

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association Between Hospital Volume, Process of Care, and Outcomes after Acute Ischemic Stroke: A Retrospective Observational Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-060015
Article Type:	Original research
Date Submitted by the Author:	09-Dec-2021
Complete List of Authors:	Zhang, Runhua; Beijing Tiantan Hospital, Capital Medical University, Neurology; China National Clinical Research Center for Neurological Diseases, Neurology Liu, Gaifen ; Beijing Tiantan Hospital affiliated Capital Medical University, China PAN, YUESONG; Beijing Tiantan Hospital, Capital Medical University, Department of Neurology Zhou, Maigeng; Chinese Center for Disease Control and Prevention Wang, Yongjun; Capital Medical University; China National Clinical Research Center for Neurological Diseases
Keywords:	Stroke < NEUROLOGY, Neurology < INTERNAL MEDICINE, Adult neurology < NEUROLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Association Between Hospital Volume, Process of Care, and Outcomes after Acute Ischemic Stroke: A Retrospective Observational Study

Runhua Zhang¹⁻³, Gaifen Liu²⁻³, Yuesong Pan²⁻³, Maigeng Zhou^{1*}, Yongjun Wang^{2-3*}

¹ National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China;

² Beijing Tiantan Hospital, Capital Medical University, Beijing, China;

³ China National Clinical Research Center for Neurological Diseases, Beijing, China.

*Correspondence:

Maigeng Zhou, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 27 Nanwei Road, Xicheng District, Beijing 100050, China. E-Mail: <u>zhoumaigeng@ncncd.chinacdc.cn</u> Yongjun Wang, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th West Road, Fengtai District, Beijing 10070, China, E-mail: <u>yongjunwang@ncrcnd.org.cn</u>.

Abstract

Objectives Uncertainty remains about hospital volume and clinical outcomes for patients with stroke. The study was aimed to assess the association between hospital volume, process of care, and outcomes after ischemic stroke.

Methods The patients with acute ischemic stroke from China National Stroke Registry II were included in this study. According to quartiles of the hospital volume, the patients were categorized into four groups. We compared the difference in the process of care across the groups. We used Cox proportional hazard models and generalized estimating equations to estimate the effect of hospital volume on 1-year mortality and poor outcome, respectively. Hazard ratios or odds ratios and corresponding 95% confidence intervals were used to qualify the association between hospital volume and outcomes with the highest quartile as reference. We also used restricted cubic splines to model the association between hospital volume and clinical outcomes.

Results A total of 16,651 ischemic strokes from 133 hospitals across China were included. The were no significant differences in process of care across the four groups. The hazard ratio of 1-year mortality was 1.39 (95%CI, 1.08-1.79) for Q1, 0.99 (95%CI, 0.77-1.27) for Q2, 1.16 (95%CI, 0.93-1.44) for Q3, compared with Q4. When adjusted for other confounders, the effect of hospital volume on mortality was not significant. However, compared with the highest quartile, the patients in the lowest quartile of hospital volume tend to be with poor outcome at 1 year (OR, 1.36; 95% CI, 1.05-1.77; P=0.0221) after adjusting for confounders. The restricted cubic spline analyses suggested a U-shaped relationship between hospital volume and poor outcome.

Conclusions We found no significant associations between hospital volume, the process of care at the hospital, and 1-year mortality in patients with ischemic stroke. However, hospital volume may be associated with poor outcome at 1 year.

Strengths and limitations of this study

The number of participants with ischemic stroke was large and 133 hospitals across China were included.

This is the first time the association between stroke volume, process of care and poor outcome was explored in China.

Some process of care, especially the process of care after discharge, cannot be obtained in this study.

The hospitals participated were volunteers and unavoidable selection bias may exist.

BMJ Open

Introduction

Previous studies have shown that the number of patients treated in a hospital (hospital volume) may be associated with outcomes in specific surgical procedures involving aortic valve replacement, carotid endarterectomy, coronary artery bypass surgery, and cancer-related surgeries.¹⁻⁵ The volume-outcome relationship is also described in some medical conditions, including heart failure, acute myocardial infarction, pneumonia, and brain injury.⁶⁻⁸ The magnitude of the association was varied significantly in studies.⁹ If there were inverse relation between hospital volume and outcomes, it was of significance to make volume-based referral strategies.¹⁰ Several studies have examined the association between hospital stroke volume and mortality for stroke patients. However, the results were controversial. Some^{11, 12} found that stroke patients in high-volume hospitals had decreased case fatality, but some^{13, 14} were not. What's more, most of the studies evaluated the short-term mortality, and limited data exist to characterize the associations between hospital volume and long-term mortality and poor outcome.

We hypothesize that the hospitals with higher volume may character with high quality of care, which in turn improved the prognosis of patients with stroke. In this study, we aimed to examine the association between hospital stroke volume and outcomes, including mortality and poor outcome at 1 year after stroke onset. We also examined the association between hospital stroke volume and the process of care for ischemic stroke.

Methods

Ethics approval

This study was approved by the Ethics Committee of Beijing Tiantan Hospital (No. ky2012-005-01). The rewritten informed consent was obtained from the patients or their relatives.

Study Design and Setting

 This retrospective analysis used data from the China National Stroke Registry II (CNSR II), which was a national multicenter hospital-based cohort study. CNSR II was launched in June 2012 in China and the primary objectives were to evaluate the delivery of stroke care and identify suboptimal performance metrics to be improved.¹⁵ The hospitals were selected based on similar criteria in CNSR I launched in 2007, which had been published elsewhere.¹⁶ After assessing the hospital characteristics, such as location, teaching status, number of beds, and annual stroke discharges by the steering committee, a total of 219 hospitals were included in 2.02 CNSR II.¹⁷

Study Population

The patients were consecutively recruited from June 2012 to January 2013. The inclusion criteria were as follow (1) age 18 years or above; (2) presented within seven days of the index event of acute ischemic stroke (AIS), transient ischemic attack (TIA), intracerebral hemorrhage, or subarachnoid hemorrhage, confirmed by brain computed tomography or magnetic resonance imaging; (3) direct hospital admission from a physician's clinic or emergency department. A total of 25,018 patients were included in CNSR II, of them 19,604 were AIS.

Considering the representativeness of the included patients, we excluded those hospitals in

BMJ Open

which the number of patients included in the study was less than 10% of annual stroke discharges. We also excluded the patients who were lost to follow-up at 1 year. Finally, 16,651 patients with AIS from 133 hospitals were included to investigate the association between hospital volume, the process of care, and outcomes.

Data Collection

Data were collected following a standardized form by trained research coordinators. The information on demographics, health insurance, education, smoking, drinking, comorbidities (hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke or TIA), and medication history were abstracted from medical records. National Institutes of Health Stroke Scale (NIHSS) at admission and modified Rankin Scale (mRS) prior to the index event were assessed through a face-to-face interview.

Hospital stroke volume was defined as the annual number of stroke discharges. The annual stroke discharges of each hospital were obtained via the hospital survey when they applied to participate in this study. Additionally, the hospital characteristics including location, academic status, and the number of beds were obtained by the survey.

Process Measures

We selected nine guideline-recommended process measures according to the national guideline and the Get With The Guidelines-Stroke (GWTG-Stroke).¹⁸ There were three acute phage process measures, including (1) antithrombotics within 2 days after admission, (2) deep vein thrombosis (DVT) prophylaxis, and (3) dysphagia screening. There were six

process measures at discharge, including (1) antithrombotic medication, (2) antihypertensive medication for patients with hypertension, (3) hypoglycemic medication for patients with diabetes, (4) anticoagulation for atrial fibrillation, (5) lowering low-density lipoprotein cholesterol (LDL-C) medication, and (6) smoking cessation. The definitions of the process measures were shown in Supplemental Table 1. Additionally, we calculated a binary defect-free measure of care, which was defined as the patient receiving all the processes for which they were eligible.^{19, 20} Process measures are applied only to eligible patients in the absence of documented contraindications or any other rationale as to why therapy was not provided.²¹

Clinical Outcomes

According to the study protocol, all patients were followed up at 3, 6, and 12 months by telephone or face-to-face interview. Trained research coordinators collected the clinical outcomes. In this study, the primary outcomes were all-cause mortality and poor outcome at 1 year. The poor outcome was defined as mRS of 3 to 6.

Statistical Analysis

The patients were categorized into four groups according to the quartiles of hospital volume: Q1 (<264 /year), Q2 (264-370 /year), Q3 (371-508 /year), Q4 (>508 /year). Continuous variables were described as mean ± standard deviation (SD) or median and interquartile range. Categorical variables were described as proportions. The patient characteristics were compared using ANOVA, Kruskal-Wallis test, or chi-square test. Additionally, in order to obtain the P for trend, we used Cochran-Mantel-Haenszel non-zero correlation tests for

BMJ Open

continuous variables and Cochran-Mantel-Haenszel row mean scores for categorical variables.

The generalized estimating equations with exchangeable working correlation matrix were used to evaluate the association between hospital volume, the process of care, and poor outcome adjusting for the cluster effect within the hospital. In the adjusted models, age, sex, health insurance (urban resident basic medical insurance, new rural cooperative medical scheme, commercial insurance, self-payment), education (elementary or below, middle school, high school or above), previous or current smoking, drinking, comorbidities (hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke), NIHSS at admission, and hospital characteristics (academic status and location) were included. Additionally, the composite measure of care was included in the adjusted model when estimating the association between hospital volume and outcomes. We used the Kaplan-Meier method to depict the cumulative hazards of all-cause mortality. Cox proportional hazards model was used to estimate the association between hospital volume and mortality. In order to adjust for the intra-hospital correlation, the hospitals were added as clusters in the model and the robust sandwich variance estimator was used to deal with the correlation. ORs or HRs and corresponding 95% confidence intervals (CIs) were used with the hospital volume of Q4 as reference. Additionally, we used restricted cubic splines with five knots at the 5th, 35th, 50th, and 95th centiles to model the association between hospital volume and mortality and poor outcome. We tested for non-linearity by using the Wald statistics.

All analyses were performed by SAS version 9.4 (SAS Institute) and R version 3.5.1. All P values were two-tailed with a significant level of 0.05.

Patient and public involvement

Patients and the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Results

A total of 16,651 patients with AIS from 133 hospitals across China were included in this study. Patients included in the study and those excluded were largely comparable (Supplemental Table 2). Table 1 described the baseline characteristics of the included hospitals and patients.

Of the 133 included hospitals, 73 (54.9%) were teaching hospitals, and the high-volume hospitals were likely to be teaching hospitals. There were 76 hospitals in the east of China, 35 in the middle of China, and 22 in the west of China. The average hospital volume was 441 per year, ranging from 136 to 1334 per year.

The mean age was 65.0±12.0 and 62.9% of the patients were males. The median NIHSS at admission was 4 (2-7) and the median days of hospitalization were 13 (9-16). Compared with the high-volume hospitals, there were more females and the patients were older in low-volume hospitals. The patients in high-volume hospitals were more likely to be with diabetes and hyperlipidemia, but less likely to be with atrial fibrillation. The proportions of taking antiplatelet and lipid-lowing medicine were higher in high-volume hospitals than that in low-volume hospitals.

Association between Hospital Volume and Process Measures

BMJ Open

Compared with the hospitals of Q4, the unadjusted OR of defect-free measure of care was 0.83 (95% CI, 0.54-1.27) for Q1, 0.97 (95% CI, 0.65-1.46) for Q2, and 1.00 (95% CI, 0.66-1.52) for Q3. No significant difference was found in individual process measures, except the anticoagulation for AF for Q1 (OR, 0.53; 95% CI, 0.29-0.98; P=0.044) (Supplemental Table 3).

Table 2 shows the adjusted ORs for process measures. After adjusting for the patients and hospital characteristics, the adjusted OR of defect-free measure of care was 0.71 (95% CI, 0.41-1.23) for Q1, 0.99 (95% CI, 0.60-1.64) for Q2, and 0.81 (95% CI, 0.48-1.38) for Q3. All the individual performance measures show no significant association (all P >0.05).

Association between Hospital Volume and Clinical Outcomes

There were 1397 patients who died and 3434 patients experienced the poor outcome at 1 year after stroke onset. The Kaplan-Meier plot for mortality at 1 year was shown in Figure 1. The unadjusted Cox proportional hazard models showed HR of mortality was 1.08 (95%CI, 1.08-1.79) for Q1, 0.99 (95%CI, 0.77-1.27) for Q2, and 1.16 (95%CI, 0.93-1.44) for Q3, with Q4 as reference. However, after adjusting for patient, hospital characteristics, and process of care, no significant associations were observed (HR, 1.24; 95% CI, 0.94-1.63 for Q1; HR, 0.94; 95% CI, 0.73-1.21 for Q2; HR, 1.06; 95% CI, 0.86-1.31 for Q3).

Figure 2 displayed the rates of poor outcome at 1 year by quartiles of hospital volume. Compared with Q4, the rate of poor outcome was significantly higher in Q1 hospitals, but not in Q2 and Q3 hospitals (unadjusted OR, 1.40; 95%CI, 1.16-1.70 for Q1; unadjusted OR, 0.98; 95%CI 0.80-1.20 for Q2; unadjusted OR, 1.06, 95%CI, 0.90-1.25 for Q3). When adjusted for the covariates, the rate of poor outcome was still higher in Q1 hospitals compared with Q4 hospitals (adjusted OR, 1.36; 95%CI, 1.05-1.77), but not in Q2 and Q3 (Table 3).

In Figure 3, we used restricted cubic splines to flexible model and visualize the relation of all-cause mortality and poor outcome with hospital stroke volume. The multivariable-adjusted restricted cubic splines suggested a "J-shaped" association between volume and all-cause mortality and a "U-shaped" association between volume and poor outcome. The analyses indicated a significant nonlinear association between volume and poor outcome (P for non-linear <0.001), but not all-cause mortality (P for non-linear = 0.472).

Discussion

Our analysis of a large population of 16,651 patients with ischemic stroke suggested that no significant difference in the process of care was observed for patients in lower-volume hospitals in comparison with higher-volume hospitals. There was no association between hospital volume and mortality at 1 year after stroke onset. In contrast, we found the patients in the lowest volume quartile had a significantly higher rate of poor outcome at 1 year compared with the highest quartile.

Previous studies found that high volume was associated with improved outcomes suggesting that volume may be a surrogate for quality of care. The quality of care can be assessed from outcome, process, and structure.²² Usually, hospital volume is used as a structure metric of quality of care. However, the underlying mechanisms of interplay between structure and process are complex.²³ Two existing studies^{13, 23} showed that the patients in

Page 13 of 33

BMJ Open

high-volume hospitals received more process of care compared with patients in low-volume hospitals. Potential mechanisms were proposed to explain this association, including more experience ("practice makes perfect") and availability for advanced techniques and devices in high-volume hospitals.^{7, 23} In contrast, we did not find the association between hospital stroke volume and process measures in the current study. This was similar to a study from GWTG-Stroke. This study from 790 US hospitals including 322,847 patients with ischemic stroke or transient ischemic attack observed no differences in performance measures between highvolume hospitals and low-volume hospitals after adjusting for patient baseline characteristics.¹⁸ In the past years, many initiatives for improving the quality of care have been implemented to homogenize the quality of care in hospitals, such as GWTG-Stroke, Australian Stroke Clinical Registry, and CNSR,²⁴ which may attenuate the difference of quality of care between high-volume and low-volume hospitals.

During the past decades, a great number of studies evaluated the volume-outcome association, and many, but not all, found the reverse relationship between volume and outcome.⁹ There were several studies revealed that stroke patients in high-volume hospitals may experience lower mortality than the patients in low-volume hospitals.^{11, 12, 25, 26} However, we found no benefit in mortality for patients in high-volume hospitals. Several reasons may explain this discrepancy. First, most of the above-mentioned studies used in-hospital mortality or 30-day mortality as the outcome, however, 1-year mortality was used in our study. What's more, stroke severity is an important factor affecting the patient's prognosis. Whether stroke severity was adjusted may contribute to the results.¹³ Lacking data on stroke severity, most of the studies used comorbidity or comorbidity index score to adjust the case-

mix.^{11, 12, 25, 26} In this study we used the NIHSS score at admission to adjust the stroke severity. Our finding is compatible with a Danish nationwide cohort study of 63,995 patients admitted to stroke units.²³ This study found no association between volume and 30-day mortality and 1-year mortality after adjusting for patient baseline characteristics, stroke unit, university status, and quality of care. Mortality may be insensitive to detecting underlying changes in patient prognosis.²³

Besides mortality, we also examined the association between hospital volume and poor outcome. To our knowledge, it was the first time to evaluate the association between volume and poor outcome at 1 year in patients with acute ischemic stroke. Compared with the highest quartile of hospitals, patients in the lowest quartile of hospitals had a higher rate of poor outcome after adjusting for potential confounders. The poor outcome may be more sensitive to detect the changes in patient prognosis. The underlying mechanisms of volume on poor outcome are not known. Though there was no significant difference in the process of care during acute phage and at discharge between low- and high-volume hospitals, the differences in some other processes of care after discharge may explain this association. Patients in highvolume hospitals may receive more processes after discharge, for example, limb rehabilitation, which can improve the poor outcome. The association between volume and the poor outcome may be mediated by medical care after discharge. However, we could not identify the medical care after discharge in the current study. In the future, the association between volume, the process of care after discharge, and long-term outcomes are needed for further exploration. Though the significant association, we did not think it is reasonable to regionalize stroke care. Because the transferring may lead to a delay in admission which may

BMJ Open

offset some benefits of being admitted to large-volume hospitals.¹¹

Several limitations in this study should be acknowledged. First, the hospitals that participated in the CNSR were volunteers. There may exist unavoidable selection bias. And the hospitals enrolled may not fully represent the general hospitals in China. Second, though nine processes of care were evaluated, some other processes of care, for example, endovascular therapy, and the care patients received after discharge could not be assessed. The differences in unassessed process measures may explain the association between volume and poor outcome. Third, there is a cluster effect within hospitals and physicians. Tough, we take into consideration of the cluster effect within hospitals by using the generalized estimating equations, we cannot adjust the cluster effect within physicians. Forth, because of the differences in patients, hospital characteristics, and performance of care across varied regions and countries, our results may not generalize to other countries. Further studies on volume and clinical outcome, especially the poor outcome, are needed to confirm our results.

Conclusions

Using the large national stroke registry, we found no association between hospital stroke volume, the process of care, and 1-year mortality. However, the patients in the lowest quartile of hospitals had increased rates of poor outcome compared with the patients in the highest quartile of hospitals. Further work needs to be done to examine whether the medical care after discharge mediates the association between stroke volume and poor outcome. Better understanding the association between structure, process, and outcome can help to identify

the best way to improve stroke prognosis.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Sources of Funding: This study was supported by the Ministry of Science and Technology of the People's Republic of China (2017YFC1307702, 2018YFC1312903), Capital's Funds for Health Improvement and Research (2020-1-2041), National Natural Science Foundation of China (81870905), Beijing Municipal Science & Technology Commission review o (D171100003017002).

Disclosures: None.

Author contributions

Conception and design: RH Zhang, MG Zhou, YJ Wang; Provision of study materials or patients: YJ Wang; Collection and assembly of data: YJ Wang; Data analysis and interpretation: RH Zhang, GF Liu, YS Pan; Manuscript preparation, editing, and review: All authors. MG Zhou and YJ Wang take responsibility for the integrity of the work.

References

1.	Khera S, Kolte D, Gupta T, et al. Association Between Hospital Volume and 30-Day
	Readmissions Following Transcatheter Aortic Valve Replacement. JAMA Cardiol. 2017;2:732-
	741
2.	Wennberg DE, Lucas FL, Birkmeyer JD, et al. Variation in carotid endarterectomy mortality in
	the Medicare population: trial hospitals, volume, and patient characteristics. JAMA.
	1998;279:1278-1281
3.	Hata T, Motoi F, Ishida M, et al. Effect of Hospital Volume on Surgical Outcomes After
	Pancreaticoduodenectomy: A Systematic Review and Meta-analysis. Ann Surg. 2016;263:664-
	672
4.	Gilligan MA, Neuner J, Zhang X, et al. Relationship between number of breast cancer
	operations performed and 5-year survival after treatment for early-stage breast cancer. Am J
	Public Health. 2007;97:539-544
5.	Nishigori T, Miyata H, Okabe H, et al. Impact of hospital volume on risk-adjusted mortality
	following oesophagectomy in Japan. Br J Surg. 2016;103:1880-1886
6.	Ross JS, Normand SL, Wang Y, et al. Hospital volume and 30-day mortality for three common
	medical conditions. N Engl J Med. 2010;362:1110-1118
7.	Kumbhani DJ, Fonarow GC, Heidenreich PA, et al. Association Between Hospital Volume,
	Processes of Care, and Outcomes in Patients Admitted With Heart Failure: Insights From Get
	With The Guidelines-Heart Failure. <i>Circulation</i> . 2018;137:1661-1670
8.	Wada T, Yasunaga H, Doi K, et al. Relationship between hospital volume and outcomes in
	patients with traumatic brain injury: A retrospective observational study using a national
	inpatient database in Japan. <i>Injury</i> . 2017;48:1423-1431
	16

9.	Halm EA, Lee C, Chassin MR. Is volume related to outcome in health care? A systematic review
	and methodologic critique of the literature. Ann Intern Med. 2002;137:511-520
10.	Ogbu UC, Slobbe LC, Arah OA, et al. Hospital stroke volume and case-fatality revisited. Med
	<i>Care</i> . 2010;48:149-156
11.	Hall RE, Fang J, Hodwitz K, et al. Does the Volume of Ischemic Stroke Admissions Relate to
	Clinical Outcomes in the Ontario Stroke System? Circ Cardiovasc Qual Outcomes.
	2015;8:S141-147
12.	Saposnik G, Baibergenova A, O'Donnell M, et al. Hospital volume and stroke outcome: does it
	matter? <i>Neurology</i> . 2007;69:1142-1151
13.	Lee KJ, Kim JY, Kang J, et al. Hospital Volume and Mortality in Acute Ischemic Stroke Patients:
	Effect of Adjustment for Stroke Severity. J Stroke Cerebrovasc Dis. 2020;29:104753
14.	Wada T, Yasunaga H, Inokuchi R, et al. Relationship between hospital volume and early
	outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen
	activator. Int J Stroke. 2015;10:73-78
15.	Li Z, Wang C, Zhao X, et al. Substantial Progress Yet Significant Opportunity for Improvement
	in Stroke Care in China. <i>Stroke</i> . 2016;47:2843-2849
16.	Wang Y, Cui L, Ji X, et al. The China National Stroke Registry for patients with acute
	cerebrovascular events: design, rationale, and baseline patient characteristics. Int J Stroke.
	2011;6:355-361
17.	Bettger JP, Li Z, Xian Y, et al. Assessment and provision of rehabilitation among patients
	hospitalized with acute ischemic stroke in China: Findings from the China National Stroke
	Registry II. Int J Stroke. 2017;12:254-263

Page 19 of 33

 BMJ Open

18	8.	Schwamm LH, Fonarow GC, Reeves MJ, et al. Get With the Guidelines-Stroke is associated
		with sustained improvement in care for patients hospitalized with acute stroke or transient
		ischemic attack. <i>Circulation</i> . 2009;119:107-115
19	9.	Cumbler E, Wald H, Bhatt DL, et al. Quality of care and outcomes for in-hospital ischemic stroke:
		findings from the National Get With The Guidelines-Stroke. Stroke. 2014;45:231-238
20	0.	Man S, Cox M, Patel P, et al. Differences in Acute Ischemic Stroke Quality of Care and
		Outcomes by Primary Stroke Center Certification Organization. Stroke. 2017;48:412-419
21	1.	Wang YJ, Li ZX, Gu HQ, et al. China Stroke Statistics 2019: A Report From the National Center
		for Healthcare Quality Management in Neurological Diseases, China National Clinical
		Research Center for Neurological Diseases, the Chinese Stroke Association, National Center
		for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for
		Disease Control and Prevention and Institute for Global Neuroscience and Stroke
		Collaborations. Stroke Vasc Neurol. 2020;5:211-239
22	2.	Donabedian A. Evaluating the quality of medical care. Milbank Q. 2005;83:691-729
23	3.	Svendsen ML, Ehlers LH, Ingeman A, et al. Higher stroke unit volume associated with improved
		quality of early stroke care and reduced length of stay. Stroke. 2012;43:3041-3045
24	4.	Cadilhac DA, Kim J, Lannin NA, et al. National stroke registries for monitoring and improving
		the quality of hospital care: A systematic review. Int J Stroke. 2016;11:28-40
25	5.	Saposnik G, Jeerakathil T, Selchen D, et al. Socioeconomic status, hospital volume, and stroke
		fatality in Canada. <i>Stroke</i> . 2008;39:3360-3366
26	6.	Tsugawa Y, Kumamaru H, Yasunaga H, et al. The association of hospital volume with mortality
		and costs of care for stroke in Japan. <i>Med Care</i> . 2013;51:782-788

		E	3MJ Open		6/bmjopen-2021-060015		
le 1. Hospital and patient cha	aracteristics by quart	iles of hospital	volume		021-060015		
	Total	Q1 hospitals	Q2 hospitals	Q3 hospitals	Q4 hospitals		
Characteristic		<264/year	264-370/year	371-508/year	>50 g/year	Р	P for tren
	(n=16651)	(n=2800)	(n=3428)	(n=4188)	(n=6235)		
Hospital characteristics					nloade		
Number of hospitals	133	35	31	33	oaded from		
Teaching hospital	73 (54.9%)	13 (37.1%)	16 (51.6%)	20 (60.6%)	24 (76)	0.0383	0.0039
Geographic region					bmjope		
East	76 (57.1%)	18 (51.4%)	23 (74.2%)	16 (48.5%)	19 (559%)	0.3971	<.0001
Middle	35 (26.3%)	10 (28.6%)	4 (12.9%)	12 (36.4%)	9 (26.5%)		
West	22 (16.5%)	7 (20%)	4 (12.9%)	5 (15.2%)	6 (17. <u>§</u> %)		
Patient characteristics					17, 2024		
Male	10467 (62.9%)	1749 (62.5%)	2114 (61.7%)	2589 (61.8%)	4015 64.4%)	0.0147	0.0214
Age	65.0±12.0	65.9±12.0	65.3±12.1	65.0±12.1	64.4± <u>1</u> 1.81	<.0001	<.0001
Health insurance					rotected k		
			19		64.4±11.81		

		E	BMJ Open		6/bmjopen-2021		
					en-2021		
URBMI	8312 (49.9%)	1273 (45.5%)	1779 (51.9%)	1985 (47.4%)	3275 8 2.5%)	<.0001	<.000
NRCMS	6850 (41.1%)	1283 (45.8%)	1391 (40.6%)	1830 (43.7%)	2346 87.6%)		
Commercial insurance	62 (0.4%)	3 (0.1%)	16 (0.5%)	18 (0.4%)	25 (0.5%)		
Self-payment	1427 (8.6%)	241 (8.6%)	242 (7.1%)	355 (8.5%)	589 (9.4%)		
Education					Download		
Elementary or below	7755 (46.6%)	1541 (55.0%)	1608 (46.9%)	1842 (44.0%)	2764 4.3%)	<.0001	<.000
Middle school	3859 (23.2%)	547 (19.5%)	722 (21.1%)	1029 (24.6%)	1561 2 5.0%)		
High School or above	5037 (30.3%)	712 (25.4%)	1098 (32.0%)	1317 (31.4%)	1910 80.6%)		
Previous or current smoking	9315 (55.9%)	1595 (57%)	1873 (54.6%)	2478/ (59.2%)	3369 (54%)	<.0001	0.0636
Drinking	5010 (30.1%)	688 (24.6%)	1088 (31.7%)	1162 (27.7%)	2072 83.2%)	<.0001	0.000
Medical history					on April		
Hypertension	10775 (64.7%)	1779 (63.5%)	2244 (65.5%)	2658 (63.5%)	$4094 (\vec{6}5.7\%)$	0.0494	0.1454
Diabetes	3405 (20.4%)	524 (18.7%)	702 (20.5%)	850 (20.3%)	1329 (21.3%)	0.0437	0.009
Hyperlipidemia	1944 (11.7%)	283 (10.1%)	558 (16.3%)	481 (11.5%)	622 (<u>1</u> 0.0%)	<.0001	0.000
Atrial fibrillation	1139 (6.8%)	202 (7.2%)	267 (7.8%)	314 (7.5%)	356 (57%)	0.0001	0.0006
			20		ed by copyright.		

		BMJ Open							
Stroke or TIA	5556 (33.4%)	842 (30.1%)	1231 (35.9%)	1384 (33.0%)	2099 83.7%)	<.0001	0.0851		
Medication history					15 on 9				
Antiplatelet	3156 (19%)	480 (17.1%)	706 (20.6%)	721 (17.2%)	1249 (20.0%)	<.0001	0.0447		
Anticoagulation	168 (1.0%)	29 (1.0%)	45 (1.3%)	42 (1.0%)	52 (0.8%)	0.1647	0.1098		
Antihypertension	7382 (44.3%)	1145 (40.9%)	1712 (49.9%)	1869 (44.6%)	2656 842.6%)	<.0001	0.1288		
Lipid-lowering medicine	1141 (6.9%)	153 (5.5%)	351 (10.2%)	292 (7.0%)	345 (555%)	<.0001	0.0008		
Antidiabetics	2590 (15.6%)	387 (13.8%)	564 (16.5%)	661 (15.8%)	978 (\$.7%)	0.0327	0.1504		
NIHSS at admission	4(2-7)	4(2-7)	4(2-6)	4(2-8)	4(2-7)	<.0001	0.0055		
Days of hospitalization	13 (9-16)	13 (9-16)	13 (10-15)	13 (9-16)	13 (10 16)	<.0001	0.0195		
Days of hospitalization RBMI, urban resident basic medi nstitutes of Health Stroke Scale.					, transient ischer				
			21		2024 by guest. Protected by copyright.				

