price increase. ⁸ A one-year follow-up survey conducted from 2005 to 2006 in Japan ¹⁴ showed that 23.0% of smokers at the

time reported that they had attempted to quit smoking at least once in the previous year. In a U. S. study, ¹⁹ 29% of respondents reported that the 2009 federal tobacco tax increase helped initiate their attempts to quit smoking. In this study, 40% of current smokers reported that they had attempted smoking cessation in the previous 12 months. It can be hypothesized that the increase in tobacco tax changed smoking cessation attempts among the Japanese male workers included in the current study sample. Smoking cessation attempts may have been affected by the extent of the tax increase and the resulting rise in cigarette retail prices.^{3,4,6,9} Further examination of the influence of tobacco tax increases on smoking cessation in Japan is required. Second, this study revealed that the reasons for smoking cessation attempts vary by nicotine dependence level. High nicotine dependence strongly predicted failure to quit smoking 15 or the cost-effectiveness of smoking cessation programs. 20 As an employee who feels ready and capable of changing his behaviour has needs and preferences that significantly differ from one who is not at that stage, ²¹ workplace smoking cessation interventions that employ only one method²² do not generally have

positive effects on the smoking cessation attempts of all employees. The current results

attempts. Thus, the efficacy of any smoking cessation intervention can be improved by

showed that nicotine dependence is related to motivators for smoking cessation

considering the target group's level of nicotine dependence.

Four major limitations were identified in this study. First, as this was a cross-sectional study conducted retrospectively, the subjects may not recall all attempts for smoking cessation in the previous 12 months. However, we can interpret that their intention to quit is low when the subjects do not recall their attempts. Therefore, excluding the quit attempts that the subjects could not recall does not affect the interpretation of the study results. This study was conducted in October 2011 and analysed current smokers at that time. Thus, the temporal relationship between the exposure and the outcome should be evaluated cautiously. However, because the subjects of this study were current smokers at the time that this study was conducted, we believe that fluctuation in nicotine dependence is negligible. Thus, temporal relationships between nicotine dependence level and the motivators and smoking cessation attempts do not affect the interpretation of the study results.

In the U. S., longitudinal studies have been conducted on the effects of a 10% increase in the retail price of a pack of cigarettes (following the 2009 federal tobacco tax increase);¹⁹ however, in Japan, prior investigations of the relationship between retail prices of cigarettes and motivators for smoking cessation among current smokers in Japan were conducted before the 2010 tobacco tax increase.^{11,13,14} Thus, the effects

of a single 40% increase in retail prices of cigarettes in Japan are still not sufficiently clear. Further, the association between the number of cigarettes smoked per day and smoking cessation has previously been elucidated; 13,14,19,20 nevertheless, evaluations of the link between reasons behind smoking cessation and precise nicotine dependence are limited. Although temporal relationships between the tobacco tax increase and smoking cessation attempts must be carefully evaluated, the method employed for measuring nicotine dependence in this study was widely recognized. A longitudinal evaluation that considers the amount of tax increase, nicotine dependence, and smoking cessation attempts must be undertaken.

The second limitation is that the smokers successfully quit smoking before

October 2011 were not included in this study because physical dependence on nicotine
assessed by the FTCD was available for current smokers only. It is rational to
hypothesize that smoking cessation attempts are stronger in smokers who successfully
quit smoking than in smokers who continued smoking. Thus, the association between
smoking cessation attempts during the previous 12 months and nicotine dependence
may be underestimated in this study because the subjects in this study were smokers
who continued smoking until this study was conducted. This means that the exclusion
of the smokers who successfully quit smoking before this study does not influence the

interpretation of the results. However, we could not estimate the magnitude of the association between smoking cessation attempts during the previous 12 months and nicotine dependence among the excluded subjects. A longitudinal evaluation to investigate the impact of the nicotine dependence level and success in smoking cessation must be undertaken.

The third limitation is that the study sample consisted of only male Japanese workers at a specific company. Therefore, the data analysed were not necessarily representative of the total population. However, we can perhaps assume that the current results have broader applicability to the development and design of workplace smoking cessation interventions, as all respondents in this study were employed on a full-time basis.

