

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Toxoplasma gondii seropositivity and cognitive functioning in older adults: An analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011-2014

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-071513
Article Type:	Original research
Date Submitted by the Author:	30-Dec-2022
Complete List of Authors:	Song, Ge; University of Houston Downtown, Yang, Chao; University of Texas MD Anderson Cancer Center Qu, Zhe; School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China, 221004 Lin, Xuechun; Huazhong University of Science and Technology, Department of Nutrition
Keywords:	Dementia, Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Toxoplasma gondii seropositivity and cognitive functioning in older adults: An analysis of

2	
4	1
3 4 5 6 7 8 9	2
/ 8	3
9 10	4
11 12	5
13	3 4 5 6 7
13 14 15	
16 17	8 9
18 19	9 10
20	10
21 22	12
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	12
25	14
26 27	15
28 29	16 17
30 31	18
32	19 20
33 34	20 21
35 36	19 20 21 22 23 24 25
37	23 24
38 39	25 26
40 41	20 27
42 43	28 29
44	30
45 46	31 32
47 48	33
49	34 35
50 51	36
52 53	27 28 29 30 31 32 33 34 35 36 37 38 39
54 55	39 40
56	70
57 58	
59 60	
00	

2	cross-sectional data of the National Health and Nutrition Examination Survey 2011-2014
3	
4	Song Ge CHW, Ph.D., RN, BSN
5	Department of Natural Sciences, University of Houston-Downtown, Houston, US 77002
6	The email cannot be changed on the system. Her institution email is ges@uhd.edu
7	Chao Yang, MS
8	The University of Texas MD Anderson Cancer Center, Houston, TX 77030
9	Zhe Qu, RN, BSN
10	School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China, 221004
11	Xuechun Lin, MD
12	Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,
13	Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji
14	Medical College, Huazhong University of Science and Technology, Wuhan, China 430074
15	
16	*Corresponding authorship: Song Ge
17 18	*Corresponding authorship: Song Ge
19	
20	
21	
22	
23	
21 22 23 24 25	*Corresponding authorship: Song Ge
23 26	
20 27	
28	
29	
30	
31	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

2		
3 4	41	Toxoplasma gondii seropositivity and cognitive functioning in older adults: An analysis of
5 6 7	42	cross-sectional data of the National Health and Nutrition Examination Survey 2011-2014
7 8 9	43	
10 11	44	Abstract
12 13	45	Objectives: This study sought to examine the relationship between Toxoplasma gondii
14 15 16	46	seropositivity and cognitive functioning in older adults.
10 17 18	47	Design: A cross-sectional study.
19 20	48	Setting: The National Health and Nutrition Examination Survey (NHANES) study took place at
21 22	49	participants' homes and mobile exam centers.
23 24 25	50	Participants: A total of 2, 956 older adults aged 60 and above from the NHANES from 2011 to
26 27	51	2014 were included in the study.
28 29 30	52	Exposure of interest: Serum toxoplasma gondii antibody was analyzed in the lab. A value > 33
30 31 32	53	IU/mL was categorized as seropositive for toxoplasma gondii infection; <27 IU/mL was
33 34	54	categorized as seronegative for toxoplasma gondii infection.
35 36 27	55	Primary and secondary outcome measures: Cognitive tests included the Consortium to
37 38 39	56	Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD-WL) immediate
40 41	57	and delayed memory, the Animal Fluency test (AFT), and the Digit Symbol Substitution Test
42 43	58	(DSST).
44 45 46	59	Results: About half of the 2,956 participants (mean age 70.0) were female (51.0%), non-
47 48	60	Hispanic White (48.3%), and completed some college or above (48.3%). A total of 703
49 50	61	participants were positive for toxoplasma gondii infection (23.8%). Adjusted linear regression
51 52 53	62	showed that compared with participants with negative toxoplasma gondii infection, those with
54 55 56	63	positive toxoplasma gondii infection had lower CERAD-WL immediate memory (beta [β] -0.16,
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

2	
2 3	
5 4 5 6	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
23	
24	
27	
25	
26	
27	
28	
20	
29	
30	
31	
31 32 33 34 35 36 37 38	
22	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

64	95% confidence interval [CI] -0.25, -0.07), CERAD-WL delayed memory (β -0.15, 95% CI -
65	0.24, -0.06), AFT (β -0.15, 95% CI -0.24,-0.06), DSST (β -0.34, 95% CI -0.43, -0.26), and global
66	cognition (β -0.24, 95% CI -0.32,-0.16) z scores after controlling for the covariates.
67	Conclusions: Toxoplasma gondii seropositivity is associated with worse immediate and delayed
68	verbal learning, language proficiency, executive functioning, processing speed, sustained
69	attention, working memory, as well as global cognition in older adults. Public health measures
70	aiming at preventing toxoplasma gondii infection may help preserve cognitive functioning in
71	older adults.
72	
73	Keywords: Toxoplasma gondii; cognitive functioning; older adults; neurotoxoplasmosis;
74	neuropsychological; psychomotor performance
75	
76	Strengths and limitations:
77	• This study is one of the few studies that examined the cognitive effect of Toxoplasma
78	gondii seropositivity on cognitive outcomes in older adults.
79	• With the NHANES data, the study population was nationally representative of U.S. older
80	adults.
81	• A wide range of sociodemographic, lifestyle, mental health, and physical health
82	covariates was adjusted, reducing the possibility of residual confounding.
83	• A cross-sectional study hinders the assessment of longitudinal relationships.
84	
85	
86	1. Introduction

Page 5 of 21

BMJ Open

Alzheimer's disease and related dementia (ADRD) is a serious public health threat worldwide. In 2016, a total of 43.8 million people had dementia in the world. With a growing number of people with ADRD, families, communities, and healthcare systems around the world are heavily burdened (1). Although dementia is currently not curable, identifying modifiable risk factors associated with ADRD can help reduce the burden of the disease. Cognitive test performance in older adults is an important indicator of their cognitive functioning (2). By examining their correlations to cognitive tests, risk factors for cognitive decline can be identified and intervened.

Toxoplasma gondii is among the most prevalent human zoonoses (3) and affects about 30% of the global population (4). Toxoplasma gondii infection can happen prior to or after a person is born, with postnatal infection being more common. By consuming oocysts found in cat feces-contaminated soil or water (5, 6) or eating tissue cysts in undercooked meat (7, 8), humans can be infected with toxoplasma gondii after birth. While most people with a healthy immune system are asymptomatic following acute infection with toxoplasma gondii, some may experience unspecific symptoms lasting from several weeks to months, including fever, malaise, and lymphadenopathy (9).

A limited number of studies have found that toxoplasma gondii infection is associated with neurocognitive changes in humans (10-13). However, their direction of findings and effect sizes are inconsistent. In addition, this area is understudied, given the prevalence of toxoplasma gondii infection in humans. In a systematic review and meta-analysis of the association of toxoplasma gondii seropositivity and cognitive function in healthy people, only thirteen studies were included, most of which had small sample sizes (4). In addition, two included studies (14, 15) utilized the National Health and Nutrition Examination Survey (NHANES) 1988-1994 cycle BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

data and thus could not reflect the current epidemic of toxoplasma gondii infection. The findings of this study showed that seropositivity to toxoplasma gondii was modestly but significantly associated with poorer processing speed, working memory, verbal short-term memory, and executive functioning. However, studies using large, the latest, and nationally representative population-based data are needed to better elucidate the cognitive effects of toxoplasma gondii seropositivity.

In this study, taking advantage of the NHANES, we aimed to examine the relationship between toxoplasma gondii seropositivity and cognitive functioning in a nationally representative sample of U.S. older adults. The findings of this study will provide implications for understanding the cognitive effects of toxoplasma gondii infection and developing tailored public interventions to protect cognitive functioning in the growing number of older adults in the ê. e. US.

2. Method

2.1 Study design and setting

The NHANES is an ongoing, cross-sectional survey of civilian, non-institutionalized adults and children in the United States conducted by the National Center for Health Statistics of the Centers for Disease Control and Prevention. A nationally representative sample of children and adults across the country are surveyed bi-annually (16). Their sociodemographic, health, and nutritional status are evaluated using in-person interviews and physical exams. The interviews are conducted at participants' homes; health exams are conducted in specially equipped mobile exam centers. Health exams include laboratory testing of urine and blood specimens and medical, dental, and physiological assessments. Participants' serum toxoplasma gondii antibody

Page 7 of 21

1					
2 3 4 5 6 7 8 9 10 11 12 13	133	levels and cognitive functioning were measured in the NHANES 2011-2014 cycles. In this study,			
	134	two survey cycles (2011-2012 and 2013-2014) were merged to increase sample size and power.			
	135	Between 2011 and 2014, a total of 19,151 individuals participated in the NHANES. They were			
	136	recruited from a selection of census blocks or clusters of census block area segments. The			
	137	detailed sampling method has been published elsewhere (17).			
14 15	138	Of the 19,151 individuals, we excluded individuals aged < 60 (n = 15,679) or had			
16 17 18	139	missing data on serum Toxoplasma gondii IgG (n=511). Participants with equivocal serum			
19 20	140	Toxoplasma gondii IgG (\geq 27 and <33 IU/mL) were further excluded (n=5). Finally, a total of			
21 22	141	2,956 participants aged 60 and above were included in the analysis. The characteristics of the			
23 24 25	142	excluded participants due to missing data (n=516) were presented in the Appendix. Compared			
26 27	143	with the included participants, people who were excluded were more likely to be of other			
28 29	144	ethnicities than Non-Hispanic Whites, overweight/obese, completed lower education and had			
30 31 32	145	higher systolic blood pressure, lower Digit Symbol Substitution Test (DSST) score, and lower			
32 33 34	146	Animal Fluency test (AFT) score.			
35 36	147				
37 38	148	2.2 Ethical considerations			
39 40 41	149	The National Center for Health Statistics Research Ethics Review Board approved the			
42 43	150	NHANES. Participants in the NHANES provided written informed consent before enrolling in			
44 45	151	the study. The University of Houston-Downtown Committee for the Protection of Human			
46 47 48	152	Subjects granted this study an exemption because only publicly accessible and de-identified data			
49 50	153	were used.			
51 52	154				
53 54 55	155	2.3 Public and Patient involvement			
56 57					
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

BMJ Open

Patients or the public were NOT involved in the design, conduct, reporting, or dissemination plans of our research. 2.4 Independent variable: Toxoplasma gondii seropositivity Serological tests that detect Toxoplasma. gondii Immunoglobulin G (IgG) and Immunoglobulin M (IgM) antibodies are often used for clinical diagnoses of toxoplasmosis. While the IgM antibody test can validate acute phases, the IgG antibody test can identify acute or chronic phases (18). In the NHANES, an enzyme immunoassay (EIA) measuring IgG against toxoplasma gondii was used to measure the presence or absence of toxoplasma gondii (16). Toxoplasma gondii IgG was measured with two enzyme immunoassay kits (19). Strict quality control was implemented for every plate. A value between 27 and 33 IU/mL was deemed as "equivocal"; a value \geq 33 IU/mL was deemed as "positive"; a value <27 IU/mL was deemed as "negative" (16). Samples with equivocal results (≥27 IU/mL and <33 IU/mL) were repeated twice and confirmed as negative. For our analysis, we categorized participants into "seropositive for toxoplasma gondii infection" or "seronegative for toxoplasma gondii infection". This cutoff is consistent with previous NHANES studies (20, 21). 2.5 Dependent variable: Cognitive functioning

Three cognitive tests were used to assess participants' various domains of cognitive functioning, including the Consortium to Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD-WL), the AFT, and the DSST. The detailed method has been published elsewhere (22).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 21

