

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

A Machine Learning Algorithm to Identify Patients at Risk for Recurrence Following an Arthroscopic Bankart Repair (CLEARER): a study protocol for a retrospective multicentre study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055346
Article Type:	Protocol
Date Submitted by the Author:	13-Jul-2021
Complete List of Authors:	Spanning, Sanne; OLVG, Orthopaedic Surgery; Clinique Générale Annecy, Orthopaedic Surgery Verweij, Lukas; Amsterdam UMC Locatie AMC, Orthopedic Surgery, Amsterdam Movement Sciences, ; Amsterdam UMC Locatie AMC, Academic Center for Evidence-based Sports Medicine (ACES) Allaart, Laurens; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; Clinique Générale Annecy, Orthopaedic Surgery Hendrickx, Laurent; University of Amsterdam, Department of Orthopedi Surgery; Flinders University, Orthopaedic & Trauma Surgery Doornberg, Job; Flinders University, Orthopaedic Surgery Athwal, George; Schulich School of Medicine and Dentistry, Roth McFarlane Hand and Upper Limb Center Lafosse, Thibault; Clinique Générale Annecy, Orthopaedic Surgery van den Bekerom, M.P.J.; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; OLVG, Orthopaedic Surgery Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic Surgery; University of Montpellier, Montpellier University Medical Center Department of Orthopedic Surgery
Keywords:	Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY, Elbow & shoulder < ORTHOPAEDI & TRAUMA SURGERY

SCHOLARONE[™] Manuscripts

BMJ Open

3 4	1	Title: A Machine Learning Algorithm to Identify Patients at Risk for Recurrence Following an		
5 6	2	Arthroscopic Bankart Repair (CLEARER): a study protocol for a retrospective multicentre		
7 8	3	study		
9 10	4			
11 12	5	Corresponding author:		
13 14	6	Full name: Sanne Hendrikje van Spanning		
15 16 17	7	Postal address: Onze Lieve Vrouwe Gasthuis (OLVG) hospital, Oosterpark 9, 1091 AC		
17 18 19	8	Amsterdam, The Netherlands		
20 21	9	Email: s.h.vanspanning@olvg.nl		
22 23	10			
24 25	11	Authors:		
26 27	12	Sanne H. van Spanning ^{1,2,3} ; Lukas P.E. Verweij ^{4,5,6} ; Laurens J.H. Allaart ^{2,3} ; Laurent A.M.		
28 29 30 31	13	Hendrickx ^{4,5,7} ; Job N. Doornberg ⁷ ; George S. Athwal ⁸ ; Thibault Lafosse ² ; Laurent		
	14	Lafosse ² ; Michel P.J van den Bekerom ^{1,3} ; Geert Alexander Buijze ^{2,4,9} on behalf of the		
32 33 34	15	Machine Learning Consortium		
35 36	16			
37 38	17	Affiliations		
39 40	18	1. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG,		
41 42	19	Amsterdam, The Netherlands		
43 44	20	2. Department of Orthopedic Surgery, Clinique Générale Annecy, Annecy, France		
45 46	21	3. Department of Human Movement Sciences, Faculty of Behavioural and Movement		
47 48	22	Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam,		
49 50 51	23	the Netherlands		
52 53	24	4. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC,		
55 54 55	25	location AMC, University of Amsterdam, Amsterdam, The Netherlands.		
56 57	26	5. Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam UMC,		
58 59 60	27	Amsterdam, The Netherlands		

1 2		
2 3 4	28	6. Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International
5 6	29	Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The
7 8	30	Netherlands
9 10	31	7. Department of Orthopaedic & Trauma Surgery, Flinders Medical Centre, Flinders
11 12	32	University, Adelaide, SA, Australia
13 14	33	8. Roth McFarlane Hand and Upper Limb Center, Schulich School of Medicine and
15 16	34	Dentistry, Western University, London, Ontario, Canada
17 18	35	9. Department of Orthopedic Surgery, Montpellier University Medical Center, Lapeyronie
19 20 21	36	Hospital, University of Montpellier, Montpellier, France
21 22 23	37	
24 25	38	Word count: 1256, Abstract: 281
26 27	39	Keywords: Shoulder instability, dislocation, recurrence, Bankart, Machine Learning
28 29	40	Algorithm, Artificial Intelligence
30 31	41	
32 33	42	Date: 29-06-2021
34 35	43	Date: 29-06-2021 Version: 1.0
36 37	44	
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49		
50		
51 52		
52 53		
54		
55		
56 57		
57 58		
59		
60		

Page 3 of 24

BMJ Open

1 2 3	
4 5 6 7	
8 9 10 11	
12 13 14 15	
16 17 18 19	
20 21 22 23	
24 25 26 27	
28 29 30 31	
32 33 34 35	
36 37 38 39	
40 41 42	
43 44 45 46	
47 48 49 50	
51 52 53 54	
55 56 57 58	
59 60	

45	ABSTRACT
46	Introduction: Shoulder instability is a common injury, with a reported incidence of 23.9 per
47	100,000 person-years. There is still an ongoing debate on the most effective treatment
48	strategy. Non-operative treatment has recurrence rates of up to 60%, whereas operative
49	treatments such as the Bankart repair and bone block procedures show lower recurrence
50	rates (16% and 2%, respectively) but higher complication rates (<2% and up to 30%,
51	respectively). Methods to determine risk of recurrence have been developed, however
52	patient-specific decision-making tools are still lacking. Artificial Intelligence (AI) and machine
53	learning algorithms use self-learning complex models that can be used to make patient-
54	specific decision-making tools. The aim of the current study is to develop and train a
55	machine learning algorithm to create a prediction model to be used in clinical practice – as
56	an online prediction tool – to estimate recurrence rates following a Bankart repair.
57	Methods and analysis: This is a multicentre retrospective cohort study. Patients with
58	traumatic anterior shoulder dislocations that were treated with an arthroscopic Bankart repair
59	without remplissage will be included. This study includes two parts. Part one, collecting all
60	potential factors influencing the recurrence rate following an arthroscopic Bankart repair in
61	patients using multicentre data. Part two, the multicentre data will be re-evaluated (and
62	where applicable complemented) using machine learning algorithms to predict outcomes.
63	Recurrence will be the primary outcome measure.
64	Ethics and dissemination: For safe multicentre data exchange and analysis, our Machine
65	Learning Consortium adhered to the World Health Organization (WHO) regulation "Policy on
66	Use and Sharing of Data Collected by WHO in Member States Outside the Context of Public
67	Health Emergencies." No IRB is required for this study.
68	Trial registration: This study does not require a trial registration

BMJ Open

2	
3	
4	
5	
4 5 6 7	
7	
, Q	
8 9 10	
9	
10	
11	
12	
13	
14	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
30 31 32 33	
32	
33	
34 35 36 37 38 39	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58 50	
L ()	

59 60

1 2

71

72

73

74

77

78

79

80

70 ARTICLE SUMMARY

- This study aims to calculate a patient specific probability of recurrence following arthroscopic Bankart repair instead of the 'traditional' overall complication rate.
- Creating an online prediction tool for recurrence following an arthroscopic Bankart repair can help guide surgeons in selecting patients who benefit from this procedure.
- Data will be obtained from global databases of all authors included in the Machine
 Learning Consortium, aiming to include data from over 1000 patients.
 - imitatic decepting of c. This study does have the limitation of being retrospective and therefore the study is • dependent on the recordkeeping of each individual hospital.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 24

1 2 BMJ Open

2 3	
4	
5	
6	
7	
8 9	
10	
11	
12	
13	
14	
13 14 15 16	
17	
18	
19	
20 21	
))	
23	
24	
25	
26 27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37 38	
30 39	
40	
41	
42	
43 44	•
44 45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56 57	
58	
59	
60	

81 INTRODUCTION

82 Anterior shoulder dislocation is a common injury, with a reported incidence of 23.9 per 83 100,000 person-years.¹ Shoulder dislocations limit patients in their daily routine and 84 participation in sports, cause irreversible damage to the shoulder joint and are associated 85 with high costs.^{2, 3} There is an ongoing debate on the most effective treatment strategy to 86 prevent recurrence. Non-operative treatment of first-time dislocations has recurrence rates 87 of up to 60%, whereas operative treatment such as the arthroscopic labrum repair and bone 88 block procedures have lower recurrence rates (16% and 2%, respectively).^{4, 5} However, the 89 complication rates for bone block procedures compared to arthroscopic labrum repair (up to 90 30% and <2%, respectively) are higher and therefore pre-operative counselling with 91 determination of the most suitable treatment is important in avoiding unnecessary risk of 92 complications.^{6,7} Methods to determine risk of recurrence have been developed, including 93 the instability severity index score (ISIS), glenoid morphology (i.e. concavity, version, 94 inclination), an off-track Hill-Sachs lesion and translation of the humeral head.⁸⁻¹² However, a 95 patient-specific decision-making tool is still lacking. 96 The self-learning complex models used by Artificial Intelligence (AI) and Machine Learning 97 algorithms express high levels of intelligence without human error and are therefore highly 98 suitable to be used for interpretation of images, pathology slides and patient-specific 99 decision-making tool.¹³⁻¹⁷ Hendrickx and colleagues recently developed a prediction model 100 based on machine learning algorithms to estimate acute and late complications after 101 intramedullary nailing of a tibial shaft fracture.¹⁶ In other words, the authors were able to use 102 the computationally intensive methods of machine learning, to go from the 'traditionally' 103 reported overall complication rate of a cohort to calculate the probability of a specific patient 104 complication rate. This study resulted in an online prediction tool. 105 106 Aim and objectives

⁸ 107 The aim of the current study is to develop and train a machine learning algorithm to create a
 ⁹ 108 prediction model to be used in clinical practice – as an online prediction tool – to estimate

3 4	109
5	110
6 7	111
8 9	
10	112
11 12	
13 14	
15	
16 17	
18 19	
20	
21 22	
23 24	
25	
26 27	
28 29	
30	
31 32	
33 34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
52 53	
54	
55 56	
57	
58 59	

1 2

109 recurrence rates following a Bankart repair. No studies have yet been published applying

to beet teriew only

110 machine learning algorithms to systematically reviewed/collected data in this field.

BMJ Open

2 3 4	113	METHODS AND ANALYSIS
5 6 7 8	114	Study design
	115	This multicentre retrospective cohort study includes two parts.
9 10	116	
11 12	117	Part one – Collecting Data
13 14	118	Part one involves collecting all potential factors influencing the recurrence rate following an
15 16	119	arthroscopic Bankart repair without remplissage in patients using multicentre data. Authors
17 18	120	who will contribute to data contribution will be included in the Machine Learning Consortium,
19 20 21	121	aiming to include data from over 1000 patients all over the world. To identify relevant
21 22 23	122	studies, a systematic approach was used searching PubMed, Embase/Ovid, Cochrane
24 25	123	Database of Systematic Reviews/Wiley, Cochrane Central Register of Controlled
26 27	124	Trials/Wiley, CINAHL/Ebsco, and Web of Science/Clarivate according to the search terms
28 29	125	used in Verweij et al. (see Supplemental appendix 1 for the search strategy). ¹⁸ The inclusion
30 31	126	criteria are patients treated with arthroscopic Bankart repair without remplissage for
32 33	127	traumatic anterior shoulder instability with a minimum of 2 years follow up. Shoulder
34 35	128	instability is defined as either a complete dislocation or subluxation. ¹⁹ Exclusion criteria
36 37 38	129	include patients who have undergone previous stabilization procedures or other surgical
39 40	130	procedures to the ipsilateral shoulder than arthroscopic Bankart repair and patients with
41 42	131	posterior, multidirectional or voluntary habitual instability.
43 44	132	
45 46	133	Part two – Machine Learning
47 48	134	Part two, the multicentre data will be re-evaluated (and where applicable complemented)
49 50	135	using machine learning algorithms to predict outcomes.
51 52	136	
53 54	137	Training Data & Test Data
55 56 57	138	Eighty percent (80%) of all (>1000) patients included in the Machine Learning Consortium
57 58 59	139	Database will be randomly allocated to the training dataset and 20% to the test dataset.
60	140	

2	
3	141
4 5	142
6 7	143
8 9	
10 11	144
12	145
13 14	146
15 16 17	147
17 18 19	148
20 21	149
21 22 23	150
24 25	151
26 27	152
28 29	153
30 31	154
32 33	155
34 35	156
36 37	157
38 39	158
40 41 42	159
42 43 44	160
45 46	161
47 48	162
49 50	163
51 52	164
53 54	165
55 56	166
57 58	167
59 60	
	168

141 Output variables

142 Each Machine Learning Algorithms will be trained to recognize patterns related to 143 recurrence rates.

145 Input Variables

146 For the primary outcome, a Random-Forest algorithm will be used to identify the variables 147 with the highest predictive variables from all available data points in the Machine Learning 148 Consortium Database. The data points available include demographics (age, sex), patient 149 specific factors (e.g. preoperative BMI, comorbidity, dominance), disease specific factors 150 (e.g. affected side, number of pre-operative dislocations, associated lesions) and surgical 151 characteristics (e.g. time from injury to surgery, surgeon level) (see Supplemental appendix 152 2 for the complete list of factors that will be collected from the electronic medical records).

154 Algorithms to be trained

155 It is not possible to know what Machine Learning algorithm will be most suitable to calculate 156 recurrence following an arthroscopic Bankart repair.²⁰ However, based on previous studies, 157 the following algorithms will be tested as prediction models for recurrence rates: Decision 158 Tree Models; Support Vector Machine; Neural Network; Bayes Point Machine.^{16, 21-25}

160 Training and Testing of the algorithms

161 For each ML algorithm, ten-fold cross validation will be repeated three times on the training 162 dataset (80%), to train the algorithms in recognizing patterns related to recurrence following 163 an arthroscopic Bankart repair, and to subsequently assess their predictive performance 164 based on the following performance characteristics: Area under the ROC-curve, calibration 165 (calibration slope, calibration intercept) and Brier score will be calculated.²⁶ The model's 166 predicted probability is plotted against the actual observed probability to calculate calibration 167 of a model. Perfect models will have calibration intercepts of 0, and calibration slopes of 1.²⁷ 168 The overall performance of the model will be assessed with the Brier-score. A perfect Brier

BMJ Open

1 2		
2 3 4	169	score, indicating total accuracy, is a score of 0. The lowest possible score is a Brier score of
5 6	170	1. ²⁶ The remaining 20% of the data will be used as a test-set to assess the performance of
7 8	171	the best performing machine learning algorithms based on "unseen" data. The technical
9 10	172	appendix, statistical code, and dataset will be published.
11 12	173	
13 14	174	External validation of the best performing algorithm
15 16	175	Before incorporation into an online open access decision-making tool, the best performing
17 18 10	176	algorithm will be externally validated. The same performance metrics will be calculated as
19 20 21	177	described above.
21 22 23	178	
24 25	179	Open-access clinical prediction tool
26 27	180	An open-access clinical prediction tool will be developed using the best performing
28 29	181	algorithm.
30 31	182	
32 33	183	Patients and public involvement
34 35	184	Patients and the public were not involved in the making of this protocol.
36 37 28	185	
38 39 40		
40 41 42		
43 44		
45		
46 47		
48		
49 50		
50		
52		
53		
54 55		
55 56		
57		
58		
59 60		

2	
3	186
4	
5 6	187
7	100
8	188
9	189
10	10)
11 12	190
13	
14	191
15	192
16	
17 18	
19	
20	
21	
22 23	
23 24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34 35	
35 36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46 47	
48	
49	
50	
51 52	
52 53	
55 54	
55	
56	
57	
58 59	
59 60	

186 ETHICS AND DISSEMINATION

- 187 For safe multicentre data exchange and analysis, our Machine Learning Consortium
- 188 adhered to the World Health Organization (WHO) regulation "Policy on Use and Sharing of
- 189 Data Collected by WHO in Member States Outside the Context of Public Health
- 190 Emergencies." ²⁸ No IRB is required for this study.

Page 11 of 24

1 2 BMJ Open

2	
3 4	
4 5	
6	
7	
8	
9	
10	
11 12	
13	
14	
15	
16	
17	
18 19	
20	
21	
22	
23	
24 25	
25 26	
27	
28	
29	
30	
31 32	
33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57	
58 59	
59 60	
50	

193	DISCUSSION

194 Operative treatment significantly reduces the risk of recurrent shoulder instability compared to non-operative treatment.²⁹ Patients with first-time dislocations who receive operative 195 196 treatment are most often treated with labrum repair.²⁹ Risk factors associated with failure of 197 an arthroscopic Bankart repair include young age (≤30 years), participation in competitive 198 sports, multiple preoperative dislocations, > 6 months surgical delay from first-time 199 dislocation to surgery, ISIS > 3 and associated lesions (Hill-Sachs, glenoid bone loss and 200 ALPSA). ¹⁸ It is impossible to take all these risk factors into account and make an objective 201 decision on what treatment is most suitable. Several prediction tools have been developed 202 to help counselling patients, however these tools only provide an indicative overall score and 203 are not patient specific.⁸⁻¹² Artificial Intelligence (AI) and machine learning algorithms have 204 shown potential to make a patient-specific decision tool.¹⁶ Creating an online prediction tool 205 for recurrence following an arthroscopic Bankart repair can help guide surgeons in selecting 206 patients who benefit from this procedure. Patients with a first-time anterior shoulder 207 dislocations receive proper evidence-based information only in 29% of the cases.³⁰ An 208 online prediction tool might elevate these numbers and makes it possible for shared decision 209 making based on objective measures. 210 The strength of this study is the great amount of data that will be gathered. Data will be 211 obtained from global databases of all authors included in the Machine Learning Consortium, 212 aiming to include data of >1000 patients. This study does have the limitation of being 213 retrospective and therefore the study is dependent on the recordkeeping of each individual

214 hospital.

2 3 4	216	Funding
4 5 6	217	This research received no specific grant from any funding agency in the public, commercial
7 8	218	or not-for-profit sectors.
8 9 10 11 23 14 5 16 17 18 9 20 21 22 32 42 52 62 7 8 9 0 31 23 34 35 36 37 8 9 0 41 42 34 45 46 7 8 9 0 1 22 32 42 52 62 7 8 9 0 31 23 34 35 36 37 8 9 0 41 45 45 46 7 8 9 0 12 23 24 52 62 7 8 9 0 31 23 34 35 36 37 8 9 0 41 42 34 45 66 7 8 9 0 12 23 24 52 66 7 8 9 0 31 23 34 35 36 37 8 9 0 41 42 34 45 66 7 8 9 0 12 23 24 52 66 7 8 9 0 31 23 34 35 36 37 8 9 0 41 42 34 45 66 7 8 9 0 1 52 53 45 56 57 8 9 0 1 22 34 55 66 7 8 9 0 1 22 33 45 56 7 8 9 0 1 22 33 45 56 7 8 9 0 1 23 34 56 7 8 9 0 41 42 34 45 66 7 8 9 0 1 52 55 56 57 8 9 0 1 52 55 56 57 8 9 0 1 23 34 55 66 7 8 9 0 41 42 34 45 66 7 8 9 0 1 52 55 55 55 55 56 57 8 9 0 1 23 34 55 56 7 8 9 0 41 42 34 45 56 57 8 9 0 1 52 55 55 55 55 55 55 55 55 55 55 55 55	219	For peer leview only

AUTHORS CONTRIBUTION

Sanne H. van Spanning, Geert Alexander Buijze, Michel P.J van den Bekerom, Lukas P.E. Verweij and Laurens J.H. Allaart contributed to the conception, overall design and planning of the study. Laurent A.M. Hendrickx and Job N. Doornberg contributed to the conception and design of the methods section, primarily focussing on the machine learning section and data analysis. George S. Athwal, Thibault Lafosse and Laurent Lafosse contributed to the design of the methods section and primarily focussed on how the data should he collected and interpreted. Sanne H. van Spanning, Geert Alexander Buijze, Michel P.J van den Bekerom and Lukas P.E. Verweij contributed to writing the protocol. All authors revised this version of the protocol and gave final approval for it to be published. All authors ensure that questions related to the accuracy or integrity of any part of this protocol are appropriately

investigated and resolved.

232 CONFLICTS OF INTEREST

233 Dr. G.S. Athwal reports as 'financial activities outside the submitted work' to be a consultant

to beet teries only

234 for ConMed Linvatec. The remaining authors certify that neither he or she has funding or

235 commercial associations that might pose a conflict of interest in connection with the

236 submitted article.

