

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# Ambient air pollutants in the first trimester of pregnancy and the risk of birth defects: an observational study

| Journal:                         | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | bmjopen-2022-063712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Article Type:                    | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the<br>Author: | 11-Apr-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:        | Cheng, Yao; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department<br>Yin, Jieyun; Soochow University Medical College, Department of<br>Epidemiology and Health Statistics<br>Yang, Lijun; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department<br>Xu, Man; Hubei University of Chinese Medicine, School of Nursing<br>Lu, Xinfeng; Maternal and Child Health Hospital of Hubei Province<br>Huang, Wenting; Maternal and Child Health Hospital of Hubei Province<br>Sun, Guoqiang; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department |
| Keywords:                        | Fetal medicine < OBSTETRICS, EPIDEMIOLOGY, Prenatal diagnosis < OBSTETRICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

| 1<br>2                     |             |
|----------------------------|-------------|
| 3<br>4<br>5<br>6<br>7<br>8 | 1           |
| 5                          | 2           |
| 6<br>7                     | 3           |
| 8<br>9                     | 4           |
| 9<br>10                    |             |
| 11<br>12                   | 5<br>6<br>7 |
| 12<br>13                   |             |
| 14                         | 8           |
| 15<br>16                   | 9           |
| 17                         | 10          |
| 18<br>19                   | 11          |
| 20<br>21                   | 12          |
| 22<br>23                   | 13          |
| 23<br>24                   | 14          |
| 25                         | 15          |
| 26<br>27                   | 16          |
| 28                         | 17          |
| 29<br>30                   | 18          |
| 31                         | 19          |
| 32<br>33                   | 20          |
| 34                         | 21          |
| 35                         | 22          |
| 36<br>37                   | 23          |
| 38                         | 24<br>25    |
| 39                         | 25          |
| 40<br>41                   | 26<br>27    |
| 42                         | 27          |
| 43<br>44                   | 29          |
| 44<br>45                   | 30          |
| 46                         | 31          |
| 47<br>48                   | 32          |
| 49                         | 33          |
| 50                         | 34          |
| 51<br>52                   | 35          |
| 53                         | 36          |
| 54<br>55                   | 37          |
| 55<br>56                   | 38          |
| 57                         | 39          |
| 58<br>59                   | 40          |
| 59<br>60                   | 41          |

| 1        | Ambient air pollutants in the first trimester of pregnancy and the risk of birth                                                                            |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | defects: an observational study                                                                                                                             |
| 3        | Yao Cheng <sup>1*</sup> , Jieyun Yin <sup>2*</sup> , Lijun Yang <sup>1</sup> , Man Xu <sup>3</sup> , Xinfeng Lu <sup>1</sup> , Wenting Huang <sup>1</sup> , |
| 4        | Guoqiang Sun <sup>1</sup>                                                                                                                                   |
| 5        |                                                                                                                                                             |
| 6        | <sup>1</sup> Obstetric Department, Maternal and Child Health Hospital of Hubei Province,<br>Huazhong University of Science and Technology, Wuhan, China.    |
| 7<br>8   | <sup>2</sup> Department of Epidemiology and Health Statistics, Medical College of Soochow                                                                   |
| 9        | University, Suzhou, China.                                                                                                                                  |
| 10       | <sup>3</sup> School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.                                                                         |
| 11       |                                                                                                                                                             |
| 4.2      |                                                                                                                                                             |
| 12       | Corresponding author                                                                                                                                        |
| 13       | Guoqiang Sun, Obstetric Department, Maternal and Child Health Hospital of                                                                                   |
| 14       | Hubei Province, Huazhong University of Science and Technology, Wuluo Road                                                                                   |
| 15       | 745 <sup>#</sup> , Hongshan District, Wuhan, China. Postcode: 430070; Tel: +86                                                                              |
| 16       | 15972153596; E-mail: <u>sunguoqiang@hbfy.com</u> .                                                                                                          |
| 17       | Word count: 3256                                                                                                                                            |
| 18       |                                                                                                                                                             |
| 19       |                                                                                                                                                             |
| 20       |                                                                                                                                                             |
| 21<br>22 |                                                                                                                                                             |
| 22<br>23 | Word count: 3256                                                                                                                                            |
| 24       |                                                                                                                                                             |
| 25       |                                                                                                                                                             |
| 26       |                                                                                                                                                             |
| 27       |                                                                                                                                                             |
| 28       |                                                                                                                                                             |
| 29<br>30 |                                                                                                                                                             |
| 30<br>31 |                                                                                                                                                             |
| 32       |                                                                                                                                                             |
| 33       |                                                                                                                                                             |
| 34       |                                                                                                                                                             |
| 35       |                                                                                                                                                             |
| 36       |                                                                                                                                                             |
| 37       |                                                                                                                                                             |
| 38<br>39 |                                                                                                                                                             |
| 39<br>40 |                                                                                                                                                             |
| 41       |                                                                                                                                                             |

# 42 Abstract

Objectives As current studies on the association of air pollutants and birth defects
were not fully elucidated, this study aimed to examine the effects of maternal air
pollutants exposure during the 1<sup>st</sup> trimester of pregnancy on the risk of birth defects.

**Design** An observational study.

47 Participants We obtained 70,854 singletons with gestational age <20 weeks who</li>
48 delivered at a large maternal and child health care center in Wuhan, China.

**Outcome measures** Birth defects data and daily average concentrates of ambient 50 particulate matter  $\leq 10 \ \mu m$  diameter (PM<sub>10</sub>), particulate matter  $\leq 2.5 \ \mu m$  diameter 51 (PM<sub>2.5</sub>), sulfur dioxide (SO<sub>2</sub>), and nitrogen dioxide (NO<sub>2</sub>) were obtained. Logistic 52 regression analysis was applied to examine the effects of maternal air pollutants 53 exposure during 1<sup>st</sup> trimester on the risks of total birth defects, congenital heart 54 defects (CHDs), limb defects, and orofacial clefts.

**Results** There were a total of 1,352 birth defects cases included in this study, with a prevalence of 19.08‰. Maternal exposed to high concentrations of PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> in the 1<sup>st</sup> trimester were significantly associated with elevated risks of birth defects (ORs ranged from 1.10 to 1.19). Additionally, for male fetuses, maternal exposed to high PM<sub>2.5</sub> concentration was associated with an elevated risk of CHDs (OR=1.29, 95% CI: 1.08, 1.54). In the cold season, the risk of birth defects was significantly increased among women exposed to PM<sub>2.5</sub> (OR=1.31, 95% CI: 1.15, 1.50) and NO<sub>2</sub> (OR=1.14, 95% CI: 1.02, 1.26). 

Conclusions This study showed unfavorable effects of air pollutants exposure on the
risk of birth defects. Especially, maternal PM<sub>2.5</sub> exposure could have an elevated risk
of CHDs among male fetuses, and stronger effects of PM<sub>2.5</sub> and NO<sub>2</sub> exposure on
birth defects were observed in the cold season.

Keywords: air pollutants; birth defects; congenital heart defects; limb defects;
orofacial clefts; pregnancy

# 71 Strengths and limitations of this study

- $\succ$  This study provided the first evidence on the positive associations between 73 maternal exposed to PM<sub>2.5</sub> during the 1<sup>st</sup> trimester and the risk of CHDs among 74 male fetuses but not the female fetuses.
- We also novelly found that stronger effects of air pollutants exposure during the
   1<sup>st</sup> trimester on the risk of birth defects were observed in cold season.
- The selected participants are located in a large tertiary maternal care center in
  Wuhan and the representative of this study was undermined.
- Maternal air pollutants exposure indoor or at other living residents including
  work, dining, and shopping were not included and other covariates including
  health behaviors and genetic factors were failed to obtain.

## 84 INTRODUCTION

Birth defects are structural or functional abnormalities occurred during embryonic development, most of them forming in the 1<sup>st</sup> trimester of pregnancy.<sup>1</sup> Birth defects are the leading cause of fetal death, and associated with the elevated risk of childhood mortality and reduced long-term survival.<sup>2,3</sup> According to the Institute for Health Metrics and Evaluation, the prevalence of congenital birth defects increased from 6.08% in 2005 to 6.29% in 2019.<sup>4</sup> Although the upward trends were reported in severe congenital heart defects, single ventricle, atrioventricular septal defects, and tetralogy of Fallot in Europe during 1980-2012, the prevalence of birth defects are much lower (1.0-4.1%).<sup>5</sup> In China, the overall prevalence of birth defects was increased from 12.83‰ in 1986 to 15.70‰ in 2014.6 There is a necessary to explore the potential hazard factors contributed to the high prevalence of birth defects in China based on current knowledge. 

Due to rapid urbanization, China has experienced severe air pollution in recent years. Report on China's implementation of the Millennium Development Goals (2000-2015) documented that particulate matter  $\leq 10 \ \mu m$  diameter (PM<sub>10</sub>), sulfur dioxide (SO<sub>2</sub>), and nitrogen dioxide (NO<sub>2</sub>) were major air pollutants in urban areas.<sup>7</sup> Moreover, ambient particulate matter  $\leq 2.5 \ \mu m$  diameter (PM<sub>2.5</sub>) produced by coal combustion, industry sources, and vehicular emissions, is also one of the main air pollutants of industrialization.<sup>8</sup> The expanding coverage of ambient air pollutants surveillance has contributed to a flow of s1tudies on the adverse pregnancy outcome, including small for gestational age and low birth weight, preterm birth, spontaneous abortion, and stillbirth in recent years.<sup>9-11</sup> Moreover, there is a growing interest on the associations between ambient air pollutants and birth defects, but the results of previous studies are controversial. Most studies reported that ambient air pollutants were associated with increased risks of birth defects.<sup>12-14</sup> However, Parkes et al. and Dolk et al. pointed out that high concentrates of PM<sub>10</sub> and NO<sub>2</sub> exposure was not related to birth defects.<sup>15,16</sup> A recent meta-analysis conducted by Ma et al. even reported a protective effect of SO<sub>2</sub> on atrial septal defects.<sup>17</sup> These inconsistent results indicate that the effects of ambient air pollutants on the risk of birth defects could be 

varied by cultures, ethnics, or geographical distribution. More evidence is needed to
clarify the risk of birth defects derived by air pollutants during the rapid
social-economical development worldwide.

As current studies on the associations of air pollutants and birth defects were not fully elucidated, this study aimed to examine the effects of air pollutants on birth defects. Furthermore, the 1<sup>st</sup> trimester of pregnancy is vital for fetal development because fetal major organs and systems are formed at this stage and the fetus is most susceptible to environmental hazards. As a result, we mainly focused on the associations between maternal exposure to air pollutants including  $PM_{10}$ ,  $PM_{2.5}$ ,  $SO_2$ , and  $NO_2$  during the 1<sup>st</sup> trimester and the risk of birth defects in Wuhan, China.

124 METHODS

#### 125 Study site and population

This observational study was conducted in Wuhan city. Wuhan is the capital city of
Hubei Province and a megacity in Central China. Its geographical location is 29° 58′ 31° 22′ N and 113° 41′ - 115° 05′ E. The permanent resident population of Wuhan
was over 10 million. Wuhan has four distinct seasons of hot summer and cold winter,
with an annual average temperature of 15.8 °C - 17.5 °C.<sup>18</sup>

There were a total of 130,186 perinatal women with detailed home addresses who delivered at Maternal and Child Health Hospital of Hubei Province, and 98,877 of them lived in Wuhan City during the 1<sup>st</sup> trimester of pregnancy. Then we obtained 74,336 participants with distances less than 10 km from home to the nearest air surveillance station. After removing 3,333 mothers of multiple pregnancies and 149 with gestational age <20 weeks, 70,854 participants were finally included in this study.

#### **Birth defects**

Birth defect cases with gestational age ≥ 20 weeks and 0-7 days after birth including
elective termination of pregnancy. According to the Implementation of National
Hospital Birth Defects Surveillance of China, 23 types of common birth defects were
categorized according to the 10<sup>th</sup> Revision of the International Classification of
Diseases (ICD-10, Q00–Q99). The top three birth defects including congenital heart

| 1<br>2      |     |
|-------------|-----|
| -<br>3<br>4 | 144 |
| 5           | 145 |
| 7           | 146 |
| 8<br>9      | 147 |
| 10<br>11    | 147 |
| 12<br>13    |     |
| 14<br>15    | 149 |
| 16<br>17    | 150 |
| 18          | 151 |
| 19<br>20    | 152 |
| 21<br>22    | 153 |
| 23<br>24    | 154 |
| 25<br>26    | 155 |
| 27<br>28    | 156 |
| 29<br>30    | 157 |
| 31          | 158 |
| 32<br>33    | 159 |
| 34<br>35    | 160 |
| 36<br>37    | 161 |
| 38<br>39    | 162 |
| 40<br>41    | 163 |
| 42<br>43    | 164 |
| 44<br>45    | 165 |
| 46<br>47    | 166 |
| 48<br>49    | 167 |
| 50          | 168 |
| 51<br>52    | 169 |
| 53<br>54    | 170 |
| 55<br>56    | 170 |
| 57          | 1/1 |

58

59 60 144 defects (CHDs) (Q20–Q28), limb defects (Q69–Q72), and orofacial clefts (Q35–Q37)

145 were further examined by an obstetrician, pediatrician, or pediatric cardiologist.

146 **Exposure assessment** 

Data of the daily concentrations of air pollutants ( $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$ ) and the geographical locations of the air surveillance stations were obtained from China's National Urban Air Quality Real-time Publishing Platform (http://106.37.208.233:20035). Moreover, the geographical location data was converted from the detailed home address of participants by Baidu Map. The individual air pollutants were obtained according to the nearest surveillance station within 10 km from home, which was confirmed by other studies.<sup>15,19</sup> The median distance from home to the nearest station was 3.50 km in this study. Participants' air pollutants exposure during the 1<sup>st</sup> trimester of pregnancy was estimated by mean levels of daily concentrations.

### 157 Statistical analysis

Logistic regression analysis was applied to evaluate the effects of air pollutants exposure in the 1<sup>st</sup> trimester on the risk of total birth defects, CHDs, limb defects, and orofacial clefts. Maternal exposures to daily average air pollutants concentration during the 1<sup>st</sup> trimester were divided by interquartile range. These models were adjusted for covariates including the year of conception (2013-2018), maternal age (<25, 25-29, 30-34, and >34 years), and gravidity (1, 2-3, >3). Stratified analyses by neonatal sex (male and female fetus) and season of conception (March to August and September to February) were applied to further explore the associations between air pollutants exposure in the 1<sup>st</sup> trimester of pregnancy and the risk of birth defects. The adjusted odds ratio (OR) and 95% confidence interval (CI) were provided in each model. Statistical analyses were performed by SAS 9.4 (SAS Institute, Inc., Cary, NC).

#### 170 **RESULTS**

There were a total of 1,352 birth defect cases among 70,854 singletons, with a
prevalence of 19.08‰ (Table 1). The prevalence of birth defects increased from
21.16‰ in 2013 to 24.08‰ in 2018. It ranks first place in subpopulations who

| 2                                                                                                                                                                                                                                                                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2                                                                                                                                                                                                                                                                                         |  |
| 4                                                                                                                                                                                                                                                                                         |  |
| 5                                                                                                                                                                                                                                                                                         |  |
| 6                                                                                                                                                                                                                                                                                         |  |
| 3         4         5         6         7         8         9         10         11         12         13         14         15         16         17         18         20         21         22         23         24         25         26         27         28         29         30 |  |
| 8                                                                                                                                                                                                                                                                                         |  |
| 9                                                                                                                                                                                                                                                                                         |  |
| 10                                                                                                                                                                                                                                                                                        |  |
| 10                                                                                                                                                                                                                                                                                        |  |
| 11                                                                                                                                                                                                                                                                                        |  |
| 12                                                                                                                                                                                                                                                                                        |  |
| 13                                                                                                                                                                                                                                                                                        |  |
| 14                                                                                                                                                                                                                                                                                        |  |
| 15                                                                                                                                                                                                                                                                                        |  |
| 16                                                                                                                                                                                                                                                                                        |  |
| 17                                                                                                                                                                                                                                                                                        |  |
| 18                                                                                                                                                                                                                                                                                        |  |
| 10                                                                                                                                                                                                                                                                                        |  |
| 19                                                                                                                                                                                                                                                                                        |  |
| 20                                                                                                                                                                                                                                                                                        |  |
| 21                                                                                                                                                                                                                                                                                        |  |
| 22                                                                                                                                                                                                                                                                                        |  |
| 23                                                                                                                                                                                                                                                                                        |  |
| 24                                                                                                                                                                                                                                                                                        |  |
| 25                                                                                                                                                                                                                                                                                        |  |
| 26                                                                                                                                                                                                                                                                                        |  |
| 20                                                                                                                                                                                                                                                                                        |  |
| 27                                                                                                                                                                                                                                                                                        |  |
| 28                                                                                                                                                                                                                                                                                        |  |
| 29                                                                                                                                                                                                                                                                                        |  |
| 30                                                                                                                                                                                                                                                                                        |  |
| 31                                                                                                                                                                                                                                                                                        |  |
| 27                                                                                                                                                                                                                                                                                        |  |
| 32<br>33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                                    |  |
| 34                                                                                                                                                                                                                                                                                        |  |
| 25                                                                                                                                                                                                                                                                                        |  |
| 22                                                                                                                                                                                                                                                                                        |  |
| 36                                                                                                                                                                                                                                                                                        |  |
| 37                                                                                                                                                                                                                                                                                        |  |
| 38                                                                                                                                                                                                                                                                                        |  |
| 39                                                                                                                                                                                                                                                                                        |  |
| 40                                                                                                                                                                                                                                                                                        |  |
| 41                                                                                                                                                                                                                                                                                        |  |
| 42                                                                                                                                                                                                                                                                                        |  |
| 43                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                           |  |
| 44                                                                                                                                                                                                                                                                                        |  |
| 45                                                                                                                                                                                                                                                                                        |  |
| 46                                                                                                                                                                                                                                                                                        |  |
| 47                                                                                                                                                                                                                                                                                        |  |
| 48                                                                                                                                                                                                                                                                                        |  |
| 49                                                                                                                                                                                                                                                                                        |  |
| 50                                                                                                                                                                                                                                                                                        |  |
| 51                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                           |  |
| 52                                                                                                                                                                                                                                                                                        |  |
| 53                                                                                                                                                                                                                                                                                        |  |
| 54                                                                                                                                                                                                                                                                                        |  |
| 55                                                                                                                                                                                                                                                                                        |  |
| 56                                                                                                                                                                                                                                                                                        |  |
| 57                                                                                                                                                                                                                                                                                        |  |
| 58                                                                                                                                                                                                                                                                                        |  |
| 50                                                                                                                                                                                                                                                                                        |  |

conceived in winter (26.98‰), aged <25 years (28.10‰), or with gravidity >3 times
(23.93‰). In addition, the male fetuses had a higher prevalence of birth defects than
female fetuses (20.57‰ vs 16.80‰).

177

1 2

# Table 1 Prevalence of birth defects among the subgroups of enrolled participants in Wuhan, China

| Variables            | Birth       | defect | Prevalence (%) |
|----------------------|-------------|--------|----------------|
|                      | cases/Total |        |                |
| Year of conception   |             |        |                |
| 2013                 | 272/12,856  | Ď      | 21.16          |
| 2014                 | 203/11,236  | Ď      | 18.07          |
| 2015                 | 174/11,274  | ŀ      | 15.43          |
| 2016                 | 227/12,261  |        | 18.51          |
| 2017                 | 226/12,844  | ŀ      | 17.60          |
| 2018                 | 250/10,383  | ;      | 24.08          |
| Season of conception |             |        |                |
| Spring               | 321/18,312  | 2      | 17.53          |
| Summer               | 295/18,853  | ;      | 15.65          |
| Autumn               | 287/17,045  | 5      | 16.84          |
| Winter               | 449/16,644  | ŀ      | 26.98          |
| Age (years)          |             |        |                |
| <25                  | 122/4,341   |        | 28.10          |
| 25–29                | 632/34,412  | 2      | 18.37          |
| 30–34                | 401/23,783  | 3      | 16.86          |
| >34                  | 197/8,318   |        | 23.68          |
| Gravidity            |             |        |                |
| 1                    | 604/35,590  |        | 16.97          |
| 2-3                  | 372/19,552  | 2      | 19.03          |
| >3                   | 376/15,712  | 2      | 23.93          |
| Neonatal sex         |             |        |                |
| Male                 | 771/37,488  | ;      | 20.57          |
| Female               | 560/33,337  | 7      | 16.80          |
| Total                | 1,352/70,85 | 4      | 19.08          |

180

Table 2 shows the distributions of daily average ambient air pollutants concentrations in the 1<sup>st</sup> trimester among the 5 groups including non-defects, birth defects, CHDs, limb defects, and orofacial clefts. The median exposures of  $PM_{10}$ ,  $PM_{2.5}$ , NO<sub>2</sub>, and SO<sub>2</sub> during the 1<sup>st</sup> trimester were 101.78µg/m<sup>3</sup>, 61.98µg/m<sup>3</sup>, 53.64µg/m<sup>3</sup>, and 13.97µg/m<sup>3</sup> respectively among the birth defects groups.

188Table 2 Quartile concentrations ( $\mu$ g/m<sup>3</sup>) of exposure for ambient air pollutants189among birth defects groups in 1<sup>st</sup> trimester of pregnancy

| Air pollutants    | Non-defects | <b>Birth defects</b> | CHDs    | Limb defects | Orofacial    |
|-------------------|-------------|----------------------|---------|--------------|--------------|
|                   | N=69,502    | N=1,352              | N=265   | N=210        | clefts N=119 |
| $PM_{10}$         |             |                      |         |              |              |
| Min               | 36.86       | 39.08                | 49.82   | 40.76        | 48.85        |
| 25th              | 80.84       | 84.05                | 84.05   | 85.86        | 83.98        |
| Median            | 102.42      | 101.78               | 99.46   | 105.80       | 96.77        |
| 75th              | 123.86      | 124.39               | 120.48  | 127.34       | 116.36       |
| Max               | 231.49      | 225.91               | 225.91  | 220.82       | 191.37       |
| PM <sub>2.5</sub> |             |                      |         |              |              |
| Min               | 21.27       | 21.27                | 22.77   | 22.16        | 22.98        |
| 25th              | 39.37       | 45.02                | 44.88   | 42.63        | 41.26        |
| Median            | 59.21       | 61.98                | 61.33   | 63.00        | 60.98        |
| 75th              | 80.20       | 80.73                | 78.81   | 84.66        | 77.38        |
| Max               | 178.20      | 165.92               | 154.42  | 154.79       | 155.35       |
| $NO_2$            |             |                      |         |              |              |
| Min               | 9.71        | 15.22                | 29.033  | 25.78        | 16.8901      |
| 25th              | 43.40       | 45.70                | 45.4945 | 44.31        | 44.0934      |
| Median            | 51.49       | 53.64                | 53.6923 | 53.43        | 53.8407      |
| 75th              | 59.08       | 59.98                | 59.4615 | 62.84        | 59.989       |
| Max               | 93.60       | 93.37                | 92.9341 | 93.37        | 87.5824      |
| $SO_2$            |             |                      |         |              |              |
| Min               | 2.93        | 3.02                 | 3.93    | 3.77         | 3.99         |
| 25th              | 9.07        | 9.36                 | 9.43    | 10.55        | 9.46         |
| Median            | 14.47       | 13.97                | 13.77   | 16.09        | 12.55        |
| 75th              | 23.54       | 23.87                | 23.36   | 25.23        | 21.28        |
| Max               | 71.74       | 63.36                | 63.36   | 62.99        | 53.75        |

190 Abbreviations: CHDs, congenital heart defects; NO<sub>2</sub>, nitrogen dioxide; PM<sub>10</sub>, particulate matter 191  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter <2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide. 

Table 3 presents the associations of ambient air pollutants exposure in the 1<sup>st</sup> trimester of pregnancy and the risk of birth defects. We also provided the risk of birth

defects in the 2<sup>nd</sup> and 3<sup>rd</sup> trimesters, as well as the entire pregnancy in the supplementary Tables S1-S3. High concentrate exposure of air pollutants was significantly associated with an increased risk of the total birth defects, yielding adjusted ORs of 1.10, 1.19, 1.16, and 1.15 for PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>, respectively. Moreover, similar elevated risk of CHDs was observed for maternal exposure of PM<sub>2.5</sub> (OR=1.19, 95%CI: 1.05, 1.35), NO<sub>2</sub> (OR=1.12, 95%CI: 1.00, 1.25), and SO<sub>2</sub> (OR=1.21, 95%CI: 1.02, 1.43), but not PM<sub>10</sub> (1.07, 95% CI: 0.94, 1.22). 

For male fetuses, there were significantly increased risks of birth defects among mothers exposed to  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$  by interquartile increased concentrations during the 1<sup>st</sup> trimester (OR=1.10-1.21). Moreover, a high concentration of  $PM_{2.5}$  exposure was significantly associated with an elevated risk of CHDs (OR=1.29, 95% CI: 1.08, 1.54). For female fetuses, elevated risks of birth defects (OR=1.10-1.18) were observed among maternal exposed to heavy concentrated  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$ .

After stratified by season, the results show that the risk of birth defects was significantly increased among women who conceived in Autumn/Winter and were exposed to PM<sub>2.5</sub> (OR=1.31, 95% CI: 1.15, 1.50) and NO<sub>2</sub> (OR=1.14, 95% CI: 1.02, 1.26). PM<sub>2.5</sub> was also positively related to the increased risk of CHDs (OR=1.44, 95%CI: 1.08, 1.93). Elevated risk of orofacial clefts was observed among women who conceived in cold season exposed to heavy NO<sub>2</sub> concentrations (OR=1.51, 95% CI: 1.02, 2.24). However, in the warm season, the risk of limb defects was elevated among women exposed to SO<sub>2</sub> (OR=1.34, 95% CI: 1.01, 1.77), but decreased risk of orofacial clefts was observed among them (OR=0.64, 95% CI: 0.44, 0.94). 