Page	23	of	33
------	----	----	----

36/bmjopen-2021-060015

1 2 3 4 5 6	
7 8	
9	
10 11	
12 13	
14	
15 16	
17 18	
19	
20 21	
22 23	
24	
25 26	
27	
28 29	
30 31	
32	
33 34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45	
46	

29-2.18) 31-1.31) 38-1.65)	P 0.6582 0.2208 0.5348 0.9896	Adjusted OR (95% CI) 1.63 (0.63-4.21) 1.46 (0.63-3.38) 0.77 (0.39-1.52) 1.20 (0.55-2.62)	P 2022. Downladed 0.3156aded 0.37400m 0.45245 0.64076	1.29 (0.52-3.21) 0.94 (0.49-1.79)	P 0.7091 0.5793 0.8421
29-2.18) 31-1.31) 38-1.65)	0.6582 0.2208 0.5348	1.63 (0.63-4.21) 1.46 (0.63-3.38) 0.77 (0.39-1.52)	0.315 ad 0.3740 0 0.452	0.83 (0.31-2.24) 1.29 (0.52-3.21) 0.94 (0.49-1.79)	0.7091
31-1.31) 38-1.65)	0.2208 0.5348	1.46 (0.63-3.38) 0.77 (0.39-1.52)	0.315 bade 0.3740 bade 0.452	1.29 (0.52-3.21) 0.94 (0.49-1.79)	0.5793
38-1.65)	0.5348	0.77 (0.39-1.52)	9.452	0.94 (0.49-1.79)	
			d///b		0.842
19-2.04)	0.9896	1.20 (0.55-2.62)	0 640		
			0.0108	0.68 (0.34-1.36)	0.2782
55-1.12)	0.1787	0.87 (0.61-1.24)	0.4516	0.76 (0.54-1.06)	0.105
,3-1.12)	0.1787	0.87 (0.01-1.24)	0.4316	0.70 (0.34-1.00)	0.105
67-1.60)	0.8799	1 .00(0.65-1.53)	0.996	0.73 (0.48-1.11)	0.139
37-1.19)	0.1731	1.14 (0.69-1.86)	0.60942	0.87 (0.52-1.47)	0.606
54-1.32)	0.4602	0.87 (0.50-1.51)	0.610¥	0.7 (0.42-1.16)	0.165
12-1.55)	0.1985	0.39 (0.10-1.44)	0.1567 4	0.54 (0.15-1.95)	0.346
41-1.23)	0.2212	0.99 (0.60-1.64)	0.978®	0.81 (0.48-1.38)	0.433
	57-1.60) 57-1.19) 54-1.32) 2-1.55) 41-1.23)	67-1.60)0.879967-1.19)0.173164-1.32)0.46022-1.55)0.198541-1.23)0.2212	67-1.60) 0.8799 1.00(0.65-1.53) 67-1.19) 0.1731 1.14 (0.69-1.86) 64-1.32) 0.4602 0.87 (0.50-1.51) 2-1.55) 0.1985 0.39 (0.10-1.44) 41-1.23) 0.2212 0.99 (0.60-1.64)	67-1.60) 0.8799 1.00(0.65-1.53) 0.996 67-1.19) 0.1731 1.14 (0.69-1.86) 0.6094 64-1.32) 0.4602 0.87 (0.50-1.51) 0.6102 2-1.55) 0.1985 0.39 (0.10-1.44) 0.1567 41-1.23) 0.2212 0.99 (0.60-1.64) 0.978 ow-density lipoprotein cholesterol. 80	67-1.60) 0.8799 1.00(0.65-1.53) 0.996 0.73 (0.48-1.11) 67-1.19) 0.1731 1.14 (0.69-1.86) 0.6094 0.87 (0.52-1.47) 64-1.32) 0.4602 0.87 (0.50-1.51) 0.6102 0.7 (0.42-1.16) 2-1.55) 0.1985 0.39 (0.10-1.44) 0.1567 0.54 (0.15-1.95) 41-1.23) 0.2212 0.99 (0.60-1.64) 0.9786 0.81 (0.48-1.38)

86/bmjopen

pril 17, 2024 by guest. Protected by copyright

Fable 3. The association b	etween hosnit	al volume and clini	cal outcom	1es		1-2021-06001	
		Q1 VS Q4		Q2 VS Q4		ថា 9 Q3 VS Q4	
Outcome		HR/OR (95% CI)	Р	HR/OR (95% CI)	Р	HR/@R (95% CI)	Р
Mortality	Unadjusted	1.39 (1.08-1.79)	0.0109	0.99 (0.77-1.27)	0.9045	1.16(0.93-1.44)	0.1810
	Adjusted	1.18 (0.88-1.58)	0.2703	0.96 (0.75-1.22)	0.7281	1.04 0.84-1.27)	0.7479
Poor functional outcome	Unadjusted	1.40 (1.16-1.70)	0.0006	0.98 (0.80-1.20)	0.8517	1.06 (0.90-1.25)	0.5123
	Adjusted	1.36 (1.05-1.77)	0.0221	1.01 (0.76-1.34)	0.9588	0.98 0.71-1.33)	0.8744

The adjusted covariates included age, sex, health insurance (urban resident basic medical insurance, new rura cooperative medical scheme,

commercial insurance, self-payment), education (elementary or below, middle school, high school or above), previous or current smoking,

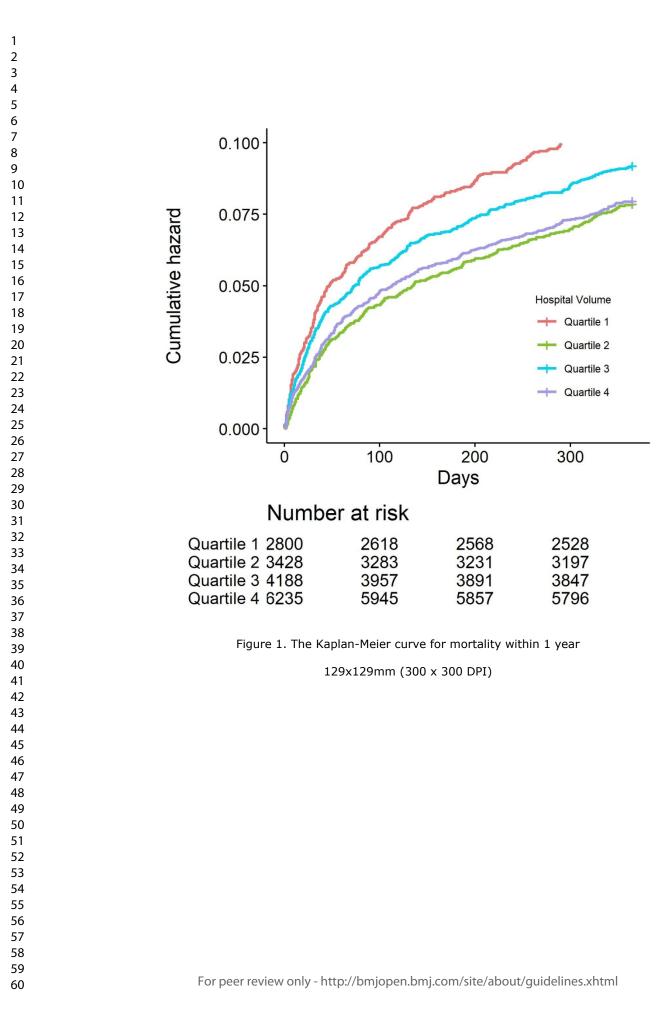
drinking, comorbidities (hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke), NIHSS at admission, hospital

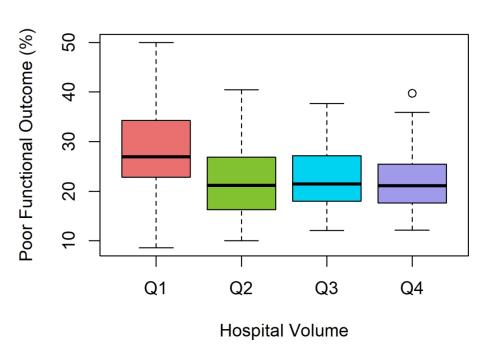
characteristics (academic status and location), and the composite measure of care.

Figure legends

Figure 1. The Kaplan-Meier curve for mortality within 1 year

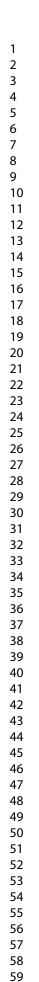
Figure 2. The rates of poor outcome at 1 year by quartiles of hospital volume


Figure 3. Association between hospital stroke volume and clinical outcomes. A, Hospital


volume and all-cause mortality at 1 year. B, Hospital volume and poor outcome at 1 year.

The reference point is the median value of hospital volume (416 annual stroke discharges) in

ior oper terien ont


all patients.

BMJ Open: first published as 10.1136/bmjopen-2021-060015 on 9 June 2022. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

60

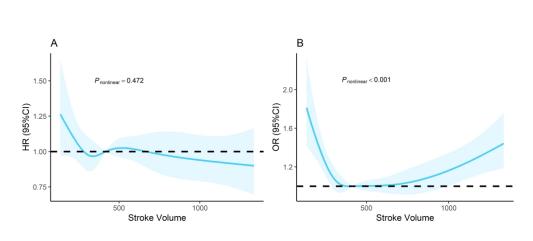


Figure 3. Association between hospital stroke volume and clinical outcomes. A, Hospital volume and allcause mortality at 1 year. B, Hospital volume and poor outcome at 1 year. The reference point is the median value of hospital volume (416 annual stroke discharges) in all patients.

220x84mm (300 x 300 DPI)

Supplementary Material

to occurrence on the second

	Definition*			
Acute phage process measur	es			
Early antithrombotics	Antithrombotic treatment within 2 days after admission, including antiplatelet or anticoagulant medications.			
DVT prophylaxis	Patients who cannot walk received DVT prophylaxis within 2 days after admission, including pneumatic compression, heparin sodium, warfarin sodium or new ora anticoagulants.			
Dysphagia screening	Dysphagia screening before oral intake			
Process measures at dischar	ge			
Antithrombotic medication	Antithrombotic medication prescribed at discharge.			
Antihypertensive medication	Antihypertensive medication prescribed at discharge for			
for hypertension	patients with hypertension.			
Hypoglycemic medication for diabetes	Hypoglycemic medication prescribed at discharge for patients with diabetes.			
Anticoagulation for AF	Anticoagulation medication prescribed at discharge for patients with atrial fibrillation.			
Lowering LDL-C medication	Statin prescribed at discharge if LDL-C ≥100 mg/dL or patient treated with lipid-lowering agent prior to admission, or LDL-C not documented.			
Smoking cessation	Smoking cessation intervention before discharge for current smokers.			
Stroke education	Stroke education provided to patient and/or caregiver, including all five components: modifiable risk factors, stroke warning sign and symptoms, how to activate emergency medical services, need for follow- up and medications prescribed.			

Table 1. The definition of process measures

AF, atrial fibrillation; LDL-C, low-density lipoprotein cholesterol.

*Performance and quality measures are applied only to eligible patients in the absence of documented contraindications or any other rationale as to why therapy was not provided.

Characteristic	Total	Included	Excluded	Р	
	(n=19604)	(n=16651)	(n=2953)		
Patient characteristics	10407 (60 40/)	10467 (62.00/)		0.000	
Male	12437 (63.4%)	10467 (62.9%)	1970 (66.7%)	0.000	
Age	64.84±11.98	64.96±11.98	64.13±11.98	0.000	
Health insurance	10021 (51 10/)	0212 (40.00/)	1700 (57.00/)	< 0.00	
URBMI	10021 (51.1%)	8312 (49.9%)	1709 (57.9%)	<.000	
NRCMS	7747 (39.5%)	6850 (41.1%)	897 (30.4%)		
Commercial insurance	69 (0.4%)	62 (0.4%)	7 (0.2%)		
Self-payment	1767 (9%)	1427 (8.6%)	340 (11.5%)		
Education					
Elementary or below	8882 (45.3%)	7755 (46.6%)	1127 (38.2%)	<.000	
Middle school	4562 (23.3%)	3859 (23.2%)	703 (23.8%)		
High School or above	6160 (31.4%)	5037 (30.3%)	1123 (38.0%)		
Previous or current	8672 (44.2%)	7336 (44.1%)	1336 (45.2%)	0.232	
smoking		× ,	· · · ·		
Drinking	5859 (29.9%)	5010 (30.1%)	849 (28.8%)	0.143	
Medical history					
Hypertension	12697 (64.8%)	10775 (64.7%)	1922 (65.1%)	0.693	
Diabetes	4060 (20.7%)	3405 (20.4%)	655 (22.2%)	0.032	
Hyperlipidemia	2370 (12.1%)	1944 (11.7%)	426 (14.4%)	<.000	
Atrial fibrillation	1382 (7%)	1139 (6.8%)	243 (8.2%)	0.006	
Stroke or TIA	6640 (33.9%)	5556 (33.4%)	1084 (36.7%)	0.000	
Medication history					
Antiplatelet	3869 (19.7%)	3156 (19.0%)	713 (24.1%)	<.000	
Anticoagulation	208 (1.1%)	168 (1.0%)	40 (1.4%)	0.091	
Antihypertension	8775 (44.8%)	7382 (44.3%)	1393 (47.2%)	0.004	
Lipid-lowering	1251 (6.00/)	11/1 (6 00/)	210(7,10/)	0 600	
medicine	1351 (6.9%)	1141 (6.9%)	210 (7.1%)	0.608	
Antidiabetics	3115 (15.9%)	2590 (15.6%)	525 (17.8%)	0.002	
NIHSS at admission	4(2-7)	4(2-7)	4(2-7)	0.000	
Days of hospitalization	13(9-16)	13(9-16)	13(9-15)	0.041	
Hospital characteristics					
Number of hospitals	217	133	84	-	
Teaching hospital	125 (57.6%)	73 (54.9%)	52 (61.9%)	0.308	
Geographic region	× /		` '		
East	121 (55.8%)	76 (57.1%)	45 (53.6%)	0.145	
Middle	66 (30.4%)	35 (26.3%)	31 (36.9%)	-	
West	30 (13.8%)	22 (16.5%)	8 (9.5%)		

Table 2. Baseline characteristics between included and excluded patients

scheme.

5	Table 3. The associa	ation between	hospital v	olume and	performance	measures fr	om unadjuste	ed models.
			1		1		5	

		BMJ Op		6/bmjopen-2021-060015 c 		
Cable 3. The association between hospital	Q1 VS Q4	ice measur	Q2 VS Q4	IS. 01 5 9	Q3 VS Q4	
Performance measures	Unadjusted OR (95% CI)	Р	Unadjusted OR (95% CI)	P 20	Unadjusted OR (95% CI)	Р
Early antithrombotic	0.97 (0.36-2.61)	0.9442	1.00 (0.36-2.77)	0.9924 ^N	1.03 (0.36-2.99)	0.9529
Dysphagia screening	0.60 (0.25-1.43)	0.2480	0.93 (0.36-2.37)	0.8785裦		0.8467
DVT prophylaxis	0.90 (0.46-1.75)	0.7566	0.87 (0.43-1.76)	0.69695	1.06 (0.54-2.07)	0.8645
Antithrombotic medication	1.13 (0.59-2.18)	0.7162	1.43 (0.75-2.71)	0.2759 ⁸	1.08 (0.54-2.17)	0.8194
Antihypertensive medication for hypertension	0.79 (0.55-1.14)	0.2092	0.86 (0.60-1.22)	0.3893	0.78 (0.55-1.1)	0.1547
Hypoglycemic medication for diabetes	0.94 (0.61-1.45)	0.7859	0.89 (0.58-1.37)	0.6089	0.75 (0.49-1.14)	0.1818
Anticoagulation for AF	0.53 (0.29-0.98)	0.0440	0.81 (0.48-1.37)	0.4280	0.83 (0.47-1.47)	0.522
Lowering LDL-C medication	0.97 (0.62-1.51)	0.8836	0.97 (0.61-1.55)	0.8893	0.87 (0.56-1.34)	0.522
Smoking cessation	0.95 (0.50-1.82)	0.8718	0.93 (0.48-1.78)	0.8174 <mark>5</mark>	0.84 (0.41-1.71)	0.6294
Defect-free measure of care	0.83 (0.54-1.27)	0.3811	0.97 (0.65-1.46)	0.9006ヺ	1.00 (0.66-1.52)	0.9838

DVT, deep vein thrombosis; AF, atrial fibrillation; LDL-C, low-density lipoprotein cholesterol.

) 0.3811 0.97 (0.65-1.46) 0.9006 ensity lipoprotein cholesterol.

Page 33 of 33

		spen	
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>conort studies</i>	
Section/Topic	Item #	Recommendation 09	Reported on page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		$\overline{\mathfrak{o}}$ (b) Provide in the abstract an informative and balanced summary of what was done and what was figund	2
Introduction		22.	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5,7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-7
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measuren entry). Describe	7
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grougings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) If applicable, explain how loss to follow-up was addressed	6
		(e) Describe any sensitivity analyses Operative	NA

		BMJ Open (50) popen	Page
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine⊈for eligibility, confirmed	9
	10	eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9
		(b) Indicate number of participants with missing data for each variable of interest	NA
		c) Summarise follow-up time (eg, average and total amount)	10
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision $\frac{1}{2}$ eg, 95% confidence	9-10
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	18
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time eriod	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations		mi.c	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in case-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bless of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine $\frac{2}{3}$ rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org. copyright.

BMJ Open

Association Between Hospital Volume, Process of Care, and Outcomes after Acute Ischemic Stroke: A Prospective Observational Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-060015.R1
Article Type:	Original research
Date Submitted by the Author:	21-Feb-2022
Complete List of Authors:	Zhang, Runhua; National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing Tiantan Hospital, Capital Medical University, Beijing, Neurology Liu, Gaifen ; Beijing Tiantan Hospital affiliated Capital Medical University, China PAN, YUESONG; Beijing Tiantan Hospital, Capital Medical University, Department of Neurology Zhou, Maigeng; Chinese Center for Disease Control and Prevention Wang, Yongjun; Capital Medical University; China National Clinical Research Center for Neurological Diseases
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Neurology
Keywords:	Stroke < NEUROLOGY, Neurology < INTERNAL MEDICINE, Adult neurology < NEUROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Association Between Hospital Volume, Process of Care, and Outcomes after Acute **Ischemic Stroke: A Prospective Observational Study** Runhua Zhang¹⁻³, Gaifen Liu²⁻³, Yuesong Pan²⁻³, Maigeng Zhou^{1*}, Yongjun Wang^{2-3*} ¹ National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; ² Beijing Tiantan Hospital, Capital Medical University, Beijing, China; ³ China National Clinical Research Center for Neurological Diseases, Beijing, China. *Correspondence: Maigeng Zhou, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 27 Nanwei Road, Xicheng District, Beijing 100050, China. E-Mail: zhoumaigeng@ncncd.chinacdc.cn Yongjun Wang, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th West Road, Fengtai District, Beijing 10070, China, E-mail: yongjunwang@ncrcnd.org.cn.

Abstract

BMJ Open

2	Objectives Uncertainty remains about hospital volume and clinical outcomes for patients
3	with stroke. The study was aimed to assess the association between hospital volume, process
4	of care, and outcomes after ischemic stroke.
5	Methods The patients with acute ischemic stroke from the Second China National Stroke
6	Registry were included in this study. According to quartiles of the hospital volume, the
7	patients were categorized into four groups. We compared the difference in the process of care
8	across the groups. We used generalized estimating equations to estimate the effect of hospital
9	volume on mortality, poor outcome, recurrent stroke and combined vascular events at 3
10	months and 1 year. Odds ratios and corresponding 95% confidence intervals were used to
11	qualify the association between hospital volume and outcomes with the highest quartile as
12	reference. We also used restricted cubic splines to model the association between hospital
13	volume and clinical outcomes.
14	Results A total of 17,550 ischemic strokes from 217 hospitals across China were included.
15	The were no significant differences in process of care across the four groups. When adjusted
16	for confounders, the effect of hospital volume on mortality, recurrent stroke and combined
17	vascular events was not significant. However, compared with the highest quartile, the patients
18	in the lowest quartile of hospital volume tend to be with poor outcome at 1 year (OR, 1.29,
19	95% CI, 1.01-1.64, P=0.0393). The restricted cubic spline analyses suggested a non-linear
20	relationship between hospital volume and 1-year combined vascular events and 3-month and
21	1-year poor outcome.

22 Conclusions We found no significant associations between hospital volume, the process of

2		
3 4 5	1	care at the hospital, and recurrent stroke and mortality in patients with ischemic stroke.
6 7 8	2	However, hospital volume may be associated with combined vascular events and poor
9 10	3	outcome at 1 year.
11 12 13	4	
14 15	5	Strengths and limitations of this study
16 17 18	6	The number of participants with ischemic stroke was large and 217 hospitals across China
19 20 21	7	were included.
22 23	8	This is the first time the association between stroke volume, process of care and poor
24 25 26	9	outcome was explored in China.
27 28	10	Some process of care, especially the process of care after discharge, cannot be obtained in
29 30 31	11	this study.
30	12	The hospitals that participated were volunteers and unavoidable selection bias may exist.
	13	8

1 Introduction

Previous studies have shown that the number of patients treated in a hospital (hospital volume) may be associated with outcomes in specific surgical procedures involving aortic valve replacement, carotid endarterectomy, coronary artery bypass surgery, and cancer-related surgeries.¹⁻⁵ The volume-outcome relationship is also described in some medical conditions, including heart failure, acute myocardial infarction, pneumonia, and brain injury.⁶⁻⁸ The magnitude of the association was varied significantly in studies.⁹ If there were inverse relation between hospital volume and outcomes, it was of significance to make volume-based referral strategies.¹⁰ Several studies have examined the association between hospital stroke volume and mortality for stroke patients. However, the results were controversial. Some^{11, 12} found that stroke patients in high-volume hospitals had decreased case fatality, but some^{13, 14} were not. Most of the studies evaluated the short-term mortality and the results on long-term outcomes were limited. What's more, the associations between hospital volume and recurrent stroke and poor outcome were not well characterized. We hypothesize that the hospitals with higher volume may character with high quality of care, which in turn improved the prognosis of patients with stroke. In this study, we aimed to examine the association between hospital stroke volume and outcomes, including mortality recurrent stroke, combined vascular events, and poor outcome at 3 months and 1 year after stroke onset. We also examined the association between hospital stroke volume and the process of care for ischemic stroke.

21 Methods

Ethics approval

This study was approved by the Ethics Committee of Beijing Tiantan Hospital (No. ky2012-

005-01). The rewritten informed consent was obtained from the patients or their relatives.

5 Study Design and Setting

This retrospective analysis used data from the Second China National Stroke Registry (CNSR II), which was a national multicenter hospital-based cohort study. CNSR II was launched in June 2012 in China and the primary objectives were to evaluate the delivery of stroke care and identify suboptimal performance metrics to be improved.¹⁵ The hospitals were selected based on similar criteria in CNSR I launched in 2007, which had been published elsewhere.¹⁶ After assessing the hospital characteristics, such as location, teaching status, number of beds, and annual stroke discharges by the steering committee, a total of 219 hospitals were included in CNSR II.¹⁷

15 Study Population

The patients were consecutively recruited from June 2012 to January 2013. The inclusion
criteria were as follow (1) age 18 years or above; (2) presented within seven days of the index
event of acute ischemic stroke (AIS), transient ischemic attack (TIA), intracerebral
hemorrhage, or subarachnoid hemorrhage, confirmed by brain computed tomography or
magnetic resonance imaging; (3) direct hospital admission from a physician's clinic or
emergency department. A total of 25,018 patients were included in CNSR II, of them 19,604
were AIS.

BMJ Open

We excluded the patients missing information on process of care and those lost to followup at 3 months and 1 year. Finally, 17,550 patients with AIS from 217 hospitals were
included to investigate the association between hospital volume, the process of care, and
outcomes.

Data Collection

Data were collected following a standardized form by trained research coordinators. The information on demographics, health insurance, education, smoking, drinking, comorbidities (hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke or TIA), and medication history were abstracted from medical records. National Institutes of Health Stroke Scale (NIHSS) at admission and modified Rankin Scale (mRS) prior to the index event were assessed through a face-to-face interview. Hospital stroke volume was defined as the annual number of stroke discharges. The annual stroke discharges of each hospital were obtained via the hospital survey when they applied to participate in this study. Additionally, the hospital characteristics including location, academic status, the presence of stroke unit and the number of beds were obtained by the

17 survey.

Process Measures

We selected ten guideline-recommended process measures according to the national
guideline and the Get With The Guidelines-Stroke (GWTG-Stroke).¹⁸ There were four acute
phage process measures, including (1) intravenous recombinant tissue plasminogen activator

(rt-PA) in patients who arrive within 2 hours after symptom onset and were treated within 3 hours, (2) antithrombotics within 2 days after admission, (3) deep vein thrombosis (DVT) prophylaxis, and (4) dysphagia screening. There were six process measures at discharge, including (1) antithrombotic medication, (2) antihypertensive medication for patients with hypertension, (3) hypoglycemic medication for patients with diabetes, (4) anticoagulation for atrial fibrillation, (5) lowering low-density lipoprotein cholesterol (LDL-C) medication, and (6) smoking cessation. The definitions of the process measures were shown in Supplemental Table 1. Additionally, we calculated a binary defect-free measure of care, which was defined as the patient receiving all the processes for which they were eligible.^{19, 20} Process measures are applied only to eligible patients in the absence of documented contraindications or any other rationale as to why therapy was not provided.²¹

13 Clinical Outcomes

According to the study protocol, all patients were followed up at 3, 6, and 12 months by telephone or face-to-face interview. Trained research coordinators collected the clinical outcomes. In this study, the outcomes included all-cause mortality, poor outcome, recurrent stroke, and combined vascular events at 3 months and 1 year. The stroke recurrence was defined as a new ischemic stroke or hemorrhagic stroke within 3 months or 1 year after symptom onset. Composite vascular events included myocardial infarction, recurrent stroke, and vascular death. The poor outcome was defined as mRS of 3 to 6.

2.

22 Statistical Analysis

BMJ Open

1	The patients were categorized into four groups according to the quartiles of hospital volume:
2	Q1 (<300 /year), Q2 (300-436 /year), Q3 (437-722 /year), Q4 (>722 /year). Continuous
3	variables were described as mean ± standard deviation (SD) or median and interquartile
4	range. Categorical variables were described as proportions. The patient characteristics were
5	compared using ANOVA, Kruskal-Wallis test, or chi-square test. Additionally, in order to
6	obtain the P for trend, we used Cochran-Mantel-Haenszel non-zero correlation tests for
7	continuous variables and Cochran-Mantel-Haenszel row mean scores for categorical
8	variables.
9	The generalized estimating equations with exchangeable working correlation matrix were
10	used to evaluate the association between hospital volume, the process of care, and outcomes
11	adjusting for the cluster effect within the hospital. In the adjusted models, age, sex, health
12	insurance (urban resident basic medical insurance, new rural cooperative medical scheme,
13	commercial insurance, self-payment), education (elementary or below, middle school, high
14	school or above), previous or current smoking, drinking, comorbidities (hypertension,
15	diabetes, hyperlipidemia, atrial fibrillation, history of stroke), NIHSS at admission, and
16	hospital characteristics (academic status, number of beds, presence of stroke unit, and
17	location) were included. Additionally, the defect-free measure of care was included in the
18	adjusted model when estimating the association between hospital volume and outcomes. We
19	used the Kaplan-Meier method to depict the cumulative hazards of all-cause mortality and
20	recurrent stroke. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were
21	used with the hospital volume of Q4 as reference. Additionally, we used restricted cubic
22	splines with five knots at the 5th, 35th, 50th, and 95th centiles to model the association
	8

3	
4	
5	
6	
7 8	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 18	
18	
19	
20	
20	
21	
22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

between hospital volume and outcomes. We tested for non-linearity by using the Wald
 statistics.

3 All analyses were performed by SAS version 9.4 (SAS Institute) and R version 3.5.1. All P

4 values were two-tailed with a significant level of 0.05.

5 Patient and public involvement

6 Patients and the public were not involved in the design, or conduct, or reporting, or

dissemination plans of our research.

8 **Results**

7

A total of 17,550 patients with AIS from 217 hospitals across China were included in this 9 study. The process of patient selection is shown in Figure 1. Patients included in the current 10 11 study and those excluded were largely comparable (supplemental Table 2). Table 1 described 12 the baseline characteristics of the included hospitals and patients. Of the 217 included hospitals, 125 (57.6%) were teaching hospitals, and the high-volume 13 14 hospitals were likely to be teaching hospitals. There were 121 hospitals in the east of China, 66 in the middle of China, and 30 in the west of China. The average hospital volume was 437 15 per year, ranging from 136 to 2048 per year. 16

The mean age was 65 (57-74) and 63.6% of the patients were males. The median NIHSS at admission was 4 (2-7) and the median days of hospitalization were 13 (9-16). Compared with the high-volume hospitals, there were more females and the patients were older in lowvolume hospitals. The patients in high-volume hospitals were more likely to be with diabetes and hyperlipidemia, but less likely to be with atrial fibrillation. The proportions of taking

BMJ Open

3		
4	1	antiplatelet and lipid-lowing medicine were higher in high-volume hospitals than that in low-
5 6		
7	2	volume hospitals.
8 9		
9 10	3	
11		
12	4	Association between Hospital Volume and Process Measures
13 14	_	
15	5	Table 2 list the rates of achievement in process measures. Compared with the hospitals of Q4,
16	•	
17 18	6	the unadjusted OR of defect-free measure of care was 0.88 (95% CI, 0.62-1.25) for Q1, 1.13
19	_	
20	7	(95% CI, 0.82-1.56) for Q2, and 1.15 (95% CI, 0.81-1.62) for Q3. No significant difference
21 22	•	
23	8	was found in individual process measures, except the DVT prophylaxis for A3 (OR, 2.22;
24	0	0.50/(CL + 2)(2, 0.1) P=0.0050) anticles what is madiately at discharge for $0.2/(CR + 1.74)$
25 26	9	95%CI, 1.26-3.91; P=0.0059), antithrombotic medication at discharge for Q2 (OR, 1.74;
27	10	95%CI, 1.09-2.76; P=0.0196), and Lowering LDL-C medication for Q3 (OR, 1.60; 95%CI,
28	10	95%C1, 1.09-2.70, F=0.0190), and Lowering LDL-C inculcation for Q5 (OK, 1.00, 95%C1,
29 30	11	1.10-2.33; P=0.0134) (Supplemental Table 3).
31	11	1.10-2.55, 1-0.0154) (Supplemental Table 5).
32	12	Table 3 shows the adjusted ORs for process measures. After adjusting for the patients and
33 34	12	Table 5 shows the adjusted OKS for process measures. After adjusting for the patients and
35	13	hospital characteristics, the adjusted OR of defect-free measure of care was 0.93 (95% CI,
36	10	hospital characteristics, the adjusted off of defect free measure of care was 0.95 (5670 cf,
37 38	14	0.61-1.42) for Q1, 1.25 (95% CI, 0.85-1.85) for Q2, and 1.11 (95% CI, 0.76-1.63) for Q3. All
39		
40	15	the individual performance measures show no significant association (all $P > 0.05$).
41 42		
43	16	
44		
45 46	17	Association between Hospital Volume and 3-Month and 1-Year Outcomes
40 47		•
48	18	Of the included patients, 1322 (7.53%) died within 1 year after stroke onset. The Kaplan-
49 50		
51	19	Meier plot for mortality within 1 year was shown in Figure 2. The 3-month and 1-year
52		
53 54	20	mortality was different across the 4 groups (3-month mortality, 4.95% versus 3.64% versus
55		
56	21	4.33% versus 3.39%, P=0.0011; 1-year mortality, 9.08% versus 7.3% versus 7.8% versus
57 58		
59	22	6.66%, P=0.0004) (Table 4). At 3 months and 1 year, the mortality was a little higher in Q1
60		10
		10

1 2 3 4	
5 6 7 8 9	
10 11 12 13 14	
15 16 17 18 19	
20 21 22 23 24	
25 26 27 28	
29 30 31 32 33	
34 35 36 37 38	
39 40 41 42 43	
44 45 46 47 48	
49 50 51 52 53	
54 55 56 57 58	
59 60	

1	hospitals (OR at 3 months, 1.54; 95% CI, 1.13-2.09; P=0.0059; OR at 1 year, 1.51; 95% CI
2	1.19- 1.91; P=0.0008), but not Q2 or Q3 hospitals in compared with Q4 hospitals. However,
3	the difference was not significant when adjusted for potential factors (Table 5).
4	There were 112 and 1088 patients who failed to achieve the mRS evaluation at 3 months
5	and 1 year, respectively. A total of 3683 (21.12%) patients experienced poor outcome at 3
6	months and 3701 (22.48%) at 1 year (Table 4). Patients presenting to low-volume hospitals
7	were more likely to have a higher rate of poor outcome at 3 months (23.41% versus 19.51%
8	versus 21.37% versus 21.15%, P=0.0003; OR _{Q1 versus Q4} , 1.22; 95% CI, 1.01-1.47, P=0.0377)
9	and 1 year (25.69% versus 20.71% versus 21.81% versus 22.65%, P<0.0001; OR _{Q1 versus}
10	_{Q4} ,1.29; 95% CI, 1.08-1.54, P=0.0043). When adjusted for potential factors, there was still a
11	higher rate of poor outcome at 1 year among Q1 hospitals in comparison with Q4 hospitals
12	(OR _{Q1 versus Q4} , 1.29; 95% CI, 1.01-1.64; P=0.0393).
13	There were 1199 (6.83%) patients with recurrent stroke within 1 year. The Kaplan-Meier
14	plot for recurrent stroke within 1 year was shown in Figure 3. The rate of recurrence was
15	
	similar across the 4 groups (7.00% versus 7.41% versus 6.64% versus 6.28%, P=0.1214)
16	(Table 4). No significant association was found between hospital volume and stroke
16 17	
	(Table 4). No significant association was found between hospital volume and stroke
17	(Table 4). No significant association was found between hospital volume and stroke recurrence at 3 months and 1 year. Similar results were observed for combined vascular
17 18	(Table 4). No significant association was found between hospital volume and stroke recurrence at 3 months and 1 year. Similar results were observed for combined vascular events (Table 5).
17 18 19	(Table 4). No significant association was found between hospital volume and stroke recurrence at 3 months and 1 year. Similar results were observed for combined vascular events (Table 5). In Figure 3-6, we used restricted cubic splines to flexible model and visualize the relation

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16 17
17
18
19
20
21
22
23
24
25
26
27
28
20 29
30
30 31
32
33
34
35
36 37 38
37
39
40
41
42
43
44
45
46
40 47
48
40 49
50
51
52
53
54
55
56
57
58
59

60

indicated a significant nonlinear association between volume and poor outcome at 3 months
and 1 year (P for non-linear =0.0096 and <0.001, respectively), as well as combined vascular
events at 1 year (P for non-linear = 0.0242).