Fourth, socio-economic status was not analysed in this study. It has previously been reported that socioeconomic status, especially income, is related to attitudes towards smoking cessation. However, the influence of wage differences on smoking cessation challenges could be disregarded in this study because an age-adjusted analysis (multiple logistic regression) was performed. Income levels are strongly related to respondents' age because of Japan's traditional seniority-based wage system, which had been adopted in the participating company. It has previously been

1	
2	
3	
4	
5	
6	
6 7 8	
8	
9	
10	
10 11 12 13	
11	
12	
13	
14 15 16	
15	
16	
17	
18	
17 18 19	
20	
21	
20 21 22	
23 24	
24	
25	
20	
26 27 28	
27	
28	
29	
30	
31	
32	
33	
34	
35	
20	
36 37	
3/	
38	
39	
40 41	
41	
42	
43	

demonstrated that lower education levels, income levels, and cigarette consumption are
associated with perceptions that the tobacco tax increase is helpful in aiding smoking
cessation. ¹⁹

In conclusion, the efficacy of smoking cessation strategies can be improved by considering the target group's nicotine dependence level. A longitudinal evaluation of strategies focused on current smokers with high nicotine dependence levels should be undertaken.

Contributors: ST conceived and coordinated the study, participated in its design, collected and interpreted the data, conducted data analysis, and drafted the manuscript. YM participated in the study design and data collection, interpreted the data, and helped to draft the manuscript. Both authors approved the final version of the paper.

Funding: This study was funded by a Grant-in-Aid from the Ministry of Health, Labour and Welfare of Japan (Comprehensive Research on Cardiovascular and Life-style Related Disease: H22-Junkankitou [Seisyuu]-Ippan-012).

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pdf and declare no competing interests.

Ethical approval: The research protocol was approved by the Institutional Review Committee of Fukuoka University.

Data sharing: No additional data are available.

Transparency: ST affirms that the manuscript is an honest, accurate, and transparent account of the study being reported, that no important aspects of the study have been omitted, and that any discrepancies from the study as planned have been explained.

References

- 1. Schane RE, Prochaska JJ, Glantz SA. Counseling nondaily smokers about secondhand smoke as a cessation message: a pilot randomized trial. *Nicotine Tob**Res 2013; 15:334-42.
- 2. Blanch C, Fernandez E, Martinez-Sanchez JM, et al. Impact of a multi-level intervention to prevent secondhand smoke exposure in schoolchildren: A randomized cluster community trial. *Prev Med* 2013; 57:585-90.
- 3. MacFarlane K, Paynter J, Arroll B, et al. Tax as a motivating factor to make a quit attempt from smoking: a study before and after the April 2010 tax increase.

 J Prim Health Care 2011; 3:283-88.
- Ross H, Blecher E, Yan L, et al. Do cigarette prices motivate smokers to quit?
 New evidence from the ITC survey. *Addiction* 2011; 106:609-19.
- Guindon GE. The impact of tobacco prices on smoking onset in Vietnam: duration analyses of retrospective data. Eur J Health Econ 2014; 15:19-39.
- 6. Salti N, Chaaban J, Nakkash R, et al. The effect of taxation on tobacco consumption and public revenues in Lebanon. *Tob Control* 2013. Published Online First: 20 June 2013 doi:10.1136/tobaccocontrol-2012-050703.
- 7. Organisation for Economic Co-operation and Development. OECD Health

Statistics 2014. Available at:

http://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT. Accessed 12 September 2014.

- 8. Ministry of Health, Labour and Welfare. The National Health and Nutrition

 Survey in Japan. Available at:

 http://www.mhlw.go.jp/stf/houdou/2r9852000002q1st-att/2r9852000002q1wo.p

 df. Accessed 12 September 2014.
- 9. Dunlop SM, Perez D, Cotter T. Australian smokers' and recent quitters' responses to the increasing price of cigarettes in the context of a tobacco tax increase. *Addiction* 2011;106:1687-95.
- 10. Aubin HJ, Peiffer G, Stoebner-Delbarre A, et al. The French Observational Cohort of Usual Smokers (FOCUS) cohort: French smokers perceptions and attitudes towards smoking cessation. *BMC Public Health* 2010;10:100.
- 11. Nakamura K, Sakurai M, Nishijo M, et al. Characteristics of smoking cessation in former smokers in a rural area of Japan. *Int J Prev Med* 2012;3:459-65.
- 12. Ministry of Health, Labour and Welfare. The survey for smoking and health problems in Japan. Available at: http://www1.mhlw.go.jp/houdou/1111/h1112

 11.html#n05. Accessed 12 September 2014.