Table 3 Adjusted odds ratios and 95% confidence interval of ambient air
 pollutants for each interquartile increase during the 1<sup>st</sup> trimester and birth defects

| Birth defects <sup>a</sup> | PM <sub>10</sub><br>OR (95%CI) | PM <sub>2.5</sub><br>OR (95%CI) | NO <sub>2</sub><br>OR (95%CI) | SO <sub>2</sub><br>OR (95%CI) |
|----------------------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------|
| Гotal                      |                                |                                 |                               |                               |
| Birth defects              | 1.10(1.03,1.17)                | 1.19(1.13,1.26)                 | 1.16(1.11,1.22)               | 1.15(1.07,1.25)               |
| CHDs                       | 1.07(0.94,1.22)                | 1.19(1.05,1.35)                 | 1.12(1.00,1.25)               | 1.21(1.02,1.43)               |
|                            |                                | q                               |                               |                               |

| 2        |                  |                 |                 |                 |                 |
|----------|------------------|-----------------|-----------------|-----------------|-----------------|
| 3        | Limb defects     | 1.07(0.92,1.23) | 1.10(0.95,1.27) | 1.12(0.99,1.27) | 1.16(0.96,1.40) |
| 4<br>5   | Orofacial clefts | 0.91(0.75,1.10) | 1.04(0.86,1.26) | 1.10(0.93,1.30) | 0.93(0.73,1.20) |
| 6        | Male fetus       |                 |                 |                 |                 |
| 7        | Birth defects    | 1.10(1.01,1.19) | 1.21(1.12,1.30) | 1.15(1.08,1.23) | 1.16(1.05,1.29) |
| 8<br>9   | CHDs             | 1.18(0.98,1.42) | 1.29(1.08,1.54) | 1.11(0.95,1.30) | 1.19(0.94,1.50) |
| 10       | Limb defects     | 1.08(0.90,1.30) | 1.07(0.90,1.28) | 1.12(0.95,1.30) | 1.16(0.91,1.46) |
| 11       | Orofacial clefts | 0.88(0.69,1.13) | 1.10(0.86,1.41) | 1.06(0.85,1.31) | 0.99(0.72,1.37) |
| 12<br>13 | Female fetus     |                 |                 |                 |                 |
| 15<br>14 | Birth defects    | 1.10(1.00,1.20) | 1.18(1.08,1.29) | 1.18(1.09,1.28) | 1.15(1.03,1.29) |
| 15       | CHDs             | 0.94(0.78,1.13) | 1.05(0.88,1.27) | 1.11(0.95,1.31) | 1.21(0.95,1.55) |
| 16       | Limb defects     | 1.06(0.83,1.35) | 1.13(0.89,1.45) | 1.14(0.92,1.42) | 1.14(0.83,1.58) |
| 17<br>18 | Orofacial clefts | 0.97(0.71,1.32) | 0.94(0.70,1.27) | 1.21(0.92,1.58) | 0.84(0.57,1.23) |
| 19       | Autumn/Winter    |                 |                 |                 |                 |
| 20       | Birth defects    | 0.90(0.80,1.02) | 1.31(1.15,1.50) | 1.14(1.02,1.26) | 1.04(0.90,1.20) |
| 21<br>22 | CHDs             | 0.90(0.70,1.18) | 1.44(1.08,1.93) | 1.23(0.97,1.57) | 1.17(0.86,1.60) |
| 22       | Limb defects     | 1.05(0.75,1.46) | 1.26(0.87,1.83) | 1.26(0.94,1.68) | 0.96(0.66,1.41) |
| 24       | Orofacial clefts | 0.86(0.57,1.29) | 1.36(0.86,2.13) | 1.51(1.02,2.24) | 1.29(0.79,2.09) |
| 25<br>26 | Summer/Spring    |                 |                 |                 |                 |
| 20<br>27 | Birth defects    | 1.08(0.98,1.20) | 1.02(0.91,1.16) | 1.09(1.00,1.19) | 1.05(0.94,1.19) |
| 28       | CHDs             | 1.00(0.80,1.25) | 0.89(0.68,1.17) | 0.89(0.73,1.09) | 1.07(0.82,1.39) |
| 29       | Limb defects     | 1.09(0.86,1.38) | 1.11(0.83,1.48) | 1.12(0.92,1.38) | 1.34(1.01,1.77) |
| 30<br>31 | Orofacial clefts | 0.75(0.54,1.04) | 0.69(0.46,1.03) | 0.89(0.66,1.19) | 0.64(0.44,0.94) |
|          | 411              |                 |                 | 1 1 10          |                 |

222Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; OR, 2230dds ratio; PM<sub>10</sub>, particulate matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter  $\leq$ 2.5 µm diameter; 224SO<sub>2</sub>, sulfur dioxide.

22<sup>s</sup> adjusted for year of conception, maternal age, and gravidity.

#### DISCUSSION

In the current study, the prevalence of birth defects was close to what was reported in Hunan Province (19.18‰) and higher than that of Jiangsu Province (7.15‰).<sup>20,21</sup> Moreover, this study examined the associations between the risk of birth defects and air pollutants exposure in the 1st trimester, and we further explored the relationships stratified by fetal sex and season of conception. 

This study showed that maternal exposure to ambient air pollutants including PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> during the 1<sup>st</sup> trimester could have higher risks of birth defects, which has been well documented previously. A case-control study conducted by Al Noaimi et al. showed a positive association between PM<sub>2.5</sub> exposure in the 1<sup>st</sup> trimester of pregnancy and the risk of birth defects (OR=1.05).<sup>22</sup> Wang et al. showed 

that maternal exposure to  $PM_{10}$  and  $NO_2$  in the early pregnancy significantly increased the risk of birth defects by 10.3% per 10 µg/m3 and 3.4% per 10 µg/m3, respectively.23 

As was observed among the total participants, the risk of birth defects among both male fetuses and female fetuses was significantly related to PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO2. The underlying mechanisms between air pollutants exposure and the development of birth defects are still unclear. Maternal air pollutants exposures might cause changes in epigenetic signatures and permanent modifications in gene expression.<sup>24</sup> Studies based on mice models showed that maternal exposure to PM<sub>2.5</sub> during pregnancy leads to spatial memory dysfunction, neurodevelopmental impairment, and disturbed cerebral cortex development of mice offspring.<sup>25,26</sup> Another study showed that maternal exposure to a high concentrate of PM<sub>2.5</sub> during the 1<sup>st</sup> trimester of pregnancy could result in the decreased placental expression of BDNF and SYN1, which may undermine fetal neurodevelopment.<sup>27</sup> Moreover, SO<sub>2</sub> is a systemic toxic agent which can induce chromosomal aberrations, sister chromatid exchanges, and micronuclei in mammalian cells.<sup>28</sup> 

Except for  $PM_{10}$ , this study demonstrated adverse associations between  $PM_{2.5}$ , NO<sub>2</sub>, and SO<sub>2</sub> exposure and the risk of CHDs. Previous studies in Taiwan and Northeast England also reported insignificant associations between PM<sub>10</sub> exposure in the 1<sup>st</sup> trimester and the risk of CHDs,<sup>29,30</sup> whereas others confirmed the increased risk of CHDs caused by PM<sub>10</sub>.<sup>12,23,31-34</sup> Furthermore, Huang et al. showed that PM<sub>2.5</sub> exposure per each interquartile increase during gestational weeks 3-8 was related to an increased risk of CHDs (OR=1.21).35 Additionally, the positive association between the risk of CHDs and maternal exposure to NO2 and SO2 was documented by studies conducted by Baldacci et al. and Vrijheid et al.<sup>36,37</sup> Moreover, a case-control study conducted by Jiang et al. showed that maternal exposure to SO<sub>2</sub> during the 1<sup>st</sup> trimester was significantly associated with increased risk of CHD (OR=1.78-2.04), and Hansen et al. also confirmed that a 0.6 ppb increase in SO<sub>2</sub> was associated with an increased risk of aortic artery and valve defects (OR=10.76).<sup>19,38</sup> The heterogeneity in these studies might be explained by the variation in the population, the gestational 

periods, or the measurement air pollutants exposure. The physiopathological mechanism of the associations between air pollutants and CHDs was not fully elucidated. It is hypothesized that air pollutants exposure during the 1<sup>st</sup> pregnancy might strengthen the genetically and environmental interaction on the risk of CHDs.<sup>37</sup> Also, Air pollutants might change the molecule of DNA sequence or alter epigenetics in related to CHDs.<sup>39</sup>

Interestingly, only male fetuses showed an elevated risk of CHDs who were exposed to a higher PM<sub>2.5</sub> concentration. This result indicates that PM<sub>2.5</sub> might have a stronger effect on the expression of specific CHDs genes located on the Y chromosome. A study of mice models showed that increased pathological damage in hearts of offspring mice was observed among maternal mice exposure to PM<sub>2.5</sub>, and these effects in the male group were more obvious than in the female group. Meanwhile, this study suggested that heart damage caused by maternal exposure to PM<sub>2.5</sub> was worse in male mice in contrast to female mice.<sup>40</sup> 

After stratified by season, maternal exposure of PM<sub>2.5</sub> and NO<sub>2</sub> were positively associated with the risk of birth defects in the cold season, but this relationship was not observed in the warm season. Zhao et al. reported that the effects of air pollutants on the risk of birth defects were more obvious in the warm season in Hohhot.<sup>41</sup> This disparity could be partly explained by the uneven levels of dwellings' air pollutants. Compared to cities with lower GDP, cities with a higher GDP and a large population might have lower concentrations of indoor particulate matter.<sup>42</sup> Additionally, this study reported a negative association between SO<sub>2</sub> exposure and the risk of orofacial clefts in the warm season, which was in contrast with the results reported previously.<sup>38</sup> This result might be partly explained by the hypothesis that air pollutants could impact the survival of the fetus with birth defects, rather than causing the malformation development.<sup>43</sup> Moreover, Wuhan is a well-known city of hot summer. Most of the residential buildings are equipped with air conditioners, which could help to improve indoor air quality in hot weather. Thus, the interpretation of results should be cautious that significant associations between air pollutants exposure and the risk of birth defects in the warm season in Wuhan. 

# 298 Strengths

This study firstly provided the evidence on the elevated risk of CHDs among mothers with heavy  $PM_{2.5}$  exposure during the 1<sup>st</sup> trimester. We also novelly found the increased risks of CHDs and orofacial clefts among women who conceived in the cold season exposed to high concentrations of air pollutants.

303 Limitations

This study has several limitations. Firstly, the selected participants are located in a large tertiary maternal care center in Wuhan and the representative of this study was undermined. Secondly, the birth defects data of this study are manually collected and checked, but mistakes and omissions are inevitable. Thirdly, maternal air pollutants exposure indoor or at other living residents including work, dining, and shopping were not included in this study. Fourthly, covariates including health behaviors and genetic factors which might interfere with the relationship between maternal air pollutants exposure and the risk of birth defects were failed to obtain. More research is needed to explore the pathogenic mechanism of air pollutants exposure during pregnancy and the associated birth defects. 

## 314 CONCLUSIONS

Our study confirmed the unfavorable effects of maternal exposure to air pollutants (PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>) on the risk of birth defects during the 1<sup>st</sup> trimester of pregnancy. We firstly provided the evidence on the positive associations between PM<sub>2.5</sub> exposure and the risk of CHDs among male fetuses but not the female fetuses. Moreover, stronger effects of of PM<sub>2.5</sub> and NO<sub>2</sub> exposure on the risk of birth defects were observed in the cold season in Wuhan. As a result, it should be noted for the risk of birth defects due to air pollutants, and reducing individual air pollutants exposure during the 1<sup>st</sup> trimester might help to birth defect control in the context of the rapid development all over the world. 

324 Abbreviations

325 CHDs: congenital heart defects; CI: confidence interval; NO<sub>2</sub>: nitrogen dioxide; OR:
326 odds ratio; PM<sub>10</sub>: particulate matter ≤10 µm diameter; PM<sub>2.5</sub>: particulate matter ≤2.5
327 µm diameter; SO<sub>2</sub>: sulfur dioxide.

BMJ Open

| 2              |     |                                                                                       |
|----------------|-----|---------------------------------------------------------------------------------------|
| 3<br>4         | 328 | Ethics approval and consent to participate                                            |
| 5<br>6         | 329 | This study was approved by the Ethics Committee of Maternal and Child Health          |
| 7<br>8         | 330 | Hospital of Hubei Province (2021IECLW025). This study was based on the                |
| 9<br>10        | 331 | retrospective clinical data without any individual patient identifiers.               |
| 11<br>12       | 332 | Patient consent for publication                                                       |
| 13<br>14<br>15 | 333 | Not applicable.                                                                       |
| 16<br>17<br>18 | 334 | Patient and public involvement                                                        |
| 19<br>20<br>21 | 335 | Patients or the public were not involved in the design, or conduct, or reporting, or  |
| 22<br>23       | 336 | dissemination plans of our research.                                                  |
| 24<br>25       | 337 | Availability of data and materials                                                    |
| 26<br>27       | 338 | The data used in this study are available from corresponding author on reasonable     |
| 28<br>29       | 339 | request.                                                                              |
| 30<br>31       | 340 | Competing interests                                                                   |
| 32<br>33       | 341 | The authors declare that they have no competing interests.                            |
| 34<br>35       | 342 | Funding                                                                               |
| 36<br>37       | 343 | No funding was received to assist with the preparation of this manuscript.            |
| 38<br>39       | 344 | Authors' contributions                                                                |
| 40<br>41       | 345 | Yao Cheng and Jieyun Yin contributed equally to this manuscript. Yao Cheng            |
| 42             | 346 | collected the data, performed data analysis, and draft the manuscript. Jieyun Yin     |
| 43<br>44       | 347 | collected the data, performed data analysis, and edit the manuscript. Lijun Yang      |
| 45<br>46<br>47 | 348 | designed the study, collected the data, and performed data analysis. Man Xu, Xinfeng  |
| 47<br>48<br>49 | 349 | Lu, and Wenting Huang collected the data, interpreted the data, and reviewed the      |
| 50             | 350 | manuscript. Guoqiang Sun: designed the study, collected the data, and supervised the  |
| 51<br>52       | 351 | project. All authors gave final approval of the version to be submitted and agreed to |
| 53<br>54       | 352 | be accountable for all aspects of the work.                                           |
| 55<br>56       | 353 | Acknowledgements                                                                      |
| 57<br>58       | 354 | We appreciate all the medical staff of the Maternal and Child Health Hospital of      |
| 59<br>60       | 355 | Hubei Province for the data collection used in this manuscript.                       |

| 2<br>3   |     |      |                                                                                               |
|----------|-----|------|-----------------------------------------------------------------------------------------------|
| 4        | 356 | Refe | rences                                                                                        |
| 5        | 357 | 1.   | World Health Organization. Congenital anomalies.                                              |
| 6<br>7   | 358 |      | https://www.who.int/en/news-room/fact-sheets/detail/congenital-anomalies. 2020. Accessed      |
| 8        | 359 |      | 15 May 2021.                                                                                  |
| 9        | 360 | 2.   | Global PaedSurg Research Collaboration. Mortality from gastrointestinal congenital            |
| 10<br>11 | 361 |      | anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a      |
| 12       | 362 |      | multicentre, international, prospective cohort study. Lancet 2021;398:325-339.                |
| 13       | 363 | 3.   | Glinianaia SV, Morris JK, Best KE, et al. Long-term survival of children born with congenital |
| 14<br>15 | 364 |      | anomalies: A systematic review and meta-analysis of population-based studies. PLoS Med        |
| 15<br>16 | 365 |      | 2020;17:e1003356.                                                                             |
| 17       | 366 | 4.   | Institute for Health Metrics and Evaluation. GBD Results Tool.                                |
| 18       | 367 |      | https://ghdxhealthdataorg/gbd-results-tool. 2022. Accessed 15 Jan 2022.                       |
| 19<br>20 | 368 | 5.   | Morris JK, Springett AL, Greenlees R, et al. Trends in congenital anomalies in Europe from    |
| 21       | 369 |      | 1980 to 2012. PloS one 2018;13:e0194986.                                                      |
| 22       | 370 | 6.   | Yao L, Zhou T, Zhang S, et al. Trends and geographical distribution of birth defects in China |
| 23<br>24 | 371 |      | from 1986 to 2014. Chin J Birth Health Heredity 2020;28:83-88+91 (In Chinese).                |
| 25       | 372 | 7.   | United Nations Development Programme. Report on China's Implementation of the                 |
| 26       | 373 |      | Millennium Development Goals (2000-2015).                                                     |
| 27<br>28 | 374 |      | https://www.cn.undp.org/content/china/zh/home/library/mdg/mdgs-report-2015html. 2015.         |
| 28       | 375 |      | Accessed 15 May 2021 (In Chinese).                                                            |
| 30       | 376 | 8.   | Wang Q, Fan D, Zhao L, et al. A Study on the Design Method of Indoor Fine Particulate         |
| 31       | 377 |      | Matter (PM2.5) Pollution Control in China. Int J Environ Res Public Health 2019;16:4588.      |
| 32<br>33 | 378 | 9.   | Guo P, Chen Y, Wu H, et al. Ambient air pollution and markers of fetal growth: A              |
| 34       | 379 |      | retrospective population-based cohort study of 2.57 million term singleton births in China.   |
| 35       | 380 |      | Environ Int 2020;135:105410.                                                                  |
| 36<br>37 | 381 | 10.  | Klepac P, Locatelli I, Korošec S, et al. Ambient air pollution and pregnancy outcomes: A      |
| 38       | 382 |      | comprehensive review and identification of environmental public health challenges. Environ    |
| 39       | 383 |      | Res 2018;167:144-159.                                                                         |
| 40<br>41 | 384 | 11.  | Grippo A, Zhang J, Chu L, et al. Air pollution exposure during pregnancy and spontaneous      |
| 42       | 385 |      | abortion and stillbirth. Rev Environ Health 2018;33:247-264.                                  |
| 43       | 386 | 12.  | Liu CB, Hong XR, Shi M, et al. Effects of Prenatal PM(10) Exposure on Fetal Cardiovascular    |
| 44<br>45 | 387 |      | Malformations in Fuzhou, China: A Retrospective Case-Control Study. Environ Health            |
| 43<br>46 | 388 |      | Perspect 2017;125:057001.                                                                     |
| 47       | 389 | 13.  | Yu G, Chen Y, Tang J, et al. Meta-analyses of maternal exposure to atmospheric particulate    |
| 48<br>49 | 390 |      | matter and risk of congenital anomalies in offspring. Environ Sci Pollut Res Int              |
| 49<br>50 | 391 |      | 2021;28:55869-55887.                                                                          |
| 51       | 392 | 14.  | Zhang Q, Sun S, Sui X, et al. Associations between weekly air pollution exposure and          |
| 52       | 393 |      | congenital heart disease. Sci Total Environ 2021;757:143821.                                  |
| 53<br>54 | 394 | 15.  | Parkes B, Hansell AL, Ghosh RE, et al. Risk of congenital anomalies near municipal waste      |
| 55       | 395 |      | incinerators in England and Scotland: Retrospective population-based cohort study. Environ    |
| 56       | 396 |      | Int 2020;134:104845.                                                                          |
| 57<br>58 | 397 | 16.  | Dolk H, Armstrong B, Lachowycz K, et al. Ambient air pollution and risk of congenital         |
| 59       | 398 |      | anomalies in England, 1991-1999. Occup Environ Med 2010;67:223-227.                           |
| 60       | 399 | 17.  | Ma Z, Cao X, Chang Y, et al. Association between gestational exposure and risk of congenital  |
|          |     |      |                                                                                               |

1 2

| 1        |            |     |                                                                                                                                                     |
|----------|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 400        |     | heart disease: A systematic review and meta-analysis. Environ Res 2021;197:111014.                                                                  |
| 4<br>5   | 401        | 18. | Wang S, Yu S, Yan R, <i>et al.</i> Characteristics and origins of air pollutants in Wuhan, China,                                                   |
| 6        | 402        |     | based on observations and hybrid receptor models. J Air Waste Manag Assoc                                                                           |
| 7        | 403        |     | 2017;67:739-753.                                                                                                                                    |
| 8<br>9   | 404        | 19. | Jiang W, Liu Z, Ni B, et al. Independent and interactive effects of air pollutants and ambient                                                      |
| 10       | 405        |     | heat exposure on congenital heart defects. Reprod Toxicol 2021;104:106-113.                                                                         |
| 11       | 406        | 20. | Xie D, Yang T, Liu Z, et al. Epidemiology of Birth Defects Based on a Birth Defect                                                                  |
| 12<br>13 | 407        |     | Surveillance System from 2005 to 2014 in Hunan Province, China. PloS one                                                                            |
| 14       | 408        |     | 2016;11:e0147280.                                                                                                                                   |
| 15       | 409        | 21. | Zhou Y, Mao X, Zhou H, et al. Epidemiology of birth defects based on a birth defect                                                                 |
| 16<br>17 | 410        |     | surveillance system in Southern Jiangsu, China, 2014-2018. J Matern Fetal Neonatal Med                                                              |
| 18       | 411        |     | 2022;35:745-751.                                                                                                                                    |
| 19       | 412        | 22. | Al Noaimi G, Yunis K, El Asmar K, et al. Prenatal exposure to criteria air pollutants and                                                           |
| 20<br>21 | 413        |     | associations with congenital anomalies: A Lebanese national study. Environ Pollut                                                                   |
| 22       | 414        |     | 2021;281:117022.                                                                                                                                    |
| 23       | 415        | 23. | Wang L, Xiang X, Mi B, et al. Association between early prenatal exposure to ambient air                                                            |
| 24<br>25 | 416        |     | pollution and birth defects: evidence from newborns in Xi'an, China. J Public Health (Oxf)                                                          |
| 26       | 417        |     | 2019;41:494-501.                                                                                                                                    |
| 27       | 418        | 24. | Stapleton PA, Wingard CJ, Nurkiewicz TR, et al. Cardiopulmonary consequences of                                                                     |
| 28<br>29 | 419        |     | gestational toxicant exposure: Symposium overview at the 56th annual SOT meeting,                                                                   |
| 30       | 420        |     | Baltimore, MD. Reprod Toxicol 2018;79:16-20.                                                                                                        |
| 31       | 421        | 25. | Liu F, Huang Y, Zhang F, et al. Macrophages treated with particulate matter PM2.5 induce                                                            |
| 32<br>33 | 422        |     | selective neurotoxicity through glutaminase-mediated glutamate generation. J Neurochem                                                              |
| 33<br>34 | 423        |     | 2015;134:315-326.                                                                                                                                   |
| 35       | 424        | 26. | Zhang T, Zheng X, Wang X, et al. Maternal Exposure to PM(2.5) during Pregnancy Induces                                                              |
| 36<br>27 | 425        |     | Impaired Development of Cerebral Cortex in Mice Offspring. Int J Mol Sci 2018;19: 257.                                                              |
| 37<br>38 | 426        | 27. | Saenen ND, Plusquin M, Bijnens E, <i>et al.</i> In Utero Fine Particle Air Pollution and Placental                                                  |
| 39       | 427        |     | Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An                                                                  |
| 40       | 428        | 20  | ENVIRONAGE Birth Cohort Study. <i>Environ Health Perspect</i> 2015;123:834-840.                                                                     |
| 41<br>42 | 429        | 28. | Meng Z, Qin G, Zhang B, <i>et al.</i> DNA damaging effects of sulfur dioxide derivatives in cells                                                   |
| 43       | 430        | 20  | from various organs of mice. <i>Mutagenesis</i> 2004;19:465-468.                                                                                    |
| 44       | 431        | 29. | Dadvand P, Rankin J, Rushton S, <i>et al.</i> Ambient air pollution and congenital heart disease: a                                                 |
| 45<br>46 | 432        | 20  | register-based study. Environ Res 2011;111:435-441.                                                                                                 |
| 47       | 433<br>434 | 30. | Hwang BF, Lee YL, Jaakkola JJ. Air Pollution and the Risk of Cardiac Defects: A Population-Based Case-Control Study. <i>Medicine</i> 2015;94:e1883. |
| 48       | 434        | 31. | Jacobs M, Zhang G, Chen S, <i>et al.</i> The association between ambient air pollution and selected                                                 |
| 49<br>50 | 435        | 51. | adverse pregnancy outcomes in China: A systematic review. <i>Sci Total Environ</i>                                                                  |
| 51       | 437        |     | 2017;579:1179-1192.                                                                                                                                 |
| 52       | 438        | 32. | Jin L, Qiu J, Zhang Y, <i>et al.</i> Ambient air pollution and congenital heart defects in Lanzhou,                                                 |
| 53<br>54 | 439        | 52. | China. Environ Res Lett 2015; 10:074005                                                                                                             |
| 55       | 440        | 33. | Ren Z, Zhu J, Gao Y, <i>et al.</i> Maternal exposure to ambient PM(10) during pregnancy increases                                                   |
| 56<br>57 | 441        | 55. | the risk of congenital heart defects: Evidence from machine learning models. <i>Sci Total</i>                                                       |
| 57<br>58 | 442        |     | Environ 2018; 630:1-10.                                                                                                                             |
| 59       | 443        | 34. | Zhang B, Liang S, Zhao J, <i>et al.</i> Maternal exposure to air pollutant PM2.5 and PM10 during                                                    |
| 60       |            |     |                                                                                                                                                     |

- pregnancy and risk of congenital heart defects. J Expo Sci Environ Epidemiol 2016; 26:422-427. Huang CC, Chen BY, Pan SC, et al. Prenatal exposure to PM(2.5) and Congenital Heart 35. Diseases in Taiwan. Sci Total Environ 2019;655:880-886. Baldacci S, Gorini F, Minichilli F, et al. Review of epidemiological studies on individual and 36. environmental risk factors in the aetiology of congenital heart defects. Epidemiol Prev 2016;40:185-196. 37. Vrijheid M, Martinez D, Manzanares S, et al. Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Perspect 2011;119:598-606. 38. Hansen CA, Barnett AG, Jalaludin BB, et al. Ambient air pollution and birth defects in brisbane, australia. PloS one 2009;4:e5408. 39. Vecoli C, Pulignani S, Andreassi MG. Genetic and Epigenetic Mechanisms Linking Air Pollution and Congenital Heart Disease. J Cardiovasc Dev Dis 2016;3:32. 40. Li R, Zhao Y, Shi J, et al. Effects of PM(2.5) exposure in utero on heart injury, histone acetylation and GATA4 expression in offspring mice. Chemosphere 2020;256:127133. 41. Zhao B, Wang M, Lü C, et al. Increasing risk of congenital anomalies associated with seasonal pattern of air pollution: Differences by maternal comorbidities. Ecotoxicol Environ saf 2019;167:317-323. Zhu YD, Fan L, Wang J, et al. Spatiotemporal variation in residential PM2.5 and PM10 42. concentrations in China: National on-site survey. Environ Res 2021;202:111731. 43. Dolk H, Vrijheid M. The impact of environmental pollution on congenital anomalies. Br Med Bull 2003;68:25-45.

| 2                                                                                                        |
|----------------------------------------------------------------------------------------------------------|
| 2                                                                                                        |
| 3                                                                                                        |
| 4                                                                                                        |
| 4                                                                                                        |
| 5                                                                                                        |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                |
| 0                                                                                                        |
| 7                                                                                                        |
| Q                                                                                                        |
| 0                                                                                                        |
| 9                                                                                                        |
| 10                                                                                                       |
| 10                                                                                                       |
| 11                                                                                                       |
| 12                                                                                                       |
| 12                                                                                                       |
| 13                                                                                                       |
| 14                                                                                                       |
|                                                                                                          |
| 15                                                                                                       |
| 16                                                                                                       |
| 17                                                                                                       |
| 17                                                                                                       |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 |
| 10                                                                                                       |
| 19                                                                                                       |
| 20                                                                                                       |
| 21                                                                                                       |
| 21                                                                                                       |
| 22                                                                                                       |
| 22                                                                                                       |
| 25                                                                                                       |
| 24                                                                                                       |
| 25                                                                                                       |
| 25                                                                                                       |
| 26                                                                                                       |
| 27                                                                                                       |
| 27                                                                                                       |
| 28                                                                                                       |
| 29                                                                                                       |
| 27                                                                                                       |
| 30                                                                                                       |
| 21                                                                                                       |
| 32                                                                                                       |
| 32                                                                                                       |
| 33<br>34<br>35<br>36<br>37<br>28                                                                         |
| 22                                                                                                       |
| 34                                                                                                       |
| 35                                                                                                       |
| 26                                                                                                       |
| 30                                                                                                       |
| 37                                                                                                       |
| 37<br>38                                                                                                 |
| 20                                                                                                       |
| 39                                                                                                       |
| 40                                                                                                       |
|                                                                                                          |
| 41                                                                                                       |
| 42                                                                                                       |
|                                                                                                          |
| 43                                                                                                       |
| 44                                                                                                       |
| 45                                                                                                       |
|                                                                                                          |
| 46                                                                                                       |
| 47                                                                                                       |
|                                                                                                          |
| 48                                                                                                       |
| 49                                                                                                       |
|                                                                                                          |
| 50                                                                                                       |
| 51                                                                                                       |
|                                                                                                          |
| 52                                                                                                       |
| 53                                                                                                       |
|                                                                                                          |
| 54                                                                                                       |
| 55                                                                                                       |
|                                                                                                          |
| 56                                                                                                       |
| 57                                                                                                       |
|                                                                                                          |
| 58                                                                                                       |
| FO                                                                                                       |

Table S1 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for each interquartile increase during the 2<sup>ed</sup> trimester and birth defects **D**M DM NO CO

| <b>Birth defects</b> <sup>a</sup> | $PM_{10}$       | $PM_{2.5}$      | $NO_2$          | $SO_2$          |
|-----------------------------------|-----------------|-----------------|-----------------|-----------------|
| DII III UEIECIS                   | OR (95%CI)      | OR (95%CI)      | OR (95%CI)      | OR (95%CI)      |
| Total                             |                 |                 |                 |                 |
| Birth defects                     | 0.98(0.91,1.06) | 0.95(0.89,1.02) | 0.99(0.93,1.05) | 0.90(0.82,0.98) |
| CHDs                              | 0.99(0.80,1.22) | 0.88(0.73,1.05) | 0.94(0.79,1.11) | 0.79(0.62,1.01) |
| Limb defects                      | 1.02(0.87,1.20) | 0.95(0.82,1.10) | 1.04(0.91,1.19) | 1.02(0.83,1.24) |
| Orofacial clefts                  | 1.19(0.82,1.71) | 1.40(1.00,1.95) | 1.26(0.93,1.71) | 1.29(0.82,2.03) |
| Male fetus                        |                 |                 |                 |                 |
| Birth defects                     | 0.98(0.89,1.09) | 0.95(0.87,1.04) | 0.94(0.87,1.02) | 0.91(0.81,1.03) |
| CHDs                              | 0.84(0.63,1.13) | 0.69(0.53,0.91) | 0.69(0.54,0.88) | 0.60(0.43,0.85) |
| Limb defects                      | 1.10(0.89,1.34) | 1.00(0.84,1.20) | 1.07(0.91,1.26) | 1.10(0.86,1.40) |
| Orofacial clefts                  | 1.12(0.69,1.81) | 1.17(0.77,1.77) | 1.22(0.83,1.82) | 1.10(0.62,1.94  |
| Female fetus                      |                 |                 |                 |                 |
| Birth defects                     | 0.98(0.87,1.11) | 0.96(0.87,1.07) | 1.06(0.96,1.17) | 0.88(0.77,1.01  |
| CHDs                              | 1.16(0.86,1.57) | 1.09(0.84,1.41) | 1.28(1.00,1.64) | 1.05(0.74,1.49  |
| Limb defects                      | 0.90(0.69,1.17) | 0.86(0.67,1.10) | 1.00(0.80,1.26) | 0.88(0.63,1.22  |
| Orofacial clefts                  | 1.32(0.73,2.38) | 1.97(1.07,3.62) | 1.30(0.80,2.13) | 1.72(0.78,3.76  |
| Summer/Spring                     |                 |                 |                 |                 |
| Birth defects                     | 0.99(0.89,1.11) | 0.92(0.83,1.02) | 1.02(0.93,1.12) | 0.96(0.83,1.10  |
| CHDs                              | 0.96(0.72,1.27) | 0.82(0.62,1.07) | 0.99(0.78,1.26) | 0.73(0.51,1.04  |
| Limb defects                      | 1.08(0.85,1.37) | 0.88(0.71,1.11) | 1.06(0.86,1.29) | 0.92(0.68,1.23  |
| Orofacial clefts                  | 1.19(0.66,2.13) | 1.46(0.82,2.62) | 1.06(0.65,1.72) | 1.67(0.75,3.74  |
| Autumn/Winter                     |                 |                 |                 |                 |
| Birth defects                     | 0.96(0.86,1.07) | 1.00(0.91,1.10) | 0.98(0.89,1.07) | 0.89(0.78,1.02  |
| CHDs                              | 1.01(0.74,1.39) | 0.99(0.76,1.29) | 0.93(0.73,1.20) | 0.97(0.67,1.41  |
| Limb defects                      | 0.96(0.76,1.20) | 1.00(0.82,1.22) | 1.03(0.86,1.24) | 1.11(0.84,1.46  |
| Orofacial clefts                  | 1.20(0.75,1.94) | 1.31(0.87,1.97) | 1.35(0.90,2.02) | 1.01(0.58,1.76  |

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; OR, odds ratio;  $PM_{10}$ , particulate matter  $\leq 10 \mu m$  diameter;  $PM_{2.5}$ , particulate matter  $\leq 2.5 \mu m$  diameter;  $SO_2$ , sulfur dioxide.