2		
3	237	References
4 5	•••	
6	238	1. Zacchilli MA and Owens BD. Epidemiology of shoulder dislocations presenting to
7	239	emergency departments in the United States. J Bone Joint Surg Am 2010; 92: 542-549.
8	240	2010/03/03. DOI: 10.2106/JBJS.I.00450.
9	241	2. Verweij LPE, Pruijssen EC, Kerkhoffs G, et al. Treatment type may influence degree
10 11	242 243	of post-dislocation shoulder osteoarthritis: a systematic review and meta-analysis. <i>Knee Surg</i>
12	243 244	 Sports Traumatol Arthrosc 2020 2020/09/17. DOI: 10.1007/s00167-020-06263-3. Zaremski JL, Galloza J, Sepulveda F, et al. Recurrence and return to play after
13	244 245	
14	243 246	shoulder instability events in young and adolescent athletes: a systematic review and meta- analysis. <i>Br J Sports Med</i> 2017; 51: 177-184. 2016/11/12. DOI: 10.1136/bjsports-2016-
15	240 247	096895.
16 17	247	4. Hovelius L and Rahme H. Primary anterior dislocation of the shoulder: long-term
17	248 249	prognosis at the age of 40 years or younger. <i>Knee Surg Sports Traumatol Arthrosc</i> 2016; 24:
19	250	330-342. 2016/01/13. DOI: 10.1007/s00167-015-3980-2.
20	250 251	5. Hurley ET, Lim Fat D, Farrington SK, et al. Open Versus Arthroscopic Latarjet
21	252	Procedure for Anterior Shoulder Instability: A Systematic Review and Meta-analysis. <i>Am J</i>
22 23	252	Sports Med 2019; 47: 1248-1253. 2018/03/21. DOI: 10.1177/0363546518759540.
23 24	254	6. Williams HLM, Evans JP, Furness ND, et al. It's Not All About Redislocation: A
25	255	Systematic Review of Complications After Anterior Shoulder Stabilization Surgery. Am J
26	256	Sports Med 2019; 47: 3277-3283. 2018/12/12. DOI: 10.1177/0363546518810711.
27	257	7. Griesser MJ, Harris JD, McCoy BW, et al. Complications and re-operations after
28	258	Bristow-Latarjet shoulder stabilization: a systematic review. J Shoulder Elbow Surg 2013;
29 30	259	22: 286-292. 2013/01/29. DOI: 10.1016/j.jse.2012.09.009.
31	260	8. Balg F and Boileau P. The instability severity index score. A simple pre-operative
32	261	score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br
33	262	2007; 89: 1470-1477. 2007/11/14. DOI: 10.1302/0301-620X.89B11.18962.
34	263	9. Di Giacomo G, Itoi E and Burkhart SS. Evolving concept of bipolar bone loss and the
35 36	264	Hill-Sachs lesion: from "engaging/non-engaging" lesion to "on-track/off-track" lesion.
37	265	Arthroscopy 2014; 30: 90-98. 2014/01/05. DOI: 10.1016/j.arthro.2013.10.004.
38	266	10. Matsumura N, Oki S, Fukasawa N, et al. Glenohumeral translation during active
39	267	external rotation with the shoulder abducted in cases with glenohumeral instability: a 4-
40	268	dimensional computed tomography analysis. J Shoulder Elbow Surg 2019; 28: 1903-1910.
41 42	269	2019/06/18. DOI: 10.1016/j.jse.2019.03.008.
42	270	11. Moroder P, Damm P, Wierer G, et al. Challenging the Current Concept of Critical
44	271	Glenoid Bone Loss in Shoulder Instability: Does the Size Measurement Really Tell It All?
45	272	<i>Am J Sports Med</i> 2019; 47: 688-694. 2019/01/15. DOI: 10.1177/0363546518819102.
46	273 274	12. Yamamoto N, Itoi E, Abe H, et al. Contact between the glenoid and the humeral head in abduction avternal rotation and herizontal avtencion: a new concern of glenoid track.
47 48	274 275	in abduction, external rotation, and horizontal extension: a new concept of glenoid track. <i>J Shoulder Elbow Surg</i> 2007; 16: 649-656. 2007/07/24. DOI: 10.1016/j.jse.2006.12.012.
40 49	273	 13. Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection
50	270	of critical findings in head CT scans: a retrospective study. <i>Lancet</i> 2018; 392: 2388-2396.
51	278	2018/10/16. DOI: 10.1016/S0140-6736(18)31645-3.
52	278	14. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of
53 54	280	Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast
54 55	281	Cancer. <i>JAMA</i> 2017; 318: 2199-2210. 2017/12/14. DOI: 10.1001/jama.2017.14585.
56	282	15. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning
57	283	Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA
58	284	2016; 316: 2402-2410. 2016/11/30. DOI: 10.1001/jama.2016.17216.
59 60		
00		

BMJ Open

Machine Learning Consortium obotS and Investigators F. A Machine Learning 16. Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for Infection After Operative Treatment. J Bone Joint Surg Am 2021; 103: 532-540. 2021/01/05. DOI: 10.2106/JBJS.20.00903. Ting DSW, Cheung CY, Lim G, et al. Development and Validation of a Deep 17. Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA 2017; 318: 2211-2223. 2017/12/14. DOI: 10.1001/jama.2017.18152. Verweij LPE, Van Spanning SH, Grillo A, et al. Risk factors for recurrence following 18. arthroscopic Bankart repair: a systematic review and meta-analysis of 4584 shoulders (submitted). Knee Surg Sports Traumatol Arthrosc 2021. H.Alkaduhimi, Connelly JW, Deurzen DFPv, et al. High Variability of the Definition 19. of Recurrent Glenohumeral Instability: An Analysis of the Current Literature by a Systematic Review. Arthroscopy, Sports Medicine, and Rehabilitation 2021. DOI: https://doi.org/10.1016/j.asmr.2021.02.002. 20. Wolpert DH. The Lack of A Priori Distinctions Between Learning Algorithms. Neural Computation 1996; 8: 1341-1390. DOI: 10.1162/neco.1996.8.7.1341. Karhade AV, Thio Q, Ogink PT, et al. Development of Machine Learning Algorithms 21. for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. *Neurosurgery* 2019; 85: E83-E91. 2018/11/27. DOI: 10.1093/neuros/nyy469. M. Fernandez-Delgado EC, S. Barro, D. Amorim. Do we Need Hundreds of 22. Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research 2014; 15: 3133-3181. Maroco J, Silva D, Rodrigues A, et al. Data mining methods in the prediction of 23. Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes 2011; 4: 299. 2011/08/19. DOI: 10.1186/1756-0500-4-299. Thio Q, Karhade AV, Ogink PT, et al. Can Machine-learning Techniques Be Used for 24. 5-year Survival Prediction of Patients With Chondrosarcoma? Clin Orthop Relat Res 2018; 476: 2040-2048. 2018/09/05. DOI: 10.1097/CORR.00000000000433. 25. Wainer J. Comparison of 14 different families of classification algorithms on 115 binary datasets. 2016. Steyerberg EW and Vergouwe Y. Towards better clinical prediction models: seven 26. steps for development and an ABCD for validation. Eur Heart J 2014; 35: 1925-1931. 2014/06/06. DOI: 10.1093/eurheartj/ehu207. Stevens RJ and Poppe KK. Validation of clinical prediction models: what does the 27. "calibration slope" really measure? J Clin Epidemiol 2020; 118: 93-99. 2019/10/13. DOI: 10.1016/j.jclinepi.2019.09.016. Organization WH. WHO data policy, https://www.who.int/publishing/datapolicy/en/ 28. (2019, accessed 07-09-2019 2019). 29. Van Spanning SH, Verweij LPE, Priester-Vink S, et al. Operative versus non-operative treatment following first-time anterior shoulder dislocation. A systematic review and meta-analysis (Accepted). JBJS Rev 2021. 30. Hutyra CA, Streufert B, Politzer CS, et al. Assessing the Effectiveness of Evidence-Based Medicine in Practice: A Case Study of First-Time Anterior Shoulder Dislocations. J Bone Joint Surg Am 2019; 101: e6. 2019/01/18. DOI: 10.2106/JBJS.17.01588.

2 PubMed

#17	Search: #14 AND #15 AND #16 Sort by: Most Recent	1,768
#16	Search: ((("Recurrence"[Mesh] OR recurr*[tiab] OR relaps*[tiab] OR recrudesc*[tiab] OR repeat*[tiab]) AND ("Joint Dislocations"[Mesh] OR dislocat*[tiab] OR luxat*[tiab] OR instabilit*[tiab])) OR risk*[tiab] OR lesion*[tiab] OR (hill[tiab] AND sachs[tiab]) OR injur*[tiab] OR Perthes[tiab] OR ALPSA[tiab] OR (anterior[tiab] AND (labro[tiab] OR labral[tiab]) AND periosteal[tiab] AND sleeve[tiab] AND avulsion*[tiab]) OR HAGL[tiab] OR (humeral[tiab] AND avulsion*[tiab] OR glenohumeral[tiab] AND ligament*[tiab]) OR (greater[tiab] AND tuberosity[tiab]) OR fracture*[tiab] OR "Fractures, Bone"[Mesh] OR "Rotator Cuff"[Mesh] OR (rotator[tiab] AND cuff[tiab]) OR tear*[tiab] OR age[tiab] OR sport*[tiab] OR laxity[tiab] OR (glenoid[tiab] AND bone[tiab] AND loss[tiab])) Sort by: Most Recent	5,603,913
#15	Search: (Bankart[tiab] OR "Bankart Lesions/surgery"[Mesh] OR arthroscopic stabilization[tiab] OR arthroscopic stabilisation[tiab] OR labral repair[tiab]) Sort by: Most Recent	2,300
#14	Search: ("Shoulder Dislocation"[Mesh] OR "Shoulder"[Mesh] OR "Shoulder Joint"[Mesh] OR shoulder*[tiab] OR glenohumeral[tiab]) Sort by: Most Recent	82,527

4 Embase/Ovid

1	exp shoulder dislocation/	6512
2	exp shoulder/	83055
3	(shoulder* or glenohumeral).ti,ab,kw.	101743
4	1 or 2 or 3	138684
5	(Bankart or arthroscopic stabilization or arthroscopic stabilisation or labral repair).ti,ab,kw.	2813
6	Bankart lesion/su [Surgery]	198
7	5 or 6	2862
8	(recurr* or relaps* or recrudesc* or repeat*).ti,ab,kw.	1930525
9	exp joint dislocation/	4059

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\17\\8\\19\\20\\12\\23\\2\\4\\5\\26\\7\\8\\9\\0\\1\\3\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\4\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\4\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\4\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\1\\2\\3\\1\\1\\2\\3\\1\\1\\2\\3\\1\\1\\2\\1\\1\\1\\2\\1\\1\\1\\1$	5 6
45 46 47	
50 51 52	
53 54 55 56	
57 58 59 60	

-		
10	(dislocat*or luxat* or instabilit*).ti,ab,kw.	154727
11	9 or 10	158430
12	8 and 11	19548
13	(risk* or lesion* or (hill and sachs) or injur* or Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*) or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and bone and loss)).ti,ab,kw.	8234845
14	exp fracture/	336756
15	exp rotator cuff/	8999
16	12 or 13 or 14 or 15	8303779
17	4 and 7 and 16	2119

6 Cochrane Database of Systematic Reviews & Cochrane Central Register of Controlled Trials

#1	MeSH descriptor: [Shoulder Dislocation] explode all trees	143
#2	MeSH descriptor: [Shoulder] explode all trees	537
#3	MeSH descriptor: [Shoulder Joint] explode all trees	745
#4	(shoulder* or glenohumeral):ti,ab,kw	11763
#5	#1 OR #2 OR #3 OR #4	11763
#6	MeSH descriptor: [Bankart Lesions] explode all trees and with qualifier(s): [surgery - SU]	3
#7	(Bankart OR arthroscopic stabilization OR arthroscopic stabilisation OR labral repair):ti,ab,kw	238
#8	#6 OR #7	238
#9	MeSH descriptor: [Recurrence] explode all trees	12084
#10	(recurr* or relaps* or recrudesc* or repeat*):ti,ab,kw	159845
#11	#9 OR #10	159894
#12	MeSH descriptor: [Joint Dislocations] explode all trees	687
#13	(dislocat*or luxat* or instabilit*):ti,ab,kw	5839
#14	#12 OR #13	6413

5	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
16	
17	
18	
10	
20	
20	
21	
22	
23	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 8 9	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
38 39 40 41	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

60

#15	#11 AND #14	1018
#16	(risk* or lesion* or (hill and sachs) or injur* or Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*) or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and bone and loss)):ti,ab,kw	549185
#17	MeSH descriptor: [Fractures, Bone] explode all trees	6053
#18	MeSH descriptor: [Rotator Cuff] explode all trees	344
#19	#15 OR #16 OR #17 OR #18	549508
#20	#5 AND #8 AND #19	145

8 CINAHL/Ebsco

S18	S3 AND S6 AND S17	729
S17	S13 OR S14 OR S15 OR S16	1,482,038
S16	(MH "Rotator Cuff+")	3,063
S15	(MH "Fractures+")	58,529
S14	(TI (risk* OR lesion* OR (hill AND sachs) OR injur* OR Perthes OR ALPSA OR (anterior AND (labro OR labral) AND periosteal AND sleeve AND avulsion*) OR HAGL OR (humeral AND avulsion* AND glenohumeral AND ligament*) OR (greater AND tuberosity) OR fracture* OR (rotator AND cuff) OR tear* OR age OR sport* OR laxity OR (glenoid AND bone AND loss))) OR (AB (risk* OR lesion* OR (hill AND sachs) OR injur* OR Perthes OR ALPSA OR (anterior AND (labro OR labral) AND periosteal AND sleeve AND avulsion*) OR HAGL OR (humeral AND avulsion* AND glenohumeral AND ligament*) OR (greater AND tuberosity) OR fracture* OR (rotator AND cuff) OR tear* OR age OR sport* OR laxity OR (glenoid AND bone AND loss)))	1,469,860
S13	S9 AND S12	4,294
S12	S10 OR S11	33,871
S11	(TI (dislocat* OR luxat* OR instabilit*)) OR (AB (dislocat* OR luxat* OR instabilit*))	31,033
		0.000
S10	(MH "Dislocations+")	8,266

1	
2	
3	
4	
5	
6	
7	
8	
9	
	0
1	1
	2
1	
1	3
1	4
1	5
	6
1	0
1	7
1	8
	9
	0
2	1
2	2
2	
2	4
2	5
	6
2	-
2	7
2	8
	9
	0
3	1
3	2
3	
	4
3	5
	6
2	-
	7
3	8
3	9
	0
4	
4	2
4	3
	4
4	5
4	6
•	7
-	8
4	9
5	
5	
	1
5	
5	2
5	2 3
5 5 5	2 3 4
5 5 5 5	2 3 4 5
5 5 5	2 3 4 5

	(TI (recurr* OR relaps* OR recrudesc* OR repeat*)) OR (AB (recurr*	
S8	OR relaps* OR recrudesc* OR repeat*))	212,296
S7	(MH "Recurrence")	48,901
S6	S4 OR S5	1,126
	(TI (Bankart OR arthroscopic stabilization OR arthroscopic stabilisation	
	OR labral repair)) OR (AB (Bankart OR arthroscopic stabilization OR	
S5	arthroscopic stabilisation OR labral repair))	1,123
S4	(MH "Bankart Lesions/SU")	58
S3	S1 OR S2	30,919
	(Ti (shoulder* OR glenohumeral)) OR (AB (shoulder* OR	
S2	glenohumeral))	28,334
	(MH "Shoulder") OR (MH "Shoulder Dislocation") OR (MH "Shoulder	
S1	Joint+")	12,823

10 Web of Science/Clarative

TOPIC: (shoulder* OR glenohumeral) AND (Bankart or arthroscopic stabilization or
arthroscopic stabilisation or labral repair) AND (((recurr* or relaps* or recrudesc* or repeat*)
AND (dislocat*or luxat* or instabilit*)) OR risk* or lesion* or (hill and sachs) or injur* or
Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*)
or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and
tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and
bone and loss))

19

18

Database	Before deduplication	After deduplication
PubMed	1768	1762
Embase	2119	580
Cochrane Database of	1	0
Systematic Reviews		
Cochrane Central Register	143	51
of Controlled Trials		
CINAHL	729	55
Web of science	2578	1136

2 3 4		Total	7338	3584
5 6 7	20			
8 9	21			
10 11 12				
13 14				
15 16 17				
18 19				
20 21 22				
23 24 25				
26 27				
28 29 30				
31 32				
33 34 35				
36 37 38				
39 40				
41 42 43				
44 45 46				
47 48				
49 50 51				
52 53 54				
55 56				
57 58 59				
60				

BMJ Open

2 3 4	22	SUPF	PLEMENTARY 2		
5 6	23	We co	collect the following potential risk factors from the electronic medical records:		
7 8	24	0	Gender (male/female)		
9 10	25	0	Age at time of operation (years)		
11 12	26	0	Preoperative BMI		
13 14	27	0	ASA classification at time of operation (1-4)		
15 16	28	0	Epilepsy (yes/no)		
17 18 10	29	0	Hyperlaxity (Beighton score < 4 or ≥ 4)		
19 20 21	30	0	Affected side (right/left/bilateral)		
21 22 23	31	ο	Side of operation (right/left/bilateral)		
24 25	32	0	Dominance (right/left/both)		
26 27	33	0	Daily smoking at time of operation (yes or no)		
28 29	34	0	Number of pre-operative dislocations		
30 31	35	0	Duration of follow-up (years)		
32 33	36	0	Bony lesions		
34 35	37		Bony Bankart lesion (yes/no)		
36 37	38		Hill-Sachs lesion		
38 39 40	39		Yes/no		
41 42	40		 Off-track yes/no Greater Tuberosity Fracture (yes/no) 		
43 44	41		 Greater Tuberosity Fracture (yes/no) 		
45 46	42		□ Glenoid bone loss (<20%, ≥20%)		
47 48	43	ο	Soft tissue lesions		
49 50	44		□ Anterior labrum periosteal sleeve avulsion (ALPSA) lesion (yes/no)		
51 52	45		□ Superior labrum anterior and posterior (SLAP) lesion (yes/no)		
53 54	46		inferior glenohumeral ligament (IGHL) (yes/no)		
55 56 57	47		□ Humeral avulsion of the glenohumeral ligament (HAGL) lesion (yes/no)		
57 58 59	48		Perthes lesion (yes/no)		

1 2

60

Page 23 of 24

1 2				
2 3 4	49			Glenolabral articular disruption (GLAD) lesion (yes/no)
5 6	50			Full thickness Rotator Cuff Tear (yes/no)
7 8	51			Partial thickness Rotator Cuff Tear (yes/no)
9 10	52	0	Nerv	e Palsy (yes/no)
11 12	53	0	Surg	ical Characteristics:
13 14	54		0	Side (right/left/bilateral)
15 16 17	55		0	Time from injury to surgery (months)
17 18 19	56		0	Time to surgery from hospital admission (days)
20 21	57		0	Surgeon level (Surgeon/Resident/Fellow)
22 23	58			
24 25	59			
26 27				
28 29				
30 31				
32 33 34				
35 36				
37 38				
39 40				
41 42				
43 44				
45 46				
47 48				
49 50				
51 52				
53 54				
55 56				
57 58				
59 60				

TRIPOD Checklist: Prediction Model Development

Section/Topic	ltem	Checklist Item	Pag
Title and abstract			
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	
ntroduction			
Background and objectives	3a	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	5
	3b	Specify the objectives, including whether the study describes the development or validation of the model or both.	7,8
Methods			
Source of data	4a	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	7,8
	4b	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	7,8
Destisiaente	5a	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	7
Participants	5b	Describe eligibility criteria for participants.	7
	5c	Give details of treatments received, if relevant.	7
Outcome	6a	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	7,8
	6b	Report any actions to blind assessment of the outcome to be predicted.	N//
Predictors	7a	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	8
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors.	N//
Sample size	8	Explain how the study size was arrived at.	N//
Missing data	9	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	
	10a	Describe how predictors were handled in the analyses.	7,8
Statistical analysis	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	7,8
methods	10d	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	7,8
Risk groups	11	Provide details on how risk groups were created, if done.	N//
Results			1
Participants	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	7,8
i anopuno	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	7
Model	14a	Specify the number of participants and outcome events in each analysis.	N/
development	14b	If done, report the unadjusted association between each candidate predictor and outcome.	N/
Model specification	15a	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	7,8
·	15b	Explain how to the use the prediction model.	9
Model performance	16	Report performance measures (with Cls) for the prediction model.	
Discussion			
Limitations	18	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	11
Interpretation	19b	Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence.	11
Implications	20	Discuss the potential clinical use of the model and implications for future research.	5, 1
Other information			<u> </u>
Supplementary information	21	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	7,8
Funding	22	Give the source of funding and the role of the funders for the present study.	12