- 13. Goto R, Takahashi Y, Ida T. Changes in smokers' attitudes toward intended cessation attempts in Japan. *Value Health* 2011, 14:785-91.
- 14. Hagimoto A, Nakamura M, Morita T, et al. Smoking cessation patterns and predictors of quitting smoking among the Japanese general population: a 1-year follow-up study. *Addiction* 2010;105:164-73.
- 15. Japuntich SJ, Leventhal AM, Piper ME, et al. Smoker characteristics and smoking-cessation milestones. *Am J Prev Med* 2011;40:286-94.
- 16. Heatherton TF, Kozlowski LT, Frecker RC, et al. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br J Addict 1991;86:1119-27.
- 17. McCaul KD, Hockemeyer JR, Johnson RJ, et al. Motivation to quit using cigarettes: a review. *Addict Behav* 2006;31:42-56.
- 18. Yorifuji T, Tanihara S, Takao S, et al. Regional disparities in compliance with tobacco control policy in Japan: an ecological analysis. *Tob Control* 2011; 20:374-79.
- 19. Choi K, Boyle RG. Minnesota smokers' perceived helpfulness of 2009 federal tobacco tax increase in assisting smoking cessation: a prospective cohort study.

 BMC Public Health* 2013;13:965.

- 20. Nakamura K, Sakurai M, Miura K, et al. Nicotine dependence and cost-effectiveness of individualized support for smoking cessation: evidence from practice at a worksite in Japan. *PLoS One* 2013;8:e55836. doi: 10.1371/journal.pone.0055836. Epub 2013 Jan 30.
- 21. Carroll C, Rick J, Leaviss J, et al. A qualitative evidence synthesis of employees' views of workplace smoking reduction or cessation interventions. *BMC Public Health* 2013;13:1095.
- 22. Hishida A, Terazawa T, Mamiya T, et al. Efficacy of genotype notification to Japanese smokers on smoking cessation--an intervention study at workplace.

 *Cancer Epidemiol 2010;34:96-100.
- 23. Douglas L, Szatkowski L. Socioeconomic variations in access to smoking cessation interventions in UK primary care: insights using the Mosaic classification in a large dataset of primary care records. *BMC Public Health* 2013;13:546.

Table 1. The distribution of age, nicotine dependence level, and cessation attempts of the subjects