<sup>a</sup> adjusted for year of conception, maternal age, and gravidity.

| <b>Birth defects</b> <sup>a</sup> | $PM_{10}$       | <b>PM</b> <sub>2.5</sub> | $NO_2$          | $SO_2$          |
|-----------------------------------|-----------------|--------------------------|-----------------|-----------------|
| Birth defects                     | OR (95%CI)      | OR (95%CI)               | OR (95%CI)      | OR (95%CI)      |
| Total                             |                 |                          |                 |                 |
| Birth defects                     | 0.87(0.82,0.92) | 0.91(0.87,0.96)          | 0.92(0.87,0.96) | 0.93(0.88,0.99) |
| CHDs                              | 0.90(0.79,1.03) | 0.88(0.78,0.99)          | 0.90(0.81,1.00) | 0.88(0.77,1.01) |
| Limb defects                      | 0.96(0.83,1.11) | 0.91(0.80,1.05)          | 0.96(0.85,1.09) | 0.99(0.85,1.15) |
| Orofacial clefts                  | 0.79(0.65,0.95) | 0.98(0.82,1.16)          | 0.91(0.77,1.08) | 0.91(0.74,1.12) |
| Male fetus                        |                 |                          |                 |                 |
| Birth defects                     | 0.87(0.81,0.94) | 0.90(0.83,0.96)          | 0.92(0.86,0.98) | 0.96(0.89,1.05) |
| CHDs                              | 0.88(0.73,1.05) | 0.84(0.71,0.99)          | 0.87(0.75,1.02) | 0.81(0.67,0.97) |
| Limb defects                      | 0.92(0.77,1.10) | 0.90(0.76,1.06)          | 0.92(0.79,1.07) | 1.03(0.85,1.25) |
| Orofacial clefts                  | 0.77(0.60,0.99) | 0.94(0.75,1.18)          | 0.91(0.74,1.13) | 0.95(0.73,1.24) |
| Female fetus                      |                 |                          |                 |                 |
| Birth defects                     | 0.87(0.79,0.95) | 0.94(0.87,1.02)          | 0.92(0.85,0.99) | 0.89(0.81,0.98) |
| CHDs                              | 0.94(0.78,1.14) | 0.96(0.81,1.14)          | 0.95(0.81,1.11) | 0.99(0.81,1.21) |
| Limb defects                      | 1.01(0.78,1.29) | 0.93(0.74,1.18)          | 1.05(0.85,1.29) | 0.91(0.71,1.18) |
| Orofacial clefts                  | 0.81(0.60,1.10) | 1.02(0.77,1.35)          | 0.89(0.69,1.15) | 0.86(0.63,1.19) |
| Summer/Spring                     |                 |                          |                 |                 |
| Birth defects                     | 1.11(1.01,1.23) | 1.29(1.18,1.42)          | 1.12(1.03,1.22) | 1.05(0.96,1.15) |
| CHDs                              | 1.13(0.90,1.42) | 1.27(1.03,1.57)          | 1.21(1.00,1.45) | 0.94(0.77,1.15) |
| Limb defects                      | 1.10(0.86,1.40) | 0.97(0.75,1.26)          | 0.99(0.80,1.23) | 1.01(0.81,1.26  |
| Orofacial clefts                  | 0.96(0.68,1.37) | 1.39(1.02,1.91)          | 1.24(0.93,1.64) | 1.02(0.75,1.39) |
| Autumn/Winter                     |                 |                          |                 |                 |
| Birth defects                     | 0.68(0.60,0.78) | 0.78(0.70,0.87)          | 0.81(0.73,0.90) | 0.87(0.74,1.01) |
| CHDs                              | 0.84(0.63,1.12) | 0.72(0.56,0.93)          | 0.70(0.56,0.87) | 0.86(0.61,1.22) |
| Limb defects                      | 0.81(0.60,1.10) | 0.82(0.63,1.08)          | 0.94(0.73,1.21) | 1.01(0.70,1.48) |
| Orofacial clefts                  | 0.44(0.30,0.66) | 0.78(0.54,1.10)          | 0.61(0.45,0.83) | 0.64(0.40,1.03) |

Table S2 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for each interquartile increase during the 3<sup>rd</sup> trimester and birth defects

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; OR, odds ratio; PM<sub>10</sub>, particulate matter  $\leq 10 \mu m$  diameter; PM<sub>2.5</sub>, particulate matter  $\leq 2.5 \mu m$  diameter; SO<sub>2</sub>, sulfur dioxide.

<sup>a</sup> adjusted for year of conception, maternal age, and gravidity.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| <b>Birth defects</b> <sup>a</sup> | $PM_{10}$       | <b>PM</b> <sub>2.5</sub> | $NO_2$          | $SO_2$          |
|-----------------------------------|-----------------|--------------------------|-----------------|-----------------|
| Diftil delects                    | OR (95%CI)      | OR (95%CI)               | OR (95%CI)      | OR (95%CI)      |
| Total                             |                 |                          |                 |                 |
| Birth defects                     | 0.85(0.75,0.97) | 0.98(0.87,1.11)          | 1.05(0.96,1.13) | 0.91(0.80,1.05) |
| CHDs                              | 0.87(0.61,1.24) | 0.96(0.70,1.32)          | 1.01(0.82,1.26) | 0.70(0.50,1.00) |
| Limb defects                      | 0.91(0.69,1.19) | 0.86(0.66,1.12)          | 1.11(0.93,1.31) | 1.00(0.75,1.33) |
| Orofacial clefts                  | 0.68(0.38,1.23) | 1.18(0.66,2.12)          | 1.33(0.90,1.97) | 1.35(0.71,2.59) |
| Male fetus                        |                 |                          |                 |                 |
| Birth defects                     | 0.81(0.68,0.96) | 0.91(0.77,1.07)          | 0.99(0.89,1.10) | 0.90(0.76,1.08) |
| CHDs                              | 0.71(0.43,1.16) | 0.78(0.50,1.22)          | 0.70(0.52,0.94) | 0.56(0.34,0.91) |
| Limb defects                      | 0.94(0.67,1.33) | 0.79(0.58,1.09)          | 1.16(0.93,1.43) | 0.97(0.68,1.38) |
| Orofacial clefts                  | 0.65(0.30,1.41) | 1.19(0.57,2.45)          | 1.37(0.82,2.28) | 0.89(0.40,1.99) |
| Female fetus                      |                 |                          |                 |                 |
| Birth defects                     | 0.92(0.75,1.12) | 1.11(0.92,1.34)          | 1.13(1.00,1.28) | 0.93(0.75,1.14) |
| CHDs                              | 1.08(0.65,1.78) | 1.20(0.76,1.92)          | 1.55(1.11,2.17) | 0.91(0.55,1.50  |
| Limb defects                      | 0.84(0.53,1.34) | 1.02(0.64,1.61)          | 1.02(0.76,1.36) | 1.05(0.63,1.75  |
| Orofacial clefts                  | 0.72(0.29,1.83) | 1.15(0.44,3.02)          | 1.26(0.68,2.31) | 2.89(0.96,8.74  |
| Autumn/Winter                     |                 |                          |                 |                 |
| Birth defects                     | 0.91(0.76,1.10) | 1.14(0.97,1.35)          | 1.06(0.95,1.18) | 1.07(0.88,1.30  |
| CHDs                              | 0.94(0.58,1.53) | 1.13(0.75,1.71)          | 1.21(0.92,1.60) | 0.84(0.53,1.35  |
| Limb defects                      | 0.96(0.64,1.44) | 0.89(0.61,1.29)          | 1.06(0.84,1.33) | 0.82(0.54,1.24  |
| Orofacial clefts                  | 0.89(0.33,2.38) | 1.60(0.60,4.25)          | 1.07(0.61,1.87) | 3.37(1.04,10.85 |
| Summer/Spring                     |                 |                          |                 |                 |
| Birth defects                     | 0.76(0.63,0.92) | 0.84(0.70,1.00)          | 1.03(0.91,1.17) | 0.82(0.67,0.99  |
| CHDs                              | 0.75(0.44,1.26) | 0.77(0.47,1.27)          | 0.78(0.55,1.10) | 0.63(0.36,1.07  |
| Limb defects                      | 0.85(0.58,1.24) | 0.83(0.57,1.20)          | 1.17(0.90,1.52) | 1.21(0.81,1.82  |
| Orofacial clefts                  | 0.59(0.28,1.24) | 0.95(0.45,1.98)          | 1.58(0.90,2.76) | 0.79(0.35,1.75) |

 Table S3 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for each interquartile increase during the entire pregnancy and birth defects

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; OR, odds ratio; PM<sub>10</sub>, particulate matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter  $\leq$ 2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

<sup>a</sup> adjusted for year of conception, maternal age, and gravidity.

|                        |           | BMJ Open                                                                                                                                 | Page               |
|------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                        |           | STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cobort studies</i>                                |                    |
| Section/Topic          | ltem<br># | Recommendation 2007                                                                                                                      | Reported on page # |
| Title and abstract     | 1         | (a) Indicate the study's design with a commonly used term in the title or the abstract                                                   | 1-2                |
|                        |           | (b) Provide in the abstract an informative and balanced summary of what was done and what was found                                      | 2                  |
| Introduction           |           |                                                                                                                                          |                    |
| Background/rationale   | 2         | Explain the scientific background and rationale for the investigation being reported                                                     | 4-5                |
| Objectives             | 3         | State specific objectives, including any prespecified hypotheses                                                                         | 5                  |
| Methods                | ł         |                                                                                                                                          |                    |
| Study design           | 4         | Present key elements of study design early in the paper                                                                                  | 5-6                |
| Setting                | 5         | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection          | 5-6                |
| Participants           | 6         | (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe $m_{e}^{2}$                        | 6                  |
|                        |           | (b) For matched studies, give matching criteria and number of exposed and unexposed                                                      | 6                  |
| Variables              | 7         | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable | 6                  |
| Data sources/          | 8*        | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe                         | 6                  |
| measurement            |           | comparability of assessment methods if there is more than one group 오                                                                    |                    |
| Bias                   | 9         | Describe any efforts to address potential sources of bias                                                                                | -                  |
| Study size             | 10        | Explain how the study size was arrived at                                                                                                | -                  |
| Quantitative variables | 11        | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why             | 5-6                |
| Statistical methods    | 12        | (a) Describe all statistical methods, including those used to control for confounding                                                    | 6                  |
|                        |           | (b) Describe any methods used to examine subgroups and interactions                                                                      | 6                  |
|                        |           | (c) Explain how missing data were addressed                                                                                              | -                  |
|                        |           | (d) If applicable, explain how loss to follow-up was addressed                                                                           | -                  |
|                        |           |                                                                                                                                          | -                  |
| Results                |           | (e) Describe any sensitivity analyses 응<br>것<br>것<br>같<br>                                                                               |                    |

| 22                |     | BMJ Open Dramon<br>BMJ Open BMJ O |       |
|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                   |     | n-202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Participants      | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine of for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-7   |
|                   |     | (b) Give reasons for non-participation at each stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     |
|                   |     | (c) Consider use of a flow diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
| Descriptive data  | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on er social of study participants (eg demographic, clinical, social) and information on er social of the social o    | 6-7   |
|                   |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -     |
|                   |     | (c) Summarise follow-up time (eg, average and total amount)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -     |
| Outcome data      | 15* | Report numbers of outcome events or summary measures over time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6-7   |
| Main results      | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision $\vec{a}$ eg, 95% confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -     |
|                   |     | interval). Make clear which confounders were adjusted for and why they were included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|                   |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8     |
|                   |     | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time eriod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-9   |
| Discussion        |     | je na se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10-11 |
| Limitations       |     | bmj.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of a glyses, results from similar studies, and other relevant evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13    |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12-13 |
| Other information |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Funding           | 22  | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14    |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cg hort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine 🛱 rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.stobe-statement.org.

copyright

# **BMJ Open**

# Ambient air pollutants in the first trimester of pregnancy and birth defects: an observational study

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2022-063712.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Date Submitted by the Author:        | 29-Sep-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Complete List of Authors:            | Cheng, Yao; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department<br>Yin, Jieyun; Soochow University Medical College, Department of<br>Epidemiology and Health Statistics<br>Yang, Lijun; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department<br>Xu, Man; Hubei University of Chinese Medicine, School of Nursing<br>Lu, Xinfeng; Maternal and Child Health Hospital of Hubei Province<br>Huang, Wenting; Maternal and Child Health Hospital of Hubei Province<br>Dai, Guohong; Maternal and Child Health Hospital of Hubei Province<br>Sun, Guoqiang; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department |
| <b>Primary Subject<br/>Heading</b> : | Obstetrics and gynaecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Secondary Subject Heading:           | Occupational and environmental medicine, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Keywords:                            | Fetal medicine < OBSTETRICS, EPIDEMIOLOGY, Prenatal diagnosis < OBSTETRICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

| 1  | Ambient air pollutants in the first trimester of pregnancy and birth defects: an                                                                                                                                               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | observational study                                                                                                                                                                                                            |
| 3  | Yao Cheng <sup>1*</sup> , Jieyun Yin <sup>2*</sup> , Lijun Yang <sup>1</sup> , Man Xu <sup>3</sup> , Xinfeng Lu <sup>4</sup> , Wenting Huang <sup>5</sup> ,                                                                    |
|    | Guohong Dai6#, Guoqiang Sun1#                                                                                                                                                                                                  |
|    | Guonong Dar, Guoquang Sun                                                                                                                                                                                                      |
|    | Obstatria Department Maternal and Child Health Heapital of Hubei Province                                                                                                                                                      |
|    | <sup>1</sup> Obstetric Department, Maternal and Child Health Hospital of Hubei Province,                                                                                                                                       |
|    | Huazhong University of Science and Technology, Wuhan, China.                                                                                                                                                                   |
|    | <sup>2</sup> Department of Epidemiology and Health Statistics, Medical College of Soochow                                                                                                                                      |
|    | University, Suzhou, China.                                                                                                                                                                                                     |
|    | <sup>3</sup> School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.                                                                                                                                            |
| 11 | <sup>4</sup> Medical Record Department, Maternal and Child Health Hospital of Hubei Province,                                                                                                                                  |
| 12 | Huazhong University of Science and Technology, Wuhan, China.                                                                                                                                                                   |
| 13 | <sup>5</sup> Science and Education Department, Maternal and Child Health Hospital of Hubei                                                                                                                                     |
| 14 | Province, Huazhong University of Science and Technology, Wuhan, China.                                                                                                                                                         |
| 15 | <sup>6</sup> Health Care Department, Maternal and Child Health Hospital of Hubei Province,                                                                                                                                     |
| 16 | Huazhong University of Science and Technology, Wuhan, China.                                                                                                                                                                   |
|    |                                                                                                                                                                                                                                |
| 17 | #Corresponding authors                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                |
|    | Guoqiang Sun, Obstetric Department, Maternal and Child Health Hospital of                                                                                                                                                      |
| 19 | Hubei Province, Huazhong University of Science and Technology, Wuluo Road                                                                                                                                                      |
| 20 | 745 <sup>#</sup> , Hongshan District, Wuhan, China. Postcode: 430070; Tel: +86                                                                                                                                                 |
| 21 | 15972153596; E-mail: <u>sunguoqiang@hbfy.com</u> .                                                                                                                                                                             |
| 22 | Guohong Dai, Health Care Department, Maternal and Child Health Hospital of                                                                                                                                                     |
|    | Hubei Province, Huazhong University of Science and Technology, Wuluo Road                                                                                                                                                      |
|    |                                                                                                                                                                                                                                |
|    | 745#, Hongshan District, Wuhan, China. Postcode: 430070; Tel: +86                                                                                                                                                              |
| 25 | 13476133865; E-mail: 623138285@qq.com.                                                                                                                                                                                         |
| 26 | Word count: 3559                                                                                                                                                                                                               |
| 27 |                                                                                                                                                                                                                                |
| 28 |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
| 39 |                                                                                                                                                                                                                                |
| 40 |                                                                                                                                                                                                                                |
| 41 |                                                                                                                                                                                                                                |
|    | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 |

#### **BMJ** Open

| 42 | Abstract |
|----|----------|
|    |          |

Objectives As current studies on the relationships between air pollutants exposure
during the 1<sup>st</sup> trimester and birth defects were not fully elucidated, this study aimed to
assess the association between selected air pollutants and birth defects.

**Design** An observational study.

47 Participants We obtained 70,854 singletons with gestational age <20 weeks who</li>
48 were delivered at a large maternal and child health care center in Wuhan, China.

**Outcome measures** Birth defects data and daily average concentration of ambient 50 particulate matter  $\leq 10 \ \mu m$  diameter (PM<sub>10</sub>), particulate matter  $\leq 2.5 \ \mu m$  diameter 51 (PM<sub>2.5</sub>), sulfur dioxide (SO<sub>2</sub>), and nitrogen dioxide (NO<sub>2</sub>) were obtained. Logistic 52 regression analysis was applied to assess the association between maternal air 53 pollutants exposure during 1<sup>st</sup> trimester and total birth defects, congenital heart defects 54 (CHDs), limb defects, and orofacial clefts adjusted to potential covariates.

**Results** There were a total of 1,352 birth defect cases included in this study, with a prevalence of 19.08‰. Maternal exposed to high concentrations of PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> in the 1<sup>st</sup> trimester were significantly associated with elevated odds ratios of birth defects (ORs ranged from 1.13 to 1.23). Additionally, for male fetuses, maternal exposed to high PM<sub>2.5</sub> concentration was associated with an elevated odd of CHDs (OR=1.27, 95% CI: 1.06, 1.52). In the cold season, the odds ratios of birth defects were significantly increased among women exposed to PM<sub>2.5</sub> (OR=1.64, 95% CI: 1.41, 1.91), NO<sub>2</sub> (OR=1.22, 95% CI: 1.08, 1.38), and SO<sub>2</sub> (OR=1.26, 95%CI: 1.07, 1.47). 

Conclusions This study showed unfavorable effects of air pollutants exposure during
 the 1<sup>st</sup> trimester on birth defects. Especially, the association between maternal PM<sub>2.5</sub>
 exposure and CHDs was only observed among male fetuses, and stronger effects of
 PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> exposure on birth defects were observed in the cold season.

Keywords: air pollutants; birth defects; congenital heart defects; limb defects;
orofacial clefts; pregnancy

| 3        |  |
|----------|--|
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 22       |  |
| 23<br>24 |  |
| 24<br>25 |  |
|          |  |
| 26<br>27 |  |
| 27<br>28 |  |
|          |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |
| 00       |  |

# 72 Strengths and limitations of this study

- This study explored the associations between maternal air pollutants exposure
   during 1<sup>st</sup> trimester and a wild range of outcomes classified by total birth defects,
   CHDs, limb defects, and orofacial clefts based on a large population.
- The stratification analysis by neonatal sex and season of conception indicated the
   specific high-risk population, which provided critical evidence of the air quality
   control policies.
- 79 > The selected participants are located in a large tertiary maternal care center in
  80 Wuhan and the representative of this study was undermined.
- Maternal air pollutants exposure indoor or other living residents including work,
   dining, and shopping were not included and other covariates including health
   behaviors and genetic factors were failed to obtain.

Page 5 of 25

## 86 INTRODUCTION

Birth defects are structural or functional abnormalities occurred during embryonic development, most of them forming in the 1<sup>st</sup> trimester of pregnancy.<sup>1</sup> Birth defects are the leading cause of fetal death and are associated with the elevated risk of childhood mortality and reduced long-term survival.<sup>2,3</sup> According to the Institute for Health Metrics and Evaluation, the prevalence of congenital birth defects increased from 6.08% in 2005 to 6.29% in 2019.<sup>4</sup> Although the upward trends were reported in severe congenital heart defects, single ventricle, atrioventricular septal defects, and tetralogy of Fallot in Europe during 1980-2012, the prevalence of birth defects are much lower (1.0-4.1%).<sup>5</sup> In China, the overall prevalence of birth defects increased from 12.83‰ in 1986 to 15.70‰ in 2014.6 There is a necessity to explore the potential hazard factors contributed to the high prevalence of birth defects in China based on current knowledge.

Due to rapid urbanization, China has experienced severe air pollution in recent years. The Report on China's implementation of the Millennium Development Goals (2000-2015) documented that particulate matter  $\leq 10 \ \mu m$  diameter (PM<sub>10</sub>), sulfur dioxide (SO<sub>2</sub>), and nitrogen dioxide (NO<sub>2</sub>) were major air pollutants in urban areas.<sup>7</sup> Moreover, ambient particulate matter  $\leq 2.5 \ \mu m$  diameter (PM<sub>2.5</sub>) produced by coal combustion, industry sources, and vehicular emissions, is also one of the main air pollutants of industrialization.<sup>8</sup> The expanding coverage of ambient air pollutants surveillance has contributed to a flow of studies on the adverse pregnancy outcome, including small for gestational age and low birth weight, preterm birth, spontaneous abortion, and stillbirth in recent years.9-11 Moreover, there is a growing interest in the associations between ambient air pollutants and birth defects, but the results of previous studies are controversial. Most studies reported that ambient air pollutants were associated with increased risks of birth defects.<sup>12-14</sup> However, Parkes et al. and Dolk et al. pointed out that high concentrations of PM<sub>10</sub> and NO<sub>2</sub> exposure were not related to birth defects.<sup>15,16</sup> A recent meta-analysis conducted by Ma et al. even reported a protective effect of SO<sub>2</sub> on atrial septal defects.<sup>17</sup> These inconsistent results indicate that the effects of ambient air pollutants on birth defects could be varied by 

culture, ethnicity, or geographical distribution. More evidence is needed to clarify the
risk of birth defects derived from air pollutants during the rapid social-economical
development worldwide.

As current studies on the relationships between air pollutants and birth defects were not fully elucidated, this study aimed to assess the association between selected air pollutants and birth defects. Furthermore, the 1<sup>st</sup> trimester of pregnancy is vital for fetal development because fetal major organs and systems are formed at this stage and the fetus is most susceptible to environmental hazards. As a result, we mainly focused on the associations between maternal exposure to air pollutants including  $PM_{10}$ ,  $PM_{2.5}$ , SO<sub>2</sub>, and NO<sub>2</sub> during the 1<sup>st</sup> trimester and birth defects in Wuhan, China.

126 METHODS

#### 127 Patient and public involvement

Patients or the public were not involved in any part of the design, conduct, reporting,or dissemination plans of this study.

#### 130 Study design, site and population

This observational study was conducted in Wuhan city. Wuhan is the capital city of
Hubei Province and a megacity in Central China. Its geographical location is 29° 58′ 31° 22′ N and 113° 41′ - 115° 05′ E. The permanent resident population of Wuhan
was over 10 million. Wuhan has four distinct seasons of hot summer and cold winter,
with an annual average temperature of 15.8 °C - 17.5 °C.<sup>18</sup>

There were a total of 130,186 perinatal women with detailed home addresses who delivered at the Maternal and Child Health Hospital of Hubei Province, and 98,877 of them lived in Wuhan City during the 1<sup>st</sup> trimester of pregnancy. Then we obtained 74,336 participants with distances less than 10 km from home to the nearest air surveillance station. After removing 3,333 mothers of multiple pregnancies and 141 149 with gestational age <20 weeks, 70,854 participants were finally included in this study.

#### 143 Birth defects

144Birth defect cases with gestational age  $\geq 20$  weeks and 0-7 days after birth including145elective termination of pregnancy. Based on the requirements of the Maternal and

Page 7 of 25

#### **BMJ** Open

Child Health Monitoring Manual in China and the Implementation of National Hospital Birth Defects Surveillance of China, 23 types of common birth defects were categorized according to the 10<sup>th</sup> Revision of the International Classification of Diseases (ICD-10, Q00–Q99). The top three birth defects including congenital heart defects (CHDs) (Q20–Q28), limb defects (Q69–Q72), and orofacial clefts (Q35–Q37) were further examined by trained obstetricians, pediatricians, or pediatric cardiologists based on clinical observation, physical examination, biochemical index, and image examination results. Strict quality control of the reported data was performed by the assigned county-level inspector every quarter year and further checked by the city-level inspector semiannually. Detailed descriptions of the 23 types of birth defects were provided in Supplementary Table 1. 

**Exposure assessment** 

Data on the daily concentrations of air pollutants (PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>) and the geographical locations (longitude and latitude) of the air surveillance stations were obtained from China's National Urban Air Quality Real-time Publishing Platform (http://106.37.208.233:20035). Moreover, the geographical location data was converted from the detailed home address of participants by Baidu Map. The distance from each home address of participants to all of the air surveillance stations were calculated. Then the individual daily air pollutants data were obtained according to the nearest surveillance station from home, and we only keep participants who lived within 10km from the nearest surveillance station, which was confirmed by other studies.<sup>15,19</sup> The median distance from home to the nearest station was 3.50 km in this study. Participants' average air pollutants exposure during the 1<sup>st</sup> trimester of pregnancy was estimated by mean levels of daily concentrations. 