1 2						
- 3 4	178	1) The CERAD-WL assessed participants' capacity for both immediate (immediate				
5 6 7 8 9 10 11	179	memory) and delayed (delayed memory) verbal learning (23). It consisted of a delayed recall				
	180	after three consecutive learning trials. For each learning trial, participants must read aloud ten				
	181	randomly selected words that are displayed on a computer screen in huge, bolded characters, one				
12 13	182	at a time. Following the presentation of the words, participants were encouraged to retain and				
14 15	183	recall as many words as they could. In each of the three trials, the order of the ten words was				
16 17 18	184	changed. There was a ten-point maximum for each trial. A participant's immediate memory score				
19 20	185	was the sum of their three trials' scores, ranging from zero to thirty. After the AFT and the				
21 22	186	DSST, participants took the delayed recall test, which asked them to recall as many words from				
23 24 25	187	the same ten-word list as they could. The delayed memory score, which varied from zero to ten,				
26 27	188	depended on how many accurate words a subject could recall.				
28 29	189	2) Participants' language proficiency and executive function were assessed by the AFT				
30 31 32 33 34	190	(24). Each animal a participant named received one point, and they had one minute to name as				
	191	many animals as they could. Participants were first prompted to identify three pieces of clothing				
35 36	192	as a warm-up.				
37 38 39 40 41	193	3) The DSST measured the participants' working memory, sustained attention, and				
	194	processing speed (25). A paper form with a top-mounted key that included nine numbers and				
42 43	195	paired symbols was used to conduct the exam. Participants were instructed to copy various				
44 45	196	symptoms to the matching symbols in the 133 boxes that were placed next to the numbers. They				
46 47 48	197	had two minutes to complete this task. The DDST score was based on the total number of correct				
49 50	198	matches (26). Before participants started the formal test, a sample practice test was provided.				
51 52	199	The possible score range of the DSST was between zero and 133 (27).				
53 54 55	200					
56 57						
58 59		8 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				
60		For peer review only - http://binjopen.binj.com/site/about/guidelines.xittini				

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

201	2.6 Covariates
202	Covariates of this study were selected according to literature review and included age
203	(years), sex (male or female), race/ethnicity (Mexican Americans, other Hispanics, non-Hispanic
204	White, or non-Hispanic Black), education (below high school, high school graduate, or some
205	college or above), depressive symptoms, smoking status (never, former, or current smokers),
206	BMI (<18.5 kg/m ² , 18.5-24.9 kg/m ² , 25-29.9 kg/m ² , or \ge 30 kg/m ²), prevalent coronary heart
207	disease (CHD) (yes or no), stroke (yes or no), and systolic blood pressure (mmHg). The
208	information was either self-reported or collected at health exams. The Patient Health
209	Questionnaire (PHQ-9) was used to measure depressive symptoms (28). It is a nine-item
210	screening tool on the frequency of depressive symptoms over the past two weeks and has a total
211	score ranging from 0-27. A higher score indicates more severe depression symptoms. The PHQ-
212	9 total score was used to indicate depressive symptoms.
213	
214	2.7 Statistical analysis

Means (standard deviation [SD]) were used to describe the characteristics of the study population for continuous data that followed a normally distributed distribution. Medians (interquartile range) were used for non-normally distributed continuous data. Data for categorical variables were summarized using frequency (percentages). Independent T-tests were used to compare group differences for continuous variables between the two groups. Chi-square tests were used to compare group differences for categorical variables between the two groups.

The CERAD-WL immediate memory, CERAD-WL delayed memory, AFT, and DSST
were standardized with mean zero and variance one to compute cognitive test-specific z-scores.
The cognitive test-specific z scores of the four tests were then averaged to calculate the global

Page 11 of 21

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
16 17 18	
19	
20	
21	
22	
21 22 23 24	
24	
25	
26	
27	
26 27 28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

58 59

60

cognition z scores. Linear regression models were constructed between toxoplasma gondii
seropositivity (seronegative or seropositive) and each of the four cognitive test-specific and
global cognition z scores. All models were adjusted for the covariates mentioned above. We
considered a 95% confidence interval excluding one as statistically significant. All the analyses
were performed using SPSS 25.0.

230 **3. Results**

229

231 The sociodemographic and health information of the study population, stratified by 232 toxoplasma gondii seropositivity, was presented in **Table 1**. Of the 2,956 participants, 1, 403 233 were from the 2011-2012 cycle and 1,553 from the 2013-2014 cycle. A total of 703 participants 234 were seropositive for toxoplasma gondii infection (23.8%). They had a mean age of 70.0 (SD 235 7.0). Most of the 2,952 participants (mean age of 70.0 [SD 7.0]) were female (51.0%), non-236 Hispanic White (48.3%), completed some college or above (48.3%), were never smokers 237 (49.8%), and had a BMI \geq 30 (35.6%) and an average of 8.7 (SD 10.7) hours of physical activity 238 every week. Their mean total cholesterol and systolic blood pressure were 190.2 mg/dL and 239 133.5 mmHg. Their mean delayed memory, immediate memory, AFT, and DSST score were 5.8 240 (SD 2.4), 18.5 (SD 5.0), 16.4 (SD 5.6), and 45.8 (SD 17.5), respectively. Compared with 241 participants with negative toxoplasma gondii seropositivity, participants with positive 242 toxoplasma gondii seropositivity were older, less educated, and more likely to be male, current 243 smokers, and had more physical activities. They were also more likely to have different 244 ethnicities and lower CERAD W-L immediate recall, CERAD W-L delayed recall, AFT, and 245 DSST scores. 246 Table 1. Characteristics of the participants by toxoplasma gondii seropositivity

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

Variables	Negative (n=2,253)	Positive (n=703)	Total (n=2,956)	P-Value
Age, years	69.7(6.9)	70.9(7.0)	70.0(7.0)	<0.001
Sex, n (%)				<0.001
Male	1,057(46.9%)	390(55.5%)	1,447(49.0%)	
Female	1,196(53.1%)	313(44.5%)	1,509(51.0%)	
Race/ethnicity, n (%)				<0.001
Mexican Americans	231(10.3%)	43(6.1%)	274(9.3%)	
Other Hispanics	161(7.1%)	131(18.6%)	292(9.9%)	
Non-Hispanic Whites	1,111(49.3%)	317(45.1%)	1,428(48.3%)	
Non-Hispanic Blacks	479(21.3%)	165(23.5%)	644(21.8%)	
Other	271(12.0%)	47(6.7%)	318(10.8%)	
Education, n (%)				<0.001
Below high school	594(26.3%)	256(36.4%)	850(28.7%)	
High school graduate	510(22.6%)	165(23.5%)	421(14.2)	
Some college or above	1,147(50.9%)	281(39.9%)	1,428(48.3%)	
Depressive symptoms	3.5(4.8)	3.3(4.5)	3.5(4.8)	0.334
Smoking, n (%)				0.043
Never	1,130(50.2%)	342(48.6%)	1,472(49.8%)	
Former	846(37.5%)	249(35.4%)	1,095(37.0%)	
Current	274(12.2%)	111(15.8%)	385(13.0%)	
Body mass index, n (%)	271(12:270)	111(12.070)	505(15.070)	0.444
<18.5 kg/m2	35(1.6%)	9(1.3%)	44(1.5%)	0.111
18.5-24.9 kg/m2	592(26.3%)	166(23.6%)	758(25.6%)	
25.0-29.9 kg/m2	784(34.8%)	262(37.3%)	1,046(35.4%)	
$\frac{230 \text{ kg/m2}}{230 \text{ kg/m2}}$, ,	251(35.7%)	,	
	800(35.5%)	. ,	1,051(35.6%)	0.005
Physical activity, hours/week	8.2(10.3)	10.6(12.1)	8.7(10.7)	0.025
Total cholesterol, mg/dL	190.7(42.5)	188.4(43.4)	190.2(42.7)	0.209
Systolic blood pressure, mmHg	133.2(19.8)	134.5(42.5)	133.5(27.0)	0.271
CERAD W-L immediate recall	18.7(5.0)	17.9(4.8)	18.5(5.0)	<0.01
CERAD W-L delayed recall	5.9(2.4)	5.5(2.4)	5.8(2.4)	<0.01
Animal Fluency Test	16.6(5.6)	15.8(5.3)	16.4(5.6)	<0.01
Digit Symbol Substitution Test Data are presented as means (standard of	47.2(17.4)	41.2(16.8)	45.8(17.5)	<0.001
variables. Bolded values mean statistica	2			negoricar
The means and 95% confidence intervals (CI)s of cognitive test-specific z-scores by				
toxoplasma gondii infection status v	were presented in 7	Fable 2 . The	mean of CERA	D W-L
immediate call, CERALD W-L delayed recall, AFT and DSST was 0.04 (95% C		s 0.04 (95% CI ·	1.94, 2.01	
For peer review only - h	nttp://bmiopen.bmi.c	om/site/about/	quidelines xhtml	

1 2	
2 3 4	2:
5 6	2:
7 8 9	2:
9 10 11	2:
12 13	2:
14 15 16	2:
17 18	2
19 20	2
21 22 23	2
24 25	
26 27	
28 29 30	
31 32	20
33 34	20
35 36 27	20
37 38 39	20
40 41	2
42 43 44	2
44 45 46	2
47 48	2
49 50 51	2
52 53	2
54 55	2 2
56 57	
58 59 60	

254	0.03 (95% CI -1.92, 1.99), 0.03 (95% CI -1.95, 2.01) and 0.08 (95% CI -1.88, 2.03),			
255	respectively, among participants with negative toxoplasma gondii infection. Among participants			
256	with seropositive toxopl	asma gondii infectio	on, the mean of CE	RAD W-L immediate call,
257	CERALD W-L delayed	recall, AFT and DS	ST was -0.12 (95%	o CI -2.01, 1.77), -0.12 (95% CI -
258	2.07, 1.83), -0.11 (95%	CI -1.99, 1.76) and -	-0.26 (95% CI -2.1	5, 1.63), respectively. For the
259	global cognition z-score	s, the mean was 0.0	6 (95% CI -1.92, 2.	03) for participants with negative
260	toxoplasma gondii infec	tion and -0.18 (95%	CI -2.06, 1.70) for	those with positive toxoplasma
261	gondii infection.			
262	Table 2. Cognitive z-score	s and 95% confidence	e intervals by toxopla	asma gondii seropositivity
			Negative	Positive
			(n=2,253)	(n=703)
	CERAD W	-L immediate recall	0.04 (-1.94, 2.01)	-0.12 (-2.01, 1.77)
	CERAD W	-L delayed recall	0.03 (-1.92, 1.99)	-0.12 (-2.07, 1.83)
	Animal flu	2	0.03 (-1.95, 2.01)	-0.11 (-1.99, 1.76)
		ool Substitution Test	0.08 (-1.88, 2.03)	-0.26 (-2.15, 1.63)
	Global cog		0.06 (-1.92, 2.03)	-0.18 (-2.06, 1.70)
263			6.	
264	Adjusted linear 1	regression (Table 3)	showed that comp	ared with participants with
265	seronegative toxoplasma	a gondii infection, th	nose with seropositi	ive toxoplasma gondii infection
266	had lower CERAD-WL immediate memory (beta [β] -0.16, 95% CI -0.25, -0.07), CERAD-WL			
267	delayed memory (β -0.15, 95% CI -0.24, -0.06), AFT (β -0.15, 95% CI -0.24, -0.06), and DSST			
268	(β -0.34, 95% CI -0.43, -0.26) z scores controlling for age, race/ethnicity, education, depressive			
269	symptoms, smoking status, BMI, prevalent CHD, stroke, and systolic blood pressure. For the			
270	global cognition z score, which is calculated by averaging the four cognitive test-specific z-			
271	scores, the negative association remained (β -0.24, 95% CI -0.32, -0.16).			
272 273 274	273 cognitive specific test and global cognition z-scores			itivity (reference: Negative) with
<i>∠ ।</i> ⁻ ⊤			Beta	95% CI
			Deta	

1 2					
3		CERAD W-L immediate recall	-0.16	(-0.25, -0.07)]
4		CERAD W-L delayed recall	-0.15	(-0.24, -0.06)	
5 6		Animal fluency test	-0.15	(-0.24, -0.06)	
7		Digit Symbol Substitution Test	-0.34	(-0.43, -0.25)	
8		Global cognition	-0.24	(-0.32, -0.16)	
9	275	95% CI means 95% confidence inte		(0.52, 0.10)]
10 11	276	Bolded values mean statistical signi		CI excluding zero).	
12	277				
13 14	278	4. Discussion			
15 16 17	279	In this sample of 2,956 nationally repres	entative older	adults in the US, po	sitive
18 19	280	toxoplasma gondii infection is independently as	sociated with	worse immediate and	d delayed
20 21 22	281	verbal learning, language proficiency, executive	e functioning,	processing speed, su	stained
23 24	282	attention, working memory, as well as global co	ognition. This	relationship is indepe	endent of age,
25 26 27	283	race/ethnicity, education, depressive symptoms,	smoking state	us, BMI, prevalent C	HD, stroke,
28 29	284	and systolic blood pressure. Although our findir	Ō		
30 31 32	285	studies, they suggest that serum toxoplasma gondii seropositivity may be associated with			
33 34	286	cognitive impairment and that preventing toxoplasma gondii infection should be a target of			
35 36	287	public health interventions to protect cognitive functioning in older adults. This is very important			
37 38	288	given the high prevalence of toxoplasma gondii infection and the increasing population aging in			
39 40	289	the US.			
41 42 43	290	A limited number of studies have examined	ned the associ	ations of toxoplasma	ı gondii
44 45	291	seropositivity with cognitive outcomes in human			
46 47 48	292	cycle data and thus could not reflect the current			
48 49 50	293	15). In addition, one of them only included scho	e		
51 52	294	knowledge, only two relevant studies exclusive			2
53 54 55	295	84 older adults aged 65 years and above in Gerr		1 1	
56 57 58	296	impaired working memory, attention, and word	nuency, but n	ot processing speed	-
59 60		For peer review only - http://bmiope	n.bmi.com/site/a	about/auidelines.xhtml	1.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 21