						Nic	otine dep	endence	level*					
			Low ¹		-	Medium ²			High ³			Total		•
N (%)		9	913 (40.6)		1	005 (44.6))		333 (14.8))		2251 (100))	
		Yes	No	Total	Yes	No	Total	Yes	No	Total	Yes	No	Total	P value
20, 20	N	104	108	212	88	119	207	12	22	34	204	249	453	0.200
20–29	(%)	(49.1)	(50.9)	(100)	(42.5)	(57.5)	(100)	(35.3)	(64.7)	(100)	(45.0)	(55.0)	(100)	0.200
20. 20	N	125	125	250	91	160	251	19	44	63	235	329	564	0.001
30–39	(%)	(50.0)	(50.0)	(100)	(36.3)	(63.7)	(100)	(30.2)	(69.8)	(100)	(41.7)	(58.3)	(100)	0.001
40 40	N	86	137	223	90	169	259	27	69	96	203	375	578	0.100
40–49	(%)	(38.6)	(61.4)	(100)	(34.7)	(65.3)	(100)	(28.1)	(71.9)	(100)	(35.1)	(64.9)	(100)	0.198
50.50	N	101	87	188	95	159	254	39	81	120	235	327	562	< 0.001
30–39	(%)	(53.7)	(46.3)	(100)	(37.4)	(62.6)	(100)	(32.5)	(67.5)	(100)	(41.8)	(58.2)	(100)	<0.001
60.60	N	22	18	40	9	25	34	6	14	20	37	57	94	0.027
00-09	(%)	(55.0)	(45.0)	(100)	(26.5)	(73.5)	(100)	(30.0)	(70.0)	(100)	(39.4)	(60.6)	(100)	0.027
Total	n	438	475	913	373	632	1005	103	230	333	914	1337	2251	<0.001
Total	(%)	(48.0)	(52.0)	(100)	(37.1)	(62.9)	(100)	(30.9)	(69.1)	(100)	(40.6)	(59.4)	(100)	< 0.001
	Cessa	Cessation attempts 20–29	Cessation attempts Yes 20-29 N 104 30-39 N 125 (%) (50.0) (50.0) 40-49 N 86 (%) (38.6) 50-59 N 101 (%) (53.7) 60-69 N 22 (%) (55.0) Total N 438	N (%) 913 (40.6) Cessation attempts Yes No 20–29 N 104 108 (%) (49.1) (50.9) 30–39 N 125 125 (%) (50.0) (50.0) 40–49 N 86 137 (%) (38.6) (61.4) 50–59 N 101 87 (%) (53.7) (46.3) 60–69 N 22 18 (%) (55.0) (45.0) Total N 438 475	N (%) 913 (40.6) Cessation attempts Yes No Total 20-29 N 104 108 212 (%) (49.1) (50.9) (100) 30-39 N 125 125 250 (%) (50.0) (50.0) (100) 40-49 N 86 137 223 (%) (38.6) (61.4) (100) 50-59 N 101 87 188 (%) (53.7) (46.3) (100) 60-69 N 22 18 40 (%) (55.0) (45.0) (100) Total n 438 475 913	N (%) 913 (40.6) 10 Cessation attempts Yes No Total Yes 20-29 N 104 108 212 88 20-29 (%) (49.1) (50.9) (100) (42.5) 30-39 N 125 125 250 91 30-39 (%) (50.0) (50.0) (100) (36.3) 40-49 N 86 137 223 90 40-49 (%) (38.6) (61.4) (100) (34.7) 50-59 N 101 87 188 95 (%) (53.7) (46.3) (100) (37.4) 60-69 N 22 18 40 9 (%) (55.0) (45.0) (100) (26.5) Total n 438 475 913 373	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N (%) 913 (40.6) 1005 (44.6) 333 (14.8) Cessation attempts Yes No Total Yes No Total Yes No 20-29 N 104 108 212 88 119 207 12 22 (%) (49.1) (50.9) (100) (42.5) (57.5) (100) (35.3) (64.7) 30-39 N 125 125 250 91 160 251 19 44 40-49 N 86 137 223 90 169 259 27 69 40-49 (%) (38.6) (61.4) (100) (34.7) (65.3) (100) (28.1) (71.9) 50-59 N 101 87 188 95 159 254 39 81 60-69 N 22 18 40 9 25 34 6 14 (%) (55.0) (45.0) <t< td=""><td>Low¹ Medium² High³ N (%) 913 (40.6) 1005 (44.6) High³ Cessation attemytes Yes No Total Yes No Total 20-29 N 104 108 212 88 119 207 12 22 34 20-29 N 125 125 250 91 160 251 19 44 63 30-39 N 125 125 250 91 160 251 19 44 63 40-49 N 86 137 223 90 169 259 27 69 96 40-49 N 86 137 223 90 169 259 27 69 96 80-59 N 101 87 188 95 159 254 39 81 120</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td> N N N N N N N N N N</td></t<>	Low¹ Medium² High³ N (%) 913 (40.6) 1005 (44.6) High³ Cessation attemytes Yes No Total Yes No Total 20-29 N 104 108 212 88 119 207 12 22 34 20-29 N 125 125 250 91 160 251 19 44 63 30-39 N 125 125 250 91 160 251 19 44 63 40-49 N 86 137 223 90 169 259 27 69 96 40-49 N 86 137 223 90 169 259 27 69 96 80-59 N 101 87 188 95 159 254 39 81 120	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N N N N N N N N N N

^{*:} Nicotine dependence levels were classified according to results on the Fagerström Test for Cigarette Dependence (FTCD).

^{1:} FTCD score = 0-3; 2: FTCD score = 4-6; 3: FTCD score = 7-10.