170 Statistical analysis

171 Observed outcomes were classified as total birth defects, CHDs, limb defects, and 172 orofacial clefts. Maternal exposure variables including  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$ 173 were divided by interquartile range based on the daily average concentration during 174 the 1<sup>st</sup> trimester. Covariates including the year of conception (2013-2018), maternal 175 age (<25, 25-29, 30-34, and >34 years), gravidity (1, 2-3, and >3), and urban/rural

were obtained. Moreover, other covariates including per capita of cars, unemployment, per capita area of roads, per capita of medication beds were retrieved from the official website of Wuhan Bureau of Statistics (http://tjj.wuhan.gov.cn/). Logistic regression analysis was applied to assess the association between maternal air pollutants exposure during 1st trimester and birth defects adjusted for potential covariates. Stratified analyses by neonatal sex (male and female fetus) and season of conception by last menstrual period (March to August and September to February) were applied to further explore the associations between air pollutants exposure in the 1<sup>st</sup> trimester of pregnancy and birth defects. The adjusted odds ratio (OR) and 95% confidence interval (CI) were provided in each model. Statistical analyses were performed by SAS 9.4 (SAS Institute, Inc., Cary, NC). 

187 RESULTS

There were a total of 1,352 birth defect cases among 70,854 singletons, with a prevalence of 19.08‰ (Table 1). The prevalence of birth defects increased from 21.16‰ in 2013 to 24.08‰ in 2018. It ranks first place in subpopulations who conceived in winter (26.98‰), aged <25 years (28.10‰), or with gravidity >3 times (23.93‰). In addition, the male fetuses had a higher prevalence of birth defects than female fetuses (20.57‰ vs 16.80‰).

Table 1 Prevalence of birth defects among the subgroups of enrolled participants
in Wuhan, China

| in vv unung Onnu     |                    |             |                |
|----------------------|--------------------|-------------|----------------|
| Variables            | Birth defect cases | Total cases | Prevalence (‰) |
| Year of conception   |                    | J           |                |
| 2013                 | 272                | 12,856      | 21.16          |
| 2014                 | 203                | 11,236      | 18.07          |
| 2015                 | 174                | 11,274      | 15.43          |
| 2016                 | 227                | 12,261      | 18.51          |
| 2017                 | 226                | 12,844      | 17.60          |
| 2018                 | 250                | 10,383      | 24.08          |
| Season of conception |                    |             |                |
| Spring               | 321                | 18,312      | 17.53          |
| Summer               | 295                | 18,853      | 15.65          |
| Autumn               | 287                | 17,045      | 16.84          |
| Winter               | 449                | 16,644      | 26.98          |
| Age (years)          |                    |             |                |
| $\mathbf{C}$         |                    |             |                |

| <25          | 122   | 4,341  | 28.10 |
|--------------|-------|--------|-------|
| 25–29        | 632   | 34,412 | 18.37 |
| 30–34        | 401   | 23,783 | 16.86 |
| >34          | 197   | 8,318  | 23.68 |
| Gravidity    |       |        |       |
| 1            | 604   | 35,590 | 16.97 |
| 2-3          | 372   | 19,552 | 19.03 |
| >3           | 376   | 15,712 | 23.93 |
| Neonatal sex |       |        |       |
| Male         | 771   | 37,488 | 20.57 |
| Female       | 560   | 33,337 | 16.80 |
| Total        | 1,352 | 70,854 | 19.08 |

Table 2 shows the distributions of daily average ambient air pollutants concentrations in the 1<sup>st</sup> trimester among the 5 groups including non-defects, birth defects, CHDs, limb defects, and orofacial clefts. The median exposures of  $PM_{10}$ ,  $PM_{2.5}$ , NO<sub>2</sub>, and SO<sub>2</sub> during the 1<sup>st</sup> trimester were 101.78µg/m<sup>3</sup>, 61.98µg/m<sup>3</sup>, 53.64µg/m<sup>3</sup>, and 13.97µg/m<sup>3</sup> respectively among the birth defects groups.

Table 2 Quartile concentrations (μg/m<sup>3</sup>) of exposure for ambient air pollutants
 among birth defects groups in 1<sup>st</sup> trimester of pregnancy in Wuhan, China

| Air pollutants    | Non-defects | Birth defects | CHDs   | Limb defects | Orofacial    |
|-------------------|-------------|---------------|--------|--------------|--------------|
| Air ponutants     | N=69,502    | N=1,352       | N=265  | N=210        | clefts N=119 |
| $PM_{10}$         |             |               |        |              |              |
| Min               | 36.86       | 39.08         | 49.82  | 40.76        | 48.85        |
| 25th              | 80.84       | 84.05         | 84.05  | 85.86        | 83.98        |
| Median            | 102.42      | 101.78        | 99.46  | 105.80       | 96.77        |
| 75th              | 123.86      | 124.39        | 120.48 | 127.34       | 116.36       |
| Max               | 231.49      | 225.91        | 225.91 | 220.82       | 191.37       |
| PM <sub>2.5</sub> |             |               |        |              |              |
| Min               | 21.27       | 21.27         | 22.77  | 22.16        | 22.98        |
| 25th              | 39.37       | 45.02         | 44.88  | 42.63        | 41.26        |
| Median            | 59.21       | 61.98         | 61.33  | 63.00        | 60.98        |
| 75th              | 80.20       | 80.73         | 78.81  | 84.66        | 77.38        |
| Max               | 178.20      | 165.92        | 154.42 | 154.79       | 155.35       |
| $NO_2$            |             |               |        |              |              |
| Min               | 9.71        | 15.22         | 29.03  | 25.78        | 16.89        |
| 25th              | 43.40       | 45.70         | 45.49  | 44.31        | 44.09        |
| Median            | 51.49       | 53.64         | 53.69  | 53.43        | 53.84        |
| 75th              | 59.08       | 59.98         | 59.46  | 62.84        | 59.99        |
| Max               | 93.60       | 93.37         | 92.93  | 93.37        | 87.58        |

| Min    | 2.93  | 3.02  | 3.93  | 3.77  | 3.99  |
|--------|-------|-------|-------|-------|-------|
| 25th   | 9.07  | 9.36  | 9.43  | 10.55 | 9.46  |
| Median | 14.47 | 13.97 | 13.77 | 16.09 | 12.55 |
| 75th   | 23.54 | 23.87 | 23.36 | 25.23 | 21.28 |
| Max    | 71.74 | 63.36 | 63.36 | 62.99 | 53.75 |

206 Abbreviations: CHDs, congenital heart defects; NO<sub>2</sub>, nitrogen dioxide; PM<sub>10</sub>, particulate 207 matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter  $\leq$ 2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

Table 3 presents the associations between ambient air pollutants exposure in the 1<sup>st</sup> trimester of pregnancy and birth defects. We also provided the odds ratios of birth defects in the 2<sup>nd</sup> and 3<sup>rd</sup> trimesters, as well as the entire pregnancy in the supplementary Tables S2-S4. High concentrate exposure to air pollutants was significantly associated with increased odds of total birth defects, yielding adjusted ORs of 1.13, 1.23, 1.18, and 1.19 for PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>, respectively. Moreover, similar elevated odds of CHDs was observed for maternal exposure of PM<sub>2.5</sub> (OR=1.21, 95%CI: 1.06, 1.38), NO<sub>2</sub> (OR=1.13, 95%CI: 1.01, 1.27), and SO<sub>2</sub> (OR=1.24, 95%CI: 1.03, 1.48), but not PM<sub>10</sub> (1.08, 95% CI: 0.95, 1.24). 

For male fetuses, there were significantly increased odds of total birth defects among mothers exposed to  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$  by interquartile increased concentrations during the 1<sup>st</sup> trimester (OR=1.13-1.23). Moreover, a positive association between  $PM_{2.5}$  exposure during the 1<sup>st</sup> trimester and CHDs was detected (OR=1.27, 95% CI: 1.06, 1.52). For female fetuses, elevated odds of total birth defects (OR=1.14-1.22) were also observed among maternal exposed to heavy concentrated  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$ .

After stratified by season, the results show that the odds of total birth defects were significantly increased among women who conceived in Autumn/Winter and were exposed to  $PM_{2.5}$  (OR=1.64, 95% CI: 1.41, 1.91), NO<sub>2</sub> (OR=1.22, 95% CI: 1.08, 1.38), or SO<sub>2</sub> (OR=1.26, 95% CI: 1.07, 1.47). PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> were also positively related to CHDs (ORs=1.36-1.84). Elevated hazard of orofacial clefts was observed among women who conceived in the cold season exposed to heavy NO<sub>2</sub> concentrations (OR=1.85, 95% CI: 1.16, 2.93). However, in the warm season, the odd

| 232 | of total birth defects was elevated among women exposed to $PM_{10}$ (OR=1.12, 95%) | 6 |
|-----|-------------------------------------------------------------------------------------|---|
|-----|-------------------------------------------------------------------------------------|---|

CI: 1.00, 1.24). 

#### Table 3 Adjusted odds ratios and 95% confidence interval of ambient air

#### pollutants for each interquartile increase during the 1<sup>st</sup> trimester and birth defects

in Wuhan, China 

| <b>Birth defects</b> <sup>a</sup> | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|-----------------------------------|-------------------------|-------------------|-----------------|-----------------|
| Dif til úciccis                   | OR (95%CI)              | OR (95%CI)        | OR (95%CI)      | OR (95%CI)      |
| Total                             |                         |                   |                 |                 |
| Birth defects                     | 1.13(1.07,1.21)         | 1.23(1.15,1.30)   | 1.18(1.12,1.24) | 1.19(1.10,1.30) |
| CHDs                              | 1.08(0.95,1.24)         | 1.21(1.06,1.38)   | 1.13(1.01,1.27) | 1.24(1.03,1.48) |
| Limb defects                      | 1.11(0.96,1.29)         | 1.09(0.93,1.26)   | 1.15(1.01,1.31) | 1.16(0.95,1.43  |
| Orofacial clefts                  | 0.90(0.74,1.10)         | 1.04(0.85,1.26)   | 1.10(0.93,1.31) | 0.95(0.73,1.22  |
| Male fetus                        |                         |                   |                 |                 |
| Birth defects                     | 1.13(1.04,1.22)         | 1.23(1.14,1.34)   | 1.18(1.10,1.26) | 1.19(1.07,1.33  |
| CHDs                              | 1.16(0.96,1.40)         | 1.27(1.06,1.52)   | 1.11(0.95,1.30) | 1.18(0.93,1.50  |
| Limb defects                      | 1.10(0.91,1.33)         | 1.08(0.90,1.30)   | 1.15(0.98,1.35) | 1.14(0.89,1.47  |
| Orofacial clefts                  | 0.86(0.66,1.12)         | 1.09(0.85,1.41)   | 1.07(0.86,1.34) | 0.99(0.71,1.37  |
| Female fetus                      |                         |                   |                 |                 |
| Birth defects                     | 1.14(1.04,1.25)         | 1.22(1.12,1.34)   | 1.19(1.10,1.29) | 1.21(1.07,1.37  |
| CHDs                              | 0.99(0.82,1.20)         | 1.11(0.91,1.34)   | 1.14(0.97,1.34) | 1.30(1.00,1.71  |
| Limb defects                      | 1.08(0.84,1.38)         | 1.15(0.90,1.47)   | 1.15(0.93,1.43) | 1.18(0.84,1.66  |
| Orofacial clefts                  | 0.98(0.71,1.34)         | 0.95(0.69,1.30)   | 1.16(0.88,1.52) | 0.88(0.59,1.30  |
| Autumn/Winter                     |                         |                   |                 |                 |
| Birth defects                     | 1.05(0.92,1.20)         | 1.64(1.41,1.91)   | 1.22(1.08,1.38) | 1.26(1.07,1.47  |
| CHDs                              | 1.05(0.79,1.39)         | 1.84(1.32,2.57)   | 1.36(1.03,1.80) | 1.43(1.00,2.03  |
| Limb defects                      | 1.19(0.84,1.70)         | 1.48(0.99,2.22)   | 1.35(0.97,1.87) | 1.06(0.70,1.61  |
| Orofacial clefts                  | 0.95(0.61,1.47)         | 1.63(0.98,2.70)   | 1.85(1.16,2.93) | 1.40(0.82,2.40  |
| Summer/Spring                     |                         |                   |                 |                 |
| Birth defects                     | 1.12(1.00,1.24)         | 1.06(0.93,1.21)   | 1.09(1.00,1.19) | 1.12(0.98,1.28  |
| CHDs                              | 0.99(0.77,1.26)         | 0.89(0.65,1.21)   | 0.88(0.71,1.08) | 1.24(0.92,1.66  |
| Limb defects                      | 1.18(0.92,1.51)         | 1.21(0.89,1.63)   | 1.17(0.95,1.43) | 1.23(0.89,1.71  |
| Orofacial clefts                  | 0.72(0.50,1.03)         | 0.66(0.41,1.04)   | 0.88(0.65,1.19) | 0.72(0.47,1.10  |

Bold values represent statistical significance (two-sided *P*<0.05). Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen 

dioxide; OR, odds ratio;  $PM_{10}$ , particulate matter  $\leq 10 \mu m$  diameter;  $PM_{2.5}$ , particulate matter 

 $<2.5 \,\mu\text{m}$  diameter; SO<sub>2</sub>, sulfur dioxide. 

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of 

roads, per capita of medication beds, unemployment, and per capita of cars. 

DISCUSSION 

In the current study, the prevalence of birth defects was close to what was reported in Hunan Province (19.18‰) and higher than that of Jiangsu Province (7.15‰).<sup>20,21</sup> Moreover, this study examined the associations between birth defects and air pollutants exposure in the 1<sup>st</sup> trimester, and we further explored the relationships stratified by fetal sex and season of conception.

This study showed that maternal exposure to ambient air pollutants including PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> during the 1<sup>st</sup> trimester could have higher odds of birth defects, which has been well documented previously. Moreover, we have adopted peak exposure on the thresholds at the 95th percentile to derive the accumulated days of high dose exposure, which double confirmed the positive association between high dose of NO<sub>2</sub> exposure during the 1st trimester and birth defects (Supplementary Table 5). A case-control study conducted by Al Noaimi et al. showed a positive association between PM<sub>2.5</sub> exposure in the 1<sup>st</sup> trimester of pregnancy and birth defects (OR=1.05).<sup>22</sup> Wang et al. applied Poisson generalized additive models on the time-series data adjusted for temperature, relative humidity, season, and time trend, which showed that maternal exposure to  $PM_{10}$  and  $NO_2$  in early pregnancy significantly increased the risk of birth defects by 10.3% per 10  $\mu$ g/m<sup>3</sup> and 3.4% per  $10 \,\mu\text{g/m}^3$ , respectively.<sup>23</sup> 

As was observed among the total participants, the risk of birth defects among both male fetuses and female fetuses was significantly related to PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>. The underlying mechanisms between air pollutants exposure and the development of birth defects are still unclear. Maternal air pollutants exposures might cause changes in epigenetic signatures and permanent modifications in gene expression.<sup>24</sup> Studies based on mice models showed that maternal exposure to PM<sub>2.5</sub> during pregnancy leads to spatial memory dysfunction, neurodevelopmental impairment, and disturbed cerebral cortex development of mice offspring.<sup>25,26</sup> Another study showed that maternal exposure to a high concentrate of PM<sub>2.5</sub> during the 1st trimester of pregnancy could result in the decreased placental expression of BDNF and SYN1, which may undermine fetal neurodevelopment.<sup>27</sup> Moreover, SO<sub>2</sub> is a systemic toxic agent which can induce chromosomal aberrations, sister chromatid 

Page 13 of 25

#### **BMJ** Open

exchanges, and micronuclei in mammalian cells.<sup>28</sup>

Except for PM<sub>10</sub>, this study demonstrated adverse associations of CHDs with PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> exposure. Previous studies in Taiwan and Northeast England also reported insignificant associations between PM<sub>10</sub> exposure in the 1<sup>st</sup> trimester and CHDs,<sup>29,30</sup> whereas others confirmed the increased risk of CHDs caused by PM<sub>10</sub>.<sup>12,23,31-34</sup> Furthermore, Huang et al. showed that PM<sub>2.5</sub> exposure per each interquartile increase during gestational weeks 3-8 was related to an increased risk of CHDs (OR=1.21).<sup>35</sup> Additionally, the positive association between CHDs and maternal exposure to NO<sub>2</sub> and SO<sub>2</sub> was documented by studies conducted by Baldacci et al. and Vrijheid et al.<sup>36,37</sup> Moreover, a case-control study conducted by Jiang et al. showed that maternal exposure to SO<sub>2</sub> during the 1<sup>st</sup> trimester was significantly associated with increased risk of CHD (OR=1.78-2.04), and Hansen et al. also confirmed that a 0.6 ppb increase in SO<sub>2</sub> was associated with an increased risk of aortic artery and valve defects (OR=10.76).<sup>19,38</sup> The heterogeneity in these studies might be explained by the variation in the population, the gestational periods, or the measurement of air pollutants exposure. The physiopathological mechanism of the associations between air pollutants and CHDs was not fully elucidated. It is hypothesized that air pollutants exposure during the 1<sup>st</sup> pregnancy might strengthen the genetic and environmental interaction on CHDs.<sup>37</sup> Also, Air pollutants might change the molecule of DNA sequence or alter epigenetics in related to CHDs.<sup>39</sup> 

The epidemiological difference in CHD<sub>s</sub> between male and female fetuses has been wildly reported.<sup>40,41</sup> This disparity could be explained by the sex chromosome-linked genes expression and their interactions with hormonal effects during early development.<sup>42</sup> Interestingly, only male fetuses showed an elevated risk of CHDs who were exposed to a higher PM<sub>2.5</sub> concentration. This result indicates that PM<sub>2.5</sub> might emphasize the disparity in the embryonic origins of sexual dimorphism. Moreover, PM<sub>2.5</sub> might have a stronger effect on the expression of specific CHDs genes located on the Y chromosome. A study of mice models showed that increased pathological damage in the hearts of offspring mice was observed among maternal mice exposed to PM<sub>2.5</sub>, and these effects in the male group were more obvious than in 

the female group.  $PM_{2.5}$  exposure in utero inhibited the expression of the *GATA4* gene in male mice, which related to the formation of CHDs.<sup>43</sup>

After stratified by season, maternal exposure of PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> were positively associated with birth defects in the cold season, but this relationship was not observed in the warm season. Zhao et al. reported that the effects of air pollutants on birth defects were more obvious in the warm season in Hohhot.44 This disparity could be partly explained by the uneven levels of dwellings' air pollutants. Compared to cities with lower GDP, cities with a higher GDP and a large population might have lower concentrations of indoor particulate matter.<sup>45</sup> Moreover, Wuhan is a well-known city with hot summer. Most of the residential buildings are equipped with air conditioners, which could help to improve indoor air quality in hot weather. Thus, the interpretation of results should be cautious that significant associations between air pollutants exposure and birth defects in the warm season in Wuhan. 

319 Strengths

 This study firstly provided evidence on the elevated risk of CHDs among mothers with heavy  $PM_{2.5}$  exposure during the 1<sup>st</sup> trimester. We also found the increased risks of CHDs and orofacial clefts among women who conceived in the cold season exposed to high concentrations of air pollutants.

324 Limitations

This study has several limitations. Firstly, the selected participants are located in a large tertiary maternal care center in Wuhan and the representative of this study was undermined. Secondly, the birth defects data of this study are manually collected and checked, but mistakes and omissions are inevitable. Thirdly, maternal air pollutants exposure indoor or other living residents including work, dining, and shopping were not included in this study. Fourthly, other risk factors (including ethnicity, smoking, drinking, medications, drug use, and family history et al.) were failed to obtain, which might undermine the interpretation of the relationship between maternal air pollutants exposure and birth defects. More research is needed to explore the pathogenic mechanism of air pollutants exposure during pregnancy and the associated birth defects. 

#### 336 CONCLUSIONS

Our study confirmed the unfavorable effects of maternal exposure to air pollutants (PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>) on birth defects during the 1<sup>st</sup> trimester of pregnancy. We firstly provided the evidence on the positive associations between PM<sub>2.5</sub> exposure and CHDs among male fetuses but not female fetuses. Moreover, stronger effects of PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> exposure on birth defects were observed in the cold season in Wuhan. As a result, it should be noted for birth defects due to air pollutants, and reducing individual air pollutants exposure during the 1<sup>st</sup> trimester might help to birth defect control in the context of the rapid development all over the world. Moreover, the implementation of air quality protection policies on birth defect control should consider seasonal factor, especially for the cold season in Wuhan, China. Future studies of birth defects and air quality data collected by individual air pollutants monitors are promoted.

349 Abbreviations

350 CHDs: congenital heart defects; CI: confidence interval; NO<sub>2</sub>: nitrogen dioxide; OR:
351 odds ratio; PM<sub>10</sub>: particulate matter ≤10 µm diameter; PM<sub>2.5</sub>: particulate matter ≤2.5
352 µm diameter; SO<sub>2</sub>: sulfur dioxide.

#### 353 Ethics approval and consent to participate

This study was approved by the Ethics Committee of Maternal and Child Health Hospital of Hubei Province (2021IECLW025). This study was based on the retrospective clinical data without any individual patient identifiers.

- **Patient consent for publication**
- 358 Not applicable.
- **Patient and public involvement** 
  - 360 Patients or the public were not involved in the design, or conduct, or reporting, or
- 361 dissemination plans of our research.
- 362 Availability of data and materials
- 363 The data used in this study are available from corresponding author on reasonable

| 1<br>2   |     |                                                                                                         |
|----------|-----|---------------------------------------------------------------------------------------------------------|
| 3<br>4   | 364 | request.                                                                                                |
| 5<br>6   | 365 | Competing interests                                                                                     |
| 7<br>8   | 366 | The authors declare that they have no competing interests.                                              |
| 9<br>10  | 367 | Funding                                                                                                 |
| 11<br>12 | 368 | No funding was received to assist with the preparation of this manuscript.                              |
| 13<br>14 | 369 | Authors' contributions                                                                                  |
| 15<br>16 | 370 | Yao Cheng and Jieyun Yin contributed equally to this manuscript. Yao Cheng                              |
| 17<br>18 | 371 | collected the data, performed data analysis, draft and revised the manuscript. Jieyun                   |
| 19       | 372 | Yin collected the data, performed data analysis, and edit the manuscript. Lijun Yang                    |
| 20<br>21 | 373 | designed the study, collected the data, and performed data analysis. Man Xu, Xinfeng                    |
| 22<br>23 | 374 | Lu, and Wenting Huang collected the data, interpreted the data, and reviewed the                        |
| 24<br>25 | 375 | manuscript. Guohong Dai: collected the data, interpreted the data, and revised the                      |
| 26<br>27 | 376 | manuscript. Guoqiang Sun: designed the study, collected the data, and supervised the                    |
| 28<br>29 | 377 | project. All authors gave final approval of the version to be submitted and agreed to                   |
| 30<br>31 | 378 | be accountable for all aspects of the work.                                                             |
| 32<br>33 | 379 | Acknowledgements                                                                                        |
| 34<br>35 | 380 | We appreciate all the medical staff of the Maternal and Child Health Hospital of                        |
| 36<br>37 | 381 | Hubei Province for the data collection used in this manuscript.                                         |
| 38<br>39 | 382 | References                                                                                              |
| 40       | 383 | 1. World Health Organization. Congenital anomalies.                                                     |
| 41       | 384 | https://www.who.int/en/news-room/fact-sheets/detail/congenital-anomalies. 2020. Accessed                |
| 42<br>43 | 385 | 15 May 2021.                                                                                            |
| 44       | 386 | 2. Global PaedSurg Research Collaboration. Mortality from gastrointestinal congenital                   |
| 45       |     |                                                                                                         |
| 46       | 387 | anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a                |
| 47<br>48 | 388 | multicentre, international, prospective cohort study. <i>Lancet</i> 2021;398:325-339.                   |
| 49       | 389 | 3. Glinianaia SV, Morris JK, Best KE, <i>et al.</i> Long-term survival of children born with congenital |
| 50       | 390 | anomalies: A systematic review and meta-analysis of population-based studies. PLoS Med                  |
| 51       | 391 | 2020;17:e1003356.                                                                                       |
| 52       | 392 | 4. Institute for Health Metrics and Evaluation. GBD Results Tool.                                       |
| 53<br>54 | 393 | https://ghdxhealthdataorg/gbd-results-tool. 2022. Accessed 15 Jan 2022.                                 |
| 55       | 394 | 5. Morris JK, Springett AL, Greenlees R, et al. Trends in congenital anomalies in Europe from           |
| 56       | 395 | 1980 to 2012. PloS one 2018;13:e0194986.                                                                |
| 57       | 396 | 6. Yao L, Zhou T, Zhang S, et al. Trends and geographical distribution of birth defects in China        |
| 58<br>59 | 397 | from 1986 to 2014. Chin J Birth Health Heredity 2020;28:83-88+91 (In Chinese).                          |
| 59<br>60 | 398 | 7. United Nations Development Programme. Report on China's Implementation of the                        |
|          |     | 15                                                                                                      |

| 2        |            |     |                                       |                                         |                                 |                    |
|----------|------------|-----|---------------------------------------|-----------------------------------------|---------------------------------|--------------------|
| 3<br>4   | 399        |     | Millennium                            | Development                             | Goals                           | (2000-2015).       |
| 4<br>5   | 400        |     | https://www.cn.undp                   | .org/content/china/zh/home/lib          | rary/mdg/mdgs-report-20         | 015html. 2015.     |
| 6        | 401        |     | Accessed 15 May 202                   | 21 (In Chinese).                        |                                 |                    |
| 7        | 402        | 8.  | Wang Q, Fan D, Zh                     | ao L, et al. A Study on the I           | Design Method of Indoo          | r Fine Particulate |
| 8<br>9   | 403        |     | Matter (PM2.5) Pollu                  | tion Control in China. Int J En         | wiron Res Public Health         | 2019;16:4588.      |
| 9<br>10  | 404        | 9.  | Guo P, Chen Y, W                      | Vu H, <i>et al</i> . Ambient air po     | ollution and markers of         | fetal growth: A    |
| 11       | 405        |     |                                       | tion-based cohort study of 2.5          |                                 | •                  |
| 12       | 406        |     | <i>Environ Int</i> 2020;135           |                                         | 5                               |                    |
| 13<br>14 | 407        | 10. | · · · · · · · · · · · · · · · · · · · | I, Korošec S, <i>et al.</i> Ambient     | air pollution and pregna        | ancy outcomes: A   |
| 14       | 408        |     | -                                     | w and identification of enviro          |                                 | -                  |
| 16       | 409        |     | Res 2018;167:144-15                   |                                         | initental puerte neutri en      |                    |
| 17       | 410        | 11. |                                       | Chu L, <i>et al</i> . Air pollution ex  | nosure during pregnancy         | and spontaneous    |
| 18<br>19 | 411        | 11. |                                       | a. Rev Environ Health 2018;33           |                                 | and spontaneous    |
| 20       | 411        | 12. |                                       | hi M, <i>et al.</i> Effects of Prenatal |                                 | tal Cardiavagaular |
| 21       |            | 12. |                                       |                                         |                                 |                    |
| 22       | 413        |     |                                       | uzhou, China: A Retrospecti             | ive Case-Control Study.         | . Environ Healin   |
| 23<br>24 | 414        | 10  | <i>Perspect</i> 2017;125:0:           |                                         | . 1                             | 1 1.               |
| 24       | 415        | 13. | · · · ·                               | g J, <i>et al</i> . Meta-analyses of ma | •                               |                    |
| 26       | 416        |     |                                       | f congenital anomalies in               | offspring. Environ Sci          | Pollut Res Int     |
| 27       | 417        |     | 2021;28:55869-5588                    |                                         |                                 |                    |
| 28<br>29 | 418        | 14. | <b>-</b>                              | ui X, et al. Associations bet           | • •                             | ion exposure and   |
| 30       | 419        |     | •                                     | ase. Sci Total Environ 2021;75          |                                 |                    |
| 31       | 420        | 15. | Parkes B, Hansell A                   | L, Ghosh RE, <i>et al</i> . Risk of c   | ongenital anomalies near        | r municipal waste  |
| 32       | 421        |     | incinerators in Engla                 | and and Scotland: Retrospectiv          | ve population-based coho        | ort study. Environ |
| 33<br>34 | 422        |     | Int 2020;134:104845                   |                                         |                                 |                    |
| 35       | 423        | 16. | Dolk H, Armstrong                     | B, Lachowycz K, et al. Am               | bient air pollution and i       | risk of congenital |
| 36       | 424        |     | anomalies in England                  | l, 1991-1999. Occup Environ N           | <i>Med</i> 2010;67:223-227.     |                    |
| 37       | 425        | 17. | Ma Z, Cao X, Chang                    | Y, et al. Association between           | gestational exposure and        | risk of congenital |
| 38<br>39 | 426        |     | heart disease: A syste                | ematic review and meta-analysi          | is. Environ Res 2021;197        | :111014.           |
| 40       | 427        | 18. | Wang S, Yu S, Yan                     | R, et al. Characteristics and o         | origins of air pollutants       | in Wuhan, China,   |
| 41       | 428        |     | based on observat                     | ions and hybrid receptor                | models. J Air Waste             | e Manag Assoc      |
| 42       | 429        |     | 2017;67:739-753.                      |                                         |                                 |                    |
| 43<br>44 | 430        | 19. | Jiang W, Liu Z, Ni E                  | B, et al. Independent and intera        | active effects of air pollu     | tants and ambient  |
| 45       | 431        |     | heat exposure on con                  | genital heart defects. Reprod T         | <i>Coxicol</i> 2021;104:106-113 | 3.                 |
| 46       | 432        | 20. | Xie D, Yang T, Li                     | u Z, et al. Epidemiology of             | Birth Defects Based o           | n a Birth Defect   |
| 47       | 433        |     | -                                     | n from 2005 to 2014 ir                  |                                 |                    |
| 48<br>49 | 434        |     | 2016;11:e0147280.                     |                                         |                                 |                    |
| 50       | 435        | 21. |                                       | hou H, et al. Epidemiology              | of birth defects based          | on a birth defect  |
| 51       | 436        |     |                                       | in Southern Jiangsu, China, 2           |                                 |                    |
| 52       | 437        |     | 2022;35:745-751.                      |                                         |                                 |                    |
| 53<br>54 | 438        | 22. |                                       | K, El Asmar K, et al. Prena             | tal exposure to criteria        | air pollutants and |
| 55       | 439        | 22. |                                       | congenital anomalies: A Le              | -                               | -                  |
| 56       | 440        |     | 2021;281:117022.                      | ingentur unomunes. A Le                 | suuy.                           | Environ 1 Ouul     |
| 57<br>58 | 440<br>441 | 23. |                                       | Mi B, et al. Association betwe          | en early proposal experies      | ure to ambient air |
| 58<br>59 | 441<br>442 | 43. |                                       |                                         |                                 |                    |
| 60       | 442        |     | pollution and difth d                 | efects: evidence from newbor            | iis iii Afaii, Unina. J Pu      | инс пealth (OxJ)   |