BMJ Open

DSST, compared with those who were toxoplasmosis negative (29). It is important to note that the sample size of that study is very small. Then, in another study including older adults in the US, while no statistically significant association was found between toxoplasma gondii IgG levels and memory performance or attention, toxoplasma gondii IgG levels were inversely associated with global cognition measured by Mini-Mental State Examination (MMSE) (30). However, in that study, researchers did not adjust BMI, exercise, or depressive symptoms. In another longitudinal study targeting adults aged >30 years with eleven years' follow-up, researchers found no associations of toxoplasma gondii infections with verbal fluency and verbal learning assessed by CERAD (3). However, their study population was middle-aged, which was different from our participants. Overall, the findings of cross-sectional or longitudinal studies are inconsistent. Most of these studies were based on relatively small sample sizes, had methodological limitations, or targeted a different age group. However, in our study, we took advantage of a nationally representative and relatively large sample and calculated global cognition, adding stronger evidence on the negative relationship between toxoplasma gondii infection and cognitive functioning. The possible mechanisms that account for the association between toxoplasmosis gondii infection and worse cognitive functioning are complicated. T gondii infection has been shown to increase dopamine release in vitro and animal trials (31-34). Excess dopamine turnover has been associated with worse cognitive decline (35-37). Dysregulated dopamine may influence neuronal

316 plasticity in the hippocampus in humans, a brain region important for memory and spatial

317 orientation (38, 39). In addition, as a defense mechanism against toxoplasma gondii infection,

318 the host may rapidly catabolize tryptophan and produce more kynurenine and quinolinic acid

319 (40). It is reported that higher levels of dopamine, kynurenine, and quinolinic acid were

1.

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

associated with increased neurotoxic effects and impulsive behavior incidence (41). Furthermore,
toxoplasma gondii infection was associated with the dysbiosis of gut microbiota in mice, which
may increase gut-blood-barrier permeability and induce mental disturbances and behavioral
changes (42-44). Future studies are expected to explore the underlying mechanism of the
cognitive effects of toxoplasmosis gondii infection in humans.

The major strength of this study is the relatively large, nationally representative sample of older adults in the US. Stringent quality control and assurance measures were implemented throughout the NHANES study, including the rigorous assessment of toxoplasma gondii IgG and the adoption of validated cognitive tests to assess multiple cognitive functioning domains, therefore guaranteeing the quality of data used in this study. Moreover, a comprehensive list of sociodemographic, lifestyle, mental, and physical health covariates were adjusted, minimizing residual confounding. Thus, the findings of our study are generalizable to U.S. older adults. Importantly, the cognitive effects of toxoplasma gondii infection in humans are understudied in the literature. Thus, our study fills in a research gap. Last but not least, the findings of lower DSST score associated with toxoplasma gondii infection is important as previous studies have shown that lower DSST scores were independently associated with a higher risk of dementia (45, 46).

The major limitation of this study is the cross-sectional design which prevented us from examining whether participants had long-term exposure to toxoplasma gondii or a recent exposure where the IgG immune response to toxoplasma gondii had just started (4). Reverse causation is also possible. Additionally, research has revealed that specific genes affect susceptibility and immune response to toxoplasma gondii infection (47). However, our study did not assess any genetic factors. Additionally, the participants were administered the AFT during

Page 17 of 21

1

60

1 2		
3 4	343	the CERAD-WL delay, which may interfere with their memory formation. Residual confounding
5 6	344	is also likely, although we tried to adjust a comprehensive list of covariates. Finally, with three
7 8 9	345	cognitive tests, we may not assess all domains of participants' cognitive functioning. In addition,
10 11	346	the excluded people (n=516) were different from the included participants (n= 2,956) in several
12 13	347	aspects; thus, selection bias is possible (48).
14 15 16	348	Future students are expected to 1) use more advanced methods for identifying specific
16 17 18	349	strains and stages of toxoplasma gondii infection (49), 2) explore the pathophysiological
19 20	350	mechanisms of cognitive effects of toxoplasma gondii infection, 3) include non-western
21 22	351	populations, and 4) utilize longitudinal designs to assess the temporal relationship between
23 24 25	352	toxoplasma gondii infection and cognitive functioning. These studies may enable the
26 27	353	identification of new biomarkers for cognitive impairment and enlighten the development of
28 29	354	toxoplasma gondii medications and vaccinations to protect people from toxoplasma gondii
30 31	355	infection and its adverse effects.
32 33 34	356	In conclusion, toxoplasma gondii seropositivity is prevalent in U.S. older adults and is
35 36	357	independently associated with worse immediate and delayed verbal learning, language
37 38	358	proficiency, executive functioning, processing speed, sustained attention, working memory, as
39 40 41	359	well as global cognition in this population. Future studies are expected to examine the
42 43	360	longitudinal relationship and pathophysiological mechanism between toxoplasma gondii
44 45	361	infection and cognitive functioning. Public health measures are needed to prevent toxoplasma
46 47 48	362	gondii infection, which may help preserve cognitive functioning in older adults.
48 49 50	363	
51 52	364	5. Conflict of Interest
53 54	365	The authors have no conflict of interest to declare.
55 56 57		
58		
59 60		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

1		
2 3	200	
4	366	
5 6	367	6. Data Availability Statement
7 8 9	368	The data that support the findings of this study are openly available on the NHANES
10 11	369	website and can be accessed at <u>https://wwwn.cdc.gov/nchs/nhanes/Default.aspx</u>
12 13 14	370	
14 15 16	371	7. Acknowledgment
17 18	372	We would like to thank NHANES participants for providing data for this study.
19 20 21	373	
22 23	374	9. Authors' contributions
24 25	375	ZQ and CY performed data analysis; SG and XL drafted the original manuscript. All the
26 27 28	376	authors significantly provided feedback on the manuscript.
29 30	377	
31 32	378	10. Ethics approval and consent to participate
33 34	379	This study was exempted from the University of Houston-Downtown Committee for the
35 36 37	380	Protection of Human Subjects because only public-available and de-identified data were used.
38 39	381	
40 41	382	11. Funding statement
42	383	The study is not funded by any grant. The authors have no conflicts of interest to report.
43	384	
44 45 46	385	
47 48	386	
49 50	387	
51 52 53	388	
54 55	389	
56 57 58 59	390	References

1		
2 3		
4	391	1. Nichols E, Szoeke CE, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. Global, regional,
5	392	and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic
6	393	analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2019;18(1):88-106.
7 8	394 395	2. Ge S, Wei Z, Liu T, Wang J, Li H, Feng J, et al. Alcohol use and cognitive functioning
9		among middle-aged and older adults in China: findings of the China health and retirement
10	396 397	longitudinal study baseline survey. Alcoholism: Clinical and Experimental Research. 2018;42(10):2054-60.
11	397 398	3. Torniainen-Holm M, Suvisaari J, Lindgren M, Härkänen T, Dickerson F, Yolken R. The lack
12 13	398 399	of association between herpes simplex virus 1 or Toxoplasma gondii infection and cognitive
14	400	decline in the general population: An 11-year follow-up study. Brain, behavior, and immunity.
15	400	2019;76:159-64.
16	402	4. de Haan L, Sutterland AL, Schotborgh JV, Schirmbeck F, de Haan L. Association of
17 18	403	Toxoplasma gondii seropositivity with cognitive function in healthy people: a systematic review
19	404	and meta-analysis. JAMA psychiatry. 2021;78(10):1103-12.
20	405	5. Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, et al. Outbreak of
21	406	toxoplasmosis associated with municipal drinking water. The Lancet. 1997;350(9072):173-7.
22 23	407	6. Bahia-Oliveira LMG, Jones JL, Azevedo-Silva J, Alves CC, Oréfice F, Addiss DG. Highly
24	408	endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerging infectious
25	409	diseases. 2003;9(1):55.
26 27	410	7. Dubey J, Gendron-Fitzpatrick A, Lenhard AL, Bowman D. Fatal Toxoplasmosis and
27 28	411	Enteroepithelial Stages of Toxoplasma gondii in a Pallas Cat (Felis Manul) 1. The Journal of
29	412	protozoology. 1988;35(4):528-30.
30	413	8. Jones JL, Lopez B, Mury MA, Wilson M, Klein R, Luby S, et al. Toxoplasma gondii infection
31 32	414	in rural Guatemalan children. The American journal of tropical medicine and hygiene.
33	415	2005;72(3):295-300.
34	416	9. Dubey J, Jones J. Toxoplasma gondii infection in humans and animals in the United
35	417	States. International journal for parasitology. 2008;38(11):1257-78.
36 37	418	10. Dickerson F, Stallings C, Origoni A, Katsafanas E, Schweinfurth L, Savage C, et al.
38	419	Antibodies to Toxoplasma gondii and cognitive functioning in schizophrenia, bipolar disorder,
39	420	and nonpsychiatric controls. The Journal of nervous and mental disease. 2014;202(8):589-93.
40	421	11. Gale SD, Brown BL, Erickson L, Berrett A, Hedges DW. Association between latent
41 42	422	toxoplasmosis and cognition in adults: a cross-sectional study. Parasitology. 2015;142(4):557-
43	423	65.
44	424	12. Sugden K, Moffitt TE, Pinto L, Poulton R, Williams BS, Caspi A. Is Toxoplasma gondii
45	425	infection related to brain and behavior impairments in humans? Evidence from a population-
46 47	426	representative birth cohort. PLoS One. 2016;11(2):e0148435.
47	427	13. Bayani M, Riahi SM, Bazrafshan N, Gamble HR, Rostami A. Toxoplasma gondii infection
49	428	and risk of Parkinson and Alzheimer diseases: A systematic review and meta-analysis on
50	429	observational studies. Acta tropica. 2019;196:165-71.
51 52	430	14. Berrett AN, Gale SD, Erickson LD, Brown BL, Hedges DW. Toxoplasma gondii moderates
52 53	431	the association between multiple folate-cycle factors and cognitive function in US adults.
54	432	Nutrients. 2017;9(6):564.
55	433 434	15. Mendy A, Vieira E, Albatineh A, Gasana J. Toxoplasma gondii seropositivity and cognitive functions in school aread childron. Parasitology, 2015;142(0):1221.7
56 57	434	functions in school-aged children. Parasitology. 2015;142(9):1221-7.
58		
59		Townsow waview only. http://busienes.husi.com/site/sheut/avidalines.uktural
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