Table 2. The proportion of respondents that replied the motivator is related to the smoking cessation attempts in the previous 12 months

	Nicotine dependence level*									
	L	ow ¹	Med	ium ²	Н	igh ³	То	tal	P for trend	P for trend
	n =	= 438	n =	373	n =	= 103	n =	914	(crude)	(age adjusted)
Motivators to smoking cessation	n	(%)	n	(%)	n	(%)	n	(%)		
Health problems of relatives or friends	24	(5.5)	21	(5.6)	8	(7.8)	53	(5.8)	0.489	0.469
Personal health problems	35	(8.0)	33	(8.8)	12	(11.7)	80	(8.8)	0.372	0.805
Physician recommendation	39	(8.9)	33	(8.8)	12	(11.7)	84	(9.2)	0.407	0.950
Feeling unhealthy	82	(18.7)	33	(8.8)	7	(6.8)	122	(13.3)	< 0.001	< 0.001
For better health	244	(55.7)	176	(47.2)	55	(53.4)	475	(52.0)	0.028	0.018
Stopped selling my brand of cigarettes	7	(1.6)	9	(2.4)	1	(1.0)	17	(1.9)	0.999	0.965
Rise in cigarette prices since October 2010	207	(47.3)	209	(56.0)	51	(49.5)	467	(51.1)	0.092	0.023
Having a child (or grandchild)	24	(5.5)	26	(7.0)	0	(0.0)	50	(5.5)	0.088	0.243
Any other motivations	33	(7.5)	33	(8.8)	5	(5.8)	71	(7.9)	0.963	0.929

^{*:} Nicotine dependence levels were classified according to the Fagerström Test for Cigarette Dependence (FTCD).

Age (by ten-year age groups) was adjusted by multiple logistic regression analysis.

^{1:} FTCD score = 0-3; 2: FTCD score = 4-6; 3: FTCD score = 7-10.

Table 3. Nicotine dependence level and age distribution for the top three motivators that related to the smoking cessation attempts in the previous 12 months among current smokers

Motivators to quit			Ea	eling unhealt	la.		For better he	a lth	The rise i	The rise in cigarette prices since			
	Mouvators to quit		re	ening unnean	шу		roi bettei ne	aiui	•	October 2010			
Nicot	tine depend	lence level*	Low ¹	Medium ²	High ³	Low ¹	Medium ²	High ³	Low ¹	Medium ²	High ³		
Age	20, 20	N	18	7	1	57	37	5	56	58	6		
	20–29		(17.3)	(8.0)	(8.3)	(54.8)	(42.0)	(41.7)	(53.8)	(65.9)	(50.0)		
	20. 20	N	22	9	2	64	47	11	63	52	10		
	30–39	(%)	(17.6)	(9.9)	(10.5)	(51.2)	(51.6)	(57.9)	(50.4)	(57.1)	(52.6)		
	40 40	N	16	10	1	49	38	16	43	55	16		
	40–49	(%)	(18.6)	(11.1)	(3.7)	(57.0)	(42.2)	(59.3)	(50.0)	(61.1)	(59.3)		
	50.50	N	23	7	3	63	48	23	41	41	16		
	50–59	(%)	(22.8)	(7.4)	(7.7)	(62.4)	(50.5)	(59.0)	(40.6)	(43.2)	(41.0)		
	60–69	N	3	0	0	11	6	0	4	3	3		
	00-09	(%)	(13.6)	(0.0)	(0.0)	(50.0)	(66.7)	(0.0)	(18.2)	(33.3)	(50.0)		
	Takal	n	82	33	7	244	176	55	207	209	51		
	Total	(%)	(18.7)	(8.8)	(6.8)	(55.7)	(47.2)	(53.4)	(47.3)	(56.0)	(49.5)		
	Odd	ls ratio	(mafamamaa)	0.42	0.31	(rafaranaa)	0.71	0.88	(rafaranaa)	1.44	1.24		
	95	%CI	(reference)	0.27-0.65 0.14-0.71		(reference)	0.54-0.94	0.57-1.36	(reference)	1.09-1.90	0.80-1.92		
	P fo	r trend		<0.	001		0.018			0.023			

^{*:} Nicotine dependence levels were classified according to the Fagerström Test for Cigarette Dependence (FTCD).