| 2        |     |     |                                                                                                     |
|----------|-----|-----|-----------------------------------------------------------------------------------------------------|
| 3<br>4   | 443 |     | 2019;41:494-501.                                                                                    |
| 5        | 444 | 24. | Stapleton PA, Wingard CJ, Nurkiewicz TR, et al. Cardiopulmonary consequences of                     |
| 6        | 445 |     | gestational toxicant exposure: Symposium overview at the 56th annual SOT meeting,                   |
| 7        | 446 |     | Baltimore, MD. Reprod Toxicol 2018;79:16-20.                                                        |
| 8<br>9   | 447 | 25. | Liu F, Huang Y, Zhang F, et al. Macrophages treated with particulate matter PM2.5 induce            |
| 10       | 448 |     | selective neurotoxicity through glutaminase-mediated glutamate generation. J Neurochem              |
| 11       | 449 |     | 2015;134:315-326.                                                                                   |
| 12       | 450 | 26. | Zhang T, Zheng X, Wang X, et al. Maternal Exposure to PM(2.5) during Pregnancy Induces              |
| 13<br>14 | 451 |     | Impaired Development of Cerebral Cortex in Mice Offspring. Int J Mol Sci 2018;19: 257.              |
| 15       | 452 | 27. | Saenen ND, Plusquin M, Bijnens E, et al. In Utero Fine Particle Air Pollution and Placental         |
| 16       | 453 |     | Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An                  |
| 17<br>18 | 454 |     | ENVIRONAGE Birth Cohort Study. <i>Environ Health Perspect</i> 2015;123:834-840.                     |
| 18       | 455 | 28. | Meng Z, Qin G, Zhang B, et al. DNA damaging effects of sulfur dioxide derivatives in cells          |
| 20       | 456 |     | from various organs of mice. <i>Mutagenesis</i> 2004;19:465-468.                                    |
| 21       | 457 | 29. | Dadvand P, Rankin J, Rushton S, <i>et al.</i> Ambient air pollution and congenital heart disease: a |
| 22<br>23 | 458 |     | register-based study. <i>Environ Res</i> 2011;111:435-441.                                          |
| 24       | 459 | 30. | Hwang BF, Lee YL, Jaakkola JJ. Air Pollution and the Risk of Cardiac Defects: A                     |
| 25       | 460 |     | Population-Based Case-Control Study. Medicine 2015;94:e1883.                                        |
| 26<br>27 | 461 | 31. | Jacobs M, Zhang G, Chen S, et al. The association between ambient air pollution and selected        |
| 28       | 462 |     | adverse pregnancy outcomes in China: A systematic review. Sci Total Environ                         |
| 29       | 463 |     | 2017;579:1179-1192.                                                                                 |
| 30<br>21 | 464 | 32. | Jin L, Qiu J, Zhang Y, et al. Ambient air pollution and congenital heart defects in Lanzhou,        |
| 31<br>32 | 465 |     | China. Environ Res Lett 2015; 10:074005.                                                            |
| 33       | 466 | 33. | Ren Z, Zhu J, Gao Y, et al. Maternal exposure to ambient PM(10) during pregnancy increases          |
| 34<br>25 | 467 |     | the risk of congenital heart defects: Evidence from machine learning models. Sci Total              |
| 35<br>36 | 468 |     | <i>Environ</i> 2018; 630:1-10.                                                                      |
| 37       | 469 | 34. | Zhang B, Liang S, Zhao J, et al. Maternal exposure to air pollutant PM2.5 and PM10 during           |
| 38       | 470 |     | pregnancy and risk of congenital heart defects. J Expo Sci Environ Epidemiol 2016;                  |
| 39<br>40 | 471 |     | 26:422-427.                                                                                         |
| 40       | 472 | 35. | Huang CC, Chen BY, Pan SC, et al. Prenatal exposure to PM(2.5) and Congenital Heart                 |
| 42       | 473 |     | Diseases in Taiwan. Sci Total Environ 2019;655:880-886.                                             |
| 43<br>44 | 474 | 36. | Baldacci S, Gorini F, Minichilli F, et al. Review of epidemiological studies on individual and      |
| 44<br>45 | 475 |     | environmental risk factors in the aetiology of congenital heart defects. Epidemiol Prev             |
| 46       | 476 |     | 2016;40:185-196.                                                                                    |
| 47<br>49 | 477 | 37. | Vrijheid M, Martinez D, Manzanares S, et al. Ambient air pollution and risk of congenital           |
| 48<br>49 | 478 |     | anomalies: a systematic review and meta-analysis. Environ Health Perspect                           |
| 50       | 479 |     | 2011;119:598-606.                                                                                   |
| 51       | 480 | 38. | Hansen CA, Barnett AG, Jalaludin BB, et al. Ambient air pollution and birth defects in              |
| 52<br>53 | 481 |     | brisbane, australia. <i>PloS one</i> 2009;4:e5408.                                                  |
| 54       | 482 | 39. | Vecoli C, Pulignani S, Andreassi MG. Genetic and Epigenetic Mechanisms Linking Air                  |
| 55       | 483 |     | Pollution and Congenital Heart Disease. J Cardiovasc Dev Dis 2016;3:32.                             |
| 56<br>57 | 484 | 40. | Zhao QM, Liu F, Wu L, et al. Prevalence of Congenital Heart Disease at Live Birth in China.         |
| 58       | 485 |     | J Pediatr 2019;204:53-58.                                                                           |
| 59       | 486 | 41. | Khoshhal SQ, Albasri AM, Morsy MMF, et al. The trends and patterns of congenital heart              |
| 60       |     |     |                                                                                                     |
|          |     |     | 17                                                                                                  |

| 1        |            |     |                                                                                                                                                                                        |
|----------|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   |            |     |                                                                                                                                                                                        |
| 4        | 487<br>488 | 42. | diseases at Madinah Cardiac Center, Madinah, Saudi Arabia. <i>Saudi Med J</i> 2020;41:977-983. Deegan DF, Nigam P, Engel N. Sexual Dimorphism of the Heart: Genetics, Epigenetics, and |
| 5<br>6   | 489        | 42. | Development. Front Cardiovasc Med 2021;8:668252.                                                                                                                                       |
| 7        | 490        | 43. | Li R, Zhao Y, Shi J, <i>et al.</i> Effects of PM(2.5) exposure in utero on heart injury, histone                                                                                       |
| 8<br>9   | 491        |     | acetylation and GATA4 expression in offspring mice. <i>Chemosphere</i> 2020;256:127133.                                                                                                |
| 9<br>10  | 492        | 44. | Zhao B, Wang M, Lü C, et al. Increasing risk of congenital anomalies associated with                                                                                                   |
| 11       | 493        |     | seasonal pattern of air pollution: Differences by maternal comorbidities. Ecotoxicol Environ                                                                                           |
| 12<br>13 | 494        |     | saf 2019;167:317-323.                                                                                                                                                                  |
| 14       | 495        | 45. | Zhu YD, Fan L, Wang J, et al. Spatiotemporal variation in residential PM2.5 and PM10                                                                                                   |
| 15<br>16 | 496        |     | concentrations in China: National on-site survey. Environ Res 2021;202:111731.                                                                                                         |
| 17       | 497        |     |                                                                                                                                                                                        |
| 18<br>19 |            |     |                                                                                                                                                                                        |
| 20       |            |     |                                                                                                                                                                                        |
| 21       |            |     |                                                                                                                                                                                        |
| 22<br>23 |            |     |                                                                                                                                                                                        |
| 24       |            |     |                                                                                                                                                                                        |
| 25<br>26 |            |     |                                                                                                                                                                                        |
| 27       |            |     |                                                                                                                                                                                        |
| 28<br>29 |            |     |                                                                                                                                                                                        |
| 30       |            |     | concentrations in China: National on-site survey. <i>Environ Res</i> 2021;202:111731.                                                                                                  |
| 31<br>32 |            |     |                                                                                                                                                                                        |
| 33       |            |     |                                                                                                                                                                                        |
| 34<br>35 |            |     |                                                                                                                                                                                        |
| 36       |            |     |                                                                                                                                                                                        |
| 37<br>38 |            |     |                                                                                                                                                                                        |
| 39       |            |     |                                                                                                                                                                                        |
| 40<br>41 |            |     |                                                                                                                                                                                        |
| 41       |            |     |                                                                                                                                                                                        |
| 43       |            |     |                                                                                                                                                                                        |
| 44<br>45 |            |     |                                                                                                                                                                                        |
| 46       |            |     |                                                                                                                                                                                        |
| 47<br>48 |            |     |                                                                                                                                                                                        |
| 49       |            |     |                                                                                                                                                                                        |
| 50<br>51 |            |     |                                                                                                                                                                                        |
| 52       |            |     |                                                                                                                                                                                        |
| 53<br>54 |            |     |                                                                                                                                                                                        |
| 55       |            |     |                                                                                                                                                                                        |
| 56<br>57 |            |     |                                                                                                                                                                                        |
| 58       |            |     |                                                                                                                                                                                        |
| 59<br>60 |            |     |                                                                                                                                                                                        |
| 00       |            |     | 18                                                                                                                                                                                     |
|          |            |     |                                                                                                                                                                                        |

| 2                          |  |
|----------------------------|--|
|                            |  |
| 3                          |  |
| 4                          |  |
| 5                          |  |
| 6                          |  |
| 6<br>7<br>8                |  |
| /                          |  |
|                            |  |
| 9                          |  |
| 10                         |  |
| 11                         |  |
| 12                         |  |
|                            |  |
| 13                         |  |
| 14                         |  |
| 15                         |  |
| 16                         |  |
| 17                         |  |
| 14<br>15<br>16<br>17<br>18 |  |
| 10                         |  |
| 19                         |  |
| 20                         |  |
| 21                         |  |
| 22                         |  |
| 23                         |  |
| 24                         |  |
|                            |  |
| 25                         |  |
| 26<br>27                   |  |
| 27                         |  |
| 28                         |  |
| 29                         |  |
| 30                         |  |
|                            |  |
| 31                         |  |
| 32                         |  |
| 33                         |  |
| 34                         |  |
| 35                         |  |
|                            |  |
| 36<br>37                   |  |
|                            |  |
| 38                         |  |
| 39                         |  |
| 40                         |  |
| 41                         |  |
| 41                         |  |
|                            |  |
| 43                         |  |
| 44                         |  |
| 45                         |  |
| 46                         |  |
| 47                         |  |
| 47                         |  |
|                            |  |
| 49                         |  |
| 50                         |  |
| 51                         |  |
| 52                         |  |
| 53                         |  |
|                            |  |
| 54                         |  |
| 55                         |  |
| 56                         |  |
| 57                         |  |
| 58                         |  |
|                            |  |

| Number     | Birth defect                                                 | Ν   |
|------------|--------------------------------------------------------------|-----|
| 21         | Conjoined twins                                              | 0   |
| 13         | Bladder valgus                                               | 1   |
| 1          | Anencephaly                                                  | 2   |
| 3          | Encephalocele                                                | 3   |
| 20         | Gastroschisis                                                | 3   |
| 8          | Small ears (including no ears)                               | 6   |
| 10         | Esophageal atresia or stenosis                               | 8   |
| 2          | Spina bifida                                                 | 12  |
| 18         | Congenital diaphragmatic hernia                              | 13  |
| 19         | Omphalocele                                                  | 18  |
| 12         | Hypospadias                                                  | 27  |
| 11         | Rectoanal atresia or stricture (including anorectal atresia) | 30  |
| 14         | Equinovarus                                                  | 41  |
| 4          | Congenital hydrocephalus                                     | 45  |
| 22         | Down's syndrome                                              | 79  |
| 9          | Other malformations of the external ear (except for small    | 86  |
|            | ears and no ears)                                            |     |
| 5, 6, 7    | Orofacial clefts                                             | 119 |
| 15, 16, 17 | Limb defects                                                 | 210 |
| 23         | Congenital heart defects                                     | 265 |
|            |                                                              |     |

| 1        |
|----------|
| 2        |
| 3        |
| 4        |
| -        |
| 5        |
| 6<br>7   |
| 7        |
| 8        |
| 9        |
|          |
| 10       |
| 11       |
| 12       |
| 13       |
| 11       |
| 14       |
| 15       |
| 16       |
| 16<br>17 |
| 18       |
| 19       |
|          |
| 20       |
| 21       |
| 22       |
| 22<br>23 |
| 24       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 24       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
|          |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
|          |
| 46       |
| 47       |
| 48       |
| 49       |
|          |
|          |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 55       |
| 56       |
| 57       |
| 58       |
| 50       |

| Table S2 Adjusted odds ratios and 95% confidence interval of ambient air               | pollutants for each |
|----------------------------------------------------------------------------------------|---------------------|
| interquartile increase during the 2 <sup>ed</sup> trimester and birth defects in Wuhan | , China             |

| Birth defects <sup>a</sup> | <b>PM</b> <sub>10</sub> | <b>PM</b> <sub>2.5</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|----------------------------|-------------------------|--------------------------|-----------------|-----------------|
| Dirtii uelects             | OR (95%CI)              | OR (95%CI)               | OR (95%CI)      | OR (95%CI)      |
| Total                      |                         |                          |                 |                 |
| Birth defects              | 1.01(0.93,1.09)         | 0.95(0.89,1.02)          | 0.99(0.93,1.06) | 0.88(0.80,0.97) |
| CHDs                       | 0.98(0.79,1.22)         | 0.86(0.72,1.04)          | 0.94(0.79,1.11) | 0.75(0.58,0.97) |
| Limb defects               | 1.03(0.87,1.22)         | 0.95(0.82,1.11)          | 1.05(0.92,1.21) | 1.01(0.83,1.25) |
| Orofacial clefts           | 1.27(0.86,1.87)         | 1.42(1.01,1.99)          | 1.27(0.93,1.74) | 1.38(0.85,2.25) |
| Male fetus                 |                         |                          |                 |                 |
| Birth defects              | 1.01(0.91,1.12)         | 0.95(0.87,1.04)          | 0.95(0.87,1.03) | 0.90(0.79,1.02  |
| CHDs                       | 0.82(0.61,1.10)         | 0.69(0.52,0.91)          | 0.69(0.53,0.88) | 0.58(0.41,0.83  |
| Limb defects               | 1.12(0.90,1.38)         | 1.00(0.84,1.20)          | 1.09(0.92,1.29) | 1.09(0.84,1.41  |
| Orofacial clefts           | 1.11(0.69,1.81)         | 1.20(0.79,1.82)          | 1.25(0.83,1.87) | 1.19(0.67,2.12  |
| Female fetus               |                         |                          |                 |                 |
| Birth defects              | 1.01(0.89,1.14)         | 0.96(0.86,1.07)          | 1.06(0.96,1.17) | 0.87(0.75,1.00  |
| CHDs                       | 1.21(0.88,1.66)         | 1.07(0.82,1.39)          | 1.28(0.99,1.65) | 1.00(0.69,1.44  |
| Limb defects               | 0.90(0.69,1.18)         | 0.87(0.68,1.12)          | 0.99(0.79,1.25) | 0.89(0.63,1.25  |
| Orofacial clefts           | 1.64(0.80,3.36)         | 2.02(1.06,3.86)          | 1.31(0.79,2.18) | 2.01(0.75,5.39  |
| Summer/Spring              |                         |                          |                 |                 |
| Birth defects              | 1.04(0.93,1.17)         | 0.91(0.82,1.01)          | 1.03(0.94,1.13) | 0.92(0.79,1.06  |
| CHDs                       | 0.99(0.73,1.33)         | 0.79(0.60,1.04)          | 1.01(0.78,1.29) | 0.64(0.44,0.94  |
| Limb defects               | 1.10(0.86,1.41)         | 0.88(0.69,1.11)          | 1.06(0.87,1.29) | 0.92(0.67,1.25  |
| Orofacial clefts           | 1.20(0.64,2.25)         | 1.47(0.81,2.67)          | 1.07(0.66,1.76) | 1.71(0.74,3.97  |
| Autumn/Winter              |                         |                          |                 |                 |
| Birth defects              | 0.96(0.86,1.08)         | 1.00(0.91,1.10)          | 0.97(0.89,1.07) | 0.87(0.75,1.00  |
| CHDs                       | 1.02(0.74,1.40)         | 1.00(0.76,1.30)          | 0.93(0.72,1.19) | 1.00(0.68,1.47  |
| Limb defects               | 0.94(0.74,1.18)         | 0.99(0.82,1.21)          | 1.05(0.87,1.28) | 1.05(0.77,1.43  |
| Orofacial clefts           | 1.30(0.78,2.17)         | 1.34(0.88,2.03)          | 1.38(0.90,2.12) | 1.08(0.58,2.03  |

Bold values represent statistical significance (two-sided P<0.05).

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO2, nitrogen dioxide; OR, odds ratio; PM<sub>10</sub>, particulate matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter <2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of roads, per capita of medication beds, unemployment, and per capita of cars.

| <b>Birth defects</b> <sup>a</sup> | <b>PM</b> <sub>10</sub> | <b>PM</b> <sub>2.5</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|-----------------------------------|-------------------------|--------------------------|-----------------|-----------------|
| Dirtii delects                    | OR (95%CI)              | OR (95%CI)               | OR (95%CI)      | OR (95%CI)      |
| Total                             |                         |                          |                 |                 |
| Birth defects                     | 0.86(0.81,0.92)         | 0.89(0.84,0.94)          | 0.90(0.85,0.95) | 0.92(0.86,0.98) |
| CHDs                              | 0.90(0.79,1.03)         | 0.87(0.77,0.98)          | 0.89(0.79,1.00) | 0.88(0.76,1.01) |
| Limb defects                      | 0.96(0.83,1.12)         | 0.90(0.79,1.04)          | 0.97(0.85,1.10) | 1.00(0.85,1.17) |
| Orofacial clefts                  | 0.78(0.64,0.95)         | 0.97(0.81,1.16)          | 0.90(0.76,1.07) | 0.89(0.72,1.10) |
| Male fetus                        |                         |                          |                 |                 |
| Birth defects                     | 0.87(0.80,0.94)         | 0.88(0.81,0.94)          | 0.91(0.85,0.97) | 0.96(0.88,1.05) |
| CHDs                              | 0.85(0.72,1.01)         | 0.88(0.74,1.05)          | 0.88(0.76,1.03) | 0.81(0.67,0.98) |
| Limb defects                      | 0.93(0.77,1.11)         | 0.89(0.75,1.05)          | 0.92(0.79,1.08) | 1.03(0.85,1.25) |
| Orofacial clefts                  | 0.78(0.60,1.00)         | 0.94(0.75,1.19)          | 0.93(0.75,1.16) | 0.95(0.72,1.25) |
| Female fetus                      |                         |                          |                 |                 |
| Birth defects                     | 0.86(0.78,0.94)         | 0.91(0.84,0.99)          | 0.89(0.83,0.96) | 0.86(0.78,0.95) |
| CHDs                              | 0.93(0.77,1.14)         | 0.92(0.76,1.10)          | 0.91(0.77,1.07) | 0.98(0.79,1.21) |
| Limb defects                      | 1.01(0.79,1.30)         | 0.94(0.74,1.19)          | 1.05(0.85,1.31) | 0.93(0.72,1.21) |
| Orofacial clefts                  | 0.78(0.57,1.08)         | 0.99(0.74,1.32)          | 0.85(0.66,1.10) | 0.79(0.56,1.11) |
| Summer/Spring                     |                         |                          |                 |                 |
| Birth defects                     | 1.04(0.94,1.16)         | 1.18(1.07,1.31)          | 1.06(0.98,1.16) | 0.96(0.87,1.06) |
| CHDs                              | 1.07(0.84,1.36)         | 1.16(0.91,1.46)          | 1.13(0.94,1.37) | 0.84(0.68,1.05) |
| Limb defects                      | 1.06(0.82,1.37)         | 0.89(0.66,1.19)          | 0.97(0.78,1.21) | 0.94(0.74,1.19) |
| Orofacial clefts                  | 0.96(0.66,1.39)         | 1.37(0.98,1.91)          | 1.22(0.91,1.64) | 0.93(0.67,1.30) |
| Autumn/Winter                     |                         |                          |                 |                 |
| Birth defects                     | 0.64(0.56,0.73)         | 0.78(0.70,0.87)          | 0.74(0.66,0.82) | 0.86(0.73,1.00) |
| CHDs                              | 0.74(0.55,0.99)         | 0.73(0.57,0.94)          | 0.65(0.52,0.82) | 0.82(0.58,1.15) |
| Limb defects                      | 0.78(0.57,1.08)         | 0.82(0.62,1.08)          | 1.05(0.78,1.41) | 1.07(0.73,1.58) |
| Orofacial clefts                  | 0.78(0.55,1.10)         | 0.40(0.27,0.60)          | 0.52(0.38,0.70) | 0.62(0.39,0.99) |

Table S3 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for each interquartile increase during the 3<sup>rd</sup> trimester and birth defects in Wuhan, China

Bold values represent statistical significance (two-sided P<0.05).

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; OR, odds ratio; PM<sub>10</sub>, particulate matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter  $\leq$ 2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of roads, per capita of medication beds, unemployment, and per capita of cars.

| <b>Birth defects</b> <sup>a</sup> | <b>PM</b> <sub>10</sub> | <b>PM</b> <sub>2.5</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|-----------------------------------|-------------------------|--------------------------|-----------------|-----------------|
| birtii delects                    | OR (95%CI)              | OR (95%CI)               | OR (95%CI)      | OR (95%CI)      |
| Total                             |                         |                          |                 |                 |
| Birth defects                     | 0.85(0.74,0.97)         | 0.95(0.83,1.09)          | 1.04(0.95,1.13) | 0.84(0.72,0.98  |
| CHDs                              | 0.91(0.64,1.29)         | 0.86(0.60,1.23)          | 1.01(0.80,1.27) | 0.60(0.41,0.89  |
| Limb defects                      | 0.91(0.69,1.21)         | 0.85(0.64,1.13)          | 1.14(0.95,1.37) | 0.97(0.71,1.34  |
| Orofacial clefts                  | 0.68(0.36,1.26)         | 1.16(0.62,2.17)          | 1.34(0.89,2.04) | 1.45(0.70,2.98  |
| Male fetus                        |                         |                          |                 |                 |
| Birth defects                     | 0.81(0.68,0.97)         | 0.89(0.75,1.06)          | 0.99(0.89,1.11) | 0.83(0.68,1.02  |
| CHDs                              | 0.81(0.50,1.31)         | 0.72(0.44,1.17)          | 0.69(0.50,0.94) | 0.52(0.31,0.8   |
| Limb defects                      | 0.94(0.66,1.33)         | 0.75(0.53,1.07)          | 1.22(0.97,1.53) | 0.90(0.61,1.3)  |
| Orofacial clefts                  | 0.69(0.32,1.48)         | 1.36(0.64,2.87)          | 1.48(0.86,2.53) | 1.08(0.46,2.5)  |
| Female fetus                      |                         |                          |                 |                 |
| Birth defects                     | 0.92(0.75,1.13)         | 1.06(0.86,1.30)          | 1.11(0.97,1.27) | 0.86(0.68,1.0   |
| CHDs                              | 1.06(0.62,1.82)         | 1.05(0.63,1.76)          | 1.59(1.11,2.28) | 0.71(0.40,1.2   |
| Limb defects                      | 0.86(0.54,1.38)         | 1.09(0.67,1.79)          | 1.01(0.75,1.37) | 1.12(0.64,1.9   |
| Orofacial clefts                  | 0.64(0.22,1.84)         | 0.84(0.28,2.54)          | 1.16(0.61,2.21) | 2.99(0.77,11.7  |
| Autumn/Winter                     |                         |                          |                 |                 |
| Birth defects                     | 0.92(0.76,1.12)         | 1.07(0.89,1.28)          | 1.04(0.93,1.17) | 0.98(0.79,1.2   |
| CHDs                              | 0.94(0.57,1.55)         | 1.02(0.65,1.60)          | 1.22(0.91,1.63) | 0.65(0.38,1.1   |
| Limb defects                      | 0.97(0.65,1.45)         | 0.85(0.57,1.27)          | 1.06(0.84,1.35) | 0.82(0.52,1.2   |
| Orofacial clefts                  | 0.91(0.34,2.43)         | 1.54(0.55,4.28)          | 1.10(0.61,1.98) | 3.91(1.17,13.0  |
| Summer/Spring                     |                         |                          |                 |                 |
| Birth defects                     | 0.74(0.60,0.90)         | 0.80(0.65,0.97)          | 1.02(0.89,1.17) | 0.73(0.58,0.9)  |
| CHDs                              | 0.76(0.44,1.30)         | 0.76(0.44,1.32)          | 0.75(0.52,1.08) | 0.61(0.33,1.1   |
| Limb defects                      | 0.82(0.55,1.23)         | 0.83(0.55,1.26)          | 1.26(0.95,1.67) | 1.12(0.71,1.7   |
| Orofacial clefts                  | 0.56(0.24,1.30)         | 0.99(0.43,2.24)          | 1.62(0.89,2.95) | 0.74(0.29,1.9   |

Table S4 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for each

Bold values represent statistical significance (two-sided P<0.05).