16. NHANES. Toxoplasma gondii Antibody - Serum (Surplus) (SSTOXO G) 2016 [Available from: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/SSTOXO G.htm. 17. Johnson CL, Paulose-Ram R, Ogden CL, Carroll MD, Kruszan-Moran D, Dohrmann SM, et al. National health and nutrition examination survey. Analytic guidelines, 1999-2010. 2013. Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophrenia bulletin. 18. 2006;32(2):200-2. Bio-Rad. PLATELIA[™] TOXO IgM Redmond, WA [Available from: http://www.bio-19. rad.com/webroot/web/pdf/inserts/CDG/en/Literature/inserts/72841 881043 GB.pdf. 20. Babekir A, Mostafa S, Obeng-Gyasi E. The Association of Toxoplasma gondii IgG Antibody and Chronic Kidney Disease Biomarkers. Microorganisms. 2022;10(1):115. 21. Jones JL, Kruszon-Moran D, Wilson M. Toxoplasma gondii infection in the United States, 1999–2000. Emerging infectious diseases. 2003;9(11):1371. 22. NHANES. 2011-2012 Data Documentation, Codebook, and Frequencies NHANES website2017 [Available from: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CFQ G.htm. 23. Fillenbaum GG, van Belle G, Morris JC, Mohs RC, Mirra SS, Davis PC, et al. Consortium to Establish a Registry for Alzheimer's Disease (CERAD): the first twenty years. Alzheimer's & Dementia. 2008;4(2):96-109. Carone DA. E. Strauss, EMS Sherman, & O. Spreen, A Compendium of 24. Neuropsychological Tests: Administration, Norms, and Commentary: A Review of:", Oxford University Press, New York, 2006.". Taylor & Francis; 2007. Silva MA. Development of the WAIS-III: A brief overview, history, and description. 25. Graduate Journal of Counseling Psychology. 2008;1(1):11. Jaeger J. Digit symbol substitution test: the case for sensitivity over specificity in 26. neuropsychological testing. Journal of clinical psychopharmacology. 2018;38(5):513. 27. Mirra SS, Heyman A, McKeel D, Sumi S, Crain BJ, Brownlee L, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD): Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479-. 28. Kroenke K, Spitzer R, Williams J. The patient health questionnaire (phg-9)–overview. J Gen Intern Med. 2001;16:606-16. Gajewski PD, Falkenstein M, Hengstler JG, Golka K. Toxoplasma gondii impairs memory 29. in infected seniors. Brain, behavior, and immunity. 2014;36:193-9. Nimgaonkar VL, Yolken RH, Wang T, Chang C-CH, McClain L, McDade E, et al. Temporal 30. cognitive decline associated with exposure to infectious agents in a population-based, aging cohort. Alzheimer disease and associated disorders. 2016;30(3):216. 31. McConkey GA, Martin HL, Bristow GC, Webster JP. Toxoplasma gondii infection and behaviour-location, location, location? Journal of Experimental Biology. 2013;216(1):113-9. 32. Prandovszky E, Gaskell E, Martin H, Dubey J, Webster JP, McConkey GA. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PloS one. 2011;6(9):e23866. Skallová A, Kodym P, Frynta D, Flegr J. The role of dopamine in Toxoplasma-induced 33. behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology. 2006;133(5):525-35. Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA. A unique dual activity 34. amino acid hydroxylase in Toxoplasma gondii. PloS one. 2009;4(3):e4801.

1 2		
2 3	478	35. Nieoullon A. Dopamine and the regulation of cognition and attention. Progress in
4	478 479	 Nieoullon A. Dopamine and the regulation of cognition and attention. Progress in neurobiology. 2002;67(1):53-83.
5	479	36. Murphy BL, Arnsten AF, Jentsch JD, Roth RH. Dopamine and spatial working memory in
6 7	480 481	rats and monkeys: pharmacological reversal of stress-induced impairment. Journal of
8	481	
9		Neuroscience. 1996;16(23):7768-75.
10	483	37. Arnsten AF. Catecholamine regulation of the prefrontal cortex. Journal of
11	484	psychopharmacology. 1997;11(2):151-62.
12 12	485	38. Bäckman L, Lindenberger U, Li S-C, Nyberg L. Linking cognitive aging to alterations in
13 14	486	dopamine neurotransmitter functioning: recent data and future avenues. Neuroscience &
15	487	Biobehavioral Reviews. 2010;34(5):670-7.
16	488	39. Jay TM. Dopamine: a potential substrate for synaptic plasticity and memory
17	489	mechanisms. Progress in neurobiology. 2003;69(6):375-90.
18 10	490	40. Miller CM, Boulter NR, Ikin RJ, Smith NC. The immunobiology of the innate response to
19 20	491	Toxoplasma gondii. International journal for parasitology. 2009;39(1):23-39.
21	492	41. Barake M, Evins AE, Stoeckel L, Pachas GN, Nachtigall LB, Miller KK, et al. Investigation of
22	493	impulsivity in patients on dopamine agonist therapy for hyperprolactinemia: a pilot study.
23	494	Pituitary. 2014;17(2):150-6.
24 25	495	42. Wang S, El-Fahmawi A, Christian DA, Fang Q, Radaelli E, Chen L, et al. Infection-induced
25 26	496	intestinal dysbiosis is mediated by macrophage activation and nitrate production. MBio.
20	497	2019;10(3):e00935-19.
28	498	43. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain
29	499	and behavior: mechanisms & therapeutic potential. Microbial endocrinology: The microbiota-
30	500	gut-brain axis in health and disease. 2014:373-403.
31 32	501	44. Severance EG, Xiao J, Jones-Brando L, Sabunciyan S, Li Y, Pletnikov M, et al. Toxoplasma
33	502	gondii—a gastrointestinal pathogen associated with human brain diseases. International review
34	503	of neurobiology. 2016;131:143-63.
35	504	45. Tierney MC, Moineddin R, McDowell I. Prediction of all-cause dementia using
36	505	neuropsychological tests within 10 and 5 years of diagnosis in a community-based sample.
37 38	506	Journal of Alzheimer's Disease. 2010;22(4):1231-40.
39	507	46. Jacqmin-Gadda H, Blanche P, Chary E, Loubère L, Amieva H, Dartigues J-F. Prognostic
40	508	score for predicting risk of dementia over 10 years while accounting for competing risk of
41	509	death. American journal of epidemiology. 2014;180(8):790-8.
42	510	47. Wang AW, Avramopoulos D, Lori A, Mulle J, Conneely K, Powers A, et al. Genome-wide
43 44	511	association study in two populations to determine genetic variants associated with Toxoplasma
44 45	512	gondii infection and relationship to schizophrenia risk. Progress in Neuro-Psychopharmacology
46	513	and Biological Psychiatry. 2019;92:133-47.
47	514	48. Lu H, Cole SR, Howe CJ, Westreich D. Toward a Clearer Definition of Selection Bias When
48	515	Estimating Causal Effects. Epidemiology. 2022;33(5):699-706.
49 50	516	49. Xiao J, Yolken RH. Strain hypothesis of Toxoplasma gondii infection on the outcome of
50	517	human diseases. Acta physiologica. 2015;213(4):828-45.
52	518	
53	- 10	
54		
55 56		
50 57		
58		
59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Excluded

(n=516)

69.6(7.0)

243(47.1%)

273(52.9%)

47(9.1%)

55(10.7%)

152(29.5%)

196(38.0%)

66(12.8%)

170(33.0%)

123(23.8%)

219(42.4%)

3.1(4.2)

265(51.4%)

189(36.6%)

59(11.4%)

16(3.1%)

134(26.0%)

142(27.5%)

202(39.1%)

8.1(10.0)

192.5(45.9)

136.3(21.7)

43.1(17.1)

5.6(2.5)

18.2(5.3)

15.8(5.5)

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

Included
(n=2956)
70.0(7.0)
1447(49.0%)
1509(51.0%)
254(2,20())
274(9.3%)
292(9.9%) 1428(48.3%)
644(21.8%)
318(10.8%)
850(28.7%)
421(14.2)
1428(48.3%)
3.5(4.8)
1472(49.8%)
1095(37.0%)
385(13.0%)
44(1.5%)
758(25.6%)
1046(35.4%)
1051(35.6%)
8.7(10.7)
190.2(42.7)
133.5(27.0)
45.8(17.5)
5.8(2.4)
18.5(5.0)
16.4(5.6)
1011(010)
ite/about/guide

P Value

0.173

0.436

< 0.001

< 0.001

0.136

0.578

0.001

0.558

0.385

0.032

0.004

0.093

0.300

0.030

A mandix The characteristics	of included and evoluted	mantinimanta dua t	a missing data
Appendix. The characteristics	of included and excluded	participants due t	o missing data

Variable

Age, years

Sex, n (%)

Race/ethnicity, n (%)

Other Hispanics

Education, n (%)

Below high school

High school graduate

Depressive symptoms

Body mass index, n (%)

Physical activity, hours/week

Total cholesterol, mg/dL

Systolic blood pressure,

Digit Symbol Substitution

CERAD W-L delayed recall

CERAD W-L immediate

Animal Fluency Test

Smoking, n (%)

<18.5 kg/m2

 \geq 30 kg/m2

mmHg

Test

recall

18.5-24.9 kg/m2

25.0-29.9 kg/m2

Never

Former

Current

Some college or above

Mexican Americans

Non-Hispanic Whites

Non-Hispanic Blacks

Male

Female

Other

60

Toxoplasma gondii seropositivity and cognitive functioning in older adults: An analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011-2014

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-071513.R1
Article Type:	Original research
Date Submitted by the Author:	10-Oct-2023
Complete List of Authors:	Song, Ge; University of Houston Downtown, Zhao, Qingxia; School of Nursing, Chengdu University of Traditional Chinese Medicine Chen, Hongyu; The First Hospital of China Medical University Li, Meng; Kentucky Department of Public Health, Infectious Disease Branch Zhang, Zeyu; Institute for Hospital Management, Tsinghua University Qu, Zhe; School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China, 221004 Yang, Chao; University of Texas MD Anderson Cancer Center Lin, Xuechur; Huazhong University of Science and Technology, Department of Nutrition Ma, Weixia; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Pulmonary and Critical Care Medicine Standlee, Courtney; University of Houston Downtown College of Sciences and Technology
Primary Subject Heading :	Public health
Secondary Subject Heading:	Evidence based practice
Keywords:	Dementia, Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

2 3	1	Tournhouse and discourse sitistic and consisting functioning in older adults. An analysis of
4	1	Toxoplasma gondii seropositivity and cognitive functioning in older adults: An analysis of
5 6	2	cross-sectional data of the National Health and Nutrition Examination Survey 2011-2014
7 8	3	
9 10	4	*Song Ge CHW, Ph.D., RN, BSN
11	5	Department of Natural Sciences, University of Houston-Downtown, Houston, US 77002
12 13	6	The email cannot be changed on the system. ges@uhd.edu
14 15	7	*Qingxia Zhao, A.P, MS
16	8	School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
17 18	9	611137
19	10	Email: <u>zhaoqingxia@cdutcm.edu.cn</u>
20 21	11	Hongyu Chen, Ph.D.
22 23	12	School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, B
24	13	Beijing, China,100043
25 26	14	<u>chyhkdyfy@163.com</u>
27 28	15	Meng Li, MS
29	16	Kentucky Department of Public Health, Infectious Disease Branch, Frankfort, KY 40601
30 31	17	ml6546@nyu.edu
32 33	18	Zeyu Zhang, Ph.D., BSN
34	19	Institute for Hospital Management, Tsinghua University, Beijing, China, 100084
35 36	20	zeyuzhang@mail.tsinghua.edu.cn
37 38	21	Zhe Qu, RN, BSN
39	22	Department of Pediatric Respiratory, Shandong Provincial Hospital Affiliated to Shandong First
40 41	23	Medical University, Jinan, Shandong, China 250021
42 43	24	Aileen1997qz@163.com
44	25	Chao Yang, MS
45 46	26	The University of Texas MD Anderson Cancer Center, Houston, TX 77030
47	27	cyang61@alumni.jh.edu
48 49	28	Xuechun Lin, MD
50 51	29	Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety,
52	30	Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji
53 54	31	Medical College, Huazhong University of Science and Technology, Wuhan, China 430074
55 56	32	chefiona@163.com
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	33	**Weixia Ma
5	34	Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to
6 7	35	Shandong First Medical University, Jinan, Shandong, China 250021
8	36	<u>mwx7@hotmail.com</u>
9 10	37	Courtney Standlee RS, MPH, Ph.D.
11 12	38	Department of Natural Sciences, University of Houston-Downtown, Houston, US 77002
13	39	The email cannot be changed on the system. Her institution email is standleec@uhd.edu
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 9 40 41 24 44 45 46 47 48 9 51 52 33 45 55	$\begin{array}{c} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\end{array}$	The email cannot be changed on the system. Her institution email is <u>standleec@uhd.edu</u> *Song Ge and Qingxia Zhao shared the first authorship **Corresponding authorship: Weixia Ma Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China 250021 <u>mwx7@hotmail.com</u>
56 57 58 59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	76
5 6	77
7 8	78
9 10	79
11 12	80
13 14	
15 16	81
17 18	82
19 20	83
21 22	84
23 24 25	85
26 27	86
28 29	87
30 31	88
32 33	89
34 35	
36 37	90
38 39	91
40 41	92
42 43	93
44 45	94
46 47 48	95
48 49 50	96
50 51 52	07
53 54	97
55 56	98
57 58	
58 59	
60	

76 Abstract

1

2 २

77 **Objectives**: This study sought to examine the relationship between *Toxoplasma gondii*

78 seropositivity and cognitive function in older adults.

79 **Design**: An observational cross-sectional study.

80 **Setting:** The National Health and Nutrition Examination Survey (NHANES) study took place at

81 participants' homes and mobile exam centers.

82 **Participants**: A total of 2, 956 older adults aged 60 and above from the NHANES from 2011 to

83 2014 were included in the study. Exposure of interest: Participants had serum *Toxoplasma gondii*

84 antibody analyzed in the lab. A value > 33 IU/mL was categorized as seropositive for

85 *Toxoplasma gondii* infection; <27 IU/mL was categorized as seronegative for *Toxoplasma gondii*86 infection.

87 **Primary and secondary outcome measures**: Cognitive tests included the Consortium to

88 Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD-WL) for

89 immediate and delayed memory, the Animal Fluency Test (AFT), and the Digit Symbol

90 Substitution Test (DSST).

91 **Results**: About half of the 2,956 participants (mean age 70.0) were female (51.0%), non-

92 Hispanic White (48.3%), and completed some college or above (48.3%). A total of 703

93 participants were positive for *Toxoplasma gondii* infection (23.8%). Adjusted linear regression

94 showed that compared with participants with negative *Toxoplasma gondii* infection, those with

95 positive *Toxoplasma gondii* infection had lower CERAD-WL immediate memory (beta [β] -0.16,

96 95% confidence interval [CI] -0.25, -0.07), CERAD-WL delayed memory (β -0.15, 95% CI -

97 0.24, -0.06), AFT (β -0.15, 95% CI -0.24,-0.06), DSST (β -0.34, 95% CI -0.43, -0.26), and global

98 cognition (β -0.24, 95% CI -0.32, -0.16) z-scores after controlling for the covariates.

2

59

60

2	
_	
BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://b	
per	
ר: ל	
Sıl	
ťp	
du	
lis	
Je	
0	
S N	
1	
36	
/br	
лj.	
bğ	
÷.	
20	
Ň	
6	
7	
5	
ω	
on	
J	
Š	
arc	
ž	
20	
24	
õ	
'n	
oa	
de	
ă	
ō	
В	
htt	
P:/	
/br	
j,	
ğ	
<u><u></u></u>	
~ ~	
ו.bn	
1.bmj.c	
1.bmj.cor	
1.bmj.com/	
1.bmj.com/ on	
1.bmj.com/ on A	
nloaded from http://bmjopen.bmj.com/ on Apri	
Ē.	
ril 27,	
ril 27, 20	
ril 27, 20	
ril 27,	
ril 27, 20	

3 4	99	Conclusions: Toxoplasma gondii seropositivity is associated with worse immediate and delayed
5 6 7	100	verbal learning, language proficiency, executive functioning, processing speed, sustained
7 8 9	101	attention, working memory, as well as global cognition in older adults. Public health measures
10 11	102	aiming at preventing Toxoplasma gondii infection may help preserve cognitive functioning in
12 13	103	older adults.
14 15 16	104	
17 18	105	Keywords: Toxoplasma gondii; cognitive functioning; older adults; neurotoxoplasmosis;
19 20 21	106	neuropsychological; psychomotor performance
22 23	107	
24 25	108	Strengths and limitations:
26 27 28	109	• This study is one of the few studies that examined the cognitive effect of <i>Toxoplasma</i>
29 30	110	gondii seropositivity on cognitive outcomes in older adults.
31 32	111	• With the NHANES data, the study population was nationally representative of older U.S.
33 34 35	112	adults.
36 37	113	• A wide range of sociodemographic, lifestyle, mental health, and physical health
38 39 40	114	covariates was adjusted, reducing the possibility of residual confounding.
40 41 42	115	• A cross-sectional study hinders the assessment of longitudinal relationships.
43 44	116	• Unable to adjust for variables that were not evaluated in NHANES; thus, residual
45 46 47	117	confounding could not be ruled out.
48	118	
49	119	1. Introduction
50 51	120	Alzheimer's disease and related dementia (ADRD) is a serious public health threat
52 53 54	121	worldwide. In 2016, a total of 43.8 million people had dementia in the world. With a growing
55 56 57 58	122	number of people with ADRD, families, communities, and healthcare systems around the world

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

are heavily burdened (1). Although dementia is currently not curable, identifying modifiable risk
factors associated with ADRD can help reduce the burden of the disease. Cognitive test
performance in older adults is an important indicator of their cognitive functioning (2). By
examining their correlations to cognitive tests, risk factors for cognitive decline can provide
opportunities for interventions.

Toxoplasma gondii is among the most prevalent human zoonosis (3) and affects about 30% of the global population (4). Vertical *Toxoplasma gondii* infections can happen prior to birth resulting in congenital toxoplasmosis. Transmission after a person is born, postnatal infection, is the more common form of infection (5). By consuming oocysts found in cat feces-contaminated soil or water a person can develop toxoplasmosis (6, 7). Oocyst contaminated soil can also facilitate transmission via unwashed, nonheat-treated consumable products, like fruits and vegetables, to allow for transmission of this zoonotic disease (8). By eating tissue with cysts in undercooked meat (9, 10), humans can be infected with *Toxoplasma gondii* after birth. Another route of human exposure to *Toxoplasma gondii* can occur if a person experiences a blood transfusion or organ transplant. While most people with a healthy immune system are asymptomatic following acute infection with *Toxoplasma gondii*, some may experience nonspecific symptoms lasting from several weeks to months, including fever, malaise, muscle ache, lymphadenopathy, along with the miscarriage or stillbirth of a fetus (11, 12).

A limited number of studies have found that *Toxoplasma gondii* infection is associated with neurocognitive changes in humans (13-16). However, their direction of findings and effect sizes are inconsistent. In addition, this area is understudied, given the prevalence of *Toxoplasma gondii* infection in humans. In a systematic review and meta-analysis of the association of *Toxoplasma gondii* seropositivity and cognitive function in healthy people, only thirteen studies Page 7 of 27

BMJ Open

were included, most of which had small sample sizes (4). In addition, two included studies (17, 18) utilized the National Health and Nutrition Examination Survey (NHANES) 1988-1994 cycle data and thus could not reflect the current epidemic of Toxoplasma gondii infection. The findings of this study showed that seropositivity to Toxoplasma gondii was modestly but significantly associated with poorer processing speed, working memory, verbal short-term memory, and executive functioning. However, studies using large, the latest, and nationally representative population-based data are needed to better elucidate the cognitive effects of Toxoplasma gondii seropositivity. In this study, taking advantage of the NHANES, we aimed to examine the relationship between *Toxoplasma gondii* seropositivity and cognitive functioning in a nationally representative sample of U.S. older adults. The findings of this study will provide implications for understanding the cognitive effects of *Toxoplasma gondii* infection and developing tailored public interventions to protect cognitive functioning in the growing number of older adults in the US. 2. Method 2.1 Study design and setting The NHANES is an ongoing, cross-sectional survey of civilian, non-institutionalized adults and children in the United States conducted by the National Center for Health Statistics of the Centers for Disease Control and Prevention. A nationally representative sample of children and adults across the country are surveyed bi-annually (19). Their sociodemographic, health, and nutritional status are evaluated using in-person interviews and physical exams. The interviews are conducted at participants' homes; health exams are conducted in specially equipped mobile

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
17
19 20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
33 34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
54
55
56
57
58
59
60

1

169	exam centers. Health exams include laboratory testing of urine and blood specimens and
170	medical, dental, and physiological assessments. Participants' serum Toxoplasma gondii antibody
171	levels and cognitive functioning were measured in the NHANES 2011-2014 cycles. Medical
172	conditions, including dementia or neurocognitive disorders, were not exclusion criteria of the
173	NHANES. In this study, two survey cycles (2011-2012 and 2013-2014) were merged to increase
174	sample size and power. Between 2011 and 2014, a total of 19,151 individuals participated in the
175	NHANES. They were recruited from a selection of census blocks or clusters of census block area
176	segments. The detailed sampling method has been published elsewhere (20).
177	Of the 19,151 individuals, we excluded individuals aged < 60 (n = 15,679) or had
178	missing data on serum Toxoplasma gondii IgG (n=511). Participants with equivocal serum
179	<i>Toxoplasma gondii</i> IgG (\geq 27 and <33 IU/mL) were further excluded (n=5) as the results were
180	inconclusive. Finally, a total of 2,956 participants aged 60 and above were included in the
181	analysis. The characteristics of the excluded participants due to missing data (n=516) were
182	presented in the Appendix. Compared with the included participants, people who were excluded
183	were more likely to be of other ethnicities than Non-Hispanic Whites, overweight/obese,
184	completed lower education and had higher systolic blood pressure, lower Digit Symbol
185	Substitution Test (DSST) score, and lower Animal Fluency test (AFT) score.

186

187 2.2 Ethical considerations

188 The National Center for Health Statistics Research Ethics Review Board approved the 189 NHANES. Participants in the NHANES provided written informed consent before enrolling in 190 the study. The University of Houston-Downtown Committee for the Protection of Human

Ξ
2
ð
en:
firs
stp
ŭ
olis
he
ublished as 10
ຶ
<u>0</u>
1
36/
br
j
Pei
۲- 2-
3MJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from htt
Ņ
71
Ω
ω
ň
5
∕lar
<u>c</u>
20
24
ŏ
n
oac
ğ
id fro
ĥ
Ę
ŧ
10
<u>, </u>
be
pen.t
Ĕ
<u>.</u>
ă
0
⊃ Þ
þr.
2
7
302
4
Š
gu
est
P
ō
ect
ie d
à
õ
ğ
pyrig

2		
3 4	191	Subjects granted this study an exemption because only publicly accessible and de-identified data
5 6	192	were used.
7 8	193	
9 10 11	194	2.3 Public and Patient involvement
12 13	195	Patients or the public were NOT involved in the design, conducting, reporting, or
14 15 16	196	dissemination plans of our research.
16 17 18	197	
19 20	198	2.4 Independent variable: Toxoplasma gondii seropositivity
21 22 22	199	Serological tests that detect Toxoplasma gondii Immunoglobulin G (IgG) and
23 24 25	200	Immunoglobulin M (IgM) antibodies are often used for clinical diagnoses of toxoplasmosis.
26 27	201	While the IgM antibody test can validate acute phases, the IgG antibody test can identify acute or
28 29	202	chronic phases (21). In the NHANES, an enzyme immunoassay (EIA) measuring IgG against
30 31 32	203	Toxoplasma gondii was used to measure the presence or absence of Toxoplasma gondii (19).
33 34	204	Toxoplasma gondii IgG was measured with two enzyme immunoassay kits (22). Strict quality
35 36	205	control was implemented for every plate. A value between 27 and 33 IU/mL was deemed as
37 38 39	206	"equivocal"; a value \geq 33 IU/mL was deemed as "positive"; a value <27 IU/mL was deemed as
40 41	207	"negative" (19). Samples with equivocal results (≥27 IU/mL and <33 IU/mL) were repeated
42 43	208	twice and confirmed as negative. For our analysis, we categorized participants into "seropositive
44 45 46	209	for Toxoplasma gondii infection" or "seronegative for Toxoplasma gondii infection". This cutoff
40 47 48	210	is consistent with descriptions on the NHANES website and previous NHANES publications
49 50	211	(23, 24).
51 52	212	
53 54 55 56 57 58	213	2.5 Dependent variable: Cognitive functioning
59		8

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

Three cognitive tests were used to assess participants' various domains of cognitive functioning, including the Consortium to Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD-WL), the AFT, and the DSST. The detailed method of assessing cognitive function has been published elsewhere (25).

1) The CERAD-WL assessed participants' capacity for both immediate (immediate memory) and delayed (delayed memory) verbal learning (26). It consisted of a delayed recall after three consecutive learning trials. For each learning trial, participants must read aloud ten randomly selected words that are displayed on a computer screen in huge, bolded characters, one at a time. Following the presentation of the words, participants were encouraged to retain and recall as many words as they could. In each of the three trials, the order of the ten words was changed. There was a ten-point maximum for each trial. A participant's immediate memory score was the sum of their three trials' scores, ranging from zero to thirty. After the AFT and the DSST, participants took the delayed recall test, which asked them to recall as many words from the same ten-word list as they could. The delayed memory score, which varied from zero to ten, depended on how many accurate words a subject could recall.

2) Participants' language proficiency and executive function were assessed by the AFT
(27). Each animal a participant named received one point, and they had one minute to name as
many animals as they could. Participants were first prompted to identify three pieces of clothing
as a warm-up.