We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

BMJ Open

Development and Training of a Machine Learning Algorithm to Identify Patients at Risk for Recurrence following an Arthroscopic Bankart Repair (CLEARER): Protocol for a Retrospective, Multicentre, Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055346.R1
Article Type:	Protocol
Date Submitted by the Author:	22-Feb-2022
Complete List of Authors:	Spanning, Sanne; OLVG, Orthopaedic Surgery; Clinique Générale Annecy, Orthopaedic Surgery Verweij, Lukas; Amsterdam UMC Locatie AMC, Orthopedic Surgery, Amsterdam Movement Sciences, ; Amsterdam UMC Locatie AMC, Academic Center for Evidence-based Sports Medicine (ACES) Allaart, Laurens; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; Clinique Générale Annecy, Orthopaedic Surgery Hendrickx, Laurent; University of Amsterdam, Department of Orthopedic Surgery; Flinders University, Orthopaedic & Trauma Surgery Doornberg, Job; Flinders University, Orthopaedic Surgery Athwal, George; Schulich School of Medicine and Dentistry, Roth McFarlane Hand and Upper Limb Center Lafosse, Thibault; Clinique Générale Annecy, Orthopaedic Surgery van den Bekerom, M.P.J.; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; OLVG, Orthopaedic Surgery Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic Surgery; University of Montpellier, Montpellier University Medical Center, Department of Orthopedic Surgery
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Surgery
Keywords:	Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY, Elbow & shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY

3 4 5 6 7 8	1	Title: Development and Training of a Machine Learning Algorithm to Identify Patients at Risk					
	2	for Recurrence following an Arthroscopic Bankart Repair (CLEARER): Protocol for a					
	3	Retrospective, Multicentre, Cohort Study					
9 10	4						
11 12	5	Corresponding author:					
13 14	6	Full name: Sanne Hendrikje van Spanning					
15 16 17	7	Postal address: Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Oosterpark 9, 1091 AC					
18 19	8	Amsterdam, The Netherlands					
20 21	9	Email: s.h.vanspanning@olvg.nl					
22 23	10						
24 25 26 27	11	Authors:					
	12	Sanne H. van Spanning ^{1,2,3} ; Lukas P.E. Verweij ^{4,5,6} ; Laurens J.H. Allaart ^{2,3} ; Laurent A.M.					
28 29	13	Hendrickx ^{4,5,7} ; Job N. Doornberg ⁷ ; George S. Athwal ⁸ ; Thibault Lafosse ² ; Laurent					
30 31	14	Lafosse ² ; Michel P.J van den Bekerom ^{1,3} ; Geert Alexander Buijze ^{2,4,9} on behalf of the					
32 33	15	Machine Learning Consortium					
34 35 36	16						
37 38	17	Affiliations					
39 40	18	1. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG,					
41 42	19	Amsterdam, The Netherlands					
43 44	20	2. Department of Orthopedic Surgery, Clinique Générale Annecy, Annecy, France					
45 46	21	3. Department of Human Movement Sciences, Faculty of Behavioural and Movement					
47 48	22	Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam,					
49 50 51 52	23	the Netherlands					
	24	4. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC,					
53 54	25	location AMC, University of Amsterdam, Amsterdam, The Netherlands.					
55 56 57	26	5. Academic Centre for Evidence-based Sports Medicine (ACES), Amsterdam UMC,					
57 58 59 60	27	Amsterdam, The Netherlands					

28	6. Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International			
29	Olympic Committee (IOC) Research Centre, Amsterdam UMC, Amsterdam, The			
30	Netherlands			
31	7. Department of Orthopaedic & Trauma Surgery, Flinders Medical Centre, Flinders			
32	University, Adelaide, SA, Australia			
33	8. Roth McFarlane Hand and Upper Limb Centre, Schulich School of Medicine and			
34	Dentistry, Western University, London, Ontario, Canada			
35	9. Department of Orthopedic Surgery, Montpellier University Medical Centre, Lapeyronie			
36	Hospital, University of Montpellier, Montpellier, France			
37				
38	Word count: 1543, Abstract: 293			
39	Keywords: Shoulder instability, dislocation, recurrence, Bankart, Machine Learning			
40	Algorithm, Artificial Intelligence			
41				
42	Date: 03-02-2022			
43	Date: 03-02-2022 Version: 2.0			
44				
	 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 			

Page 3 of 26

ABSTRACT

1

BMJ Open

2	
3 4	45
5	46
7 8	47
9 10	48
11 12	49
13 14	50
15 16	51
17 18	52
19 20	53
21 22 23	54
23 24 25	55
26 27	56
28 29	57
30 31	58
32 33	59
34 35	60
36 37 38	61
39 40	62
40 41 42	63
43 44	64
45 46	65
47 48	66
49 50	67
51 52	68
53 54 55	69
55 56 57	70
57 58 59	71
60	

46 Introduction: Shoulder instability is a common injury, with a reported incidence of 23.9 per 47 100,000 person-years. There is still an ongoing debate on the most effective treatment 48 strategy. Non-operative treatment has recurrence rates of up to 60%, whereas operative 49 treatments such as the Bankart repair and bone block procedures show lower recurrence 50 rates (16% and 2%, respectively) but higher complication rates (<2% and up to 30%, 51 respectively). Methods to determine risk of recurrence have been developed, however 52 patient-specific decision-making tools are still lacking. Artificial Intelligence (AI) and machine 53 learning algorithms use self-learning complex models that can be used to make patient-54 specific decision-making tools. The aim of the current study is to develop and train a 55 machine learning algorithm to create a prediction model to be used in clinical practice -as an 56 online prediction tool- to estimate recurrence rates following a Bankart repair. 57 Methods and analysis: This is a multicentre retrospective cohort study. Patients with 58 traumatic anterior shoulder dislocations that were treated with an arthroscopic Bankart repair 59 without remplissage will be included. This study includes two parts. Part one, collecting all 60 potential factors influencing the recurrence rate following an arthroscopic Bankart repair in 61 patients using multicentre data, aiming to include data from >1000 patients worldwide. Part 62 two, the multicentre data will be re-evaluated (and where applicable complemented) using 63 machine learning algorithms to predict outcomes. Recurrence will be the primary outcome 64 measure. 65 Ethics and dissemination: For safe multicentre data exchange and analysis, our Machine 66 Learning Consortium adhered to the World Health Organization (WHO) regulation "Policy on

67 Use and Sharing of Data Collected by WHO in Member States Outside the Context of Public
68 Health Emergencies." The study results will be disseminated through publication in a peer69 reviewed journal. No IRB is required for this study.

70 **Trial registration:** This study does not require a trial registration

72 STRENGTHS AND LIMITATIONS

- Data will be obtained from global databases of all authors included in the Machine Learning Consortium, aiming to include data from over 1000 patients.
- Retrospective studies are less suitable to train machine learning algorithms than prospective studies due to missing data through incomplete record keeping and possible confounding factors.
- Studies with different designs will be included. By combining data gathered by
 different studies to create one database, definitions may differ and therefore make it
 impossible to pool some of the data.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 26

1 2 BMJ Open

2 3 4	
5 6	
7 8	
9 10	
11 12 12	
13 14 15	
12 13 14 15 16 17 18	
18 19	
20	
21 22 23	
24 25 26	
20 27 28	
29	
31 32	
33 34 25	
30 31 32 33 34 35 36 37 38	
38 39	
40 41 42	1
43	1
44 45 46	1
46 47 48	1
49 50	1
51 52	1
53 54	1
55 56 57	1
57 58 59]
60	1

82 INTRODUCTION

83 Anterior shoulder dislocation is a common injury, with a reported incidence of 23.9 per 84 100,000 person-years.¹ Shoulder dislocations limit patients in their daily routine and 85 participation in sports, cause irreversible damage to the shoulder joint and are associated 86 with high costs.^{2, 3} There is an ongoing debate on the most effective treatment strategy to 87 prevent recurrence. Non-operative treatment of first-time dislocations has recurrence rates 88 of up to 60%, whereas operative treatment such as the arthroscopic labrum repair and bone 89 block procedures have lower recurrence rates (16% and 2%, respectively).^{4, 5} However, the 90 complication rates for bone block procedures compared to arthroscopic labrum repair (up to 91 30% and <2%, respectively) are higher and therefore pre-operative counselling with 92 determination of the most suitable treatment is important in avoiding unnecessary risk of 93 complications.^{6,7} Methods to determine risk of recurrence have been developed, including 94 the instability severity index score (ISIS), glenoid morphology (i.e. concavity, version, 95 inclination), an off-track Hill-Sachs lesion and translation of the humeral head.⁸⁻¹² However, a 96 patient-specific decision-making tool is still lacking. 97 The self-learning complex models used by Artificial Intelligence (AI) and Machine Learning 98 algorithms express high levels of intelligence without human error and are therefore highly 99 suitable to be used for interpretation of images, pathology slides and patient-specific 100 decision-making tool.¹³⁻¹⁷ Hendrickx and colleagues recently developed a prediction model 101 based on machine learning algorithms to estimate acute and late complications after 102 intramedullary nailing of a tibial shaft fracture.¹⁶ In other words, the authors were able to use 103 the computationally intensive methods of machine learning, to go from the 'traditionally' 104 reported overall complication rate of a cohort to calculate the probability of a specific patient 105 complication rate. This study resulted in an online prediction tool. 106 107 Aim and objectives

⁸ 108 The aim of the current study is to develop and train a machine learning algorithm to create a
 ⁹ 109 prediction model to be used in clinical practice – as an online prediction tool – to estimate

3 4	110
5 6	111
7	112
8 9	
10	113
11 12	
13	
14 15	
16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 59	

1 2

110 recurrence rates following a Bankart repair. No studies have yet been published applying

to beet terien only

111 machine learning algorithms to systematically reviewed/collected data in this field.

BMJ Open

2 3 4	114	METHODS AND ANALYSIS
5 6	115	Study design
7 8	116	This multicentre retrospective cohort study includes two parts.
9 10	117	
11 12	118	Part one – Collecting Data
13 14	119	Part one involves collecting all potential factors influencing the recurrence rate following an
15 16 17	120	arthroscopic Bankart repair without remplissage in patients using multicentre data. Authors
17 18 19	121	who will contribute to data contribution will be included in the Machine Learning Consortium,
20 21	122	aiming to include data from over 1000 patients all over the world. To make a reliable
22 23	123	algorithm, it is estimated that the data should include 100 recurrences. With a recurrence
24 25	124	rate of 12% following arthroscopic Bankart repairs, it was estimated that a minimum of 1000
26 27	125	patients would be sufficient. ¹⁸ To identify relevant studies, a systematic approach was used
28 29	126	searching PubMed, Embase/Ovid, Cochrane Database of Systematic Reviews/Wiley,
30 31	127	Cochrane Central Register of Controlled Trials/Wiley, CINAHL/Ebsco, and Web of
32 33 34	128	Science/Clarivate according to the search terms used in Verweij et al. (see Supplemental
35 36	129	appendix 1 for the search strategy) from inception up to July 2021. ¹⁹ The systematic review
37 38	130	by Verweij et al. is completed and submitted for publication separately. All studies reporting
39 40	131	on risk factors for recurrence following Bankart repairs were included. Studies published in
41 42	132	languages other than English, Dutch and French were excluded. The inclusion criteria are
43 44	133	patients treated with arthroscopic Bankart repair without remplissage for traumatic anterior
45 46	134	shoulder instability with a minimum of 2 years follow up. Shoulder instability is defined as
47 48	135	either a complete dislocation or subluxation. ²⁰ Exclusion criteria include patients who have
49 50 51	136	undergone previous stabilization procedures or other surgical procedures to the ipsilateral
52 53	137	shoulder than arthroscopic Bankart repair and patients with posterior, multidirectional or
54 55	138	voluntary habitual instability.
56 57	139	
58 59 60	140	Part two – Machine Learning

Page 8 of 26

BMJ Open

3 4	141	Part two, the multicentre data will be re-evaluated (and where applicable complemented)
5 6	142	using machine learning algorithms to predict outcomes. The statistician that performs the
7 8	143	machine learning analysis will be blinded to the origin of the data.
9 10	144	
11 12	145	Training Data & Test Data
13 14	146	Eighty percent (80%) of all (>1000) patients included in the Machine Learning Consortium
15 16 17	147	Database will be randomly allocated to the training dataset and 20% to the test dataset.
17 18 19	148	
20 21	149	Output variables
22 23	150	Each Machine Learning Algorithm will be trained to recognize patterns related to recurrence
24 25	151	rates.
26 27	152	
28 29	153	Input Variables
30 31	154	For the primary outcome, a Random-Forest algorithm will be used to identify the variables
32 33	155	with the highest predictive value from all available data points in the Machine Learning
34 35 26	156	Consortium Database. The data points available include demographics (age, sex), patient
36 37 38	157	specific factors (e.g. preoperative BMI, comorbidity, dominance), disease specific factors
39 40	158	(e.g. affected side, number of pre-operative dislocations, associated lesions) and surgical
41 42	159	characteristics (e.g. time from injury to surgery, surgeon level) (see Supplemental appendix
43 44	160	2 for the complete list of factors that will be collected from the electronic medical records).
45 46	161	
47 48	162	Algorithms to be trained
49 50	163	It is not possible to know what Machine Learning algorithm will be most suitable to calculate
51 52	164	recurrence following an arthroscopic Bankart repair. ²¹ However, based on previous studies,
53 54	165	the following algorithms will be tested as prediction models for recurrence rates: Decision
55 56	166	Tree Models; Support Vector Machine; Neural Network; Bayes Point Machine; Logistic
57 58 59	167	Regression. ^{16, 22-27}
60	168	

BMJ Open

3
4 r
4 5 7 8 9 10
6
7
8
9
10
11
12
12
1.0
14
15
16
17
18
19
20
21
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
22
23
24
25
26
27
28
29
30
20
31 32 33
32
33
34
34 35 36
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

169 Training and Testing of the algorithms

170 For each ML algorithm, ten-fold cross validation will be repeated three times on the training 171 dataset (80%), to train the algorithms in recognizing patterns related to recurrence following 172 an arthroscopic Bankart repair, and to subsequently assess their predictive performance 173 based on the following performance characteristics: Area under the ROC-curve, calibration 174 (calibration slope, calibration intercept) and Brier score will be calculated.²⁸ The model's 175 predicted probability is plotted against the actual observed probability to calculate calibration 176 of a model. Perfect models will have calibration intercepts of 0, and calibration slopes of 1.29 177 The overall performance of the model will be assessed with the Brier-score. A perfect Brier 178 score, indicating total accuracy, is a score of 0. The lowest possible score is a Brier score of 179 1.²⁸ The remaining 20% of the data will be used as a test-set to assess the performance of 180 the best performing machine learning algorithms based on "unseen" data. The technical 181 appendix, statistical code, and dataset will be published.

182

3 183 External validation of the best performing algorithm

Before incorporation into an online open access decision-making tool, the best performing
 algorithm will be externally validated in a prospective database. The same performance
 metrics will be calculated as described above.

1 187

191

194

60

³ 188 Open-access clinical prediction tool

189 An open-access clinical prediction tool will be developed using the best performing190 algorithm.

192 Patients and public involvement

⁴ 193 Patients and the public were not involved in the making of this protocol.

¹8 195 **Current Status**

3 4	196
5	197
6 7	100
8 9	198
10	199
11 12	
13	
14 15	
16 17	
18	
19 20	
21	
22 23	
24 25	
26	
27 28	
29 30	
31	
32 33	
34	
35 36	
37 38	
39	
40 41	
42 43	
44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55 56	
57	
58 59	

1 2

197 evaluation of the data using machine learning algorithms to predict outcomes will start in

to beet teries only

198 March 2022. The expected time of completion is by the end of 2022.

2	
3 4	20
4 5 6	20
7 8	20
9 10 11	20
11	20
12 13	20
14 15	20
16 17	
18 19	
20 21	
22 23	
24	
25 26	
27 28	
29 30	
31 32	
33 34	
35	
36 37	
38 39	
40 41	
42 43	
44	
45 46	
47 48	
49 50	
51 52	
53 54	
55	
56 57	
58 59	
60	

00 **ETHICS AND DISSEMINATION**

- 01 For safe multicentre data exchange and analysis, our Machine Learning Consortium
- 02 adhered to the World Health Organization (WHO) regulation "Policy on Use and Sharing of
- 03 Data Collected by WHO in Member States Outside the Context of Public Health
- μre (B is requi 04 Emergencies." ³⁰ The study results will be disseminated through publication in a peer-
- 05 reviewed journal. No IRB is required for this study.

DISCUSSION

Operative treatment significantly reduces the risk of recurrent shoulder instability compared to non-operative treatment.³¹ Patients with first-time dislocations who receive operative treatment are most often treated with labrum repair.³¹ Risk factors associated with failure of an arthroscopic Bankart repair include young age (≤30 years), participation in competitive sports, multiple preoperative dislocations, > 6 months surgical delay from first-time dislocation to surgery, ISIS > 3 and associated lesions (Hill-Sachs, glenoid bone loss and ALPSA). ³² It is impossible to take all these risk factors into account and make an objective decision on what treatment is most suitable. Several prediction tools have been developed to help counselling patients, however these tools only provide an indicative overall score and are not patient specific.⁸⁻¹² Artificial Intelligence (AI) and machine learning algorithms have shown potential to make a patient-specific decision tool.¹⁶ Creating an online prediction tool for recurrence following an arthroscopic Bankart repair can help guide surgeons in selecting patients who benefit from this procedure. Patients with a first-time anterior shoulder dislocations receive proper evidence-based information only in 29% of the cases.³³ An online prediction tool might elevate these numbers and makes it possible for shared decision making based on objective measures. The strength of this study is the great amount of data that will be gathered. Data will be obtained from global databases of all authors included in the Machine Learning Consortium, aiming to include data of >1000 patients. This study does have the limitation of being retrospective and therefore the study is dependent on the recordkeeping of each individual hospital. This may lead to a variance in listed variables per database, resulting in missing

data. In addition, blinding of participants and personnel may have been addressed differently

in every institute. Moreover, only risk factors that were identified in literature were included.

1		
2 3 4	231	Funding
5 6	232	This research received no specific grant from any funding agency in the public, commercial
7 8	233	or not-for-profit sectors.
9 10	234	
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24 25		
25 26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41 42		
42 43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		

AUTHORS CONTRIBUTION

Sanne H. van Spanning, Geert Alexander Buijze, Michel P.J van den Bekerom, Lukas P.E. Verweij and Laurens J.H. Allaart contributed to the conception, overall design and planning of the study. Laurent A.M. Hendrickx and Job N. Doornberg contributed to the conception and design of the methods section, primarily focussing on the machine learning section and data analysis. George S. Athwal, Thibault Lafosse and Laurent Lafosse contributed to the design of the methods section and primarily focussed on how the data should be collected and interpreted. Sanne H. van Spanning, Geert Alexander Buijze, Michel P.J van den Bekerom and Lukas P.E. Verweij contributed to writing the protocol. All authors revised this version of the protocol and gave final approval for it to be published. All authors ensure that questions related to the accuracy or integrity of any part of this protocol are appropriately

investigated and resolved.

247 CONFLICTS OF INTEREST

Dr. G.S. Athwal reports as 'financial activities outside the submitted work' to be a consultant for ConMed Linvatec. Dr. L. Lafosse is a consultant for Depuy Stryker, received royalties from Depuy. Dr. T. Lafosse is consultant for Depuy Mitek and Stryker. Dr. G.A. Buijze received consultancy fees from Depuy-Synthes and Research Funds from SECEC, Vivalto Santé. The remaining authors certify that neither he or she has funding or commercial associations that might pose a conflict of interest in connection with the submitted article.