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; OR, odds ratio; PM<sub>10</sub>, particulate matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter <2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of roads, per capita of medication beds, unemployment, and per capita of cars.

| China                      |                 |                 |                 |                 |
|----------------------------|-----------------|-----------------|-----------------|-----------------|
| Birth defects <sup>a</sup> | PM10            | PM2.5           | NO2             | SO2             |
| Dif th defects             | OR (95%CI)      | OR (95%CI)      | OR (95%CI)      | OR (95%CI)      |
| Total                      |                 |                 |                 |                 |
| Birth defects              | 1.03(0.90,1.17) | 1.10(0.94,1.28) | 1.40(1.26,1.57) | 1.04(0.86,1.27) |
| CHDs                       | 0.91(0.67,1.23) | 1.05(0.74,1.49) | 1.39(1.08,1.77) | 1.18(0.75,1.85  |
| Limb defects               | 1.02(0.74,1.41) | 1.24(0.87,1.77) | 1.37(1.04,1.81) | 1.00(0.64,1.58  |
| Orofacial clefts           | 0.67(0.42,1.06) | 0.92(0.54,1.54) | 1.31(0.91,1.89) | 0.90(0.47,1.73  |
| Male fetus                 |                 |                 |                 |                 |
| Birth defects              | 1.08(0.90,1.29) | 1.04(0.85,1.28) | 1.33(1.15,1.54) | 0.98(0.75,1.27  |
| CHDs                       | 1.01(0.67,1.52) | 1.03(0.64,1.65) | 1.19(0.85,1.67) | 1.11(0.59,2.11  |
| Limb defects               | 1.07(0.71,1.61) | 1.18(0.75,1.85) | 1.48(1.05,2.08) | 0.85(0.47,1.52  |
| Orofacial clefts           | 0.67(0.37,1.22) | 0.83(0.41,1.65) | 1.17(0.73,1.87) | 0.99(0.96,1.02  |
| Female fetus               |                 |                 |                 |                 |
| Birth defects              | 0.99(0.80,1.21) | 1.17(0.93,1.47) | 1.52(1.29,1.80) | 1.08(0.81,1.44  |
| CHDs                       | 0.78(0.50,1.23) | 1.00(0.60,1.65) | 1.57(1.10,2.25) | 1.09(0.59,2.03  |
| Limb defects               | 0.96(0.56,1.63) | 1.31(0.74,2.34) | 1.21(0.76,1.95) | 1.24(0.60,2.56  |
| Orofacial clefts           | 0.71(0.35,1.45) | 1.01(0.46,2.23) | 1.62(0.90,2.91) | 1.01(0.39,2.61  |
| Autumn/Winter              |                 |                 |                 |                 |
| Birth defects              | 1.00(0.81,1.23) | 1.24(0.99,1.55) | 1.18(0.99,1.40) | 1.12(0.78,1.61  |
| CHDs                       | 1.25(0.75,2.08) | 1.02(0.63,1.64) | 1.46(0.97,2.19) | 1.29(0.54,3.08  |
| Limb defects               | 1.01(0.59,1.70) | 1.46(0.85,2.53) | 1.22(0.77,1.94) | 1.00(0.46,2.18  |
| Orofacial clefts           | 0.77(0.39,1.55) | 0.99(0.48,2.03) | 2.31(1.15,4.66) | 1.48(0.50,4.41  |
| Summer/Spring              |                 |                 |                 |                 |
| Birth defects              | 1.03(0.78,1.36) | 1.00(0.61,1.65) | 1.23(1.00,1.52) | 1.07(0.76,1.51  |
| CHDs                       | 0.71(0.37,1.39) | 0.66(0.16,2.83) | 0.77(0.45,1.32) | 1.52(0.69,3.37  |
| Limb defects               | 1.58(0.81,3.08) | 2.17(0.92,5.08) | 1.61(1.01,2.57) | 0.92(0.42,2.02  |
| Orofacial clefts           | 0.35(0.12,1.04) | 0.64(0.08,4.94) | 0.59(0.25,1.39) | 0.68(0.19,2.48  |

Table S5 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for the duration of peak level exposure during the 1<sup>st</sup> trimester and birth defects in Wuhan, China

Bold values represent statistical significance (two-sided P<0.05).

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO2, nitrogen dioxide; OR, odds ratio; PM10, particulate matter  $\leq$ 10 µm diameter; PM2.5, particulate matter  $\leq$ 2.5 µm diameter; SO2, sulfur dioxide.

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of roads, per capita of medication beds, unemployment, and per capita of cars.

Page 25 of 25

|                        |           | ven-202                                                                                                                                  |                  |
|------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                        |           | STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cobort studies</i>                                |                  |
| Section/Topic          | ltem<br># | Recommendation 2007                                                                                                                      | Reported on page |
| Title and abstract     | 1         | (a) Indicate the study's design with a commonly used term in the title or the abstract                                                   | 1-2              |
|                        |           |                                                                                                                                          | 2                |
| Introduction           | 1         |                                                                                                                                          |                  |
| Background/rationale   | 2         | Explain the scientific background and rationale for the investigation being reported                                                     | 4-5              |
| Objectives             | 3         | State specific objectives, including any prespecified hypotheses                                                                         | 5                |
| Methods                | 1         |                                                                                                                                          |                  |
| Study design           | 4         | Present key elements of study design early in the paper                                                                                  | 5-6              |
| Setting                | 5         | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection          | 5-6              |
| Participants           | 6         | (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up               | 6                |
|                        |           | (b) For matched studies, give matching criteria and number of exposed and unexposed                                                      | 6                |
| Variables              | 7         | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable | 6                |
| Data sources/          | 8*        | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe                         | 6                |
| measurement            |           | comparability of assessment methods if there is more than one group 걸                                                                    |                  |
| Bias                   | 9         | Describe any efforts to address potential sources of bias                                                                                | -                |
| Study size             | 10        | Explain how the study size was arrived at                                                                                                | -                |
| Quantitative variables | 11        | Explain how quantitative variables were handled in the analyses. If applicable, describe which grougings were chosen and why             | 5-6              |
| Statistical methods    | 12        | (a) Describe all statistical methods, including those used to control for confounding                                                    | 6                |
|                        |           | (b) Describe any methods used to examine subgroups and interactions                                                                      | 6                |
|                        |           | (c) Explain how missing data were addressed                                                                                              | -                |
|                        |           | (d) If applicable, explain how loss to follow-up was addressed                                                                           | -                |
|                        |           | (e) Describe any sensitivity analyses                                                                                                    | -                |

 i/bmjopen-20;

copyright.

|                   |     | <u> </u>                                                                                                                                                                                                                       |       |
|-------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Participants      | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine of for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed                            | 6-7   |
|                   |     | (b) Give reasons for non-participation at each stage                                                                                                                                                                           | -     |
|                   |     | (c) Consider use of a flow diagram                                                                                                                                                                                             | -     |
| Descriptive data  | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential                                                                                                   | 6-7   |
|                   |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                                                                            | -     |
|                   |     | (c) Summarise follow-up time (eg, average and total amount)                                                                                                                                                                    | -     |
| Outcome data      | 15* | Report numbers of outcome events or summary measures over time                                                                                                                                                                 | 6-7   |
| Main results      | 16  | ( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision $\vec{R}$ eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included | -     |
|                   |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                                                      | 8     |
|                   |     | <i>(c)</i> If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                                        | -     |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                                                 | 8-9   |
| Discussion        |     | je na se                                                                                                                                                                                   |       |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                                                                       | 10-11 |
| Limitations       |     | in the second                                                                                                                |       |
| Interpretation    | 20  | 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of applyses, results from similar studies, and other relevant evidence                                                  |       |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                                          | 12-13 |
| Other information |     |                                                                                                                                                                                                                                |       |
| Funding           | 22  | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based                                                                  | 14    |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in c short and cross-sectional studies.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinegref/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.st obe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

# **BMJ Open**

# Ambient air pollutants in the first trimester of pregnancy and birth defects: an observational study

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Manuscript ID                        | bmjopen-2022-063712.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Date Submitted by the Author:        | 27-Feb-2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Complete List of Authors:            | Cheng, Yao; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department<br>Yin, Jieyun; Soochow University Medical College, Department of<br>Epidemiology and Health Statistics<br>Yang, Lijun; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department<br>Xu, Man; Hubei University of Chinese Medicine, School of Nursing<br>Lu, Xinfeng; Maternal and Child Health Hospital of Hubei Province<br>Huang, Wenting; Maternal and Child Health Hospital of Hubei Province<br>Dai, Guohong; Maternal and Child Health Hospital of Hubei Province<br>Sun, Guoqiang; Maternal and Child Health Hospital of Hubei Province,<br>Obstetric Department |  |  |
| <b>Primary Subject<br/>Heading</b> : | Obstetrics and gynaecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Secondary Subject Heading:           | Occupational and environmental medicine, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Keywords:                            | Fetal medicine < OBSTETRICS, EPIDEMIOLOGY, Prenatal diagnosis < OBSTETRICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

# SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

| 2        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4   | 1  | Ambient air pollutants in the first trimester of pregnancy and birth defects: an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5<br>6   | 2  | observational study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7        | 3  | Yao Cheng <sup>1*</sup> , Jieyun Yin <sup>2*</sup> , Lijun Yang <sup>1</sup> , Man Xu <sup>3</sup> , Xinfeng Lu <sup>4</sup> , Wenting Huang <sup>5</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8        |    | Guohong Dai6#, Guoqiang Sun1#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9        | 4  | Guonong Dar", Guoquang Sun"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10<br>11 | 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12       | 6  | <sup>1</sup> Obstetric Department, Maternal and Child Health Hospital of Hubei Province,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13       | 7  | Huazhong University of Science and Technology, Wuhan, China.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14       | 8  | <sup>2</sup> Department of Epidemiology and Health Statistics, Medical College of Soochow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15       | 9  | University, Suzhou, China.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16<br>17 | 10 | <sup>3</sup> School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18       | 11 | <sup>4</sup> Medical Record Department, Maternal and Child Health Hospital of Hubei Province,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19       | 12 | Huazhong University of Science and Technology, Wuhan, China.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20       | 13 | <sup>5</sup> Science and Education Department, Maternal and Child Health Hospital of Hubei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21       | 14 | Province, Huazhong University of Science and Technology, Wuhan, China.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22<br>23 | 15 | <sup>6</sup> Health Care Department, Maternal and Child Health Hospital of Hubei Province,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 24       | 16 | Huazhong University of Science and Technology, Wuhan, China.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25       | 10 | Tradzholig Oliverský of Selence and Teennology, Wahan, China.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26       | 17 | #Corresponding authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 27<br>28 |    | o construction of the second sec |
| 20<br>29 | 18 | Guoqiang Sun, Obstetric Department, Maternal and Child Health Hospital of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30       | 19 | Hubei Province, Huazhong University of Science and Technology, Wuluo Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31       | 20 | No.745, Hongshan District, Wuhan, China. Postcode: 430070; Tel: +86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32       | 21 | 15972153596; E-mail: <u>sunguoqiang@hbfy.com</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33<br>34 | 21 | 15)72155576, E mun. <u>sunguoquinguentiy.com</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35       | 22 | Guohong Dai, Health Care Department, Maternal and Child Health Hospital of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36       | 23 | Hubei Province, Huazhong University of Science and Technology, Wuluo Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37       | 24 | No.745, Hongshan District, Wuhan, China. Postcode: 430070; Tel: +86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38       | 25 | 13476133865; E-mail: 623138285@gg.com.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39<br>40 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 41       | 26 | Word count: 3553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 42       | 27 | word count: 5555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 43       | 28 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 44<br>45 | 29 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 45<br>46 | 30 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 47       | 31 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48       | 32 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 49       | 33 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50<br>51 | 34 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 52       | 35 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 53       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 54       | 36 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 55       | 37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 56<br>57 | 38 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 58       | 39 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 59       | 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 60       | 41 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### **BMJ** Open

| 42 | Abstract |
|----|----------|
|    |          |

Objectives As current studies on the relationships between air pollutants exposure
during the 1<sup>st</sup> trimester and birth defects were not fully elucidated, this study aimed to
assess the association between selected air pollutants and birth defects.

**Design** An observational study.

47 Participants We obtained 70,854 singletons with gestational age <20 weeks who</li>
48 were delivered at a large maternal and child health care center in Wuhan, China.

**Outcome measures** Birth defects data and daily average concentration of ambient 50 particulate matter  $\leq 10 \ \mu m$  diameter (PM<sub>10</sub>), particulate matter  $\leq 2.5 \ \mu m$  diameter 51 (PM<sub>2.5</sub>), sulfur dioxide (SO<sub>2</sub>), and nitrogen dioxide (NO<sub>2</sub>) were obtained. Logistic 52 regression analysis was applied to assess the association between maternal air 53 pollutants exposure during 1<sup>st</sup> trimester and total birth defects, congenital heart defects 54 (CHDs), limb defects, and orofacial clefts with adjustments of potential covariates.

**Results** There were a total of 1,352 birth defect cases included in this study, with a prevalence of 19.08‰. Maternal exposed to high concentrations of PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> in the 1<sup>st</sup> trimester were significantly associated with elevated odds ratios of birth defects (ORs ranged from 1.13 to 1.23). Additionally, for male fetuses, maternal exposed to high PM<sub>2.5</sub> concentration was associated with an elevated odd of CHDs (OR=1.27, 95% CI: 1.06, 1.52). In the cold season, the odds ratios of birth defects were significantly increased among women exposed to PM<sub>2.5</sub> (OR=1.64, 95% CI: 1.41, 1.91), NO<sub>2</sub> (OR=1.22, 95% CI: 1.08, 1.38), and SO<sub>2</sub> (OR=1.26, 95%CI: 1.07, 1.47). 

**Conclusions** This study showed unfavorable effects of air pollutants exposure during 65 the 1<sup>st</sup> trimester on birth defects. Especially, the association between maternal  $PM_{2.5}$ 66 exposure and CHDs was only observed among male fetuses, and stronger effects of 67  $PM_{2.5}$ , NO<sub>2</sub>, and SO<sub>2</sub> exposure on birth defects were observed in the cold season.

68 Keywords: air pollutants; birth defects; congenital heart defects; limb defects;

69 orofacial clefts; pregnancy

## 71 Strengths and limitations of this study

- This study explored the associations between maternal air pollutants exposure
   during 1<sup>st</sup> trimester and fetal outcomes classified by total birth defects, CHDs,
   limb defects, and orofacial clefts based on a large population.
- The stratification analysis by neonatal sex and season of conception indicated the
   specific high-risk population, which provided critical evidence of the air quality
   control policies.
- 78 > The selected participants are located in a large tertiary maternal care center in
   79 Wuhan and the representative of this study was undermined.

Maternal air pollutants exposure indoor or in other living residents including
 work, dining, and shopping were not included, and other covariates including
 health behaviors and genetic factors were failed to obtain.

Page 5 of 25

#### 85 INTRODUCTION

Birth defects are structural or functional abnormalities occurred during embryonic development, most of them forming in the 1<sup>st</sup> trimester of pregnancy.<sup>1</sup> Birth defects are the leading cause of fetal death and are associated with the elevated risk of childhood mortality and reduced long-term survival.<sup>2,3</sup> According to the Institute for Health Metrics and Evaluation, the prevalence of congenital birth defects increased from 6.08% in 2005 to 6.29% in 2019.<sup>4</sup> Although the upward trends were reported in severe congenital heart defects, single ventricle, atrioventricular septal defects, and tetralogy of Fallot in Europe during 1980-2012, the prevalence of birth defects are much lower (1.0-4.1%).<sup>5</sup> In China, the overall prevalence of birth defects increased from 12.83‰ in 1986 to 15.70‰ in 2014.6 There is a necessity to explore the potential hazard factors contributed to the high prevalence of birth defects in China based on current knowledge.

Due to rapid urbanization, China has experienced severe air pollution in recent years. The Report on China's implementation of the Millennium Development Goals (2000-2015) documented that particulate matter  $\leq 10 \ \mu m$  diameter (PM<sub>10</sub>), sulfur dioxide (SO<sub>2</sub>), and nitrogen dioxide (NO<sub>2</sub>) were major air pollutants in urban areas.<sup>7</sup> Moreover, ambient particulate matter  $\leq 2.5 \ \mu m$  diameter (PM<sub>2.5</sub>) produced by coal combustion, industry sources, and vehicular emissions, is also one of the main air pollutants of industrialization.<sup>8</sup> The expanding coverage of ambient air pollutants surveillance has contributed to adverse pregnancy outcomes including small for gestational age, low birth weight, preterm birth, spontaneous abortion, and stillbirth in recent years.<sup>9-11</sup> Moreover, there is a growing interest in the associations between ambient air pollutants and birth defects, but the results of previous studies are controversial. Most studies reported that ambient air pollutants were associated with increased risks of birth defects.<sup>12-14</sup> However, Parkes et al. and Dolk et al. pointed out that high concentrations of PM<sub>10</sub> and NO<sub>2</sub> exposure were not related to birth defects.<sup>15,16</sup> A recent meta-analysis conducted by Ma et al. even reported a protective effect of SO<sub>2</sub> on atrial septal defects.<sup>17</sup> These inconsistent results indicate that the effects of ambient air pollutants on birth defects could be varied by culture, ethnicity, 

or geographical distribution. More evidence is needed to clarify the risk of birth
defects derived from air pollutants during the rapid social-economical development
worldwide.

As current studies on the relationships between air pollutants and birth defects were not fully elucidated, this study aimed to assess the association between selected air pollutants and birth defects. Furthermore, the 1<sup>st</sup> trimester of pregnancy is vital for fetal development because fetal major organs and systems are formed at this stage and the fetus is most susceptible to environmental hazards. As a result, we mainly focused on the associations between maternal exposure to air pollutants including  $PM_{10}$ ,  $PM_{2.5}$ , SO<sub>2</sub>, and NO<sub>2</sub> during the 1<sup>st</sup> trimester and birth defects in Wuhan, China.

125 METHODS

#### 126 Patient and public involvement

Patients or the public were not involved in any part of the design, conduct, reporting,or dissemination plans of this study.

#### 129 Study design, site and population

This observational study was conducted in Wuhan city. Wuhan is the capital city of
Hubei Province and a megacity in Central China. Its geographical location is 29° 58′ 31° 22′ N and 113° 41′ - 115° 05′ E. The permanent resident population of Wuhan
was over 10 million. Wuhan has four distinct seasons of hot summer and cold winter,
with an annual average temperature of 15.8 °C - 17.5 °C.<sup>18</sup>

There were a total of 130,186 perinatal women with detailed home addresses who delivered at the Maternal and Child Health Hospital of Hubei Province, and 98,877 of them lived in Wuhan City during the 1<sup>st</sup> trimester of pregnancy. Then we obtained 74,336 participants with distances less than 10 km from home to the nearest air surveillance station. After removing 3,333 mothers of multiple pregnancies and 140 149 with gestational age <20 weeks, 70,854 participants were finally included in this study.

#### 142 Birth defects

143Birth defect cases with gestational age  $\geq 20$  weeks and 0-7 days after birth including144elective termination of pregnancy. Based on the requirements of the Maternal and

Page 7 of 25

#### **BMJ** Open

Child Health Monitoring Manual in China and the Implementation of National Hospital Birth Defects Surveillance of China, 23 types of common birth defects were categorized according to the 10<sup>th</sup> Revision of the International Classification of Diseases (ICD-10, Q00–Q99). The top three birth defects including congenital heart defects (CHDs) (Q20–Q28), limb defects (Q69–Q72), and orofacial clefts (Q35–Q37) were further examined by trained obstetricians, pediatricians, or pediatric cardiologists based on clinical observation, physical examination, biochemical index, and image examination results. Strict quality control of the reported data was performed by the assigned county-level inspector every quarter year and further checked by the city-level inspector semiannually. Detailed descriptions of the 23 types of birth defects were provided in Supplementary Table 1. 

**Exposure assessment** 

Data on the daily concentrations of air pollutants (PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>) and the geographical locations (longitude and latitude) of the air surveillance stations were obtained from China's National Urban Air Quality Real-time Publishing Platform (http://106.37.208.233:20035). Moreover, the geographical location data was converted from the detailed home address of participants by Baidu Map. The distance from each home address of participants to all of the air surveillance stations were calculated. Then the individual daily air pollutants data were obtained according to the nearest surveillance station from home, and we only keep participants who lived within 10km from the nearest surveillance station, which was confirmed by other studies.<sup>15,19</sup> The median distance from home to the nearest station was 3.50 km in this study. Participants' average air pollutants exposure during the 1<sup>st</sup> trimester of pregnancy was estimated by mean levels of daily concentrations. 

169 Statistical analysis

170 Observed outcomes were classified as total birth defects, CHDs, limb defects, and 171 orofacial clefts. Maternal exposure variables including  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$ 172 were divided by interquartile range based on the daily average concentration during 173 the 1<sup>st</sup> trimester. Covariates including the year of conception (2013-2018), maternal 174 age (<25, 25-29, 30-34, and >34 years), gravidity (1, 2-3, and >3), and urban/rural

were obtained. Moreover, other covariates including per capita of cars, unemployment, per capita area of roads, per capita of medication beds were retrieved from the official website of Wuhan Bureau of Statistics (http://tjj.wuhan.gov.cn/). Logistic regression analysis was applied to assess the association between maternal air pollutants exposure during 1st trimester and birth defects adjusted for potential covariates. Stratified analyses by neonatal sex (male and female fetus) and season of conception by last menstrual period (March to August and September to February) were applied to further explore the associations between air pollutants exposure in the 1<sup>st</sup> trimester of pregnancy and birth defects. The adjusted odds ratio (OR) and 95% confidence interval (CI) were provided in each model. Statistical analyses were performed by SAS 9.4 (SAS Institute, Inc., Cary, NC). 

**RESULTS** 

There were a total of 1,352 birth defect cases among 70,854 singletons, with a prevalence of 19.08‰ (Table 1). The prevalence of birth defects increased from 21.16‰ in 2013 to 24.08‰ in 2018. Subpopulations who conceived in winter (26.98‰), aged <25 years (28.10‰), or with gravidity >3 times (23.93‰) ranks the first place among corresponding categories. In addition, the male fetuses had a higher prevalence of birth defects than female fetuses (20.57‰ vs 16.80‰).

 

| 194 | Table 1 Prevalence of birth defects among the subgroups of en | nrolled participants |
|-----|---------------------------------------------------------------|----------------------|
| 195 | in Wuhan, China                                               |                      |

| in Wahan, China      |                           |             |                |
|----------------------|---------------------------|-------------|----------------|
| Variables            | <b>Birth defect cases</b> | Total cases | Prevalence (‰) |
| Year of conception   |                           | 4           |                |
| 2013                 | 272                       | 12,856      | 21.16          |
| 2014                 | 203                       | 11,236      | 18.07          |
| 2015                 | 174                       | 11,274      | 15.43          |
| 2016                 | 227                       | 12,261      | 18.51          |
| 2017                 | 226                       | 12,844      | 17.60          |
| 2018                 | 250                       | 10,383      | 24.08          |
| Season of conception |                           |             |                |
| Spring               | 321                       | 18,312      | 17.53          |
| Summer               | 295                       | 18,853      | 15.65          |
| Autumn               | 287                       | 17,045      | 16.84          |
| Winter               | 449                       | 16,644      | 26.98          |
| Age (years)          |                           |             |                |

| <25          | 122   | 4,341  | 28.10 |
|--------------|-------|--------|-------|
| 25–29        | 632   | 34,412 | 18.37 |
| 30–34        | 401   | 23,783 | 16.86 |
| >34          | 197   | 8,318  | 23.68 |
| Gravidity    |       |        |       |
| 1            | 604   | 35,590 | 16.97 |
| 2-3          | 372   | 19,552 | 19.03 |
| >3           | 376   | 15,712 | 23.93 |
| Neonatal sex |       |        |       |
| Male         | 771   | 37,488 | 20.57 |
| Female       | 560   | 33,337 | 16.80 |
| Total        | 1,352 | 70,854 | 19.08 |

Table 2 shows the distributions of daily average ambient air pollutants concentrations in the 1<sup>st</sup> trimester among the 5 groups including non-defects, birth defects, CHDs, limb defects, and orofacial clefts. The median exposures of  $PM_{10}$ ,  $PM_{2.5}$ , NO<sub>2</sub>, and SO<sub>2</sub> during the 1<sup>st</sup> trimester were 101.78µg/m<sup>3</sup>, 61.98µg/m<sup>3</sup>, 53.64µg/m<sup>3</sup>, and 13.97µg/m<sup>3</sup> respectively among the birth defects groups.

Table 2 Quartile concentrations (μg/m<sup>3</sup>) of exposure for ambient air pollutants
 among birth defects groups in 1<sup>st</sup> trimester of pregnancy in Wuhan, China

| Air pollutants    | Non-defects | Birth defects | CHDs   | Limb defects | Orofacial    |
|-------------------|-------------|---------------|--------|--------------|--------------|
| Air ponutants     | N=69,502    | N=1,352       | N=265  | N=210        | clefts N=119 |
| $PM_{10}$         |             |               |        |              |              |
| Min               | 36.86       | 39.08         | 49.82  | 40.76        | 48.85        |
| 25th              | 80.84       | 84.05         | 84.05  | 85.86        | 83.98        |
| Median            | 102.42      | 101.78        | 99.46  | 105.80       | 96.77        |
| 75th              | 123.86      | 124.39        | 120.48 | 127.34       | 116.36       |
| Max               | 231.49      | 225.91        | 225.91 | 220.82       | 191.37       |
| PM <sub>2.5</sub> |             |               |        |              |              |
| Min               | 21.27       | 21.27         | 22.77  | 22.16        | 22.98        |
| 25th              | 39.37       | 45.02         | 44.88  | 42.63        | 41.26        |
| Median            | 59.21       | 61.98         | 61.33  | 63.00        | 60.98        |
| 75th              | 80.20       | 80.73         | 78.81  | 84.66        | 77.38        |
| Max               | 178.20      | 165.92        | 154.42 | 154.79       | 155.35       |
| $NO_2$            |             |               |        |              |              |
| Min               | 9.71        | 15.22         | 29.03  | 25.78        | 16.89        |
| 25th              | 43.40       | 45.70         | 45.49  | 44.31        | 44.09        |
| Median            | 51.49       | 53.64         | 53.69  | 53.43        | 53.84        |
| 75th              | 59.08       | 59.98         | 59.46  | 62.84        | 59.99        |
| Max               | 93.60       | 93.37         | 92.93  | 93.37        | 87.58        |

| Min    | 2.93  | 3.02  | 3.93  | 3.77  | 3.99  |
|--------|-------|-------|-------|-------|-------|
| 25th   | 9.07  | 9.36  | 9.43  | 10.55 | 9.46  |
| Median | 14.47 | 13.97 | 13.77 | 16.09 | 12.55 |
| 75th   | 23.54 | 23.87 | 23.36 | 25.23 | 21.28 |
| Max    | 71.74 | 63.36 | 63.36 | 62.99 | 53.75 |

205 Abbreviations: CHDs, congenital heart defects; NO<sub>2</sub>, nitrogen dioxide; PM<sub>10</sub>, particulate 206 matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter  $\leq$ 2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

Table 3 presents the associations between ambient air pollutants exposure in the 1<sup>st</sup> trimester of pregnancy and birth defects. We also provided the odds ratios of birth defects in the 2<sup>nd</sup> and 3<sup>rd</sup> trimesters, as well as the entire pregnancy in the supplementary Tables S2-S4. High concentrate exposure to air pollutants was significantly associated with increased odds of total birth defects, yielding adjusted ORs of 1.13, 1.23, 1.18, and 1.19 for PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>, respectively. Moreover, similar elevated odds of CHDs was observed for maternal exposure of PM<sub>2.5</sub> (OR=1.21, 95%CI: 1.06, 1.38), NO<sub>2</sub> (OR=1.13, 95%CI: 1.01, 1.27), and SO<sub>2</sub> (OR=1.24, 95%CI: 1.03, 1.48), but not PM<sub>10</sub> (1.08, 95% CI: 0.95, 1.24). 

For male fetuses, there were significantly increased odds of total birth defects among mothers exposed to  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$  by interquartile increased concentrations during the 1<sup>st</sup> trimester (OR=1.13-1.23). Moreover, a positive association between  $PM_{2.5}$  exposure during the 1<sup>st</sup> trimester and CHDs was detected (OR=1.27, 95% CI: 1.06, 1.52). For female fetuses, elevated odds of total birth defects (OR=1.14-1.22) were also observed among maternal exposed to heavy concentrated  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_2$ , and  $SO_2$ .