3) The DSST measured the participants' working memory, sustained attention, and
processing speed (28). A paper form with a top-mounted key that included nine numbers and
paired symbols was used to conduct the exam. Participants were instructed to copy various
symbols to the matching symbols in the 133 boxes that were placed next to the numbers. They

1 2		
- 3 4	237	had two minutes to complete this task. The DDST score was based on the total number of correct
5 6	238	matches (29). Before participants started the formal test, a sample practice test was provided.
7 8 9	239	The possible score range of the DSST was between zero and 133 (30).
9 10 11	240	
12 13	241	2.6 Covariates
14 15 16	242	Covariates of this study were selected according to literature review and included age
16 17 18	243	(years), sex (male or female), race/ethnicity (Mexican Americans, other Hispanics, non-Hispanic
19 20	244	White, or non-Hispanic Black), education (below high school, high school graduate, or some
21 22	245	college or above), depressive symptoms, smoking status (never, former, or current smokers),
23 24 25	246	BMI (<18.5 kg/m ² , 18.5-24.9 kg/m ² , 25-29.9 kg/m ² , or \ge 30 kg/m ²), prevalent coronary heart
26 27	247	disease (CHD) (yes or no), stroke (yes or no), and systolic blood pressure (mmHg). The
28 29	248	information was either self-reported or collected at health exams. The Patient Health
30 31 32	249	Questionnaire (PHQ-9) was used to measure depressive symptoms (31). It is a nine-item
32 33 34	250	screening tool on the frequency of depressive symptoms over the past two weeks and has a total
35 36	251	score ranging from 0-27. A higher score indicates more severe depression symptoms. The PHQ-
37 38	252	9 total score was used to indicate depressive symptoms.
39 40 41	253	
42 43	254	2.7 Statistical analysis
44 45	255	Means (standard deviation [SD]) were used to describe the characteristics of the study
46 47 48	256	population for continuous data that followed a normally dispersed distribution. Medians
48 49 50	257	(interquartile range) were used for non-normally distributed continuous data. Data for categorical
51 52 53	258	variables were summarized using frequency (percentages). Independent T-tests were used to
54 55 56		
57 58		
59 60		10 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

BMJ Open

compare group differences for continuous variables between the two groups. Chi-square tests
were used to compare group differences for categorical variables between the two groups.
The CERAD-WL immediate memory, CERAD-WL delayed memory, AFT, and DSST
were standardized with mean zero and variance one to compute cognitive test-specific z-scores.
The cognitive test-specific z-scores of the four tests were then averaged to calculate the global
cognition z-scores. Linear regression models were constructed between *Toxoplasma gondii*seropositivity (seronegative or seropositive) and each of the four cognitive test-specific and

global cognition z-scores. All models were adjusted for the covariates mentioned above. We
considered a 95% confidence interval (CI) excluding one as statistically significant. All the
analyses were performed using SPSS 25.0.

3. Results

The sociodemographic and health information of the study population, stratified by Toxoplasma gondii seropositivity, was presented in Table 1. Of the 2,956 participants, 1, 403 were from the 2011-2012 cycle and 1,553 from the 2013-2014 cycle. A total of 703 participants were seropositive for *Toxoplasma gondii* infection (23.8%). The participants had a mean age of 70.0 (SD 7.0). Most of the 2.952 participants (mean age of 70.0 [SD 7.0]) were female (51.0%). non-Hispanic White (48.3%), completed some college or above (48.3%), were never smokers (49.8%), and had a BMI \geq 30 (35.6%) and an average of 8.7 (SD 10.7) hours of physical activity every week. Their mean total cholesterol and systolic blood pressure were 190.2 mg/dL and 133.5 mmHg. Around 63% of the participants had stroke. Their mean delayed memory, immediate memory, AFT, and DSST scores were 5.8 (SD 2.4), 18.5 (SD 5.0), 16.4 (SD 5.6), and 45.8 (SD 17.5), respectively. Compared with participants with negative Toxoplasma gondii

Page 13 of 27

59

60

1 2 3 4	282	seropositivity, participants with positiv	ve Toxoplasma	g <i>ondii</i> seropo	sitivity were old	der, less
4 5 6	283	educated, and more likely to be male,	current smokers	s, and had mo	re physical activ	vities. They
7 8	284	were also more likely to have different	t ethnicities and	lower CERA	D W-L immedi	ate recall,
9 10 11	285	CERAD W-L delayed recall, AFT, and	d DSST scores.			
12 13	286	Table 1. Characteristics of the	ne participants by	Toxoplasma g	gondii seropositiv	ity
13 14 15		Variables	Negative (n=2,253)	Positive (n=703)	Total (n=2,956)	<i>P</i> -Value
16		Age, years	69.7(6.9)	70.9(7.0)	70.0(7.0)	<0.001
17 18		Sex, n (%)				<0.001
19		Male	1,057(46.9%)	390(55.5%)	1,447(49.0%)	
20		Female	1,196(53.1%)	313(44.5%)	1,509(51.0%)	
21		Race/ethnicity, n (%)				<0.001
22 23		Mexican Americans	231(10.3%)	43(6.1%)	274(9.3%)	
24		Other Hispanics	161(7.1%)	131(18.6%)	292(9.9%)	
25		Non-Hispanic Whites	1,111(49.3%)	317(45.1%)	1,428(48.3%)	
26		Non-Hispanic Blacks Other	479(21.3%)	165(23.5%)	644(21.8%)	
27 28		Education, n (%)	271(12.0%)	47(6.7%)	318(10.8%)	<0.001
29		Below high school	594(26.3%)	256(36.4%)	850(28.7%)	~0.001
30		High school graduate	510(22.6%)	165(23.5%)	421(14.2)	
31 32		Some college or above	1,147(50.9%)	281(39.9%)	1,428(48.3%)	
33		Depressive symptoms	3.5(4.8)	3.3(4.5)	3.5(4.8)	0.334
34		Smoking, n (%)	5.5(1.6)	5.5(1.5)	5.5(1.6)	0.043
35		Never	1,130(50.2%)	342(48.6%)	1,472(49.8%)	
36 37		Former	846(37.5%)	249(35.4%)	1,095(37.0%)	
38		Current	274(12.2%)	111(15.8%)	385(13.0%)	
39		Body mass index, n (%)				0.444
40		<18.5 kg/m2	35(1.6%)	9(1.3%)	44(1.5%)	
41 42		18.5-24.9 kg/m2	592(26.3%)	166(23.6%)	758(25.6%)	
43		25.0-29.9 kg/m2	784(34.8%)	262(37.3%)	1,046(35.4%)	
44		≥30 kg/m2	800(35.5%)	251(35.7%)	1,051(35.6%)	
45		Physical activity, hours/week	8.2(10.3)	10.6(12.1)	8.7(10.7)	0.025
46 47		Total cholesterol, mg/dL	190.7(42.5)	188.4(43.4)	190.2(42.7)	0.209
48		Systolic blood pressure, mmHg	133.2(19.8)	134.5(42.5)	133.5(27.0)	0.271
49		CERAD W-L immediate recall	18.7(5.0)	17.9(4.8)	18.5(5.0)	<0.01
50		CERAD W-L delayed recall	5.9(2.4)	5.5(2.4)	5.8(2.4)	<0.01
51 52		Animal Fluency Test	16.6(5.6)	15.8(5.3)	16.4(5.6)	<0.01
53		Digit Symbol Substitution Test	47.2(17.4)	41.2(16.8)	45.8(17.5)	<0.001
54 55 56 57 58	287 288 289	Data are presented as means (standard dev variables. Bolded values mean statistical s	· · · · · · · · · · · · · · · · · · ·		s and n (%) for ca	ategorical

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

BMJ Open

3 4	
5	
6	
7	
8	
9	
10	
11	
12 13	
14	
15	
16	
17	
18	
19 20	
20	
22	
23	
24	
25	
26 27	
27 28	
29	
30	
31	
32	
33 24	
34 35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47	
48 49	
5 0	
51	
52	
53	
54	
55 56	
50 57	
58	
59	
60	

302

1

2 3

290	The means and 95% confidence intervals (CI)s of cognitive test-specific z-scores by
291	Toxoplasma gondii infection status were presented in Table 2. The mean of CERAD W-L
292	immediate call, CERAD W-L delayed recall, AFT and DSST was 0.04 (95% CI -1.94, 2.01),
293	0.03 (95% CI -1.92, 1.99), 0.03 (95% CI -1.95, 2.01) and 0.08 (95% CI -1.88, 2.03),
294	respectively, among participants with negative Toxoplasma gondii infection. Among participants
295	with seropositive Toxoplasma gondii infection, the mean of CERAD W-L immediate call,
296	CERAD W-L delayed recall, AFT and DSST was -0.12 (95% CI -2.01, 1.77), -0.12 (95% CI -
297	2.07, 1.83), -0.11 (95% CI -1.99, 1.76) and -0.26 (95% CI -2.15, 1.63), respectively. For the
298	global cognition z-scores, the mean was 0.06 (95% CI -1.92, 2.03) for participants with negative
299	Toxoplasma gondii infection and -0.18 (95% CI -2.06, 1.70) for those with positive Toxoplasma
300	gondii infection.
301	Table 2. Cognitive z-scores and 95% confidence intervals by Toxoplasma gondii seropositivity

301	Table 2. Co	ognitive z-scores	and 95%	confidence	interv	als by	Toxopla	usma gondii	serop	ositivity

	Negative	Positive
	(n=2,253)	(n=703)
CERAD W-L immediate recall	0.04 (-1.94, 2.01)	-0.12 (-2.01, 1.77)
CERAD W-L delayed recall	0.03 (-1.92, 1.99)	-0.12 (-2.07, 1.83)
Animal fluency test	0.03 (-1.95, 2.01)	-0.11 (-1.99, 1.76)
Digit Symbol Substitution Test	0.08 (-1.88, 2.03)	-0.26 (-2.15, 1.63)
Global cognition	0.06 (-1.92, 2.03)	-0.18 (-2.06, 1.70)

303 Adjusted linear regression (Table 3) showed that compared with participants with 304 seronegative Toxoplasma gondii infection, those with seropositive Toxoplasma gondii infection 305 had lower CERAD-WL immediate memory (beta [β] -0.16, 95% CI -0.25, -0.07), CERAD-WL 306 delayed memory (β -0.15, 95% CI -0.24, -0.06), AFT (β -0.15, 95% CI -0.24, -0.06), and DSST 307 (β -0.34, 95% CI -0.43, -0.26) z-scores controlling for age, race/ethnicity, education, depressive 308 symptoms, smoking status, BMI, prevalent CHD, stroke, and systolic blood pressure. For the

1 2									
3 4	309	global cognition z-score, which is calculated by a	averaging the	e four cogni	tive test-spec	ific z-			
5 6 7	310	scores, the negative association remained (β -0.24	4, 95% CI -0	.32, -0.16)					
8 9	311 312	Table 3. The independent associations of <i>Toxoplasma</i> cognitive specific test and global cognition z-scores	<i>gondii</i> serop	ositivity (ref	erence: Negati	ve) with			
10 11	313			0.50/	CI				
12			Beta	95%					
13		CERAD W-L immediate recall	-0.16	(-0.25,	<i>,</i>				
14 15		CERAD W-L delayed recall	-0.15	(-0.24,	,				
15 16		Animal fluency test	-0.15	(-0.24,	<i>,</i>				
17		Digit Symbol Substitution Test	-0.34	(-0.43,	´				
18		Global cognition	-0.24	(-0.32,	-0.16)				
19 20	314 315	95% CI means 95% confidence interv Bolded values mean statistical signifi		I excluding	zero).				
21	316								
22 23 24	317	4. Discussion							
25 26	318	In this sample of 2,956 nationally represent	ntative older	adults in th	ne US, positiv	e			
27 28 29	319	Toxoplasma gondii infection is independently associated with worse immediate and delayed							
30 31	320	verbal learning, language proficiency, executive	functioning,	processing	speed, sustain	ned			
32 33 34	321	attention, working memory, as well as global cog	nition. This	relationshij	o is independe	ent of age,			
35 36	322	race/ethnicity, education, depressive symptoms, s	smoking stat	us, BMI, pr	evalent CHD	, stroke,			
37 38	323	and systolic blood pressure. Although our finding			0 0				
39 40 41	324	studies, they suggest that serum Toxoplasma gond							
42 43	325	cognitive impairment and that preventing <i>Toxopla</i>							
44 45 46	326	public health interventions to protect cognitive fu	_		-	-			
47 48	327	given the high prevalence of <i>Toxoplasma gondii</i>	infection and	the increa	sing populatio	on aging in			
49 50	328	the US.	ad the age at	otions of T	· · · · · · · · · · · · · · · · · · ·				
51 52 53	329 330	A limited number of studies have examine seropositivity with cognitive outcomes in humans							
54 55	331	cycle data and thus could not reflect the current e							
56 57 58	122	cycle data and thus could not reflect the cuffelit e		олоріизти	<i>zonau</i> mieci				
59 60		For peer review only - http://bmjopen.	bmj.com/site/a	about/guidel	ines.xhtml	14			