Odds ratio and p for trend was calculated by age-adjusted multiple logistic analysis model.

95% CI: 95% confidence interval

^{1:} FTCD score = 0-3; 2: FTCD score = 4-6; 3: FTCD score = 7-10.

STROBE Statement—checklist of items that should be included in reports of observational studies Title: Reason for smoking cessation attempts among Japanese male smokers varies according to nicotine dependence level: cross-sectional study

•	Item No	Recommendation	Location in manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Line 1-3 on page 1 and line 27 on page 2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	What was done: line 28-35 on page 2 What was found: line 36-47 on page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Scientific background: line 65-87 on page 5 and 6 Rationale: Line 88-107 on page 6 and 7
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 107-110 on page 7
Methods			
Study design	4	Present key elements of study design early in the paper	Line 114-116 on page 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Line 114-116 on page 7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Outcomes: Line127-131 on page 8 Exposures: Line 132-145 on page 8-9 Potential confounders: Line 120-121 on page 8
Data sources/ measurement	8*	For each variable of interest, give	Line 120-151 on page 8-9
Data Sources/ measurement	٥.	For each variable of linelest, give	Line 120-131 on page 6-9

		sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address	Exclusion: line 153-164 on page 9-10
		potential sources of bias	Adjustment: line 176-183 on page 11
Study size	10	Explain how the study size was arrived at	Not provided
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Adjustment: line 176-181 on page 11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Line 153-183 on page 9-11
		(b) Describe any methods used to examine subgroups and interactions	Line 172-174 on page 11
		(c) Explain how missing data were	We excluded participants who had
		addressed	missing data (line 153-164 on page 10)
		(d) Cohort study—If applicable,	N/A
		explain how loss to follow-up was addressed	
		Case-control study—If applicable,	
		explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable,	
		describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	N/A
Results		7/	
Participants	13*	(a) Report numbers of individuals at	Line 153-164 on page 10
		each stage of study—eg numbers	
		potentially eligible, examined for	
		eligibility, confirmed eligible, included	
		in the study, completing follow-up, and	
		analysed	
		(b) Give reasons for non-participation	N/A
		at each stage	
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study	Table 1
		participants (eg demographic, clinical,	Line 186-207 on page 11-12
		social) and information on exposures	
		and potential confounders	
		(b) Indicate number of participants	N/A
		with missing data for each variable of	
		interest	
		(c) Cohort study—Summarise follow-	N/A

		up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of	
		outcome events or summary measures	
		over time	
		Case-control study—Report numbers in	
		each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report	Table 1
		numbers of outcome events or	Line 186-189 on page 11
		summary measures	
Main results	16	(a) Give unadjusted estimates and, if	Table2, Table 3
		applicable, confounder-adjusted	Line 209-240 on page 13-14
		estimates and their precision (eg, 95%	1 0
		confidence interval). Make clear which	
		confounders were adjusted for and why	
		they were included	
		(b) Report category boundaries when	Table 1, Table 2, Table 3
		continuous variables were categorized	1, 14010 2, 14010 2
		(c) If relevant, consider translating	N/A
		estimates of relative risk into absolute	14/21
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg	Table 3
Other analyses	17	analyses of subgroups and interactions,	Line 226-240 on page 14
		and sensitivity analyses	Ellie 220-240 on page 14
Discussion		and sensitivity unaryses	
Key results	18	Summarise key results with reference	Line 244-262 on page 15-16
recy results	10	to study objectives	Eme 211 202 on page 10 10
Limitations	19	Discuss limitations of the study, taking	Line 299-354 on page 18-21
		into account sources of potential bias	
		or imprecision. Discuss both direction	
		and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation	Line 263-273 on page 16
1		of results considering objectives,	1 0
		limitations, multiplicity of analyses,	
		results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external	Line 345-354 on page 19
Concramsaomey	21	validity) of the study results	Eme 5 to 55 t on page 19
Other information			
Funding	22	Give the source of funding and the role	This study was funded by a Grant-in-Aid
		of the funders for the present study	from the Ministry of Health, Labour and
		and, if applicable, for the original study	Welfare of Japan (Comprehensive
		on which the present article is based	Research on Cardiovascular and Life-
		•	style Related Disease: H22-Junkankitou
			•

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