³ 254 **References**

Zacchilli MA and Owens BD. Epidemiology of shoulder dislocations presenting to 1. emergency departments in the United States. J Bone Joint Surg Am 2010; 92: 542-549. 2010/03/03. DOI: 10.2106/JBJS.I.00450. Verweij LPE, Pruijssen EC, Kerkhoffs G, et al. Treatment type may influence degree 2. of post-dislocation shoulder osteoarthritis: a systematic review and meta-analysis. *Knee Surg* Sports Traumatol Arthrosc 2020 2020/09/17. DOI: 10.1007/s00167-020-06263-3. 3. Zaremski JL, Galloza J, Sepulveda F, et al. Recurrence and return to play after shoulder instability events in young and adolescent athletes: a systematic review and meta-analysis. Br J Sports Med 2017; 51: 177-184. 2016/11/12. DOI: 10.1136/bjsports-2016-096895. 4. Hovelius L and Rahme H. Primary anterior dislocation of the shoulder: long-term prognosis at the age of 40 years or younger. Knee Surg Sports Traumatol Arthrosc 2016; 24: 330-342. 2016/01/13. DOI: 10.1007/s00167-015-3980-2. Hurley ET, Lim Fat D, Farrington SK, et al. Open Versus Arthroscopic Latarjet 5. Procedure for Anterior Shoulder Instability: A Systematic Review and Meta-analysis. Am J Sports Med 2019; 47: 1248-1253. 2018/03/21. DOI: 10.1177/0363546518759540. Williams HLM, Evans JP, Furness ND, et al. It's Not All About Redislocation: A 6. Systematic Review of Complications After Anterior Shoulder Stabilization Surgery. Am J Sports Med 2019; 47: 3277-3283. 2018/12/12. DOI: 10.1177/0363546518810711. Griesser MJ, Harris JD, McCov BW, et al. Complications and re-operations after 7. Bristow-Latarjet shoulder stabilization: a systematic review. J Shoulder Elbow Surg 2013; 22: 286-292. 2013/01/29. DOI: 10.1016/j.jse.2012.09.009. Balg F and Boileau P. The instability severity index score. A simple pre-operative 8. score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br 2007; 89: 1470-1477. 2007/11/14. DOI: 10.1302/0301-620X.89B11.18962. Di Giacomo G, Itoi E and Burkhart SS. Evolving concept of bipolar bone loss and the 9. Hill-Sachs lesion: from "engaging/non-engaging" lesion to "on-track/off-track" lesion. Arthroscopy 2014; 30: 90-98. 2014/01/05. DOI: 10.1016/j.arthro.2013.10.004. Matsumura N, Oki S, Fukasawa N, et al. Glenohumeral translation during active 10. external rotation with the shoulder abducted in cases with glenohumeral instability: a 4-dimensional computed tomography analysis. J Shoulder Elbow Surg 2019; 28: 1903-1910. 2019/06/18. DOI: 10.1016/j.jse.2019.03.008. Moroder P, Damm P, Wierer G, et al. Challenging the Current Concept of Critical 11. Glenoid Bone Loss in Shoulder Instability: Does the Size Measurement Really Tell It All? Am J Sports Med 2019; 47: 688-694. 2019/01/15. DOI: 10.1177/0363546518819102. Yamamoto N, Itoi E, Abe H, et al. Contact between the glenoid and the humeral head 12. in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elbow Surg 2007; 16: 649-656. 2007/07/24. DOI: 10.1016/j.jse.2006.12.012. Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection 13. of critical findings in head CT scans: a retrospective study. Lancet 2018; 392: 2388-2396. 2018/10/16. DOI: 10.1016/S0140-6736(18)31645-3. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of 14. Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA 2017; 318: 2199-2210. 2017/12/14. DOI: 10.1001/jama.2017.14585. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning 15. Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016; 316: 2402-2410. 2016/11/30. DOI: 10.1001/jama.2016.17216.

BMJ Open

1		
2		
3	302	16. Machine Learning Consortium obotS and Investigators F. A Machine Learning
4	303	Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for Infection After
5	304	Operative Treatment. J Bone Joint Surg Am 2021; 103: 532-540. 2021/01/05. DOI:
6 7	305	10.2106/JBJS.20.00903.
7 8	306	17. Ting DSW, Cheung CY, Lim G, et al. Development and Validation of a Deep
9	307	Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images
10	308	From Multiethnic Populations With Diabetes. <i>JAMA</i> 2017; 318: 2211-2223. 2017/12/14.
11	309	DOI: 10.1001/jama.2017.18152.
12	310	18. Yapp LZ, Nicholson JA and Robinson CM. Primary Arthroscopic Stabilization for a
13	311	First-Time Anterior Dislocation of the Shoulder: Long-Term Follow-up of a Randomized,
14 15	312	Double-Blinded Trial. J Bone Joint Surg Am 2020; 102: 460-467. 2020/01/03. DOI:
16	313	10.2106/JBJS.19.00858.
17	314	19. Verweij LPE, van Spanning SH, Grillo A, et al. Age, participation in competitive
18	315	sports, bony lesions, ALPSA lesions, > 1 preoperative dislocations, surgical delay and ISIS
19	316	score > 3 are risk factors for recurrence following arthroscopic Bankart repair: a systematic
20	317	review and meta-analysis of 4584 shoulders. <i>Knee Surg Sports Traumatol Arthrosc</i> 2021; 29:
21 22	318	4004-4014. 2021/08/23. DOI: 10.1007/s00167-021-06704-7.
22	319	20. H.Alkaduhimi, Connelly JW, Deurzen DFPv, et al. High Variability of the Definition
24	320	of Recurrent Glenohumeral Instability: An Analysis of the Current Literature by a Systematic
25	321	Review. Arthroscopy, Sports Medicine, and Rehabilitation 2021. DOI:
26	322	https://doi.org/10.1016/j.asmr.2021.02.002.
27	323	21. Wolpert DH. The Lack of A Priori Distinctions Between Learning Algorithms.
28 29	324	Neural Computation 1996; 8: 1341-1390. DOI: 10.1162/neco.1996.8.7.1341.
29 30	325	22. Karhade AV, Thio Q, Ogink PT, et al. Development of Machine Learning Algorithms
31	326	for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019;
32	327	85: E83-E91. 2018/11/27. DOI: 10.1093/neuros/nyy469.
33	328	23. M. Fernandez-Delgado EC, S. Barro, D. Amorim. Do we Need Hundreds of
34	329	Classifiers to Solve Real World Classification Problems? Journal of Machine Learning
35 36	330	<i>Research</i> 2014; 15: 3133-3181.
37	331	24. Maroco J, Silva D, Rodrigues A, et al. Data mining methods in the prediction of
38	332	Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear
39	333	discriminant analysis, logistic regression, neural networks, support vector machines,
40	334	classification trees and random forests. BMC Res Notes 2011; 4: 299. 2011/08/19. DOI:
41	335	10.1186/1756-0500-4-299.
42 43	336	25. Thio Q, Karhade AV, Ogink PT, et al. Can Machine-learning Techniques Be Used for
43 44	337	5-year Survival Prediction of Patients With Chondrosarcoma? Clin Orthop Relat Res 2018;
45	338	476: 2040-2048. 2018/09/05. DOI: 10.1097/CORR.000000000000433.
46	339	26. Wainer J. Comparison of 14 different families of classification algorithms on 115
47	340	binary datasets. 2016.
48	341	27. Oosterhoff JHF, Gravesteijn BY, Karhade AV, et al. Feasibility of Machine Learning
49 50	342	and Logistic Regression Algorithms to Predict Outcome in Orthopaedic Trauma Surgery. J
50 51	343	Bone Joint Surg Am 2021 2021/12/19. DOI: 10.2106/JBJS.21.00341.
52	344	28. Steyerberg EW and Vergouwe Y. Towards better clinical prediction models: seven
53	345	steps for development and an ABCD for validation. Eur Heart J 2014; 35: 1925-1931.
54	346	2014/06/06. DOI: 10.1093/eurheartj/ehu207.
55	347	29. Stevens RJ and Poppe KK. Validation of clinical prediction models: what does the
56 57	348	"calibration slope" really measure? <i>J Clin Epidemiol</i> 2020; 118: 93-99. 2019/10/13. DOI:
57 58	349	10.1016/j.jclinepi.2019.09.016.
59	350	30. Organization WH. WHO data policy, <u>https://www.who.int/publishing/datapolicy/en/</u>
60	351	(2019, accessed 07-09-2019 2019).
l i		

Van Spanning SH, Verweij LPE, Priester-Vink S, et al. Operative versus non-31. operative treatment following first-time anterior shoulder dislocation. A systematic review and meta-analysis (Accepted). JBJS Rev 2021. Verweij LPE, Van Spanning SH, Grillo A, et al. Risk factors for recurrence following 32. arthroscopic Bankart repair: a systematic review and meta-analysis of 4584 shoulders (submitted). Knee Surg Sports Traumatol Arthrosc 2021. 33. Hutyra CA, Streufert B, Politzer CS, et al. Assessing the Effectiveness of Evidence-Based Medicine in Practice: A Case Study of First-Time Anterior Shoulder Dislocations. J Bone Joint Surg Am 2019; 101: e6. 2019/01/18. DOI: 10.2106/JBJS.17.01588. for occurrent on the second

SUPPLEMENTARY 1 Search strategy

PubMed

#17	Search: #14 AND #15 AND #16 Sort by: Most Recent	1,768
#16	Search: ((("Recurrence"[Mesh] OR recurr*[tiab] OR relaps*[tiab] OR recrudesc*[tiab] OR repeat*[tiab]) AND ("Joint Dislocations"[Mesh] OR dislocat*[tiab] OR luxat*[tiab] OR instabilit*[tiab])) OR risk*[tiab] OR lesion*[tiab] OR (hill[tiab] AND sachs[tiab]) OR injur*[tiab] OR Perthes[tiab] OR ALPSA[tiab] OR (anterior[tiab] AND (labro[tiab] OR labral[tiab]) AND periosteal[tiab] AND sleeve[tiab] AND avulsion*[tiab]) OR HAGL[tiab] OR (humeral[tiab] AND avulsion*[tiab] OR (glenohumeral[tiab] AND ligament*[tiab]) OR (greater[tiab] AND tuberosity[tiab]) OR fracture*[tiab] OR "Fractures, Bone"[Mesh] OR "Rotator Cuff"[Mesh] OR (rotator[tiab] AND cuff[tiab]) OR tear*[tiab] OR age[tiab] OR sport*[tiab] OR laxity[tiab] OR (glenoid[tiab] AND bone[tiab] AND loss[tiab])) Sort by: Most Recent	5,603,913
#15	Search: (Bankart[tiab] OR "Bankart Lesions/surgery"[Mesh] OR arthroscopic stabilization[tiab] OR arthroscopic stabilisation[tiab] OR labral repair[tiab]) Sort by: Most Recent	2,300
#14	Search: ("Shoulder Dislocation"[Mesh] OR "Shoulder"[Mesh] OR "Shoulder Joint"[Mesh] OR shoulder*[tiab] OR glenohumeral[tiab]) Sort by: Most Recent	82,527
	se/Ovid	
1	exp shoulder dislocation/	6512

Embase/Ovid

1	exp shoulder dislocation/	6512
2	exp shoulder/	83055
3	(shoulder* or glenohumeral).ti,ab,kw.	101743
4	1 or 2 or 3	138684
5	(Bankart or arthroscopic stabilization or arthroscopic stabilisation or labral repair).ti,ab,kw.	2813
6	Bankart lesion/su [Surgery]	198
7	5 or 6	2862
8	(recurr* or relaps* or recrudesc* or repeat*).ti,ab,kw.	1930525
9	exp joint dislocation/	4059

3	
4 5 6	
6 7	
8	
9 10	
11 12	
13	
14 15	
16	
17 18	
19 20	
20	
22 23	
21 22 23 24 25	5
25 26	5
26 27 28 29 30 31 32 33	6
29	
30 31	
32	
34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50	
51 52	
53 54	
55	
56 57	
58	
59 60	

10	(dislocat*or luxat* or instabilit*).ti,ab,kw.	154727
11	9 or 10	158430
12	8 and 11	19548
13	(risk* or lesion* or (hill and sachs) or injur* or Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*) or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and bone and loss)).ti,ab,kw.	8234845
14	exp fracture/	336756
15	exp rotator cuff/	8999
16	12 or 13 or 14 or 15	8303779
17	4 and 7 and 16	2119

6 Cochrane Database of Systematic Reviews & Cochrane Central Register of Controlled Trials

#1	MeSH descriptor: [Shoulder Dislocation] explode all trees	143
#2	MeSH descriptor: [Shoulder] explode all trees	537
#3	MeSH descriptor: [Shoulder Joint] explode all trees	745
#4	(shoulder* or glenohumeral):ti,ab,kw	11763
#5	#1 OR #2 OR #3 OR #4	11763
#6	MeSH descriptor: [Bankart Lesions] explode all trees and with qualifier(s): [surgery - SU]	3
#7	(Bankart OR arthroscopic stabilization OR arthroscopic stabilisation OR labral repair):ti,ab,kw	238
#8	#6 OR #7	238
#9	MeSH descriptor: [Recurrence] explode all trees	12084
#10	(recurr* or relaps* or recrudesc* or repeat*):ti,ab,kw	159845
#11	#9 OR #10	159894
#12	MeSH descriptor: [Joint Dislocations] explode all trees	687
#13	(dislocat*or luxat* or instabilit*):ti,ab,kw	5839
#14	#12 OR #13	6413

1
4
5
6
5 6 7 8 9 10 11 12 13 14 15
8
0
9
10
11
12
13
14
14
15
16
17
18
10
20
12 13 14 15 16 17 18 19 20
21
22
20 21 22 23 24 25 26 27 28 29
24
24 25 26 27 28
25
26
27
28
20
29 30
30
31
32 33
33
34 35 36 37 38
35
36
37
38
30
40
38 39 40 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

60

#15	#11 AND #14	1018
#16	(risk* or lesion* or (hill and sachs) or injur* or Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*) or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and bone and loss)):ti,ab,kw	549185
#17	MeSH descriptor: [Fractures, Bone] explode all trees	6053
#18	MeSH descriptor: [Rotator Cuff] explode all trees	344
#19	#15 OR #16 OR #17 OR #18	549508
#20	#5 AND #8 AND #19	145

8 CINAHL/Ebsco

S18	S3 AND S6 AND S17	729
S17	S13 OR S14 OR S15 OR S16	1,482,038
S16	(MH "Rotator Cuff+")	3,063
S15	(MH "Fractures+")	58,529
S14	(TI (risk* OR lesion* OR (hill AND sachs) OR injur* OR Perthes OR ALPSA OR (anterior AND (labro OR labral) AND periosteal AND sleeve AND avulsion*) OR HAGL OR (humeral AND avulsion* AND glenohumeral AND ligament*) OR (greater AND tuberosity) OR fracture* OR (rotator AND cuff) OR tear* OR age OR sport* OR laxity OR (glenoid AND bone AND loss))) OR (AB (risk* OR lesion* OR (hill AND sachs) OR injur* OR Perthes OR ALPSA OR (anterior AND (labro OR labral) AND periosteal AND sleeve AND avulsion*) OR HAGL OR (humeral AND avulsion* AND glenohumeral AND ligament*) OR (greater AND tuberosity) OR fracture* OR (rotator AND cuff) OR tear* OR age OR sport* OR laxity OR (glenoid AND bone AND loss)))	1,469,860
S13	S9 AND S12	4,294
S12	S10 OR S11	33,871
S11	(TI (dislocat* OR luxat* OR instabilit*)) OR (AB (dislocat* OR luxat* OR instabilit*))	31,033
S10	(MH "Dislocations+")	8,266

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
	0
1	1
1	2
1	
1	4
	-
1 1	S
	6
1	7
1	8
1	9
2	9 0
2	1
2	י ר
2	2
2	
2	
2	5
2	
2	7
2	, 8
2	0 9
2	9
	0
3	
3	2
3	
2	4
3	
-	-
3	
3	7
3	, 8
3	
4	
4	
4	
	_
4	
	4
4	5
	6
4	
4	
4	-
	-
	0
5	
5	2
5	
	4
5	
	6
5	
_	0

1

	(TI (recurr* OR relaps* OR recrudesc* OR repeat*)) OR (AB (recurr*	
S8	OR relaps* OR recrudesc* OR repeat*))	212,296
S7	(MH "Recurrence")	48,901
S6	S4 OR S5	1,126
	(TI (Bankart OR arthroscopic stabilization OR arthroscopic stabilisation	
	OR labral repair)) OR (AB (Bankart OR arthroscopic stabilization OR	
S5	arthroscopic stabilisation OR labral repair))	1,123
S4	(MH "Bankart Lesions/SU")	58
S3	S1 OR S2	30,919
	(Ti (shoulder* OR glenohumeral)) OR (AB (shoulder* OR	
S2	glenohumeral))	28,334
	(MH "Shoulder") OR (MH "Shoulder Dislocation") OR (MH "Shoulder	
S1	Joint+")	12,823

10 Web of Science/Clarative

TOPIC: (shoulder* OR glenohumeral) AND (Bankart or arthroscopic stabilization or
arthroscopic stabilisation or labral repair) AND (((recurr* or relaps* or recrudesc* or repeat*)
AND (dislocat*or luxat* or instabilit*)) OR risk* or lesion* or (hill and sachs) or injur* or
Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*)
or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and
tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and
bone and loss))

19

18

Database	Before deduplication	After deduplication
PubMed	1768	1762
Embase	2119	580
Cochrane Database of Systematic Reviews	1	0
Cochrane Central Register of Controlled Trials	143	51
CINAHL	729	55
Web of science	2578	1136

2 3 4	Total	7338	3584	
5 20 6			I	
7 21 8 9				
9 10 11				
12 13				
14 15				
16 17 18				
19 20				
21 22 23				
24 25				
26 27 28				
29 30				
31 32				
33 34 35				
36 37				
38 39 40				
41 42				
43 44 45				
46 47				
48 49 50				
51 52				
53 54				
55 56 57				
58 59				
60				

BMJ Open

1 2			
3 4	22	SUPF	PLEMENTARY 2
5 6	23	We c	ollect the following potential risk factors from the electronic medical records:
7 8	24	0	Gender (male/female)
9 10	25	0	Age at time of operation (years)
11 12	26	0	Preoperative BMI
13 14	27	0	ASA classification at time of operation (1-4)
15 16	28	0	Epilepsy (yes/no)
17 18 10	29	0	Hyperlaxity (Beighton score $< 4 \text{ or } \ge 4$)
19 20 21	30	0	Affected side (right/left/bilateral)
22 23	31	0	Side of operation (right/left/bilateral)
24 25	32	0	Dominance (right/left/both)
26 27	33	0	Daily smoking at time of operation (yes or no)
28 29	34	0	Number of pre-operative dislocations
30 31	35	0	Duration of follow-up (years)
32 33	36	0	Bony lesions
34 35	37		Bony Bankart lesion (yes/no)
36 37	38		Hill-Sachs lesion
38 39 40	39		• Yes/no
41 42	40		Off-track yes/no
43 44	41		 Off-track yes/no Greater Tuberosity Fracture (yes/no)
45 46	42		□ Glenoid bone loss (<20%, ≥20%)
47 48	43	0	Soft tissue lesions
49 50	44		□ Anterior labrum periosteal sleeve avulsion (ALPSA) lesion (yes/no)
51 52	45		Superior labrum anterior and posterior (SLAP) lesion (yes/no)
53 54	46		inferior glenohumeral ligament (IGHL) (yes/no)
55 56	47		□ Humeral avulsion of the glenohumeral ligament (HAGL) lesion (yes/no)
57 58 59 60	48		Perthes lesion (yes/no)

1

Page 25 of 26

1 2				
2 3 4	49			Glenolabral articular disruption (GLAD) lesion (yes/no)
5	50			Full thickness Rotator Cuff Tear (yes/no)
7 8	51			Partial thickness Rotator Cuff Tear (yes/no)
9 10	52	0	Nerv	e Palsy (yes/no)
11 12	53	0	Surg	ical Characteristics:
13 14 15	54		0	Side (right/left/bilateral)
15 16 17	55		0	Time from injury to surgery (months)
17 18 19	56		0	Time to surgery from hospital admission (days)
20 21	57		0	Surgeon level (Surgeon/Resident/Fellow)
22 23	58			
24 25	59			
26 27				
28 29				
30 31				
32 33 34				
35 36				
37 38				
39 40				
41 42				
43 44				
45 46				
47 48				
49 50				
51 52				
53 54				
55 56				
57 58 59				
59 60				

TRIPOD Checklist: Prediction Model Development

Section/Topic	ltem	Checklist Item	Pag
Title and abstract			
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	3
Introduction			
Background	За	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	5
and objectives	3b	Specify the objectives, including whether the study describes the development or validation of the model or both.	7,8
Methods			
Courses of data	4a	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	7,8,
Source of data	4b	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	7,8,
	5a	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	7
Participants	5b	Describe eligibility criteria for participants.	7
	5c	Give details of treatments received, if relevant.	7
Outcome	6a	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	7,8,
	6b	Report any actions to blind assessment of the outcome to be predicted.	N/A
Das distant	7a	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	8
Predictors	7b	Report any actions to blind assessment of predictors for the outcome and other predictors.	N/A
Sample size	8	Explain how the study size was arrived at.	N//
Missing data 9 Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.		N/A	
	10a	Describe how predictors were handled in the analyses.	7,8,
Statistical analysis	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	7,8,
methods	10d	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	7,8,
Risk groups	11	Provide details on how risk groups were created, if done.	N/A
Results			
	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	7,8,
Participants	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	7
NA	14a	Specify the number of participants and outcome events in each analysis.	N//
Model development	14b	If done, report the unadjusted association between each candidate predictor and outcome.	N//
Model specification	15a	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	7,8,
	15b	Explain how to the use the prediction model.	9
Model performance	16	Report performance measures (with CIs) for the prediction model.	8,9
Discussion			
Limitations	18	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	11
Interpretation	19b	Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence.	11
Implications	20	Discuss the potential clinical use of the model and implications for future research.	5, 1
Other information			J, I
Supplementary	21	Provide information about the availability of supplementary resources, such as study	7,8,
information		protocol, Web calculator, and data sets.	

We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

BMJ Open

Development and Training of a Machine Learning Algorithm to Identify Patients at Risk for Recurrence following an Arthroscopic Bankart Repair (CLEARER): Protocol for a Retrospective, Multicentre, Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055346.R2
Article Type:	Protocol
Date Submitted by the Author:	05-Apr-2022
Complete List of Authors:	Spanning, Sanne; OLVG, Orthopaedic Surgery; Clinique Générale Annecy, Orthopaedic Surgery Verweij, Lukas; Amsterdam UMC Locatie AMC, Orthopedic Surgery, Amsterdam Movement Sciences, ; Amsterdam UMC Locatie AMC, Academic Center for Evidence-based Sports Medicine (ACES) Allaart, Laurens; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; Clinique Générale Annecy, Orthopaedic Surgery Hendrickx, Laurent; University of Amsterdam, Department of Orthopedic Surgery; Flinders University, Orthopaedic & Trauma Surgery Doornberg, Job; Flinders University, Orthopaedic Surgery Athwal, George; Schulich School of Medicine and Dentistry, Roth McFarlane Hand and Upper Limb Center Lafosse, Thibault; Clinique Générale Annecy, Orthopaedic Surgery van den Bekerom, M.P.J.; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; OLVG, Orthopaedic Surgery Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic Surgery; University of Montpellier, Montpellier University Medical Center, Department of Orthopedic Surgery
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Surgery
Keywords:	Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY, Elbow & shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY

3 4	1	Title: Development and Training of a Machine Learning Algorithm to Identify Patients at Risk						
5 6	2	for Recurrence following an Arthroscopic Bankart Repair (CLEARER): Protocol for a						
7 8	3	Retrospective, Multicentre, Cohort Study						
9 10	4							
11 12 13 14 15 16 17 18 19	5	Corresponding author:						
	6	Full name: Sanne Hendrikje van Spanning						
	7	Postal address: Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Oosterpark 9, 1091 AC						
	8	Amsterdam, The Netherlands						
20 21	9	Email: s.h.vanspanning@olvg.nl						
22 23	10							
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	11	Authors:						
	12	Sanne H. van Spanning ^{1,2,3} ; Lukas P.E. Verweij ^{4,5,6} ; Laurens J.H. Allaart ^{2,3} ; Laurent A.M.						
	13	Hendrickx ^{4,5,7} ; Job N. Doornberg ⁷ ; George S. Athwal ⁸ ; Thibault Lafosse ² ; Laurent						
	14	Lafosse ² ; Michel P.J van den Bekerom ^{1,3} ; Geert Alexander Buijze ^{2,4,9} on behalf of the						
	15	Machine Learning Consortium						
	16							
	17	Affiliations						
	18	1. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG,						
	19	Amsterdam, The Netherlands						
43 44	20	2. Department of Orthopedic Surgery, Clinique Générale Annecy, Annecy, France						
45 46	21	3. Department of Human Movement Sciences, Faculty of Behavioural and Movement						
47 48	22	Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam,						
49 50	23	the Netherlands						
51 52	24	4. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC,						
53 54	25	location AMC, University of Amsterdam, Amsterdam, The Netherlands.						
55 56 57	26	5. Academic Centre for Evidence-based Sports Medicine (ACES), Amsterdam UMC,						
58 59	27	Amsterdam, The Netherlands						
60								

1 2						
2 3 4	28	6. Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International				
5 6	29	Olympic Committee (IOC) Research Centre, Amsterdam UMC, Amsterdam, The				
7 8	30	Netherlands				
9 10	31	7. Department of Orthopaedic & Trauma Surgery, Flinders Medical Centre, Flinders				
11 12	32	University, Adelaide, SA, Australia				
13 14	33	8. Roth McFarlane Hand and Upper Limb Centre, Schulich School of Medicine and				
15 16	34	Dentistry, Western University, London, Ontario, Canada				
17 18	35	9. Department of Orthopedic Surgery, Montpellier University Medical Centre, Lapeyronie				
19 20 21	36	Hospital, University of Montpellier, Montpellier, France				
21 22 23	37					
24 25	38	Word count: 1543, Abstract: 293				
26 27	39	Keywords: Shoulder instability, dislocation, recurrence, Bankart, Machine Learning				
28 29	40	Algorithm, Artificial Intelligence				
30 31	41	Date: 29-03-2022 Version: 2.1				
32 33	42	Date: 29-03-2022				
34 35	43	Version: 2.1				
36 37	44					
38 39						
40 41						
42 43						
44 45						
46						
47						
48 49						
50						
51						
52 53						
55 54						
55						
56						
57 58						
58 59						
60						

Page 3 of 25

1

BMJ Open

1 2	
2 3 4 5	45
5 6	46
7 8	47
9 10	48
11 12	49
13 14	50
15 16	51
17 18	52
19 20	53
21 22 23	54
23 24 25	55
26 27	56
28 29	57
30 31	58
32 33	59
34 35 36	60
37	61
38 39 40	62
40 41 42	63
43 44	64
45 46	65
47 48	66
49 50	67
51 52	68
53 54	69
55 56	70
57 58 59	71
60	

45	ABSTRACT
46	Introduction: Shoulder instability is a common injury, with a reported incidence of 23.9 per
47	100,000 person-years. There is still an ongoing debate on the most effective treatment
48	strategy. Non-operative treatment has recurrence rates of up to 60%, whereas operative
49	treatments such as the Bankart repair and bone block procedures show lower recurrence
50	rates (16% and 2%, respectively) but higher complication rates (<2% and up to 30%,
51	respectively). Methods to determine risk of recurrence have been developed, however
52	patient-specific decision-making tools are still lacking. Artificial Intelligence (AI) and machine
53	learning algorithms use self-learning complex models that can be used to make patient-
54	specific decision-making tools. The aim of the current study is to develop and train a
55	machine learning algorithm to create a prediction model to be used in clinical practice –as an
56	online prediction tool- to estimate recurrence rates following a Bankart repair.
57	Methods and analysis: This is a multicentre retrospective cohort study. Patients with
58	traumatic anterior shoulder dislocations that were treated with an arthroscopic Bankart repair
59	without remplissage will be included. This study includes two parts. Part one, collecting all
60	potential factors influencing the recurrence rate following an arthroscopic Bankart repair in
61	patients using multicentre data, aiming to include data from >1000 patients worldwide. Part
62	two, the multicentre data will be re-evaluated (and where applicable complemented) using
63	machine learning algorithms to predict outcomes. Recurrence will be the primary outcome
64	measure.
65	Ethics and dissemination: For safe multicentre data exchange and analysis, our Machine
66	Learning Consortium adhered to the World Health Organization (WHO) regulation "Policy on
67	Use and Sharing of Data Collected by WHO in Member States Outside the Context of Public
68	Health Emergencies." The study results will be disseminated through publication in a peer-
69	reviewed journal. No IRB is required for this study.

70 **Trial registration:** This study does not require a trial registration

STRENGTHS AND LIMITATIONS

- Data will be obtained from global databases of all authors included in the Machine • Learning Consortium, aiming to include data from over 1000 patients.
- Retrospective studies are less suitable to train machine learning algorithms than • prospective studies due to missing data through incomplete record keeping and possible confounding factors.
- Studies with different designs will be included. By combining data gathered by • different studies to create one database, definitions may differ and therefore make it impossible to pool some of the data.
 - Due to the collection of individual patient data by previously published studies, •
 - variation in definitions may cause a significant source of bias.

Page 5 of 25

1 2 **BMJ** Open

2 3	
4 5 6 7	
0 7 8	
8 9 10	
11 12	
13 14	
11 12 13 14 15 16 17 18 19	
17 18 19	
20 21	
22 23	
24 25	
26 27 28	
20 29 30	
31 32	
33 34	
35 36 27	
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 	
40 41	1
42 43	1 1
44 45	1
46 47 48	1
48 49 50	1
50 51 52	1
53 54	1
55 56	1
57 58 59	1
59 60	1

83 INTRODUCTION

84 Anterior shoulder dislocation is a common injury, with a reported incidence of 23.9 per 85 100,000 person-years.¹ Shoulder dislocations limit patients in their daily routine and 86 participation in sports, cause irreversible damage to the shoulder joint and are associated 87 with high costs.^{2, 3} There is an ongoing debate on the most effective treatment strategy to 88 prevent recurrence. Non-operative treatment of first-time dislocations has recurrence rates 89 of up to 60%, whereas operative treatment such as the arthroscopic labrum repair and bone 90 block procedures have lower recurrence rates (16% and 2%, respectively).^{4, 5} However, the 91 complication rates for bone block procedures compared to arthroscopic labrum repair (up to 92 30% and <2%, respectively) are higher and therefore pre-operative counselling with 93 determination of the most suitable treatment is important in avoiding unnecessary risk of 94 complications.^{6,7} Methods to determine risk of recurrence have been developed, including 95 the instability severity index score (ISIS), glenoid morphology (i.e. concavity, version, 96 inclination), an off-track Hill-Sachs lesion and translation of the humeral head.⁸⁻¹² However, a 97 patient-specific decision-making tool is still lacking. 98 The self-learning complex models used by Artificial Intelligence (AI) and Machine Learning 99 algorithms express high levels of intelligence without human error and are therefore highly 00 suitable to be used for interpretation of images, pathology slides and patient-specific 01 decision-making tool.¹³⁻¹⁷ Hendrickx and colleagues recently developed a prediction model 02 based on machine learning algorithms to estimate acute and late complications after 03 intramedullary nailing of a tibial shaft fracture.¹⁶ In other words, the authors were able to use 04 the computationally intensive methods of machine learning, to go from the 'traditionally' 05 reported overall complication rate of a cohort to calculate the probability of a specific patient 06 complication rate. This study resulted in an online prediction tool. 07 08 Aim and objectives

⁸ 109 The aim of the current study is to develop and train a machine learning algorithm to create a
 ⁰ 110 prediction model to be used in clinical practice – as an online prediction tool – to estimate

1 2		
- 3 4	111	recurrence rates following a Bankart repair. No studies have yet been published applying
5 6	112	machine learning algorithms to systematically reviewed/collected data in this field.
7 8	113	
9 10	114	
11 12		
13 14		
15 16		
17 18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31 32		
33 34		
35 36		
37 38		
39 40 41		
41 42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55 56		
57 58		
59 60		

BMJ Open

2 3 4	115	METHODS AND ANALYSIS
5	116	Study design
7 8	117	This multicentre retrospective cohort study includes two parts.
9 10	118	
11 12	119	Part one – Collecting Data
13 14	120	Part one involves collecting individual patient data of published studies that evaluated
15 16	121	potential factors predisposing recurrence following an arthroscopic Bankart repair without
17 18	122	remplissage. The authors of these studies will be contacted by email and will be included in
19 20	123	the Machine Learning Consortium when they provide the original patient data of their cohort.
21 22 23	124	Through this process, we aim to combine the individual patient data from the published
24 25	125	studies and create an international cohort of over 1000 patients. The current study will use
26 27	126	the collected patient data to create a machine learning algorithm that can estimate the
28 29	127	probability of recurrence for an individual patient. To make a reliable algorithm, it is
30 31	128	estimated that the data should include at least 100 recurrences. With a recurrence rate of
32 33	129	12% following arthroscopic Bankart repairs, it was estimated that a minimum of 1000
34 35	130	patients would be sufficient. ¹⁸ To identify relevant studies, a systematic approach was used
36 37 38	131	searching PubMed, Embase/Ovid, Cochrane Database of Systematic Reviews/Wiley,
39 40	132	Cochrane Central Register of Controlled Trials/Wiley, CINAHL/Ebsco, and Web of
41 42	133	Science/Clarivate according to the search terms used in Verweij et al. (see Supplemental
43 44	134	appendix 1 for the search strategy) from inception up to July 2021. ¹⁹ The systematic review
45 46	135	by Verweij et al. is completed and submitted for publication separately. All studies reporting
47 48	136	on risk factors for recurrence following Bankart repairs were included. Studies published in
49 50	137	languages other than English, Dutch and French were excluded. The inclusion criteria are
51 52	138	patients treated with arthroscopic Bankart repair without remplissage for traumatic anterior
53 54 55	139	shoulder instability with a minimum of 2 years follow up. Shoulder instability is defined as
56 57	140	either a complete dislocation or subluxation. ²⁰ Exclusion criteria include patients who have
58 59	141	undergone previous stabilization procedures or other surgical procedures to the ipsilateral
60		

Page 8 of 25

BMJ Open

3 4	142	shoulder than arthroscopic Bankart repair and patients with posterior, multidirectional or
5 6	143	voluntary habitual instability.
7 8	144	
9 10	145	Part two – Machine Learning
11 12	146	Part two, the multicentre data will be re-evaluated (and where applicable complemented)
13 14	147	using machine learning algorithms to predict outcomes. The statistician that performs the
15 16	148	machine learning analysis will be blinded to the origin of the data.
17 18 19	149	
20 21	150	Training Data & Test Data
22 23	151	Eighty percent (80%) of all (>1000) patients included in the Machine Learning Consortium
24 25	152	Database will be randomly allocated to the training dataset and 20% to the test dataset.
26 27	153	
28 29	154	Output variables
30 31	155	Each Machine Learning Algorithm will be trained to recognize patterns related to recurrence
32 33	156	rates.
	150	Tales.
34 35	157	Tales.
34 35 36 37		Input Variables
34 35 36 37 38 39	157	
34 35 36 37 38 39 40 41	157 158	Input Variables
34 35 36 37 38 39 40	157 158 159	Input Variables For the primary outcome, a Random-Forest algorithm will be used to identify the variables
34 35 36 37 38 39 40 41 42 43	157 158 159 160	Input Variables For the primary outcome, a Random-Forest algorithm will be used to identify the variables with the highest predictive value from all available data points in the Machine Learning
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	157 158 159 160 161	Input Variables For the primary outcome, a Random-Forest algorithm will be used to identify the variables with the highest predictive value from all available data points in the Machine Learning Consortium Database. The data points available include demographics (age, sex), patient
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	157 158 159 160 161 162	Input Variables For the primary outcome, a Random-Forest algorithm will be used to identify the variables with the highest predictive value from all available data points in the Machine Learning Consortium Database. The data points available include demographics (age, sex), patient specific factors (e.g. preoperative BMI, comorbidity, dominance), disease specific factors
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	157 158 159 160 161 162 163	<i>Input Variables</i> For the primary outcome, a Random-Forest algorithm will be used to identify the variables with the highest predictive value from all available data points in the Machine Learning Consortium Database. The data points available include demographics (age, sex), patient specific factors (e.g. preoperative BMI, comorbidity, dominance), disease specific factors (e.g. affected side, number of pre-operative dislocations, associated lesions) and surgical
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	157 158 159 160 161 162 163 164	<i>Input Variables</i> For the primary outcome, a Random-Forest algorithm will be used to identify the variables with the highest predictive value from all available data points in the Machine Learning Consortium Database. The data points available include demographics (age, sex), patient specific factors (e.g. preoperative BMI, comorbidity, dominance), disease specific factors (e.g. affected side, number of pre-operative dislocations, associated lesions) and surgical characteristics (e.g. time from injury to surgery, surgeon level) (see Supplemental appendix
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	157 158 159 160 161 162 163 164 165	<i>Input Variables</i> For the primary outcome, a Random-Forest algorithm will be used to identify the variables with the highest predictive value from all available data points in the Machine Learning Consortium Database. The data points available include demographics (age, sex), patient specific factors (e.g. preoperative BMI, comorbidity, dominance), disease specific factors (e.g. affected side, number of pre-operative dislocations, associated lesions) and surgical characteristics (e.g. time from injury to surgery, surgeon level) (see Supplemental appendix
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	157 158 159 160 161 162 163 164 165 166	<i>Input Variables</i> For the primary outcome, a Random-Forest algorithm will be used to identify the variables with the highest predictive value from all available data points in the Machine Learning Consortium Database. The data points available include demographics (age, sex), patient specific factors (e.g. preoperative BMI, comorbidity, dominance), disease specific factors (e.g. affected side, number of pre-operative dislocations, associated lesions) and surgical characteristics (e.g. time from injury to surgery, surgeon level) (see Supplemental appendix 2 for the complete list of factors that will be collected from the electronic medical records).

BMJ Open

3 4	170	the following algorithms will be tested as prediction models for recurrence rates: Decision
5 6	171	Tree Models; Support Vector Machine; Neural Network; Bayes Point Machine; Logistic
7 8	172	Regression. ^{16, 22-27}
9 10	173	
11 12	174	Training and Testing of the algorithms
13 14	175	For each ML algorithm, ten-fold cross validation will be repeated three times on the training
15 16 17	176	dataset (80%), to train the algorithms in recognizing patterns related to recurrence following
17 18 19	177	an arthroscopic Bankart repair, and to subsequently assess their predictive performance
20 21	178	based on the following performance characteristics: Area under the ROC-curve, calibration
22 23	179	(calibration slope, calibration intercept) and Brier score will be calculated. ²⁸ The model's
24 25	180	predicted probability is plotted against the actual observed probability to calculate calibration
26 27	181	of a model. Perfect models will have calibration intercepts of 0, and calibration slopes of 1.29
28 29 30 31 32 33 34 35 36	182	The overall performance of the model will be assessed with the Brier-score. A perfect Brier
	183	score, indicating total accuracy, is a score of 0. The lowest possible score is a Brier score of
	184	1. ²⁸ The remaining 20% of the data will be used as a test-set to assess the performance of
	185	the best performing machine learning algorithms based on "unseen" data. The technical
37 38	186	appendix, statistical code, and dataset will be published.
39 40	187	
41 42	188	External validation of the best performing algorithm
43 44	189	Before incorporation into an online open access decision-making tool, the best performing
45 46	190	algorithm will be externally validated in a prospective database. The same performance
47 48	191	metrics will be calculated as described above.
49 50	192	
51 52	193	Open-access clinical prediction tool
53 54 55	194	An open-access clinical prediction tool will be developed using the best performing
55 56 57	195	algorithm.
57 58 59	196	
60	197	Patients and public involvement

BMJ Open

2	
3 198 4	Patients and the public were not involved in the making of this protocol.
5 199 6	
7 8 200	Current Status
9 10 201	Currently, the study is at the finishing stage of collection data from global databases. Re-
11 12 202	evaluation of the data using machine learning algorithms to predict outcomes will start in
13 14 203	March 2022. The expected time of completion is by the end of 2022.
15 16 204 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

2	
- 3 4	20
5	20
6 7 8 9	20
9 10	20
10 11 12	20
13 14	21
15 16	
17 18	
19 20	
21 22 23	
24	
25 26	
27 28	
29 30	
31 32 33	
34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

05 **ETHICS AND DISSEMINATION**

06 For safe multicentre data exchange and analysis, our Machine Learning Consortium

- 07 adhered to the World Health Organization (WHO) regulation "Policy on Use and Sharing of
- 08 Data Collected by WHO in Member States Outside the Context of Public Health
- μre (B is requi 09 Emergencies." ³⁰ The study results will be disseminated through publication in a peer-
- 10 reviewed journal. No IRB is required for this study.

211 DISCUSSION

Operative treatment significantly reduces the risk of recurrent shoulder instability compared to non-operative treatment.³¹ Patients with first-time dislocations who receive operative treatment are most often treated with labrum repair.³¹ Risk factors associated with failure of an arthroscopic Bankart repair include young age (≤30 years), participation in competitive sports, multiple preoperative dislocations, > 6 months surgical delay from first-time dislocation to surgery, ISIS > 3 and associated lesions (Hill-Sachs, glenoid bone loss and ALPSA). ³² It is impossible to take all these risk factors into account and make an objective decision on what treatment is most suitable. Several prediction tools have been developed to help counselling patients, however these tools only provide an indicative overall score and are not patient specific.⁸⁻¹² Artificial Intelligence (AI) and machine learning algorithms have shown potential to make a patient-specific decision tool.¹⁶ Creating an online prediction tool for recurrence following an arthroscopic Bankart repair can help guide surgeons in selecting patients who benefit from this procedure. Patients with a first-time anterior shoulder dislocations receive proper evidence-based information only in 29% of the cases.³³ An online prediction tool might elevate these numbers and makes it possible for shared decision making based on objective measures. The strength of this study is the great amount of data that will be gathered. Data will be obtained from global databases of all authors included in the Machine Learning Consortium, aiming to include data of >1000 patients. This study does have the limitation of being retrospective and therefore the study is dependent on the recordkeeping of each individual

hospital. This may lead to a variance in listed variables per database, resulting in missing
data. In addition, blinding of participants and personnel may have been addressed differently

in every institute. Moreover, only risk factors that were identified in literature were included.

1 2		
2 3 4	236	Funding
5 6	237	This research received no specific grant from any funding agency in the public, commercial
7 8	238	or not-for-profit sectors.
9 10	239	
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24 25		
25 26 27		
27 28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41 42		
42 43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		

AUTHORS CONTRIBUTION

Sanne H. van Spanning, Geert Alexander Buijze, Michel P.J van den Bekerom, Lukas P.E. Verweij and Laurens J.H. Allaart contributed to the conception, overall design and planning of the study. Laurent A.M. Hendrickx and Job N. Doornberg contributed to the conception and design of the methods section, primarily focussing on the machine learning section and data analysis. George S. Athwal, Thibault Lafosse and Laurent Lafosse contributed to the design of the methods section and primarily focussed on how the data should be collected and interpreted. Sanne H. van Spanning, Geert Alexander Buijze, Michel P.J van den Bekerom and Lukas P.E. Verweij contributed to writing the protocol. All authors revised this version of the protocol and gave final approval for it to be published. All authors ensure that questions related to the accuracy or integrity of any part of this protocol are appropriately

investigated and resolved.

252 CONFLICTS OF INTEREST

Dr. G.S. Athwal reports as 'financial activities outside the submitted work' to be a consultant for ConMed Linvatec. Dr. L. Lafosse is a consultant for Depuy Stryker, received royalties uns. uns certify that ne. pose a conflict of interes. from Depuy. Dr. T. Lafosse is consultant for Depuy Mitek and Stryker. Dr. G.A. Buijze received consultancy fees from Depuy-Synthes and Research Funds from SECEC, Vivalto Santé. The remaining authors certify that neither he or she has funding or commercial associations that might pose a conflict of interest in connection with the submitted article.

³ 259 **References**

Zacchilli MA and Owens BD. Epidemiology of shoulder dislocations presenting to 1. emergency departments in the United States. J Bone Joint Surg Am 2010; 92: 542-549. 2010/03/03. DOI: 10.2106/JBJS.I.00450. Verweij LPE, Pruijssen EC, Kerkhoffs G, et al. Treatment type may influence degree 2. of post-dislocation shoulder osteoarthritis: a systematic review and meta-analysis. *Knee Surg* Sports Traumatol Arthrosc 2020 2020/09/17. DOI: 10.1007/s00167-020-06263-3. 3. Zaremski JL, Galloza J, Sepulveda F, et al. Recurrence and return to play after shoulder instability events in young and adolescent athletes: a systematic review and meta-analysis. Br J Sports Med 2017; 51: 177-184. 2016/11/12. DOI: 10.1136/bjsports-2016-096895. 4. Hovelius L and Rahme H. Primary anterior dislocation of the shoulder: long-term prognosis at the age of 40 years or younger. Knee Surg Sports Traumatol Arthrosc 2016; 24: 330-342. 2016/01/13. DOI: 10.1007/s00167-015-3980-2. Hurley ET, Lim Fat D, Farrington SK, et al. Open Versus Arthroscopic Latarjet 5. Procedure for Anterior Shoulder Instability: A Systematic Review and Meta-analysis. Am J Sports Med 2019; 47: 1248-1253. 2018/03/21. DOI: 10.1177/0363546518759540. Williams HLM, Evans JP, Furness ND, et al. It's Not All About Redislocation: A 6. Systematic Review of Complications After Anterior Shoulder Stabilization Surgery. Am J Sports Med 2019; 47: 3277-3283. 2018/12/12. DOI: 10.1177/0363546518810711. Griesser MJ, Harris JD, McCov BW, et al. Complications and re-operations after 7. Bristow-Latarjet shoulder stabilization: a systematic review. J Shoulder Elbow Surg 2013; 22: 286-292. 2013/01/29. DOI: 10.1016/j.jse.2012.09.009. Balg F and Boileau P. The instability severity index score. A simple pre-operative 8. score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br 2007; 89: 1470-1477. 2007/11/14. DOI: 10.1302/0301-620X.89B11.18962. Di Giacomo G, Itoi E and Burkhart SS. Evolving concept of bipolar bone loss and the 9. Hill-Sachs lesion: from "engaging/non-engaging" lesion to "on-track/off-track" lesion. Arthroscopy 2014; 30: 90-98. 2014/01/05. DOI: 10.1016/j.arthro.2013.10.004. Matsumura N, Oki S, Fukasawa N, et al. Glenohumeral translation during active 10. external rotation with the shoulder abducted in cases with glenohumeral instability: a 4-dimensional computed tomography analysis. J Shoulder Elbow Surg 2019; 28: 1903-1910. 2019/06/18. DOI: 10.1016/j.jse.2019.03.008. Moroder P, Damm P, Wierer G, et al. Challenging the Current Concept of Critical 11. Glenoid Bone Loss in Shoulder Instability: Does the Size Measurement Really Tell It All? Am J Sports Med 2019; 47: 688-694. 2019/01/15. DOI: 10.1177/0363546518819102. Yamamoto N, Itoi E, Abe H, et al. Contact between the glenoid and the humeral head 12. in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elbow Surg 2007; 16: 649-656. 2007/07/24. DOI: 10.1016/j.jse.2006.12.012. Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection 13. of critical findings in head CT scans: a retrospective study. Lancet 2018; 392: 2388-2396. 2018/10/16. DOI: 10.1016/S0140-6736(18)31645-3. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of 14. Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA 2017; 318: 2199-2210. 2017/12/14. DOI: 10.1001/jama.2017.14585. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning 15. Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016; 316: 2402-2410. 2016/11/30. DOI: 10.1001/jama.2016.17216.

BMJ Open

1		
2		
3	307	16 Machina Learning Concertium shots and Investigators E. A. Machina Learning
4	307	16. Machine Learning Consortium obotS and Investigators F. A Machine Learning Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for Infection After
5	308	Operative Treatment. J Bone Joint Surg Am 2021; 103: 532-540. 2021/01/05. DOI:
6	310	10.2106/JBJS.20.00903.
7 8	311	17. Ting DSW, Cheung CY, Lim G, et al. Development and Validation of a Deep
8 9	312	Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images
10	312	From Multiethnic Populations With Diabetes. <i>JAMA</i> 2017; 318: 2211-2223. 2017/12/14.
11	313	DOI: 10.1001/jama.2017.18152.
12	315	18. Yapp LZ, Nicholson JA and Robinson CM. Primary Arthroscopic Stabilization for a
13	316	First-Time Anterior Dislocation of the Shoulder: Long-Term Follow-up of a Randomized,
14 15	317	Double-Blinded Trial. J Bone Joint Surg Am 2020; 102: 460-467. 2020/01/03. DOI:
15 16	318	10.2106/JBJS.19.00858.
17	319	19. Verweij LPE, van Spanning SH, Grillo A, et al. Age, participation in competitive
18	320	sports, bony lesions, ALPSA lesions, > 1 preoperative dislocations, surgical delay and ISIS
19	321	score > 3 are risk factors for recurrence following arthroscopic Bankart repair: a systematic
20	322	review and meta-analysis of 4584 shoulders. <i>Knee Surg Sports Traumatol Arthrosc</i> 2021; 29:
21 22	323	4004-4014. 2021/08/23. DOI: 10.1007/s00167-021-06704-7.
22	324	20. H.Alkaduhimi, Connelly JW, Deurzen DFPv, et al. High Variability of the Definition
24	325	of Recurrent Glenohumeral Instability: An Analysis of the Current Literature by a Systematic
25	326	Review. Arthroscopy, Sports Medicine, and Rehabilitation 2021. DOI:
26	327	https://doi.org/10.1016/j.asmr.2021.02.002.
27	328	21. Wolpert DH. The Lack of A Priori Distinctions Between Learning Algorithms.
28 29	329	Neural Computation 1996; 8: 1341-1390. DOI: 10.1162/neco.1996.8.7.1341.
29 30	330	22. Karhade AV, Thio Q, Ogink PT, et al. Development of Machine Learning Algorithms
31	331	for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019;
32	332	85: E83-E91. 2018/11/27. DOI: 10.1093/neuros/nyy469.
33	333	23. M. Fernandez-Delgado EC, S. Barro, D. Amorim. Do we Need Hundreds of
34	334	Classifiers to Solve Real World Classification Problems? Journal of Machine Learning
35 36	335	<i>Research</i> 2014; 15: 3133-3181.
37	336	24. Maroco J, Silva D, Rodrigues A, et al. Data mining methods in the prediction of
38	337	Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear
39	338	discriminant analysis, logistic regression, neural networks, support vector machines,
40	339	classification trees and random forests. BMC Res Notes 2011; 4: 299. 2011/08/19. DOI:
41 42	340	10.1186/1756-0500-4-299.
42 43	341	25. Thio Q, Karhade AV, Ogink PT, et al. Can Machine-learning Techniques Be Used for
44	342	5-year Survival Prediction of Patients With Chondrosarcoma? Clin Orthop Relat Res 2018;
45	343	476: 2040-2048. 2018/09/05. DOI: 10.1097/CORR.000000000000433.
46	344	26. Wainer J. Comparison of 14 different families of classification algorithms on 115
47	345	binary datasets. 2016.
48 49	346	27. Oosterhoff JHF, Gravesteijn BY, Karhade AV, et al. Feasibility of Machine Learning
49 50	347	and Logistic Regression Algorithms to Predict Outcome in Orthopaedic Trauma Surgery. J
51	348	Bone Joint Surg Am 2021 2021/12/19. DOI: 10.2106/JBJS.21.00341.
52	349	28. Steyerberg EW and Vergouwe Y. Towards better clinical prediction models: seven
53	350	steps for development and an ABCD for validation. <i>Eur Heart J</i> 2014; 35: 1925-1931.
54	351	2014/06/06. DOI: 10.1093/eurheartj/ehu207.
55 56	352	29. Stevens RJ and Poppe KK. Validation of clinical prediction models: what does the
50 57	353	"calibration slope" really measure? <i>J Clin Epidemiol</i> 2020; 118: 93-99. 2019/10/13. DOI:
58	354	10.1016/j.jclinepi.2019.09.016.
59	355	30. Organization WH. WHO data policy, <u>https://www.who.int/publishing/datapolicy/en/</u>
60	356	(2019, accessed 07-09-2019 2019).

Van Spanning SH, Verweij LPE, Priester-Vink S, et al. Operative versus non-31. operative treatment following first-time anterior shoulder dislocation. A systematic review and meta-analysis (Accepted). JBJS Rev 2021. Verweij LPE, Van Spanning SH, Grillo A, et al. Risk factors for recurrence following 32. arthroscopic Bankart repair: a systematic review and meta-analysis of 4584 shoulders (submitted). Knee Surg Sports Traumatol Arthrosc 2021. 33. Hutyra CA, Streufert B, Politzer CS, et al. Assessing the Effectiveness of Evidence-Based Medicine in Practice: A Case Study of First-Time Anterior Shoulder Dislocations. J Bone Joint Surg Am 2019; 101: e6. 2019/01/18. DOI: 10.2106/JBJS.17.01588. for occurrent on the second

SUPPLEMENTARY 1 Search strategy

PubMed

#17	Search: #14 AND #15 AND #16 Sort by: Most Recent	1,768
#16	Search: ((("Recurrence"[Mesh] OR recurr*[tiab] OR relaps*[tiab] OR recrudesc*[tiab] OR repeat*[tiab]) AND ("Joint Dislocations"[Mesh] OR dislocat*[tiab] OR luxat*[tiab] OR instabilit*[tiab])) OR risk*[tiab] OR lesion*[tiab] OR (hill[tiab] AND sachs[tiab]) OR injur*[tiab] OR Perthes[tiab] OR ALPSA[tiab] OR (anterior[tiab] AND (labro[tiab] OR labral[tiab]) AND periosteal[tiab] AND sleeve[tiab] AND avulsion*[tiab]) OR HAGL[tiab] OR (humeral[tiab] AND avulsion*[tiab]) OR glenohumeral[tiab] AND ligament*[tiab]) OR (greater[tiab] AND tuberosity[tiab]) OR fracture*[tiab] OR "Fractures, Bone"[Mesh] OR "Rotator Cuff"[Mesh] OR (rotator[tiab] AND cuff[tiab]) OR tear*[tiab] OR age[tiab] OR sport*[tiab] OR laxity[tiab] OR (glenoid[tiab] AND bone[tiab] AND loss[tiab])) Sort by: Most Recent	5,603,913
#15	Search: (Bankart[tiab] OR "Bankart Lesions/surgery"[Mesh] OR arthroscopic stabilization[tiab] OR arthroscopic stabilisation[tiab] OR labral repair[tiab]) Sort by: Most Recent	2,300
#14	Search: ("Shoulder Dislocation"[Mesh] OR "Shoulder"[Mesh] OR "Shoulder Joint"[Mesh] OR shoulder*[tiab] OR glenohumeral[tiab]) Sort by: Most Recent	82,527
Embas	se/Ovid	·
1	oxp should a dislocation/	6512

Embase/Ovid

1	exp shoulder dislocation/	6512
2	exp shoulder/	83055
3	(shoulder* or glenohumeral).ti,ab,kw.	101743
4	1 or 2 or 3	138684
5	(Bankart or arthroscopic stabilization or arthroscopic stabilisation or labral repair).ti,ab,kw.	2813
6	Bankart lesion/su [Surgery]	198
7	5 or 6	2862
8	(recurr* or relaps* or recrudesc* or repeat*).ti,ab,kw.	1930525
9	exp joint dislocation/	4059

10	(dislocat*or luxat* or instabilit*).ti,ab,kw.	154727
11	9 or 10	158430
12	8 and 11	19548
13	(risk* or lesion* or (hill and sachs) or injur* or Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*) or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and bone and loss)).ti,ab,kw.	8234845
14	exp fracture/	336756
15	exp rotator cuff/	8999
16	12 or 13 or 14 or 15	8303779
17	4 and 7 and 16	2119

6 Cochrane Database of Systematic Reviews & Cochrane Central Register of Controlled Trials

#1	MeSH descriptor: [Shoulder Dislocation] explode all trees	143
#2	MeSH descriptor: [Shoulder] explode all trees	
#3	MeSH descriptor: [Shoulder Joint] explode all trees	745
#4	(shoulder* or glenohumeral):ti,ab,kw	11763
#5	#1 OR #2 OR #3 OR #4	11763
#6	MeSH descriptor: [Bankart Lesions] explode all trees and with qualifier(s): [surgery - SU]	3
#7	(Bankart OR arthroscopic stabilization OR arthroscopic stabilisation OR labral repair):ti,ab,kw	
#8	#6 OR #7	
#9	MeSH descriptor: [Recurrence] explode all trees	12084
#10	(recurr* or relaps* or recrudesc* or repeat*):ti,ab,kw	159845
#11	#9 OR #10	159894
#12	MeSH descriptor: [Joint Dislocations] explode all trees	687
#13	(dislocat*or luxat* or instabilit*):ti,ab,kw	5839
#14	#12 OR #13	6413

ر ۸	
4	
5	
6	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
8	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
34 35 36 37 38 39	
36	
27	
20	
38	
39	
40	
41	
42	
36 37 38 39 40 41 42 43 44	
44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50	
57	
58	
59	
60	

60

#15	#11 AND #14	1018
#16	(risk* or lesion* or (hill and sachs) or injur* or Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*) or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and bone and loss)):ti,ab,kw	549185
#17	MeSH descriptor: [Fractures, Bone] explode all trees	6053
#18	MeSH descriptor: [Rotator Cuff] explode all trees	344
#19	#15 OR #16 OR #17 OR #18	549508
#20	#5 AND #8 AND #19	145

8 CINAHL/Ebsco

S18	S3 AND S6 AND S17	729
S17	S13 OR S14 OR S15 OR S16	1,482,038
S16	(MH "Rotator Cuff+")	3,063
S15	(MH "Fractures+")	58,529
S14	(TI (risk* OR lesion* OR (hill AND sachs) OR injur* OR Perthes OR ALPSA OR (anterior AND (labro OR labral) AND periosteal AND sleeve AND avulsion*) OR HAGL OR (humeral AND avulsion* AND glenohumeral AND ligament*) OR (greater AND tuberosity) OR fracture* OR (rotator AND cuff) OR tear* OR age OR sport* OR laxity OR (glenoid AND bone AND loss))) OR (AB (risk* OR lesion* OR (hill AND sachs) OR injur* OR Perthes OR ALPSA OR (anterior AND (labro OR labral) AND periosteal AND sleeve AND avulsion*) OR HAGL OR (humeral AND avulsion* AND glenohumeral AND ligament*) OR (greater AND tuberosity) OR fracture* OR (rotator AND cuff) OR tear* OR age OR sport* OR laxity OR (glenoid AND bone AND loss)))	1,469,860
S13	S9 AND S12	4,294
S12	S10 OR S11	33,871
S11	(TI (dislocat* OR luxat* OR instabilit*)) OR (AB (dislocat* OR luxat* OR instabilit*))	31,033
S10	(MH "Dislocations+")	8,266

1	
2	
3	
4	
5	
6	
7	
8	
9	
	0
1	
1	
1	
	4
	5
1	
1	
	8
	9
	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
	8
	9
	0
	1
3	
3	
	4
	5
	6
3	
	8
	9
4	0
4	
4	2
4	3
4	4
4	5
4	
4	7
	8
4	
	0
	1
J	
	2
	3
	4
5	_
5	
	7
5	8
_	^

1

		-
	(TI (recurr* OR relaps* OR recrudesc* OR repeat*)) OR (AB (recurr*	
S8	OR relaps* OR recrudesc* OR repeat*))	212,296
07		40.004
S7	(MH "Recurrence")	48,901
S6	S4 OR S5	1,126
	(TI (Deplet OD othrosperie stabilization OD othrosperie stabilization	
	(TI (Bankart OR arthroscopic stabilization OR arthroscopic stabilisation	
	OR labral repair)) OR (AB (Bankart OR arthroscopic stabilization OR	
S5	arthroscopic stabilisation OR labral repair))	1,123
S4	(MH "Bankart Lesions/SU")	58
S3	S1 OR S2	30,919
	(Ti (shoulder* OR glenohumeral)) OR (AB (shoulder* OR	
S2	glenohumeral))	28,334
	(MH "Shoulder") OR (MH "Shoulder Dislocation") OR (MH "Shoulder	
S1	Joint+")	12,823

10 Web of Science/Clarative

TOPIC: (shoulder* OR glenohumeral) AND (Bankart or arthroscopic stabilization or
arthroscopic stabilisation or labral repair) AND (((recurr* or relaps* or recrudesc* or repeat*)
AND (dislocat*or luxat* or instabilit*)) OR risk* or lesion* or (hill and sachs) or injur* or
Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*)
or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and
tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and
bone and loss))

19

18

Database	Before deduplication	After deduplication
PubMed	1768	1762
Embase	2119	580
Cochrane Database of Systematic Reviews	1	0
Cochrane Central Register of Controlled Trials	143	51
CINAHL	729	55
Web of science	2578	1136

2 3 4		Total	7338	3584
5 6 7	20			
8 9	21			
10 11 12				
13 14				
15 16 17				
18 19				
20 21 22				
23 24 25				
26 27				
28 29 30				
31 32				
33 34 35				
36 37 38				
39 40				
41 42 43				
44 45 46				
47 48				
49 50 51				
52 53 54				
55 56				
57 58 59				
60				

BMJ Open

1 2					
3 4	22	SUPF	SUPPLEMENTARY 2		
5 6	23	The manuscript's authors will collect the following potential risk factors from the databases			
7 8	24	provided by authors of the Machine Learning Collaboration:			
9 10	25	0	Gender (male/female)		
11 12	26	0	Age at time of operation (years)		
13 14	27	0	Preoperative BMI		
15 16	28	0	ASA classification at time of operation (1-4)		
17 18 10	29	0	Epilepsy (yes/no)		
19 20 21	30	0	o Hyperlaxity (Beighton score $< 4 \text{ or } \ge 4$)		
22 23	31	0	Affected side (right/left/bilateral)		
24 25	32	0	Side of operation (right/left/bilateral)		
26 27	33	0	Dominance (right/left/both)		
28 29	34	0	Daily smoking at time of operation (yes or no)		
30 31 32 33 34 35 36 37 38 39 40	35	0	Number of pre-operative dislocations		
	36	0	Duration of follow-up (years)		
	37	0	Bony lesions		
	38		Bony Bankart lesion (yes/no)		
	39		Hill-Sachs lesion		
41 42	40		• Yes/no		
43 44	41		Yes/noOff-track yes/no		
45 46	42		□ Greater Tuberosity Fracture (yes/no)		
47 48	43		□ Glenoid bone loss (<20%, \geq 20%)		
49 50	44	0	Soft tissue lesions		
51 52	45		□ Anterior labrum periosteal sleeve avulsion (ALPSA) lesion (yes/no)		
53 54	46		□ Superior labrum anterior and posterior (SLAP) lesion (yes/no)		
55 56 57	47		inferior glenohumeral ligament (IGHL) (yes/no)		
57 58 59	48		□ Humeral avulsion of the glenohumeral ligament (HAGL) lesion (yes/no)		
60					

1 2				
2 3 4	49			Perthes lesion (yes/no)
5 6	50			Glenolabral articular disruption (GLAD) lesion (yes/no)
7 8	51			Full thickness Rotator Cuff Tear (yes/no)
9 10	52			Partial thickness Rotator Cuff Tear (yes/no)
11 12	53	0	Nerve	e Palsy (yes/no)
13 14	54	0	Surgi	cal Characteristics:
15 16 17	55		0	Side (right/left/bilateral)
17 18 19	56		0	Time from injury to surgery (months)
20 21	57		0	Time to surgery from hospital admission (days)
22 23	58		0	Surgeon level (Surgeon/Resident/Fellow)
24 25	59			
$\begin{array}{c} 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	60			ter terien on t

BMJ Open

Development and Training of a Machine Learning Algorithm to Identify Patients at Risk for Recurrence following an Arthroscopic Bankart Repair (CLEARER): Protocol for a Retrospective, Multicentre, Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055346.R3
Article Type:	Protocol
Date Submitted by the Author:	23-Apr-2022
Complete List of Authors:	Spanning, Sanne; OLVG, Orthopaedic Surgery; Clinique Générale Annecy, Orthopaedic Surgery Verweij, Lukas; Amsterdam UMC Locatie AMC, Orthopedic Surgery, Amsterdam Movement Sciences, ; Amsterdam UMC Locatie AMC, Academic Center for Evidence-based Sports Medicine (ACES) Allaart, Laurens; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; Clinique Générale Annecy, Orthopaedic Surgery Hendrickx, Laurent; University of Amsterdam, Department of Orthopedic Surgery; Flinders University, Orthopaedic & Trauma Surgery Doornberg, Job; Flinders University, Orthopaedic Surgery Athwal, George; Schulich School of Medicine and Dentistry, Roth McFarlane Hand and Upper Limb Center Lafosse, Thibault; Clinique Générale Annecy, Orthopaedic Surgery van den Bekerom, M.P.J.; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; OLVG, Orthopaedic Surgery Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic Surgery; University of Montpellier, Montpellier University Medical Center, Department of Orthopedic Surgery
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Surgery
Keywords:	Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY, Elbow & shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY

3 4 5 6 7 8 9 10	1	Title: Development and Training of a Machine Learning Algorithm to Identify Patients at Risk
	2	for Recurrence following an Arthroscopic Bankart Repair (CLEARER): Protocol for a
	3	Retrospective, Multicentre, Cohort Study
	4	
11 12	5	Corresponding author:
13 14	6	Full name: Sanne Hendrikje van Spanning
15 16 17	7	Postal address: Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Oosterpark 9, 1091 AC
17 18 19	8	Amsterdam, The Netherlands
20 21	9	Email: s.h.vanspanning@olvg.nl
22 23	10	
24 25	11	Authors:
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	12	Sanne H. van Spanning ^{1,2,3} ; Lukas P.E. Verweij ^{4,5,6} ; Laurens J.H. Allaart ^{2,3} ; Laurent A.M.
	13	Hendrickx ^{4,5,7} ; Job N. Doornberg ⁷ ; George S. Athwal ⁸ ; Thibault Lafosse ² ; Laurent
	14	Lafosse ² ; Michel P.J van den Bekerom ^{1,3} ; Geert Alexander Buijze ^{2,4,9} on behalf of the
	15	Machine Learning Consortium
	16	
	17	Affiliations
	18	1. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG,
	19	Amsterdam, The Netherlands
43 44	20	2. Department of Orthopedic Surgery, Clinique Générale Annecy, Annecy, France
45 46	21	3. Department of Human Movement Sciences, Faculty of Behavioural and Movement
47 48 49 50	22	Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam,
	23	the Netherlands
51 52	24	4. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC,
53 54	25	location AMC, University of Amsterdam, Amsterdam, The Netherlands.
55 56 57	26	5. Academic Centre for Evidence-based Sports Medicine (ACES), Amsterdam UMC,
58 59	27	Amsterdam, The Netherlands
60		

1 2		
2 3 4	28	6. Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International
5 6	29	Olympic Committee (IOC) Research Centre, Amsterdam UMC, Amsterdam, The
7 8	30	Netherlands
9 10	31	7. Department of Orthopaedic & Trauma Surgery, Flinders Medical Centre, Flinders
11 12	32	University, Adelaide, SA, Australia
13 14	33	8. Roth McFarlane Hand and Upper Limb Centre, Schulich School of Medicine and
15 16	34	Dentistry, Western University, London, Ontario, Canada
17 18	35	9. Department of Orthopedic Surgery, Montpellier University Medical Centre, Lapeyronie
19 20 21	36	Hospital, University of Montpellier, Montpellier, France
21 22 23	37	
24 25	38	Word count: 1543, Abstract: 293
26 27	39	Keywords: Shoulder instability, dislocation, recurrence, Bankart, Machine Learning
28 29	40	Algorithm, Artificial Intelligence
30 31	41	Date: 29-03-2022 Version: 2.1
32 33	42	Date: 29-03-2022
34 35	43	Version: 2.1
36 37	44	
38 39		
40 41		
42 43		
44 45		
46		
47		
48 49		
50		
51		
52 53		
55 54		
55		
56		
57 58		
58 59		
60		

Page 3 of 25

1

BMJ Open

1 2	
2 3 4 5	45
5 6	46
7 8	47
9 10	48
11 12	49
13 14	50
15 16	51
17 18	52
19 20	53
21 22 23	54
23 24 25	55
26 27	56
28 29	57
30 31	58
32 33	59
34 35 36	60
37	61
38 39 40	62
40 41 42	63
43 44	64
45 46	65
47 48	66
49 50	67
51 52	68
53 54	69
55 56	70
57 58 59	71
60	

45	ABSTRACT
46	Introduction: Shoulder instability is a common injury, with a reported incidence of 23.9 per
47	100,000 person-years. There is still an ongoing debate on the most effective treatment
48	strategy. Non-operative treatment has recurrence rates of up to 60%, whereas operative
49	treatments such as the Bankart repair and bone block procedures show lower recurrence
50	rates (16% and 2%, respectively) but higher complication rates (<2% and up to 30%,
51	respectively). Methods to determine risk of recurrence have been developed, however
52	patient-specific decision-making tools are still lacking. Artificial Intelligence (AI) and machine
53	learning algorithms use self-learning complex models that can be used to make patient-
54	specific decision-making tools. The aim of the current study is to develop and train a
55	machine learning algorithm to create a prediction model to be used in clinical practice –as an
56	online prediction tool- to estimate recurrence rates following a Bankart repair.
57	Methods and analysis: This is a multicentre retrospective cohort study. Patients with
58	traumatic anterior shoulder dislocations that were treated with an arthroscopic Bankart repair
59	without remplissage will be included. This study includes two parts. Part one, collecting all
60	potential factors influencing the recurrence rate following an arthroscopic Bankart repair in
61	patients using multicentre data, aiming to include data from >1000 patients worldwide. Part
62	two, the multicentre data will be re-evaluated (and where applicable complemented) using
63	machine learning algorithms to predict outcomes. Recurrence will be the primary outcome
64	measure.
65	Ethics and dissemination: For safe multicentre data exchange and analysis, our Machine
66	Learning Consortium adhered to the World Health Organization (WHO) regulation "Policy on
67	Use and Sharing of Data Collected by WHO in Member States Outside the Context of Public
68	Health Emergencies." The study results will be disseminated through publication in a peer-
69	reviewed journal. No IRB is required for this study.

70 **Trial registration:** This study does not require a trial registration

STRENGTHS AND LIMITATIONS

- Data will be obtained from global databases of all authors included in the Machine • Learning Consortium, aiming to include data from over 1000 patients.
- Retrospective studies are less suitable to train machine learning algorithms than • prospective studies due to missing data through incomplete record keeping and possible confounding factors.
- Studies with different designs will be included. By combining data gathered by • different studies to create one database, definitions may differ and therefore make it impossible to pool some of the data.
 - Due to the collection of individual patient data by previously published studies, •
 - variation in definitions may cause a significant source of bias.

Page 5 of 25

1 2 **BMJ** Open

2 3	
4 5 6 7	
0 7 8	
8 9 10	
11 12	
13 14	
11 12 13 14 15 16 17 18 19	
17 18 19	
20 21	
22 23	
24 25	
26 27 28	
20 29 30	
31 32	
33 34	
35 36 27	
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 	
40 41	1
42 43	1 1
44 45	1
46 47 48	1
48 49 50	1
50 51 52	1
53 54	1
55 56	1
57 58 59	1
59 60	1

83 INTRODUCTION

84 Anterior shoulder dislocation is a common injury, with a reported incidence of 23.9 per 85 100,000 person-years.¹ Shoulder dislocations limit patients in their daily routine and 86 participation in sports, cause irreversible damage to the shoulder joint and are associated 87 with high costs.^{2, 3} There is an ongoing debate on the most effective treatment strategy to 88 prevent recurrence. Non-operative treatment of first-time dislocations has recurrence rates 89 of up to 60%, whereas operative treatment such as the arthroscopic labrum repair and bone 90 block procedures have lower recurrence rates (16% and 2%, respectively).^{4, 5} However, the 91 complication rates for bone block procedures compared to arthroscopic labrum repair (up to 92 30% and <2%, respectively) are higher and therefore pre-operative counselling with 93 determination of the most suitable treatment is important in avoiding unnecessary risk of 94 complications.^{6,7} Methods to determine risk of recurrence have been developed, including 95 the instability severity index score (ISIS), glenoid morphology (i.e. concavity, version, 96 inclination), an off-track Hill-Sachs lesion and translation of the humeral head.⁸⁻¹² However, a 97 patient-specific decision-making tool is still lacking. 98 The self-learning complex models used by Artificial Intelligence (AI) and Machine Learning 99 algorithms express high levels of intelligence without human error and are therefore highly 00 suitable to be used for interpretation of images, pathology slides and patient-specific 01 decision-making tool.¹³⁻¹⁷ Hendrickx and colleagues recently developed a prediction model 02 based on machine learning algorithms to estimate acute and late complications after 03 intramedullary nailing of a tibial shaft fracture.¹⁶ In other words, the authors were able to use 04 the computationally intensive methods of machine learning, to go from the 'traditionally' 05 reported overall complication rate of a cohort to calculate the probability of a specific patient 06 complication rate. This study resulted in an online prediction tool. 07 08 Aim and objectives

⁸ 109 The aim of the current study is to develop and train a machine learning algorithm to create a
 ⁰ 110 prediction model to be used in clinical practice – as an online prediction tool – to estimate

1 2		
- 3 4	111	recurrence rates following a Bankart repair. No studies have yet been published applying
5 6	112	machine learning algorithms to systematically reviewed/collected data in this field.
7 8	113	
9 10	114	
11 12		
13 14		
15 16		
17 18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31 32		
33 34		
35 36		
37 38		
39 40		
41 42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55 56		
50 57 58		
59 60		

BMJ Open

2 3 4	115	METHODS AND ANALYSIS
5	116	Study design
7 8	117	This multicentre retrospective cohort study includes two parts.
9 10	118	
11 12	119	Part one – Collecting Data
13 14	120	Part one involves collecting individual patient data of published studies that evaluated
15 16	121	potential factors predisposing recurrence following an arthroscopic Bankart repair without
17 18	122	remplissage. The authors of these studies will be contacted by email and will be included in
19 20	123	the Machine Learning Consortium when they provide the original patient data of their cohort.
21 22 23	124	Through this process, we aim to combine the individual patient data from the published
24 25	125	studies and create an international cohort of over 1000 patients. The current study will use
26 27	126	the collected patient data to create a machine learning algorithm that can estimate the
28 29	127	probability of recurrence for an individual patient. To make a reliable algorithm, it is
30 31	128	estimated that the data should include at least 100 recurrences. With a recurrence rate of
32 33	129	12% following arthroscopic Bankart repairs, it was estimated that a minimum of 1000
34 35	130	patients would be sufficient. ¹⁸ To identify relevant studies, a systematic approach was used
36 37 38	131	searching PubMed, Embase/Ovid, Cochrane Database of Systematic Reviews/Wiley,
39 40	132	Cochrane Central Register of Controlled Trials/Wiley, CINAHL/Ebsco, and Web of
41 42	133	Science/Clarivate according to the search terms used in Verweij et al. (see Supplemental
43 44	134	appendix 1 for the search strategy) from inception up to July 2021. ¹⁹ The systematic review
45 46	135	by Verweij et al. is completed and submitted for publication separately. All studies reporting
47 48	136	on risk factors for recurrence following Bankart repairs were included. Studies published in
49 50	137	languages other than English, Dutch and French were excluded. The inclusion criteria are
51 52	138	patients treated with arthroscopic Bankart repair without remplissage for traumatic anterior
53 54 55	139	shoulder instability with a minimum of 2 years follow up. Shoulder instability is defined as
56 57	140	either a complete dislocation or subluxation. ²⁰ Exclusion criteria include patients who have
58 59	141	undergone previous stabilization procedures or other surgical procedures to the ipsilateral
60		

Page 8 of 25

BMJ Open

3 4	142	shoulder than arthroscopic Bankart repair and patients with posterior, multidirectional or
5 6	143	voluntary habitual instability.
7 8	144	
9 10	145	Part two – Machine Learning
11 12	146	Part two, the multicentre data will be re-evaluated (and where applicable complemented)
13 14	147	using machine learning algorithms to predict outcomes. The statistician that performs the
15 16	148	machine learning analysis will be blinded to the origin of the data.
17 18 19	149	
20 21	150	Training Data & Test Data
22 23	151	Eighty percent (80%) of all (>1000) patients included in the Machine Learning Consortium
24 25	152	Database will be randomly allocated to the training dataset and 20% to the test dataset.
26 27	153	
28 29	154	Output variables
30 31	155	Each Machine Learning Algorithm will be trained to recognize patterns related to recurrence
32 33	156	rates.
34 35	157	
36 37 28	158	Input Variables
38 39 40	159	For the primary outcome, a Random-Forest algorithm will be used to identify the variables
41 42	160	with the highest predictive value from all available data points in the Machine Learning
43 44	161	Consortium Database. The data points available include demographics (age, sex and
45 46	162	ethnicity aiming to include >1000 patients with balanced demographics), patient specific
47 48	163	factors (e.g. preoperative BMI, comorbidity, dominance), disease specific factors (e.g.
49 50	164	affected side, number of pre-operative dislocations, associated lesions) and surgical
51 52	165	characteristics (e.g. time from injury to surgery, surgeon level) (see Supplemental appendix
53 54	166	2 for the complete list of factors that will be collected from the electronic medical records).
55 56	167	
57 58 59 60	168	Algorithms to be trained

BMJ Open

1 2		
3 4 5 6	169	It is not possible to know what Machine Learning algorithm will be most suitable to calculate
	170	recurrence following an arthroscopic Bankart repair. ²¹ However, based on previous studies,
7 8	171	the following algorithms will be tested as prediction models for recurrence rates: Decision
9 10	172	Tree Models; Support Vector Machine; Neural Network; Bayes Point Machine; Logistic
11 12	173	Regression. ^{16, 22-27}
13 14	174	
15 16	175	Training and Testing of the algorithms
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	176	For each ML algorithm, ten-fold cross validation will be repeated three times on the training
	177	dataset (80%), to train the algorithms in recognizing patterns related to recurrence following
	178	an arthroscopic Bankart repair, and to subsequently assess their predictive performance
	179	based on the following performance characteristics: Area under the ROC-curve, calibration
	180	(calibration slope, calibration intercept) and Brier score will be calculated. ²⁸ The model's
	181	predicted probability is plotted against the actual observed probability to calculate calibration
	182	of a model. Perfect models will have calibration intercepts of 0, and calibration slopes of 1.29
	183	The overall performance of the model will be assessed with the Brier-score. A perfect Brier
	184	score, indicating total accuracy, is a score of 0. The lowest possible score is a Brier score of
	185	1. ²⁸ The remaining 20% of the data will be used as a test-set to assess the performance of
	186	the best performing machine learning algorithms based on "unseen" data. The technical
	187	appendix, statistical code, and dataset will be published.
	188	
45 46	189	External validation of the best performing algorithm
47 48	190	Before incorporation into an online open access decision-making tool, the best performing
49 50	191	algorithm will be externally validated in a prospective database. The same performance
51 52	192	metrics will be calculated as described above.
53 54	193	
55 56	194	Open-access clinical prediction tool
57 58	195	An open-access clinical prediction tool will be developed using the best performing
59 60	196	algorithm.

1		
2 3	197	
4	197	
5 6	198	Patients and public involvement
7 8	199	Patients and the public were not involved in the making of this protocol.
9 10	200	
11 12	201	Current Status
13 14	202	Currently, the study is at the finishing stage of collection data from global databases. Re-
15 16	203	evaluation of the data using machine learning algorithms to predict outcomes will start in
17 18	204	March 2022. The expected time of completion is by the end of 2022.
19 20	205	
21 22		
23		
24		
25		
26 27		
28		
29		
30		
31		
32		
33 34		
34 35		
36		
37		
38		
39		
40 41		
42		
43		
44		
45		
46 47		
48		
49		
50		
51		
52		
53 54		
55		
56		
57		
58		
59 60		
00		

2	
3 4	20
5 6	20
7 8	20
9 10	20
10 11 12	21
13 14	21
15 16	
10 17 18	
19 20	
20 21 22	
23	
24 25 26	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57	
58 59	
60	

06 **ETHICS AND DISSEMINATION**

07 For safe multicentre data exchange and analysis, our Machine Learning Consortium

- 08 adhered to the World Health Organization (WHO) regulation "Policy on Use and Sharing of
- 09 Data Collected by WHO in Member States Outside the Context of Public Health
- .y re B is requi 10 Emergencies." ³⁰ The study results will be disseminated through publication in a peer-
- 11 reviewed journal. No IRB is required for this study.

212 DISCUSSION

Operative treatment significantly reduces the risk of recurrent shoulder instability compared to non-operative treatment.³¹ Patients with first-time dislocations who receive operative treatment are most often treated with labrum repair.³¹ Risk factors associated with failure of an arthroscopic Bankart repair include young age (≤30 years), participation in competitive sports, multiple preoperative dislocations, > 6 months surgical delay from first-time dislocation to surgery, ISIS > 3 and associated lesions (Hill-Sachs, glenoid bone loss and ALPSA). ³² It is impossible to take all these risk factors into account and make an objective decision on what treatment is most suitable. Several prediction tools have been developed to help counselling patients, however these tools only provide an indicative overall score and are not patient specific.⁸⁻¹² Artificial Intelligence (AI) and machine learning algorithms have shown potential to make a patient-specific decision tool.¹⁶ Creating an online prediction tool for recurrence following an arthroscopic Bankart repair can help guide surgeons in selecting patients who benefit from this procedure. Patients with a first-time anterior shoulder dislocations receive proper evidence-based information only in 29% of the cases.³³ An online prediction tool might elevate these numbers and makes it possible for shared decision making based on objective measures. The strength of this study is the great amount of data that will be gathered. Data will be obtained from global databases of all authors included in the Machine Learning Consortium, aiming to include data of >1000 patients. This study does have the limitation of being retrospective and therefore the study is dependent on the recordkeeping of each individual

hospital. This may lead to a variance in listed variables per database, resulting in missing
data. In addition, blinding of participants and personnel may have been addressed differently

in every institute. Moreover, only risk factors that were identified in literature were included.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	237	Funding
5 6	238	This research received no specific grant from any funding agency in the public, commercial
7 8	239	or not-for-profit sectors.
9 10	240	
11 12		
13 14		
15 16 17		
17 18 19		
20 21		
22 23		
24 25		
26 27 28		
28 29 30		
31 32		
33 34		
35 36		
37 38 39		
40 41		
42 43		
44 45		
46 47		
48 49 50		
51 52		
53 54		
55 56		
57 58		
59 60		

AUTHORS CONTRIBUTION

Sanne H. van Spanning, Geert Alexander Buijze, Michel P.J van den Bekerom, Lukas P.E. Verweij and Laurens J.H. Allaart contributed to the conception, overall design and planning of the study. Laurent A.M. Hendrickx and Job N. Doornberg contributed to the conception and design of the methods section, primarily focussing on the machine learning section and data analysis. George S. Athwal, Thibault Lafosse and Laurent Lafosse contributed to the design of the methods section and primarily focussed on how the data should be collected and interpreted. Sanne H. van Spanning, Geert Alexander Buijze, Michel P.J van den Bekerom and Lukas P.E. Verweij contributed to writing the protocol. All authors revised this version of the protocol and gave final approval for it to be published. All authors ensure that questions related to the accuracy or integrity of any part of this protocol are appropriately

investigated and resolved.

253 CONFLICTS OF INTEREST

Dr. G.S. Athwal reports as 'financial activities outside the submitted work' to be a consultant for ConMed Linvatec. Dr. L. Lafosse is a consultant for Depuy Stryker, received royalties uns. uns certify that ne. pose a conflict of interes. from Depuy. Dr. T. Lafosse is consultant for Depuy Mitek and Stryker. Dr. G.A. Buijze received consultancy fees from Depuy-Synthes and Research Funds from SECEC, Vivalto Santé. The remaining authors certify that neither he or she has funding or commercial associations that might pose a conflict of interest in connection with the submitted article.

3 260 **References**

Zacchilli MA and Owens BD. Epidemiology of shoulder dislocations presenting to 1. emergency departments in the United States. J Bone Joint Surg Am 2010; 92: 542-549. 2010/03/03. DOI: 10.2106/JBJS.I.00450. Verweij LPE, Pruijssen EC, Kerkhoffs G, et al. Treatment type may influence degree 2. of post-dislocation shoulder osteoarthritis: a systematic review and meta-analysis. *Knee Surg* Sports Traumatol Arthrosc 2020 2020/09/17. DOI: 10.1007/s00167-020-06263-3. 3. Zaremski JL, Galloza J, Sepulveda F, et al. Recurrence and return to play after shoulder instability events in young and adolescent athletes: a systematic review and meta-analysis. Br J Sports Med 2017; 51: 177-184. 2016/11/12. DOI: 10.1136/bjsports-2016-096895. 4. Hovelius L and Rahme H. Primary anterior dislocation of the shoulder: long-term prognosis at the age of 40 years or younger. Knee Surg Sports Traumatol Arthrosc 2016; 24: 330-342. 2016/01/13. DOI: 10.1007/s00167-015-3980-2. Hurley ET, Lim Fat D, Farrington SK, et al. Open Versus Arthroscopic Latarjet 5. Procedure for Anterior Shoulder Instability: A Systematic Review and Meta-analysis. Am J Sports Med 2019; 47: 1248-1253. 2018/03/21. DOI: 10.1177/0363546518759540. Williams HLM, Evans JP, Furness ND, et al. It's Not All About Redislocation: A 6. Systematic Review of Complications After Anterior Shoulder Stabilization Surgery. Am J Sports Med 2019; 47: 3277-3283. 2018/12/12. DOI: 10.1177/0363546518810711. Griesser MJ, Harris JD, McCov BW, et al. Complications and re-operations after 7. Bristow-Latarjet shoulder stabilization: a systematic review. J Shoulder Elbow Surg 2013; 22: 286-292. 2013/01/29. DOI: 10.1016/j.jse.2012.09.009. Balg F and Boileau P. The instability severity index score. A simple pre-operative 8. score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br 2007; 89: 1470-1477. 2007/11/14. DOI: 10.1302/0301-620X.89B11.18962. Di Giacomo G, Itoi E and Burkhart SS. Evolving concept of bipolar bone loss and the 9. Hill-Sachs lesion: from "engaging/non-engaging" lesion to "on-track/off-track" lesion. Arthroscopy 2014; 30: 90-98. 2014/01/05. DOI: 10.1016/j.arthro.2013.10.004. Matsumura N, Oki S, Fukasawa N, et al. Glenohumeral translation during active 10. external rotation with the shoulder abducted in cases with glenohumeral instability: a 4-dimensional computed tomography analysis. J Shoulder Elbow Surg 2019; 28: 1903-1910. 2019/06/18. DOI: 10.1016/j.jse.2019.03.008. Moroder P, Damm P, Wierer G, et al. Challenging the Current Concept of Critical 11. Glenoid Bone Loss in Shoulder Instability: Does the Size Measurement Really Tell It All? Am J Sports Med 2019; 47: 688-694. 2019/01/15. DOI: 10.1177/0363546518819102. Yamamoto N, Itoi E, Abe H, et al. Contact between the glenoid and the humeral head 12. in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elbow Surg 2007; 16: 649-656. 2007/07/24. DOI: 10.1016/j.jse.2006.12.012. Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection 13. of critical findings in head CT scans: a retrospective study. Lancet 2018; 392: 2388-2396. 2018/10/16. DOI: 10.1016/S0140-6736(18)31645-3. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of 14. Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA 2017; 318: 2199-2210. 2017/12/14. DOI: 10.1001/jama.2017.14585. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning 15. Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016; 316: 2402-2410. 2016/11/30. DOI: 10.1001/jama.2016.17216.

BMJ Open

1		
2		
3	308	16. Machine Learning Consortium obotS and Investigators F. A Machine Learning
4	308	Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for Infection After
5	310	Operative Treatment. J Bone Joint Surg Am 2021; 103: 532-540. 2021/01/05. DOI:
6	311	10.2106/JBJS.20.00903.
7 8	312	17. Ting DSW, Cheung CY, Lim G, et al. Development and Validation of a Deep
8 9	312	Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images
10	314	From Multiethnic Populations With Diabetes. <i>JAMA</i> 2017; 318: 2211-2223. 2017/12/14.
11	315	DOI: 10.1001/jama.2017.18152.
12	316	18. Yapp LZ, Nicholson JA and Robinson CM. Primary Arthroscopic Stabilization for a
13	317	First-Time Anterior Dislocation of the Shoulder: Long-Term Follow-up of a Randomized,
14 15	318	Double-Blinded Trial. J Bone Joint Surg Am 2020; 102: 460-467. 2020/01/03. DOI:
16	319	10.2106/JBJS.19.00858.
17	320	19. Verweij LPE, van Spanning SH, Grillo A, et al. Age, participation in competitive
18	321	sports, bony lesions, ALPSA lesions, >1 preoperative dislocations, surgical delay and ISIS
19	322	score > 3 are risk factors for recurrence following arthroscopic Bankart repair: a systematic
20 21	323	review and meta-analysis of 4584 shoulders. Knee Surg Sports Traumatol Arthrosc 2021; 29:
21	324	4004-4014. 2021/08/23. DOI: 10.1007/s00167-021-06704-7.
23	325	20. H.Alkaduhimi, Connelly JW, Deurzen DFPv, et al. High Variability of the Definition
24	326	of Recurrent Glenohumeral Instability: An Analysis of the Current Literature by a Systematic
25	327	Review. Arthroscopy, Sports Medicine, and Rehabilitation 2021. DOI:
26	328	https://doi.org/10.1016/j.asmr.2021.02.002.
27 28	329	21. Wolpert DH. The Lack of A Priori Distinctions Between Learning Algorithms.
20	330	Neural Computation 1996; 8: 1341-1390. DOI: 10.1162/neco.1996.8.7.1341.
30	331	22. Karhade AV, Thio Q, Ogink PT, et al. Development of Machine Learning Algorithms
31	332	for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. <i>Neurosurgery</i> 2019;
32	333	85: E83-E91. 2018/11/27. DOI: 10.1093/neuros/nyy469.
33 34	334	23. M. Fernandez-Delgado EC, S. Barro, D. Amorim. Do we Need Hundreds of
35	335	Classifiers to Solve Real World Classification Problems? Journal of Machine Learning
36	336	Research 2014; 15: 3133-3181.
37	337	24. Maroco J, Silva D, Rodrigues A, et al. Data mining methods in the prediction of
38	338	Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear
39 40	339	discriminant analysis, logistic regression, neural networks, support vector machines,
40 41	340	classification trees and random forests. <i>BMC Res Notes</i> 2011; 4: 299. 2011/08/19. DOI:
42	341	10.1186/1756-0500-4-299.
43	342	25. Thio Q, Karhade AV, Ogink PT, et al. Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With Chondrosarcoma? <i>Clin Orthop Relat Res</i> 2018;
44	343 344	476: 2040-2048. 2018/09/05. DOI: 10.1097/CORR.00000000000433.
45	344	 26. Wainer J. Comparison of 14 different families of classification algorithms on 115
46 47	343 346	binary datasets. 2016.
48	340	27. Oosterhoff JHF, Gravesteijn BY, Karhade AV, et al. Feasibility of Machine Learning
49	348	and Logistic Regression Algorithms to Predict Outcome in Orthopaedic Trauma Surgery. J
50	349	Bone Joint Surg Am 2021 2021/12/19. DOI: 10.2106/JBJS.21.00341.
51	350	28. Steyerberg EW and Vergouwe Y. Towards better clinical prediction models: seven
52 53	351	steps for development and an ABCD for validation. <i>Eur Heart J</i> 2014; 35: 1925-1931.
53 54	352	2014/06/06. DOI: 10.1093/eurheartj/ehu207.
55	353	29. Stevens RJ and Poppe KK. Validation of clinical prediction models: what does the
56	354	"calibration slope" really measure? <i>J Clin Epidemiol</i> 2020; 118: 93-99. 2019/10/13. DOI:
57	355	10.1016/j.jclinepi.2019.09.016.
58 59	356	30. Organization WH. WHO data policy, <u>https://www.who.int/publishing/datapolicy/en/</u>
59 60	357	(2019, accessed 07-09-2019 2019).
50		

Van Spanning SH, Verweij LPE, Priester-Vink S, et al. Operative versus non-31. operative treatment following first-time anterior shoulder dislocation. A systematic review and meta-analysis (Accepted). JBJS Rev 2021. Verweij LPE, Van Spanning SH, Grillo A, et al. Risk factors for recurrence following 32. arthroscopic Bankart repair: a systematic review and meta-analysis of 4584 shoulders (submitted). Knee Surg Sports Traumatol Arthrosc 2021. 33. Hutyra CA, Streufert B, Politzer CS, et al. Assessing the Effectiveness of Evidence-Based Medicine in Practice: A Case Study of First-Time Anterior Shoulder Dislocations. J Bone Joint Surg Am 2019; 101: e6. 2019/01/18. DOI: 10.2106/JBJS.17.01588. to beet terien only

SUPPLEMENTARY 1 Search strategy

PubMed

#17	Search: #14 AND #15 AND #16 Sort by: Most Recent	1,768
#16	Search: ((("Recurrence"[Mesh] OR recurr*[tiab] OR relaps*[tiab] OR recrudesc*[tiab] OR repeat*[tiab]) AND ("Joint Dislocations"[Mesh] OR dislocat*[tiab] OR luxat*[tiab] OR instabilit*[tiab])) OR risk*[tiab] OR lesion*[tiab] OR (hill[tiab] AND sachs[tiab]) OR injur*[tiab] OR Perthes[tiab] OR ALPSA[tiab] OR (anterior[tiab] AND (labro[tiab] OR labral[tiab]) AND periosteal[tiab] AND sleeve[tiab] AND avulsion*[tiab]) OR HAGL[tiab] OR (humeral[tiab] AND avulsion*[tiab]) OR glenohumeral[tiab] AND ligament*[tiab]) OR (greater[tiab] AND tuberosity[tiab]) OR fracture*[tiab] OR "Fractures, Bone"[Mesh] OR "Rotator Cuff"[Mesh] OR (rotator[tiab] AND cuff[tiab]) OR tear*[tiab] OR age[tiab] OR sport*[tiab] OR laxity[tiab] OR (glenoid[tiab] AND bone[tiab] AND loss[tiab])) Sort by: Most Recent	5,603,913
#15	Search: (Bankart[tiab] OR "Bankart Lesions/surgery"[Mesh] OR arthroscopic stabilization[tiab] OR arthroscopic stabilisation[tiab] OR labral repair[tiab]) Sort by: Most Recent	2,300
#14	Search: ("Shoulder Dislocation"[Mesh] OR "Shoulder"[Mesh] OR "Shoulder Joint"[Mesh] OR shoulder*[tiab] OR glenohumeral[tiab]) Sort by: Most Recent	82,527

Embase/Ovid

1	exp shoulder dislocation/	6512
2	exp shoulder/	83055
3	(shoulder* or glenohumeral).ti,ab,kw.	101743
4	1 or 2 or 3	138684
5	(Bankart or arthroscopic stabilization or arthroscopic stabilisation or labral repair).ti,ab,kw.	2813
6	Bankart lesion/su [Surgery]	198
7	5 or 6	2862
8	(recurr* or relaps* or recrudesc* or repeat*).ti,ab,kw.	1930525
9	exp joint dislocation/	4059

10	(dislocat*or luxat* or instabilit*).ti,ab,kw.	154727
11	9 or 10	158430
12	8 and 11	19548
13	(risk* or lesion* or (hill and sachs) or injur* or Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*) or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and bone and loss)).ti,ab,kw.	8234845
14	exp fracture/	336756
15	exp rotator cuff/	8999
16	12 or 13 or 14 or 15	8303779
17	4 and 7 and 16	2119

6 Cochrane Database of Systematic Reviews & Cochrane Central Register of Controlled Trials

#1	MeSH descriptor: [Shoulder Dislocation] explode all trees	143
#2	MeSH descriptor: [Shoulder] explode all trees	537
#3	MeSH descriptor: [Shoulder Joint] explode all trees	745
#4	(shoulder* or glenohumeral):ti,ab,kw	11763
#5	#1 OR #2 OR #3 OR #4	11763
#6	MeSH descriptor: [Bankart Lesions] explode all trees and with qualifier(s): [surgery - SU]	3
#7	(Bankart OR arthroscopic stabilization OR arthroscopic stabilisation OR labral repair):ti,ab,kw	238
#8	#6 OR #7	238
#9	MeSH descriptor: [Recurrence] explode all trees	12084
#10	(recurr* or relaps* or recrudesc* or repeat*):ti,ab,kw	15984
#11	#9 OR #10	159894
#12	MeSH descriptor: [Joint Dislocations] explode all trees	687
#13	(dislocat*or luxat* or instabilit*):ti,ab,kw	5839
#14	#12 OR #13	6413

ر ۸	
4	
5	
6	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
8	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
34 35 36 37 38 39	
36	
27	
20	
38	
39	
40	
41	
42	
36 37 38 39 40 41 42 43 44	
44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50	
57	
58	
59	
60	

60

#15	#11 AND #14	1018
#16	(risk* or lesion* or (hill and sachs) or injur* or Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*) or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and bone and loss)):ti,ab,kw	549185
#17	MeSH descriptor: [Fractures, Bone] explode all trees	6053
#18	MeSH descriptor: [Rotator Cuff] explode all trees	344
#19	#15 OR #16 OR #17 OR #18	549508
#20	#5 AND #8 AND #19	145

8 CINAHL/Ebsco

S18	S3 AND S6 AND S17	729
S17	S13 OR S14 OR S15 OR S16	1,482,038
S16	(MH "Rotator Cuff+")	3,063
S15	(MH "Fractures+")	58,529
S14	(TI (risk* OR lesion* OR (hill AND sachs) OR injur* OR Perthes OR ALPSA OR (anterior AND (labro OR labral) AND periosteal AND sleeve AND avulsion*) OR HAGL OR (humeral AND avulsion* AND glenohumeral AND ligament*) OR (greater AND tuberosity) OR fracture* OR (rotator AND cuff) OR tear* OR age OR sport* OR laxity OR (glenoid AND bone AND loss))) OR (AB (risk* OR lesion* OR (hill AND sachs) OR injur* OR Perthes OR ALPSA OR (anterior AND (labro OR labral) AND periosteal AND sleeve AND avulsion*) OR HAGL OR (humeral AND avulsion* AND glenohumeral AND ligament*) OR (greater AND tuberosity) OR fracture* OR (rotator AND cuff) OR tear* OR age OR sport* OR laxity OR (glenoid AND bone AND loss)))	1,469,860
S13	S9 AND S12	4,294
S12	S10 OR S11	33,871
S11	(TI (dislocat* OR luxat* OR instabilit*)) OR (AB (dislocat* OR luxat* OR instabilit*))	31,033
S10	(MH "Dislocations+")	8,266

1	
2	
3	
4	
5	
6	
7	
8	
9	
	0
1	
-	1
1	
1	
1	
	5
1	6
1	7
	8
	9
	0
	1
	2
2	23
	4
	5
	6
	7
	8
2	9
	0
3	
3	
3	
	3 4
_	
	5
	6
	7
3	-
3	9
4	0
4	1
4	2
	3
4	
4	
4	
4	
	8
	9
	0
5	
5	2
5	
	4
	5
-	5 6
	7
5	8

1

		-
	(TI (recurr* OR relaps* OR recrudesc* OR repeat*)) OR (AB (recurr*	
S8	OR relaps* OR recrudesc* OR repeat*))	212,296
07		40.004
S7	(MH "Recurrence")	48,901
S6	S4 OR S5	1,126
	(TI (Deplet OD othrosperie stabilization OD othrosperie stabilization	
	(TI (Bankart OR arthroscopic stabilization OR arthroscopic stabilisation	
	OR labral repair)) OR (AB (Bankart OR arthroscopic stabilization OR	
S5	arthroscopic stabilisation OR labral repair))	1,123
S4	(MH "Bankart Lesions/SU")	58
S3	S1 OR S2	30,919
	(Ti (shoulder* OR glenohumeral)) OR (AB (shoulder* OR	
S2	glenohumeral))	28,334
	(MH "Shoulder") OR (MH "Shoulder Dislocation") OR (MH "Shoulder	
S1	Joint+")	12,823

10 Web of Science/Clarative

TOPIC: (shoulder* OR glenohumeral) AND (Bankart or arthroscopic stabilization or
arthroscopic stabilisation or labral repair) AND (((recurr* or relaps* or recrudesc* or repeat*)
AND (dislocat*or luxat* or instabilit*)) OR risk* or lesion* or (hill and sachs) or injur* or
Perthes or ALPSA or (anterior and (labro or labral) and periosteal and sleeve and avulsion*)
or HAGL or (humeral and avulsion* and glenohumeral and ligament*) or (greater and
tuberosity) or fracture* or (rotator and cuff) or tear* or age or sport* or laxity or (glenoid and
bone and loss))

19

18

Database	Before deduplication	After deduplication
PubMed	1768	1762
Embase	2119	580
Cochrane Database of Systematic Reviews	1	0
Cochrane Central Register of Controlled Trials	143	51
CINAHL	729	55
Web of science	2578	1136

2 3 4		Total	7338	3584
5 6 7	20			
8 9	21			
10 11 12				
13 14				
15 16 17				
18 19				
20 21 22				
23 24 25				
26 27				
28 29 30				
31 32 33				
34 35				
36 37 38				
39 40 41				
42 43 44				
45 46				
47 48 49				
50 51				
52 53 54				
55 56				
57 58 59				
60				

BMJ Open

3 4	22	SUPPLEMENTARY 2			
5 6	23	The manuscript's authors will collect the following potential risk factors from the databases			
7 8	24	provided by authors of the Machine Learning Collaboration:			
9 10	25	0	Gender (male/female)		
11 12	26	0	Age at time of operation (years)		
13 14	27	0	Ethnicity		
15 16	28	0	Preoperative BMI		
17 18 19	29	0	ASA classification at time of operation (1-4)		
20 21	30	0	Epilepsy (yes/no)		
22 23	31	0	Hyperlaxity (Beighton score < 4 or ≥ 4)		
24 25	32	0	Affected side (right/left/bilateral)		
26 27 28 29 30 31 32 33 34 35 36 37 38	33	0	Side of operation (right/left/bilateral)		
	34	0	Dominance (right/left/both)		
	35	0	Daily smoking at time of operation (yes or no)		
	36	0	Number of pre-operative dislocations		
	37	0	Duration of follow-up (years)		
	38	0	Bony lesions		
39 40	39		Bony Bankart lesion (yes/no)		
41 42	40		Hill-Sachs lesion		
43 44	41		 Hill-Sachs lesion Yes/no 		
45 46	42		Off-track yes/no		
47 48	43		Greater Tuberosity Fracture (yes/no)		
49 50 51 52 53 54 55 56 57 58 59	44		□ Glenoid bone loss (<20%, \geq 20%)		
	45	0	Soft tissue lesions		
	46		□ Anterior labrum periosteal sleeve avulsion (ALPSA) lesion (yes/no)		
	47		Superior labrum anterior and posterior (SLAP) lesion (yes/no)		
	48		inferior glenohumeral ligament (IGHL) (yes/no)		
60					

Page 25 of 25

1

BMJ Open

2				
3 4	49			Humeral avulsion of the glenohumeral ligament (HAGL) lesion (yes/no)
5 6	50			Perthes lesion (yes/no)
7 8	51			Glenolabral articular disruption (GLAD) lesion (yes/no)
9 10	52			Full thickness Rotator Cuff Tear (yes/no)
11 12	53			Partial thickness Rotator Cuff Tear (yes/no)
13 14	54	0	Nerv	e Palsy (yes/no)
15 16 17	55	0	Surgi	ical Characteristics:
17 18 19	56		0	Side (right/left/bilateral)
20 21	57		0	Time from injury to surgery (months)
22 23	58		0	Time to surgery from hospital admission (days)
24 25	59		0	Surgeon level (Surgeon/Resident/Fellow)
26 27	60			
28 29	61			
30 31				
32 33				
34 35				
36 37				
38 39				
40 41 42				
42 43 44				
45 46				
47 48				
49 50				
51 52				
53 54				
55 56				
57 58				
59 60				