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

18). In addition, one of them only included school-aged children (18). To the best of our knowledge, only two relevant studies exclusively targeted older adults (32, 33). In one study of 84 older adults aged 65 years and above in Germany, toxoplasmosis-positive participants showed impaired working memory, attention, and word fluency, but not processing speed measured by DSST, compared with those who were toxoplasmosis negative (32). It is important to note that the sample size of that study is very small. Then, in another study including older adults in the US, while no statistically significant association was found between Toxoplasma gondii IgG levels and memory performance or attention, *Toxoplasma gondii* IgG levels were inversely associated with global cognition measured by Mini-Mental State Examination (MMSE) (33). However, in that study, researchers did not adjust BMI, exercise, or depressive symptoms. In another longitudinal study targeting adults aged >30 years with eleven years' follow-up, researchers found no associations of *Toxoplasma gondii* infections with verbal fluency and verbal learning assessed by CERAD (3). However, their study population was middle-aged, which was different from our participants. Overall, the findings of cross-sectional or longitudinal studies are inconsistent. Most of these studies were based on relatively small sample sizes, had methodological limitations, or targeted a different age group. However, in our study, we took advantage of a nationally representative and relatively large sample and calculated global cognition, adding stronger evidence on the negative relationship between *Toxoplasma gondii* infection and cognitive functioning.

In this study, both groups demonstrated cognitive scores within the normal range, and while there was a statistically significant effect observed, its clinical relevance remains modest and somewhat ambiguous. The possible mechanisms that account for the association between *Toxoplasma gondii* infection and worse cognitive functioning are complicated. *Toxoplasma gondii* infection has been shown to increase dopamine release in vitro and animal trials (34-37). Page 17 of 27

1 2		
2 3 4	356	Excess dopamine turnover has been associated with worse cognitive decline (38-40).
5 6 7 8 9	357	Dysregulated dopamine may influence neuronal plasticity in the hippocampus in humans, a brain
	358	region important for memory and spatial orientation (41, 42). Furthermore, evidence suggests
10 11	359	that dysregulation of neurotransmitters, particularly norepinephrine, is involved in the
12 13	360	neuroimmune responses to brain infection (43). In the brains of animals infected with
14 15 16	361	Toxoplasma gondii and in vitro studies involving infected human and rat neural cells, the
17 18	362	noradrenergic system was shown to be suppressed with decreased norepinephrine levels. This
19 20	363	reduction in norepinephrine levels was attributed to the downregulation of the dopamine β -
21 22	364	hydroxylase gene expression, which encodes the enzyme responsible for synthesizing
23 24 25	365	norepinephrine from dopamine (44). This altered synthesis of norepinephrine may partly explain
26 27 28 29	366	the infection-related behavioral effects and the associations with mental illness. In addition, as a
	367	defense mechanism against Toxoplasma gondii infection, the host may rapidly catabolize
30 31 32	368	tryptophan and produce more kynurenine and quinolinic acid (45). It is reported that higher
33 34	369	levels of dopamine, kynurenine, and quinolinic acid were associated with increased neurotoxic
35 36	370	effects and impulsive behavior incidence (46). Furthermore, Toxoplasma gondii infection was
37 38 39	371	associated with the dysbiosis of gut microbiota in mice, which may increase gut-blood-barrier
40 41	372	permeability and induce mental disturbances and behavioral changes (47-49). Future studies are
42 43	373	expected to explore the underlying mechanism of the cognitive effects of Toxoplasma gondii
44 45	374	infection in humans.
46 47 48	375	The major strength of this study is the relatively large, nationally representative sample of
49 50	376	older adults in the US. Stringent quality control and assurance measures were implemented
51 52	377	throughout the NHANES study, including the rigorous assessment of Toxoplasma gondii IgG
53 54	378	and the adoption of validated cognitive tests to assess multiple cognitive functioning domains,

Page 18 of 27

BMJ Open: first published as 10.1136/bmjopen-2022-071513 on 5 March 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

BMJ Open

therefore guaranteeing the quality of data used in this study. Moreover, a comprehensive list of sociodemographic, lifestyle, mental, and physical health covariates were adjusted, minimizing residual confounding. Thus, the findings of our study are generalizable to U.S. older adults. Importantly, the cognitive effects of Toxoplasma gondii infection in humans are understudied in the literature. Thus, our study fills in a research gap. Last but not least, the findings of lower DSST score associated with *Toxoplasma gondii* infection is important as previous studies have shown that lower DSST scores were independently associated with a higher risk of dementia (50, 51).

The major limitation of this study is the cross-sectional design which prevented us from examining whether participants had long-term exposure to Toxoplasma gondii or a recent exposure where the IgG immune response to *Toxoplasma gondii* had just started (4). Reverse causation is also possible. Additionally, research has revealed that specific genes affect susceptibility and immune response to *Toxoplasma gondii* infection (52). However, our study did not assess any genetic factors. Additionally, the participants were administered the AFT during the CERAD-WL delay, which may interfere with their memory formation. Residual confounding is also likely, although we tried to adjust a comprehensive list of covariates. Finally, with three cognitive tests, we may not assess all domains of participants' cognitive functioning. In addition, the excluded people (n=516) were different from the included participants (n=2.956) in several aspects; thus, selection bias is possible (53).

Future students are expected to 1) use more advanced methods for identifying specific
strains and stages of *Toxoplasma gondii* infection (54), 2) explore the pathophysiological
mechanisms of cognitive effects of *Toxoplasma gondii* infection, 3) include non-western
populations, and 4) utilize longitudinal designs to assess the temporal relationship between

2								
3 4 5 6 7 8 9 10 11	402	Toxoplasma gondii infection and cognitive functioning. These studies may enable the						
	403	identification of new biomarkers for cognitive impairment and enlighten the development of						
	404	Toxoplasma gondii medications and vaccinations to protect people from Toxoplasma gondii						
	405	infection and its adverse effects.						
12 13	406	In conclusion, Toxoplasma gondii seropositivity is prevalent in U.S. older adults and is	3					
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	407	independently associated with worse immediate and delayed verbal learning, language						
	408	proficiency, executive functioning, processing speed, sustained attention, working memory, as	3					
	409	well as global cognition in this population. However, the clinical relevance remains modest and						
	410	somewhat ambiguous. Future studies are expected to examine the longitudinal relationship and						
	411	pathophysiological mechanism between Toxoplasma gondii infection and cognitive functionin	ıg.					
	412	Public health measures are needed to prevent Toxoplasma gondii infection, which may help						
	413	preserve cognitive functioning in older adults.						
	414							
	415	5. Conflict of Interest						
35 36	416	The authors have no conflict of interest to declare.						
37 38	417							
39 40 41	418	6. Data Availability Statement						
42 43	419	The data that support the findings of this study are openly available on the NHANES						
44 45	420	website and can be accessed at https://wwwn.cdc.gov/nchs/nhanes/Default.aspx						
46 47 48	421							
49 50	422	7. Acknowledgment						
51 52	423	We would like to thank NHANES participants for providing data for this study.						
53 54 55	424							
55 56 57								
58 59			18					
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

ned data analysis; SG, XL
ise the manuscript. All the
ton-Downtown Committee nd de-identified data were
, Abdela J, et al. Global, re
tias, 1990–2016: a systema icet Neurology. 2019;18(1) se and cognitive functionir
China health and retireme
hout/quidolinos yhtml

60

2		
3	451	longitudinal study baseline survey. Alcoholism: Clinical and Experimental Research.
4	452	2018;42(10):2054-60.
5 6	453	3. Torniainen-Holm M, Suvisaari J, Lindgren M, Härkänen T, Dickerson F, Yolken R. The lack
6 7	454	of association between herpes simplex virus 1 or Toxoplasma gondii infection and cognitive
8	455	
9		decline in the general population: An 11-year follow-up study. Brain, behavior, and immunity.
10	456	2019;76:159-64.
11	457	4. de Haan L, Sutterland AL, Schotborgh JV, Schirmbeck F, de Haan L. Association of
12	458	Toxoplasma gondii seropositivity with cognitive function in healthy people: a systematic review
13 14	459	and meta-analysis. JAMA psychiatry. 2021;78(10):1103-12.
15	460	5. Rorman E, Zamir CS, Rilkis I, Ben-David H. Congenital toxoplasmosis—prenatal aspects of
16	461	Toxoplasma gondii infection. Reproductive toxicology. 2006;21(4):458-72.
17	462	6. Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, et al. Outbreak of
18	463	toxoplasmosis associated with municipal drinking water. The Lancet. 1997;350(9072):173-7.
19 20	464	7. Bahia-Oliveira LMG, Jones JL, Azevedo-Silva J, Alves CC, Oréfice F, Addiss DG. Highly
20 21	465	endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerging infectious
22	466	diseases. 2003;9(1):55.
23	467	8. Rahman T, Ashraf T, Rahman A. Tracking trends of Toxoplasma gondii transmission from
24	468	environment to animal to human. J Adv Parasitol. 2021;8(2):13-9.
25	469	9. Dubey J, Gendron-Fitzpatrick A, Lenhard AL, Bowman D. Fatal Toxoplasmosis and
26 27	470	Enteroepithelial Stages of Toxoplasma gondii in a Pallas Cat (Felis Manul) 1. The Journal of
27	471	protozoology. 1988;35(4):528-30.
29	472	10. Jones JL, Lopez B, Mury MA, Wilson M, Klein R, Luby S, et al. Toxoplasma gondii infection
30	473	in rural Guatemalan children. The American journal of tropical medicine and hygiene.
31	474	2005;72(3):295-300.
32 33	475	11. Dubey J, Jones J. Toxoplasma gondii infection in humans and animals in the United
33 34	476	States. International journal for parasitology. 2008;38(11):1257-78.
35	477	12. Li X-L, Wei H-X, Zhang H, Peng H-J, Lindsay DS. A meta analysis on risks of adverse
36	478	pregnancy outcomes in Toxoplasma gondii infection. PloS one. 2014;9(5):e97775.
37	479	13. Dickerson F, Stallings C, Origoni A, Katsafanas E, Schweinfurth L, Savage C, et al.
38	480	Antibodies to Toxoplasma gondii and cognitive functioning in schizophrenia, bipolar disorder,
39 40	481	and nonpsychiatric controls. The Journal of nervous and mental disease. 2014;202(8):589-93.
41	482	14. Gale SD, Brown BL, Erickson L, Berrett A, Hedges DW. Association between latent
42	483	toxoplasmosis and cognition in adults: a cross-sectional study. Parasitology. 2015;142(4):557-
43	484	
44	484	15. Sugden K, Moffitt TE, Pinto L, Poulton R, Williams BS, Caspi A. Is Toxoplasma gondii
45 46	485 486	
40 47		infection related to brain and behavior impairments in humans? Evidence from a population-
48	487	representative birth cohort. PLoS One. 2016;11(2):e0148435.
49	488	16. Bayani M, Riahi SM, Bazrafshan N, Gamble HR, Rostami A. Toxoplasma gondii infection
50	489	and risk of Parkinson and Alzheimer diseases: A systematic review and meta-analysis on
51 52	490	observational studies. Acta tropica. 2019;196:165-71.
52 53	491	17. Berrett AN, Gale SD, Erickson LD, Brown BL, Hedges DW. Toxoplasma gondii moderates
54	492	the association between multiple folate-cycle factors and cognitive function in US adults.
55	493	Nutrients. 2017;9(6):564.
56		
57		
58 59		20
59		Eor peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml

18. Mendy A, Vieira E, Albatineh A, Gasana J. Toxoplasma gondii seropositivity and cognitive functions in school-aged children. Parasitology. 2015;142(9):1221-7. [Dataset] 19.NHANES. Toxoplasma gondii Antibody - Serum (Surplus) (SSTOXO G) 2016 [Available from: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/SSTOXO G.htm. Johnson CL, Paulose-Ram R, Ogden CL, Carroll MD, Kruszan-Moran D, Dohrmann SM, et 20. al. National health and nutrition examination survey. Analytic guidelines, 1999-2010. 2013. 21. Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophrenia bulletin. 2006;32(2):200-2. 22. Bio-Rad. PLATELIA™ TOXO IgM Redmond, WA [Available from: http://www.bio-rad.com/webroot/web/pdf/inserts/CDG/en/Literature/inserts/72841 881043 GB.pdf. 23. Babekir A, Mostafa S, Obeng-Gyasi E. The Association of Toxoplasma gondii IgG Antibody and Chronic Kidney Disease Biomarkers. Microorganisms. 2022;10(1):115. Jones JL, Kruszon-Moran D, Wilson M. Toxoplasma gondii infection in the United States, 24. 1999–2000. Emerging infectious diseases. 2003;9(11):1371. 25. NHANES. 2011-2012 Data Documentation, Codebook, and Frequencies NHANES website2017 [Available from: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CFQ G.htm. Fillenbaum GG, van Belle G, Morris JC, Mohs RC, Mirra SS, Davis PC, et al. Consortium to 26. Establish a Registry for Alzheimer's Disease (CERAD): the first twenty years. Alzheimer's & Dementia. 2008;4(2):96-109. 27. Carone DA. E. Strauss, EMS Sherman, & O. Spreen, A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary: A Review of:", Oxford University Press, New York, 2006.". Taylor & Francis; 2007. Silva MA. Development of the WAIS-III: A brief overview, history, and description. 28. Graduate Journal of Counseling Psychology. 2008;1(1):11. 29. Jaeger J. Digit symbol substitution test: the case for sensitivity over specificity in neuropsychological testing. Journal of clinical psychopharmacology. 2018;38(5):513. Mirra SS, Heyman A, McKeel D, Sumi S, Crain BJ, Brownlee L, et al. The Consortium to 30. Establish a Registry for Alzheimer's Disease (CERAD): Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479-. Kroenke K, Spitzer R, Williams J. The patient health questionnaire (phg-9)–overview. J 31. Gen Intern Med. 2001;16:606-16. Gajewski PD, Falkenstein M, Hengstler JG, Golka K. Toxoplasma gondii impairs memory 32. in infected seniors. Brain, behavior, and immunity. 2014;36:193-9. 33. Nimgaonkar VL, Yolken RH, Wang T, Chang C-CH, McClain L, McDade E, et al. Temporal cognitive decline associated with exposure to infectious agents in a population-based, aging cohort. Alzheimer disease and associated disorders. 2016;30(3):216. 34. McConkey GA, Martin HL, Bristow GC, Webster JP. Toxoplasma gondii infection and behaviour-location, location, location? Journal of Experimental Biology. 2013;216(1):113-9. Prandovszky E, Gaskell E, Martin H, Dubey J, Webster JP, McConkey GA. The neurotropic 35. parasite Toxoplasma gondii increases dopamine metabolism. PloS one. 2011;6(9):e23866. Skallová A, Kodym P, Frynta D, Flegr J. The role of dopamine in Toxoplasma-induced 36. behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology. 2006;133(5):525-35.

1		
2 3	537	37. Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA. A unique dual activity
4	538	amino acid hydroxylase in Toxoplasma gondii. PloS one. 2009;4(3):e4801.
5 6	539	38. Nieoullon A. Dopamine and the regulation of cognition and attention. Progress in
7	540	neurobiology. 2002;67(1):53-83.
8	541	39. Murphy BL, Arnsten AF, Jentsch JD, Roth RH. Dopamine and spatial working memory in
9 10	542	rats and monkeys: pharmacological reversal of stress-induced impairment. Journal of
10	543	Neuroscience. 1996;16(23):7768-75.
12	544	40. Arnsten AF. Catecholamine regulation of the prefrontal cortex. Journal of
13	545	psychopharmacology. 1997;11(2):151-62.
14 15	546	41. Bäckman L, Lindenberger U, Li S-C, Nyberg L. Linking cognitive aging to alterations in
16	547	dopamine neurotransmitter functioning: recent data and future avenues. Neuroscience &
17	548	Biobehavioral Reviews. 2010;34(5):670-7.
18	549	42. Jay TM. Dopamine: a potential substrate for synaptic plasticity and memory
19 20	550	mechanisms. Progress in neurobiology. 2003;69(6):375-90.
20	551	43. Ihara F, Nishimura M, Muroi Y, Mahmoud ME, Yokoyama N, Nagamune K, et al.
22	552	Toxoplasma gondii infection in mice impairs long-term fear memory consolidation through
23	553	dysfunction of the cortex and amygdala. Infection and immunity. 2016;84(10):2861-70.
24 25	554	44. Alsaady I, Tedford E, Alsaad M, Bristow G, Kohli S, Murray M, et al. Downregulation of
26	555	the central noradrenergic system by Toxoplasma gondii infection. Infection and Immunity.
27	556 557	2019;87(2):10.1128/iai. 00789-18. 45. Miller CM, Boulter NR, Ikin RJ, Smith NC. The immunobiology of the innate response to
28 29	558	Toxoplasma gondii. International journal for parasitology. 2009;39(1):23-39.
30	558 559	46. Barake M, Evins AE, Stoeckel L, Pachas GN, Nachtigall LB, Miller KK, et al. Investigation of
31	560	impulsivity in patients on dopamine agonist therapy for hyperprolactinemia: a pilot study.
32	561	Pituitary. 2014;17(2):150-6.
33 34	562	47. Wang S, El-Fahmawi A, Christian DA, Fang Q, Radaelli E, Chen L, et al. Infection-induced
35	563	intestinal dysbiosis is mediated by macrophage activation and nitrate production. MBio.
36	564	2019;10(3):e00935-19.
37 38	565	48. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain
30 39	566	and behavior: mechanisms & therapeutic potential. Microbial endocrinology: The microbiota-
40	567	gut-brain axis in health and disease. 2014:373-403.
41	568	49. Severance EG, Xiao J, Jones-Brando L, Sabunciyan S, Li Y, Pletnikov M, et al. Toxoplasma
42 43	569	gondii—a gastrointestinal pathogen associated with human brain diseases. International review
44	570	of neurobiology. 2016;131:143-63.
45	571	50. Tierney MC, Moineddin R, McDowell I. Prediction of all-cause dementia using
46	572	neuropsychological tests within 10 and 5 years of diagnosis in a community-based sample.
47 48	573	Journal of Alzheimer's Disease. 2010;22(4):1231-40.
49	574	51. Jacqmin-Gadda H, Blanche P, Chary E, Loubère L, Amieva H, Dartigues J-F. Prognostic
50	575	score for predicting risk of dementia over 10 years while accounting for competing risk of
51 52	576	death. American journal of epidemiology. 2014;180(8):790-8.
52 53	577 578	52. Wang AW, Avramopoulos D, Lori A, Mulle J, Conneely K, Powers A, et al. Genome-wide
54	578 570	association study in two populations to determine genetic variants associated with Toxoplasma
55	579 580	gondii infection and relationship to schizophrenia risk. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2019;92:133-47.
56 57	500	ana Diologicai r sychiaci y. 2013,32.133-47.
58		
59		Ear pear roview only, http://hmiapen.hmi.com/site/about/guidelines.yhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3		
4 5 6	581 582 583	 Lu H, Cole SR, Howe CJ, Westreich D. Toward a Clearer Definition of Selection Bias When Estimating Causal Effects. Epidemiology. 2022;33(5):699-706. Xiao J, Yolken RH. Strain hypothesis of Toxoplasma gondii infection on the outcome of
7 8 9 10	584 585 586	human diseases. Acta physiologica. 2015;213(4):828-45.
11 12 13 14		
15 16 17		
18 19 20 21		
22 23 24 25		
26 27 28		
29 30 31 32		
33 34 35 36		
37 38 39 40		
41 42 43		
44 45 46 47		
48 49 50 51		
52 53 54		
55 56 57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
5 6	
7	
8 0	
10	
11	
12	
14	
15 16	
17	
18	
20	
21	
22 23	
24	
25 26	
20	
28	
30	
31	
32 33	
32 33 34 35 36 27	
35	
57	
38	
39 40	
41	
42 43	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55	
56 57	
58	
59	

60

Variable	Excluded (n=516)	Included (n=2956)	P Value	
Age, years	69.6(7.0)	70.0(7.0)	0.173	
Sex, n (%)			0.436	
Male	243(47.1%)	1447(49.0%)		
Female	273(52.9%)	1509(51.0%)		
Race/ethnicity, n (%)			<0.001	
Mexican Americans	47(9.1%)	274(9.3%)		
Other Hispanics	55(10.7%)	292(9.9%)		
Non-Hispanic Whites	152(29.5%)	1428(48.3%)		
Non-Hispanic Blacks	196(38.0%)	644(21.8%)		
Other	66(12.8%)	318(10.8%)		
Education, n (%)			<0.001	
Below high school	170(33.0%)	850(28.7%)		
High school graduate	123(23.8%)	421(14.2)		
Some college or above	219(42.4%)	1428(48.3%)		
Depressive symptoms	3.1(4.2)	3.5(4.8)	0.136	
Smoking, n (%)			0.578	
Never	265(51.4%)	1472(49.8%)		
Former	189(36.6%)	1095(37.0%)		
Current	59(11.4%)	385(13.0%)		
Body mass index, n (%)			0.001	
<18.5 kg/m2	16(3.1%)	44(1.5%)		
18.5-24.9 kg/m2	134(26.0%)	758(25.6%)		
25.0-29.9 kg/m2	142(27.5%)	1046(35.4%)		
≥30 kg/m2	202(39.1%)	1051(35.6%)		
Physical activity, hours/week	8.1(10.0)	8.7(10.7)	0.558	
Total cholesterol, mg/dL	192.5(45.9)	190.2(42.7)	0.385	
Systolic blood pressure, mmHg	136.3(21.7)	133.5(27.0)	0.032	
Digit Symbol Substitution Test	43.1(17.1)	45.8(17.5)	0.004	
CERAD W-L delayed recall	5.6(2.5)	5.8(2.4)	0.093	
CERAD W-L immediate recall	18.2(5.3)	18.5(5.0)	0.300	
Animal Fluency Test	15.8(5.5)	16.4(5.6)	0.030	

Appendix. The characteristics of included and excluded participants due to missing data

6/bmjopen-2022-07

STROBE Statement-checklist of items that should be included in reports of observation	nal studies
---	-------------

	Item No.	Recommendation	71513 on 5	PageRelevant text fromNo.manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2-5	abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-4 2-2-24.	abstract
Introduction			4. D	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	ل وم 4-پې	introduction
Objectives	3	State specific objectives, including any prespecified hypotheses	6 ded	introduction
Methods		6	ed fr	
Study design	4	Present key elements of study design early in the paper	6-73	method
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,	7-8	method
		follow-up, and data collection	//bm	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of	7 7 7	
		participants. Describe methods of follow-up	en.b	
		Case-control study—Give the eligibility criteria, and the sources and methods of case	<u> </u>	
		ascertainment and control selection. Give the rationale for the choice of cases and controls	com	
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of	v on	
		participants	Ap	
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and	ril 2	
		unexposed	, N	
		Case-control study—For matched studies, give matching criteria and the number of controls per	024	
		case	by	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.	6-est.) measure
		Give diagnostic criteria, if applicable	T	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment	6- P) method
measurement		(measurement). Describe comparability of assessment methods if there is more than one group)cte	
Bias	9	Describe any efforts to address potential sources of bias	6-dected by	limitation
Study size	10	Explain how the study size was arrived at	7 7	method

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	27	of	27
------	----	----	----

re
cal analysis
cal analysis
cal analysis

			202		
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	22-0		
Discussion			7151		
Key results	18	Summarise key results with reference to study objectives	14 <mark>0</mark>	discussion	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	ე 17თ	limitation	
		both direction and magnitude of any potential bias	Maro		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of	14 <mark>∽</mark>		
		analyses, results from similar studies, and other relevant evidence	024		
Generalisability	21	Discuss the generalisability (external validity) of the study results	170		
Other informati	on		wnlo		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	19ded		
		original study on which the present article is based	ið fr		
			om		

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in coher and cross-sectional studies.

 Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

the STROBE Initiative is available at www.strobeon April 27, 2024 by guest. Protected by copyright.

6/bmjopen-2