After stratified by season, the results show that the odds of total birth defects were significantly increased among women who conceived in Autumn/Winter and were exposed to  $PM_{2.5}$  (OR=1.64, 95% CI: 1.41, 1.91), NO<sub>2</sub> (OR=1.22, 95% CI: 1.08, 1.38), or SO<sub>2</sub> (OR=1.26, 95% CI: 1.07, 1.47). PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> were also positively related to CHDs (ORs=1.36-1.84). Elevated hazard of orofacial clefts was observed among women who conceived in the cold season exposed to heavy NO<sub>2</sub> concentrations (OR=1.85, 95% CI: 1.16, 2.93). However, in the warm season, the odd

| 231 | of total birth defects was elevated among women exposed to $PM_{10}$ (OR=1.12, 95%) |
|-----|-------------------------------------------------------------------------------------|
|     |                                                                                     |

CI: 1.00, 1.24). 

#### Table 3 Adjusted odds ratios and 95% confidence interval of ambient air

#### pollutants for each interquartile increase during the 1<sup>st</sup> trimester and birth defects

in Wuhan, China 

| <b>Birth defects</b> <sup>a</sup> | $PM_{10}$       | PM <sub>2.5</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|-----------------------------------|-----------------|-------------------|-----------------|-----------------|
| Dirtii uelects "                  | OR (95%CI)      | OR (95%CI)        | OR (95%CI)      | OR (95%C        |
| Total                             |                 |                   |                 |                 |
| Birth defects                     | 1.13(1.07,1.21) | 1.23(1.15,1.30)   | 1.18(1.12,1.24) | 1.19(1.10,1.3   |
| CHDs                              | 1.08(0.95,1.24) | 1.21(1.06,1.38)   | 1.13(1.01,1.27) | 1.24(1.03,1.4   |
| Limb defects                      | 1.11(0.96,1.29) | 1.09(0.93,1.26)   | 1.15(1.01,1.31) | 1.16(0.95,1.4   |
| Orofacial clefts                  | 0.90(0.74,1.10) | 1.04(0.85,1.26)   | 1.10(0.93,1.31) | 0.95(0.73,1.1   |
| Male fetus                        |                 |                   |                 |                 |
| Birth defects                     | 1.13(1.04,1.22) | 1.23(1.14,1.34)   | 1.18(1.10,1.26) | 1.19(1.07,1.    |
| CHDs                              | 1.16(0.96,1.40) | 1.27(1.06,1.52)   | 1.11(0.95,1.30) | 1.18(0.93,1.    |
| Limb defects                      | 1.10(0.91,1.33) | 1.08(0.90,1.30)   | 1.15(0.98,1.35) | 1.14(0.89,1.4   |
| Orofacial clefts                  | 0.86(0.66,1.12) | 1.09(0.85,1.41)   | 1.07(0.86,1.34) | 0.99(0.71,1.1   |
| Female fetus                      |                 |                   |                 |                 |
| Birth defects                     | 1.14(1.04,1.25) | 1.22(1.12,1.34)   | 1.19(1.10,1.29) | 1.21(1.07,1.    |
| CHDs                              | 0.99(0.82,1.20) | 1.11(0.91,1.34)   | 1.14(0.97,1.34) | 1.30(1.00,1.    |
| Limb defects                      | 1.08(0.84,1.38) | 1.15(0.90,1.47)   | 1.15(0.93,1.43) | 1.18(0.84,1.    |
| Orofacial clefts                  | 0.98(0.71,1.34) | 0.95(0.69,1.30)   | 1.16(0.88,1.52) | 0.88(0.59,1.    |
| Autumn/Winter                     |                 |                   |                 |                 |
| Birth defects                     | 1.05(0.92,1.20) | 1.64(1.41,1.91)   | 1.22(1.08,1.38) | 1.26(1.07,1.    |
| CHDs                              | 1.05(0.79,1.39) | 1.84(1.32,2.57)   | 1.36(1.03,1.80) | 1.43(1.00,2.    |
| Limb defects                      | 1.19(0.84,1.70) | 1.48(0.99,2.22)   | 1.35(0.97,1.87) | 1.06(0.70,1.    |
| Orofacial clefts                  | 0.95(0.61,1.47) | 1.63(0.98,2.70)   | 1.85(1.16,2.93) | 1.40(0.82,2.    |
| Summer/Spring                     |                 |                   |                 |                 |
| Birth defects                     | 1.12(1.00,1.24) | 1.06(0.93,1.21)   | 1.09(1.00,1.19) | 1.12(0.98,1.    |
| CHDs                              | 0.99(0.77,1.26) | 0.89(0.65,1.21)   | 0.88(0.71,1.08) | 1.24(0.92,1.    |
| Limb defects                      | 1.18(0.92,1.51) | 1.21(0.89,1.63)   | 1.17(0.95,1.43) | 1.23(0.89,1.    |
| Orofacial clefts                  | 0.72(0.50,1.03) | 0.66(0.41,1.04)   | 0.88(0.65,1.19) | 0.72(0.47,1.    |

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen 

dioxide; OR, odds ratio;  $PM_{10}$ , particulate matter  $\leq 10 \mu m$  diameter;  $PM_{2.5}$ , particulate matter  $<2.5 \,\mu\text{m}$  diameter; SO<sub>2</sub>, sulfur dioxide. 

- <sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of
- roads, per capita of medication beds, unemployment, and per capita of cars.

#### DISCUSSION

In the current study, the prevalence of birth defects was close to what was reported in Hunan Province (19.18‰) and higher than that of Jiangsu Province (7.15‰).<sup>20,21</sup> Moreover, this study examined the associations between birth defects and air pollutants exposure in the 1<sup>st</sup> trimester, and we further explored the relationships stratified by fetal sex and season of conception.

This study showed that maternal exposure to ambient air pollutants including PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> during the 1<sup>st</sup> trimester could have higher odds of birth defects, which has been well documented previously. Moreover, we have adopted peak exposure on the thresholds at the 95th percentile to derive the accumulated days of high dose exposure, which further confirmed the positive association between high dose of NO<sub>2</sub> exposure during the 1st trimester and birth defects (Supplementary Table 5). A case-control study conducted by Al Noaimi et al. showed a positive association between PM<sub>2.5</sub> exposure in the 1st trimester of pregnancy and birth defects (OR=1.05).<sup>22</sup> Wang et al. applied Poisson generalized additive models on the time-series data adjusted for temperature, relative humidity, season, and time trend, which showed that maternal exposure to  $PM_{10}$  and  $NO_2$  in early pregnancy significantly increased the risk of birth defects by 10.3% per 10  $\mu$ g/m<sup>3</sup> and 3.4% per  $\mu$ g/m<sup>3</sup>, respectively.<sup>23</sup> 

As was observed among the total participants, the risk of birth defects among both male fetuses and female fetuses was significantly related to PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>. The underlying mechanisms between air pollutants exposure and the development of birth defects are still unclear. Maternal air pollutants exposures might cause changes in epigenetic signatures and permanent modifications in gene expression.<sup>24</sup> Animal studies showed that maternal exposure to PM<sub>2.5</sub> during pregnancy leads to spatial memory dysfunction, neurodevelopmental impairment, and disturbed cerebral cortex development of mice offspring.<sup>25,26</sup> Another study showed that maternal exposure to a high concentrate of PM<sub>2.5</sub> during the 1<sup>st</sup> trimester of pregnancy could result in the decreased placental expression of BDNF and SYN1, which may undermine fetal neurodevelopment.<sup>27</sup> Moreover, SO<sub>2</sub> is a systemic toxic agent which can induce chromosomal aberrations, sister chromatid exchanges, and 

Page 13 of 25

#### **BMJ** Open

275 micronuclei in mammalian cells.<sup>28</sup>

Except for PM<sub>10</sub>, this study demonstrated adverse associations of CHDs with PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> exposure. Previous studies in Taiwan and Northeast England also reported insignificant associations between PM<sub>10</sub> exposure in the 1<sup>st</sup> trimester and CHDs,<sup>29,30</sup> whereas others confirmed the increased risk of CHDs related with PM<sub>10</sub>.<sup>12,23,31-34</sup> Furthermore, Huang et al. showed that PM<sub>2.5</sub> exposure per each interquartile increase during gestational weeks 3-8 was related to an increased risk of CHDs (OR=1.21).<sup>35</sup> Additionally, the positive association between CHDs and maternal exposure to NO<sub>2</sub> and SO<sub>2</sub> was documented by studies conducted by Baldacci et al. and Vrijheid et al.<sup>36,37</sup> Moreover, a case-control study conducted by Jiang et al. showed that maternal exposure to SO<sub>2</sub> during the 1<sup>st</sup> trimester was significantly associated with increased risk of CHD (OR=1.78-2.04), and Hansen et al. also confirmed that a 0.6 ppb increase in SO<sub>2</sub> was associated with an increased risk of aortic artery and valve defects (OR=10.76).<sup>19,38</sup> The heterogeneity in these studies might be explained by the variation in the population, the gestational periods, or the measurement of air pollutants exposure. The physiopathological mechanism of the associations between air pollutants and CHDs was not fully elucidated. It is hypothesized that air pollutants exposure during the 1<sup>st</sup> pregnancy might strengthen the genetic and environmental interaction on CHDs.<sup>37</sup> Also, Air pollutants might change the molecule of DNA sequence or alter epigenetics related to CHDs.<sup>39</sup> 

In line with this study, the epidemiological difference in CHD<sub>S</sub> between male and female fetuses has been reported previously.<sup>40,41</sup> This disparity could be explained by the sex chromosome-linked genes expression and their interactions with hormonal effects during early development.<sup>42</sup> Interestingly, only male fetuses showed an elevated risk of CHDs who were exposed to a higher PM2.5 concentration. This result indicates that PM<sub>2.5</sub> might emphasize the disparity in the embryonic origins of sexual dimorphism. Moreover, PM<sub>2.5</sub> might have a stronger effect on the expression of specific CHDs genes located on the Y chromosome. A study of mice models showed that increased pathological damage in the hearts of offspring mice was observed among maternal mice exposed to PM<sub>2.5</sub>, and these effects in the male group were 

more obvious than in the female group.  $PM_{2.5}$  exposure in utero inhibited the expression of the *GATA4* gene in male mice, which was related to the formation of CHDs.<sup>43</sup>

After stratified by season, maternal exposure of PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> were positively associated with birth defects in the cold season instead of the warm season. Zhao et al. reported that the effects of air pollutants on birth defects were more obvious in the warm season in Hohhot.<sup>44</sup> This disparity could be partly explained by the uneven levels of dwellings' air pollutants. Compared to cities with lower GDP, cities with a higher GDP and a large population might have lower concentrations of indoor particulate matter.<sup>45</sup> Moreover, Wuhan is a well-known city with hot summer. Most of the residential buildings are equipped with air conditioners, which could help to improve indoor air quality in hot weather. Thus, the interpretation of results should be cautious that significant associations between air pollutants exposure and birth defects in the warm season in Wuhan. 

319 Strengths

 This study firstly provided evidence on the elevated risk of CHDs among mothers with heavy PM<sub>2.5</sub> exposure during the 1<sup>st</sup> trimester. We also found the increased risks of CHDs and orofacial clefts among women who conceived in the cold season and exposed to high concentrations of air pollutants.

#### 324 Limitations

This study has several limitations. Firstly, the selected participants are located in a large tertiary maternal care center in Wuhan and the representative of this study was undermined. Secondly, the birth defects data of this study are manually collected and checked, but mistakes and omissions are inevitable. Thirdly, maternal air pollutants exposure indoor or in other living residents including work, dining, and shopping were not included in this study. Fourthly, other risk factors (including ethnicity, smoking, drinking, medications, drug use, and family history et al.) were failed to obtain, which might influence the interpretation of the relationship between maternal air pollutants exposure and birth defects. More research is needed to explore the pathogenic mechanism of air pollutants exposure during pregnancy and the associated 

| 1                                                                                      |  |
|----------------------------------------------------------------------------------------|--|
| 2                                                                                      |  |
| 3                                                                                      |  |
| 4                                                                                      |  |
| 5                                                                                      |  |
| 6                                                                                      |  |
| 7                                                                                      |  |
| 8                                                                                      |  |
| 8<br>9                                                                                 |  |
| 10                                                                                     |  |
| 10                                                                                     |  |
| 11                                                                                     |  |
| 12                                                                                     |  |
| 13                                                                                     |  |
| 14                                                                                     |  |
| 15                                                                                     |  |
| 16                                                                                     |  |
| 17                                                                                     |  |
| 18                                                                                     |  |
| 19                                                                                     |  |
| 20                                                                                     |  |
| 21                                                                                     |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 |  |
| 23                                                                                     |  |
| 24                                                                                     |  |
| 25                                                                                     |  |
| 26                                                                                     |  |
| 27                                                                                     |  |
| 27<br>28                                                                               |  |
| 20                                                                                     |  |
| 29                                                                                     |  |
| 30                                                                                     |  |
| 31                                                                                     |  |
| 32                                                                                     |  |
| 33                                                                                     |  |
| 34<br>35                                                                               |  |
|                                                                                        |  |
| 36                                                                                     |  |
| 37                                                                                     |  |
| 38                                                                                     |  |
| 39                                                                                     |  |
| 40                                                                                     |  |
| 41                                                                                     |  |
| 42                                                                                     |  |
| 43                                                                                     |  |
| 44                                                                                     |  |
| 45                                                                                     |  |
| 46                                                                                     |  |
|                                                                                        |  |
| 47                                                                                     |  |
| 48                                                                                     |  |
| 49                                                                                     |  |
| 50                                                                                     |  |
| 51                                                                                     |  |
| 52                                                                                     |  |
| 53                                                                                     |  |
| 54                                                                                     |  |
| 55                                                                                     |  |
| 56                                                                                     |  |
| 57                                                                                     |  |
| 58                                                                                     |  |
| 59                                                                                     |  |
|                                                                                        |  |

60

| 335 | birth defects. |
|-----|----------------|
|-----|----------------|

### 336 CONCLUSIONS

Our study confirmed the unfavorable effects of maternal exposure to air pollutants 337 (PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub>) on birth defects during the 1<sup>st</sup> trimester of pregnancy. 338 We firstly provided the evidence on the positive associations between PM<sub>2.5</sub> exposure 339 and CHDs among male fetuses but not female fetuses. Moreover, stronger effects of 340 PM<sub>2.5</sub>, NO<sub>2</sub>, and SO<sub>2</sub> exposure on birth defects were observed in the cold season in 341 Wuhan. As a result, it should be noted for birth defects due to air pollutants, and 342 reducing individual air pollutants exposure during the 1<sup>st</sup> trimester might help to birth 343 defect control in the context of the rapid development all over the world. Moreover, 344 the implementation of air quality protection policies on birth defect control should 345 consider seasonal factor, especially for the cold season in Wuhan, China. Future 346 studies of birth defects and air quality data collected by individual air pollutants 347 monitors are promoted. 348

349 Abbreviations

# 350 CHDs: congenital heart defects; CI: confidence interval; NO<sub>2</sub>: nitrogen dioxide; OR: 351 odds ratio; PM<sub>10</sub>: particulate matter ≤10 µm diameter; PM<sub>2.5</sub>: particulate matter ≤2.5 352 µm diameter; SO<sub>2</sub>: sulfur dioxide.

### 353 Ethics approval and consent to participate

This study was approved by the Ethics Committee of Maternal and Child Health Hospital of Hubei Province (2021IECLW025). This study was based on the retrospective clinical data without any individual patient identifiers.

357 Patient consent for publication

358 Not applicable.

# 359 **Patient and public involvement**

360 Patients or the public were not involved in the design, or conduct, or reporting, or

361 dissemination plans of our research.

362 Availability of data and materials

| 3                                                  |  |
|----------------------------------------------------|--|
| 4                                                  |  |
| 5                                                  |  |
|                                                    |  |
| 7                                                  |  |
| 6<br>7<br>8                                        |  |
|                                                    |  |
| 9                                                  |  |
| 10<br>11                                           |  |
| 11                                                 |  |
| 12                                                 |  |
| 13                                                 |  |
| 14                                                 |  |
| 15                                                 |  |
| 16                                                 |  |
| 17                                                 |  |
| 10                                                 |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 |  |
| 19                                                 |  |
| 20                                                 |  |
| 21                                                 |  |
| 22<br>23                                           |  |
| 23                                                 |  |
| 24                                                 |  |
| 24<br>25                                           |  |
| 26                                                 |  |
| 27                                                 |  |
| 28                                                 |  |
| 20<br>29                                           |  |
| 29<br>30                                           |  |
| 30                                                 |  |
| 31                                                 |  |
| 32                                                 |  |
| 33                                                 |  |
| 34<br>35                                           |  |
| 35                                                 |  |
| 36<br>37                                           |  |
| 37                                                 |  |
| 38                                                 |  |
| 39                                                 |  |
|                                                    |  |
|                                                    |  |
| 41                                                 |  |
| 42                                                 |  |
| 43                                                 |  |
| 44                                                 |  |
| 45                                                 |  |
| 46                                                 |  |
| 47                                                 |  |
| 48                                                 |  |
| 49                                                 |  |
| 50                                                 |  |
| 50                                                 |  |
| 52                                                 |  |
|                                                    |  |
| 53                                                 |  |
| 54                                                 |  |
| 55                                                 |  |
| 56                                                 |  |
| 57                                                 |  |
| 58                                                 |  |
| 59                                                 |  |

> The data used in this study are available from corresponding author on reasonable request.

**365** Competing interests

366 The authors declare that they have no competing interests.

367 Funding

368 No funding was received to assist with the preparation of this manuscript.

369 Authors' contributions

Yao Cheng and Jieyun Yin contributed equally to this manuscript. Yao Cheng 370 collected the data, performed data analysis, draft and revised the manuscript. Jieyun 371 Yin collected the data, performed data analysis, and edit the manuscript. Lijun Yang 372 designed the study, collected the data, and performed data analysis. Man Xu, Xinfeng 373 Lu, and Wenting Huang collected the data, interpreted the data, and reviewed the 374 manuscript. Guohong Dai: collected the data, interpreted the data, and revised the 375 manuscript. Guoqiang Sun: designed the study, collected the data, and supervised the 376 project. All authors gave final approval of the version to be submitted and agreed to 377 378 be accountable for all aspects of the work.

379 Acknowledgements

We appreciate all the medical staff of the Maternal and Child Health Hospital ofHubei Province for the data collection used in this manuscript.

- 382 **References**
- 383 1. World Health Organization. Congenital anomalies. https://www.who.int/en/news-room/fact-sheets/detail/congenital-anomalies. 2020. Accessed 384 385 15 May 2021. 386 2. Global PaedSurg Research Collaboration. Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a 387 388 multicentre, international, prospective cohort study. Lancet 2021;398:325-339. Glinianaia SV, Morris JK, Best KE, et al. Long-term survival of children born with congenital 389 3. 390 anomalies: A systematic review and meta-analysis of population-based studies. PLoS Med 391 2020;17:e1003356. 392 4. Health GBD Results Institute for Metrics and Evaluation. Tool. 393 https://ghdxhealthdataorg/gbd-results-tool. 2022. Accessed 15 Jan 2022. 394 5. Morris JK, Springett AL, Greenlees R, et al. Trends in congenital anomalies in Europe from 395 1980 to 2012. PloS one 2018;13:e0194986.
- <sup>59</sup> 396 6. Yao L, Zhou T, Zhang S, *et al.* Trends and geographical distribution of birth defects in China 60

| 1        |     |     |                                                                                                                           |
|----------|-----|-----|---------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 207 |     |                                                                                                                           |
| 4        | 397 | -   | from 1986 to 2014. Chin J Birth Health Heredity 2020;28:83-88+91 (In Chinese).                                            |
| 5        | 398 | 7.  | United Nations Development Programme. Report on China's Implementation of the                                             |
| 6<br>7   | 399 |     | Millennium         Development         Goals         (2000-2015).           https://www.dwww.dwww.dwww.dwww.dwww.dwww.dww |
| 8        | 400 |     | https://www.cn.undp.org/content/china/zh/home/library/mdg/mdgs-report-2015html. 2015.                                     |
| 9        | 401 | 0   | Accessed 15 May 2021 (In Chinese).                                                                                        |
| 10<br>11 | 402 | 8.  | Wang Q, Fan D, Zhao L, <i>et al.</i> A Study on the Design Method of Indoor Fine Particulate                              |
| 12       | 403 | 0   | Matter (PM2.5) Pollution Control in China. <i>Int J Environ Res Public Health</i> 2019;16:4588.                           |
| 13       | 404 | 9.  | Guo P, Chen Y, Wu H, et al. Ambient air pollution and markers of fetal growth: A                                          |
| 14<br>15 | 405 |     | retrospective population-based cohort study of 2.57 million term singleton births in China.                               |
| 15<br>16 | 406 | 10  | Environ Int 2020;135:105410.                                                                                              |
| 17       | 407 | 10. | Klepac P, Locatelli I, Korošec S, <i>et al.</i> Ambient air pollution and pregnancy outcomes: A                           |
| 18       | 408 |     | comprehensive review and identification of environmental public health challenges. <i>Environ</i>                         |
| 19<br>20 | 409 |     | <i>Res</i> 2018;167:144-159.                                                                                              |
| 20       | 410 | 11. | Grippo A, Zhang J, Chu L, <i>et al</i> . Air pollution exposure during pregnancy and spontaneous                          |
| 22       | 411 |     | abortion and stillbirth. Rev Environ Health 2018;33:247-264.                                                              |
| 23       | 412 | 12. | Liu CB, Hong XR, Shi M, et al. Effects of Prenatal PM(10) Exposure on Fetal Cardiovascular                                |
| 24<br>25 | 413 |     | Malformations in Fuzhou, China: A Retrospective Case-Control Study. Environ Health                                        |
| 26       | 414 |     | Perspect 2017;125:057001.                                                                                                 |
| 27       | 415 | 13. | Yu G, Chen Y, Tang J, et al. Meta-analyses of maternal exposure to atmospheric particulate                                |
| 28<br>29 | 416 |     | matter and risk of congenital anomalies in offspring. Environ Sci Pollut Res Int                                          |
| 29<br>30 | 417 |     | 2021;28:55869-55887.                                                                                                      |
| 31       | 418 | 14. | Zhang Q, Sun S, Sui X, et al. Associations between weekly air pollution exposure and                                      |
| 32       | 419 |     | congenital heart disease. Sci Total Environ 2021;757:143821.                                                              |
| 33<br>34 | 420 | 15. | Parkes B, Hansell AL, Ghosh RE, et al. Risk of congenital anomalies near municipal waste                                  |
| 35       | 421 |     | incinerators in England and Scotland: Retrospective population-based cohort study. Environ                                |
| 36       | 422 |     | Int 2020;134:104845.                                                                                                      |
| 37       | 423 | 16. | Dolk H, Armstrong B, Lachowycz K, et al. Ambient air pollution and risk of congenital                                     |
| 38<br>39 | 424 |     | anomalies in England, 1991-1999. Occup Environ Med 2010;67:223-227.                                                       |
| 40       | 425 | 17. | Ma Z, Cao X, Chang Y, et al. Association between gestational exposure and risk of congenital                              |
| 41       | 426 |     | heart disease: A systematic review and meta-analysis. Environ Res 2021;197:111014.                                        |
| 42<br>43 | 427 | 18. | Wang S, Yu S, Yan R, et al. Characteristics and origins of air pollutants in Wuhan, China,                                |
| 43       | 428 |     | based on observations and hybrid receptor models. J Air Waste Manag Assoc                                                 |
| 45       | 429 |     | 2017;67:739-753.                                                                                                          |
| 46       | 430 | 19. | Jiang W, Liu Z, Ni B, et al. Independent and interactive effects of air pollutants and ambient                            |
| 47<br>48 | 431 |     | heat exposure on congenital heart defects. Reprod Toxicol 2021;104:106-113.                                               |
| 49       | 432 | 20. | Xie D, Yang T, Liu Z, et al. Epidemiology of Birth Defects Based on a Birth Defect                                        |
| 50       | 433 |     | Surveillance System from 2005 to 2014 in Hunan Province, China. PloS one                                                  |
| 51<br>52 | 434 |     | 2016;11:e0147280.                                                                                                         |
| 52<br>53 | 435 | 21. | Zhou Y, Mao X, Zhou H, et al. Epidemiology of birth defects based on a birth defect                                       |
| 55<br>54 | 436 |     | surveillance system in Southern Jiangsu, China, 2014-2018. J Matern Fetal Neonatal Med                                    |
| 55       | 437 |     | 2022;35:745-751.                                                                                                          |
| 56<br>57 | 438 | 22. | Al Noaimi G, Yunis K, El Asmar K, et al. Prenatal exposure to criteria air pollutants and                                 |
| 58       | 439 |     | associations with congenital anomalies: A Lebanese national study. Environ Pollut                                         |
| 59       | 440 |     | 2021;281:117022.                                                                                                          |
| 60       |     |     | . ,                                                                                                                       |

 Page 18 of 25

23. Wang L, Xiang X, Mi B, et al. Association between early prenatal exposure to ambient air pollution and birth defects: evidence from newborns in Xi'an, China. J Public Health (Oxf) 2019;41:494-501. 24. Stapleton PA, Wingard CJ, Nurkiewicz TR, et al. Cardiopulmonary consequences of gestational toxicant exposure: Symposium overview at the 56th annual SOT meeting, Baltimore, MD. Reprod Toxicol 2018;79:16-20. 25. Liu F, Huang Y, Zhang F, et al. Macrophages treated with particulate matter PM2.5 induce selective neurotoxicity through glutaminase-mediated glutamate generation. J Neurochem 2015;134:315-326. 26. Zhang T, Zheng X, Wang X, et al. Maternal Exposure to PM(2.5) during Pregnancy Induces Impaired Development of Cerebral Cortex in Mice Offspring. Int J Mol Sci 2018;19: 257. 27. Saenen ND, Plusquin M, Bijnens E, et al. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study. Environ Health Perspect 2015;123:834-840. 28. Meng Z, Qin G, Zhang B, et al. DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis 2004;19:465-468. 29. Dadvand P, Rankin J, Rushton S, et al. Ambient air pollution and congenital heart disease: a register-based study. Environ Res 2011;111:435-441. 30. Hwang BF, Lee YL, Jaakkola JJ. Air Pollution and the Risk of Cardiac Defects: A Population-Based Case-Control Study. Medicine 2015;94:e1883. 31. Jacobs M, Zhang G, Chen S, et al. The association between ambient air pollution and selected adverse pregnancy outcomes in China: A systematic review. Sci Total Environ 2017;579:1179-1192. 32. Jin L, Qiu J, Zhang Y, et al. Ambient air pollution and congenital heart defects in Lanzhou, China. Environ Res Lett 2015; 10:074005. 33. Ren Z, Zhu J, Gao Y, et al. Maternal exposure to ambient PM(10) during pregnancy increases the risk of congenital heart defects: Evidence from machine learning models. Sci Total Environ 2018; 630:1-10. 34. Zhang B, Liang S, Zhao J, et al. Maternal exposure to air pollutant PM2.5 and PM10 during pregnancy and risk of congenital heart defects. J Expo Sci Environ Epidemiol 2016; 26:422-427. 35. Huang CC, Chen BY, Pan SC, et al. Prenatal exposure to PM(2.5) and Congenital Heart Diseases in Taiwan. Sci Total Environ 2019;655:880-886. 36. Baldacci S, Gorini F, Minichilli F, et al. Review of epidemiological studies on individual and environmental risk factors in the aetiology of congenital heart defects. Epidemiol Prev 2016;40:185-196. 37. Vrijheid M, Martinez D, Manzanares S, et al. Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Perspect 2011;119:598-606. 38. Hansen CA, Barnett AG, Jalaludin BB, et al. Ambient air pollution and birth defects in brisbane, australia. PloS one 2009;4:e5408. 39. Vecoli C, Pulignani S, Andreassi MG. Genetic and Epigenetic Mechanisms Linking Air Pollution and Congenital Heart Disease. J Cardiovasc Dev Dis 2016;3:32. 40. Zhao QM, Liu F, Wu L, et al. Prevalence of Congenital Heart Disease at Live Birth in China. 