4 Discussion

Our analysis of a large population of 17,550 patients with ischemic stroke suggested that no
significant difference in the process of care was observed for patients in lower-volume
hospitals in comparison with higher-volume hospitals. There was no association between
hospital volume and mortality, stroke recurrence, and combined vascular events at 3 months
and 1 year. In contrast, we found the patients in the lowest volume quartile had a significantly
higher rate of poor outcome at 1 year compared with the highest quartile.

11 Previous studies found that high volume was associated with improved outcomes suggesting that volume may be a surrogate for quality of care. The quality of care can be 12 assessed from outcome, process, and structure.²² Usually, hospital volume is used as a 13 14 structure metric of quality of care. However, the underlying mechanisms of interplay between structure and process are complex.²³ Two existing studies^{13, 23} showed that the patients in 15 high-volume hospitals received more process of care compared with patients in low-volume 16 17 hospitals. Potential mechanisms were proposed to explain this association, including more experience ("practice makes perfect") and availability for advanced techniques and devices in 18 high-volume hospitals.^{7, 23} In contrast, we did not find the association between hospital stroke 19 20 volume and process measures in the current study. This was similar to a study from GWTG-21 Stroke. This study from 790 US hospitals including 322,847 patients with ischemic stroke or

1	transient ischemic attack observed no differences in performance measures between high-
2	volume hospitals and low-volume hospitals after adjusting for patient baseline
3	characteristics. ¹⁸ In the past years, many initiatives for improving the quality of care have
4	been implemented to homogenize the quality of care in hospitals, such as GWTG-Stroke,
5	Australian Stroke Clinical Registry, and CNSR, ²⁴ which may attenuate the difference of
6	quality of care between high-volume and low-volume hospitals.
7	During the past decades, a great number of studies evaluated the volume-outcome
8	association, and many, but not all, found the reverse relationship between volume and
9	outcome. ⁹ There were several studies revealed that stroke patients in high-volume hospitals
10	may experience lower short-term mortality than the patients in low-volume hospitals. ^{11, 12, 25,}
11	²⁶ However, we found no benefit in mortality for patients in high-volume hospitals. Several
12	reasons may explain this discrepancy. First, the hospital volume was varied in these studies.
13	What's more, stroke severity is an important factor affecting the patient's prognosis. Whether
14	stroke severity was adjusted may contribute to the results. ¹³ Lacking data on stroke severity,
15	most of the studies used comorbidity or comorbidity index score to adjust the case-mix. ^{11, 12,}
16	^{25, 26} In this study we used the NIHSS score at admission to adjust the stroke severity. Our
17	finding is compatible with a Danish nationwide cohort study of 63,995 patients admitted to

18 stroke units.²³ This study found no association between volume and 30-day mortality and 1-

19 year mortality after adjusting for patient baseline characteristics, stroke unit, university status,

and quality of care. Mortality may be insensitive to detecting underlying changes in patient
 prognosis.²³

22 Besides mortality, we also examined the association between hospital volume and poor

Page 15 of 42

BMJ Open

outcome, stroke recurrence, and combined vascular events. To our knowledge, it was the first time to evaluate the association between volume and poor outcome at 3 months and 1 year in patients with acute ischemic stroke. Compared with the highest quartile of hospitals, patients in the lowest quartile of hospitals had a higher rate of poor outcome at 1 year after adjusting for potential confounders. The poor outcome may be more sensitive to detect the changes in patient prognosis. The underlying mechanisms of volume on poor outcome are not known. Though there was no significant difference in the process of care during acute phage and at discharge between low- and high-volume hospitals, the differences in some other processes of care after discharge may explain this association. Patients in high-volume hospitals may receive more processes after discharge, for example, limb rehabilitation, which can improve the poor outcome. The association between volume and the poor outcome may be mediated by medical care after discharge. However, we could not identify the medical care after discharge in the current study. In the future, the association between volume, the process of care after discharge, and long-term outcomes are needed for further exploration. Though the significant association, we did not think it is reasonable to regionalize stroke care. Because the transferring may lead to a delay in admission which may offset some benefits of being admitted to large-volume hospitals.¹¹

Several limitations in this study should be acknowledged. First, the hospitals that
participated in the CNSR were volunteers. There may exist unavoidable selection bias. And
the hospitals enrolled may not fully represent the general hospitals in China. Second, though
ten processes of care were evaluated, some other processes of care, for example, mechanical
thrombectomy, and the care patients received after discharge could not be assessed. The

differences in unassessed process measures may explain the association between volume and
poor outcome. Third, there is a cluster effect within hospitals and physicians. Tough, we take
into consideration of the cluster effect within hospitals by using the generalized estimating
equations, we cannot adjust the cluster effect within physicians. Forth, because of the
differences in patients, hospital characteristics, and performance of care across varied regions
and countries, our results may not generalize to other countries. Further studies on volume
and clinical outcome, especially the poor outcome, are needed to confirm our results.

9 Conclusions

Using the large national stroke registry, we found no association between hospital stroke volume, the process of care, and 1-year mortality. However, the patients in the lowest quartile of hospitals had increased rates of poor outcome compared with the patients in the highest quartile of hospitals. Further work needs to be done to examine whether the medical care after discharge mediates the association between stroke volume and poor outcome. Better understanding the association between structure, process, and outcome can help to identify the best way to improve stroke prognosis.

18 Availability of data and materials

19 The datasets used and analyzed during the current study are available from the corresponding20 author on reasonable request.

BMJ Open

Sources of Funding: This study was supported by the Ministry of Science and Technology of the People's Republic of China (2018YFC1312903, 2017YFC1307702), Capital's Funds for Health Improvement and Research (2020-1-2041), National Natural Science Foundation of China (81870905), Beijing Municipal Science & Technology Commission (D171100003017002). Disclosures: None. **Author contributions** Conception and design: RH Zhang, MG Zhou, YJ Wang; Provision of study materials or patients: YJ Wang; Collection and assembly of data: YJ Wang; Data analysis and interpretation: RH Zhang, GF Liu, YS Pan; Manuscript preparation, editing, and review: All authors. MG Zhou and YJ Wang take responsibility for the integrity of the work. References Khera S, Kolte D, Gupta T, et al. Association Between Hospital Volume and 30-Day 1. Readmissions Following Transcatheter Aortic Valve Replacement. JAMA Cardiol. 2017;2:732-2. Wennberg DE, Lucas FL, Birkmeyer JD, et al. Variation in carotid endarterectomy mortality in the Medicare population: trial hospitals, volume, and patient characteristics. JAMA. 1998;279:1278-1281

1

Page 18 of 42

2 3			
4 5	1	3.	Hata T, Motoi F, Ishida M, et al. Effect of Hospital Volume on Surgical Outcomes After
6 7	2		Pancreaticoduodenectomy: A Systematic Review and Meta-analysis. Ann Surg. 2016;263:664-
8 9 10	3		672
11 12	4	4.	Gilligan MA, Neuner J, Zhang X, et al. Relationship between number of breast cancer
13 14	5		operations performed and 5-year survival after treatment for early-stage breast cancer. Am J
15 16 17	6		Public Health. 2007;97:539-544
18	0		Fubic Treatil. 2001,91.339-344
19 20 21	7	5.	Nishigori T, Miyata H, Okabe H, et al. Impact of hospital volume on risk-adjusted mortality
21 22 23	8		following oesophagectomy in Japan. Br J Surg. 2016;103:1880-1886
24 25 26	9	6.	Ross JS, Normand SL, Wang Y, et al. Hospital volume and 30-day mortality for three common
26 27 28	10		medical conditions. N Engl J Med. 2010;362:1110-1118
29 30	11	7.	Kumbhani DJ, Fonarow GC, Heidenreich PA, et al. Association Between Hospital Volume,
31 32 33	12		Processes of Care, and Outcomes in Patients Admitted With Heart Failure: Insights From Get
34 35	13		With The Guidelines-Heart Failure. <i>Circulation</i> . 2018;137:1661-1670
36 37			
38 39	14	8.	Wada T, Yasunaga H, Doi K, et al. Relationship between hospital volume and outcomes in
40 41	15		patients with traumatic brain injury: A retrospective observational study using a national
42 43 44	16		inpatient database in Japan. <i>Injury</i> . 2017;48:1423-1431
45 46	17	9.	Halm EA, Lee C, Chassin MR. Is volume related to outcome in health care? A systematic review
47 48 49	18		and methodologic critique of the literature. Ann Intern Med. 2002;137:511-520
50 51	19	10.	Ogbu UC, Slobbe LC, Arah OA, et al. Hospital stroke volume and case-fatality revisited. Med
52 53 54	20		<i>Care</i> . 2010;48:149-156
55			
56 57	21	11.	Hall RE, Fang J, Hodwitz K, et al. Does the Volume of Ischemic Stroke Admissions Relate to
58 59 60	22		Clinical Outcomes in the Ontario Stroke System? Circ Cardiovasc Qual Outcomes.
			17

BMJ Open

2			
3 4 5	1		2015;8:S141-147
6 7 8	2	12.	Saposnik G, Baibergenova A, O'Donnell M, et al. Hospital volume and stroke outcome: does it
9 10	3		matter? <i>Neurology</i> . 2007;69:1142-1151
11 12 13	4	13.	Lee KJ, Kim JY, Kang J, et al. Hospital Volume and Mortality in Acute Ischemic Stroke Patients:
14 15	5		Effect of Adjustment for Stroke Severity. J Stroke Cerebrovasc Dis. 2020;29:104753
16 17 18	6	14.	Wada T, Yasunaga H, Inokuchi R, et al. Relationship between hospital volume and early
19 20	7		outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen
21 22 23	8		activator. Int J Stroke. 2015;10:73-78
24 25 26	9	15.	Li Z, Wang C, Zhao X, et al. Substantial Progress Yet Significant Opportunity for Improvement
27 28	10		in Stroke Care in China. <i>Stroke</i> . 2016;47:2843-2849
29 30 31	11	16.	Wang Y, Cui L, Ji X, et al. The China National Stroke Registry for patients with acute
32 33	12		cerebrovascular events: design, rationale, and baseline patient characteristics. Int J Stroke.
34 35 36	13		2011;6:355-361
37 38 39	14	17.	Bettger JP, Li Z, Xian Y, et al. Assessment and provision of rehabilitation among patients
40 41	15		hospitalized with acute ischemic stroke in China: Findings from the China National Stroke
42 43 44	16		Registry II. Int J Stroke. 2017;12:254-263
45 46	17	18.	Schwamm LH, Fonarow GC, Reeves MJ, et al. Get With the Guidelines-Stroke is associated
47 48 49	18		with sustained improvement in care for patients hospitalized with acute stroke or transient
50 51	19		ischemic attack. <i>Circulation</i> . 2009;119:107-115
52 53 54	20	19.	Cumbler E, Wald H, Bhatt DL, et al. Quality of care and outcomes for in-hospital ischemic stroke:
55 56 57	21		findings from the National Get With The Guidelines-Stroke. Stroke. 2014;45:231-238
58 59	22	20.	Man S, Cox M, Patel P, et al. Differences in Acute Ischemic Stroke Quality of Care and
60			18

Page 20 of 42

BMJ Open

1			
2 3 4 5	1		Outcomes by Primary Stroke Center Certification Organization. Stroke. 2017;48:412-419
6 7	2	21.	Wang YJ, Li ZX, Gu HQ, et al. China Stroke Statistics 2019: A Report From the National Center
8 9 10	3		for Healthcare Quality Management in Neurological Diseases, China National Clinical
11 12 13	4		Research Center for Neurological Diseases, the Chinese Stroke Association, National Center
14 15	5		for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for
16 17 18	6		Disease Control and Prevention and Institute for Global Neuroscience and Stroke
19 20 21	7		Collaborations. Stroke Vasc Neurol. 2020;5:211-239
22 23	8	22.	Donabedian A. Evaluating the quality of medical care <i>Milbank Q</i> . 2005;83:691-729
24 25 26	9	23.	Svendsen ML, Ehlers LH, Ingeman A, et al. Higher stroke unit volume associated with improved
27 28	10		quality of early stroke care and reduced length of stay. <i>Stroke</i> . 2012;43:3041-3045
29 30 31	11	24.	Cadilhac DA, Kim J, Lannin NA, et al. National stroke registries for monitoring and improving
32 33 34	12		the quality of hospital care: A systematic review. Int J Stroke. 2016;11:28-40
35 36	13	25.	Saposnik G, Jeerakathil T, Selchen D, et al. Socioeconomic status, hospital volume, and stroke
37 38 39	14		fatality in Canada. <i>Stroke</i> . 2008;39:3360-3366
40 41 42	15	26.	Tsugawa Y, Kumamaru H, Yasunaga H, et al. The association of hospital volume with mortality
43 44	16		and costs of care for stroke in Japan. <i>Med Care</i> . 2013;51:782-788
45 46 47			
48 49			
50			
51 52			
53			
54 55			
56			
57 58			
59			
60			19

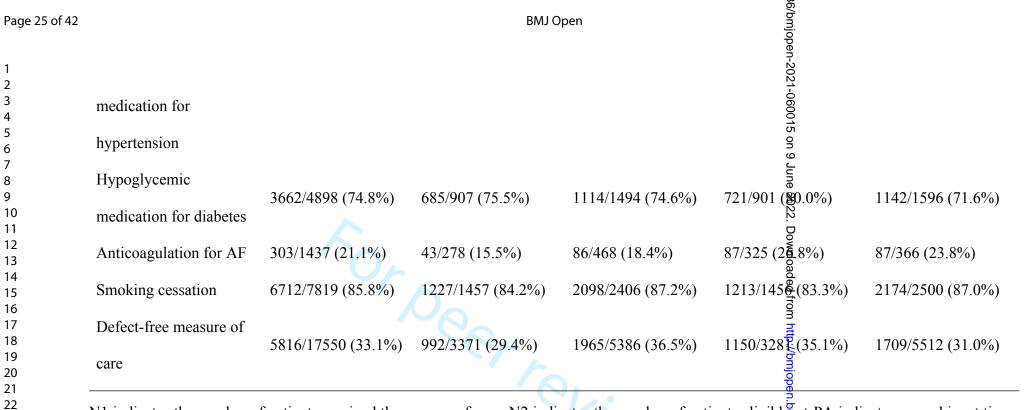
		BMJ Open		5/bmjope		
t characteristics by c	quartiles of hospit	tal volume		n-2021-060015		
Total (n=17550)	Q1 hospitals <300/year (n=3371)	Q2 hospitals 300-436/year (n=5386)	Q3 hospitals 437-722/year (n=3281)	Q4 Bospitals	Р	P tr
				Э		
217	53	56	53	55 from		
125 (57.6%)	23 (43.4%)	23 (41.1%)	37 (69.8%)	42 (764%)	<.0001	<.00
121 (55.8%)	24 (45.3%)	24 (42.9%)	35 (66%)	38 (69 1%)	0.0062	0.00
1000(600-	600(500-	780(515-	1300(1000-	1500(<u>3</u> 200-	<.0001	<.00
1650)	800)	1000)	2000)	2200) 9 Pril		
121 (55.8%)	29 (54.7%)	35 (62.5%)	28 (52.8%)	29 (527%)	0.6967	<.00
66 (30.4%)	15 (28.3%)	13 (23.2%)	20 (37.7%)	18 (3 2.7%)		
30 (13.8%)	9 (17%)	8 (14.3%)	5 (9.4%)	8 (14.5%)		
		20		rotected by copyr		
	Total (n=17550) 217 125 (57.6%) 121 (55.8%) 1000(600- 1650) 121 (55.8%) 66 (30.4%)	$\begin{array}{c c} & Q1 \text{ hospitals} \\ \hline \text{Total} & <300/\text{year} \\ (n=17550) & (n=3371) \end{array}$	$\frac{1}{1} e \text{ characteristics by quartiles of hospitals}}{\text{Total}} = \frac{Q1 \text{ hospitals}}{300/\text{year}} = \frac{Q2 \text{ hospitals}}{300/\text{year}} = \frac{300/\text{year}}{(n=17550)} = \frac{300/\text{year}}{(n=3371)} = \frac{300-436/\text{year}}{(n=5386)} = \frac{217}{(n=3371)} = \frac{53}{(n=5386)} = \frac{56}{125} = \frac{53}{125} = \frac{56}{125} = \frac{23}{23} = \frac{43.4\%}{23} = \frac{23}{23} = \frac{442.9\%}{121} = \frac{121}{155.8\%} = \frac{24}{29} = \frac{445.3\%}{1000} = \frac{29}{1000} = \frac{121}{1000} = \frac{29}{154.7\%} = \frac{35}{13} = \frac{62.5\%}{13} = \frac{121}{15} = \frac{29}{15} = \frac{54.7\%}{15} = \frac{13}{13} = \frac{23.2\%}{13} = \frac{29}{11} = \frac{13}{13} = \frac$	$\frac{1}{1} \frac{1}{1} \frac{1}$	$\frac{1}{121} (55.8\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (57.\%) = 35 (62.5\%) = 29 (57.\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (55.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (55.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (54.7\%) = 35 (62.5\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 29 (55.7\%) = 29 (55.7\%) = 28 (52.8\%) = 20 (55.7\%) = 20 (55.7\%) = 20 (55.7\%) = 20 (55.7\%) = 20 (55.7\%) = 20 (55.7\%) = 20 (55.7\%) = 20 (55.7\%) = 20 (55.7\%) = 20 (55.7\%) $	$ \begin{array}{c} \mbox{Total} \\ (n=17550) \\ \mbox{$(n=17550)$} \\ \mbox{$(n=3371)$} \\ \mbox{$(n=5386)$} \\ \mbox{$(n=3281)$} \\ $(n=$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Open		\$6/bmjc		
				pen-202		
11163 (63.6%)	2126 (63.1%)	3349 (62.2%)	2108 (64.2%)	3580 84.9%)	0.0183	0.0085
65(57-74)	66(57-75)	65(57-74)	66(58-74)	ਰ 64(55973)	<.0001	<.0001
				June		
8959 (51%)	1715 (50.9%)	2552 (47.4%)	1568 (47.8%)	3124 (56.7%)	<.0001	<.0001
6932 (39.5%)	1369 (40.6%)	2440 (45.3%)	1394 (42.5%)	1729 81.4%)		
60 (0.3%)	8 (0.2%)	27 (0.5%)	4 (0.1%)			
1599 (9.1%)	279 (8.3%)	367 (6.8%)	315 (9.6%)	638 (별.6%)		
				://bmjo		
7934 (45.2%)	1693 (50.2%)	2430 (45.1%)	1678 (51.1%)	2133	<.0001	<.0001
4109 (23.4%)	715 (21.2%)	1286 (23.9%)	661 (20.1%)	1447 (26.3%)		
5507 (31.4%)	963 (28.6%)	1670 (31%)	942 (28.7%)	1932 g 5.1%)		
7010 (44 50/)	1 457 (42 20/)	2406 (44 70/)	1455 (44 20/)		0.0(7(0.0026
/818 (44.5%)	1457 (43.2%)	2406 (44.7%)	1455 (44.3%)	4 by	0.2676	0.0836
5277 (30.1%)	872 (25.9%)	1681 (31.2%)	995 (30.3%)	1729 🛱 1.4%)	<.0001	0.0001
				Protect		
11386 (64.9%)	2156 (64%)	3511 (65.2%)	2136 (65.1%)	3583 (65%)	0.6614	0.459
		21		;opyrigh		
	65(57-74) 8959 (51%) 6932 (39.5%) 60 (0.3%) 1599 (9.1%) 7934 (45.2%) 4109 (23.4%) 5507 (31.4%) 7818 (44.5%) 5277 (30.1%)	65(57-74)66(57-75)8959 (51%)1715 (50.9%)6932 (39.5%)1369 (40.6%)60 (0.3%)8 (0.2%)1599 (9.1%)279 (8.3%)7934 (45.2%)1693 (50.2%)4109 (23.4%)715 (21.2%)5507 (31.4%)963 (28.6%)7818 (44.5%)1457 (43.2%)5277 (30.1%)872 (25.9%)	11163 (63.6%)2126 (63.1%)3349 (62.2%)65(57-74)66(57-75)65(57-74)8959 (51%)1715 (50.9%)2552 (47.4%)6932 (39.5%)1369 (40.6%)2440 (45.3%)60 (0.3%)8 (0.2%)27 (0.5%)1599 (9.1%)279 (8.3%)367 (6.8%)7934 (45.2%)1693 (50.2%)2430 (45.1%)4109 (23.4%)715 (21.2%)1286 (23.9%)5507 (31.4%)963 (28.6%)1670 (31%)7818 (44.5%)1457 (43.2%)2406 (44.7%)5277 (30.1%)872 (25.9%)1681 (31.2%)11386 (64.9%)2156 (64%)3511 (65.2%)	11163 (63.6%)2126 (63.1%)3349 (62.2%)2108 (64.2%)65(57-74)66(57-75)65(57-74)66(58-74)8959 (51%)1715 (50.9%)2552 (47.4%)1568 (47.8%)6932 (39.5%)1369 (40.6%)2440 (45.3%)1394 (42.5%)60 (0.3%)8 (0.2%)27 (0.5%)4 (0.1%)1599 (9.1%)279 (8.3%)367 (6.8%)315 (9.6%)7934 (45.2%)1693 (50.2%)2430 (45.1%)661 (20.1%)507 (31.4%)963 (28.6%)1670 (31%)942 (28.7%)7818 (44.5%)1457 (43.2%)2406 (44.7%)1455 (44.3%)5277 (30.1%)872 (25.9%)1681 (31.2%)995 (30.3%)11386 (64.9%)2156 (64%)3511 (65.2%)2136 (65.1%)	11163 (63.6%) 2126 (63.1%) 3349 (62.2%) 2108 (64.2%) 3580 64.9%) 65(57-74) 66(57-75) 65(57-74) 66(58-74) 64(55973) 8959 (51%) 1715 (50.9%) 2552 (47.4%) 1568 (47.8%) 3124 66.7%) 6932 (39.5%) 1369 (40.6%) 2440 (45.3%) 1394 (42.5%) 1729 61.4%) 60 (0.3%) 8 (0.2%) 27 (0.5%) 4 (0.1%) 21 (0.9%) 1599 (9.1%) 279 (8.3%) 367 (6.8%) 315 (9.6%) 638 (1.6%) 7934 (45.2%) 1693 (50.2%) 2430 (45.1%) 1678 (51.1%) 2133 68.7%) 4109 (23.4%) 715 (21.2%) 1286 (23.9%) 661 (20.1%) 1447 66.3%) 5507 (31.4%) 963 (28.6%) 1670 (31%) 942 (28.7%) 1932 95.1%) 7818 (44.5%) 1457 (43.2%) 2406 (44.7%) 1455 (44.3%) 2500 65.4%) 5277 (30.1%) 872 (25.9%) 1681 (31.2%) 995 (30.3%) 1729 61.4%) 11386 (64.9%) 2156 (64%) 3511 (65.2%) 2136 (65.1%) 3583 655%)	65(57-74) 66(57-75) 65(57-74) 66(58-74) 64(55873) <.0001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Page 23 of 42


			BMJ Open		6/bmjopen-2021	
					en-2021-	
Diabetes	3630 (20.7%)	658 (19.5%)	1097 (20.4%)	673 (20.5%)	1202 8 1.8%)	0.0599 0.0080
Hyperlipidemia	2128 (12.1%)	372 (11%)	808 (15%)	384 (11.7%)	564 (B.2%)	<.0001 0.000
Atrial fibrillation	1185 (6.8%)	212 (6.3%)	402 (7.5%)	280 (8.5%)	291 (\$3%) »	0.0001 0.0174
Stroke or TIA	5918 (33.7%)	1084 (32.2%)	1886 (35%)	1113 (33.9%)	1835 83.3%)	0.0411 0.864
Medication history					ownload	
Antiplatelet	3444 (19.6%)	599 (17.8%)	1008 (18.7%)	712 (21.7%)	1125 20.4%)	<.0001 0.0002
Anticoagulation	178 (1%)	33 (1%)	69 (1.3%)	35 (1.1%)	41 (0. 3 %)	0.0467 0.0690
Antihypertension	7868 (44.8%)	1454 (43.1%)	2592 (48.1%)	1401 (42.7%)	2421 43.9%)	<.0001 0.1248
Lipid-lowering medicine	1207 (6.9%)	195 (5.8%)	487 (9%)	241 (7.3%)	284 (\$2%)	<.0001 0.0002
Antidiabetics	2782 (15.9%)	500 (14.8%)	875 (16.2%)	509 (15.5%)	898 (5.3%)	0.2276 0.1842
NIHSS at admission	4(2-7)	4(2-7)	4(2-6)	4(2-8)	4(2-7)≥ 1	<.0001 <.000
Days of hospitalization	13 (9-16)	13 (10-16)	13 (9-15)	13 (9-16)	= 13 (10 ² 16)	<.0001 0.021

URBMI, urban resident basic medical insurance; NRCMS, new rural cooperative medical scheme; TIA, transitives of Health Stroke Scale.

Table 2. The rates of achievement in process measures	

		BMJ O	36/bmjopen-2021-060015			
Fable 2. The rates of ac	hievement in process m	easures		160015		
Process measures	Total	Q1 hospitals	Q2 hospitals	Q3 hospitals	Q4 hospitals	
	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achievemen	
	rate, %)	rate, %)	rate, %)	rate, %)	rate, %)	
rt-PA in 2h	217/1303 (16.7%)	36/250 (14.4%)	75/497 (15.1%)	25/200 (1ag.5%)	81/356 (22.8%)	
	14555/17243			ded from the constant		
Early antithrombotic	(84.4%)	2802/3303 (84.8%)	4508/5307 (84.9%)	2903/3199 (90.7%)	4342/5434 (79.9%)	
	14876/17550					
Dysphagia screening	(84.8%)	2630/3371 (78.0%)	4860/5386 (90.2%)	2615/328 (79.7%)	4771/5512 (86.6%)	
DVT prophylaxis	3367/5079 (66.3%)	630/944 (66.7%)	1006/1481 (67.9%)	689/914 (25.4%)	1042/1740 (59.9%)	
Antithrombotic	1.4700/1.0000 (000/)	2045/2050 (02.00/)				
medication	14722/16002 (92%)	2845/3058 (93.0%)	4481/4765 (94.0%)	2839/3089 (91.9%) 2839/3089 (91.9%) 2839/3089 (1.9%) 2839/30 (1.9%) 2939/30 (1	4557/5090 (89.5%)	
Lowering LDL-C				2024 by		
medication	7700/11597 (66.4%)	1436/2247 (63.9%)	2591/3621 (71.6%)	1523/212@(71.8%)	2150/3609 (59.6%)	
Antihypertensive	8867/13385 (66.2%)	1712/2611 (65.6%)	2764/4207 (65.7%)	1710/247 8 (69.2%)	2681/4097 (65.4%)	
		23		ed by copyright.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

N1 indicates the number of patients received the process of care, N2 indicates the number of patients eligible rt-PA indicates recombinant tissue

plasminogen activator; DVT, deep vein thrombosis; AF, atrial fibrillation; LDL-C, low-density lipoprotein cholesterol.

April 17, 2024 by guest. Protected by copyright

	6/bmjopen-2021-060015 on 9					
				en-202		
				1-0600		
Fable 3. The association between hospital	volume and process m	neasures		15 on 9		
	Q1 VS Q4		Q2 VS Q4	June 2(Q3 VS Q4	4
	Adjusted OR (95%		Adjusted OR (95%	022. 0	Adjusted OR (95%	
Performance measures	P CI)		CI)	t 2022. Downloade	CI)	Р
rt-PA	1.54 (0.61, 3.89)	0.3614	1.46 (0.68, 3.14)	0.334 3 5	0.71 (0.35, 1.48)	0.3634
Early antithrombotic	0.68 (0.20, 2.32)	0.5364	1.17 (0.30, 4.55)	0.824	1.07 (0.36, 3.18)	0.9020
Dysphagia screening	0.76 (0.33, 1.74)	0.5104	2.19 (0.86, 5.55)	0.098	0.90 (0.42, 1.92)	0.7845
DVT prophylaxis	1.02 (0.52, 2.01)	0.9504	1.09 (0.57, 2.09)	0.793	1.55 (0.84, 2.83)	0.1594
Antithrombotic medication	1.26 (0.61, 2.61)	0.5391	1.27 (0.61, 2.64)	0.5277	1.16 (0.63, 2.15)	0.6375
Lowering LDL-C medication	0.92 (0.57, 1.50)	0.7460	1.03 (0.62, 1.70)	0.922	1.20 (0.78, 1.84)	0.4134
Antihypertensive medication for	0 00 (0 71 1 20)	0.0205	0.02 (0.67, 1.27)	7, 2024 0.6154	1 11 (0 91 1 52)	0 50/1
hypertension	0.99 (0.71, 1.38)	0.9395	0.92 (0.67, 1.27)	Ş	1.11 (0.81, 1.53)	0.5041
Hypoglycemic medication for diabetes	1.02 (0.67, 1.55)	0.9210	1.06 (0.69, 1.65)	0.7818	0.97 (0.65, 1.46)	0.8888
Anticoagulation for AF	0.63 (0.34, 1.16)	0.1365	0.87 (0.53, 1.44)	0.5848	1.05 (0.61, 1.78)	0.8681
				by copyright.		
		25		yrigh		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

7 of 42			BMJ Open		6/bmjop		
					6/bmjopen-2021-		
	Smoking cessation	0.56 (0.10, 2.97)	0.4939	0.67 (0.12, 3.63)	0.6428	2.08 (0.25, 17.2)	0.4961
	Defect-free measure of care	0.93 (0.61, 1.42)	0.7412	1.25 (0.85, 1.85)	ت 0.2634 و	1.11 (0.76, 1.63)	0.5853
	rt-PA indicates recombinant tissue	plasminogen activator; DVT	, deep vein	thrombosis; AF, atria	l fibrillation	; LDL-C, low-density	lipoprotein
	cholesterol.	plasminogen activator; DVT			22. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest		
					nloadec		
					d from h		
					nttp://br		
					njopen		
					.bmj.co		
					/m/ on /		
					April 17		
					, 2024		
					by gue		
					•		
					Protected by copyright.		
					d by c		
			26		opyriq		
					ght.		
		For peer review only - http://l	bmjopen.bmj.	com/site/about/guideline	s.xhtml		

able 4. Tl	he rates of clinical outcomes accordi	ing to quartile	BMJ Open s of hospital vo	lume	יטיטיין יייקיקיבור-בטב די סטטט ו	
Outcome		Q1	Q2	Q3	Q4	
3 months	Mortality, No. (%)	167 (5.0%)	196 (3.6%)	142 (4.3%)	187 (3.4%)	0.0011
	*Poor outcome, No. (%)	783 (23.4%)	1042 (19.5%)	698 (21.4%)	1160 (21.1%)	§ 0.0003
	Stroke recurrence, No. (%)	178 (5.3%)	297 (5.5%)	166 (5.1%)	238 (4.3%)	0.0298
	Combined vascular events, No. (%)	183 (5.4%)	303 (5.6%)	168 (5.1%)	247 (4.5%)	0.0440
1 year	Mortality, No. (%)	306 (9.1%)	393 (7.3%)	256 (7.8%)	367 (6.7%)	
	[#] Poor outcome, No. (%)	817 (25.7%)	1058 (20.7%)	665 (21.8%)	1161 (22.7%	<.0001
	Stroke recurrence, No. (%)	236 (7.0%)	399 (7.4%)	218 (6.6%)	346 (6.3%)	0.1214
	Combined vascular events, No. (%)	244 (7.2%)	418 (7.8%)	225 (6.9%)	389 (7.1%)	

 * A total of 17,438 patients achieved modified Rankin Scale at 3 months. # A total of 16,462 patients achieved modified Rankin Scale at 1 year.

7, 2024 by guest. Protected by copyright.

Table 5. The association between	en hospital v	olume and clinical	outcomes			6/bmjopen-2021-060015
		Q1 VS Q4				
Outcome		OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
3 months						022. Dc
Mortality	Unadjusted	1.54 (1.13, 2.09)	0.0059	1.09 (0.85, 1.40)	0.4772	1.26 (0.89, 1.79
	Adjusted	1.27 (0.88, 1.83)	0.2062	0.99 (0.75, 1.30)	0.9179	1. 8 (0.82, 1.68
Poor outcome	Unadjusted	1.22 (1.01, 1.47)	0.0377	0.95 (0.81, 1.11)	0.5341	∃ 1.∰ (0.89, 1.26)
	Adjusted	1.17 (0.91, 1.52)	0.2269	0.95 (0.74, 1.22)	0.6891	0.86 (0.75, 1.22)
Recurrent stroke	Unadjusted	1.27 (0.92, 1.75)	0.1403	1.21 (0.91, 1.61)	0.1992	1. go (0.85, 1.58)
	Adjusted	1.16 (0.83, 1.62)	0.3798	1.11 (0.79, 1.56)	0.5474	1. El (0.78, 1.56
Combined vascular events	Unadjusted	1.27 (0.92, 1.76)	0.1391	1.19 (0.89, 1.60)	0.2437	1.14 (0.83, 1.56)
	Adjusted	1.15 (0.82, 1.61)	0.4109	1.09 (0.78, 1.53)	0.6167	1.08 (0.76, 1.52)
1 year						1.24 9 1.24 1.24 1.0.97, 1.52
Mortality	Unadjusted	1.51 (1.19, 1.91)	0.0008	1.16 (0.95, 1.40)	0.1385	1.24 (0.97, 1.52)
	Adjusted	1.16 (0.90, 1.49)	0.2437	0.99 (0.80, 1.24)	0.9563	1.85 (0.82, 1.34)
						ed by copyright
			28			opyrigl

			BMJ Op	pen		\$6/bmjopen-202	
Poor outcome	Unadjusted	1.29 (1.08, 1.54)	0.0043	0.94 (0.81, 1.09)	0.4317	1.80 (0.86, 1.17)	0.9917
	Adjusted	1.29 (1.01, 1.64)	0.0393	0.98 (0.78, 1.24)	0.8758	0.\$5 0.\$5 0.68, 1.06)	0.1566
Recurrent stroke	Unadjusted	1.21 (0.92, 1.59)	0.1725	1.17 (0.92, 1.49)	0.1966	1.58 (0.83, 1.40)	0.5634
	Adjusted	1.08 (0.82, 1.43)	0.5860	1.03 (0.79, 1.35)	0.8204	1.01 (0.77, 1.32)	0.9501
Combined vascular events	Unadjusted	1.11 (0.85, 1.46)	0.4440	1.09 (0.86, 1.39)	0.4706	1.00 (0.77, 1.29)	0.9771
	Adjusted	0.98 (0.75, 1.28)	0.8825	0.95 (0.74, 1.22)	0.6942	0.92 (0.71, 1.19)	0.5159

The adjusted covariates included age, sex, health insurance (urban resident basic medical insurance, new ruration cooperative medical scheme,

commercial insurance, self-payment), education (elementary or below, middle school, high school or above) previous or current smoking,

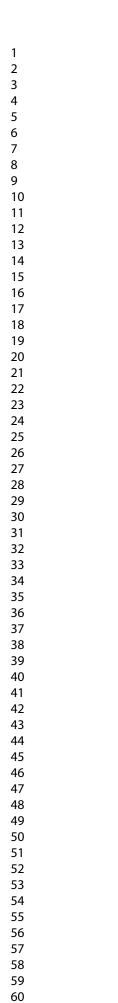
drinking, comorbidities (hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke), NIHSS at admission, hospital

characteristics (academic status, beds, stroke unit and location), and the composite measure of care.

 n/ on April 17, 2024 by guest. Protected by copyright

BMJ Open

Figure legends


Figure 1. The flow chart for patient selection

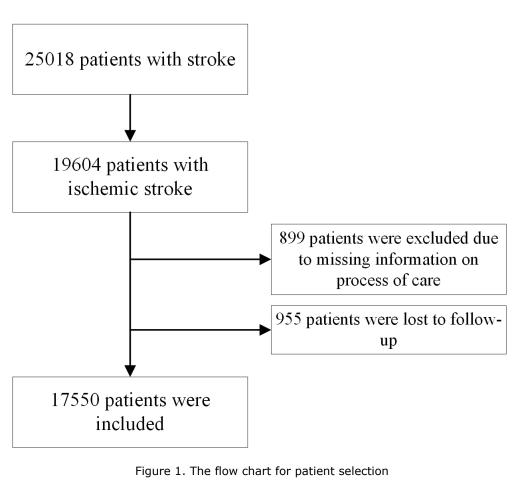

Figure 2. The Kaplan-Meier curve for mortality (A) and recurrent stroke (B) within 1 year **Figure 3**. Association between hospital stroke volume and all-cause mortality. A, Hospital volume and all-cause mortality at 3 months. B, Hospital volume and all-cause mortality at 1 year. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

Figure 4. Association between hospital stroke volume and poor outcome. A, Hospital volume and poor outcome at 3 months. B, Hospital volume and poor outcome at 1 year. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

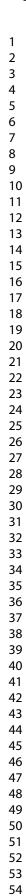

Figure 5. Association between hospital stroke volume and recurrent stroke. A, Hospital volume and recurrent stroke at 3 months. B, Hospital volume and recurrent stroke at 1 year. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

Figure 6. Association between hospital stroke volume and combined vascular events. A, Hospital volume and combined vascular events at 3 months. B, Hospital volume and combined vascular events at 1 year. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

106x90mm (300 x 300 DPI)

60

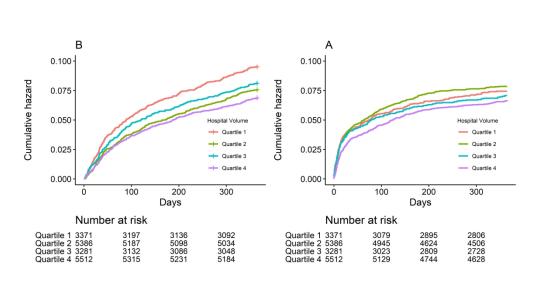


Figure 2. The Kaplan-Meier curve for mortality (A) and recurrent stroke (B) within 1 year

254x118mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-060015 on 9 June 2022. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

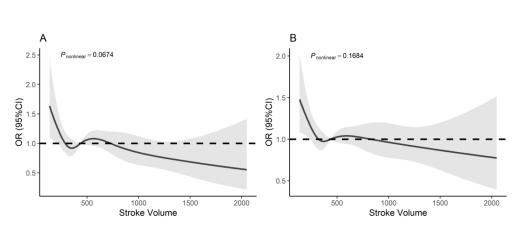
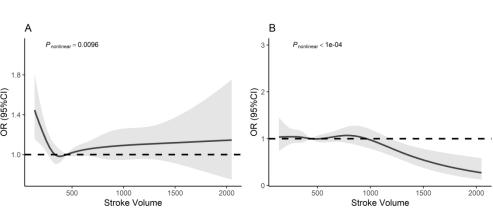
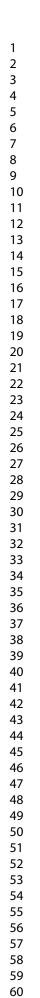
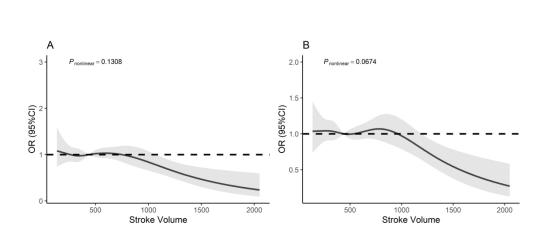
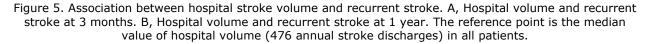
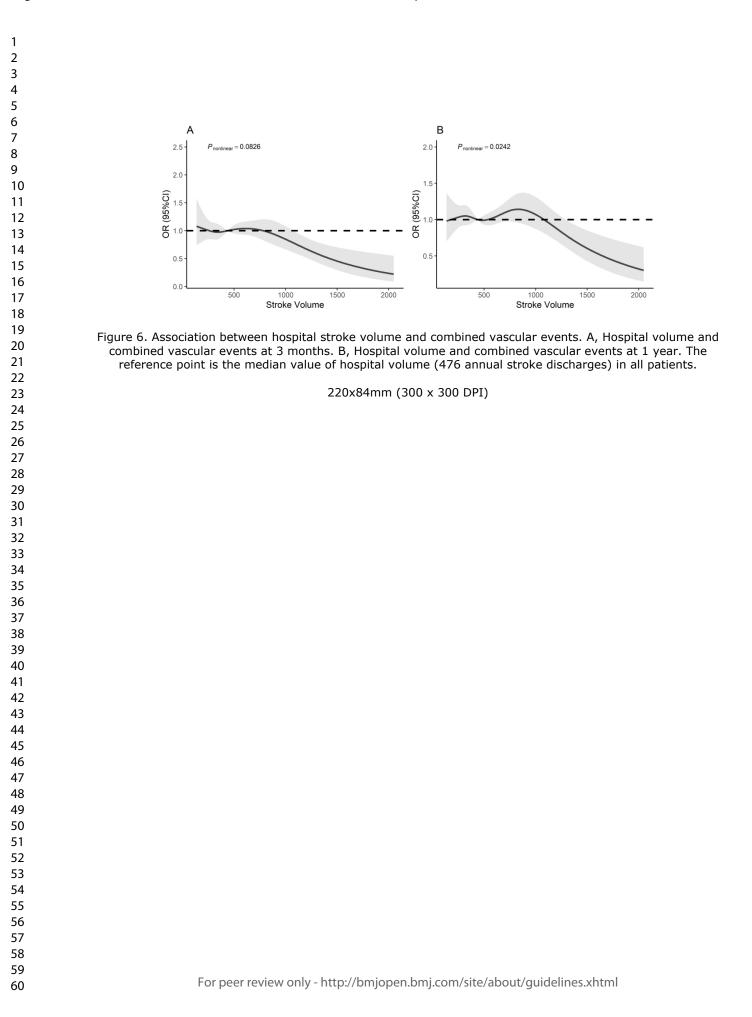


Figure 3. Association between hospital stroke volume and all-cause mortality. A, Hospital volume and allcause mortality at 3 months. B, Hospital volume and all-cause mortality at 1 year. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

220x84mm (300 x 300 DPI)


Figure 4. Association between hospital stroke volume and poor outcome. A, Hospital volume and poor outcome at 3 months. B, Hospital volume and poor outcome at 1 year. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

220x84mm (300 x 300 DPI)

 Supplementary Material

to peer teriewony

	Definition*
Acute phage process measu	ires
rt-PA	intravenous tissue-type plasminogen activator
	(tPA) in patients who arrive within 2 hours after
	symptom onset and treated within 3 hours.
Early antithrombotics	Antithrombotic treatment within 2 days after
	admission, including antiplatelet or anticoagulant
	medications.
DVT prophylaxis	Patients who cannot walk received DVT prophylax
	within 2 days after admission, including pneumatic
	compression, heparin sodium, warfarin sodium or
	new oral anticoagulants.
Dysphagia screening	Dysphagia screening before oral intake
Process measures at discha	rge
Antithrombotic medication	Antithrombotic medication prescribed at discharge
Antihypertensive	Antihypertensive medication prescribed at discharg
medication for	for patients with hypertension.
hypertension	
TT 1 1 1	
Hypoglycemic medication	Hypoglycemic medication prescribed at discharge
for diabetes	patients with diabetes.
	patients with diabetes.
for diabetes Anticoagulation for AF	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation.
for diabetes	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation.
for diabetes Anticoagulation for AF	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation. Statin prescribed at discharge if LDL-C ≥100 mg/d
for diabetes Anticoagulation for AF Lowering LDL-C	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation. Statin prescribed at discharge if LDL-C ≥100 mg/d
for diabetes Anticoagulation for AF Lowering LDL-C	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation. Statin prescribed at discharge if LDL-C ≥100 mg/d or patient treated with lipid-lowering agent prior to admission, or LDL-C not documented.
for diabetes Anticoagulation for AF Lowering LDL-C medication	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation. Statin prescribed at discharge if LDL-C ≥100 mg/d or patient treated with lipid-lowering agent prior to admission, or LDL-C not documented.
for diabetes Anticoagulation for AF Lowering LDL-C medication	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation. Statin prescribed at discharge if LDL-C ≥100 mg/d or patient treated with lipid-lowering agent prior to admission, or LDL-C not documented. Smoking cessation intervention before discharge for current smokers.
for diabetes Anticoagulation for AF Lowering LDL-C medication Smoking cessation	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation. Statin prescribed at discharge if LDL-C ≥100 mg/d or patient treated with lipid-lowering agent prior to admission, or LDL-C not documented. Smoking cessation intervention before discharge for current smokers.
for diabetes Anticoagulation for AF Lowering LDL-C medication Smoking cessation	patients with diabetes. Anticoagulation medication prescribed at discharge for patients with atrial fibrillation. Statin prescribed at discharge if LDL-C ≥100 mg/d or patient treated with lipid-lowering agent prior to admission, or LDL-C not documented. Smoking cessation intervention before discharge for current smokers. Stroke education provided to patient and/or caregiv including all five components: modifiable risk
for diabetes Anticoagulation for AF Lowering LDL-C medication Smoking cessation	Anticoagulation medication prescribed at discharge for patients with atrial fibrillation. Statin prescribed at discharge if LDL-C ≥100 mg/d or patient treated with lipid-lowering agent prior to admission, or LDL-C not documented. Smoking cessation intervention before discharge for current smokers. Stroke education provided to patient and/or caregiv

C, low-density lipoprotein cholesterol.

*Performance and quality measures are applied only to eligible patients in the absence of documented contraindications or any other rationale as to why therapy was not provided.

Characteristic	Included	Excluded	Р
Characteristic	(n=17550)	(n=2054)	Γ
Patient characteristics			
Male	11163 (63.6%)	1274 (62.0%)	0.1591
Age	65(57-74)	65(57-75)	0.1122
Health insurance			
URBMI	8959 (51.0%)	1062 (51.7%)	0.4888
NRCMS	6932 (39.5%)	815 (39.7%)	
Commercial insurance	60 (0.3%)	9 (0.4%)	
Self-payment	1599 (9.1%)	168 (8.2%)	
Education			
Elementary or below	7934 (45.2%)	948 (46.2%)	0.3827
Middle school	4109 (23.4%)	453 (22.1%)	
High School or above	5507 (31.4%)	653 (31.8%)	
Previous or current	7010 (44 50/)	074 (41 (0/)	0.0104
smoking	7818 (44.5%)	854 (41.6%)	0.0104
Drinking	5277 (30.1%)	582 (28.3%)	0.1044
Medical history			
Hypertension	11386 (64.9%)	1311 (63.8%)	0.3455
Diabetes	3630 (20.7%)	430 (20.9%)	0.7905
Hyperlipidemia	2128 (12.1%)	242 (11.8%)	0.6514
Atrial fibrillation	1185 (6.8%)	197 (9.6%)	< 0.0001
Stroke or TIA	5918 (33.7%)	722 (35.2%)	0.1951
Medication history			
Antiplatelet	3444 (19.6%)	425 (20.7%)	0.2501
Anticoagulation	178 (1.0%)	30 (1.5%)	0.0618
Antihypertension	7868 (44.8%)	907 (44.2%)	0.5610
Lipid-lowering medicine	1207 (6.9%)	144 (7.0%)	0.8216
Antidiabetics	2782 (15.9%)	333 (16.2%)	0.6725
NIHSS at admission	4(2-7)	4(1-8)	0.6146
Days of hospitalization	13(9-16)	13(9-15)	0.3805

Table 2. Baseline characteristics between included and excluded patients

URBMI, urban resident basic medical insurance; NRCMS, new rural cooperative medical scheme.

	Q1 VS Q4		Q2 VS Q4		³ Q3 VS Q4	
Performance measures	Unadjusted OR (95% CI)	Р	Unadjusted OR (95% CI)	June 20	Unadjusted OR (95% CI)	I
rt-PA	0.64 (0.31, 1.34)	0.2386	0.72 (0.35, 1.49)	0.3811 ^N	0.62 (0.28, 1.37)	(
Early antithrombotic	0.86 (0.39, 1.90)	0.7114	1.10 (0.49, 2.47)	0.8241裦	1.02 (0.44, 2.36)	(
Dysphagia screening	0.78 (0.38, 1.60)	0.5015	2.03 (0.93, 4.42)	0.0754 ⁵	1.08 (0.53, 2.18)	(
DVT prophylaxis	1.31 (0.76, 2.28)	0.3329	1.37 (0.80, 2.36)	0.2501 👼	2.22 (1.26, 3.91)	(
Antithrombotic medication	1.43 (0.93, 2.20)	0.1077	1.74 (1.09, 2.76)	0.0196 =	1.40 (0.71, 2.75)	(
Lowering LDL-C medication	1.12 (0.76, 1.66)	0.5726	1.35 (0.94, 1.94)	0.101	1.60 (1.10, 2.33)	(
Antihypertensive medication for hypertension	0.91 (0.66, 1.25)	0.5588	0.84 (0.62, 1.14)	0.2679	1.08 (0.79, 1.49)	(
Hypoglycemic medication for diabetes	0.98 (0.67, 1.45)	0.931	1.00 (0.68, 1.46)	0.9978	1.06 (0.72, 1.58)	(
Anticoagulation for AF	0.58 (0.34, 1.01)	0.0528	0.77 (0.48, 1.24)	0.2842 <mark>3</mark>	1.24 (0.73, 2.09)	(
Smoking cessation	0.72 (0.44, 1.18)	0.1959	0.83 (0.50, 1.37)	0.4646	0.81 (0.43, 1.53)	(
Defect-free measure of care	0.88 (0.62, 1.25)	0.4634	1.13 (0.82, 1.56)	0.4496 ⁹	1.15 (0.81, 1.62)	0

rt-PA indicates recombinant tissue plasminogen activator; DVT, deep vein thrombosis; AF, atrial fibrillation; LDL-C low-density lipoprotein cholesterol.

36/bmjopen-2021-0

		BMJ Open BMJ Open	Page 42 o
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cohort studies</i>	
Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was figund	2
Introduction		22	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5,7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-7
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	7
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grougings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	NA
		(b) Describe any methods used to examine subgroups and interactions 0 (c) Explain how missing data were addressed 0	NA
		(d) If applicable, explain how loss to follow-up was addressed	6
		(e) Describe any sensitivity analyses	NA
Results		(e) Describe any sensitivity analyses §	

42		BMJ Open <u>p</u>	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	9
		(b) Indicate number of participants with missing data for each variable of interest	NA
		c) Summarise follow-up time (eg, average and total amount)	10
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision deg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10
		(b) Report category boundaries when continuous variables were categorized	18
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion		njop	
Key results	18	Summarise key results with reference to study objectives	11
Limitations		, and the second s	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of an lyses, results from similar studies, and other relevant evidence	11-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based σ	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bless of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine $\frac{2}{3}$ rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org. copyright.

BMJ Open

Association Between Hospital Volume, Processes of Care, and Outcomes after Acute Ischemic Stroke: A Prospective Observational Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-060015.R2
Article Type:	Original research
Date Submitted by the Author:	10-Apr-2022
Complete List of Authors:	Zhang, Runhua; National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing Tiantan Hospital, Capital Medical University, Beijing, Neurology Liu, Gaifen ; Beijing Tiantan Hospital affiliated Capital Medical University, China PAN, YUESONG; Beijing Tiantan Hospital, Capital Medical University, Department of Neurology Zhou, Maigeng; Chinese Center for Disease Control and Prevention Wang, Yongjun; Capital Medical University; China National Clinical Research Center for Neurological Diseases
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Neurology
Keywords:	Stroke < NEUROLOGY, Neurology < INTERNAL MEDICINE, Adult neurology < NEUROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

2
2
2
4
3 4 5 6 7
6
7
7 8 9 10
0
9
10
11
12
13
14
15
10
10
17
18
19
20
21
ר ב בר
12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25 26 27 28 29 30
23
24
25
26
27
27
20
29
30
31
32
33
24
34 35
35
36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1

1

2

3

5

Association Between Hospital Volume, Processes of Care, and Outcomes after Acute Ischemic Stroke: A Prospective Observational Study

Runhua Zhang¹⁻³, Gaifen Liu²⁻³, Yuesong Pan²⁻³, Maigeng Zhou^{1*}, Yongjun Wang^{2-3*}

¹ National Center for Chronic and Noncommunicable Disease Control and Prevention,

4 Chinese Center for Disease Control and Prevention, Beijing, China;

² Beijing Tiantan Hospital, Capital Medical University, Beijing, China;

6 ³ China National Clinical Research Center for Neurological Diseases, Beijing, China.

7 *Correspondence:

Maigeng Zhou, National Center for Chronic and Noncommunicable Disease Control and
Prevention, Chinese Center for Disease Control and Prevention, No. 27 Nanwei Road,
Xicheng District, Beijing 100050, China. E-Mail: zhoumaigeng@ncncd.chinacdc.cn
Yongjun Wang, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th
West Road, Fengtai District, Beijing 10070, China, E-mail: yongjunwang@ncrcnd.org.cn.

14

60

Abstract

BMJ Open

2	Objectives Uncertainty remains about hospital volume and clinical outcomes for patients
3	with stroke. The study aimed to assess the association between hospital volume, processes of
4	care, and outcomes after ischemic stroke.
5	Methods The patients with acute ischemic stroke from the Second China National Stroke
6	Registry were included. According to quartiles of the hospital volume, the patients were
7	categorized into four groups. We compared the difference in the process of care across the
8	groups. We used generalized estimating equations to estimate the effect of hospital volume
9	on mortality, poor outcome, recurrent stroke, and combined vascular events at 3 months and
10	1 year. Odds ratios and corresponding 95% confidence intervals were used to qualify the
11	association between hospital volume and outcomes. We also used restricted cubic splines to
12	model the association between hospital volume and clinical outcomes.
13	Results A total of 17,550 ischemic strokes from 217 hospitals across China were included.
14	There were no significant differences in the process of care across the four groups. When
15	adjusted for confounders, the effect of hospital volume on mortality, recurrent stroke, and
16	combined vascular events was not significant. However, compared with the highest quartile,
17	the patients in the lowest quartile of hospital volume tend to be with poor outcome at 1 year
18	(OR=1.29, 95% CI 1.01-1.64, P=0.0393). The restricted cubic spline analyses suggested a
19	non-linear relationship between hospital volume and 1-year combined vascular events and
20	poor outcome at 3 months and one year.

Conclusions We found no significant associations between hospital volume, processes of
care at the hospital, and mortality, recurrent stroke, and combined vascular events in patients

2		
3 4 5	1	with ischemic stroke. However, hospital volume may be associated with poor outcome at 1
6 7 8	2	year.
9 10	3	
11 12 13	4	Strengths and limitations of this study
14 15 16	5	The number of participants with ischemic stroke was large, and 217 hospitals across China
17 18	6	were included.
19 20 21	7	This is the first time the association between stroke volume, processes of care, and outcomes
22 23 24	8	was explored in China.
25 26	9	Some processes of care, especially the processes of care after discharge, cannot be obtained
27 28 29	10	in this study.
30 31	11	The hospitals that participated were volunteers, and unavoidable selection bias may exist.
32 33 34	12	
35 36 37		
38 39		
40 41 42		
43 44 45		
46 47		
48 49 50		
51 52		
53 54 55		
56 57 58		
59 60		3
		J

1 Introduction

2	Previous studies have shown that the number of patients treated in a hospital (hospital
3	volume) may be associated with outcomes in specific surgical procedures involving aortic
4	valve replacement, carotid endarterectomy, coronary artery bypass surgery, and cancer-
5	related surgeries. ¹⁻⁵ The volume-outcome relationship is also described in some medical
6	conditions, including heart failure, acute myocardial infarction, pneumonia, and brain
7	injury. ⁶⁻⁸ The magnitude of the association was varied significantly in studies. ⁹ If there were
8	inverse relation between hospital volume and outcomes, it was of significance to make
9	volume-based referral strategies. ¹⁰ Several studies have examined the association between
10	hospital stroke volume and mortality for stroke patients. However, the results were
11	controversial. Some ^{11, 12} found that stroke patients in high-volume hospitals had decreased
12	case fatality, but some ^{13, 14} were not. Most of the studies evaluated the short-term mortality,
13	and the results on long-term outcomes were limited. What's more, the associations between
14	hospital volume and recurrent stroke and poor outcome were not well characterized.
15	We hypothesize that the hospitals with higher volume may character by a high quality of
16	care, which in turn improves the prognosis of patients with stroke. This study aimed to
17	examine the association between hospital stroke volume and outcomes, including mortality,
18	recurrent stroke, combined vascular events, and poor outcome at 3 months and 1 year after
19	stroke onset. We also examined the association between hospital stroke volume and the
20	process of care for ischemic stroke.

21 Methods

Ethics approval

This study was approved by the Ethics Committee of Beijing Tiantan Hospital (No. ky2012-

005-01). Written informed consent was obtained from the patients or their relatives.

5 Study Design and Setting

The Second China National Stroke Registry (CNSR II) was a national multicenter hospitalbased cohort study. CNSR II was launched in June 2012 in China. The primary objectives
were to evaluate the delivery of stroke care and identify suboptimal performance metrics to
be improved.¹⁵ The hospitals were selected based on similar criteria in CNSR I launched in
2007, which had been published elsewhere.¹⁶ After assessing the hospital characteristics, such
as location, teaching status, number of beds, and annual stroke discharges by the steering
committee, a total of 219 hospitals were included in CNSR II.¹⁷

14 Study Population

The patients were consecutively recruited from June 2012 to January 2013. The inclusion
criteria were as follows (1) age 18 years or above; (2) presented within seven days of the
index event of acute ischemic stroke (AIS), transient ischemic attack (TIA), intracerebral
hemorrhage, or subarachnoid hemorrhage, confirmed by brain computed tomography or
magnetic resonance imaging; (3) direct hospital admission from a physician's clinic or
emergency department. A total of 25,018 patients were included in CNSR II; of them,
19,604 were AIS.

There were 1200 (6.12%) patients lost at 3 months and 2306 (11.76%) patients lost at 1

BMJ Open

year. We excluded the patients who missed information on the process of care and those who
lost to follow-up at 3 months and 1 year. Finally, 17,550 patients and 16,482 patients with
AIS were available for evaluating the association between hospital volume and 3-month
outcomes and 1-year outcomes, respectively. A total of 17,438 patients achieved mRS at 3
months, and 16,462 patients achieved mRS at 1 year.

Data Collection

Data were collected following a standardized form by trained research coordinators. The
information on demographics, health insurance, education, smoking, drinking, comorbidities
(hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke or TIA), and
medication history were abstracted from medical records. National Institutes of Health Stroke
Scale (NIHSS) at admission and modified Rankin Scale (mRS) prior to the index event were
assessed through a face-to-face interview.

Hospital stroke volume was defined as the annual number of stroke discharges. The annual stroke discharges of each hospital were obtained via the hospital survey when they applied to participate in this study. Additionally, the hospital characteristics, including location, academic status, the presence of stroke unit, and the number of beds, were obtained by the survey.

Process Measures

We selected ten guideline-recommended process measures according to the national
guideline and the Get With The Guidelines-Stroke (GWTG-Stroke).¹⁸ There were four acute

phage process measures, including (1) intravenous recombinant tissue plasminogen activator (rt-PA) in patients who arrived within 2 hours after symptom onset and were treated within 3 hours, (2) antithrombotics within 2 days after admission, (3) deep vein thrombosis (DVT) prophylaxis, and (4) dysphagia screening. There were six process measures at discharge, including (1) antithrombotic medication, (2) antihypertensive medication for patients with hypertension, (3) hypoglycemic medication for patients with diabetes, (4) anticoagulation for atrial fibrillation, (5) lowering low-density lipoprotein cholesterol (LDL-C) medication, and (6) smoking cessation. The definitions of the process measures are shown in Supplemental Table 1. Additionally, we calculated a binary defect-free measure of care, defined as the patient receiving all the processes for which they were eligible.^{19, 20} Process measures are applied only to qualified patients ... rationale as to why therapy was not provided.²¹ applied only to qualified patients in the absence of documented contraindications or any other

Clinical Outcomes

According to the study protocol, all patients were followed up at 3, 6, and 12 months by telephone or face-to-face interview. Trained research coordinators collected the clinical outcomes. In this study, the outcomes included all-cause mortality, poor outcome, recurrent stroke, and combined vascular events at 3 months and 1 year. The stroke recurrence was defined as a new ischemic stroke or hemorrhagic stroke within 3 months or 1 year after symptom onset. Composite vascular events included myocardial infarction, recurrent stroke, and vascular death. The poor outcome was defined as mRS of 3 to 6.

Statistical Analysis

BMJ Open

The patients were categorized into four groups according to the quartiles of hospital volume:

-	The putchus were europoinzed into rour groups decording to the quarties of hospital volume.
3	Q1 (<300 /year), Q2 (300-436 /year), Q3 (437-722 /year), Q4 (>722 /year). Continuous
4	variables were described as mean \pm standard deviation (SD) or median and interquartile
5	range. Categorical variables were described as proportions. The patient characteristics were
6	compared using ANOVA, Kruskal-Wallis test, or chi-square test. Additionally, in order to
7	obtain the P for trend, we used Cochran-Mantel-Haenszel non-zero correlation tests for
8	continuous variables and Cochran-Mantel-Haenszel row mean scores for categorical
9	variables.
10	The generalized estimating equations with an exchangeable working correlation matrix
11	were used to evaluate the association between hospital volume, the process of care, and
12	outcomes adjusting for the cluster effect within the hospital. In the adjusted models, age, sex,
13	health insurance (urban resident basic medical insurance, new rural cooperative medical
14	scheme, commercial insurance, self-payment), education (elementary or below, middle
15	school, high school or above), previous or current smoking, drinking, comorbidities
16	(hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke), NIHSS at
17	admission, and hospital characteristics (academic status, number of beds, presence of stroke
18	unit, and location) were included. Additionally, the defect-free measure of care was included
19	in the adjusted model when estimating the association between hospital volume and
20	outcomes. We used the Kaplan-Meier method to depict the cumulative hazards of all-cause
21	mortality and recurrent stroke. Odds ratios (ORs) and corresponding 95% confidence
22	intervals (CIs) were used with the hospital volume of Q4 as reference. Additionally, we used
	8

restricted cubic splines with five knots at the 5th, 35th, 50th, and 95th centiles to model the association between hospital volume and outcomes. We tested for non-linearity by using the Wald statistics. All analyses were performed by SAS version 9.4 (SAS Institute) and R version 3.5.1. All P values were two-tailed with a significant level of 0.05. Patient and public involvement Patients and the public were not involved in the design, conduct, reporting, or dissemination plans of our research. **Results** A total of 17,550 patients with AIS from 217 hospitals across China were included in this study. The process of patient selection is shown in Figure 1. Patients included in the current study and those excluded were largely comparable (supplemental Table 2). Table 1 describes the baseline characteristics of the included hospitals and patients.

Of the 217 included hospitals, 125 (57.6%) were teaching hospitals, and the high-volume
hospitals were likely to be teaching hospitals. There were 121 hospitals in the east of China,
66 in the middle of China, and 30 in the west of China. The average hospital volume was 437
per year, ranging from 136 to 2048.

The mean age was 65 (57-74), and 63.6% of the patients were males. The median NIHSS at admission was 4 (2-7) and the median days of hospitalization were 13 (9-16). Compared with the high-volume hospitals, there were more females, and the patients were older in lowvolume hospitals. The patients in high-volume hospitals were more likely to be with diabetes

1 2 **BMJ** Open

~	
3	
4	
5	
6	
6	
/	
8	
9	
10	
11	
12	
13	
1.4	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
29	
30	
31	
32	
33	
21	
34	
35	
36	
37	
57	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

and hyperlipidemia but less likely to be with atrial fibrillation. The proportions of taking
 antiplatelet and lipid-lowing medicine were higher in high-volume hospitals than that in low volume hospitals.

5 Association between Hospital Volume and Process Measures

6 Table 2 list the rates of achievement in process measures. Compared with the hospitals of Q4, 7 the unadjusted OR of defect-free measure of care was 0.88 (95% CI, 0.62-1.25) for Q1, 1.13 (95% CI, 0.82-1.56) for Q2, and 1.15 (95% CI, 0.81-1.62) for Q3. No significant difference 8 9 was found in individual process measures, except the DVT prophylaxis for A3 (OR, 2.22; 95%CI, 1.26-3.91; P=0.0059), antithrombotic medication at discharge for Q2 (OR, 1.74; 10 95%CI, 1.09-2.76; P=0.0196), and Lowering LDL-C medication for Q3 (OR, 1.60; 95%CI, 11 1.10-2.33; P=0.0134) (Supplemental Table 3). 12 Table 3 shows the adjusted ORs for process measures. After adjusting for the patients and 13 hospital characteristics, the adjusted OR of defect-free measure of care was 0.93 (95% CI, 14

15 0.61-1.42) for Q1, 1.25 (95% CI, 0.85-1.85) for Q2, and 1.11 (95% CI, 0.76-1.63) for Q3. All

16 the individual performance measures show no significant association (all P > 0.05).

17

18 Association between Hospital Volume and 3-Month and 1-Year Outcomes

Of the included patients, 1322 (7.53%) died within 1 year after stroke onset. The KaplanMeier plot for mortality within 1 year was shown in Figure 2. The 3-month and 1-year
mortality was different across the 4 groups (3-month mortality, 4.95% versus 3.64% versus

22 4.33% versus 3.39%, P=0.0011; 1-year mortality, 9.59% versus 7.69% versus 8.39% versus

2
3
4
5
5 6 7
8
9
10
11 12
12 13
14
15
16
16 17 18
18 19
20
21
22
23 24
24 25
26
26 27
28
29
30 31
32
33
34
35
36 37
38
39
40
41 42
42 43
44
45
46
47 48
40 49
50
51
52
53 54
54 55
56
57
58
59 60
00

1

1	7.16%, P=0.0006) (Table 4). At 3 months and 1 year, the mortality was a little higher in Q1
2	hospitals (OR at 3 months=1.54, 95% CI 1.13-2.09, P=0.0059; OR at 1 year=1.48, 95% CI
3	1.17-1.88; P=0.0013), but not Q2 or Q3 hospitals in compared with Q4 hospitals. However,
4	the difference was not significant when adjusted for potential factors (Table 5).
5	A total of 3683 (21.12%) patients experienced poor outcome at 3 months and 3701
6	(22.48%) at 1 year (Table 4). Patients presenting to low-volume hospitals were more likely to
7	have a higher rate of poor outcome at 3 months (23.41% versus 19.51% versus 21.37%
8	versus 21.15%, P=0.0003; OR _{Q1 versus Q4} =1.22, 95% CI 1.01-1.47, P=0.0377) and 1 year
9	(25.69% versus 20.71% versus 21.81% versus 22.65%, P<0.0001; OR _{Q1 versus Q4} =1.29, 95%
10	CI 1.08-1.54, P=0.0043). When adjusted for potential factors, there was still a higher rate of
11	poor outcome at 1 year among Q1 hospitals in comparison with Q4 hospitals ($OR_{Q1 \text{ versus } Q4}$
12	=1.29, 95% CI 1.01-1.64, P=0.0393).
13	There were 1199 (6.83%) patients with recurrent stroke within 1 year. The Kaplan-Meier
14	plot for recurrent stroke within 1 year is shown in Figure 3. The recurrence rate was similar
15	across the four groups (7.15% versus 7.59% versus 6.85% versus 6.38%, P=0.1121) (Table
16	4). No significant association was found between hospital volume and stroke recurrence at 3
17	months and 1 year. Similar results were observed for combined vascular events (Table 5).
18	In Figures 3-6, we used restricted cubic splines to flexible model and visualize the relation

19 of all-cause mortality, poor outcome, stroke recurrence, and combined vascular events with

20 hospital stroke volume. The multivariable-adjusted restricted cubic splines suggested a "J-

21 shaped" association between volume and all-cause mortality and poor outcome. The analyses

22 indicated a significant non-linear association between volume and poor outcome at 3 months

BMJ Open

1	and 1 year (P for non-linear =0.0096 and <0.001, respectively), as well as combined vascular
2	events at 1 year (P for non-linear = 0.0242).

3 Discussion

Our analysis of a large population of 17,550 patients with ischemic stroke suggested that no
significant difference in the process of care was observed for patients in lower-volume
hospitals compared to higher-volume hospitals. There was no association between hospital
volume and mortality, stroke recurrence, and combined vascular events at 3 months and 1
year. In contrast, we found that the patients in the lowest volume quartile had a significantly
higher rate of poor outcome at 1 year than the highest quartile.

Previous studies found that high volume was associated with improved outcomes suggesting that volume may be a surrogate for quality of care. The quality of care can be assessed from outcome, process, and structure.²² Usually, hospital volume is used as a structure metric of quality of care. However, the underlying mechanisms of interplay between structure and process are complex.²³ Two existing studies^{13, 23} showed that the patients in high-volume hospitals received more process of care compared with patients in low-volume hospitals. Potential mechanisms were proposed to explain this association, including more experience ("practice makes perfect") and the availability of advanced techniques and devices in high-volume hospitals.^{7,23} In contrast, we did not find an association between hospital stroke volume and process measures in the current study. This was similar to a study from GWTG-Stroke. This study from 790 US hospitals, including 322,847 patients with ischemic stroke or transient ischemic attack, observed no differences in performance

measures between high-volume and low-volume hospitals after adjusting for patient baseline characteristics.¹⁸ In the past years, many initiatives for improving the quality of care have been implemented to homogenize the quality of care in hospitals, such as GWTG-Stroke, Australian Stroke Clinical Registry, and CNSR,²⁴ which may attenuate the difference in quality of care between high-volume and low-volume hospitals. During the past decades, a significant number of studies evaluated the volume-outcome association. Many, but not all, found the reverse relationship between volume and outcome.⁹ Several studies revealed that stroke patients in high-volume hospitals may experience lower short-term mortality than patients in low-volume hospitals.^{11, 12, 25, 26} However, we found no benefit in mortality for patients in high-volume hospitals. Several reasons may explain this discrepancy. First, the hospital volume was varied in these studies. Moreover, stroke severity is an essential factor affecting the patient's prognosis. Whether stroke severity was adjusted may contribute to the results.¹³ Lacking data on stroke severity, most studies used comorbidity or comorbidity index score to adjust the case mix.^{11, 12, 25, 26} In this study we used the NIHSS score at admission to adjust the stroke severity. Our finding is compatible with a Danish nationwide cohort study of 63,995 patients admitted to stroke units.²³ This study found no association between volume and 30-day mortality and 1-year mortality after adjusting for patient baseline characteristics, stroke unit, university status, and quality of care. Mortality may be insensitive to detecting underlying changes in patient prognosis.²³ Besides mortality, we also examined the association between hospital volume and poor outcome, stroke recurrence, and combined vascular events. To our knowledge, it was the first time to evaluate the association between volume and poor outcome at 3 months and 1 year in

Page 15 of 43

BMJ Open

patients with acute ischemic stroke. Compared with the highest quartile of hospitals, patients in the lowest quartile had a higher rate of poor outcome at 1 year after adjusting for potential confounders. The poor outcome may be more sensitive to detecting the changes in patient prognosis. The underlying mechanisms of volume on poor outcome are not known. Though there was no significant difference in the process of care during acute phage and at discharge between low- and high-volume hospitals, the differences in some other processes of care after discharge may explain this association. Patients in high-volume hospitals may receive more processes after discharge, such as, limb rehabilitation, which can improve the poor outcome. The association between volume and the poor outcome may be mediated by medical care after discharge. However, we could not identify the medical care after discharge in the current study. In the future, the association between volume, the process of care after discharge, and long-term outcomes are needed for further exploration. Though the significant association, we did not think it is reasonable to regionalize stroke care. Because the transferring may lead to a delay in admission, which may offset some benefits of being admitted to large-volume hospitals.¹¹ Several limitations in this study should be acknowledged. First, the hospitals that

participated in the CNSR were volunteers. There may exist unavoidable selection bias. And the hospitals enrolled may not fully represent the general hospitals in China. Second, though ten processes of care were evaluated, some other processes of care, such as, mechanical thrombectomy, and the care patients received after discharge could not be assessed. The differences in unassessed process measures may explain the association between volume and poor outcome. Third, there is a cluster effect within hospitals and physicians. Tough we take

into consideration of the cluster effect within hospitals by using the generalized estimating equations, we cannot adjust the cluster effect within physicians. Forth, because of the differences in patients, hospital characteristics, and performance of care across varied regions and countries, our results may not generalize to other countries. Further studies on volume and clinical outcome, especially the poor outcome, are needed to confirm our results.

7 Conclusions

Using the large national stroke registry, we found no association between hospital stroke volume, the process of care, and 1-year mortality. However, the patients in the lowest quartile of hospitals had increased rates of poor outcome compared with the patients in the highest quartile of hospitals. Further work needs to be done to examine whether the medical care after discharge mediates the association between stroke volume and poor outcome. Better understanding the association between structure, processes, and outcomes can help to identify the best way to improve stroke prognosis.

16 Availability of data and materials

17 The datasets used and analyzed during the current study are available from the corresponding18 author on reasonable request.

Sources of Funding: This study was supported by the Ministry of Science and Technology
of the People's Republic of China (2018YFC1312903, 2017YFC1307702), Capital's Funds

BMJ Open

3 4	1	for Health Improvement and Research (2020-1-2041, 2022-2G-2049), National Natural							
5 6	2	Saiana	a Foundation of China (81870005) Daiiing Municipal Science & Technology						
7 8	2	Scienc	e Foundation of China (81870905), Beijing Municipal Science & Technology						
9 10	3	Comm	hission (D171100003017002).						
11 12 13	4								
14 15	5	Disclo	Disclosures: None.						
16 17 18	6								
19 20 21	7	Autho	Author contributions						
22 23	8	Conce	onception and design: RH Zhang, MG Zhou, YJ Wang; Provision of study materials or						
24 25 26	9	patient	atients: YJ Wang; Collection and assembly of data: YJ Wang; Data analysis and interpretation:						
27 28	10	RH Zł	RH Zhang, GF Liu, YS Pan; Manuscript preparation, editing, and review: All authors. MG						
29 30 31	11	Zhou a	Zhou and YJ Wang take responsibility for the integrity of the work.						
32 33 34 25	12								
35 36	13	Refere	References						
37 38 39									
40 41	14	1.	Khera S, Kolte D, Gupta T, et al. Association Between Hospital Volume and 30-Day						
42 43 44	15		Readmissions Following Transcatheter Aortic Valve Replacement. JAMA Cardiol. 2017;2:732-						
45 46	16		741						
47 48 49	17	2.	Wennberg DE, Lucas FL, Birkmeyer JD, et al. Variation in carotid endarterectomy mortality in						
50 51	18		the Medicare population: trial hospitals, volume, and patient characteristics. JAMA.						
52 53 54	19		1998;279:1278-1281						
55 56	20	3.	Hata T, Motoi F, Ishida M, et al. Effect of Hospital Volume on Surgical Outcomes After						
57 58 59	21		Pancreaticoduodenectomy: A Systematic Review and Meta-analysis. Ann Surg. 2016;263:664-						
60			16						

1						
2 3						
4	1		672			
5 6						
7	2	4.	Gilligan MA, Neuner J, Zhang X, et al. Relationship between number of breast cancer			
8 9	3		operations performed and 5 year survival after treatment for early stage breast cancer Am/c			
10	3		operations performed and 5-year survival after treatment for early-stage breast cancer. Am J			
11 12	4		Public Health. 2007;97:539-544			
13						
14 15	5	5.	Nishigori T, Miyata H, Okabe H, et al. Impact of hospital volume on risk-adjusted mortality			
16						
17 18	6		following oesophagectomy in Japan. <i>Br J Surg</i> . 2016;103:1880-1886			
19	7	6.	Ross JS, Normand SL, Wang Y, et al. Hospital volume and 30-day mortality for three common			
20 21	1	0.	Ross 33, Normand 3L, Wang 1, et al. Hospital volume and 30-day mortality for three common			
22	8		medical conditions. N Engl J Med. 2010;362:1110-1118			
23 24						
25	9	7.	Kumbhani DJ, Fonarow GC, Heidenreich PA, et al. Association Between Hospital Volume,			
26 27						
28	10		Processes of Care, and Outcomes in Patients Admitted With Heart Failure: Insights From Get			
29 30	11		With The Guidelines-Heart Failure. <i>Circulation</i> . 2018;137:1661-1670			
31						
32 33	12	8.	Wada T, Yasunaga H, Doi K, et al. Relationship between hospital volume and outcomes in			
34						
35 36	13		patients with traumatic brain injury: A retrospective observational study using a nationa			
37						
38 39	14		inpatient database in Japan. <i>Injury</i> . 2017;48:1423-1431			
40	15	9.	Halm EA, Lee C, Chassin MR. Is volume related to outcome in health care? A systematic review			
41 42		•				
43	16		and methodologic critique of the literature. Ann Intern Med. 2002;137:511-520			
44 45						
46	17	10.	Ogbu UC, Slobbe LC, Arah OA, et al. Hospital stroke volume and case-fatality revisited. Med			
47 48	4.0					
49	18		<i>Care</i> . 2010;48:149-156			
50 51	19	11.	Hall RE, Fang J, Hodwitz K, et al. Does the Volume of Ischemic Stroke Admissions Relate to			
52						
53 54	20		Clinical Outcomes in the Ontario Stroke System? Circ Cardiovasc Qual Outcomes.			
55						
56 57	21		2015;8:S141-147			
58	20	10	Sapaanik C. Baiharganaya A. O'Dannall M. at al. Haanital valuma and strake subservations it			
59 60	22	12.	Saposnik G, Baibergenova A, O'Donnell M, et al. Hospital volume and stroke outcome: does it			
			17			

BMJ Open

2			
3 4 5	1		matter? <i>Neurology</i> . 2007;69:1142-1151
6 7 8	2	13.	Lee KJ, Kim JY, Kang J, et al. Hospital Volume and Mortality in Acute Ischemic Stroke Patients:
9 10	3		Effect of Adjustment for Stroke Severity. J Stroke Cerebrovasc Dis. 2020;29:104753
11 12 13	4	14.	Wada T, Yasunaga H, Inokuchi R, et al. Relationship between hospital volume and early
14 15 16	5		outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen
17 18	6		activator. <i>Int J Stroke</i> . 2015;10:73-78
19 20 21	7	15.	Li Z, Wang C, Zhao X, et al. Substantial Progress Yet Significant Opportunity for Improvement
22 23 24	8		in Stroke Care in China. <i>Stroke</i> . 2016;47:2843-2849
25 26	9	16.	Wang Y, Cui L, Ji X, et al. The China National Stroke Registry for patients with acute
27 28 29	10		cerebrovascular events: design, rationale, and baseline patient characteristics. Int J Stroke.
30 31	11		2011;6:355-361
32 33 34	12	17.	Bettger JP, Li Z, Xian Y, et al. Assessment and provision of rehabilitation among patients
35 36 37	13		hospitalized with acute ischemic stroke in China: Findings from the China National Stroke
38 39	14		Registry II. Int J Stroke. 2017;12:254-263
40 41 42	15	18.	Schwamm LH, Fonarow GC, Reeves MJ, et al. Get With the Guidelines-Stroke is associated
43 44 45	16		with sustained improvement in care for patients hospitalized with acute stroke or transient
46 47	17		ischemic attack. <i>Circulation</i> . 2009;119:107-115
48 49 50	18	19.	Cumbler E, Wald H, Bhatt DL, et al. Quality of care and outcomes for in-hospital ischemic stroke:
51 52	19		findings from the National Get With The Guidelines-Stroke. <i>Stroke</i> . 2014;45:231-238
53 54 55	20	20.	Man S, Cox M, Patel P, et al. Differences in Acute Ischemic Stroke Quality of Care and
56 57 58	21		Outcomes by Primary Stroke Center Certification Organization. Stroke. 2017;48:412-419
59 60	22	21.	Wang YJ, Li ZX, Gu HQ, et al. China Stroke Statistics 2019: A Report From the National Center
			18

1 2			
3			
4 5	1		for Healthcare Quality Management in Neurological Diseases, China National Clinical
6 7	2		Research Center for Neurological Diseases, the Chinese Stroke Association, National Center
8 9 10	3		for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for
11 12 13	4		Disease Control and Prevention and Institute for Global Neuroscience and Stroke
14 15	5		Collaborations. Stroke Vasc Neurol. 2020;5:211-239
16 17 18	6	22.	Donabedian A. Evaluating the quality of medical care Milbank Q. 2005;83:691-729
19 20	7	23.	Svendsen ML, Ehlers LH, Ingeman A, et al. Higher stroke unit volume associated with improved
21 22 23	8		quality of early stroke care and reduced length of stay. <i>Stroke</i> . 2012;43:3041-3045
24 25 26	9	24.	Cadilhac DA, Kim J, Lannin NA, et al. National stroke registries for monitoring and improving
27 28	10		the quality of hospital care: A systematic review. Int J Stroke. 2016;11:28-40
29 30 31	11	25.	Saposnik G, Jeerakathil T, Selchen D, et al. Socioeconomic status, hospital volume, and stroke
32 33	12		fatality in Canada. <i>Stroke</i> . 2008;39:3360-3366
34 35 36	13	26.	Tsugawa Y, Kumamaru H, Yasunaga H, et al. The association of hospital volume with mortality
37 38 39	14		and costs of care for stroke in Japan. <i>Med Care</i> . 2013;51:782-788
40			
41 42			
43 44			
45			
46 47			
48 49			
50			
51 52			
53 54			
55			
56 57			
58 59			
59 60			
			19

				6/bmjopen-2021-060015		
Total	Q1 hospitals	Q2 hospitals	Q3 hospitals	Q4 dospitals		Р
(n=17550)	<300/year (n=3371)	300-436/year (n=5386)	437-722/year (n=3281)	(n=5512)	Р	tre
				mloade		
217	53	56	53	55 from		
125 (57.6%)	23 (43.4%)	23 (41.1%)	37 (69.8%)	42 (7.4%)	<.0001	<.00
121 (55.8%)	24 (45.3%)	24 (42.9%)	35 (66%)	38 (69.1%)	0.0062	0.00
1000 (600-	600 (500-	780 (515-	1300 (1000-	1500 1200-	<.0001	<.00
1650)	800)	1000)	2000)	2200)		
				n April		
121 (55.8%)	29 (54.7%)	35 (62.5%)	28 (52.8%)	29 (5 ³ / ₂₀ 7%)	0.6967	<.00
66 (30.4%)	15 (28.3%)	13 (23.2%)	20 (37.7%)	18 (32.7%)		
30 (13.8%)	9 (17%)	8 (14.3%)	5 (9.4%)	8 (14:5%)		
				ote		
	(n=17550) 217 125 (57.6%) 121 (55.8%) 1000 (600- 1650) 121 (55.8%) 66 (30.4%)	Total $(n=17550)$ <300/year $(n=3371)$ 21753125 (57.6%)23 (43.4%)121 (55.8%)24 (45.3%)1000 (600-600 (500-1650)800)121 (55.8%)29 (54.7%)66 (30.4%)15 (28.3%)	Total (n=17550)<300/year $(n=3371)$ 300-436/year (n=5386)2175356125 (57.6%)23 (43.4%)23 (41.1%)121 (55.8%)24 (45.3%)24 (42.9%)1000 (600-600 (500-780 (515-1650)800)1000)121 (55.8%)29 (54.7%)35 (62.5%)66 (30.4%)15 (28.3%)13 (23.2%)	Total (n=17550)<300/year $(n=3371)$ 300-436/year (n=5386)437-722/year (n=3281)217535653125 (57.6%)23 (43.4%)23 (41.1%)37 (69.8%)121 (55.8%)24 (45.3%)24 (42.9%)35 (66%)1000 (600-600 (500-780 (515-1300 (1000-1650)800)1000)2000)121 (55.8%)29 (54.7%)35 (62.5%)28 (52.8%)66 (30.4%)15 (28.3%)13 (23.2%)20 (37.7%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {\rm Total} \\ (n=17550) \\ \hline \\ (n=3371) \\ (n=5386) \\ (n=3281) \\ (n=3281) \\ (n=55512) \\ \hline \\ \\ 125 (57.6\%) \\ 23 (43.4\%) \\ 23 (41.1\%) \\ 37 (69.8\%) \\ 42 (76.4\%) \\ (n=558\%) \\ 24 (45.3\%) \\ 24 (42.9\%) \\ 35 (66\%) \\ 38 (69.1\%) \\ (n=558\%) \\ 24 (45.3\%) \\ 24 (42.9\%) \\ 35 (66\%) \\ 38 (69.1\%) \\ (n=558\%) \\ 24 (45.3\%) \\ 24 (42.9\%) \\ 35 (66\%) \\ 38 (69.1\%) \\ (n=5512) \\ \hline \\ \\ (n=55512) \\ (n=55512) \\ (n=55512) \\ (n=55512) \\ (n=55512) \\ (n=3281) \\ (n=55512) \\ (n=5$

		BMJ Open		6/bmjope
				ən-2021-1
11163 (63.6%)	2126 (63.1%)	3349 (62.2%)	2108 (64.2%)	3580 864.9%)
65(57-74)	66(57-75)	65(57-74)	66(58-74)	64(55873)

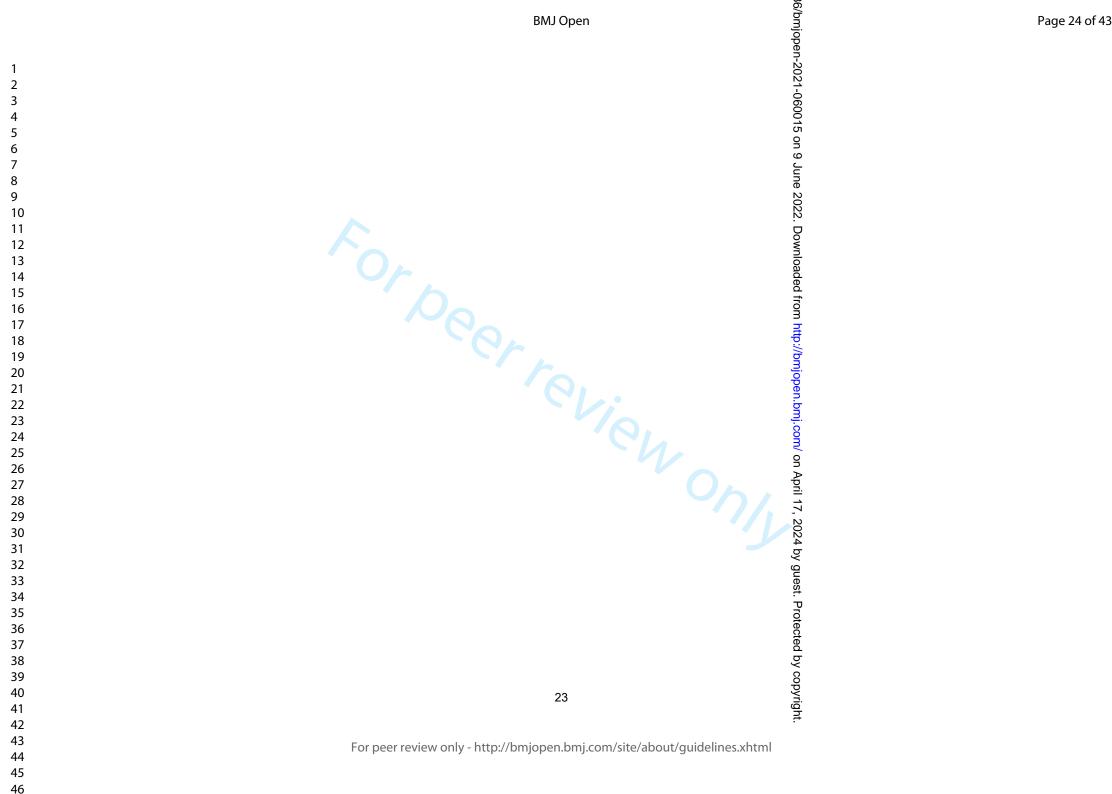
Page 2	22 of 4	3
--------	---------	---

0.0183 0.0085

ו ר	
2 3	
5 4	
4 5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
25	
26 27	
27	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

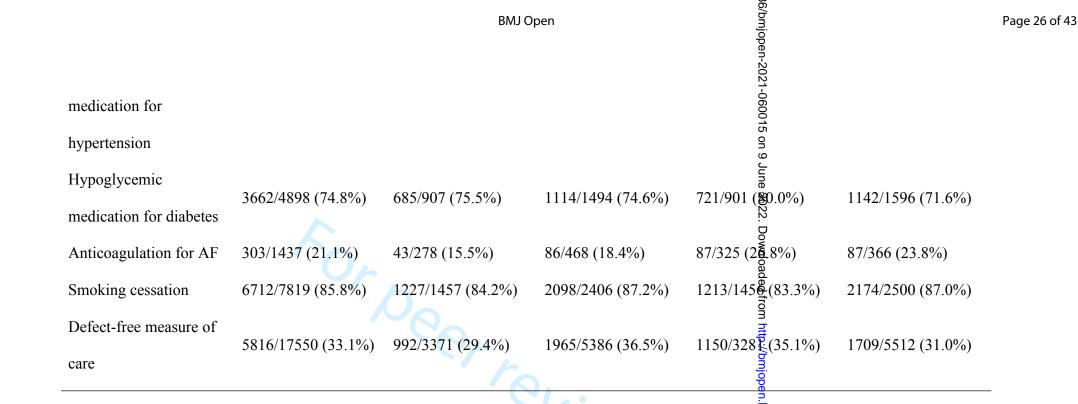
1

Male


Age	65(57-74)	66(57-75)	65(57-74)	66(58-74)	55 64(55 %33)	<.0001	<.0001
Health insurance					June 2		
URBMI	8959 (51%)	1715 (50.9%)	2552 (47.4%)	1568 (47.8%)	3124 (56.7%)	<.0001	<.0001
NRCMS	6932 (39.5%)	1369 (40.6%)	2440 (45.3%)	1394 (42.5%)	1729 💐 31.4%)		
Commercial insurance	60 (0.3%)	8 (0.2%)	27 (0.5%)	4 (0.1%)	21 (0.4%)		
Self-payment	1599 (9.1%)	279 (8.3%)	367 (6.8%)	315 (9.6%)	638 (<u>1</u> 1.6%)		
Education					//bmjop		
Elementary or below	7934 (45.2%)	1693 (50.2%)	2430 (45.1%)	1678 (51.1%)	2133 38.7%)	<.0001	<.0001
Middle school	4109 (23.4%)	715 (21.2%)	1286 (23.9%)	661 (20.1%)	1447 (26.3%)		
High School or above	5507 (31.4%)	963 (28.6%)	1670 (31%)	942 (28.7%)	1932 <u>\$</u> 35.1%)		
Previous or current					117, 2		
smoking	7818 (44.5%)	1457 (43.2%)	2406 (44.7%)	1455 (44.3%)	2500 \$45.4%)	0.2676	0.0836
Drinking	5277 (30.1%)	872 (25.9%)	1681 (31.2%)	995 (30.3%)	1729 (31.4%)	<.0001	0.0001
Medical history					Protec		
Hypertension	11386 (64.9%)	2156 (64%)	3511 (65.2%)	2136 (65.1%)	3583 ¢65%)	0.6614	0.459
			21		copyright.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 43


			BMJ Open		5/bmjop		
					6/bmjopen-2021		
Diabetes	3630 (20.7%)	658 (19.5%)	1097 (20.4%)	673 (20.5%)	1202 21.8%)	0.0599	0.0086
Hyperlipidemia	2128 (12.1%)	372 (11%)	808 (15%)	384 (11.7%)	564 (\$ 0.2%)	<.0001	0.0001
Atrial fibrillation	1185 (6.8%)	212 (6.3%)	402 (7.5%)	280 (8.5%)	291 (\$.3%)	0.0001	0.0174
Stroke or TIA	5918 (33.7%)	1084 (32.2%)	1886 (35%)	1113 (33.9%)	1835 (33.3%)	0.0411	0.8641
Medication history					ownload		
Antiplatelet	3444 (19.6%)	599 (17.8%)	1008 (18.7%)	712 (21.7%)	1125 (20.4%)	<.0001	0.0002
Anticoagulation	178 (1%)	33 (1%)	69 (1.3%)	35 (1.1%)	41 (0 ³ 7%)	0.0467	0.0696
Antihypertension	7868 (44.8%)	1454 (43.1%)	2592 (48.1%)	1401 (42.7%)	2421 4 3.9%)	<.0001	0.1248
Lipid-lowering	1207 ((00/)	105 (5.00/)	407 (00/)	241 (7.20/)		< 0.001	0.000
medicine	1207 (6.9%)	195 (5.8%)	487 (9%)	241 (7.3%)	284 (§ :2%)	<.0001	0.0002
Antidiabetics	2782 (15.9%)	500 (14.8%)	875 (16.2%)	509 (15.5%)	898 (§6.3%)	0.2276	0.1842
NIHSS at admission	4(2-7)	4(2-7)	4(2-6)	4(2-8)	4(2-7)	<.0001	<.000]
Days of hospitalization	13 (9-16)	13 (10-16)	13 (9-15)	13 (9-16)	13 (10-16)	<.0001	0.0211

URBMI, urban resident basic medical insurance; NRCMS, new rural cooperative medical scheme; TIA, transient ischemic attack; NIHSS, National Institutes of Health Stroke Scale.

Page 25 of 43

Table 2. The fates of ac	hievement in process me	easures		6/bmjopen-2021-060015		
Process measures	Total	Q1 hospitals	Q2 hospitals	Q3 hospitals	Q4 hospitals	
	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achieveme	
	rate, %)	rate, %)	rate, %)	rate, %)	rate, %)	
Rt-PA	217/1303 (16.7%)	36/250 (14.4%)	75/497 (15.1%)	25/200 (12.5%)	81/356 (22.8%)	
Early antithrombotic	14555/17243 (84.4%)	2802/3303 (84.8%)	4508/5307 (84.9%)	2903/3199 (90.7%)	4342/5434 (79.9%	
Dysphagia screening	14876/17550	2630/3371 (78.0%)	4860/5386 (90.2%)	2615/328 (79.7%)	4771/5512 (86.6%	
DVT prophylaxis	(84.8%) 3367/5079 (66.3%)	630/944 (66.7%)	1006/1481 (67.9%)	689/914 (₹5.4%)	1042/1740 (59.9%	
Antithrombotic	14722/16002 (92%)	2845/3058 (93.0%)	4481/4765 (94.0%)	2839/3089(91.9%)	4557/5090 (89.5%	
medication	11122/10002 (9270)	2010/0000 (75.070)		2007,2024	155775070 (07.570	
Lowering LDL-C medication	7700/11597 (66.4%)	1436/2247 (63.9%)	2591/3621 (71.6%)	1523/212 ⁽²⁾ (71.8%)	2150/3609 (59.6%	
Antihypertensive	8867/13385 (66.2%)	1712/2611 (65.6%)	2764/4207 (65.7%)	1710/2478 (69.2%)	2681/4097 (65.4%	

 N1 indicates the number of patients who received the process of care, and N2 indicates the number of patients eligible. Rt-PA indicates recombinant

tissue plasminogen activator; DVT, deep vein thrombosis; AF, atrial fibrillation; LDL-C, low-density lipoprogein cholesterol.

April 17, 2024 by guest. Protected by copyright

	BMJ Open					
Table 3. The association between hospital	volume and process me	asures		16/bmjopen-2021-060015 on 9 、		
	Q1 VS Q4		Q2 VS Q4		Q3 VS Q4	
	Adjusted OR (95%		Adjusted OR (95%	2022. Do	Adjusted OR (95%	
Performance measures	CI)	Р	CI)	. Downloade	CI)	Р
Rt-PA	1.54 (0.61, 3.89)	0.3614	1.46 (0.68, 3.14)	0.334 3	0.71 (0.35, 1.48)	0.
Early antithrombotic	0.68 (0.20, 2.32)	0.5364	1.17 (0.30, 4.55)	0.824	1.07 (0.36, 3.18)	0.
Dysphagia screening	0.76 (0.33, 1.74)	0.5104	2.19 (0.86, 5.55)	0.098 g	0.90 (0.42, 1.92)	0.
DVT prophylaxis	1.02 (0.52, 2.01)	0.9504	1.09 (0.57, 2.09)	0.793	1.55 (0.84, 2.83)	0.
Antithrombotic medication	1.26 (0.61, 2.61)	0.5391	1.27 (0.61, 2.64)	0.527	1.16 (0.63, 2.15)	0.
Lowering LDL-C medication	0.92 (0.57, 1.50)	0.7460	1.03 (0.62, 1.70)	0.922	1.20 (0.78, 1.84)	0.
Antihypertensive medication for	0.99 (0.71, 1.38)	0.9395	0.92 (0.67, 1.27)	0.6154 by	1.11 (0.81, 1.53)	0.
hypertension				gue		-
Hypoglycemic medication for diabetes	1.02 (0.67, 1.55)	0.9210	1.06 (0.69, 1.65)	0.7818 of	0.97 (0.65, 1.46)	0.
Anticoagulation for AF	0.63 (0.34, 1.16)	0.1365	0.87 (0.53, 1.44)	0.5848	1.05 (0.61, 1.78)	0.
		26		by copyright.		

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Open	I	6/bmjopen-202		Pa
Smoking cessation	0.56 (0.10, 2.97)	0.4939	0.67 (0.12, 3.63)	-2021-0 0.642B0	2.08 (0.25, 17.2)	0.4961
Defect-free measure of care	0.93 (0.61, 1.42)	0.7412	1.25 (0.85, 1.85)	0.263 4	1.11 (0.76, 1.63)	0.5853
Rt-PA indicates recombinant tissue				N N	; LDL-C, low-density	lipoprotein
cholesterol.				2. Downlo		
				Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by gues		
				n http://bn		
				njopen.bn		
				ıj.com/ or		
				ı April 17,		
				2024 by (
				guest. Pro		
				otected by		
		27		t. Protected by copyright.		
	For peer review only - http://l			-		

rable 4. The ra	ntes of clinical outcomes according to	o quartiles of h	ospital volume		6/bmjopen-2021-060015	
Outcome		Q1	Q2	Q3	Q4 ⁹ ₆	Р
Three months	Mortality, No. (%)	167 (4.95%)	196 (3.64%)	142 (4.33%)	187 (3.39%)	0.0011
	*Poor outcome, No. (%)	783 (23.41%)	1042 (19.51%)	698 (21.37%)	1160 (21.15%)	0.0003
	Stroke recurrence, No. (%)	178 (5.28%)	297 (5.51%)	166 (5.06%)	238 84.32%)	0.0298
	Combined vascular events, No. (%)	183 (5.43%)	303 (5.63%)	168 (5.12%)	247 (4.48%)	0.0440
One year	Mortality, No. (%)	306 (9.59%)	393 (7.69%)	256 (8.39%)	367 7.16%)	0.0006
	[#] Poor outcome, No. (%)	817 (25.69%)	1058 (20.71%)	665 (21.81%)	116 (22.65%)	<.0001
	Stroke recurrence, No. (%)	228(7.15%)	388 (7.59%)	209 (6.85%)	327 (6.38%)	0.1121
	Combined vascular events, No. (%)	236 (7.40%)	406 (7.94%)	216 (7.08%)	368 (7.18%)	0.3986
* A total of 17,4	38 patients achieved modified Rankin	Scale at 3 mont	ths. [#] A total of 16	5,462 patients ac	hievee 17, 2024 by guest. Protected by copyright.	Rankin S

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

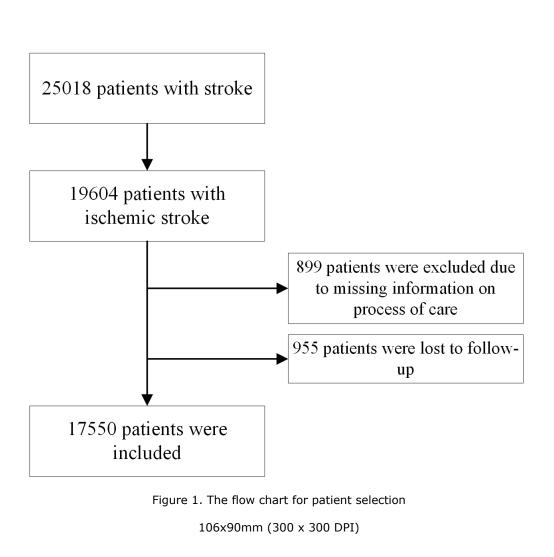
3 4

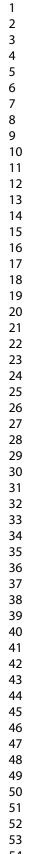
24

Page 30 of 43

Table 5. The association betwee		Q1 VS Q4		Q2 VS Q4		6/bmjopen-2021-060015 00 Q3 VS Q4	 4
Outcome		OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	F
Three months						022. Dow	
Mortality	Unadjusted	1.54 (1.13, 2.09)	0.0059	1.09 (0.85, 1.40)	0.4772	1.26 (0.89, 1.79)	0
	Adjusted	1.27 (0.88, 1.83)	0.2062	0.99 (0.75, 1.30)	0.9179	1. § (0.82, 1.68)	0
Poor outcome	Unadjusted	1.22 (1.01, 1.47)	0.0377	0.95 (0.81, 1.11)	0.5341	1.66 (0.89, 1.26)	C
	Adjusted	1.17 (0.91, 1.52)	0.2269	0.95 (0.74, 1.22)	0.6891	0.56 (0.75, 1.22)	C
Recurrent stroke	Unadjusted	1.27 (0.92, 1.75)	0.1403	1.21 (0.91, 1.61)	0.1992	$1.\underline{\underline{5}}_{\underline{5}}^{\underline{5}}$ (0.85, 1.58)	C
	Adjusted	1.16 (0.83, 1.62)	0.3798	1.11 (0.79, 1.56)	0.5474	1. 1. (0.78, 1.56)	C
Combined vascular events	Unadjusted	1.27 (0.92, 1.76)	0.1391	1.19 (0.89, 1.60)	0.2437	1. ⁵ / <u>4</u> (0.83, 1.56)	0
	Adjusted	1.15 (0.82, 1.61)	0.4109	1.09 (0.78, 1.53)	0.6167	1.08 (0.76, 1.52)	C
One year						1.08 (0.76, 1.52) by gue 1.22 (0.96, 1.54)	
Mortality	Unadjusted	1.48 (1.17, 1.88)	0.0013	1.13 (0.93, 1.38)	0.2097	1.22 (0.96, 1.54)	0
	Adjusted	1.15 (0.89, 1.47)	0.2829	0.98 (0.79, 1.22)	0.8663	1.05 (0.82, 1.35)	0

Page 31 of 43				BMJ O	pen		6/bmjope	
1 2 3	Poor outcome	Unadjusted	1.29 (1.08, 1.54)	0.0043	0.94 (0.81, 1.09)	0.4317	6/bmjopen-2021-0 1.990 (0.86, 1.17)	0.9917
4 5 6		Adjusted	1.29 (1.01, 1.64)	0.0393	0.98 (0.78, 1.24)	0.8758	0. \$ 5 (0.68, 1.06)	
7 8 9	Recurrent stroke	Unadjusted	1.20 (0.91, 1.59)	0.1939	1.18 (0.93, 1.49)	0.1853	1.(************************************	0.5552
10 11		Adjusted	1.08 (0.81, 1.43)	0.6025	1.05 (0.80, 1.37)	0.7277	1.01 (0.77, 1.32)	0.9491
12 13	Combined vascular events	Unadjusted	1.11 (0.84, 1.45)	0.4583	1.10 (0.87, 1.39)	0.4307	1.00 (0.77, 1.30)	0.9906
14 15		Adjusted	0.97 (0.75, 1.27)	0.8487	0.96 (0.75, 1.24)	0.7727	0.92 (0.71, 1.19)	0.5181
16 17 18	The adjusted covariates include	ed age, sex, he	ealth insurance (urb	oan resider	nt basic medical insu	rance, new	rura cooperative 1	nedical scheme,
19 20 21	commercial insurance, self-pay	-					//bmj	
22 23 24	drinking, comorbidities (hyper	tension, diabe	tes, hyperlipidemia	ı, atrial fibi	rillation, history of s	troke), NIH	SS at admission, h	nospital
25	characteristics (academic status	s, beds, stroke	unit, and location)	, and the c	composite measure o	f care.	m/ on Apri	
28 29 30							on April 17, 2024 by gues	
31 32							4 by gu	
33 34								
35 36							. Protected by copyright	
37							cted I	
38 39							ру со	
40				30			pyrig	
41 42							ht.	
43 44		For p	eer review only - http:	//bmjopen.k	omj.com/site/about/gui	delines.xhtml	I	


Figure legends


Figure 1. The flow chart for patient selection

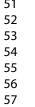
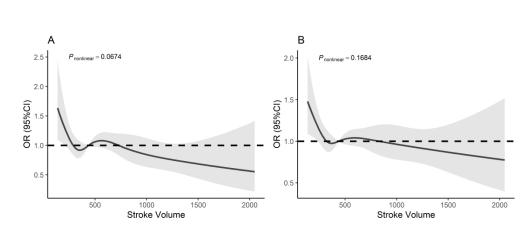

Figure 2. The Kaplan-Meier curve for mortality (A) and recurrent stroke (B) within 1 year
Figure 3. Association between hospital stroke volume and all-cause mortality. A, Hospital volume and 3-month all-cause mortality. B, Hospital volume and 1-year all-cause mortality. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

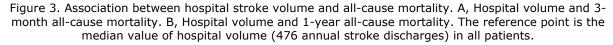
Figure 4. Association between hospital stroke volume and poor outcome. A, Hospital volume and 3-month poor outcome. B, Hospital volume and 1-year poor outcome. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.
Figure 5. Association between hospital stroke volume and recurrent stroke. A, Hospital volume and 3-month recurrent stroke. B, Hospital volume and 1-year recurrent stroke. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

Figure 6. Association between hospital stroke volume and combined vascular events. A, Hospital volume and 3-month combined vascular events. B, Hospital volume and 1-year combined vascular events. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

59

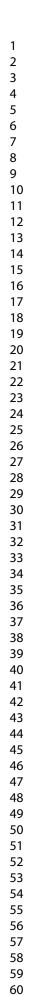
60





В А 0.100 0.100 Cumulative hazard Cumulative hazard 0.075 0.075 0.050 0.050 Volume Quartile 1 Quartile 1 Quartile 2 Quartile 2 0.025 0.025 Quartile 3 Quartile 3 Quartile 4 Quartile 4 0.000 0.000 200 100 200 300 Ó 100 300 0 Days Days Number at risk Number at risk 3079 4945 3023 5129 3197 5187 3132 5315 Quartile 1 3371 Quartile 2 5386 Quartile 3 3281 Quartile 4 5512 Quartile 1 3371 Quartile 2 5386 Quartile 3 3281 Quartile 4 5512 3136 5098 3086 5231 3092 5034 3048 5184 2895 4624 2809 4744 2806 4506 2728 4628

Figure 2. The Kaplan-Meier curve for mortality (A) and recurrent stroke (B) within 1 year


254x118mm (600 x 600 DPI)

220x84mm (600 x 600 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-060015 on 9 June 2022. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

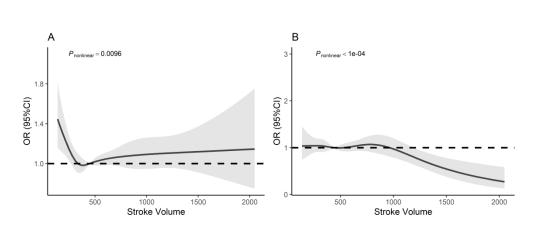


Figure 4. Association between hospital stroke volume and poor outcome. A, Hospital volume and 3-month poor outcome. B, Hospital volume and 1-year poor outcome. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

220x84mm (600 x 600 DPI)

В

 $a_{ar} = 0.0674$

500

1000

Stroke Volume

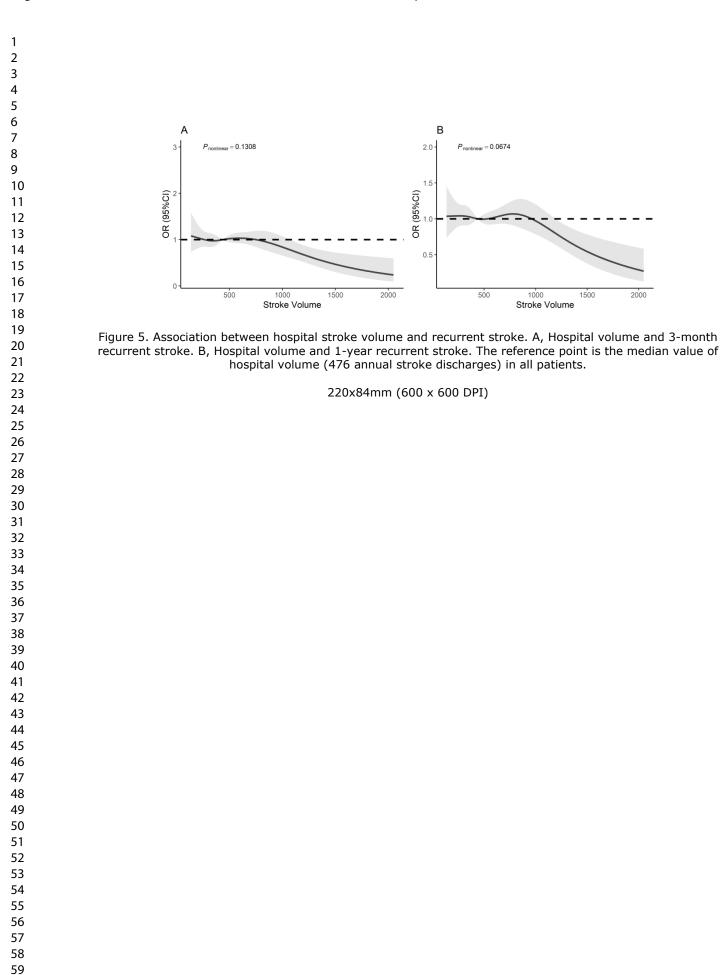
1500

2000

2.0

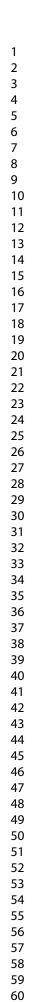
1.5

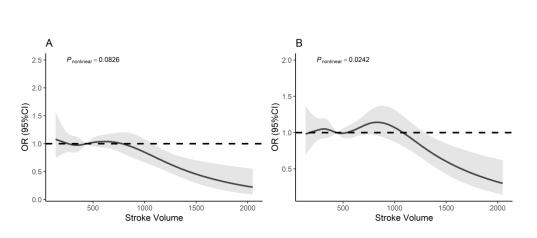
0.5

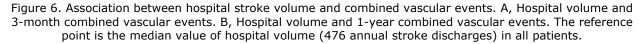

OR (95%CI)

2000

220x84mm (600 x 600 DPI)


1000


1500



BMJ Open: first published as 10.1136/bmjopen-2021-060015 on 9 June 2022. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

220x84mm (600 x 600 DPI)

to occurrence on the second

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 378	
6	
7	
8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
50	
57	
58	
59	
60	

1

	Definition*
Acute phage process measu	ires
rt-PA	intravenous tissue-type plasminogen activator
	(tPA) in patients who arrive within 2 hours after
	symptom onset and treated within 3 hours.
Early antithrombotics	Antithrombotic treatment within 2 days after
	admission, including antiplatelet or anticoagulant
	medications.
DVT prophylaxis	Patients who cannot walk received DVT prophylaxis
	within 2 days after admission, including pneumatic
	compression, heparin sodium, warfarin sodium or
	new oral anticoagulants.
Dysphagia screening	Dysphagia screening before oral intake
Process measures at discha	rge
Antithrombotic medication	Antithrombotic medication prescribed at discharge.
Antihypertensive	Antihypertensive medication prescribed at discharge
medication for	for patients with hypertension.
hypertension	
Hypoglycemic medication	Hypoglycemic medication prescribed at discharge for
for diabetes	patients with diabetes.
Anticoagulation for AF	Anticoagulation medication prescribed at discharge
	for patients with atrial fibrillation.
Lowering LDL-C	Statin prescribed at discharge if LDL-C ≥100 mg/dL
medication	or patient treated with lipid-lowering agent prior to
	admission, or LDL-C not documented.
Smoking cessation	Smoking cessation intervention before discharge for
	current smokers.
Stroke education	Stroke education provided to patient and/or caregiver,
	including all five components: modifiable risk
	factors, stroke warning sign and symptoms, how to
	activate emergency medical services, need for follow-
	up and medications prescribed.
rt-PA indicates recombinant t	issue plasminogen activator: AF, atrial fibrillation: LDL-

rt-PA indicates recombinant tissue plasminogen activator; AF, atrial fibrillation; LDL-C, low-density lipoprotein cholesterol.

*Performance and quality measures are applied only to eligible patients in the absence of documented contraindications or any other rationale as to why therapy was not provided.

Characteristic	Included $(n=17550)$	Excluded (n=2054)	Р
Patient characteristics			
Male	11163 (63.6%)	1274 (62.0%)	0.1591
Age	65(57-74)	65(57-75)	0.1122
Health insurance			
URBMI	8959 (51.0%)	1062 (51.7%)	0.4888
NRCMS	6932 (39.5%)	815 (39.7%)	
Commercial insurance	60 (0.3%)	9 (0.4%)	
Self-payment	1599 (9.1%)	168 (8.2%)	
Education			
Elementary or below	7934 (45.2%)	948 (46.2%)	0.3827
Middle school	4109 (23.4%)	453 (22.1%)	
High School or above	5507 (31.4%)	653 (31.8%)	
Previous or current	7010 (44 50/)	OFA(A1,CO())	0.0104
smoking	7818 (44.5%)	854 (41.6%)	0.0104
Drinking	5277 (30.1%)	582 (28.3%)	0.1044
Medical history			
Hypertension	11386 (64.9%)	1311 (63.8%)	0.3455
Diabetes	3630 (20.7%)	430 (20.9%)	0.7905
Hyperlipidemia	2128 (12.1%)	242 (11.8%)	0.6514
Atrial fibrillation	1185 (6.8%)	197 (9.6%)	< 0.000
Stroke or TIA	5918 (33.7%)	722 (35.2%)	0.1951
Medication history			
Antiplatelet	3444 (19.6%)	425 (20.7%)	0.2501
Anticoagulation	178 (1.0%)	30 (1.5%)	0.0618
Antihypertension	7868 (44.8%)	907 (44.2%)	0.5610
Lipid-lowering medicine	1207 (6.9%)	144 (7.0%)	0.8216
Antidiabetics	2782 (15.9%)	333 (16.2%)	0.6725
NIHSS at admission	4(2-7)	4(1-8)	0.6146
Days of hospitalization	13(9-16)	13(9-15)	0.3805

Table 2. Baseline characteristics between included and excluded patients

URBMI, urban resident basic medical insurance; NRCMS, new rural cooperative medical scheme.

Fable 3. The association between hos	pital volume and performar	BMJ Ope		66/bmjopen-2021-060015		
1	Q1 VS Q4		Q2 VS Q4	0 9 9	Q3 VS Q4	
Performance measures	Unadjusted OR (95% CI)	Р	Unadjusted OR (95% CI)	P 20	Unadjusted OR (95% CI)	Р
rt-PA	0.64 (0.31, 1.34)	0.2386	0.72 (0.35, 1.49)	0.3811 ^N	0.62 (0.28, 1.37)	0.2389
Early antithrombotic	0.86 (0.39, 1.90)	0.7114	1.10 (0.49, 2.47)	0.8241₽	1.02 (0.44, 2.36)	0.9626
Dysphagia screening	0.78 (0.38, 1.60)	0.5015	2.03 (0.93, 4.42)	0.0754 5	1.08 (0.53, 2.18)	0.8327
DVT prophylaxis	1.31 (0.76, 2.28)	0.3329	1.37 (0.80, 2.36)	0.2501	2.22 (1.26, 3.91)	0.0059
Antithrombotic medication	1.43 (0.93, 2.20)	0.1077	1.74 (1.09, 2.76)	0.0196 =	1.40 (0.71, 2.75)	0.3307
Lowering LDL-C medication	1.12 (0.76, 1.66)	0.5726	1.35 (0.94, 1.94)	0.101	1.60 (1.10, 2.33)	0.0134
Antihypertensive medication for hypertension	0.91 (0.66, 1.25)	0.5588	0.84 (0.62, 1.14)	0.2679	1.08 (0.79, 1.49)	0.6339
Hypoglycemic medication for diabetes	0.98 (0.67, 1.45)	0.931	1.00 (0.68, 1.46)	0.9978	1.06 (0.72, 1.58)	0.757
Anticoagulation for AF	0.58 (0.34, 1.01)	0.0528	0.77 (0.48, 1.24)	0.2842 <mark>2</mark>	1.24 (0.73, 2.09)	0.4229
Smoking cessation	0.72 (0.44, 1.18)	0.1959	0.83 (0.50, 1.37)	0.4646 ²	0.81 (0.43, 1.53)	0.518′
Defect-free measure of care	0.88 (0.62, 1.25)	0.4634	1.13 (0.82, 1.56)	0.4496 ⁹	1.15 (0.81, 1.62)	0.434′

rt-PA indicates recombinant tissue plasminogen activator; DVT, deep vein thrombosis; AF, atrial fibrillation; LDL-Cylow-density lipoprotein cholesterol.

17, 2024 by guest. Protected by copyright.

Page 43 of 43

		орен.	
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>conort studies</i>	
Section/Topic	ltem #	Recommendation Of 5	Reported on page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was bound	2
Introduction		22.	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods	1		
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, for w-up, and data collection	5,7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe \vec{p} ethods of follow-up	7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Gee diagnostic criteria, if applicable	5-7
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measure methods). Describe	7
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grogonings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	6
		(d) If applicable, explain how loss to follow-up was addressed	6
		(e) Describe any sensitivity analyses	NA

 36/bmjopen-2

		20	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	9
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	Figure 1
Descriptive data		(a) Give characteristics of study participants (eg demographic, clinical, social) and information on epocation on epocetarial	9
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	Figure 1
		(c) Summarise follow-up time (eg, average and total amount)	10
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results 1		(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	9-10
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	18
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful ting period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations		mi.	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	11-13
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	15
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.grg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Association between Hospital Volume, Processes of Care, and Outcomes after Acute Ischemic Stroke: A Prospective Observational Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-060015.R3
Article Type:	Original research
Date Submitted by the Author:	19-May-2022
Complete List of Authors:	Zhang, Runhua; National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing Tiantan Hospital, Capital Medical University Liu, Gaifen ; Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases PAN, YUESONG; Beijing Tiantan Hospital, Capital Medical University, Department of Neurology; China National Clinical Research Center for Neurological Diseases Zhou, Maigeng; National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Wang, Yongjun; Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Neurology
Keywords:	Stroke < NEUROLOGY, Neurology < INTERNAL MEDICINE, Adult neurology < NEUROLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

2
2
5
4
5 6 7 8
6
7
8
0
9
10
11
12
13
14
15
15
16 17 18
17
18
19
20
21
21
23
24
25
26
26 27
28
29
30
31
32
33
34
24
35
36 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58

1

Association between Hospital Volume, Processes of Care, and Outcomes after Acute **Ischemic Stroke: A Prospective Observational Study** 1 Runhua Zhang¹⁻³, Gaifen Liu²⁻³, Yuesong Pan²⁻³, Maigeng Zhou^{1*}, Yongjun Wang^{2-3*} 2 ¹ National Center for Chronic and Noncommunicable Disease Control and Prevention, 3 4 Chinese Center for Disease Control and Prevention, Beijing, China; ² Beijing Tiantan Hospital, Capital Medical University, Beijing, China; 5 6 ³ China National Clinical Research Center for Neurological Diseases, Beijing, China. *Correspondence: 7 Maigeng Zhou, National Center for Chronic and Noncommunicable Disease Control and 8 9 Prevention, Chinese Center for Disease Control and Prevention, No. 27 Nanwei Road, Xicheng District, Beijing 100050, China. E-Mail: zhoumaigeng@ncncd.chinacdc.cn 10 Yongjun Wang, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th 11 12 West Road, Fengtai District, Beijing 10070, China, E-mail: yongjunwang@ncrcnd.org.cn. 13 14

BMJ Open

1	Abstract
2	Objectives There is uncertainty with respect to the hospital volume and clinical outcomes for
3	patients with stroke. This study aimed to assess the association between hospital volume,
4	processes of care, and outcomes after ischemic stroke.
5	Design A multicenter prospective cohort study.
6	Setting Two hundred and seventeen secondary or tertiary public hospitals from China.
7	Participants A total of 17,550 patients within seven days of acute ischemic stroke were
8	included.
9	Main outcome measures The outcomes included all-cause mortality, poor outcome,
10	recurrent stroke, and combined vascular events at 3 months and 1 year. The patients were
11	divided into four groups based on quartiles of the hospital volume. We compared the
12	difference in the process of care across the groups and estimated the effects of hospital
13	volume on mortality, poor outcome, recurrent stroke, and combined vascular events at 3
14	months and 1 year. Restricted cubic splines were used to illustrate the association between
15	hospital volume and clinical outcomes.
16	Results There were no significant differences in the process of care across the four groups.
17	When adjusted for confounders, the effect of hospital volume on mortality, recurrent stroke,
18	and combined vascular events was not significant. However, compared with the highest
19	quartile, the patients in the lowest quartile of hospital volume tend to have poor outcome at 1
20	year (OR = 1.29, 95% CI 1.01-1.64, $P = 0.0393$). The restricted cubic spline analyses
21	suggested a non-linear relationship between hospital volume and 1-year combined vascular
22	events and poor outcome at 3 months and one year.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Conclusions We found no significant associations between hospital volume, processes of
2	care at the hospital, and mortality, recurrent stroke, and combined vascular events in patients
3	with ischemic stroke. However, hospital volume may be associated with poor outcome at 1
4	year.
5	
6	Strengths and limitations of this study
7	The sample size was large, involving 217 institutions across the country.
8	To the best of our knowledge, this is the first study investigating the relationship between
9	stroke volume in a hospital, process of care, and outcomes in China.
10	The study has some limitations. Some processes of care, especially post-discharge, could not
11	be obtained in this study.
12	The participating hospitals were volunteers, and unavoidable selection bias could not be
13	eliminated.
14	

Introduction

2	Previous studies have shown that the number of patients treated in a hospital (hospital
3	volume) may be associated with surgical outcomes in aortic valve replacement, carotid
4	endarterectomy, coronary artery bypass surgery, and cancer-related surgeries. ¹⁻⁵ The volume-
5	outcome relationship was also described in some medical conditions, including heart failure,
6	acute myocardial infarction, pneumonia, and brain injury. ⁶⁻⁸ The magnitude of the association
7	varied significantly in a previous study.9 Studies reporting an inverse relationship lacked
8	significance to make volume-based referral recommendations. ¹⁰ Several studies have
9	examined the association between hospital stroke volume and mortality for stroke patients.
10	However, the results were controversial. Some found that stroke patients in high-volume
11	hospitals had decreased case fatality, ^{11, 12} but some had not. ^{13, 14} Most of the studies
12	evaluated the short-term mortality; studies investigating long-term outcomes were limited.
13	Furthermore, the associations between hospital volume and recurrent stroke and poor
14	outcome were not well characterized.
15	We hypothesize that the hospitals with higher volume may be characterized by a high
16	quality of care, which in turn improves the prognosis of patients with stroke. This study
17	aimed to examine the association between hospital stroke volume and outcomes, including
18	mortality, recurrent stroke, combined vascular events, and poor outcome at 3 months and 1
19	year after stroke onset. We also examined the association between hospital stroke volume and
20	the process of care for ischemic stroke.
21	Methods

Methods

Ethics approval

This study was approved by the Ethics Committee of Beijing Tiantan Hospital (No. ky2012-

005-01). Written informed consent was obtained from the patients or their relatives.

5 Study design and setting

The Second China National Stroke Registry (CNSR II) was a national multicenter hospitalbased cohort study. CNSR II was launched in June 2012 in China. The primary objectives
were to evaluate the delivery of stroke care and identify suboptimal performance metrics to
be improved.¹⁵ The hospitals were selected based on similar criteria in CNSR I launched in
2007, which had been published elsewhere.¹⁶ After assessing the hospital characteristics, such
as location, teaching status, number of beds, and annual stroke discharges by the steering
committee, a total of 219 hospitals were included in CNSR II.¹⁷

14 Study population

Consecutive patients were recruited from June 2012 to January 2013. The inclusion criteria
were as follows: (1) age 18 years or above; (2) presentation within seven days of onset of
index acute ischemic stroke (AIS), transient ischemic attack (TIA), intracerebral hemorrhage,
or subarachnoid hemorrhage, which were confirmed by brain computed tomography or
magnetic resonance imaging; and (3) direct hospital admission from a physician's clinic or
emergency department. A total of 25,018 patients (19,604 [78%] with AIS) were included in
CNSR II.

There were 1,200 (6.12%) patients lost at 3 months and 2,306 (11.76%) patients lost at 1

BMJ Open

year. We excluded the patients who missed information on the process of care and those who
were lost to follow-up at 3 months and 1 year. Finally, 17,550 patients and 16,482 patients
with AIS were eligible for evaluating the association between hospital volume and 3-month
outcomes and 1-year outcomes, respectively. A total of 17,438 patients achieved a modified
Rankin Scale (mRS) at 3 months, and 16,462 patients achieved mRS at 1 year.

7 Data collection

Data were collected following a standardized form by trained research coordinators.Data on demographics, health insurance, education, smoking, drinking, comorbidities (hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke or TIA), and medication history were extracted from medical records. National Institutes of Health Stroke Scale (NIHSS) at admission and mRS prior to the index event were assessed through a face-to-face interview. Hospital stroke volume was defined as the annual number of stroke discharges. The annual stroke discharges of each hospital were obtained via the hospital survey when they applied to participate in this study. Additionally, hospital characteristics, such as location, academic status, the presence of stroke unit, and the number of beds, were obtained in the survey.

Process measures

We selected ten recommended process measures form the national guidelines and the Get
With The Guidelines-Stroke (GWTG-Stroke).¹⁸ Process measures are shown in Supplemental
Table 1. There were four acute phase process measures, namely (1) intravenous recombinant
tissue plasminogen activator (rt-PA) in patients who arrived within 2 hours after symptom

	onset and were treated within 3 hours, (2) antithrombotics within 2 days after admission, (3)
2	deep vein thrombosis (DVT) prophylaxis, and (4) dysphagia screening. There were six
3	process measures at discharge: (1) antithrombotic medication; (2) antihypertensive
Ļ	medication for patients with hypertension; (3) hypoglycemic medication for patients with
5	diabetes; (4) anticoagulation for atrial fibrillation; (5) lowering low-density lipoprotein
6	cholesterol (LDL-C) medication; and (6) smoking cessation. Additionally, we calculated a
,	binary defect-free measure of care, defined as the patient receiving all the processes for
3	which they were eligible. ^{19, 20} Process measures were applied only to qualified patients in the
)	absence of documented contraindications or any other rationale as to why therapy was not
)	provided. ²¹

12 Clinical outcomes

All patients were followed up at 3, 6, and 12 months by telephone or face-to-face interview. Trained research coordinators collected the clinical outcomes. In this study, the outcomes included all-cause mortality, poor outcome, recurrent stroke, and combined vascular events at 3 months and 1 year. Each case fatality was identified from the attended hospital where the patient was treated or by a death certificate from the local citizen registry. Stroke recurrence was defined as a new ischemic stroke or hemorrhagic stroke within 3 months or 1 year after symptom onset. Composite vascular events included myocardial infarction, recurrent stroke, and vascular death. The poor outcome was defined as mRS of 3 to 6.

22 Statistical analysis

Page 9 of 43

BMJ Open

The patients were categorized into four groups based on quartiles of hospital volume: Q1 (<300 /year), Q2 (300-436 /year), Q3 (437-722 /year), and Q4 (>722 /year). Continuous variables were described as mean \pm standard deviation or median and interguartile range. Categorical variables were described as proportions. The patient characteristics were compared using ANOVA, Kruskal-Wallis test, or chi-square test. Additionally, to obtain the P for trend, we used Cochran-Mantel-Haenszel non-zero correlation tests for continuous variables and Cochran-Mantel-Haenszel row mean scores for categorical variables. Generalized estimating equations with an exchangeable working correlation matrix were used to evaluate the association between hospital volume, the process of care, and outcomes adjusting for the cluster effect within the hospital. In the adjusted models, age, sex, health insurance (urban resident basic medical insurance, new rural cooperative medical scheme, commercial insurance, self-payment), education (elementary or below, middle school, high school or above), previous or current smoking, drinking, comorbidities (hypertension, diabetes, hyperlipidemia, atrial fibrillation, history of stroke), NIHSS at admission, and hospital characteristics (academic status, number of beds, presence of stroke unit, and location) were included. Additionally, the defect-free measure of care was included in the adjusted model when estimating the association between hospital volume and outcomes. We used the Kaplan-Meier method to depict the cumulative hazards of all-cause mortality and recurrent stroke. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were used with the hospital volume of Q4 as reference. Additionally, we used restricted cubic splines with five knots at the 5th, 35th, 50th, and 95th centiles to model the association between hospital volume and outcomes. We tested for non-linearity by using the Wald

> statistics.

All analyses were performed by SAS version 9.4 (SAS Institute) and R version 3.5.1. All P values were two-tailed with a significant level of 0.05.

Patient and public involvement

Patients and the public were not involved in the design, conduct, reporting, or dissemination

plans of our research.

Results

A total of 17,550 patients with AIS from 217 hospitals across China were included in this study. The process of patient selection is shown in Figure 1. Patients included in the current study and those excluded were largely comparable (supplemental Table 2). Table 1 describes the baseline characteristics of the included hospitals and patients.

Of the 217 hospitals, 125 (57.6%) were teaching hospitals. The high-volume hospitals

were likely to be teaching hospitals. Overall, 121 hospitals (55.8%) had certified stroke units.

There were 121 hospitals in the east of China, 66 around the middle, and 30 in the west. The

average hospital volume was 437 per year, ranging from 136 to 2048.

The mean age was 65 (57-74), and 63.6% of the patients were males. The median NIHSS at admission was 4 (2-7) and the median days of hospitalization were 13 (9-16). Compared with the high-volume hospitals, there were more females, and the patients were older in lowvolume hospitals. The patients in high-volume hospitals were more likely to have diabetes and hyperlipidemia but less likely to have atrial fibrillation. The proportions of patients taking antiplatelet and lipid lowing agents were higher in high-volume hospitals than that in

low-volume hospitals.

1

BMJ Open

2
2
5
4
5
6
7
8
0
9
10
11
12
13
14
15
16
10
17
18
3 4 5 6 7 8 9 11 12 13 14 15 17 18 20 21 23 24 25 26 27 28 30 32 33 34 35 36 37 38
20
21
22
23
23
24
25
26
27
28
29
30
21
22
32
33
34
35
36
37
20
20
29
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2	
3	Association between Hospital Volume and Process Measures
4	Table 2 lists the rates of achievement in process measures. Compared with the hospitals of
5	Q4, the unadjusted OR of defect-free measure of care was 0.88 (95% CI, 0.62-1.25) for Q1,
6	1.13 (95% CI, 0.82-1.56) for Q2, and 1.15 (95% CI, 0.81-1.62) for Q3. No significant
7	difference was found in individual process measures, except the DVT prophylaxis for A3
8	(OR, 2.22; 95%CI, 1.26-3.91; $P = 0.0059$), antithrombotic medication at discharge for Q2
9	(OR, 1.74; 95%CI, 1.09-2.76; P = 0.0196), and LDL-C-lowering medication for Q3 (OR,
10	1.60; 95%CI, 1.10-2.33; P = 0.0134) (Supplemental Table 3).
11	Table 3 shows the adjusted ORs for process measures. After adjusting for the patients and
12	hospital characteristics, the adjusted OR of defect-free measure of care was 0.93 (95% CI,
13	0.61-1.42) for Q1, 1.25 (95% CI, 0.85-1.85) for Q2, and 1.11 (95% CI, 0.76-1.63) for Q3. All
14	the individual performance measures show no significant association (all $P > 0.05$).
15	
16	Association between Hospital Volume and 3-Month and 1-Year Outcomes
17	Of the included patients, 1,322 (7.53%) died within 1 year after stroke onset. The Kaplan-
18	Meier plot for mortality within 1 year is shown in Figure 2. The 3-month and 1-year mortality
19	was different across the 4 groups (3-month mortality, 4.95% versus 3.64% versus 4.33%
20	versus 3.39%, P = 0.0011; 1-year mortality, 9.59% versus 7.69% versus 8.39% versus 7.16%,
21	P = 0.0006) (Table 4). At 3 months and 1 year, the mortality was slightly higher in Q1

22 hospitals (OR at 3 months=1.54, 95% CI 1.13-2.09, P = 0.0059; OR at 1 year = 1.48, 95% CI

1	1.17-1.88; $P = 0.0013$), but not Q2 or Q3 hospitals in compared with Q4 hospitals. However,
2	the difference was not significant when adjusted for potential factors (Table 5).
3	A total of 3,683 (21.12%) patients experienced poor outcome at 3 months and 3701
4	(22.48%) at 1 year (Table 4). Patients treated in low-volume hospitals were more likely to
5	have a higher rate of poor outcome at 3 months (23.41% versus 19.51% versus 21.37%
6	versus 21.15%, P = 0.0003; OR _{Q1 versus Q4} = 1.22, 95% CI 1.01-1.47, P = 0.0377) and 1 year
7	(25.69% versus 20.71% versus 21.81% versus 22.65%, P<0.0001; OR _{Q1 versus Q4} = 1.29, 95%
8	CI 1.08-1.54, $P = 0.0043$). When adjusted for potential factors, Q1 hospitals still had a higher
9	rate of poor outcome at 1 year compared with Q4 hospitals ($OR_{Q1 \text{ versus } Q4} = 1.29, 95\%$ CI
10	1.01-1.64, $P = 0.0393$).
10	1.01-1.64, P = 0.0393).
10 11	1.01-1.64, P = 0.0393). There were 1,199 (6.83%) patients with recurrent stroke within 1 year. The Kaplan-Meier
10 11 12	1.01-1.64, P = 0.0393). There were 1,199 (6.83%) patients with recurrent stroke within 1 year. The Kaplan-Meier plot for recurrent stroke within 1 year is shown in Figure 3. The recurrence rate was similar
10 11 12 13	1.01-1.64, $P = 0.0393$). There were 1,199 (6.83%) patients with recurrent stroke within 1 year. The Kaplan-Meier plot for recurrent stroke within 1 year is shown in Figure 3. The recurrence rate was similar across the four groups (7.15% versus 7.59% versus 6.85% versus 6.38%, $P = 0.1121$) (Table
10 11 12 13 14	 1.01-1.64, P = 0.0393). There were 1,199 (6.83%) patients with recurrent stroke within 1 year. The Kaplan-Meier plot for recurrent stroke within 1 year is shown in Figure 3. The recurrence rate was similar across the four groups (7.15% versus 7.59% versus 6.85% versus 6.38%, P = 0.1121) (Table 4). No significant association was found between hospital volume and stroke recurrence at 3
10 11 12 13 14 15	1.01-1.64, $P = 0.0393$). There were 1,199 (6.83%) patients with recurrent stroke within 1 year. The Kaplan-Meier plot for recurrent stroke within 1 year is shown in Figure 3. The recurrence rate was similar across the four groups (7.15% versus 7.59% versus 6.85% versus 6.38%, $P = 0.1121$) (Table 4). No significant association was found between hospital volume and stroke recurrence at 3 months and 1 year. Similar results were observed for combined vascular events (Table 5).

- 19 association between volume and all-cause mortality and poor outcome, indicating a
- significant non-linear association between volume and poor outcome at 3 months and 1 year
- 21 (P for non-linear = 0.0096 and < 0.001, respectively), as well as combined vascular events at 1
- 22 year (P for non-linear = 0.0242).

Discussion

Our analysis of a large population of 17,550 patients with ischemic stroke suggested that no significant difference in the process of care was observed for patients in lower-volume hospitals compared to that for patients in higher-volume hospitals. There was no association between hospital volume and mortality, stroke recurrence, and combined vascular events at 3 months and 1 year. In contrast, we found that the patients in the lowest volume quartile had a significantly higher rate of poor outcome at 1 year than the patients in the highest quartile. Previous studies found that high volume was associated with improved outcomes suggesting that volume is a surrogate for quality of care. The quality of care can be assessed from outcome, process, and structure.²² Usually, hospital volume is used as a structure metric of quality of care. However, the underlying mechanisms of interplay between structure and process are complex.²³ Two existing studies showed that the patients in high-volume hospitals received more process of care than patients in low-volume hospitals.^{13, 23} Potential mechanisms were proposed to explain this association, including substantial experience ("practice makes perfect") and the availability of advanced techniques and devices in high-volume hospitals.^{7, 23} In contrast, we did not find an association between hospital stroke volume and process measures in the current study. This was similar to a study from GWTG-Stroke, wherein 790 US hospitals (322,847 patients with ischemic stroke or TIA) were assessed and no differences in performance measures were observed between high-volume and low-volume hospitals after adjusting for patient baseline characteristics.¹⁸ Previously, many initiatives for improving the quality of care have been implemented to standardize the

Page 14 of 43

2
2
3 4
4 5
5 6
07
7 8
9
10
11
12 13
14 15
15
16
17
18
19 20
20
21
22 23
24
25
26
27
28
29
30
31
32
33
34
35
36
30 27
37 38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1

1

2

3

quality of care in hospitals, such as GWTG-Stroke, Australian Stroke Clinical Registry, and CNSR,²⁴ which may minimize the variability in the quality of care between high-volume and low-volume hospitals.

During the past decades, a significant number of studies evaluated the volume-outcome 4 association. Many, but not all, found a reverse relationship between volume and outcome.9 5 6 Several studies revealed that stroke patients in high-volume hospitals may experience lower short-term mortality than patients in low-volume hospitals.^{11, 12, 25, 26} However, we found no 7 8 improvement in the mortality rate for patients in high-volume hospitals. Several reasons may 9 explain this discrepancy. First, the hospital volume varied in these studies. Moreover, stroke severity, adjusted or not, remained an essential factor affecting prognosis.¹³ Most studies to 10 date lack data on stroke severity, and use comorbidity or comorbidity index score to adjust 11 the case mix.^{11, 12, 25, 26} Herein, we used the NIHSS score at admission to adjust the stroke 12 severity. Our findings are compatible with a Danish nationwide cohort study of 63,995 13 patients admitted to stroke units.²³ This study found no association between volume and 30-14 15 day mortality and 1-year mortality rates after adjusting for patient baseline characteristics, stroke unit, university status, and quality of care. Mortality may be insensitive to detecting 16 nuances in patient prognosis.²³ 17

Besides mortality, we also examined the association between hospital volume and poor outcome, stroke recurrence, and combined vascular events. To our knowledge, this is the first time the association between volume and poor outcome at 3 months and 1 year in patients with AIS was evaluated in a study. Compared with the highest quartile of hospitals, patients in the lowest quartile had a higher rate of poor outcome at 1 year after adjusting for potential

Page 15 of 43

BMJ Open

confounders. The poor outcome may be more sensitive in detecting changes in patient prognosis. The underlying mechanisms of the association between volume and poor outcome are not known. Though there was no significant difference in the process of care during the acute phase and at discharge between low- and high-volume hospitals, the differences in some other processes of care after discharge may explain this association. Patients in high-volume hospitals may undergo more processes after discharge, such as limb rehabilitation, which can improve poor outcome. The association between volume and poor outcome may be mediated by medical care after discharge. However, data on post-discharge management were not routinely documented; hence, data could not be extracted from all patients and analyzed. In the future, the association between volume, the process of care after discharge, and long-term outcomes are needed for further exploration. Despite the significant association, we did not think it was reasonable to regionalize stroke care because patient transfers may lead to a delay in admission, offsetting some benefits of being admitted to large-volume hospitals.¹¹ Several limitations in this study should be acknowledged. First, the hospitals that participated in the CNSR were volunteers; therefore, selection bias cannot be completely eliminated. The sampled hospitals enrolled may not be representative of the general hospitals in China. Second, although ten processes of care were evaluated, other processes of care such as mechanical thrombectomy and the care patients received after discharge could not be assessed. The differences in unassessed process measures may explain the association between volume and poor outcome. Third, there is a cluster effect within hospitals and

22 physicians. Although we considered the cluster effect within hospitals by using the

generalized estimating equations, we could not adjust the cluster effect within physicians. Moreover, due to variability among patients, hospital characteristics, and performance of care across varied regions and countries, our results may not be applicable to other countries. Finally, the mortality rate in our study was lower than the studies from other countries. Several reasons could explain this. First, most of the included patients were minor strokes (NIHSS≤4). Second, although we used the central death registry to obtain the vital status of those patients lost to follow up, we failed to obtain the vital status of all patients. This may lead to bias. Further studies on volume and clinical outcome, especially the poor outcome, are needed to confirm our results.

11 Conclusions

Using the large national stroke registry, we found no association between hospital stroke volume, the process of care, and 1-year mortality. However, the patients in the lowest quartile of hospitals had increased rates of poor outcome compared with the patients in the highest quartile of hospitals. Further studies need to be conducted to examine whether the medical care after discharge mediates the association between stroke volume and poor outcome. Better understanding of the association between structure, processes, and outcomes can help identify the best way to improve stroke prognosis.

20 Availability of data and materials

21 The datasets used and analyzed during the current study are available from the corresponding

BMJ Open

2		
3 4	4	author on reasonable request
4 5	1	author on reasonable request.
6	_	
7	2	
8		
9	3	Sources of Funding: This study was supported by the Ministry of Science and Technology
10		
11 12	4	of the People's Republic of China (2018YFC1312903, 2017YFC1307702), Capital's Funds
13		
14	5	for Health Improvement and Research (2020 1 2041 2022 2C 2040) National Natural
15	5	for Health Improvement and Research (2020-1-2041, 2022-2G-2049), National Natural
16	_	
17	6	Science Foundation of China (81870905), Beijing Municipal Science & Technology
18 19		
20	7	Commission (D171100003017002).
21		
22	8	
23		
24 25	9	Disclosures: None.
25 26	9	Disclosures. None.
27	4.0	
28	10	
29		
30	11	Author contributions
31		
32 33	12	Conception and design: RH Zhang, MG Zhou, YJ Wang; Provision of study materials or
34		
35	13	patients: YJ Wang; Collection and assembly of data: YJ Wang; Data analysis and interpretation:
36	10	putents. 15 Wung, Concerton and assembly of duta. 15 Wung, Duta analysis and interpretation.
37	11	BH Thong CE Lin VS Don: Manuscript propagation adjiting and ravious: All outhors MG
38	14	RH Zhang, GF Liu, YS Pan; Manuscript preparation, editing, and review: All authors. MG
39 40		
41	15	Zhou and YJ Wang take responsibility for the integrity of the work.
42		
43	16	
44		
45 46		
46 47	17	References
48		
49		
50	18	1. Khera S, Kolte D, Gupta T, et al. Association Between Hospital Volume and 30-Day
51		
52 53	19	Readmissions Following Transcatheter Aortic Valve Replacement. JAMA Cardiol. 2017;2:732-
54	10	
55	20	744
56	20	741
57		
58	21	2. Wennberg DE, Lucas FL, Birkmeyer JD, et al. Variation in carotid endarterectomy mortality in
59 60		
50		16

2			
3 4 5	1		the Medicare population: trial hospitals, volume, and patient characteristics. JAMA.
6 7	2		1998;279:1278-1281
8 9 10	3	3.	Hata T, Motoi F, Ishida M, et al. Effect of Hospital Volume on Surgical Outcomes After
11 12 12	4		Pancreaticoduodenectomy: A Systematic Review and Meta-analysis. Ann Surg. 2016;263:664-
13 14 15	5		672
16 17 18	6	4.	Gilligan MA, Neuner J, Zhang X, et al. Relationship between number of breast cancer
18 19 20 21	7		operations performed and 5-year survival after treatment for early-stage breast cancer. Am J
21 22 23	8		Public Health. 2007;97:539-544
24 25	9	5.	Nishigori T, Miyata H, Okabe H, et al. Impact of hospital volume on risk-adjusted mortality
26 27 28	10		following oesophagectomy in Japan. Br J Surg. 2016;103:1880-1886
29 30 21	11	6.	Ross JS, Normand SL, Wang Y, et al. Hospital volume and 30-day mortality for three common
31 32 33	12		medical conditions. N Engl J Med. 2010;362:1110-1118
34 35 36	13	7.	Kumbhani DJ, Fonarow GC, Heidenreich PA, et al. Association Between Hospital Volume,
37 38	14		Processes of Care, and Outcomes in Patients Admitted With Heart Failure: Insights From Get
39 40 41	15		With The Guidelines-Heart Failure. Circulation. 2018;137:1661-1670
42 43	16	8.	Wada T, Yasunaga H, Doi K, et al. Relationship between hospital volume and outcomes in
44 45 46	17		patients with traumatic brain injury: A retrospective observational study using a national
47 48	18		inpatient database in Japan. <i>Injury</i> . 2017;48:1423-1431
49 50 51	19	9.	Halm EA, Lee C, Chassin MR. Is volume related to outcome in health care? A systematic review
52 53	20		and methodologic critique of the literature. Ann Intern Med. 2002;137:511-520
54 55 56	21	10.	Ogbu UC, Slobbe LC, Arah OA, et al. Hospital stroke volume and case-fatality revisited. <i>Med</i>
57 58	22	-	<i>Care</i> . 2010;48:149-156
59 60			

Page 19 of 43

1 2 BMJ Open

3 4	1	11.	Hall RE, Fang J, Hodwitz K, et al. Does the Volume of Ischemic Stroke Admissions Relate to
5 6 7	2		Clinical Outcomes in the Ontario Stroke System? Circ Cardiovasc Qual Outcomes.
8 9 10	3		2015;8:S141-147
11 12	4	12.	Saposnik G, Baibergenova A, O'Donnell M, et al. Hospital volume and stroke outcome: does it
13 14 15	5		matter? <i>Neurology</i> . 2007;69:1142-1151
16 17 18	6	13.	Lee KJ, Kim JY, Kang J, et al. Hospital Volume and Mortality in Acute Ischemic Stroke Patients:
19 20	7		Effect of Adjustment for Stroke Severity. J Stroke Cerebrovasc Dis. 2020;29:104753
21 22 23	8	14.	Wada T, Yasunaga H, Inokuchi R, et al. Relationship between hospital volume and early
24 25 26	9		outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen
27 28	10		activator. Int J Stroke. 2015;10:73-78
29 30 31	11	15.	Li Z, Wang C, Zhao X, et al. Substantial Progress Yet Significant Opportunity for Improvement
32 33	12		in Stroke Care in China. <i>Stroke</i> . 2016;47:2843-2849
34 35 36	13	16.	Wang Y, Cui L, Ji X, et al. The China National Stroke Registry for patients with acute
37 38 39	14		cerebrovascular events: design, rationale, and baseline patient characteristics. Int J Stroke.
40 41	15		2011;6:355-361
42 43 44	16	17.	Bettger JP, Li Z, Xian Y, et al. Assessment and provision of rehabilitation among patients
45 46 47	17		hospitalized with acute ischemic stroke in China: Findings from the China National Stroke
47 48 49	18		Registry II. Int J Stroke. 2017;12:254-263
50 51 52	19	18.	Schwamm LH, Fonarow GC, Reeves MJ, et al. Get With the Guidelines-Stroke is associated
53 54	20		with sustained improvement in care for patients hospitalized with acute stroke or transient
55 56 57	21		ischemic attack. <i>Circulation</i> . 2009;119:107-115
58 59 60	22	19.	Cumbler E, Wald H, Bhatt DL, et al. Quality of care and outcomes for in-hospital ischemic stroke:
00			18

Page 20 of 43

BMJ Open

1 2			
3 4 5	1		findings from the National Get With The Guidelines-Stroke. Stroke. 2014;45:231-238
6 7	2	20.	Man S, Cox M, Patel P, et al. Differences in Acute Ischemic Stroke Quality of Care and
8 9 10	3		Outcomes by Primary Stroke Center Certification Organization. Stroke. 2017;48:412-419
11 12 13	4	21.	Wang YJ, Li ZX, Gu HQ, et al. China Stroke Statistics 2019: A Report From the National Center
13 14 15	5		for Healthcare Quality Management in Neurological Diseases, China National Clinical
16 17 18	6		Research Center for Neurological Diseases, the Chinese Stroke Association, National Center
19 20	7		for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for
21 22 23	8		Disease Control and Prevention and Institute for Global Neuroscience and Stroke
24 25 26	9		Collaborations. Stroke Vasc Neurol. 2020;5:211-239
27 28	10	22.	Donabedian A. Evaluating the quality of medical care <i>Milbank Q.</i> 2005;83:691-729
29 30 31	11	23.	Svendsen ML, Ehlers LH, Ingeman A, et al. Higher stroke unit volume associated with improved
32 33	12		quality of early stroke care and reduced length of stay. <i>Stroke</i> . 2012;43:3041-3045
34 35 36	13	24.	Cadilhac DA, Kim J, Lannin NA, et al. National stroke registries for monitoring and improving
37 38 39	14		the quality of hospital care: A systematic review. Int J Stroke. 2016;11:28-40
40 41	15	25.	Saposnik G, Jeerakathil T, Selchen D, et al. Socioeconomic status, hospital volume, and stroke
42 43 44	16		fatality in Canada. <i>Stroke.</i> 2008;39:3360-3366
45 46	17	26.	Tsugawa Y, Kumamaru H, Yasunaga H, et al. The association of hospital volume with mortality
47 48 49	18		and costs of care for stroke in Japan. Med Care. 2013;51:782-788
50 51 52			
53 54			
55 56 57			
58 59			

				6/bmjopen-2021-060015		
Total	Q1 hospitals	Q2 hospitals	Q3 hospitals	Q4 dospitals		Р
(n=17550)	<300/year (n=3371)	300-436/year (n=5386)	437-722/year (n=3281)	(n=5512)	Р	tre
				mloade		
217	53	56	53	55 from		
125 (57.6%)	23 (43.4%)	23 (41.1%)	37 (69.8%)	42 (7.4%)	<.0001	<.00
121 (55.8%)	24 (45.3%)	24 (42.9%)	35 (66%)	38 (69.1%)	0.0062	0.00
1000 (600-	600 (500-	780 (515-	1300 (1000-	1500 1200-	<.0001	<.00
1650)	800)	1000)	2000)	2200)		
				n April		
121 (55.8%)	29 (54.7%)	35 (62.5%)	28 (52.8%)	29 (5 ³ / ₂₀ 7%)	0.6967	<.00
66 (30.4%)	15 (28.3%)	13 (23.2%)	20 (37.7%)	18 (32.7%)		
30 (13.8%)	9 (17%)	8 (14.3%)	5 (9.4%)	8 (14:5%)		
				ote		
	(n=17550) 217 125 (57.6%) 121 (55.8%) 1000 (600- 1650) 121 (55.8%) 66 (30.4%)	Total $(n=17550)$ <300/year $(n=3371)$ 21753125 (57.6%)23 (43.4%)121 (55.8%)24 (45.3%)1000 (600-600 (500-1650)800)121 (55.8%)29 (54.7%)66 (30.4%)15 (28.3%)	Total (n=17550)<300/year $(n=3371)$ 300-436/year (n=5386)2175356125 (57.6%)23 (43.4%)23 (41.1%)121 (55.8%)24 (45.3%)24 (42.9%)1000 (600-600 (500-780 (515-1650)800)1000)121 (55.8%)29 (54.7%)35 (62.5%)66 (30.4%)15 (28.3%)13 (23.2%)	Total (n=17550)<300/year $(n=3371)$ 300-436/year (n=5386)437-722/year (n=3281)217535653125 (57.6%)23 (43.4%)23 (41.1%)37 (69.8%)121 (55.8%)24 (45.3%)24 (42.9%)35 (66%)1000 (600-600 (500-780 (515-1300 (1000-1650)800)1000)2000)121 (55.8%)29 (54.7%)35 (62.5%)28 (52.8%)66 (30.4%)15 (28.3%)13 (23.2%)20 (37.7%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {\rm Total} \\ (n=17550) \\ \hline \\ (n=3371) \\ (n=5386) \\ (n=3281) \\ (n=3281) \\ (n=55512) \\ \hline \\ \\ 125 (57.6\%) \\ 23 (43.4\%) \\ 23 (41.1\%) \\ 37 (69.8\%) \\ 42 (76.4\%) \\ (n=558\%) \\ 24 (45.3\%) \\ 24 (42.9\%) \\ 35 (66\%) \\ 38 (69.1\%) \\ (n=558\%) \\ 24 (45.3\%) \\ 24 (42.9\%) \\ 35 (66\%) \\ 38 (69.1\%) \\ (n=558\%) \\ 24 (45.3\%) \\ 24 (42.9\%) \\ 35 (66\%) \\ 38 (69.1\%) \\ (n=5512) \\ \hline \\ \\ (n=55512) \\ (n=55512) \\ (n=55512) \\ (n=55512) \\ (n=55512) \\ (n=3281) \\ (n=55512) \\ (n=5$

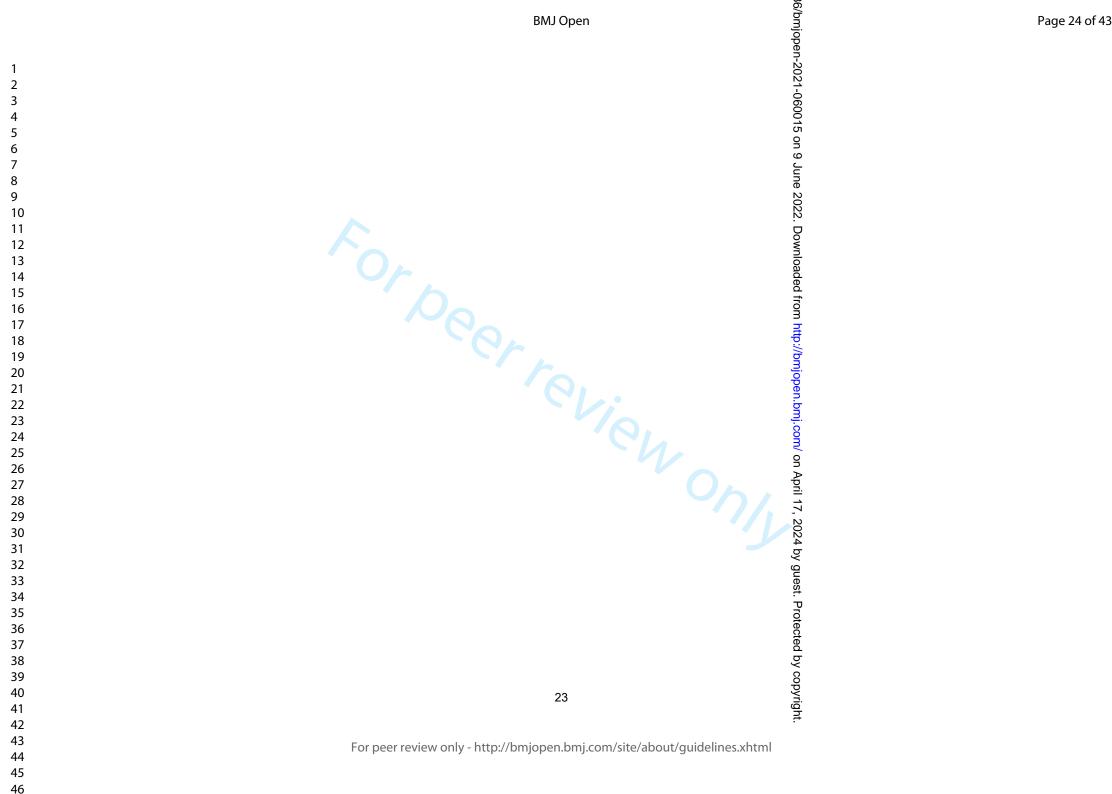
		BMJ Open		6/bmjope
				ən-2021-1
11163 (63.6%)	2126 (63.1%)	3349 (62.2%)	2108 (64.2%)	3580 864.9%)
65(57-74)	66(57-75)	65(57-74)	66(58-74)	64(55873)

Page 2	22 of 4	3
--------	---------	---

0.0183 0.0085

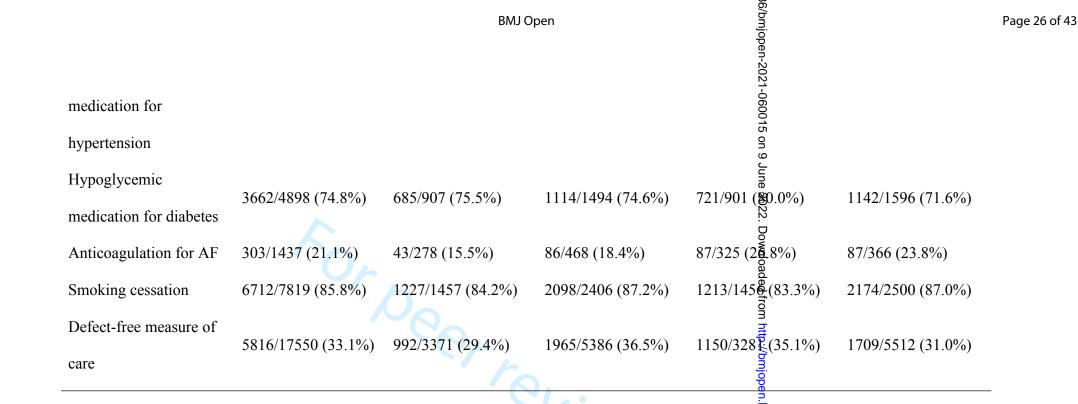
ו ר	
2 3	
5 4	
4 5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
25	
26 27	
27	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

1


Male

Age	65(57-74)	66(57-75)	65(57-74)	66(58-74)	55 64(55 %33)	<.0001	<.0001
Health insurance					June 2		
URBMI	8959 (51%)	1715 (50.9%)	2552 (47.4%)	1568 (47.8%)	3124 (56.7%)	<.0001	<.0001
NRCMS	6932 (39.5%)	1369 (40.6%)	2440 (45.3%)	1394 (42.5%)	1729 💐 31.4%)		
Commercial insurance	60 (0.3%)	8 (0.2%)	27 (0.5%)	4 (0.1%)	21 (0.4%)		
Self-payment	1599 (9.1%)	279 (8.3%)	367 (6.8%)	315 (9.6%)	638 (<u>1</u> 1.6%)		
Education					//bmjop		
Elementary or below	7934 (45.2%)	1693 (50.2%)	2430 (45.1%)	1678 (51.1%)	2133 38.7%)	<.0001	<.0001
Middle school	4109 (23.4%)	715 (21.2%)	1286 (23.9%)	661 (20.1%)	1447 (26.3%)		
High School or above	5507 (31.4%)	963 (28.6%)	1670 (31%)	942 (28.7%)	1932 <u>\$</u> 35.1%)		
Previous or current					117, 2		
smoking	7818 (44.5%)	1457 (43.2%)	2406 (44.7%)	1455 (44.3%)	2500 \$45.4%)	0.2676	0.0836
Drinking	5277 (30.1%)	872 (25.9%)	1681 (31.2%)	995 (30.3%)	1729 (31.4%)	<.0001	0.0001
Medical history					Protec		
Hypertension	11386 (64.9%)	2156 (64%)	3511 (65.2%)	2136 (65.1%)	3583 ¢65%)	0.6614	0.459
			21		copyright.		

Page 23 of 43


			BMJ Open		\$/bmjop		
					6/bmjopen-2021		
Diabetes	3630 (20.7%)	658 (19.5%)	1097 (20.4%)	673 (20.5%)	1202 21.8%)	0.0599	0.0086
Hyperlipidemia	2128 (12.1%)	372 (11%)	808 (15%)	384 (11.7%)	564 (\$ 0.2%)	<.0001	0.0001
Atrial fibrillation	1185 (6.8%)	212 (6.3%)	402 (7.5%)	280 (8.5%)	291 (چ.3%)	0.0001	0.0174
Stroke or TIA	5918 (33.7%)	1084 (32.2%)	1886 (35%)	1113 (33.9%)	1835 (33.3%)	0.0411	0.8641
Medication history					ownload		
Antiplatelet	3444 (19.6%)	599 (17.8%)	1008 (18.7%)	712 (21.7%)	1125 20.4%)	<.0001	0.0002
Anticoagulation	178 (1%)	33 (1%)	69 (1.3%)	35 (1.1%)	41 (0 ³ /2)%)	0.0467	0.0696
Antihypertension	7868 (44.8%)	1454 (43.1%)	2592 (48.1%)	1401 (42.7%)	2421 4 3.9%)	<.0001	0.1248
Lipid-lowering	1207 ((00/)	105 (5.00/)	407 (00/)	241 (7 20/)		< 0001	0.000
medicine	1207 (6.9%)	195 (5.8%)	487 (9%)	241 (7.3%)	284 (§ :2%)	<.0001	0.0002
Antidiabetics	2782 (15.9%)	500 (14.8%)	875 (16.2%)	509 (15.5%)	898 ([§] 6.3%)	0.2276	0.1842
NIHSS at admission	4(2-7)	4(2-7)	4(2-6)	4(2-8)	4(2-7)	<.0001	<.000]
Days of hospitalization	13 (9-16)	13 (10-16)	13 (9-15)	13 (9-16)	13 (19-16)	<.0001	0.0211

URBMI, urban resident basic medical insurance; NRCMS, new rural cooperative medical scheme; TIA, transient ischemic attack; NIHSS, National Institutes of Health Stroke Scale.

Page 25 of 43

Table 2. The fates of ac	hievement in process me	easures		6/bmjopen-2021-060015	
Process measures	Total	Q1 hospitals	Q2 hospitals	Q3 hospitals	Q4 hospitals
	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achievement	N1/N2 (achieveme
	rate, %)	rate, %)	rate, %)	rate, %)	rate, %)
Rt-PA	217/1303 (16.7%)	36/250 (14.4%)	75/497 (15.1%)	25/200 (12.5%)	81/356 (22.8%)
Early antithrombotic	14555/17243 (84.4%)	2802/3303 (84.8%)	4508/5307 (84.9%)	2903/3199 (90.7%)	4342/5434 (79.9%
Dysphagia screening	14876/17550	2630/3371 (78.0%)	4860/5386 (90.2%)	2615/328 (79.7%)	4771/5512 (86.6%
DVT prophylaxis	(84.8%) 3367/5079 (66.3%)	630/944 (66.7%)	1006/1481 (67.9%)	689/914 (₹5.4%)	1042/1740 (59.9%
Antithrombotic	14722/16002 (92%)	2845/3058 (93.0%)	4481/4765 (94.0%)	2839/3089(91.9%)	4557/5090 (89.5%
medication	11122/10002 (9270)	2010/0000 (75.070)		2007,2024	155775070 (07.570
Lowering LDL-C medication	7700/11597 (66.4%)	1436/2247 (63.9%)	2591/3621 (71.6%)	1523/212 ⁽²⁾ (71.8%)	2150/3609 (59.6%
Antihypertensive	8867/13385 (66.2%)	1712/2611 (65.6%)	2764/4207 (65.7%)	1710/2478 (69.2%)	2681/4097 (65.4%

 N1 indicates the number of patients who received the process of care, and N2 indicates the number of patients eligible. Rt-PA indicates recombinant

tissue plasminogen activator; DVT, deep vein thrombosis; AF, atrial fibrillation; LDL-C, low-density lipoprogein cholesterol.

April 17, 2024 by guest. Protected by copyright

		BMJ Open		6/bmjop		
Table 3. The association between hospital	volume and process me	asures		16/bmjopen-2021-060015 on 9 、		
	Q1 VS Q4		Q2 VS Q4	lune 20	Q3 VS Q4	
	Adjusted OR (95%		Adjusted OR (95%	2022. Do	Adjusted OR (95%	
Performance measures	CI)	Р	CI)	. Downloade	CI)	Р
Rt-PA	1.54 (0.61, 3.89)	0.3614	1.46 (0.68, 3.14)	0.334 3	0.71 (0.35, 1.48)	0.
Early antithrombotic	0.68 (0.20, 2.32)	0.5364	1.17 (0.30, 4.55)	0.824	1.07 (0.36, 3.18)	0.
Dysphagia screening	0.76 (0.33, 1.74)	0.5104	2.19 (0.86, 5.55)	0.098 g	0.90 (0.42, 1.92)	0.
DVT prophylaxis	1.02 (0.52, 2.01)	0.9504	1.09 (0.57, 2.09)	0.793	1.55 (0.84, 2.83)	0.
Antithrombotic medication	1.26 (0.61, 2.61)	0.5391	1.27 (0.61, 2.64)	0.527	1.16 (0.63, 2.15)	0.
Lowering LDL-C medication	0.92 (0.57, 1.50)	0.7460	1.03 (0.62, 1.70)	0.922	1.20 (0.78, 1.84)	0.
Antihypertensive medication for	0.99 (0.71, 1.38)	0.9395	0.92 (0.67, 1.27)	0.6154 by	1.11 (0.81, 1.53)	0.
hypertension				gue		-
Hypoglycemic medication for diabetes	1.02 (0.67, 1.55)	0.9210	1.06 (0.69, 1.65)	0.7818 of	0.97 (0.65, 1.46)	0.
Anticoagulation for AF	0.63 (0.34, 1.16)	0.1365	0.87 (0.53, 1.44)	0.5848	1.05 (0.61, 1.78)	0.
		26		by copyright.		

		BMJ Open	I	6/bmjopen-202		Pa
Smoking cessation	0.56 (0.10, 2.97)	0.4939	0.67 (0.12, 3.63)	-2021-0 0.642B0	2.08 (0.25, 17.2)	0.4961
Defect-free measure of care	0.93 (0.61, 1.42)	0.7412	1.25 (0.85, 1.85)	0.263 4	1.11 (0.76, 1.63)	0.5853
Rt-PA indicates recombinant tissue				N N	; LDL-C, low-density	lipoprotein
cholesterol.				2. Downlo		
				Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by gues		
				n http://bn		
				njopen.bn		
				ıj.com/ or		
				ı April 17,		
				2024 by (
				guest. Pro		
				otected by		
		27		t. Protected by copyright.		
	For peer review only - http://l			-		

1 abie 4. 1 lie 1 a	ites of clinical outcomes according to	o quartiles of h	ospital volume		6/bmjopen-2021-060015	
Outcome		Q1	Q2	Q3	Q4 ⁹ ₆	Р
Three months	Mortality, No. (%)	167 (4.95%)	196 (3.64%)	142 (4.33%)	187 (3.39%)	0.0011
	*Poor outcome, No. (%)	783 (23.41%)	1042 (19.51%)	698 (21.37%)	1160 (21.15%)	0.0003
	Stroke recurrence, No. (%)	178 (5.28%)	297 (5.51%)	166 (5.06%)	238 84.32%)	0.0298
	Combined vascular events, No. (%)	183 (5.43%)	303 (5.63%)	168 (5.12%)	247 (4.48%)	0.0440
One year	Mortality, No. (%)	306 (9.59%)	393 (7.69%)	256 (8.39%)	367 7.16%)	0.0006
	[#] Poor outcome, No. (%)	817 (25.69%)	1058 (20.71%)	665 (21.81%)	116 (22.65%)	<.0001
	Stroke recurrence, No. (%)	228(7.15%)	388 (7.59%)	209 (6.85%)	327 (6.38%)	0.1121
	Combined vascular events, No. (%)	236 (7.40%)	406 (7.94%)	216 (7.08%)	368 (7.18%)	0.3986
* A total of 17,4	38 patients achieved modified Rankin	Scale at 3 mont	hs. # A total of 16	5,462 patients ac	hieved 17, 2024 by guest. Protected by copyright.	Rankin S

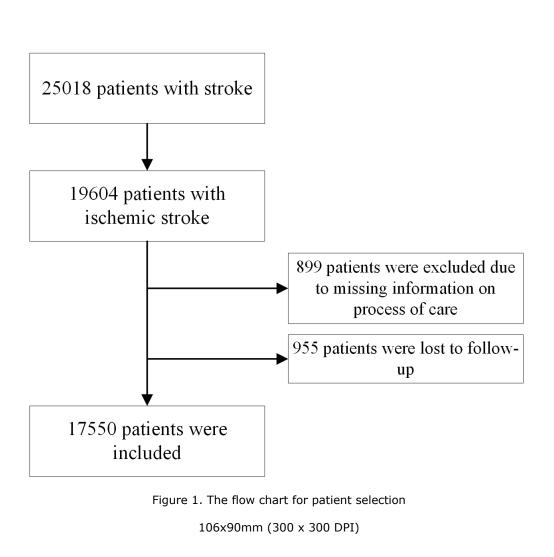
3 4

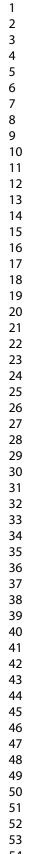
24

Page 30 of 43

Table 5. The association between		Q1 VS Q4		Q2 VS Q4		6/bmjopen-2021-060015 00 Q3 VS Q4	 4
Outcome		OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	F
Three months						022. Dow	
Mortality	Unadjusted	1.54 (1.13, 2.09)	0.0059	1.09 (0.85, 1.40)	0.4772	1.26 (0.89, 1.79)	0
	Adjusted	1.27 (0.88, 1.83)	0.2062	0.99 (0.75, 1.30)	0.9179	1. § (0.82, 1.68)	0
Poor outcome	Unadjusted	1.22 (1.01, 1.47)	0.0377	0.95 (0.81, 1.11)	0.5341	1.66 (0.89, 1.26)	C
	Adjusted	1.17 (0.91, 1.52)	0.2269	0.95 (0.74, 1.22)	0.6891	0.56 (0.75, 1.22)	C
Recurrent stroke	Unadjusted	1.27 (0.92, 1.75)	0.1403	1.21 (0.91, 1.61)	0.1992	$1.\underline{\underline{5}}_{\underline{5}}^{\underline{5}}$ (0.85, 1.58)	C
	Adjusted	1.16 (0.83, 1.62)	0.3798	1.11 (0.79, 1.56)	0.5474	1. 1. (0.78, 1.56)	C
Combined vascular events	Unadjusted	1.27 (0.92, 1.76)	0.1391	1.19 (0.89, 1.60)	0.2437	1. ⁵ / <u>4</u> (0.83, 1.56)	0
	Adjusted	1.15 (0.82, 1.61)	0.4109	1.09 (0.78, 1.53)	0.6167	1.08 (0.76, 1.52)	C
One year						1.08 (0.76, 1.52) by gue 1.22 (0.96, 1.54)	
Mortality	Unadjusted	1.48 (1.17, 1.88)	0.0013	1.13 (0.93, 1.38)	0.2097	1.22 (0.96, 1.54)	0
	Adjusted	1.15 (0.89, 1.47)	0.2829	0.98 (0.79, 1.22)	0.8663	1.05 (0.82, 1.35)	0

Page 31 of 43				BMJ O	pen		86/bmjope	
1 2 3	Poor outcome	Unadjusted	1.29 (1.08, 1.54)	0.0043	0.94 (0.81, 1.09)	0.4317	6/bmjopen-2021-0 1.990 (0.86, 1.17)	0.9917
4 5 6		Adjusted	1.29 (1.01, 1.64)	0.0393	0.98 (0.78, 1.24)	0.8758	0. \$ 5 (0.68, 1.06)	
7 8 9	Recurrent stroke	Unadjusted	1.20 (0.91, 1.59)	0.1939	1.18 (0.93, 1.49)	0.1853	1.(************************************	0.5552
10 11		Adjusted	1.08 (0.81, 1.43)	0.6025	1.05 (0.80, 1.37)	0.7277	1.01 (0.77, 1.32)	0.9491
12 13	Combined vascular events	Unadjusted	1.11 (0.84, 1.45)	0.4583	1.10 (0.87, 1.39)	0.4307	1.00 (0.77, 1.30)	0.9906
14 15		Adjusted	0.97 (0.75, 1.27)	0.8487	0.96 (0.75, 1.24)	0.7727	0.92 (0.71, 1.19)	0.5181
16 17 18	The adjusted covariates include	ed age, sex, he	ealth insurance (urb	oan resider	nt basic medical insu	rance, new	rura cooperative 1	nedical scheme,
19 20 21	commercial insurance, self-pay	-					//bmj	
22 23 24	drinking, comorbidities (hyper	tension, diabe	tes, hyperlipidemia	ı, atrial fibi	rillation, history of s	troke), NIH	SS at admission, h	nospital
25	characteristics (academic status	s, beds, stroke	unit, and location)	, and the c	composite measure o	f care.	m/ on Apri	
28 29 30							on April 17, 2024 by gues	
31 32							4 by gu	
33 34								
35 36							. Protected by copyright	
37							cted I	
38 39							ру со	
40 41				30			pyrig	
41 42							ht.	
43 44		For p	eer review only - http:	//bmjopen.k	omj.com/site/about/gui	delines.xhtml	I	


Figure legends


Figure 1. The flow chart for patient selection

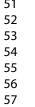
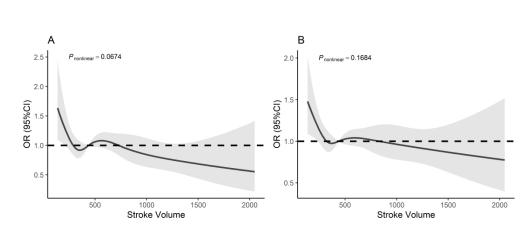

Figure 2. The Kaplan-Meier curve for mortality (A) and recurrent stroke (B) within 1 year
Figure 3. Association between hospital stroke volume and all-cause mortality. A, Hospital volume and 3-month all-cause mortality. B, Hospital volume and 1-year all-cause mortality. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

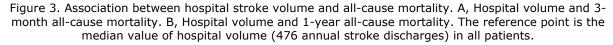
Figure 4. Association between hospital stroke volume and poor outcome. A, Hospital volume and 3-month poor outcome. B, Hospital volume and 1-year poor outcome. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.
Figure 5. Association between hospital stroke volume and recurrent stroke. A, Hospital volume and 3-month recurrent stroke. B, Hospital volume and 1-year recurrent stroke. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

Figure 6. Association between hospital stroke volume and combined vascular events. A, Hospital volume and 3-month combined vascular events. B, Hospital volume and 1-year combined vascular events. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

59

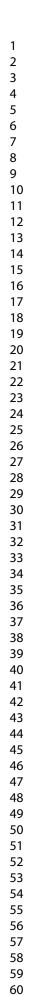
60





В A 0.100 0.100 Cumulative hazard Cumulative hazard 0.075 0.075 0.050 0.050 Volume Quartile 1 Quartile 1 Quartile 2 Quartile 2 0.025 0.025 Quartile 3 Quartile 3 Quartile 4 Quartile 4 0.000 0.000 200 100 200 300 Ó 100 300 0 Days Days Number at risk Number at risk 3079 4945 3023 5129 3197 5187 3132 5315 Quartile 1 3371 Quartile 2 5386 Quartile 3 3281 Quartile 4 5512 Quartile 1 3371 Quartile 2 5386 Quartile 3 3281 Quartile 4 5512 3136 5098 3086 5231 3092 5034 3048 5184 2895 4624 2809 4744 2806 4506 2728 4628

Figure 2. The Kaplan-Meier curve for mortality (A) and recurrent stroke (B) within 1 year


254x118mm (600 x 600 DPI)

220x84mm (600 x 600 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-060015 on 9 June 2022. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

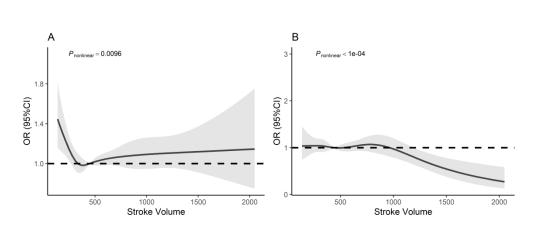


Figure 4. Association between hospital stroke volume and poor outcome. A, Hospital volume and 3-month poor outcome. B, Hospital volume and 1-year poor outcome. The reference point is the median value of hospital volume (476 annual stroke discharges) in all patients.

220x84mm (600 x 600 DPI)

В

 $a_{ar} = 0.0674$

500

1000

Stroke Volume

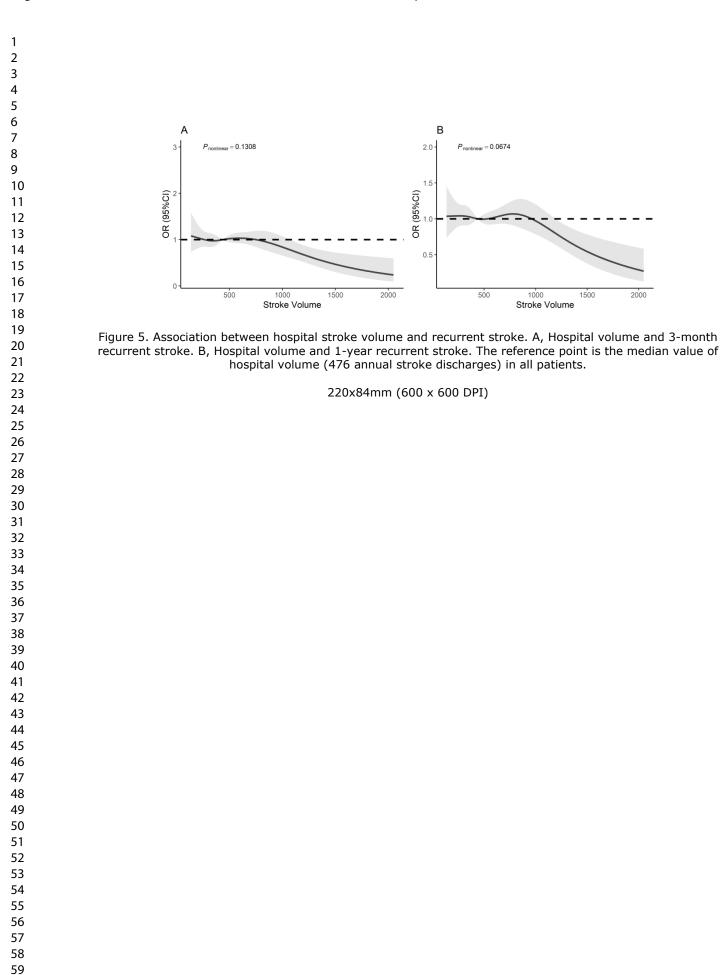
1500

2000

2.0

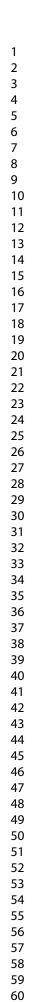
1.5

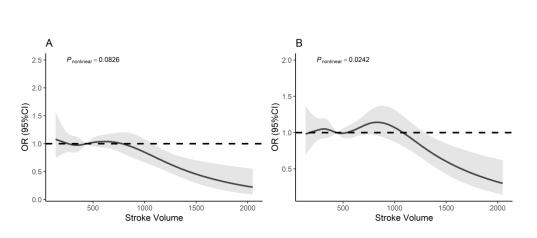
0.5

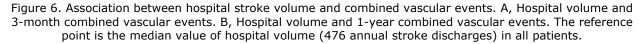

OR (95%CI)

2000

220x84mm (600 x 600 DPI)


1000


1500



BMJ Open: first published as 10.1136/bmjopen-2021-060015 on 9 June 2022. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

220x84mm (600 x 600 DPI)

to occurrence on the second

1	
2	
3	
4	
3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 6 7 8 9 10 11 23 24 25 26 7 8 9 30 31 23 34 35 36 37 8 9 30 31 23 34 35 36 37 8 9 30 31 20 310 31 20 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
∠∠ วว	
∠⊃ ∿^	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59	

1

	Definition*
Acute phage process measu	ires
rt-PA	intravenous tissue-type plasminogen activator
	(tPA) in patients who arrive within 2 hours after
	symptom onset and treated within 3 hours.
Early antithrombotics	Antithrombotic treatment within 2 days after
	admission, including antiplatelet or anticoagulant
	medications.
DVT prophylaxis	Patients who cannot walk received DVT prophylaxis
	within 2 days after admission, including pneumatic
	compression, heparin sodium, warfarin sodium or
	new oral anticoagulants.
Dysphagia screening	Dysphagia screening before oral intake
Process measures at discha	rge
Antithrombotic medication	Antithrombotic medication prescribed at discharge.
Antihypertensive	Antihypertensive medication prescribed at discharge
medication for	for patients with hypertension.
hypertension	
Hypoglycemic medication	Hypoglycemic medication prescribed at discharge for
for diabetes	patients with diabetes.
Anticoagulation for AF	Anticoagulation medication prescribed at discharge
	for patients with atrial fibrillation.
Lowering LDL-C	Statin prescribed at discharge if LDL-C ≥100 mg/dL
medication	or patient treated with lipid-lowering agent prior to
	admission, or LDL-C not documented.
Smoking cessation	Smoking cessation intervention before discharge for
	current smokers.
Stroke education	Stroke education provided to patient and/or caregiver,
	including all five components: modifiable risk
	factors, stroke warning sign and symptoms, how to
	activate emergency medical services, need for follow-
	up and medications prescribed.
rt-PA indicates recombinant t	issue plasminogen activator: AF, atrial fibrillation: LDL-

rt-PA indicates recombinant tissue plasminogen activator; AF, atrial fibrillation; LDL-C, low-density lipoprotein cholesterol.

*Performance and quality measures are applied only to eligible patients in the absence of documented contraindications or any other rationale as to why therapy was not provided.

Characteristic	Included $(n=17550)$	Excluded (n=2054)	Р
Patient characteristics			
Male	11163 (63.6%)	1274 (62.0%)	0.1591
Age	65(57-74)	65(57-75)	0.1122
Health insurance			
URBMI	8959 (51.0%)	1062 (51.7%)	0.4888
NRCMS	6932 (39.5%)	815 (39.7%)	
Commercial insurance	60 (0.3%)	9 (0.4%)	
Self-payment	1599 (9.1%)	168 (8.2%)	
Education			
Elementary or below	7934 (45.2%)	948 (46.2%)	0.3827
Middle school	4109 (23.4%)	453 (22.1%)	
High School or above	5507 (31.4%)	653 (31.8%)	
Previous or current			0.0104
smoking	7818 (44.5%)	854 (41.6%)	0.0104
Drinking	5277 (30.1%)	582 (28.3%)	0.1044
Medical history			
Hypertension	11386 (64.9%)	1311 (63.8%)	0.3455
Diabetes	3630 (20.7%)	430 (20.9%)	0.7905
Hyperlipidemia	2128 (12.1%)	242 (11.8%)	0.6514
Atrial fibrillation	1185 (6.8%)	197 (9.6%)	< 0.000
Stroke or TIA	5918 (33.7%)	722 (35.2%)	0.1951
Medication history			
Antiplatelet	3444 (19.6%)	425 (20.7%)	0.2501
Anticoagulation	178 (1.0%)	30 (1.5%)	0.0618
Antihypertension	7868 (44.8%)	907 (44.2%)	0.5610
Lipid-lowering medicine	1207 (6.9%)	144 (7.0%)	0.8216
Antidiabetics	2782 (15.9%)	333 (16.2%)	0.6725
NIHSS at admission	4(2-7)	4(1-8)	0.6146
Days of hospitalization	13(9-16)	13(9-15)	0.3805

Table 2. Baseline characteristics between included and excluded patients

URBMI, urban resident basic medical insurance; NRCMS, new rural cooperative medical scheme.

Fable 3. The association between hos	pital volume and performar	BMJ Ope		6/bmjopen-2021-060015 یف		
1	Q1 VS Q4		Q2 VS Q4	0 0 9	Q3 VS Q4	
Performance measures	Unadjusted OR (95% CI)	Р	Unadjusted OR (95% CI)	P 20	Unadjusted OR (95% CI)	Р
rt-PA	0.64 (0.31, 1.34)	0.2386	0.72 (0.35, 1.49)	0.3811 ^N	0.62 (0.28, 1.37)	0.2389
Early antithrombotic	0.86 (0.39, 1.90)	0.7114	1.10 (0.49, 2.47)	0.8241Ş	1.02 (0.44, 2.36)	0.9626
Dysphagia screening	0.78 (0.38, 1.60)	0.5015	2.03 (0.93, 4.42)	0.0754 5	1.08 (0.53, 2.18)	0.8327
DVT prophylaxis	1.31 (0.76, 2.28)	0.3329	1.37 (0.80, 2.36)	0.2501	2.22 (1.26, 3.91)	0.0059
Antithrombotic medication	1.43 (0.93, 2.20)	0.1077	1.74 (1.09, 2.76)	0.0196 =	1.40 (0.71, 2.75)	0.3307
Lowering LDL-C medication	1.12 (0.76, 1.66)	0.5726	1.35 (0.94, 1.94)	0.101	1.60 (1.10, 2.33)	0.0134
Antihypertensive medication for hypertension	0.91 (0.66, 1.25)	0.5588	0.84 (0.62, 1.14)	0.2679	1.08 (0.79, 1.49)	0.6339
Hypoglycemic medication for diabetes	0.98 (0.67, 1.45)	0.931	1.00 (0.68, 1.46)	0.9978	1.06 (0.72, 1.58)	0.757
Anticoagulation for AF	0.58 (0.34, 1.01)	0.0528	0.77 (0.48, 1.24)	0.2842 <mark>2</mark>	1.24 (0.73, 2.09)	0.4229
Smoking cessation	0.72 (0.44, 1.18)	0.1959	0.83 (0.50, 1.37)	0.4646 ²	0.81 (0.43, 1.53)	0.518′
Defect-free measure of care	0.88 (0.62, 1.25)	0.4634	1.13 (0.82, 1.56)	0.4496 ⁹	1.15 (0.81, 1.62)	0.434′

rt-PA indicates recombinant tissue plasminogen activator; DVT, deep vein thrombosis; AF, atrial fibrillation; LDL-Cylow-density lipoprotein cholesterol.

17, 2024 by guest. Protected by copyright.

Page 43 of 43

		орен.	
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>conort studies</i>	
Section/Topic	ltem #	Recommendation Of 5	Reported on page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was bound	2
Introduction		22.	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods	1		
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, for w-up, and data collection	5,7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe \vec{p} ethods of follow-up	7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Gee diagnostic criteria, if applicable	5-7
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measure methods). Describe	7
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grogpings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	6
		(d) If applicable, explain how loss to follow-up was addressed	6
		(e) Describe any sensitivity analyses	NA

 36/bmjopen-2

		20	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	9
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on Exposures and potential	9
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	Figure 1
		(c) Summarise follow-up time (eg, average and total amount)	10
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	9-10
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	18
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful ting period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations		mi.	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	11-13
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	15
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.grg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.