| 1        |            |     |                                                                                                                                                                                              |
|----------|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        |            |     |                                                                                                                                                                                              |
| 3<br>4   | 485        | 41  | J Pediatr 2019;204:53-58.                                                                                                                                                                    |
| 5<br>6   | 486<br>487 | 41. | Khoshhal SQ, Albasri AM, Morsy MMF, <i>et al.</i> The trends and patterns of congenital heart diseases at Madinah Cardiac Center, Madinah, Saudi Arabia. <i>Saudi Med J</i> 2020;41:977-983. |
| 7        | 488        | 42. | Deegan DF, Nigam P, Engel N. Sexual Dimorphism of the Heart: Genetics, Epigenetics, and                                                                                                      |
| 8<br>9   | 489        |     | Development. Front Cardiovasc Med 2021;8:668252.                                                                                                                                             |
| 9<br>10  | 490        | 43. | Li R, Zhao Y, Shi J, et al. Effects of PM(2.5) exposure in utero on heart injury, histone                                                                                                    |
| 11<br>12 | 491        |     | acetylation and GATA4 expression in offspring mice. Chemosphere 2020;256:127133.                                                                                                             |
| 12<br>13 | 492        | 44. | Zhao B, Wang M, Lü C, et al. Increasing risk of congenital anomalies associated with                                                                                                         |
| 14<br>15 | 493        |     | seasonal pattern of air pollution: Differences by maternal comorbidities. <i>Ecotoxicol Environ</i>                                                                                          |
| 15<br>16 | 494<br>495 | 45. | saf 2019;167:317-323.<br>Zhu YD, Fan L, Wang J, et al. Spatiotemporal variation in residential PM2.5 and PM10                                                                                |
| 17       | 495<br>496 | 43. |                                                                                                                                                                                              |
| 18<br>19 | 497        |     |                                                                                                                                                                                              |
| 20       |            |     | concentrations in China: National on-site survey. <i>Environ Res</i> 2021;202:111731.                                                                                                        |
| 21<br>22 |            |     |                                                                                                                                                                                              |
| 23       |            |     |                                                                                                                                                                                              |
| 24<br>25 |            |     |                                                                                                                                                                                              |
| 26<br>27 |            |     |                                                                                                                                                                                              |
| 27<br>28 |            |     |                                                                                                                                                                                              |
| 29<br>30 |            |     |                                                                                                                                                                                              |
| 31       |            |     |                                                                                                                                                                                              |
| 32<br>33 |            |     |                                                                                                                                                                                              |
| 34       |            |     |                                                                                                                                                                                              |
| 35<br>36 |            |     |                                                                                                                                                                                              |
| 37       |            |     |                                                                                                                                                                                              |
| 38<br>39 |            |     |                                                                                                                                                                                              |
| 40       |            |     |                                                                                                                                                                                              |
| 41<br>42 |            |     |                                                                                                                                                                                              |
| 43       |            |     |                                                                                                                                                                                              |
| 44<br>45 |            |     |                                                                                                                                                                                              |
| 46       |            |     |                                                                                                                                                                                              |
| 47<br>48 |            |     |                                                                                                                                                                                              |
| 49       |            |     |                                                                                                                                                                                              |
| 50<br>51 |            |     |                                                                                                                                                                                              |
| 52       |            |     |                                                                                                                                                                                              |
| 53<br>54 |            |     |                                                                                                                                                                                              |
| 55       |            |     |                                                                                                                                                                                              |
| 56<br>57 |            |     |                                                                                                                                                                                              |
| 58       |            |     |                                                                                                                                                                                              |
| 59<br>60 |            |     |                                                                                                                                                                                              |
|          |            |     |                                                                                                                                                                                              |

| 2                                |  |
|----------------------------------|--|
| 3                                |  |
| 3<br>4                           |  |
| 5                                |  |
| c                                |  |
| 6<br>7<br>8                      |  |
| 7                                |  |
| 8                                |  |
| ٥.                               |  |
| 9<br>10                          |  |
| 10                               |  |
| 11                               |  |
| 12                               |  |
| 12                               |  |
| 15                               |  |
| 14                               |  |
| 15                               |  |
| 16                               |  |
| 17                               |  |
| 17                               |  |
| 13<br>14<br>15<br>16<br>17<br>18 |  |
| 19                               |  |
| 20                               |  |
|                                  |  |
| 21<br>22                         |  |
| 22                               |  |
| 23                               |  |
| 24                               |  |
| 25                               |  |
| 25                               |  |
| 26                               |  |
| 26<br>27                         |  |
| 28                               |  |
| 29                               |  |
| 29                               |  |
| 30<br>31<br>32<br>33<br>34<br>35 |  |
| 31                               |  |
| 32                               |  |
| 22                               |  |
| 33                               |  |
| 34                               |  |
| 35                               |  |
| 36                               |  |
| 36<br>37                         |  |
| 37                               |  |
| 38                               |  |
| 39                               |  |
| 40                               |  |
|                                  |  |
| 41                               |  |
| 42                               |  |
| 43                               |  |
| 44                               |  |
|                                  |  |
| 45                               |  |
| 46                               |  |
| 47                               |  |
| 48                               |  |
|                                  |  |
| 49                               |  |
| 50                               |  |
| 51                               |  |
| 52                               |  |
|                                  |  |
| 53                               |  |
| 54                               |  |
| 55                               |  |
| 56                               |  |
|                                  |  |
| 57                               |  |
| 58                               |  |
|                                  |  |

| Table S1 The rank resu | lt of the 23 types of co | ommon birth defects |
|------------------------|--------------------------|---------------------|
|                        |                          |                     |

| Number     | Birth defect                                                 | Ν   |
|------------|--------------------------------------------------------------|-----|
| 21         | Conjoined twins                                              | 0   |
| 13         | Bladder valgus                                               | 1   |
| 1          | Anencephaly                                                  | 2   |
| 3          | Encephalocele                                                | 3   |
| 20         | Gastroschisis                                                | 3   |
| 8          | Small ears (including no ears)                               | 6   |
| 10         | Esophageal atresia or stenosis                               | 8   |
| 2          | Spina bifida                                                 | 12  |
| 18         | Congenital diaphragmatic hernia                              | 13  |
| 19         | Omphalocele                                                  | 18  |
| 12         | Hypospadias                                                  | 27  |
| 11         | Rectoanal atresia or stricture (including anorectal atresia) | 30  |
| 14         | Equinovarus                                                  | 41  |
| 4          | Congenital hydrocephalus                                     | 45  |
| 22         | Down's syndrome                                              | 79  |
| 9          | Other malformations of the external ear (except for small    | 86  |
|            | ears and no ears)                                            |     |
| 5, 6, 7    | Orofacial clefts                                             | 119 |
| 15, 16, 17 | Limb defects                                                 | 210 |
| 23         | Congenital heart defects                                     | 265 |
|            |                                                              |     |

| 1        |
|----------|
| 2        |
| 3        |
| 4        |
| -        |
| 5        |
| 6<br>7   |
| 7        |
| 8        |
| 9        |
|          |
| 10       |
| 11       |
| 12       |
| 13       |
| 11       |
| 14       |
| 15       |
| 16       |
| 16<br>17 |
| 18       |
| 19       |
|          |
| 20       |
| 21       |
| 22       |
| 22<br>23 |
| 24       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 54       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
|          |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
|          |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
|          |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 74       |
| 55       |
| 56       |
| 57       |
| 58       |
| 50       |

| Table S2 Adjusted odds ratios and 95% confidence interval of ambient air               | pollutants for each |
|----------------------------------------------------------------------------------------|---------------------|
| interquartile increase during the 2 <sup>ed</sup> trimester and birth defects in Wuhan | , China             |

| Birth defects <sup>a</sup> | <b>PM</b> <sub>10</sub> | <b>PM</b> <sub>2.5</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|----------------------------|-------------------------|--------------------------|-----------------|-----------------|
| Dirtii uelects             | OR (95%CI)              | OR (95%CI)               | OR (95%CI)      | OR (95%CI)      |
| Total                      |                         |                          |                 |                 |
| Birth defects              | 1.01(0.93,1.09)         | 0.95(0.89,1.02)          | 0.99(0.93,1.06) | 0.88(0.80,0.97) |
| CHDs                       | 0.98(0.79,1.22)         | 0.86(0.72,1.04)          | 0.94(0.79,1.11) | 0.75(0.58,0.97) |
| Limb defects               | 1.03(0.87,1.22)         | 0.95(0.82,1.11)          | 1.05(0.92,1.21) | 1.01(0.83,1.25) |
| Orofacial clefts           | 1.27(0.86,1.87)         | 1.42(1.01,1.99)          | 1.27(0.93,1.74) | 1.38(0.85,2.25) |
| Male fetus                 |                         |                          |                 |                 |
| Birth defects              | 1.01(0.91,1.12)         | 0.95(0.87,1.04)          | 0.95(0.87,1.03) | 0.90(0.79,1.02  |
| CHDs                       | 0.82(0.61,1.10)         | 0.69(0.52,0.91)          | 0.69(0.53,0.88) | 0.58(0.41,0.83  |
| Limb defects               | 1.12(0.90,1.38)         | 1.00(0.84,1.20)          | 1.09(0.92,1.29) | 1.09(0.84,1.41  |
| Orofacial clefts           | 1.11(0.69,1.81)         | 1.20(0.79,1.82)          | 1.25(0.83,1.87) | 1.19(0.67,2.12  |
| Female fetus               |                         |                          |                 |                 |
| Birth defects              | 1.01(0.89,1.14)         | 0.96(0.86,1.07)          | 1.06(0.96,1.17) | 0.87(0.75,1.00  |
| CHDs                       | 1.21(0.88,1.66)         | 1.07(0.82,1.39)          | 1.28(0.99,1.65) | 1.00(0.69,1.44  |
| Limb defects               | 0.90(0.69,1.18)         | 0.87(0.68,1.12)          | 0.99(0.79,1.25) | 0.89(0.63,1.25  |
| Orofacial clefts           | 1.64(0.80,3.36)         | 2.02(1.06,3.86)          | 1.31(0.79,2.18) | 2.01(0.75,5.39  |
| Summer/Spring              |                         |                          |                 |                 |
| Birth defects              | 1.04(0.93,1.17)         | 0.91(0.82,1.01)          | 1.03(0.94,1.13) | 0.92(0.79,1.06  |
| CHDs                       | 0.99(0.73,1.33)         | 0.79(0.60,1.04)          | 1.01(0.78,1.29) | 0.64(0.44,0.94  |
| Limb defects               | 1.10(0.86,1.41)         | 0.88(0.69,1.11)          | 1.06(0.87,1.29) | 0.92(0.67,1.25  |
| Orofacial clefts           | 1.20(0.64,2.25)         | 1.47(0.81,2.67)          | 1.07(0.66,1.76) | 1.71(0.74,3.97  |
| Autumn/Winter              |                         |                          |                 |                 |
| Birth defects              | 0.96(0.86,1.08)         | 1.00(0.91,1.10)          | 0.97(0.89,1.07) | 0.87(0.75,1.00  |
| CHDs                       | 1.02(0.74,1.40)         | 1.00(0.76,1.30)          | 0.93(0.72,1.19) | 1.00(0.68,1.47  |
| Limb defects               | 0.94(0.74,1.18)         | 0.99(0.82,1.21)          | 1.05(0.87,1.28) | 1.05(0.77,1.43  |
| Orofacial clefts           | 1.30(0.78,2.17)         | 1.34(0.88,2.03)          | 1.38(0.90,2.12) | 1.08(0.58,2.03  |

Bold values represent statistical significance (two-sided P<0.05).

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO2, nitrogen dioxide; OR, odds ratio; PM<sub>10</sub>, particulate matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter <2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of roads, per capita of medication beds, unemployment, and per capita of cars.

| <b>Birth defects</b> <sup>a</sup> | <b>PM</b> <sub>10</sub> | <b>PM</b> <sub>2.5</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|-----------------------------------|-------------------------|--------------------------|-----------------|-----------------|
| Birth delects                     | OR (95%CI)              | OR (95%CI)               | OR (95%CI)      | OR (95%CI)      |
| Total                             |                         |                          |                 |                 |
| Birth defects                     | 0.86(0.81,0.92)         | 0.89(0.84,0.94)          | 0.90(0.85,0.95) | 0.92(0.86,0.98) |
| CHDs                              | 0.90(0.79,1.03)         | 0.87(0.77,0.98)          | 0.89(0.79,1.00) | 0.88(0.76,1.01) |
| Limb defects                      | 0.96(0.83,1.12)         | 0.90(0.79,1.04)          | 0.97(0.85,1.10) | 1.00(0.85,1.17) |
| Orofacial clefts                  | 0.78(0.64,0.95)         | 0.97(0.81,1.16)          | 0.90(0.76,1.07) | 0.89(0.72,1.10) |
| Male fetus                        |                         |                          |                 |                 |
| Birth defects                     | 0.87(0.80,0.94)         | 0.88(0.81,0.94)          | 0.91(0.85,0.97) | 0.96(0.88,1.05) |
| CHDs                              | 0.85(0.72,1.01)         | 0.88(0.74,1.05)          | 0.88(0.76,1.03) | 0.81(0.67,0.98) |
| Limb defects                      | 0.93(0.77,1.11)         | 0.89(0.75,1.05)          | 0.92(0.79,1.08) | 1.03(0.85,1.25) |
| Orofacial clefts                  | 0.78(0.60,1.00)         | 0.94(0.75,1.19)          | 0.93(0.75,1.16) | 0.95(0.72,1.25) |
| Female fetus                      |                         |                          |                 |                 |
| Birth defects                     | 0.86(0.78,0.94)         | 0.91(0.84,0.99)          | 0.89(0.83,0.96) | 0.86(0.78,0.95) |
| CHDs                              | 0.93(0.77,1.14)         | 0.92(0.76,1.10)          | 0.91(0.77,1.07) | 0.98(0.79,1.21) |
| Limb defects                      | 1.01(0.79,1.30)         | 0.94(0.74,1.19)          | 1.05(0.85,1.31) | 0.93(0.72,1.21) |
| Orofacial clefts                  | 0.78(0.57,1.08)         | 0.99(0.74,1.32)          | 0.85(0.66,1.10) | 0.79(0.56,1.11) |
| Summer/Spring                     |                         |                          |                 |                 |
| Birth defects                     | 1.04(0.94,1.16)         | 1.18(1.07,1.31)          | 1.06(0.98,1.16) | 0.96(0.87,1.06) |
| CHDs                              | 1.07(0.84,1.36)         | 1.16(0.91,1.46)          | 1.13(0.94,1.37) | 0.84(0.68,1.05) |
| Limb defects                      | 1.06(0.82,1.37)         | 0.89(0.66,1.19)          | 0.97(0.78,1.21) | 0.94(0.74,1.19) |
| Orofacial clefts                  | 0.96(0.66,1.39)         | 1.37(0.98,1.91)          | 1.22(0.91,1.64) | 0.93(0.67,1.30) |
| Autumn/Winter                     |                         |                          |                 |                 |
| Birth defects                     | 0.64(0.56,0.73)         | 0.78(0.70,0.87)          | 0.74(0.66,0.82) | 0.86(0.73,1.00) |
| CHDs                              | 0.74(0.55,0.99)         | 0.73(0.57,0.94)          | 0.65(0.52,0.82) | 0.82(0.58,1.15) |
| Limb defects                      | 0.78(0.57,1.08)         | 0.82(0.62,1.08)          | 1.05(0.78,1.41) | 1.07(0.73,1.58) |
| Orofacial clefts                  | 0.78(0.55,1.10)         | 0.40(0.27,0.60)          | 0.52(0.38,0.70) | 0.62(0.39,0.99) |

Table S3 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for each interquartile increase during the 3<sup>rd</sup> trimester and birth defects in Wuhan, China

Bold values represent statistical significance (two-sided P<0.05).

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; OR, odds ratio; PM<sub>10</sub>, particulate matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter  $\leq$ 2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of roads, per capita of medication beds, unemployment, and per capita of cars.

| <b>D:</b> 41. J.f4. 8      | <b>PM</b> <sub>10</sub> | <b>PM</b> <sub>2.5</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|----------------------------|-------------------------|--------------------------|-----------------|-----------------|
| Birth defects <sup>a</sup> | OR (95%CI)              | OR (95%CI)               | OR (95%CI)      | OR (95%CI       |
| Total                      |                         |                          |                 |                 |
| Birth defects              | 0.85(0.74,0.97)         | 0.95(0.83,1.09)          | 1.04(0.95,1.13) | 0.84(0.72,0.9   |
| CHDs                       | 0.91(0.64,1.29)         | 0.86(0.60,1.23)          | 1.01(0.80,1.27) | 0.60(0.41,0.8   |
| Limb defects               | 0.91(0.69,1.21)         | 0.85(0.64,1.13)          | 1.14(0.95,1.37) | 0.97(0.71,1.3   |
| Orofacial clefts           | 0.68(0.36,1.26)         | 1.16(0.62,2.17)          | 1.34(0.89,2.04) | 1.45(0.70,2.9   |
| Male fetus                 |                         |                          |                 |                 |
| Birth defects              | 0.81(0.68,0.97)         | 0.89(0.75,1.06)          | 0.99(0.89,1.11) | 0.83(0.68,1.0   |
| CHDs                       | 0.81(0.50,1.31)         | 0.72(0.44,1.17)          | 0.69(0.50,0.94) | 0.52(0.31,0.8   |
| Limb defects               | 0.94(0.66,1.33)         | 0.75(0.53,1.07)          | 1.22(0.97,1.53) | 0.90(0.61,1.3   |
| Orofacial clefts           | 0.69(0.32,1.48)         | 1.36(0.64,2.87)          | 1.48(0.86,2.53) | 1.08(0.46,2.5   |
| Female fetus               |                         |                          |                 |                 |
| Birth defects              | 0.92(0.75,1.13)         | 1.06(0.86,1.30)          | 1.11(0.97,1.27) | 0.86(0.68,1.0   |
| CHDs                       | 1.06(0.62,1.82)         | 1.05(0.63,1.76)          | 1.59(1.11,2.28) | 0.71(0.40,1.2   |
| Limb defects               | 0.86(0.54,1.38)         | 1.09(0.67,1.79)          | 1.01(0.75,1.37) | 1.12(0.64,1.9   |
| Orofacial clefts           | 0.64(0.22,1.84)         | 0.84(0.28,2.54)          | 1.16(0.61,2.21) | 2.99(0.77,11.   |
| Autumn/Winter              |                         |                          |                 |                 |
| Birth defects              | 0.92(0.76,1.12)         | 1.07(0.89,1.28)          | 1.04(0.93,1.17) | 0.98(0.79,1.2   |
| CHDs                       | 0.94(0.57,1.55)         | 1.02(0.65,1.60)          | 1.22(0.91,1.63) | 0.65(0.38,1.1   |
| Limb defects               | 0.97(0.65,1.45)         | 0.85(0.57,1.27)          | 1.06(0.84,1.35) | 0.82(0.52,1.2   |
| Orofacial clefts           | 0.91(0.34,2.43)         | 1.54(0.55,4.28)          | 1.10(0.61,1.98) | 3.91(1.17,13.   |
| Summer/Spring              |                         |                          |                 |                 |
| Birth defects              | 0.74(0.60,0.90)         | 0.80(0.65,0.97)          | 1.02(0.89,1.17) | 0.73(0.58,0.9   |
| CHDs                       | 0.76(0.44,1.30)         | 0.76(0.44,1.32)          | 0.75(0.52,1.08) | 0.61(0.33,1.1   |
| Limb defects               | 0.82(0.55,1.23)         | 0.83(0.55,1.26)          | 1.26(0.95,1.67) | 1.12(0.71,1.7   |
| Orofacial clefts           | 0.56(0.24,1.30)         | 0.99(0.43,2.24)          | 1.62(0.89,2.95) | 0.74(0.29,1.9   |

Table S4 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for each

Bold values represent statistical significance (two-sided P<0.05).

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; OR, odds ratio; PM<sub>10</sub>, particulate matter  $\leq$ 10 µm diameter; PM<sub>2.5</sub>, particulate matter <2.5 µm diameter; SO<sub>2</sub>, sulfur dioxide.

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of roads, per capita of medication beds, unemployment, and per capita of cars.

| China                      |                    |                     |                   |                   |
|----------------------------|--------------------|---------------------|-------------------|-------------------|
| Birth defects <sup>a</sup> | PM10<br>OR (95%CI) | PM2.5<br>OR (95%CI) | NO2<br>OR (95%CI) | SO2<br>OR (95%CI) |
| Total                      |                    |                     |                   |                   |
| Birth defects              | 1.03(0.90,1.17)    | 1.10(0.94,1.28)     | 1.40(1.26,1.57)   | 1.04(0.86,1.27)   |
| CHDs                       | 0.91(0.67,1.23)    | 1.05(0.74,1.49)     | 1.39(1.08,1.77)   | 1.18(0.75,1.85)   |
| Limb defects               | 1.02(0.74,1.41)    | 1.24(0.87,1.77)     | 1.37(1.04,1.81)   | 1.00(0.64,1.58)   |
| Orofacial clefts           | 0.67(0.42,1.06)    | 0.92(0.54,1.54)     | 1.31(0.91,1.89)   | 0.90(0.47,1.73)   |
| Male fetus                 |                    |                     |                   |                   |
| Birth defects              | 1.08(0.90,1.29)    | 1.04(0.85,1.28)     | 1.33(1.15,1.54)   | 0.98(0.75,1.27)   |
| CHDs                       | 1.01(0.67,1.52)    | 1.03(0.64,1.65)     | 1.19(0.85,1.67)   | 1.11(0.59,2.11)   |
| Limb defects               | 1.07(0.71,1.61)    | 1.18(0.75,1.85)     | 1.48(1.05,2.08)   | 0.85(0.47,1.52)   |
| Orofacial clefts           | 0.67(0.37,1.22)    | 0.83(0.41,1.65)     | 1.17(0.73,1.87)   | 0.99(0.96,1.02)   |
| Female fetus               |                    |                     |                   |                   |
| Birth defects              | 0.99(0.80,1.21)    | 1.17(0.93,1.47)     | 1.52(1.29,1.80)   | 1.08(0.81,1.44)   |
| CHDs                       | 0.78(0.50,1.23)    | 1.00(0.60,1.65)     | 1.57(1.10,2.25)   | 1.09(0.59,2.03)   |
| Limb defects               | 0.96(0.56,1.63)    | 1.31(0.74,2.34)     | 1.21(0.76,1.95)   | 1.24(0.60,2.56)   |
| Orofacial clefts           | 0.71(0.35,1.45)    | 1.01(0.46,2.23)     | 1.62(0.90,2.91)   | 1.01(0.39,2.61)   |
| Autumn/Winter              |                    |                     |                   |                   |
| Birth defects              | 1.00(0.81,1.23)    | 1.24(0.99,1.55)     | 1.18(0.99,1.40)   | 1.12(0.78,1.61)   |
| CHDs                       | 1.25(0.75,2.08)    | 1.02(0.63,1.64)     | 1.46(0.97,2.19)   | 1.29(0.54,3.08)   |
| Limb defects               | 1.01(0.59,1.70)    | 1.46(0.85,2.53)     | 1.22(0.77,1.94)   | 1.00(0.46,2.18)   |
| Orofacial clefts           | 0.77(0.39,1.55)    | 0.99(0.48,2.03)     | 2.31(1.15,4.66)   | 1.48(0.50,4.41)   |
| Summer/Spring              |                    |                     |                   |                   |
| Birth defects              | 1.03(0.78,1.36)    | 1.00(0.61,1.65)     | 1.23(1.00,1.52)   | 1.07(0.76,1.51)   |
| CHDs                       | 0.71(0.37,1.39)    | 0.66(0.16,2.83)     | 0.77(0.45,1.32)   | 1.52(0.69,3.37)   |
| Limb defects               | 1.58(0.81,3.08)    | 2.17(0.92,5.08)     | 1.61(1.01,2.57)   | 0.92(0.42,2.02)   |
| Orofacial clefts           | 0.35(0.12,1.04)    | 0.64(0.08,4.94)     | 0.59(0.25,1.39)   | 0.68(0.19,2.48)   |

Table S5 Adjusted odds ratios and 95% confidence interval of ambient air pollutants for the duration of peak level exposure during the 1<sup>st</sup> trimester and birth defects in Wuhan, China

Bold values represent statistical significance (two-sided P<0.05).

Abbreviations: CHDs, congenital heart defects; CI, confidence interval; NO2, nitrogen dioxide; OR, odds ratio; PM10, particulate matter  $\leq$ 10 µm diameter; PM2.5, particulate matter  $\leq$ 2.5 µm diameter; SO2, sulfur dioxide.

<sup>a</sup> Adjusted for year of conception, maternal age, gravidity, urban/rural, per capita area of roads, per capita of medication beds, unemployment, and per capita of cars.

Page 25 of 25

|                        |           | ven-202                                                                                                                                  |                  |
|------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                        |           | STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cobort studies</i>                                |                  |
| Section/Topic          | ltem<br># | Recommendation                                                                                                                           | Reported on page |
| Title and abstract     | 1         | (a) Indicate the study's design with a commonly used term in the title or the abstract                                                   | 1-2              |
|                        |           | ਰ<br>(b) Provide in the abstract an informative and balanced summary of what was done and what was found                                 | 2                |
| Introduction           | 1         |                                                                                                                                          |                  |
| Background/rationale   | 2         | Explain the scientific background and rationale for the investigation being reported                                                     | 4-5              |
| Objectives             | 3         | State specific objectives, including any prespecified hypotheses                                                                         | 5                |
| Methods                | 1         |                                                                                                                                          |                  |
| Study design           | 4         | Present key elements of study design early in the paper                                                                                  | 5-6              |
| Setting                | 5         | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection          | 5-6              |
| Participants           | 6         | (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up               | 6                |
|                        |           | (b) For matched studies, give matching criteria and number of exposed and unexposed                                                      | 6                |
| Variables              | 7         | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable | 6                |
| Data sources/          | 8*        | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe                         | 6                |
| measurement            |           | comparability of assessment methods if there is more than one group 연                                                                    |                  |
| Bias                   | 9         | Describe any efforts to address potential sources of bias                                                                                | -                |
| Study size             | 10        | Explain how the study size was arrived at                                                                                                | -                |
| Quantitative variables | 11        | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why             | 5-6              |
| Statistical methods    | 12        | (a) Describe all statistical methods, including those used to control for confounding                                                    | 6                |
|                        |           | (b) Describe any methods used to examine subgroups and interactions                                                                      | 6                |
|                        |           | (c) Explain how missing data were addressed                                                                                              | -                |
|                        |           | (d) If applicable, explain how loss to follow-up was addressed                                                                           | -                |
|                        |           | (e) Describe any sensitivity analyses                                                                                                    | -                |

 i/bmjopen-20;

copyright.

|                   |     | <u> </u>                                                                                                                                                                                                              |       |
|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Participants      | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine of for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed                   | 6-7   |
|                   |     | (b) Give reasons for non-participation at each stage                                                                                                                                                                  | -     |
|                   |     | (c) Consider use of a flow diagram                                                                                                                                                                                    | -     |
| Descriptive data  | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on ereformed and potential confounders                                                                              | 6-7   |
|                   |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                                                                   | -     |
|                   |     | (c) Summarise follow-up time (eg, average and total amount)                                                                                                                                                           | -     |
| Outcome data      | 15* | Report numbers of outcome events or summary measures over time                                                                                                                                                        | 6-7   |
| Main results      | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision $\vec{R}$ eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included | -     |
|                   |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                                             | 8     |
|                   |     | <i>(c)</i> If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                               | -     |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                                        | 8-9   |
| Discussion        |     | je i na se                                                                                                                                                                        |       |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                                                              | 10-11 |
| Limitations       |     |                                                                                                                                                                                                                       |       |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of applyses, results from similar studies, and other relevant evidence                                            | 13    |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                                 | 12-13 |
| Other information |     |                                                                                                                                                                                                                       |       |
| Funding           | 22  | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based                                                         | 14    |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in c short and cross-sectional studies.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinegref/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.st obe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml