

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Comparison of biodegradable and durable polymer drugeluting stents in acute coronary syndrome

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058075
Article Type:	Original research
Date Submitted by the Author:	07-Oct-2021
Complete List of Authors:	Yuan, Haoyong; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Wu, Zhongshi; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Lu, Ting; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Wei, Tingting; Hunan Provincial Maternal and Child Health Care Hospital, Department of Paediatrics Zeng, Yifan; Central South University, Department of Cardiovascular Surgery Liu, Yalin; Central South University, Department of Cardiovascular Surgery Liu, Yalin; Central South University, Department of Cardiovascular Biomaterials Huang, Can; Central South University, Department of Cardiovascular Biomaterials
Keywords:	Coronary heart disease < CARDIOLOGY, Coronary intervention < CARDIOLOGY, Myocardial infarction < CARDIOLOGY
	1

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Comparison of biodegradable and durable polymer drug-eluting stents in acute coronary syndrome

Haoyong Yuan, MD^{1,2}, Zhongshi Wu, MD^{1,2}, Ting Lu, MD^{1,2}, Tingting Wei, MD³, Yifan Zeng, MD¹, Yalin Liu^{1,2}, Can Huang, MD^{1,2*}

¹Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China

²Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan 410008, China

³Department of Paediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China elien

***Corresponding author**: Can Huang

Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University,

#139 Renmin Road, Changsha, Hunan, 410011, P.R. China

Tel: +86 73185292133

Fax: +86 73185292133

E-mail: huangcan413@csu.edu.cn

Word count: 2968

Abstract

Purpose: To compare the safety and effectiveness between biodegradable (BP-DES) and durable polymer drug-eluting stents (DP-DES) in acute coronary syndrome (ACS) patients. **Methods:** We searched PubMed, Medline, Embase, and the Cochrane Controlled Register of Trials (CENTRAL) for comparative studies of BP-DES versus DP-DES in patients with ACS, from January 2000 to July 2021. Statistical pooling was performed for estimating incidence, using a random-effects model with generic inverse-variance weighting. Risk estimates were computed with 95% confidence intervals (CIs), using RevMan 5.3.

Results: Nine articles that compared BP-DES and DP-DES in ACS patients were identified and included in qualitative and quantitative analyses. There was no difference in the baseline characteristics, except for the total stent length, which was longer in the BP-DES group. A pooled analysis demonstrated that major cardiac adverse events, efficacy endpoints, and safety endpoints were similar between the 2 groups at 1 year. However, the total stent thrombosis (ST) incidence was significantly different between the BP-DES and DP-DES groups in the follow-up period. Subgroup analysis showed a statistically significant difference in the total ST, MACE, TLR, TVR and ST incidence over 2 years.

Conclusion: This meta-analysis revealed that the 2 stent types showed excellent safety and efficacy profiles at 12 months. However, there was a slightly increased MACE, TLR, TVR and ST incidence in the DP-DES group over the 2-year follow-up period, suggesting that BP-DES may be more favourable for treating patients with ACS.

Keywords: acute coronary syndrome, biodegradable drug-eluting stent, durable polymer

drug-eluting stent, major adverse cardiac event, stent thrombosis, target lesion revascularization, target vessel revascularization

Latin

Strengths and limitations of this study

1)This is the first meta analysis comparing the clinical outcomes of the two polymer in the patients with acute coronary syndrome. 2) In this meta-analysis, the research rolling in are all RCT and the follow up are all over 1 year even for 5 years, so the result mybe convincing. 3)According to the data,we sugest that both polymer types showed excellent safety and efficacy profiles at 1 year and BP-DES may be more favourable for treating patients with ACS due to a slightly increased incidence of MACE, TLR, TVR and ST in the DP-DES group in the follow-up period over 2 years.

However, the analysis mybe has some limitations.he present study had several limitations, which maybe introduce some bias. First, this study included RCTs and shares the limitations of original studies. Second, Biodegradable polymer DES are a heterogeneous group of stents differing with regards to stent platform thickness, time to complete degradation of the polymer, and drug-elution kinetics. The comparator group of durable polymer DES is an equally heterogeneous group. We were unable to match the stents in regards to the strut thickness and drug. As a consequence, the reported results may not be generalizable to all stents from the respective group. Third, Over 6 month dual antiplatelet therapy was given to the patients rolling in our including RCT trails, the difference of the duration of dual antiplatelet therapy that may influence the clinical outcomes.

No additional data available

Patient and public involvement

We do not need the patient and public involvement, as this is a meta anlysis and no new patients were rolled in it.

Contributorship Statement

Can Huang, Zhongshi Wu, and Haoyong Yuan developed the idea of the study, participated in its design and coordination and helped to draft the manuscript. Ting Lu and Tingting Wei contributed to the acquisition and interpretation of data. Yifan Zeng and Yalin Liu provided critical review and substantially revised the manuscript. All authors read and approved the final manuscript. È.

Ethics approval

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the protocol was registered with PROSPERO (CRD42021253412). This study was approved by the institutional review board of the Second Xiangya Hospital, Central South University.

Funding

This work was supported by Hunan Provincial Natural Science Foundation of China, grangt number(2020JJ4787).

Introduction

Percutaneous coronary intervention (PCI) is the current standard of care for patients with coronary artery disease, particularly acute coronary syndrome (ACS)(1, 2). Unlike bare-mental stents (BMS), drug-eluting stents (DES) use antiproliferative agents embedded in a polymer coating on the stent's surface, which inhibit neointimal hyperplasia to reduce the risk of restenosis(3). Although DES have substantially improved clinical outcomes, the first-generation durable polymer DES (DP-DES) released sirolimus or paclitaxel, and were associated with similar risks of death and myocardial infarction as BMS beyond 1 year after implantation(4). Later, the second-generation DP-DES were confirmed to have lower restenosis rates than first-generation devices and showed reduced rates of stent thrombosis (ST)(5). Recently, very late ST and neoatherosclerosis, with adverse clinical outcomes, have been observed with second-generation DP-DES, which has improved the biocompatibility of the polymer(6). Late stent failure has been attributed to delayed endothelial healing secondary to a hypersensitivity reaction to the durable polymer(7).

To address this potential limitation of DP-DES, biodegradable polymer DES (BP-DES) have been developed. Theoretically, BP-DES would lead to a reduction in vascular inflammation and a decreased risk of late stent-related complications due to the advantage of leaving behind only the BMS after complete drug elution and polymer degradation. BP-DES have been observed to reduce the rate of major adverse cardiac events (MACEs) compared to BMS(8) and first-generation DP-DES(9). Studies of all-comes who underwent PCI showed that the device-related outcomes were comparable between BP-DES and second-generation DP-DES(10-13). Thus, BP-DES would be expected to reduce the risk of ST-related MACEs

BMJ Open

beyond the first year, as compared to DP-DES. However, previous studies enrolled a significant proportion of stable angina patients. ACS confers an increased risk of adverse outcome due to plaque characteristics, including culprit lesions, thrombus burden, and persistent inflammation, compared to stable coronary artery diseases. ACS would also increase the risk of delayed arterial healing and vessel remodelling(14), reflected by higher rates of incomplete stent strut coverage(15, 16) and malpositioning(17).

Recently, the randomized trials have been performed to compare the efficacy and safety of DP-DES and BP-DES in an ACS population who underwent PCI. In this meta-analysis, we aimed to summarize studies comparing the 2 polymer technologies in ACS patients and to analyse the safety and effectiveness of these therapeutic options.

elie

Methods

Search strategy and registration

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This study was approved by the institutional review board of the Second Xiangya Hospital, Central South University and the protocol was registered with PROSPERO (CRD42021253412).

Based on the PRISMA statement, PubMed, Medline, Embase, and the Cochrane Controlled Register of Trials (CENTRAL) databases were searched for comparative studies of BP-DES versus DP-DES in the treatment of ACS patients who underwent PCI. The following search terms were used: 'BP-DES', 'DP-DES', 'Acute coronary syndrome', 'Acute myocardial infarction', 'biodegradable', 'bioabsorbable', 'polymer', 'everolimus',

BMJ Open

'zotarolimus', 'endeavor', 'Resolute', 'Xience', and 'drug-eluting stent'. We also reviewed prior meta-analyses and the reference lists of the original trials and review articles to identify further studies. Only English language articles published in peer-reviewed journals from January 2000 to July 2021 were selected. Analyses were conducted by 2 independent reviewers.

Eligibility criteria

The inclusion criteria for this meta-analysis were as follows: 1) randomized controlled trials (RCTs) comparing BP-DES and DP-DES in the treatment of ACS patients who underwent PCI; 2) studies that reported data on patients' baseline characteristics, follow-up duration, outcomes at the primary, safety, and efficacy endpoints; 3) studies where the mean follow-up time was over 12 months; and 4) full-text articles.

The exclusion criteria for the meta-analysis were the following: 1) duplicate of the sample size and reports evaluated by 2 independent reviewers; 2) case reports/series; 3) studies involving data from a national database.

Data extraction and outcome measurement

Two authors (Haoyong Yuan and Tingting Wei) systematically screened the titles and abstracts of publications retrieved using the search strategy to select studies that met the above inclusion criteria. Any disagreement between them over the eligibility of particular studies was resolved through discussion and involvement of a third author (Zhongshi Wu), when necessary. First, baseline characteristics, including the name of the first author, year of publication, study design, country of origin, number of patients, mean age of subjects, and

BMJ Open

mean duration of follow-up were gathered from each included article. In addition, sex; body mass index; the presence of hypertension, diabetes, dyslipidaemia, chronic kidney disease, peripheral vessel disease, or smoking; left ventricular ejection fraction (LVEF), number of stents per person, and total stent length were collected for evaluation of procedure risk. MACEs were considered as the primary endpoint. The efficacy endpoint included target vessel revascularization (TVR) and target lesion revascularization (TLR). In addition, all-cause death, cardiac death, target vessel myocardial infarction (TVMI), and ST were employed as the safety endpoints to evaluate the safety of BP-DES and DP-DES.

Quality assessment of RCTs was based on sequence generation; randomized group allocation; concealment; blinding of participants, personnel, and outcome assessors; incomplete data; selectivity; outcome reporting, and other sources of bias

Data analysis and synthesis

Continuous variables are reported as the mean (standard deviation) and categorical variables are expressed as number. Statistical pooling was performed to estimate incidence, according to a random-effects model with generic inverse-variance weighting. We computed risk estimates with 95% confidence intervals (CIs), using RevMan 5.3 (The Cochrane Collaboration, The NordicCochrane Centre, Copenhagen, Denmark). Hypothesis testing for superiority was set at the two-tailed 0.05 level. Hypothesis testing for statistical homogeneity was set at the two-tailed 0.10 level and was based on the Cochran Q test, with I² values of 25%, 50%, and 75% representing mild, moderate, and severe heterogeneity, respectively.

Results

Search results

A total of 895 articles, written in English, were identified through the literature search. After an initial screening of the titles and abstracts, articles were eliminated, as they were not related to the topic of this study. 92 clinical studies and RCT articles of the two polymers remained. After further reading the full text, 28 articles about acute coronary syndromes were left and the patients of the 20 articles include the chronic and acute coronary syndrome. Finally, 8 articles of randomized controlled trials comparing BP-DES and DP-DES in patients with ACS were identified and were included in the qualitative and quantitative analyses (18-25). The follow-up duration ranged from 1 year to 5 years (Table 1).

General features of the trials

A total number of 8089 patients (3898 patients who were treated with BP-DES and 4191 patients who were treated with the DP-DES were included in this analysis. Further details about the total number of patients retrieved from each trial, the publication year, the country of origin of the publication, the centre in which trials were performed, the follow-up duration, the risk factors, primary, efficacy, and safety endpoints are listed in Table 1 to Table 3.

Patient characteristics

The baseline features of the patients are summarized in Tables 2 The mean age of the patients who were treated by BP-DES ranged from 61.3 to 64 years old, whereas the mean age of the patients who were treated by DP-DES ranged from 61.7 to 64.1 years. The number of male patients were above 70% in all the included trials. There was no difference in age

(mean difference [MD]: 0.14, 95%CI: -0.66–0.38; P = 0.60, $I^2 = 0\%$), sex (male) (odds ratio [OR]: 1.10, 95%CI: 0.99–1.23; P = 0.07, $I^2 = 0\%$), hypertension (OR: 1.03, 95%CI: 0.94–1.13; P = 0.57, $I^2 = 37\%$), dyslipidaemia (OR: 0.92, 95%CI: 0.83–1.02; P = 0.10, $I^2 =$ 36%), LVEF (MD: 0.00, 95%CI: 0.00–0.01; P = 0.12 $I^2 = 12\%$), body mass index (MD:0.07, 95%CI: -0.11 to 0.25; P = 0.44, $I^2 = 0\%$), diabetes (OR: 0.92, 95%CI: 0.83–1.02; P = 0.13, I^2 = 21%) , total stent length (MD: -0.72, 95%CI: -2.30 to -0.85; P = 0.37, $I^2 = 40\%$) , and number of stents per person (MD: -0.00, 95%CI: -0.05 to 0.04; P = 0.84, $I^2 = 0\%$) among patients who were implanted with BP-DES or DP-DES. A pooled analysis demonstrated that thes number of smoking patients (OR: 1.13, 95%CI: 1.03–1.24; P = 0.008 $I^2 = 29\%$) is significantly lower in the BP-DES group than in the DP-DES group (Fig. 1 A–C).

Primary endpoint: MACEs reported during a follow-up period of 1–5 years, 1 year, and over 2 years

MACEs, including all-cause death, recurrent MI, or any coronary repeat revascularization involving TLR, TVR, and non-TVR, were considered as the primary endpoint of the trials. A pooled analysis indicated no statistically significant difference in MACEs in a follow-up period ranging from 1 to 5 years between the 2 groups (OR: 0.87, 95%CI: 0.75–1.01; P = 0.07, $I^2 = 50\%$). Of the 5 studies that published 1-year outcomes, MACEs were not significantly different between the BP-DES and DP-DES groups, with OR: 0.97, 95%CI: 0.81–1.16; P = 0.74, $I^2 = 44\%$. However, the over 2-year MACE is significant lower in the BP-DES group with OR: 0.71, 95%CI: 0.57–0.88; P = 0.002, $I^2 = 0\%$ (Fig. 2).

BMJ Open

Efficacy endpoint: TVR and TLR reported during a follow-up period of 1–5 years, 1 year, and over 2 years

TLR and TVR were considered as the efficacy endpoints of the trials. A pooled analysis indicated no statistically significant difference in TLR in a follow-up period ranging from 1 to 5 years between the 2 groups (OR: 0.78, 95%CI: 0.61–1.00; P = 0.05, I^2 = 48%). Among the 5 studies that published 1-year data, TLR was not significantly different between the BP-DES and DP-DES groups with OR: 0.72, 95%CI: 0.40–1.31; P = 0.29, I^2 = 65%. A pooled analysis indicated no statistically significant difference in TVR over a follow-up period ranging from 1 to 5 years, with OR: 1.01, 95%CI: 0.79–1.28; P = 0.96, I^2 = 46%, 1 year in 3 publications, with OR: 0.98, 95%CI: 0.40–2.38; P = 0.96, I^2 = 76%, However, the over 2-year TLR in 4 RCT studies, with OR: 0.71, 95%CI: 0.51–1.01; P = 0.05, I^2 = 0% and over 2-year TVR in 3 studies, with OR: 0.70, 95%CI: 0.52–0.94; P = 0.002, I^2 = 15% are much lower in BP group (Figs. 3, 4).

Safety endpoint: All-cause death, cardiac-related death, target vessel myocardial infarction, and stent thrombosis over a follow-up period of 1–5 years, 1 year, and over 2 years

All-cause death, cardiac-related death, TVMI, and ST were considered as the efficacy endpoint of the trails. A pooled analysis indicated no statistically significant difference in all-cause death (OR: 0.88, 95%CI: 0.72–1.07; P = 0.20, $I^2 = 0\%$), cardiac-related death (OR: 0.89, 95%CI: 0.71–1.12; P = 0.32, $I^2 = 20\%$), and TVMI (OR: 0.73, 95%CI: 0.53–1.01; P = 0.05, $I^2 = 0\%$) over a follow-up period ranging from 1 to 5 years, between the 2 groups. Of the 5 studies that published 1-year data, all-cause death, cardiac-related death, and TVMI

were not significantly different between the BP-DES and DP-DES groups (all-cause death OR: 0.91, 95%CI: 0.71–1.15; P = 0.42, I^2 = 0%, cardiac-related death OR: 0.96, 95%CI: 0.74–1.26; P = 0.79, I^2 = 35%, TVMI OR: 0.73, 95%CI: 0.53–1.01; P = 0.05, I^2 = 0%). Similar findings were observed for the over 2-year all-cause cardiac death, cardiac-related death, and TVMI in 5 studies (all-cause death OR: 0.85, 95%CI: 0.64–1.12; P = 0.25, I^2 = 0%, cardiac-related death OR: 0.77, 95%CI: 0.56–1.17; P = 0.12, I^2 = 0%, TVMI OR: 0.79, 95%CI: 0.51–1.22; P = 0.28, I^2 = 0%), respectively (Figs. 5–7). However, the total ST incidence, including the definite ST, probable ST, and definite or probable ST incidence, was significantly different between the BP-DES and DP-DES groups over the follow-up period (OR: 0.59, 95% CI: 0.46–0.77; P = 0.0001, I^2 = 48%). Subgroup analysis revealed no difference in total ST for a 1-year follow-up (OR: 0.61, 95%CI: 0.32–1.15; P = 0.13, I^2 = 72%), while pooled analysis indicated a statistically significant difference in the total ST for the over 2-year follow-up (OR: 0.47–0.85; P = 0.002, I^2 = 0%) (Fig. 8).

Discussion

The choice of stent in patients undergoing PCI for ACS is debated. Coronary intervention with second-generation DP-DES generally reduces the need for revascularisation and improves mortality, as compared to BMS and first-generation DP-DES. Furthermore, the risk of late ST with DP-DES tends to off-set the benefit from reduction in the need for revascularisation in patients with ACS, as seen in real-world registries and clinical trials comparing them to BMS(15, 26). BP-DES was designed to leave only the BMS behind once the polymer has bio-degraded completely after drug elution, and may represent an attractive solution for patients with ACS(27). Prior meta-analyses have compared the clinical outcomes

BMJ Open

among BMS, DP-DES, and BP-DES in patients with stable coronary artery disease, but no previous meta-analysis of RCTs and prospective trials directly comparing clinical outcomes between BP-DES and DP-DES for the treatment of ACS. To our knowledge, this meta-analysis exclusively compared BP-DES to DP-DES. It included 8 trials representing 8089 patients with a longer follow-up duration, ranging from 1 year to 5 years. Although BP-DES have been hypothesised to offer improved outcomes, mainly in the long term, several prior meta-analyses have demonstrated different outcomes with BP-DES as compared to DP- DES in patients undergoing PCI. Bangalore et al. found that BP-DES were associated with higher mortality than DP-DES beyond 1 year of follow-up(28). El-Hayek et al. demonstrated no significant difference in mortality between these types of stent(6). In our study, there was no significant differences in MACE, all-cause death, cardiac-related death, TVMI, TVR, or TLR at a follow-up of 1 year and all-cause death, cardiac death, TVMI at a follow-up of over 2 years. However, the over 2-year MACE, TVR and TLR are significant lower in the BP group comparing to the DP group. Pilgrim, T found that a higher all cause mortality among patients treat with BP-SES compared with DP-EES in the BIOSCIENCE trail, they also think comparable rates of all-cause motality between patients treated with BP-SES and DP-EES in the BIOSTEMI trail at 2 years (25). Taken together, this suggests that BP-DES share similar outcomes in terms of MACEs (all-cause death, cardiac-related death, TVMI, TVR, and TLR during a 1-year follow-up and mybe significant improve clincal outcomes over 2 years follow up.

ST is used to evaluate the safety of the stent. The risk of ST, particularly late ST occurring beyond 30 days, remains among the major concerns limiting the use of DES in the

treatment of ACS(29). Early-generation DP-DES were associated with increased rates of very late (> 1 year) ST, as compared with BMS. It was hypothesized that the mechanism underlying late ST with first DP-DES in ACS is related to adverse reactions to the durable polymer(30), and the use of more biocompatible polymer has been associated with a reduction in ST in high-risk patients(9). In the LEADERS trial, the rate of very late ST was lower with the use of the BP-DES than with DP-DES(31). Our data demonstrated that both BP-DES and DP-DES have similar risks of ST beyond 1 year. However, BP-DES are associated with a significantly reduced risk of ST at a follow-up of over 2 years as compared with DP-DES (OR: 0.64, 95%CI: 0.46–0.88; P = 0.006, $I^2 = 0\%$). On the other hand, Kim et al. found that the incidence of ST by groups showed numerically lower rates in the DP-DES group (0.1%) than in the BP-DES group, and that all late ST cases occurred in those receiving thick-strut BP-DES stents. They proposed that no meaningful differences in terms of ST could be identified between the different polymer technologies by intravascular imaging and that the association of polymer technology and the risk of the ST was difficult to prove(19, 32, 33). It may therefore be hypothesized that the BP-DES result in improved arterial healing, which in turn not only minimizes the risk of ST, but also improves the long-term durability of the antirestenotic efficacy in the long term, even though the 2 groups have a similar risk of ST beyond 1 year.

Limitations

The present study had several limitations, which maybe introduce some bias. First, this study included RCTs and shares the limitations of original studies. Second, Biodegradable polymer DES are a heterogeneous group of stents differing with regards to stent platform

BMJ Open

thickness, time to complete degradation of the polymer, and drug-elution kinetics. The comparator group of durable polymer DES is an equally heterogeneous group. We were unable to match the stents in regards to the strut thickness and drug. As a consequence, the reported results may not be generalizable to all stents from the respective group. Third, Over 6 month dual antiplatelet therapy was given to the patients rolling in our including RCT trails, the difference of the duration of dual antiplatelet therapy that may influence the clinical outcomes.

Conclusion

In this meta-analysis comparing BP-DES to DP-DES in ACS patients who underwent PCI, the data indicated that both polymer types showed excellent safety and efficacy profiles at 1 year. There was a slightly increased incidence of MACE, TLR, TVR and ST in the DP-DES group in the follow-up period over 2 years, suggesting that BP-DES may be more favourable for treating patients with ACS. These findings should be confirmed by the long-term follow-up in RCT trials.

Table Legends

Table 1. The characteristics of the included trials

Table 2. The baseline features of the patients

Figure Legends

Fig. 1 A. Baseline characteristics and stent information of patients with acute coronary syndrome

Fig. 1B. Baseline characteristics and stent information of patients with acute coronary syndrome

Fig. 1C. Baseline characteristics and stent information of patients with acute coronary syndrome

Fig. 2. Primary endpoint: major adverse cardiac events

Fig. 3. Target vessel revascularization

Fig. 4. Target lesion revascularization

Fig. 5. All-cause death

Fig. 6. Cardiac-related death

Fig. 7. Target vessel myocardial infarction

Fig. 8. Stent thrombosis

References:

1.Mehta SR, Cannon CP, Fox KA, Wallentin L, Boden WE, Spacek R, Widimsky P, McCullough PA, Hunt D, Braunwald E, Yusuf S. Routine vs selective invasive strategies in patients with acute coronary syndromes: a collaborative meta-analysis of randomized trials. *JAMA*.(2005)293: 2908-17. doi:10.1001/jama.293.23.2908

2.Fox KA, Clayton TC, Damman P, Pocock SJ, de Winter RJ, Tijssen JG, Lagerqvist B, Wallentin L. Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data. J AM COLL CARDIOL.(2010)55: 2435-45. doi:10.1016/j.jacc.2010.03.007

3.Torii S, Jinnouchi H, Sakamoto A, Kutyna M, Cornelissen A, Kuntz S, Guo L, Mori H, Harari E, Paek KH, Fernandez R, Chahal D, Romero ME, Kolodgie FD, Gupta A, Virmani R, Finn AV. Drug-eluting coronary stents: insights from preclinical and pathology studies. *NAT REV CARDIOL*.(2020)17: 37-51. doi:10.1038/s41569-019-0234-x

4.Valgimigli M, Campo G, Percoco G, Bolognese L, Vassanelli C, Colangelo S, de Cesare N, Rodriguez AE, Ferrario M, Moreno R, Piva T, Sheiban I, Pasquetto G, Prati F, Nazzaro MS, Parrinello G, Ferrari R. Comparison of angioplasty with infusion of tirofiban or abciximab and with implantation of sirolimus-eluting or uncoated stents for acute myocardial infarction: the MULTISTRATEGY randomized trial. *JAMA*.(2008)299: 1788-99. doi:10.1001/jama.299.15.joc80026

5.Raber L, Magro M, Stefanini GG, Kalesan B, van Domburg RT, Onuma Y, Wenaweser P, Daemen J, Meier B, Juni P, Serruys PW, Windecker S. Very late coronary stent thrombosis of a newer-generation everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study. *CIRCULATION*.(2012)125: 1110-21. doi:10.1161/CIRCULATIONAHA.111.058560 6.El-Hayek G, Bangalore S, Casso DA, Devireddy C, Jaber W, Kumar G, Mavromatis K, Tamis-Holland J, Samady H. Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents. *JACC Cardiovasc Interv*.(2017)10: 462-473. doi:10.1016/j.jcin.2016.12.002

- 7.Finn AV, Nakazawa G, Kolodgie FD, Virmani R. Temporal course of neointimal formation after drug-eluting stent placement: is our understanding of restenosis changing? *JACC Cardiovasc Interv*.(2009)2: 300-2. doi:10.1016/j.jcin.2009.01.004
- 8.Raber L, Kelbaek H, Ostojic M, Baumbach A, Heg D, Tuller D, von Birgelen C, Roffi M, Moschovitis A, Khattab AA, Wenaweser P, Bonvini R, Pedrazzini G, Kornowski R, Weber K, Trelle S, Luscher TF, Taniwaki M, Matter CM, Meier B, Juni P, Windecker S. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction: the COMFORTABLE AMI randomized trial. *JAMA*.(2012)308: 777-87. doi:10.1001/jama.2012.10065
- 9.Sabate M, Cequier A, Iniguez A, Serra A, Hernandez-Antolin R, Mainar V, Valgimigli M, Tespili M, den Heijer P, Bethencourt A, Vazquez N, Gomez-Hospital JA, Baz JA, Martin-Yuste V, van Geuns RJ, Alfonso F, Bordes P, Tebaldi M, Masotti M, Silvestro A, Backx B, Brugaletta S, van Es GA, Serruys PW. Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial. *LANCET*.(2012)380: 1482-90. doi:10.1016/S0140-6736(12)61223-9
- 10.von Birgelen C, Kok MM, van der Heijden LC, Danse PW, Schotborgh CE, Scholte M, Gin R, Somi S, van Houwelingen KG, Stoel MG, de Man F, Louwerenburg J, Hartmann M, Zocca P, Linssen G, van der Palen J, Doggen C, Lowik MM. Very thin strut biodegradable polymer everolimus-eluting and sirolimus-eluting

BMJ Open

stents versus durable polymer zotarolimus-eluting stents in allcomers with coronary artery disease (BIO-RESORT): a three-arm, randomised, non-inferiority trial. *LANCET*.(2016)388: 2607-2617. doi:10.1016/S0140-6736(16)31920-1

11.Pilgrim T, Heg D, Roffi M, Tuller D, Muller O, Vuilliomenet A, Cook S, Weilenmann D, Kaiser C, Jamshidi P, Fahrni T, Moschovitis A, Noble S, Eberli FR, Wenaweser P, Juni P, Windecker S. Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for percutaneous coronary revascularisation (BIOSCIENCE): a randomised, single-blind, non-inferiority trial. *LANCET*.(2014)384: 2111-22. doi:10.1016/S0140-6736(14)61038-2

12.Smits PC, Hofma S, Togni M, Vazquez N, Valdes M, Voudris V, Slagboom T, Goy JJ, Vuillomenet A, Serra A, Nouche RT, den Heijer P, van der Ent M. Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent (COMPARE II): a randomised, controlled, non-inferiority trial. *LANCET*.(2013)381: 651-60. doi:10.1016/S0140-6736(12)61852-2

13.Natsuaki M, Kozuma K, Morimoto T, Kadota K, Muramatsu T, Nakagawa Y, Akasaka T, Igarashi K, Tanabe K, Morino Y, Ishikawa T, Nishikawa H, Awata M, Abe M, Okada H, Takatsu Y, Ogata N, Kimura K, Urasawa K, Tarutani Y, Shiode N, Kimura T. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent: a randomized, controlled, noninferiority trial. *J AM COLL CARDIOL*.(2013)62: 181-190. doi:10.1016/j.jacc.2013.04.045

14.Pilgrim T, Piccolo R, Heg D, Roffi M, Tuller D, Vuilliomenet A, Muller O, Cook S, Weilenmann D, Kaiser C, Jamshidi P, Khattab AA, Taniwaki M, Rigamonti F, Nietlispach F, Blochlinger S, Wenaweser P, Juni P, Windecker S. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary revascularisation of acute myocardial infarction.

EUROINTERVENTION.(2016)12: e1343-e1354. doi:10.4244/EIJY15M12_09

- 15.Gonzalo N, Barlis P, Serruys PW, Garcia-Garcia HM, Onuma Y, Ligthart J, Regar E. Incomplete stent apposition and delayed tissue coverage are more frequent in drug-eluting stents implanted during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction than in drug-eluting stents implanted for stable/unstable angina: insights from optical coherence tomography. *JACC Cardiovasc Interv*.(2009)2: 445-52. doi:10.1016/j.jcin.2009.01.012
- 16.Raber L, Baumgartner S, Garcia-Garcia HM, Kalesan B, Justiz J, Pilgrim T, Moschovitis A, Khattab AA, Buellesfeld L, Wenaweser P, Meier B, Serruys PW, Juni P, Windecker S. Long-term vascular healing in response to sirolimus- and paclitaxel-eluting stents: an optical coherence tomography study. *JACC Cardiovasc Interv*. (2012)5: 946-57. doi:10.1016/j.jcin.2012.05.012
- 17.Cook S, Ladich E, Nakazawa G, Eshtehardi P, Neidhart M, Vogel R, Togni M, Wenaweser P, Billinger M, Seiler C, Gay S, Meier B, Pichler WJ, Juni P, Virmani R, Windecker S. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. *CIRCULATION*.(2009)120: 391-9.
- 18.de Waha A, King LA, Stefanini GG, Byrne RA, Serruys PW, Meier B, Jüni P, Kastrati A, Windecker S. Long-term outcomes of biodegradable versus durable polymer drug-eluting stents in patients with acute ST-segment elevation myocardial infarction: a pooled analysis of individual patient data from three randomised trials. *EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.*(2015)10: 1425.

19.Kim H, Kang J, Hwang D, Han J, Yang H, Kang H, Koo B, Kim SY, Park K, Rha S, Shin W, Lim H, Park K,

Park KW. Durable Polymer Versus Biodegradable Polymer Drug-Eluting Stents After Percutaneous

BMJ Open

Coronary Intervention in Patients with Acute Coronary Syndrome. *CIRCULATION*.(2021)143: 1081-1091. doi:10.1161/CIRCULATIONAHA.120.051700

- 20.Lee HJ, Park TK, Song YB, Choi YJ, Yu CW, Yang JH, Hahn J, Choi S, Choi RK, Choi J, Park JS, Kim JS, Kim TH, Jang HJ, Lee SH, Shim WH, Roh YM, Gwon H. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent in patients with acute myocardial infarction. *INT J CARDIOL*.(2015)183: 190-197. doi:10.1016/j.ijcard.2015.01.036
- 21.Iglesias JF, Muller O, Heg D, Roffi M, Kurz DJ, Moarof I, Weilenmann D, Kaiser C, Tapponnier M, Stortecky S, Losdat S, Eeckhout E, Valgimigli M, Odutayo A, Zwahlen M, Jüni P, Windecker S, Pilgrim T. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with ST-segment elevation myocardial infarction (BIOSTEMI): a single-blind, prospective, randomised superiority trial. *The Lancet*.(2019)394: 1243-1253. doi:10.1016/S0140-6736(19)31877-X

22.ZHANG QI, QIU JP, KIRTANE AJ, ZHU TQ, ZHANG RY, YANG ZK, HU J, DING FH, DU R, SHEN WF. Comparison of Biodegradable Polymer Versus Durable Polymer Sirolimus-Eluting Stenting in Patients with Acute ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: Results of the RESOLVE Study. *J INTERV CARDIOL*.(2014)27: 131-141. doi:10.1111/joic.12102

23.Pilgrim T, Piccolo R, Heg D, Roffi M, Tüller D, Vuilliomenet A, Muller O, Cook S, Weilenmann D, Kaiser C, Jamshidi P, Khattab A, Taniwaki M, Rigamonti F, Nietlispach F, Blöchlinger S, Wenaweser P, Jüni P, Windecker S. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary revascularisation of acute myocardial infarction. *EUROINTERVENTION*.(2016)12: e1343-e1354. doi:10.4244/EIJY15M12_09

24.Zhang Y, Iqbal J, Windecker S, Linke A, Antoni D, Sohn HY, Corti R, van Es G, Copt S, Eerdmans P, Saitta

R, Morice M, Di Mario C, Juni P, Wijns W, Buszman P, Serruys PW. Biolimus-eluting stent with biodegradable polymer improves clinical outcomes in patients with acute myocardial infarction. *HEART*.(2015)101: 271-278. doi:10.1136/heartjnl-2014-306359

25.Pilgrim T, Muller O, Heg D, Roffi M, Kurz DJ, Moarof I, Weilenmann D, Kaiser C, Tapponnier M, Losdat S, Eeckhout E, Valgimigli M, Juni P, Windecker S, Iglesias JF. Biodegradable- Versus Durable-Polymer Drug-Eluting Stents for STEMI: Final 2-Year Outcomes of the BIOSTEMI Trial. *JACC Cardiovasc Interv*.(2021)14: 639-648. doi:10.1016/j.jcin.2020.12.011

26.Guagliumi G, Costa MA, Sirbu V, Musumeci G, Bezerra HG, Suzuki N, Matiashvili A, Lortkipanidze N, Mihalcsik L, Trivisonno A, Valsecchi O, Mintz GS, Dressler O, Parise H, Maehara A, Cristea E, Lansky AJ, Mehran R, Stone GW. Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. *CIRCULATION*.(2011)123: 274-81. doi:10.1161/CIRCULATIONAHA.110.963181

- 27.Torii S, Jinnouchi H, Sakamoto A, Kutyna M, Cornelissen A, Kuntz S, Guo L, Mori H, Harari E, Paek KH, Fernandez R, Chahal D, Romero ME, Kolodgie FD, Gupta A, Virmani R, Finn AV. Drug-eluting coronary stents: insights from preclinical and pathology studies. *NAT REV CARDIOL*.(2020)17: 37-51. doi:10.1038/s41569-019-0234-x
- 28.Bangalore S, Toklu B, Amoroso N, Fusaro M, Kumar S, Hannan EL, Faxon DP, Feit F. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. *BMJ*.(2013)347: f6625. doi:10.1136/bmj.f6625

29.Daemen J, Wenaweser P, Tsuchida K, Abrecht L, Vaina S, Morger C, Kukreja N, Juni P, Sianos G, Hellige

BMJ Open

G, van Domburg RT, Hess OM, Boersma E, Meier B, Windecker S, Serruys PW. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. *LANCET*.(2007)369: 667-78. doi:10.1016/S0140-6736(07)60314-6

30.Siqueira DA, Abizaid AA, Costa JR, Feres F, Mattos LA, Staico R, Abizaid AA, Tanajura LF, Chaves A, Centemero M, Sousa AG, Sousa JE. Late incomplete apposition after drug-eluting stent implantation: incidence and potential for adverse clinical outcomes. *EUR HEART J.*(2007)28: 1304-9. doi:10.1093/eurheartj/ehm114

31.Stefanini GG, Byrne RA, Serruys PW, de Waha A, Meier B, Massberg S, Juni P, Schomig A, Windecker S, Kastrati A. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. *EUR HEART J.*(2012)33: 1214-22. doi:10.1093/eurheartj/ehs086

32.Guagliumi G, Shimamura K, Sirbu V, Garbo R, Boccuzzi G, Vassileva A, Valsecchi O, Fiocca L, Canova P, Colombo F, Tensol RPG, Nakamura D, Attizzani GF, Cereda A, Satogami K, De Luca L, Saia F, Capodanno D. Temporal course of vascular healing and neoatherosclerosis after implantation of durable- or biodegradable-polymer drug-eluting stents. *EUR HEART J.*(2018)39: 2448-2456. doi:10.1093/eurheartj/ehy273

33.Kuramitsu S, Kazuno Y, Sonoda S, Domei T, Jinnouchi H, Yamaji K, Soga Y, Shirai S, Ando K, Saito S. Vascular response to bioresorbable polymer sirolimus-eluting stent vs. permanent polymer everolimus-eluting stent at 9-month follow-up: an optical coherence tomography sub-study from the CENTURY II trial. *Eur Heart J Cardiovasc Imaging*.(2016)17: 34-40. doi:10.1093/ehjci/jev203

Table 1. The characteristics of the included trails

able 1. The charac	teristics (of the included trails				8/hminnen-2021-058075 on 8. lune		
Authors	Years	Journal	Study	Center	Country	Follow up	NO.pa BP-DES	atients DP-D
Hyo-Soo Kim	2021	Circulation	RCT	multicentre		12 month	1700	171
Thomas Pilgrim	2021	JACC	RCT	multicentre		24month	649	651
Juan F Iglesias	2019	The Lancet	RCT	multicentre	Switzerland	12 month	649	651
Thomas Pilgrim	2016	EuroIntervention	RCT	multicentre	Switzerland	12 month	211	196
Yao-Jun Zhang	2015	Heart	RCT	multicentre	Netherlands	60month	280	293
Hyun Jong Lee	2015	International journal of cardiology	RCT	multicentre	Korea	24month	171	536
Antoinette de Waha	2015	EuroIntervention	RCT	multicentre	multicentre	48month	291	206
Antoinette de Waha	2015	EuroIntervention	RCT	multicentre	multicentre	12month	291	206
Qi Zhang	2014	Journal of Interventional Cardiology	RCT	multicentre	:	12 month	596	596
			25			otented by nonvright		

Page	27	of	40
------	----	----	----

3 4

6

Table 2. The baseline features of the patients

Authors	Δα					icters		June 2022		
		ge	SEX(N		-	ass index		DP-DES		petes
	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	olc	BP-DES	DP-D
Hyo-Soo Kim 6	63.1±11.1	63.0±11.1	1337	1351	25.0±3.2	24.9±3.1	1147	109 8	747	789
Juan F Iglesias 6	52.2±11.8	63.2±11.8	513	477	26.9±4.3	26.8±4.3	281	297 7	73	82
Thomas Pilgrim 6	51.3±12.4	61.7±12.7	170	151	27.0±4.3	27.0±4.3	102	98mj	30	27
Yao-Jun Zhang 6	62.9±11.7	62.8±11.7	215	210	27.5±4.4	27.8±4.6	181	1988. 1988.	55	46
Hyun Jong Lee 6	64±14.08	63±14.08	128	400	1	01	102	3088 3088	82	269
Antoinette de Waha 6	62.5±12.1	63.1±12.6	214	149	/	1	142	from http://bmjopea.bmj.com/ on April 29. 1988.bmj.com/ on April 23.	56	34
Antoinette de Waha 6	62.5±12.1	63.1±12.6	214	149	/	/	142		56	34
Qi Zhang 6	63.9±13.1	64.1±12.1	475	467	/	/	360	2024 by	129	113

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

					BMJ Open			6/bmjopen-2021-058075 on 8 Jun		
Table2. The baseline	e features o	of the patie	nts		1	basic characters		n 8 June 2022		
Authors	Dyslip	oidemia	smo	king	LVE	F, %	Stent numbe		Total stent	length, mm
	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	Da DES	BP-DES	DP-DES
Hyo-Soo Kim [[]	1,247	1,280	515	475	58.7±10.4	58.5±10.4	1.7±1.1	157±1.0	42.9±31.9	41.7±30.2
Juan F Iglesias	304	302	294	250	49.0 ± 11.0	48.4 ± 11.2	1.37 ± 0.64	1.39 ± 0.66	31.91±18.21	33.92±19.76
Thomas Pilgrim	110	101	93	77	49.5±10.9	48.3±11.1	1.42±0.71	1. § 9±0.71	29.49±17.83	30.52±18.99
Yao-Jun Zhang	152	176	107	115	51.5±10.1	51.4±11.8	2.2±0.5	2 <u>3</u> 2±0.6	26.6±15	27.9±15.2
Hyun Jong Lee	116	389	65	228	55 (45–65)	52 (43–62)	/	, / or	/	/
Antoinette de Waha [[]	119	109	120	90	47±10	48±12	05	h April 2	25.9±12.6	27.7±14.2
Antoinette de Waha	119	109	120	90	47±10	48±12	1	2±0.6 / / / / / / / / / / / /	25.9±12.6	27.7±14.2
Antomette de Wana					50±12	49.0 ± 17.0		4 by	,	/

copyright.

3	
4	
5	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig1. A Baseline characteristics and stent information of patients with ACS

1) Age	
--------	--

	в	P-DES		D	P-DES			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Antoinette de Waha 2015	62.5	12.1	291	63.1	12.6	206	5.5%	-0.60 [-2.81, 1.61]	
Hyo-Soo Kim 2021	63.1	11.1	1700	63	11.1	1713	48.6%	0.10 [-0.64, 0.84]	+
Hyun Jong Lee 2015	64	14.08	171	63	14.08	536	4.6%	1.00 [-1.42, 3.42]	
Juan F Iglesias 2019	62.2	11.8	649	63.2	11.8	651	16.4%	-1.00 [-2.28, 0.28]	
Qi Zhang 2014	63.9	13.1	596	64.1	12.1	596	13.1%	-0.20 [-1.63, 1.23]	-
Thomas Pilgrim 2016	61.3	12.4	211	61.7	12.7	196	4.5%	-0.40 [-2.84, 2.04]	
Yao-Jun Zhang 2015	62.9	11.7	280	62.8	11.7	293	7.3%	0.10 [-1.82, 2.02]	
Total (95% CI)			3898			4191	100.0%	-0.14 [-0.66, 0.38]	+
Heterogeneity: Chi ² = 3.25,	df = 6 (P	= 0.78	; I ² = 04	%					-10 -5 0 5 10
Test for overall effect: Z = 0.	.53 (P = I	0.60)							BP-DES DP-DES

2) Sex (male)

2) Sex (male)									
	BP-D	ES	DP-DI	ES		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-F	I, Fixed, 95% Cl	
Antoinette de Waha 2015	214	291	149	206	7.0%	1.06 [0.71, 1.59]		<u> </u>	
Hyo-Soo Kim 2021	1337	1700	1351	1713	43.9%	0.99 [0.84, 1.16]		-	
Hyun Jong Lee 2015	128	171	400	536	7.4%	1.01 [0.68, 1.50]			
Juan F Iglesias 2019	513	649	477	651	15.2%	1.38 [1.06, 1.78]			
Qi Zhang 2014	475	596	467	596	14.5%	1.08 [0.82, 1.43]			
Thomas Pilgrim 2016	170	211	151	196	4.6%	1.24 [0.77, 1.99]			
Yao-Jun Zhang 2015	215	280	210	293	7.3%	1.31 [0.90, 1.90]			
Total (95% CI)		3898		4191	100.0%	1.10 [0.99, 1.23]		•	
Total events	3052		3205						
Heterogeneity: Chi ² = 5.85,	df = 6 (P =	= 0.44);	l ² = 0%				0.2 0.5		
Test for overall effect: Z = 1.	81 (P = 0	.07)						DES DP-DES	5

3) Body mass index

	BP	P-DES	5	DF	P-DES	5		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Hyo-Soo Kim 2021	25	3.2	1700	24.9	3.1	1713	74.0%	0.10 [-0.11, 0.31]	*
Juan F Iglesias 2019	26.9	4.3	649	26.8	4.3	651	15.1%	0.10 [-0.37, 0.57]	
Thomas Pilgrim 2016	27	4.3	211	27	4.3	196	4.7%	0.00 [-0.84, 0.84]	
/ao-Jun Zhang 2015	27.5	4.4	280	27.8	4.6	293	6.1%	-0.30 [-1.04, 0.44]	
fotal (95% CI)			2840			2853	100.0%	0.07 [-0.11, 0.25]	+
Heterogeneity: Chi ² = 1.	09, df = 3	3 (P =	: 0.78);	$ ^2 = 0\%$					
Fest for overall effect: Z	= 0.76 (F	P = 0.	44)						BP-DES DP-DES

4) Hypertension

	BP-DI	ES	DP-DI	ES		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Antoinette de Waha 2015	142	291	110	206	7.8%	0.83 [0.58, 1.19]	
Hyo-Soo Kim 2021	1147	1700	1092	1713	41.7%	1.18 [1.02, 1.36]	
Hyun Jong Lee 2015	102	171	308	536	7.1%	1.09 [0.77, 1.55]	
Juan F Iglesias 2019	281	649	297	651	19.8%	0.91 [0.73, 1.13]	
Qi Zhang 2014	360	596	376	596	17.5%	0.89 [0.71, 1.13]	
Thomas Pilgrim 2016	102	211	98	196	6.2%	0.94 [0.63, 1.38]	
Yao-Jun Zhang 2015	360	280	376	293		Not estimable	
Total (95% CI)		3898		4191	100.0%	1.03 [0.94, 1.13]	
Total events	2494		2657				
Heterogeneity: Chi ² = 7.92,	df = 5 (P =	= 0.16);	I ² = 37%				0.2 0.5 1 2 5
Test for overall effect: Z = 0.	57 (P = 0.	57)					0.2 0.5 1 2 5 BP-DES DP-DES

209x297mm (300 x 300 DPI)

Fig1. B Baseline characteristics and stent information of patients with ACS

5)	Diabetes

Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Hyun Jong Lee 2015 Juan F Iglesias 2019 oi Zhang 2014 Thormas Pilgrim 2016 Yao-Jun Zhang 2015 Total events Total events Total events Testfor overall effect Z = ') Dyslipidemia <u>Study or Subgroup</u> Antoinette de Waha 2015	56 747 82 73 129 30 55 1172 i, df = 6 (P	Total 291 1700 171 649 291 211 280 3593 = 0.27);	DP-DI <u>Events</u> 34 789 269 82 113 27 46 1360 ; I ² = 21%	Total 206 1713 536 651 206 196 293	Weight 4.3% 59.0% 9.1% 9.7% 9.9% 3.2% 4.8% 100.0%	0.92 (0. 0.91 (0. 0.88 (0. 0.66 (0. 1.04 (0. 1.31 (0.	d, 95% Cl .75, 1.93] .80, 1.05] .65, 1.29] .63, 1.23] .46, 0.94] .59, 1.82] .85, 2.02]		Odds Ratio	
Antoinette de Waha 2015 Hyo-Soo Kim 2021 Hyo-Soo Kim 2021 Hyun Jong Lee 2015 Juan F Iglesias 2019 du Izhang 2014 Thomas Pilgrim 2016 Yao-Jun Zhang 2015 Total events Heterogeneity. Chi ² = 7.56 Total events Heterogeneity. Chi ² = 7.56 Test for overall effect. Z = ') Dyslipidemia Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021	566 747 82 73 129 30 55 1172 i, df = 6 (P 1.51 (P = 0	291 1700 171 649 291 211 280 3593 = 0.27);	34 789 269 82 113 27 46 1360	206 1713 536 651 206 196 293	4.3% 59.0% 9.1% 9.7% 9.9% 3.2% 4.8%	1.21 [0. 0.92 [0. 0.91 [0. 0.88 [0. 0.66 [0. 1.04 [0. 1.31 [0.	.75, 1.93] .80, 1.05] .65, 1.29] .63, 1.23] .46, 0.94] .59, 1.82] .85, 2.02]		M-H, Fixed, 95% Cl	
Hyo-Soo kim 2021 Hyu-Joo Lee 2015 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Plugim 2016 Yao-Jun Zhang 2015 Total 95% CI) Total events Heterogeneity: ChP = 7.56 Test for overall effect Z = ** O) Dyslip idemia Study or Subgroup Antoinette de Waha 2015 Ho-Soo Kim 2021	747 82 73 129 30 55 1172 i, df = 6 (P : 1.51 (P = 0	1700 171 649 291 211 280 3593 = 0.27);	789 269 82 113 27 46 1360	1713 536 651 206 196 293	59.0% 9.1% 9.7% 9.9% 3.2% 4.8%	0.92 (0. 0.91 (0. 0.88 (0. 0.66 (0. 1.04 (0. 1.31 (0.	.80, 1.05] .65, 1.29] .63, 1.23] .46, 0.94] .59, 1.82] .85, 2.02]			
Hyun Jong Lee 2015 Juan F Iglesias 2019 oi (Zhang 2014 Thomas Pilgrim 2016 Yao-Jun Zhang 2015 Total (95% C) Total events Heterogeneity. Chi ² = 7.56 Testfor overall effect Z = ') Dyslipidemia <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Soo Kim 2021	82 73 129 30 55 1172 i, df = 6 (P 1.51 (P = 0	171 649 291 211 280 3593 = 0.27);	269 82 113 27 46 1360	536 651 206 196 293	9.1% 9.7% 9.9% 3.2% 4.8%	0.91 (0. 0.88 (0. 0.66 (0. 1.04 (0. 1.31 (0.	.65, 1.29] .63, 1.23] .46, 0.94] .59, 1.82] .85, 2.02]			
Juan Flojesias 2019 oli Zhang 2014 Thomas Pilgrim 2016 Yao-Jun Zhang 2015 Total 95% CI) Total events Heterogeneity: ChiP = 7.56 Test for overall effect Z = ') Dyslipidemia <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Sao Kim 2021	73 129 30 55 1172 , df = 6 (P 1.51 (P = 0	649 291 211 280 3593 = 0.27);	82 113 27 46 1360	651 206 196 293	9.7% 9.9% 3.2% 4.8%	0.88 (0. 0.66 (0. 1.04 (0. 1.31 (0.	.63, 1.23] .46, 0.94] .59, 1.82] .85, 2.02]		*	
Juan Flojesias 2019 oli Zhang 2014 Thomas Pilgrim 2016 Yao-Jun Zhang 2015 Total 95% CI) Total events Heterogeneity: ChiP = 7.56 Test for overall effect Z = ') Dyslipidemia <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Sao Kim 2021	129 30 55 1172 i, df = 6 (P 1.51 (P = 0	291 211 280 3593 = 0.27);	113 27 46 1360	206 196 293	9.9% 3.2% 4.8%	0.88 (0. 0.66 (0. 1.04 (0. 1.31 (0.	.63, 1.23] .46, 0.94] .59, 1.82] .85, 2.02]		 	
ol Zhang 2014 Thomas Pilgrim 2016 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneily: ChP = 7.56 Test for overall effect Z = ') Dyslipidemia <u>Study or Subroup</u> Antoinette de Waha 2015	129 30 55 1172 i, df = 6 (P 1.51 (P = 0	291 211 280 3593 = 0.27);	113 27 46 1360	206 196 293	9.9% 3.2% 4.8%	0.66 (0. 1.04 (0. 1.31 (0.	.46, 0.94] .59, 1.82] .85, 2.02]		+	
Thomas Pliptim 2016 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity, Chi ^a = 7.56 Test for overall effect. Z = ') Dyslipidemia <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Sao Kim 2021	30 55 1172 i, df = 6 (P 1.51 (P = 0	211 280 3593 = 0.27);	27 46 1360	196 293	3.2% 4.8%	1.04 (0. 1.31 (0.	.59, 1.82] .85, 2.02]		+-	
Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogenely, Chi ^P = 7.56 Test for overall effect Z = ') Dyslipidemia <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Soo Km 2021	55 1172 i, df= 6 (P 1.51 (P = 0	280 3593 = 0.27);	46 1360	293	4.8%	1.31 [0.	.85, 2.02]		+	
Total (95% C) Total events Heterogeneity: Chi ² = 7.56 Test for overall effect Z = ') Dyslipidemia <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Soo Kim 2021	1172 i, df = 6 (P 1.51 (P = 0	3593 = 0.27);	1360						-	
Total events Heterogeneity: Chi [#] = 7.56 Test for overall effect Z =) Dyslipidemia Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021	i, df = 6 (P 1.51 (P = 0	= 0.27);		3801	100.0%	0 92 10				
Total events Heterogeneity: Chi [#] = 7.56 Test for overall effect Z =) Dyslipidemia Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021	i, df = 6 (P 1.51 (P = 0	= 0.27);					.83, 1.02]		•	
Heterogeneity. Chi [#] = 7.56 Test for overall effect. Z =) Dyslipidemia Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021	i, df = 6 (P 1.51 (P = 0						,		1	
Test for overall effect: Z =) Dyslipidemia Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021	1.51 (P = 0		1 = 21.70					<u> </u>		
) Dyslipidemia Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021		.13)						0.01	0.1 1 10	100
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021	BP-D								BP-DES DP-DES	
Antoinette de Waha 2015 Hyo-Soo Kim 2021	BP-D									
Antoinette de Waha 2015 Hyo-Soo Kim 2021		FS	DP-D	FS		Odds R	tatio 8		Odds Ratio	
Antoinette de Waha 2015 Hyo-Soo Kim 2021	Evente				Woight	M-H, Fixed			M-H, Fixed, 95% Cl	
Hyo-Soo Kim 2021										
	119	291	109	206	9.1%		.43, 0.88]			
	1247		1280	1713	41.0%		.80, 1.09]		7	
Hyun Jong Lee 2015	116	171	389	536	7.3%		.55, 1.16]			
Juan F Iglesias 2019	304	649	302	651	19.3%	1.02 [0.	.82, 1.27]		+	
Qi Zhang 2014	87	596	76	596	7.8%	1.17 [0.	.84, 1.63]		+	
Thomas Pilgrim 2016	110	211	101	196	6.0%		.69, 1.51]		+	
Yao-Jun Zhang 2015	152	280	176	293	9.5%		.57, 1.10]			
Total (95% CI)		3898		4191	100.0%	0.92 [0.	.83, 1.02]		•	
Total events	2135		2433							
Heterogeneity: Chi ² = 9.34	. df = 6 (P =	= 0.16);	I ² = 36%					0.01	0.1 1 10	
Test for overall effect: Z = 1	.66 (P = 0	.10)						0.01	BP-DES DP-DES	100
) Smoking	BP-DE		DP-DE			Odds R			Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed	1, 95% CI		M-H, Fixed, 95% Cl	
Antoinette de Waha 2015	120	291	90	206	7.4%	0.90 [0.	63, 1.30]			
Hvo-Soo Kim 2021	515	1700	475	1713	39.4%		.98, 1.31]		•	
Hyun Jong Lee 2015	65	171	228	536	8.2%		58, 1.18]		-+	
Juan F Iglesias 2019	294	649	250	651	16.3%		.07, 1.66]		-	
									_	
Qi Zhang 2014	257	596	223	596	15.1%		.01, 1.60]			
Thomas Pilgrim 2016	93	211	77	196	5.3%		.82, 1.81]		T-	
Yao-Jun Zhang 2015	107	280	115	293	8.3%	0.96 (0.	.68, 1.34]		-	
		2000		4404	100.0%	4 43 74 4	02 4 3 4			
Total (95% CI) Total events	1451	3898	1458	4191	100.0%	1.13 [1.0	03, 1.24]		ľ	
		- 0.201						<u> </u>		
Heterogeneity: Chi ² = 8.51, Test for overall effect: Z = 2			r= ∠9%					0.01	0.1 1 10	100
Testion overall ellect. 2 - 2	04 (F = 0.	000)							BP-DES DP-DES	
3) LVEF										
	BP-DE			DP-DES			an Differen		Mean Difference	
		SD Tota			D Total		Random, 95	5% CI	IV, Random, 95% Cl	
		.1 291					0.01 [-0.03,	0.01]	-+	
Study or Subgroup Antoinette de Waha 2015			0 0.585	0.104	4 1713	42.1% 0	0.00 [-0.00,	0.01]		
Antoinette de Waha 2015	0.47 0 1.587 0.10	04 1700	0.085					0.051		
Antoinette de Waha 2015 Hyo-Soo Kim 2021 0				0.1407	7 536	4.9%	0.03 [0.00,	0.001		
Antoinette de Waha 2015 Hyo-Soo Kim 2021 0	.587 0.10	81 171	1 0.5225				0.03 [0.00, 0.01 [-0.01,		+	
Antoinette de Waha 2015 Hyo-Soo Kim 2021 (Hyun Jong Lee 2015	0.587 0.10	B1 171 11 649	1 0.5225 9 0.484	0.112	2 651	18.7% 0		0.02]	‡	
Antoinette de Waha 2015 Hyo-Soo Kim 2021 0 Hyun Jong Lee 2015 Juan F Iglesias 2019 Qi Zhang 2014	0.587 0.10 0.55 0.148 0.49 0.1	B1 171 11 649 12 596	1 0.5225 9 0.484 6 0.49	0.112	2 651 7 596	18.7% 0 10.6% 0	0.01 [-0.01,	0.02] 0.03]	+	
Antoinette de Waha 2015 Hyo-Soo Kim 2021 0 Hyun Jong Lee 2015 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016 0	0.587 0.10 0.55 0.148 0.49 0.1 0.5 0.1	81 171 11 649 12 596 05 211	1 0.5225 9 0.484 6 0.49 1 0.483	0.112 0.11 0.111	2 651 7 596 1 196	18.7% 0 10.6% 0 6.9% 0	0.01 [-0.01 0.01 [-0.01	0.02] 0.03] 0.03]	<u></u>	
Antoinette de Waha 2015 Hyo-Soo Kim 2021 (C Hyun Jong Lee 2015 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016 (C Yao-Jun Zhang 2015 (C	0.587 0.10 0.55 0.148 0.49 0.1 0.5 0.1 0.5 0.1	81 171 11 649 12 598 05 211 01 280	1 0.5225 9 0.484 6 0.49 1 0.483 0 0.514	0.112 0.11 0.111	2 651 7 596 1 196 8 293	18.7% 0 10.6% 0 6.9% 0 9.3% 0	0.01 [-0.01 0.01 [-0.01 0.01 [-0.01 0.00 [-0.02	0.02] 0.03] 0.03] 0.02]	÷.	
Antoinette de Waha 2015 Hyo-Soo Kim 2021 C Hyo-Soo Kim 2021 C Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016 C Yao-Jun Zhang 2015 C Total (95% CI)	0.587 0.10 0.55 0.148 0.49 0.1 0.5 0.1 0.495 0.10 0.515 0.10	81 171 11 649 12 599 05 211 01 280 3898	1 0.5225 9 0.484 6 0.49 1 0.483 0 0.514 8	0.112 0.11 0.111 0.118	2 651 7 596 1 196	18.7% 0 10.6% 0 6.9% 0 9.3% 0	0.01 [-0.01 0.01 [-0.01 0.01 [-0.01	0.02] 0.03] 0.03] 0.02]		
Antoinette de Waha 2015 Hyo-Soo Kim 2021 (C Hyun Jong Lee 2015 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016 (C Yao-Jun Zhang 2015 (C	0.587 0.10 0.55 0.148 0.49 0.1 0.5 0.1 0.5 0.1 0.495 0.10 0.515 0.10	81 171 11 649 12 599 05 211 01 280 3898	1 0.5225 9 0.484 6 0.49 1 0.483 0 0.514 8	0.112 0.11 0.111 0.118	2 651 7 596 1 196 8 293	18.7% 0 10.6% 0 6.9% 0 9.3% 0	0.01 [-0.01, 0.01 [-0.01, 0.01 [-0.01, 0.00 [-0.02,	0.02] 0.03] 0.03] 0.02]	-0.2 -0.1 0.1 BP-DES DP-DES	0.2

209x297mm (300 x 300 DPI)

Fig1. C. Baseline characteristics and stent information of patients with ACS

9) Stent numerber per person

	B	P-DES		D	P-DES			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Hyo-Soo Kim 2021	1.7	1.1	1700	1.7	1	1713	34.9%	0.00 [-0.07, 0.07]	•
Juan F Iglesias 2019	1.37	0.64	649	1.39	0.66	651	34.7%	-0.02 [-0.09, 0.05]	+
Thomas Pilgrim 2016	1.42	0.71	211	1.39	0.71	196	9.1%	0.03 [-0.11, 0.17]	+
Yao-Jun Zhang 2015	2.2	0.5	280	2.2	0.6	293	21.3%	0.00 [-0.09, 0.09]	+
Total (95% CI)			2840			2853	100.0%	-0.00 [-0.05, 0.04]	•
Heterogeneity: Chi ² = 0 Test for overall effect: Z				°= 0%					-2 -1 0 1 2 BP-DES DP-DES
0) Total stent le	0								
, ,	0	P-DES		D	P-DES			Mean Difference	Mean Difference
, ,	0	P-DES SD	Total	D Mean	P-DES SD	Total	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV. Random, 95% Cl
Study or Subgroup	В		<u>Total</u> 1700			Total 1713	Weight 30.1%		
Study or Subgroup Hyo-Soo Kim 2021	Bl Mean 42.9	SD		Mean 41.7	SD			IV, Random, 95% CI	
0) Total stent lo <u>Study or Subgroup</u> Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016	Bl Mean 42.9	SD 31.9 18.21	1700	Mean 41.7 33.92	SD 30.2	1713	30.1%	IV, Random, 95% Cl 1.20 [-0.88, 3.28]	
<u>Study or Subgroup</u> Hyo-Soo Kim 2021 Juan F Iglesias 2019	Bl Mean 42.9 31.91	SD 31.9 18.21	1700 649	Mean 41.7 33.92	SD 30.2 19.76	1713 651	30.1% 30.3%	N, Random, 95% CI 1.20 [-0.88, 3.28] -2.01 [-4.08, 0.06]	
<u>Study or Subgroup</u> Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016	Bl Mean 42.9 31.91 29.49	SD 31.9 18.21 17.83	1700 649 211	Mean 41.7 33.92 30.52	SD 30.2 19.76 18.99	1713 651 196	30.1% 30.3% 14.8% 24.8%	V, Random, 95% Cl 1.20 [-0.88, 3.28] -2.01 [-4.08, 0.06] -1.03 [-4.62, 2.56]	
Study or Subgroup Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Yao-Jun Zhang 2015	BI 42.9 31.91 29.49 26.6	SD 31.9 18.21 17.83 15	1700 649 211 280 2840	Mean 41.7 33.92 30.52 27.9	SD 30.2 19.76 18.99 15.2	1713 651 196 293 2853	30.1% 30.3% 14.8% 24.8%	V, Random, 95% CI 1.20 [-0.88, 3.28] -2.01 [-4.08, 0.06] -1.03 [-4.62, 2.56] -1.30 [-3.77, 1.17]	

209x297mm (300 x 300 DPI)

Fig2. Primary endpoint: MACE

	BP-DI		DP-D			Odds Ratio		Odds Ratio	
Study or Subgroup						M-H, Fixed, 95% CI		M-H, Fixed, 95% Cl	_
Antoinette de Waha 2015	40	291	46	206	12.7%	0.55 [0.35, 0.88]			
Hyo-Soo Kim 2021	106	1700	87	1713	22.2%	1.24 [0.93, 1.66]		-	
Hyun Jong Lee 2015	13	171	49	536	6.0%	0.82 [0.43, 1.55]			
Qi Zhang 2014	74	596	79	596	18.9%	0.93 [0.66, 1.30]		-	
Thomas Pilgrim 2016	17	211	19	196	4.9%	0.82 [0.41, 1.62]			
Thomas Pilgrim 2021	65	649	77	651	18.9%	0.83 [0.58, 1.18]			
Yao-Jun Zhang 2015	51	280	76	293	16.6%	0.64 [0.43, 0.95]			
Total (95% CI)		3898		4191	100.0%	0.87 [0.75, 1.01]		•	
Total events	366		433						
Heterogeneity: Chi ² = 11.94	4. df = 6 (P	= 0.08); I ² = 509	%			<u> </u>		
Test for overall effect: Z = 1	.80 (P = 0.	07)					0.01	0.1 1 10 BP-DES DP-DES	10
2.2) MACE at 1 yea	ar								
	BP-D		DP-D			Odds Ratio		Odds Ratio	
Study or Subgroup						M-H, Fixed, 95% CI		M-H, Fixed, 95% Cl	
Antoinette de Waha 2015	27	291	32	206	13.5%				
Hyo-Soo Kim 2021		1700	87					-	
Juan F Iglesias 2019	49	649	53	651	19.5%				
Qi Zhang 2014	74	596	79	596	27.5%				
Thomas Pilgrim 2016	17	211	19	196	7.2%	0.82 [0.41, 1.62]			
Total (95% CI)		3447		3362	100.0%	0.97 [0.81, 1.16]		•	
Total events	273		270						
Heterogeneity: Chi ² = 7.12,			² = 44%	,			0.01	0.1 1 10	1
Test for overall effect: Z = 0	.34 (P = 0	74)					0.01	BP-DES DP-DES	
2.3) MACE over 2	vears								
	BP-DE		DP-DE			Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	1	M-H, Random, 95% Cl	_
Antoinette de Waha 2015	40	291	46	206	21.2%	0.55 [0.35, 0.88]		
Hyun Jong Lee 2015	13	171	49	536	11.4%	0.82 [0.43, 1.55]		
Thomas Pilgrim 2021	66	649	77	651	38.3%	0.84 [0.60, 1.20	1]		
Yao-Jun Zhang 2015	51	280	76	293	29.0%	0.64 [0.43, 0.95]		
Total (95% CI)		1391		1686	100.0%	0.71 [0.57, 0.88]	•	
Total events	170		248						
			3 (P = 0.4						_

209x297mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig3.Target vessel revascularization (TVR)

Total (95% CI)

3.1) Target vessel revascularization (TVR) during follow up period

	BP-D		DP-D			Odds Ratio		Odds Ratio	
Study or Subgroup					Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 95% Cl	
Antoinette de Waha 2015		291	25	206	17.00	Not estimable			
Hyo-Soo Kim 2021	38	1700		1713					
Hyun Jong Lee 2015	4	171	22	536	9.0%				
Qi Zhang 2014	12	596	19	596		Not estimable			
Thomas Pilgrim 2016	6	211	6	196	5.2%				
Thomas Pilgrim 2021	22	649	41	651	34.1%				
Yao-Jun Zhang 2015	39	280	47	293	34.1%	0.85 [0.53, 1.34]			
Total (95% CI)		3011		3389	100.0%	0.89 [0.68, 1.16]		+	
Total events	109		137						
Heterogeneity: Chi ² = 11.	.70, df = 4 (P	= 0.02); I ² = 669	%			0.01	0.1 1 10	100
Test for overall effect: Z =	0.86 (P = 0.	.39)					0.01	BP-DES DP-DES	100
								BF-DES DF-DES	
3.2) Target vessel	revascul	ariza	ation	(TVI	R) at 1	year			
	BP-DES		DP-DES			Odds Ratio		Odds Ratio	
					eight M	H, Random, 95% Cl		M-H, Random, 95% Cl	
Study or Subgroup Hyo-Soo Kim 2021	Events Tot 38 17		ents To 21 17		eight M 8.6%	H, Random, 95% Cl 1.84 [1.08, 3.15]		M-H, Random, 95% Cl	
	38 17		21 17	13 3				M-H, Random, 95% Cl	
Hyo-Soo Kim 2021	38 17 13 6	00	21 17 25 6	13 3 51 3	8.6%	1.84 [1.08, 3.15]		M-H, Random, 95% Cl	
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016	38 17 13 6	00 49 11	21 17 25 6 6 1	13 3 51 3	8.6% 5.6% 5.7%	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92]		M-H, Random, 95% Cl	
Hyo-Soo Kim 2021 Juan F Iglesias 2019	38 17 13 6 6 2	00 49 11	21 17 25 6 6 1	13 3 51 3 96 2	8.6% 5.6% 5.7%	1.84 [1.08, 3.15] 0.51 [0.26, 1.01]		M-H, Random, 95% Cl	
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Total (95% CI) Total events	38 17 13 6 6 2 25 57	00 49 11 60	21 17 25 6 6 1 25 52	13 3 51 3 96 2 60 10	8.6% 5.6% 5.7% 0.0%	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92]	Ļ	* *	
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Total (95% CI)	38 17 13 6 6 2 25 57 6; Chi²= 8.5	00 49 11 60 60, df =	21 17 25 6 6 1 25 52	13 3 51 3 96 2 60 10	8.6% 5.6% 5.7% 0.0%	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92]	0.01 0		100
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ² = 0.4	38 17 13 6 6 2 25 57 6; Chi²= 8.5	00 49 11 60 60, df =	21 17 25 6 6 1 25 52	13 3 51 3 96 2 60 10	8.6% 5.6% 5.7% 0.0%	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92]	L	* *	100
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ² = 0.4	38 17 13 6 6 2 25 57 6; Chi ² = 8.5 0.05 (P = 0.9	00 49 11 60 60, df = 96)	21 17 25 6 6 1 25 52 2 (P = 0.0	13 3 51 3 96 2 60 10 D1); F=	8.6% 5.6% 5.7% 0.0%	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92] 0.98 [0.40, 2.38]	L0.01 0		100
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ² = 0.4 Test for overall effect: Z =	38 17 13 6 6 2 25 57 6; Chi ² = 8.5 0.05 (P = 0.9	00 49 11 60 60, df = 96)	21 17 25 6 6 1 25 52 2 (P = 0.0	13 3 51 3 96 2 60 10 01); P= (TVI	8.6% 5.6% 5.7% 0.0%	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92] 0.98 [0.40, 2.38]	L		100
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ² = 0.4 Test for overall effect: Z =	38 17/ 13 6 6 2 25/ 57 6; Chi² = 8.5 0.05 (P = 0.9 revascul BP-DES	00 49 11 60 60 96) ariza	21 17 25 6 6 1 25 52 2 (P = 0.0 ation DP-DES	13 3 51 3 96 2 60 10 01); F= (TVH	8.6% 5.6% 5.7% 0.0% 76% ?) ove	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92] 0.98 [0.40, 2.38]	0.01 0	L1 BP-DES DP-DES	100
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ² = 0.4 Test for overall effect. Z = 3.3) Target vessel Study or Subgroup	38 17/ 13 6 6 2 25/ 57 6; Chi ² = 8.5 0.05 (P = 0.9 revascul BP-DES Events Tr	00 49 11 60 60 96) ariza	21 17 25 6 6 1 25 2 (P = 0.0 ation DP-DES vents T	13 3 51 3 96 2 60 10 D1); F = (TVI	8.6% 5.6% 5.7% 0.0% 76% R) ove	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92] 0.98 [0.40, 2.38] r 2 years Risk Ratio M.H. Fixed, 95% Cl	0.01 0	2.1 BP-DES DP-DES	100
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Piglesias 2019 Total (95% Cl) Total events Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = 3.3) Target vessel Study or Subgroup Hyun Jong Lee 2015	38 17/ 13 6 6 2 57 6; Chi² = 8.5 0.05 (P = 0.9 revascul BP-DES Events Tr 4	00 49 11 60 60 96) ariza <u>otal E</u> 171	21 17 25 6 6 1 25 2 (P = 0.0 ation DP-DES vents T 22	13 3 51 3 96 2 60 10 01); I ² = (TVI <u>otal V</u> 536	8.6% 5.6% 5.7% 0.0% 76% () ove <u>Weight</u> 10.9%	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92] 0.98 [0.40, 2.38] r 2 years Risk Ratio M.H. Fixed, 95% CI 0.57 [0.20, 1.63]	0.01 0	2.1 BP-DES DP-DES	
Hyo-Soo Kim 2021 Juan F Iglesias 2019 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ² = 0.4 Test for overall effect. Z = 3.3) Target vessel Study or Subgroup	38 17/ 13 6 6 2 57 6; Chi ² = 8.5 0.05 (P = 0.9 revascul BP-DES <u>Events Tr</u> 22 1	00 49 11 60 60 96) ariza otal <u>E</u>	21 17 25 6 6 1 25 2 (P = 0.1 ation DP-DES <u>vents T</u> 22 41	13 3 51 3 96 2 60 10 01); I ² = (TVI 536 651	8.6% 5.6% 5.7% 0.0% 76% R) ove	1.84 [1.08, 3.15] 0.51 [0.26, 1.01] 0.93 [0.29, 2.92] 0.98 [0.40, 2.38] r 2 years Risk Ratio M.H. Fixed, 95% Cl	0.01 0	2.1 BP-DES DP-DES	

0.01

0.1

BP-DES DP-DES

1480 100.0% 0.70 [0.52, 0.94]

 Total events
 65
 110

 Heterogeneity: Chi^a = 2.35, df = 2 (P = 0.31); l^a = 15%
 Test for overall effect: Z = 2.38 (P = 0.02)

209x297mm (300 x 300 DPI)

Fig4. Target lesion revascularization(TLR)

Total (95% CI)

Antoinette de Waha 2015 2 Hyo-Soo Kim 2021 2 Hyo-Soo Kim 2021 2 Thomas Pilgrim 2016 1 Thomas Pilgrim 2017 3 Jo-Jun Zhang 2015 3 Total (9% CI) 1 Total events 12 Heterogeneity: Chil* 11.56, dit = 6 12 4.2) Target lesion revascu BP-0 Study or Subgroup Events Antoinette de Waha 2015 12	20 291 29 1700 3 171 2 596 3 211 8 649 39 280 3898 24 (P = 0.07 : 0.05) ilariza DES ; Total	25 16 12 19 5 5 34 47 158 2; F= 48% tion(TI DP-DES	206 1713 536 596 196 651 293 4191 6	18.8% 10.8% 3.9% 12.8% 3.5% 22.8% 27.3% 100.0%	Odds Ratio	L	M.H.Fixed, 95% CI	10
Hyo-Soo Kim 2021 2 Hyon Jong Lee 2015 0 Ol Zhang 2014 1 Thomas Pilgrim 2016 1 Thomas Pilgrim 2015 3 Total (95% CI) 1 Total events 12 Heterogeneity: Chi [™] = 11.56, dT = 6 Test for overall effect Z = 1.99 (P = 4.2.) Target lesion revascu BP-0 Study or Subgroup Events Antoinette de Waha 2015 12	29 1700 3 171 12 596 3 211 18 649 39 280 3898 24 (P = 0.07 : 0.05) 11ariza DES : Total	16 12 19 5 34 47 158 "; I [≠] = 48% tion(TI DP-DES	1713 536 596 196 651 293 4191 6	10.8% 3.9% 12.8% 3.5% 22.8% 27.3% 100.0%	1.84 (1.0.0, 3.40) 0.78 (0.22, 2.80) 0.62 (0.30, 1.30) 0.55 (0.13, 2.34) 0.55 (0.29, 0.93) 0.85 (0.53, 1.34) 0.78 (0.61, 1.00] 0.78 (0.61, 1.00]	L0.01	BP-DES DP-DES	10
Hyun Jong Lee 2015 Oi Zhang 2014 1 Thomas Pilgrim 2016 1 Thomas Pilgrim 2016 3 Yao-Jun Zhang 2015 3 Total (95% CI) 1 Total events 6/12 Test for overall effect Z = 1.99 (P = 4.2) Target lesion revascu Study or Subgroup Events Antoinetle de Waha 2015 12	3 171 2 596 3 211 8 649 39 280 3898 24 (P = 0.07 :0.05) ilariza DES : Total	12 19 5 34 47 158 7); I ² = 48% tion(TI DP-DES	536 596 196 651 293 4191 6	3.9% 12.8% 3.5% 22.8% 27.3% 100.0%	0.78 [0.22, 2.80] 0.62 [0.30, 1.30] 0.55 [0.13, 2.34] 0.52 [0.29, 0.93] 0.85 [0.53, 1.34] 0.78 [0.61, 1.00] 0.78 [0.61, 1.00]	H 0.01	BP-DES DP-DES	10
oi Zhang 2014 1 Thomas Pilgrim 2016 1 Thomas Pilgrim 2021 1 Yao-Jun Zhang 2015 3 Total (95% CI) 1 Total events 12 Heterogeneity: Chi ² = 11.56, df = 6 Test for overall effect Z = 1.99 (P = 4.2) Target lesion revascu Study or Subgroup Events Antoinette de Waha 2015 12	2 596 3 211 8 649 39 280 3898 24 (P = 0.07 0.05) 11ariza DES 5 Total	19 5 34 47 '); I ² = 48% tion(TI DP-DES	596 196 651 293 4191 6	12.8% 3.5% 22.8% 27.3% 100.0% at 1 ye	0.62 [0.30, 1.30] 0.55 [0.13, 2.34] 0.52 [0.29, 0.93] 0.85 [0.53, 1.34] 0.78 [0.61, 1.00]	Ь	BP-DES DP-DES	
Thomas Pilgrim 2016 Thomas Pilgrim 2021 1 Yao-Jun Zhang 2015 3 Total (95% CI) 1 Total events 12 Heterogeneity: ChP = 11.56, dT = 6 Test for overall effect Z = 1.99 (P = 4.2.) Target lesion revascu BP-0 Study or Subgroup Events Antoinette de Waha 2015 12	3 211 8 649 39 280 3898 24 (P = 0.07 0.05) 11ariza DES 5 Total	5 34 47 158 7); I ² = 48% tion(TI DP-DES	196 651 293 4191 6 LR)	3.5% 22.8% 27.3% 100.0% at 1 ye	0.55 [0.13, 2.34] 0.52 [0.29, 0.93] 0.85 [0.53, 1.34] 0.78 [0.61, 1.00] ar Odds Ratio	L 0.01	BP-DES DP-DES	
Thomas Pilgrim 2021 1 Yao-Jun Zhang 2015 3 Total (95% CI) 5 Total events 12 Heterogeneity: Chi ^a = 11.56, df = 6 6 Test for overall effect Z = 1.99 (P = 4.2) Target lesion revascu Study or Subgroup Events Antoinette de Waha 2015 12	8 649 39 280 3898 (P = 0.07 0.05) 11ariza DES Total	34 47 158 '); I ² = 48% tion(TI DP-DES	651 293 4191 6 LR)	22.8% 27.3% 100.0% at 1 ye	0.52 (0.29, 0.93) 0.85 (0.53, 1.34) 0.78 (0.61, 1.00) ar Odds Ratio	0.01	BP-DES DP-DES	11
Yao-Jun Zhang 2015 3 Total (95% Cl) 12 Total vernts 12 Heterogeneity: Chi ² = 11.56, df = 6 5 Test for overall effect Z = 1.99 (P = 4.2) 12 4.2) Target lesion revascu BP-0 Study or Subgroup Events Antoinette de Waha 2015 12	39 280 3898 (P = 0.07 0.05) 11ariza DES Total	47 158 '); I ² = 48% tion(TI DP-DES	293 4191 6 LR)	27.3% 100.0% at 1 ye	0.85 (0.53, 1.34) 0.78 (0.61, 1.00) ar Odds Ratio	0.01	BP-DES DP-DES	11
Total (95% C) Total events 12 Heterogeneity: Chi ²⁺ = 11.56, df = 6 Testfor overail effect Z = 1.99 (P = 4.2) Target lesion revascu BP-D Study or Subgroup Events Antoinette de Waha 2015 12	3898 (P = 0.07 : 0.05) 11ariza DES : Total	158 '); I ² = 48% tion(TI DP-DES	4191 6 LR)	100.0% at 1 ye	0.78 [0.61, 1.00] ar Odds Ratio	0.01	BP-DES DP-DES	1
Total events 12 Heterogeneity: Chi ² = 11.56, df = 6 Test for overall effect. Z = 1.99 (P = 4.2) Target lesion revascu BP-D. Study or Subgroup Events Antoinette de Waha 2015 12	24 (P = 0.07 : 0.05) 11ariza DES : Total	158 '); I ² = 48% tion(TI DP-DES	6 LR)	at 1 ye	ar Odds Ratio	0.01	BP-DES DP-DES	1
Heterogeneity: Chi ² = 11.56, df = 6 Test for overall effect Z = 1.99 (P = 4.2.) Target lesion revascu Study or Subgroup Fivents Antoinette de Waha 2015 12	(P = 0.07 : 0.05) 11ariza DES : Total	'); I ² = 48% tion(TI DP-DES	LR)		Odds Ratio	0.01	BP-DES DP-DES	11
Test for overall effect: Z = 1.99 (P = 4.2)Target lesion revascu BP-D Study or Subgroup Antoinette de Waha 2015 12	0.05) 11ariza DES 5 Total	tion(TI DP-DES	LR)		Odds Ratio	0.01	BP-DES DP-DES	1
4.2)Target lesion revascu BP-D <u>Study or Subgroup</u> Events Antoinette de Waha 2015 12	ilariza DES Total	DP-DES	, í		Odds Ratio	0.01	BP-DES DP-DES	1
BP-D <u>Study or Subgroup</u> Antoinette de Waha 2015 12	DES 5 Total	DP-DES	, í		Odds Ratio			
Hyo-Soo Kim 2021 29				21.5%	0.42 [0.20, 0.89]			
Antoinette de Waha 2015 12					A-H, Random, 95% CI		Odds Ratio M-H. Random, 95% Cl	
Hyo-Soo Kim 2021 29								
	3 1700	16 1		24.1%	1.84 [1.00, 3.40]			
Juan Figlesias 2019 11				21.4%	0.57 [0.27, 1.21]			
Qi Zhang 2014 12				21.8%	0.62 [0.30, 1.30]			
Thomas Pilgrim 2016 3	3 211	5	196	11.2%	0.55 [0.13, 2.34]			
Total (95% CI)	3447		362 1	100.0%	0.72 [0.40, 1.31]		•	
Total events 67		78						
Heterogeneity: Tau ² = 0.29; Chi ² = 1		4 (P = 0.0	2); l² =	65%		0.01	0.1 1 10	10
Test for overall effect: Z = 1.07 (P = 0	D.29)					0.01	BP-DES DP-DES	
4.3) Target lesion revasc	mlariz	ation(]		over	2 vears			
, e	-DES	· ·		, over .			Odda Datia	
		DP-DE		the instat	Odds Ratio		Odds Ratio	
					M-H, Fixed, 95% Cl		M-H, Fixed, 95% Cl	
	20 291	25	206					
Hyun Jong Lee 2015	A 1 1 4		536	5.8%	0.78 [0.22, 2.80]			
	3 171 18 649		651				_	

1686 100.0% 0.64 [0.46, 0.87]

0.01

0.1

BP-DES DP-DES

Total events 70 107 Heterogeneity: Chi^a = 1.85, df = 3 (P = 0.60); I^a = 0% Test for overall effect: Z = 2.79 (P = 0.005)

209x297mm (300 x 300 DPI)

Fig 5. All cause death

5.1)All cause death during follow up period

BP-DES BP-DES S.3) All cause death over 2 years Study or Subaroup Control Odds Ratio Study or Subaroup Experimental Events Control Odds Ratio M-H, Fixed, 95% CI M-H, Fixed, 95% CI Antoinette de Waha 2015 31 21 Colspan="2">Odds Ratio M-H, Fixed, 95% CI M-H, Fixed, 95% CI Antoinette de Waha 2015 31 27 206 20.0% M-H, Fixed, 95% CI M-H, Fixed, 95% CI M-H, Fixed, 95% CI M-H, Fixed, 95% CI M-H, Fixed, 95% CI Total weats 102 26 651 20.0% Total (95% CI) 138 0.0% Total (95% CI) 138 0 Total (95% CI) 138 0		Experime		Contr			Odds Ratio		Odds Ratio	
Hyo-Soo Kim 2021 43 1700 50 1713 23.0% 0.86 [0.57, 1.30] Hyun Jong Lee 2015 11 171 43 536 9.2% 0.79 [0.40, 1.58] Thomas Pilgrim 2016 6 211 9 186 4.3% 0.61 [0.21, 1.74] Thomas Pilgrim 2016 6 211 9 186 4.3% 0.61 [0.21, 1.74] Total avents 198 248 Heterogeneity: Chi ^m = 1.54, df = 6 ($P = 0.96$); $P = 0\%$ Test for overall effect Z = 1.27 ($P = 0.20$) 5.2) All cause death at 1 year Experimental Control Odds Ratio Odds Ratio Odds Ratio Odds Ratio Odds Ratio Odds Ratio Odds Ratio									M-H, Fixed, 95% Cl	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
0.12.mag.2014 47 596 51 596 22.2% 0.91 [0.60, 1.36] Thomas Pligrim 2015 6 21 9 166 4.3% 0.61 [0.21, 1.74] Thomas Pligrim 2015 33 280 43 253 11.3% 1.09 [0.62, 1.89] Total (95% CI) 3898 4231 100.0% 0.88 [0.72, 1.07] Total events 198 248 Heterogeneity: ChP = 1.54, df = 6 (P = 0.96); P = 0% 76% 0.01 0.1 0.1 Study of Subgroup Events Total Vents Total 0.048 Ratio Study of Subgroup Events Total Pents Total 0.02 [0.47, 1.82] Hyo-Soo Kim 2021 21 21 16 205 (2.7, 1.82] M.H. Fixed, 95% CI Antoineffe de Waha 2015 21 291 16 205 (2.7, 1.82] M.H. Fixed, 95% CI Juan Fligerias 2019 24 644 22 651 14.8% 1.10 [0.81, 1.98] 0.01 0.1 0.01 0.1 Juan Fligerias 2019 24 644 22 651 14.8% 1.10 [0.81, 1									_	
Thomas Pilgrim 2016 6 211 9 196 4.3% 0.61 $[0.21, 1.74]$ Thomas Pilgrim 2021 27 649 25 651 11.13% 1.09 $[0.62, 1.89]$ Yao-Jun Zhang 2015 33 280 43 293 17.6% 0.78 $[0.48, 1.26]$ Total (95% CI) 3998 4231 100.0% 0.88 $[0.72, 1.07]$ Total events 199 248 Heterogeneity: ChP = 1.54, d = 6 (P = 0.96); P = 0% Test for overall effect Z = 1.27 (P = 0.20) 5.2) All cause death at 1 year Experimental Control Odds Ratio Study or Subaroup Events Total Vents Total Weight M.H.Fixed, 95% CI Antoinette de Waha 2015 21 291 16 206 121 1% 0.29 (0.47, 1.82] Juan Figlesias 2019 24 649 22 651 14.8% 1.10 [0.67, 1.39] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.67, 1.39] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.67, 1.39] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.61, 1.98] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.61, 1.98] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.61, 1.98] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.61, 1.98] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.61, 1.98] Juan Figlesias 2019 24 649 22 2651 14.8% 0.91 [0.61, 1.98] Juan Figlesias 2019 24 649 22 050 1.0 .90 [0.71, 1.15] Total (95% CI) 3447 3362 100.0% 0.91 [0.71, 1.15] Total (95% CI) 31 291 27 206 26.0% 0.79 [0.46, 1.37] Heterogeneity: ChP = 1.0, df = 2, P = 0.80; P = 0% Total (95% CI) 13 291 7 205 20.0% 0.79 [0.46, 1.37] Yao-Jun Zhang 2015 33 280 43 293 34.1% 0.78 [0.48, 1.26] Total (95% CI) 1391 1686 100.0% 0.85 [0.64, 1.12] Total (95% CI) 1391 100 100 100 100 100 100 100 100 100 1										
Thomas Plight 2021 27 649 25 651 11.3% $1.08[0.62, 1.89]$ Total vents 133 280 43 293 17.6% $0.78[0.48, 1.26]$ Total vents 198 248 Heterogeneity: Ch ^P = 1.54, df = 6 (P = 0.99); P = 0% Testfor overall effect Z = 1.27 (P = 0.20) 5.2) All cause death at 1 year Experimental Control Odds Ratio 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1										
Yao-Jun Zhang 2015 33 280 43 283 17.6% $0.78 [0.46, 1.26]$ Total events 198 248 Heterogeneity: Ch ^P = 1.54, df = 6 (P = 0.96); P = 0% Test for overall effect Z = 1.27 (P = 0.20) 5.2) All cause death at 1 year Experimental Control Odds Ratio Study or Subaroup Events Total Events Total Weight M.H. Fixed, 95% CI Antoinette de Waha 2015 21 291 16 206 12.1% $0.92 [0.47, 1.82]$ Heterogeneity: Ch ^P = 1.09 (H = 0.42) 5.3) All cause death over 2 years Experimental Control Odds Ratio Odds Ratio Odds Ratio 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									_	
Total events 198 248 Helerogeneity: Chi# 15.4, df = 6 (P = 0.96); P = 0% 0.01 0.1 0.1 0.1 0.1 0.1 0.01 0.1 0.01 <td>Yao-Jun Zhang 2015</td> <td>33</td> <td>280</td> <td>43</td> <td>293</td> <td>17.6%</td> <td>0.78 [0.48, 1.26]</td> <td></td> <td></td> <td></td>	Yao-Jun Zhang 2015	33	280	43	293	17.6%	0.78 [0.48, 1.26]			
$\begin{array}{c} \text{Heterogeneity: Chi^{\mu}=1.54, df=6(P=0.96); P=0\% \\ \hline \text{Test for overall effect Z=1.27 (P=0.20)} \\ \hline \text{5.2) All cause death at 1 year \\ Experimental Control Odds Ratio \\ \hline \text{Study or Subgroup Events Total Events Total Weight M.H. Fixed, 95% CI \\ \hline \text{Antoineffe de Waha 2015 21 291 16 206 12.1% 0.92 (0.47, 1.82) \\ \hline \text{Juan Figlesias 2019 24 649 22 651 14.8\% 1.10 (0.61, 1.98) \\ \hline \text{Odds Ratio 2014 47 596 51 596 52.8\% 0.91 (0.0.1, 1.98) \\ \hline \text{Odds Ratio 010, 1.98 (0.57, 1.30) \\ \hline \text{Total events 141 148 } \\ \hline \text{Heterogeneity: Chi^{\mu}=1.02, df=4 (P=0.91); P=0\% \\ \hline \text{Test for overall effect Z=0.81 (P=0.42) \\ \hline \text{Study or Subgroup Events Total Events Total Weight M.H. Fixed, 95% CI \\ \hline \text{Antoineffe de Waha 2015 31 291 27 206 26.0\% 0.79 (0.46, 1.37) \\ \hline \text{Total events 17 11 171 43 536 17.9\% 0.79 (0.46, 1.37) \\ \hline \text{Hoterogeneity: Chi^{\mu}=1.00, df=3 (P=0.80); P=0\% \\ \hline \text{Total events 102 133 280 0.85 (0.64, 1.12) \\ \hline \text{Total events 102 133 280 0.85 (0.64, 1.12) \\ \hline \text{Total events 102 138 } \\ \hline \text{Heterogeneity: Chi^{\mu}=1.00, df=3 (P=0.80); P=0\% \\ \hline \text{Total events 102 138 } \\ \hline Total events 104 04 0.90 \\ \hline \text{Total events 105 01 00, 0.85 [0.64, 1.12] \\ \hline \text{Total events 105 01 00, 0.85 [0.64, 1.12] \\ \hline \text{Total events 105 01 00, 0.85 [0.64, 1.12] \\ \hline \text{Total events 105 01 00, 0.85 [0.64, 1.12] \\ \hline \text{Total events 105 01 00, 0.85 [0.64, 1.12] \\ \hline \text{Total events 105 01$			3898		4231	100.0%	0.88 [0.72, 1.07]		•	
Test for overall effect Z = 1.27 (P = 0.20) 0.01 0.11 0.01 0.11 0.01	Total events	198		248						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				= 0%				0.01 0	11 1 1	0 100
Experimental Study or Subgroup Experimental Peents Control Total Odds Ratio Odds Ratio Study or Subgroup Events Total Veents Total Veents Total Veents Total Veents Odds Ratio Antoinette de Waha 2015 2 21 291 16 206 12.1% 0.92 (0.47, 1.82) Hyo-Soo Kim 2021 43 1700 50 1713 33.9% 0.86 (0.57, 1.30) Juan F Iglesias 2019 24 649 22 651 14.4% 1.10 (0.61, 1.98) Ol Zhang 2014 47 596 51 596 32.8% 0.91 (0.61, 1.98) Total (95% CI) 3447 3362 100.0% 0.91 (0.71, 1.15) 0.91 (0.71, 1.15) Total (95% CI) 3447 3362 100.0% 0.91 (0.71, 1.15) 0.01 0.1 1 10 10 Heterogeneity Chi* 1.02, off + 4 (P = 0.91); P = 0% Total Yeents Total Yeents Total Yeents Total Yeents Total Yeents	Test for overall effect: Z = 1.2	27 (P = 0.2	0)					0.01 0		0 100
Experimental Study or Subgroup Experimental Peents Control Total Odds Ratio Odds Ratio Study or Subgroup Events Total Veents Total Veents Total Veents Total Veents Odds Ratio Antoinette de Waha 2015 2 21 291 16 206 12.1% 0.92 (0.47, 1.82) Hyo-Soo Kim 2021 43 1700 50 1713 33.9% 0.86 (0.57, 1.30) Juan F Iglesias 2019 24 649 22 651 14.4% 1.10 (0.61, 1.98) Ol Zhang 2014 47 596 51 596 32.8% 0.91 (0.61, 1.98) Total (95% CI) 3447 3362 100.0% 0.91 (0.71, 1.15) 0.91 (0.71, 1.15) Total (95% CI) 3447 3362 100.0% 0.91 (0.71, 1.15) 0.01 0.1 1 10 10 Heterogeneity Chi* 1.02, off + 4 (P = 0.91); P = 0% Total Yeents Total Yeents Total Yeents Total Yeents Total Yeents	5.2) All cause death	at 1 v	ear							
Study or Subgroup Events Total Events Total Velicit M.H. Exed, 95% CI M.H. Exed, 95% CI Antoinette de Waha 2015 21 291 16 206 12.1% 0.92 [0.47, 1.82] 0.92 [0.47, 1.82] Hyo-Soo Kim 2021 24 649 22 651 14.8% 1.10 [0.61, 1.38] 0.02 [0.47, 1.62] Juan F Iglesias 2019 24 649 22 651 14.8% 1.10 [0.61, 1.38] 0.01 [0.21, 1.74] Total events 141 148 52.9% 0.91 [0.71, 1.15] 0.01 0.01 0.1 1.01 [0.1, 1.74] Heterogeneity, ChP = 1.02, df = 4 (P = 0.91); P = 0% Test for overall effect 2 = 0.81 (P = 0.42) 5.3) All cause death over 2 years 5.3) All cause death over 2 years 0.01 0.1 0.1 1.0 10 Study or Subgroup Events Total Weint MH. Exed, 95% CI M.H. Exed, 95% CI 6.3% 0.79 [0.46, 1.37] 1.0 10 Study or Subgroup Events Total events 1.7% 0.78 [0.46, 1.37] 1.0 10 1.0 1.0	,			Contr	ol		Odds Ratio		Odds Ratio	
Antoinette de Waha 2015 21 291 16 206 121% 0.92 (0.47, 1.82) Juan Figlesias 2019 24 649 22 651 14.8% 1.10 [0.67, 1.30] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.67, 1.30] Juan Figlesias 2019 24 649 22 651 14.8% 0.91 [0.60, 1.38] Thomas Figlinm 2016 6 211 9 196 6.3% 0.61 [0.21, 1.74] Total (95% CI) 3447 3362 100.0% 0.91 [0.71, 1.15] Total events 141 148 Heterogeneity: Chi [®] = 1.02, df = 4 (P = 0.91); P [®] = 0% Study or Subaroup Experimental Control Weight M-H, Fixed, 95% CI Antoinette de Waha 2015 31 291 27 206 26.0% 0.79 [0.46, 1.37] Hyun Jong Lee 2015 11 171 43 556 17.9% 0.79 [0.46, 1.36] Total eyests 102 133 280 43 283 34.1% 0.78 [0.48, 1.68] Total eyests 102 138 Heterogeneity: Chi [®] = 1.00, df = 3.(P = 0.80); P [®] = 0% Total eyests 102 138 Heterogeneity: Chi [®] = 1.00, df = 3.(P = 0.80); P [®] = 0% Total eyests 102 138 Heterogeneity: Chi [®] = 1.00, df = 3.(P = 0.80); P [®] = 0% Total eyests 102 138 Heterogeneity: Chi [®] = 1.00, df = 3.(P = 0.80); P [®] = 0% Total eyests 102 138 Heterogeneity: Chi [®] = 1.00, df = 3.(P = 0.80); P [®] = 0% Total eyests 102 138 Heterogeneity: Chi [®] = 1.00, df = 3.(P = 0.80); P [®] = 0% Total eyests 102 138 Heterogeneity: Chi [®] = 1.00, df = 3.(P = 0.80); P [®] = 0%	Study or Subgroup					Weight				
Hyo-Soo Kim 2021 43 1700 50 1713 33.9% 0.86 [0.57, 1.30] Juan Fliglesias 2019 24 649 22 651 14.8% 1.10 [0.61, 1.98] GliZhang 2014 47 586 51 568 32.8% 0.91 [0.61, 1.98] Thomas Pligrim 2016 6 211 9 196 6.3% 0.61 [0.21, 1.74] Total (95% CI) 3447 3362 100.0% 0.91 [0.71, 1.15] Total events 141 148 Heterogeneity: ChiP = 1.02, df = 4 (P = 0.91); P = 0% 10 10 10 10 Test for overall effect Z = 0.81 (P = 0.42) 5.3) All cause death over 2 years 5.3) All cause death over 2 years 5.3) All cause death over 2 years Experimental Control Odds Ratio Study or Subaroup Events Total events 0.79 (0.40, 1.56] Hyun Jong Lee 2015 11 171 43 536 12.2% 0.79 (0.40, 1.56] Yao-Jun Zhang 2015 33 280 43 283 34.1% 0.78 (0.48, 1.26) Yao-Jun Zhang 2015 139 1686 100.0% 0.85 (0.64, 1.12) Total events 102 138 1686 100.0%										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-	
Gi Zhang 2014 47 596 51 596 32.8% 0.91 0.61 0.31 Thomas Pligtim 2016 6 211 9 196 6.3% 0.61 0.21 1.74 Total (95% CI) 3447 3362 100.0% 0.91 0.71 1.15 Total (95% CI) 141 148 Heterogeneity: ChiP = 1.02, df = 4 (P = 0.91); P = 0% Test for overall effect: Z = 0.81 (P = 0.42) 5.3) All cause death over 2 years Study or Subgroup Experimental Verits Control Odds Ratio Odds Ratio Study or Subgroup 291 27 206 26.0% 0.79 (D.46, 1.37) Hyun Jong Lee 2015 11 171 43 536 17.9% 0.79 (D.46, 1.56) Thomas Plightm 2021 27 649 25 651 22.0% 1.00 (D.62, 1.89) Yao-Jun Zhang 2015 33 280 43 293 34.1% 0.78 (D.48, 1.26) Total (95% CI) 1394 1686 100.0% 0.85 (D.64, 1.12) 0.01 0.1 Total 90% CI 138 120 138 199 0.01 0.1 10										
Thomas Pilgrim 2016 6 211 9 196 6.3% 0.61 0.21 1.74 Total (95% CI) 3447 3362 100.0% 0.91 [0.71, 1.15] 100.0% 0.91 [0.71, 1.15] 100.0% 0.91 [0.71, 1.15] 100.0% 0.91 [0.71, 1.15] 100.0% 0.91 [0.71, 1.15] 100.0% 0.91 [0.71, 1.15] 100.0% 0.91 [0.71, 1.15] 100.0% 0.91 [0.71, 1.15] 100.0% 0.91 [0.71, 1.15] 100.0% 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-	
Total (95% CI) 3447 3362 100.0% 0.91 [0.71, 1.15] Total events 141 148 Heterogeneity: ChiP = 1.02, df = 4 (P = 0.91); P = 0% 0.01 0.1 0.1 Test for overall effect: Z = 0.81 (P = 0.42) 0.01 0.1 0.1 0.01 Study or Subgroup Experimental Control Odds Ratio Odds Ratio Study or Subgroup Experimental Control Odds Ratio Odds Ratio Hun Jong Lee 2015 31 291 27 206 26.0% 0.79 (0.46, 1.37) Thomas Piligtim 2021 27 649 25 651 22.0% 1.09 (0.62, 1.89) Yao-Jun Zhang 2015 33 280 43 293 34.1% 0.78 (0.48, 1.26) Total events 102 138 1686 100.0% 0.85 (0.64, 1.12) 0.01 0.1 1.0 Total events 102 138 169 100 0.01 0.1 1.0 10										
Study or Subgroup Experimental Fortal Control Odds Ratio Study or Subgroup Experimental Events Control Odds Ratio Study or Subgroup Experimental Events Control Odds Ratio Antoinette de Vaha 2015 31 291 27 206 20.9% 0.79 0.46, 1.37 Hyun Jong Lee 2015 11 171 43 536 17.9% 0.79 0.46, 1.36 Yao-Jun Zhang 2015 33 280 43 293 34.1% 0.78 10.48, 1.26 Total events 102 138 108 100.0% 0.85 10.64, 1.12 Heterogeneity ChiP = 1.00, df = 3.0 P = 0.80; P = 0% 100 0.01 0.1 10 10	-	0		3						
Heterogeneity. Chi ^p = 1.02, df = 4 (P = 0.91); P = 0% Test for overall effect Z = 0.81 (P = 0.42) 0.01 0.1 0.1 0.1 0.01		1.41	3447	140	3362	100.0%	0.91 [0.71, 1.15]		•	
Test for overall effect. Z = 0.81 (P = 0.42) UUI BP-DES DP-DES 5.3) All cause death over 2 years Experimental Control Odds Ratio Odds Ratio Odds Ratio MH, Fixed, 95% CI MH, Fixed, 95% CI Antoinette de Waha 2015 31 291 27 206 26.0% 0.79 [0.46, 1.37] Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">MH, Fixed, 95% CI Antoinette de Waha 2015 31 291 27 206 20.0% [0.62, 1.89] Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Colspa="2" Colspa="2" Colspan="2" Colspan="2" Colspan="2" Colspa="2" Co			0.043-18					L		
5.3) All cause death over 2 years Experimental Control Odds Ratio Odds Ratio Study or Subgroup Events Total Yearts Total Yearts Total Yearts Total Yearts Total Yearts Yeart				= 0.%				0.01 (io 100
Study of Subproup Events Total Events Total Weight M.H. Fixed, 95% CI M.H. Fixed, 95% CI Antoinette de Waha 2015 31 291 27 206 26.0% 0.79 [0.46, 1.37] Image: Comparison of the compari	5.3) All cause death	over 2	year	s						
Antoinette de Waha 2015 31 291 27 206 26.0% 0.79 [0.46, 1.37] Hyun Jong Lee 2015 11 171 43 536 17.9% 0.79 [0.40, 1.56] Thomas Pligtim 2021 27 649 25 651 22.0% 1.09 [0.52, 1.89] Yao-Jun Zhang 2015 33 280 43 293 34.1% 0.78 [0.48, 1.26] Total (95% Cf) 1391 1686 100.0% 0.85 [0.64, 1.12] Image: ChiP = 1.00, df = 3 (P = 0.80); P = 0% Heterogenetic ChiP = 1.00, df = 3 (P = 0.80); P = 0% Image: ChiP = 1.00, df = 3 (P = 0.80); P = 0% Image: ChiP = 1.00, df = 3 (P = 0.80); P = 0% Image: ChiP = 1.00, df = 1.00, d										
Hyun Jong Lee 2015 11 171 43 536 17.9% 0.79 [0.40, 1.56] Thomas Pilgrim 2021 27 649 25 651 22.0% 1.09 [0.52, 1.89] Yao-Jun Zhang 2015 33 280 43 293 34.1% 0.78 [0.48, 1.26] Total (95% Cl) 1391 1686 100.0% 0.85 [0.64, 1.12] Heterogeneity: Chi ^P = 1.00, df = 3 (P = 0.80); P = 0% 0.01 0.1 10	Study or Subaroup	Events	Total						M-H, Fixed, 95% Cl	
Thomas Pligrim 2021 27 649 25 651 22.0% 1.09 (0.62, 1.89) Yao-Jun Zhang 2015 33 280 43 293 34.1% 0.78 (0.48, 1.26) Total (95% CI) 1391 1686 100.0% 0.85 (0.64, 1.12) • Total events 102 138 • • • • Heterogeneity: ChiP = 1.00, df = 3 (P = 0.80); P = 0% • • • • • • • • • • • • •					206	26.0%				
Yao-Jun Zhang 2015 33 280 43 293 34.1% 0.78 [0.48, 1.26] Total (95% CI) 1391 1686 100.0% 0.85 [0.64, 1.12] • Total events 102 138 • • • Heterogeneity. Chi ² = 1.00, df = 3 (P = 0.80); P = 0% • • • • Double Mort T = 1.40, df = 2 (P = 0.80); P = 0% • • • • •	Antoinette de Waha 2015						0.79 [0.46, 1.37]			
Total (95% CI) 1391 1686 100.0% 0.85 [0.64, 1.12] Total events 102 138 Heterogeneity, ChiP = 1.00, df = 3 (P = 0.80); P = 0% 0.01 0.1 1 10 10	Antoinette de Waha 2015 Hyun Jong Lee 2015	11	171	43	536	17.9%	0.79 [0.40, 1.56]			
Total events 102 138 Heterogeneity, Chi ² = 1.00, df = 3 (P = 0.80); P = 0% Total for events 1 effect 7 = 1 14 (P = 0.29).	Antoinette de Waha 2015 Hyun Jong Lee 2015	11 27	171 649	43	536	17.9%	0.79 [0.40, 1.56]			
Heterogeneity: Chi ² = 1.00, df = 3 (P = 0.80); i ² = 0% Toot for everyll offect 7 = 414 (P = 0.26) 0.01 0.1 1 10 10	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021	11 27	171 649	43 25	536 651	17.9% 22.0%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89]			
Test for system 0 (0.1 1 1 10 10	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI)	11 27 33	171 649 280	43 25 43	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]		* *	
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events	11 27 33 102	171 649 280 1391	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]		•	
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	0.01		0 100
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 100
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	<u>н</u> 0.01 с		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	H		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi ² = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	0.01 C		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi ² = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 10
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L 0.01 C		0 100
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	0.01 C		0 100
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 100
	Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events Heterogeneity: Chi ² = 1.00,	11 27 33 102 df = 3 (P =	171 649 280 1391 0.80); I ²	43 25 43 138	536 651 293	17.9% 22.0% 34.1%	0.79 [0.40, 1.56] 1.09 [0.62, 1.89] 0.78 [0.48, 1.26]	L		0 10

209x297mm (300 x 300 DPI)

Fig 6. cardiac death

6.1) cardiac death during follow up period

	BP-DI	ES	DP-DI	ES		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Antoinette de Waha 2015	20	291	21	206	14.3%	0.65 [0.34, 1.23]	
Hyo-Soo Kim 2021	38	1700	27	1713	16.4%	1.43 [0.87, 2.35]	+
Hyun Jong Lee 2015	8	171	28	536	8.0%	0.89 (0.40, 1.99)	
Qi Zhang 2014	40	596	43	596	25.0%	0.93 [0.59, 1.45]	-
Thomas Pilgrim 2016	3	211	9	196	5.7%	0.30 [0.08, 1.12]	
Thomas Pilgrim 2021	19	649	21	651	12.7%	0.90 [0.48, 1.70]	
Yao-Jun Zhang 2015	23	280	32	293	17.9%	0.73 [0.42, 1.28]	
Total (95% CI)		3898		4191	100.0%	0.89 [0.71, 1.12]	•
Total events	151		181				
Heterogeneity: Chi ² = 7.50, d	df = 6 (P =	= 0.28);	I ² = 20%				
Test for overall effect: Z = 0.9	oo /n - o	221					0.01 0.1 1 10 10
Test for overall effect. $\angle = 0.5$	99 (P = 0.	.32)					BP-DES DP-DES
		,					BP-DES DP-DES
		,					BP-DES DP-DES
5.2) cardiac death at		ır	DP-DI	ES		Odds Ratio	BP-DES DP-DES Odds Ratio
	t 1 yea BP-DI	ur E S			Weight	Odds Ratio M-H, Fixed, 95% CI	
5.2) cardiac death at	t 1 yea BP-DI	ur E S			Weight 14.2%		Odds Ratio M-H, Fixed, 95% Cl
.2) cardiac death at Study or Subgroup Antoinette de Waha 2015	tlyea BP-Di Events	tr ES Total	Events	Total		M-H, Fixed, 95% Cl	Odds Ratio M-H, Fixed, 95% Cl
.2) cardiac death at Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021	t l yea BP-Di Events 14	ur E S Total 291	Events 14	<u>Total</u> 206	14.2%	M-H, Fixed, 95% Cl 0.69 [0.32, 1.49]	Odds Ratio M-H, Fixed, 95% Cl
.2) cardiac death at <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019	t l yea BP-DI Events 14 38	ES <u>Total</u> 291 1700	Events 14 27	Total 206 1713	14.2% 24.0%	M-H, Fixed, 95% Cl 0.69 [0.32, 1.49] 1.43 [0.87, 2.35]	Odds Ratio M-H, Fixed, 95% Cl
.2) cardiac death at <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 Qi Zhang 2014	t l yea BP-DI Events 14 38 18	tr ES 291 1700 649	Events 14 27 19	Total 206 1713 651	14.2% 24.0% 16.8%	M-H, Fixed, 95% Cl 0.69 [0.32, 1.49] 1.43 [0.87, 2.35] 0.95 [0.49, 1.82]	Odds Ratio M-H, Fixed, 95% Cl
.2) cardiac death at <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016	t l yea BP-DI Events 14 38 18 40	17 ES 291 1700 649 596	Events 14 27 19 43	Total 206 1713 651 596	14.2% 24.0% 16.8% 36.6% 8.4%	M-H, Fixed, 95% Cl 0.69 [0.32, 1.49] 1.43 [0.87, 2.35] 0.95 [0.49, 1.82] 0.93 [0.59, 1.45]	Odds Ratio M-H, Fixed, 95% Cl
5.2) cardiac death at Study or Subgroup	t l yea BP-DI Events 14 38 18 40	Total 291 1700 649 596 211	Events 14 27 19 43	Total 206 1713 651 596 196	14.2% 24.0% 16.8% 36.6% 8.4%	M-H, Fixed, 95% CI 0.69 [0.32, 1.49] 1.43 [0.87, 2.35] 0.95 [0.49, 1.82] 0.93 [0.59, 1.45] 0.30 [0.08, 1.12]	Odds Ratio M-H, Fixed, 95% Cl
5.2) cardiac death at <u>Study or Subproup</u> Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 oji Zhang 2014 Thomas Pilgrim 2016 Total (95% CI)	t l yea BP-DI <u>Events</u> 14 38 18 40 3 113	IT ES 291 1700 649 596 211 3447	Events 14 27 19 43 9 112	Total 206 1713 651 596 196 3362	14.2% 24.0% 16.8% 36.6% 8.4%	M-H, Fixed, 95% CI 0.69 [0.32, 1.49] 1.43 [0.87, 2.35] 0.95 [0.49, 1.82] 0.93 [0.59, 1.45] 0.30 [0.08, 1.12]	Odds Ratio M-H, Fixed, 95% Cl

 BP-DES
 DP-DES
 Odds Ratio

 Study or Subgroup
 Fvents
 Total
 Events
 Total
 M-H, Fixed, 95% C1
 M-H, Fixed, 95% C1

 Antoinette de Waha 2015
 20
 21
 206
 27.0%
 0.65 (0.34, 1.23)

 Hyun Jong Lee 2015
 8
 171
 28
 536
 15.2%
 0.89 (0.40, 1.99)

 Thomas Pilgrim 2021
 19
 649
 21
 651
 24.0%
 0.99 (0.48, 1.70)

 Total (95% C1)
 1391
 1686
 100.0%
 0.77 [0.56, 1.07]
 Image: 10.1 monos (0.11 monos (0

209x297mm (300 x 300 DPI)

Fig 7.Target vessel myocardial infarction (MI)

7.1)	Target	vessel	myocardial	infarction	(MI) during f	follow	up period
			DD 050	DD 050	0.11-	D-4'-	

Study or Subgroup Events Total Weight M.H., Fixed, 95% CI M.H., Fixed, 95% CI Antoinetie de Waha 2015 9 291 12 206 15.4% 0.52 (0.21, 1.25) Hyo-Soo Kim 2021 8 1700 5 1713 5.6% 1.62 (0.53, 4.95) Hyun Jong Lee 2015 2 171 7 536 3.8% 0.89 (0.18, 4.35) Thomas Pilgrim 2016 1 211 5 96 5.3% 0.18 (0.02, 1.57) Thomas Pilgrim 2011 10 649 13 651 4.5% 0.77 (0.33, 1.76) Yao-Jun Zhang 2015 21 280 31 293 31.7% 0.69 [0.38, 1.22] Total 6%5 Ch 3898 4191 100.0% 0.73 [0.53, 1.01] 0.01 0.1 0.1 1.0 10 Total events 68 94 191 100.0% 0.73 [0.53, 1.01] 0.01 0.1 0.1 0.1 0.1 0.1 0.1 10 10 Total events 68		BP-D		DP-DI			Odds Ratio	Odds Ratio	
Hyo-Sookim 2021 8 1700 5 1713 5.6% 1.62 0.53, 4.95 Hyor. Jong Lee 2015 2 171 7 536 3.8% 0.89 0.89 0.18 4.35 Oti Zhang 2014 1 7 596 3.8% 0.89 0.18 0.42 1.54 Thomas Pilgrim 2016 1 211 5 196 5.8% 0.18 10.02, 1.57 Thomas Pilgrim 2016 1 211 5 196 5.8% 0.18 10.02, 1.57 Yao-Jun Zhang 2015 21 280 31 293 31.7% 0.69 0.38, 1.22 Total (95% CI) 3898 4191 100.0% 0.73 (0.53, 1.01) 0.01 0.1 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
Hyun Jong Lee 2015 2 171 7 536 38% 0.89 0.18 439 Qi Zhang 2014 17 596 21 596 23.1% 0.80 0.81 1.84 329 Diramas Pligrim 2016 1 21 596 23.1% 0.80 0.42, 1.54 Thomas Pligrim 2016 1 21 596 23.1% 0.80 0.42, 1.54 Vao-Jun Zhang 2015 21 20 31 293 31.7% 0.69 0.38, 1.22 Total (95% CI) 3898 4191 100.0% 0.73 [0.53, 1.01] 9 Heterogeneity: ChF = 4.33, df = 6 (P = 0.83); P = 0% Test for overall effect Z = 1.93 (P = 0.05) 0.01 0.1 0.1 10 10 10 Study or Subgroup Events Total Events Total Weight MH, Fixed, 65% CI MH, Fixed, 65% CI MH, Fixed, 65% CI Antoinette de Waha 2015 9 21 12 206 23.6% 0.52 [0.21, 1.25] MH, Fixed, 65% CI Hyun Jong Lee 2015 2 10 13 651 21.2% 0.77 [0.33, 1.76] 10 10	Antoinette de Waha 2015	9	291	12	206	15.4%	0.52 [0.21, 1.25]		
Oi Zhang 2014 17 596 21 596 23.1% 0.80 [0.42, 1.54] Thomas Pilgim 2016 1 211 5 196 5.8% 0.18 [0.02, 1.57] Thomas Pilgim 2011 1 649 13 651 14.5% 0.77 [0.33, 1.76] Yao-Jun Zhang 2015 21 280 31 293 31.7% 0.69 [0.38, 1.22] Total 6% Ct) 3898 4191 100.0% 0.73 [0.53, 1.01] 0.01 0.1 Total events 68 94 100.0% 0.73 [0.53, 1.01] 0.01 0.1 Test for overall effect Z = 1.93 (P = 0.65) DP-DES DP-DES DP-DES DP-DES 2.2) Target vessel myocardial infarction (MI) at 1 year BP-DES DP-DES Odds Ratio Study or Subgroup Events Total Events Total Weight MH, Fixed, 95% Cl MH, Fixed, 95% Cl MH, Fixed, 95% Cl Antoinette de Waha 2015 9 21 12 206 23.6% 0.52 [0.21, 1.25] Thomas Pilgrim 2021 10 649 13 651 22.1% 0.77 [0.33, 1.76] 10 Yao-Jun Zhang 2015 21	Hyo-Soo Kim 2021	8	1700	5	1713	5.6%	1.62 [0.53, 4.95]	_	
Thomas Pilgrim 2016 1 211 5 196 5.8% 0.18 $[0.02, 157]$ Thomas Pilgrim 201 10 649 13 651 14.5% 0.77 $[0.33, 1.76]$ Total events 2015 21 280 31 293 31.7% 0.59 $[0.38, 1.22]$ Total events 68 94 Heterogeneity: ChF = 0.5, 0.5 DP-DES	Hyun Jong Lee 2015	2	171	7	536	3.8%	0.89 [0.18, 4.35]		
Thomas Plight 2021 10 649 13 651 14.5% 0.77 [0.33, 176] Yao-Jun Zhang 2015 21 280 31 293 31.7% 0.69 [0.38, 122] Total 99% C1 3898 4191 100.0% 0.73 [0.53, 1.01] Total events 68 94 Heterogeneity: ChF = 4.33, dF = 6 (P = 0.63); P = 0% C2) Target vessel myocardial infarction (MI) at 1 year BP-DES DP-DES 0dds Ratio Study or Subgroup Events Total Events Total Weight M.H.Fixed, 95% CI Antioinet de Waha 2015 9 291 12 206 23.6% 0.52 [0.21, 125] Thomas Plight 2021 10 649 13 651 22.1% 0.77 [0.33, 176] Total 990 C1 10 649 13 651 22.1% 0.77 [0.33, 176] Total 900 C1 10 649 13 651 22.1% 0.65 [0.38, 1.22] Total 900 C1 10 649 13 651 22.1% 0.69 [0.38, 1.22] Total 900 C1 10 649 13 651 22.1% 0.69 [0.38, 1.22] Total 900 C1 10 649 13 651 22.1% 0.69 [0.38, 1.22] Total 900 C1 10 649 13 661 00.0% 0.68 [0.45, 1.01] Total 900 C1 21 20 03 12 93 48.5% 0.69 [0.38, 1.22] Total 900 C1 21 20 03 12 93 48.5% 0.69 [0.38, 1.22] Total 900 C1 21 20 00 C1 10 10 00 C1 10 00	Qi Zhang 2014	17	596	21	596	23.1%	0.80 [0.42, 1.54]		
Yao-Jun Zhang 2015 21 280 31 293 31.7% 0.69 [0.38, 1.22] Total (95% CI) 3898 4191 100.0% 0.73 [0.53, 1.01] Total (95% CI) 3898 4191 100.0% 0.73 [0.53, 1.01] Total (95% CI) 3898 4191 100.0% 0.73 [0.53, 1.01] Test for overall effect Z = 1.93 (P = 0.05) 0.01 0.1 0.1 0.1 Zey Torstage t vessel myocardial infarction (MI) at 1 year BP-DES DP-DES DP-DES DP-DES Study or Subgroup Events Total Weight MH, Fixed, 95% CI MH, Fixed, 95% CI MH, Fixed, 95% CI Antoinette de Waha 2015 9 291 12 206 23.6% 0.52 [0.21, 1.25] Hyun Jong Lee 2015 2 171 7 536 58% 0.89 [0.18, 4.35] 10 Total (95% CI) 13991 1686 102.1% 0.77 [0.33, 1.76] 10 10 Total events 42 63 63 0.05% [0.28, 1.22] 0.01 0.1 10 10 Total revents 42 63 60 0.00% 0.68 [0.45, 1.01] 0.01 <	Thomas Pilgrim 2016	1	211	5	196	5.8%	0.18 [0.02, 1.57]		
Total (95% CI) 3898 4191 100.0% 0.73 [0.53, 1.01] Total events 68 94 Heterogeneity: Chi ² = 4.33, df = 6 (P = 0.63); P = 0% 0.01 0.1 0.01 0.1 EVENTS Op.0ES Odds Ratio Study or Subgroup Events Total Weight M.H. Fixed, 95% CI Antoinefte de Waha 2015 9 Odds Ratio Total Weight M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI M.H. Fixed, 95% CI <th co<="" td=""><td>Thomas Pilgrim 2021</td><td>10</td><td>649</td><td>13</td><td>651</td><td>14.5%</td><td>0.77 [0.33, 1.76]</td><td></td></th>	<td>Thomas Pilgrim 2021</td> <td>10</td> <td>649</td> <td>13</td> <td>651</td> <td>14.5%</td> <td>0.77 [0.33, 1.76]</td> <td></td>	Thomas Pilgrim 2021	10	649	13	651	14.5%	0.77 [0.33, 1.76]	
Total events 68 94 Heterogeneity: ChP = 4.33, dF = 0.05); P = 0% 0.01 0.1 1 10 10 Test for overall effect Z = 1.93 (P = 0.05); P = 0% 0.01 0.1 0.1 1 10 10 .2) Target vessel myocardial infarction (MI) at 1 year BP-DES DP-DES Odds Ratio Study of Subgroup Events Total Events Total Weight MH, Fixed, 95% CI MH, Fixed, 95% CI Antoinetie de Waha 2015 9 291 12 206 23.6% 0.52 [0.21, 1.25]	Yao-Jun Zhang 2015	21	280	31	293	31.7%	0.69 [0.38, 1.22]		
Heterogeneity: ChP = 4.33, of = 6 (P = 0.63); P = 0% Test for overall effect. Z = 1.93 (P = 0.05) 2.) Target vessel myocardial infarction (MI) at 1 year BP-DES DP-DES Odds Ratio Study or Subaroup Events Total Events Total Weight M.H., Fixed, 95% Cl Antoinette de Waha 2015 9 291 12 206 23.6% 0.52 [0.21, 1.25] Thomas Pilgrim 2021 10 649 13 651 22.1% 0.77 [0.33, 1.76] Total 90% Cl 1391 1686 100.0% 0.68 [0.45, 1.01] Total 90% Cl 3991 1686 100.0% 0.68 [0.45, 1.01] Total events 42 63 Heterogeneity: ChP = 0.57, of = 3 (P = 0.90); P = 0% 1001 0.1 1 10 10	Total (95% CI)		3898		4191	100.0%	0.73 [0.53, 1.01]	•	
UUI	Total events	68		94					
IBESTOR Overall effect Z = 1,93 (P = 0.05) BP-DES BP-DES DP-DES .2) Target vessel myocardial infarction (MI) at 1 year BP-DES Odds Ratio Odds Ratio <t< td=""><td>Heterogeneity: Chi² = 4.33,</td><td>df = 6 (P =</td><td>= 0.63);</td><td>I² = 0%</td><td></td><td></td><td></td><td></td></t<>	Heterogeneity: Chi ² = 4.33,	df = 6 (P =	= 0.63);	I ² = 0%					
.2) Target vessel myocardial infarction (MI) at 1 year BP.DES Odds Ratio BP.DES Odds Ratio Study or Subgroup Feents Total Weight M.H., Fixed, 95% CI Antioinefte de Waha 2015 0 Odds Ratio Odds Ratio Antioinefte de Waha 2015 2 Odds Ratio Antioinefte de Waha 2015 O 21 Odds Ratio Total 69% CI M.H., Fixed, 95% CI Minomas Pilgrim 201 Odds Ratio									
BP-DES DP-DES Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M.H., Fixed, 95% CI M.H., Fixed, 95% CI Antioniette de Waha 2015 9 291 12 206 236, 0.55, 0.21, 1.25 M.H., Fixed, 95% CI Hyun Jong Lee 2015 2 171 7 536 5.8% 0.89 [0.18, 4.35] Image: Comparison of the comparison of	Test for overall effect: Z = 1	.93 (P = 0	.05)						
Study or Subgroup Events Total Events Total Weight M.H., Fixed, 95% CI M.H., Fixed, 95% CI Antoinette de Waha 2015 9 291 12 206 23.8% 0.52 [0.21, 1.25] Image: Comparison of the compar			,						
Antoinette de Waha 2015 9 291 12 206 23.6% 0.52 [0.21, 1.25] Hyun Jong Lee 2015 2 171 7 536 5.8% 0.89 [0.18, 4.35] Thomas Piligim 2021 10 649 13 651 22.1% 0.77 [0.33, 1.76] Yao-Jun Zhang 2015 21 280 31 293 48.5% 0.56 [0.38, 1.22] Total (95% Ct) 1391 1686 100.0% 0.68 [0.45, 1.01] Total events 42 63 Heterogeneity: Chif = 0.57, df = 3 (P = 0.90); P = 0% Total for exercising the ref. 25 (P = 0.90); P = 0% Dot 1 0.1 1 10 10			,	nfarcti	ion	(MI) at	t 1 year		
Hyun Jong Lee 2015 2 171 7 536 5.8% 0.89 [0.18, 4.35] Thomas Pilgrim 2021 10 649 13 651 22.1% 0.77 [0.33, 1.76] Yao-Junz Pang 2015 21 280 31 293 48.5% 0.69 [0.38, 1.22] Total (95% Cl) 1391 1686 100.0% 0.68 [0.45, 1.01] Total events 42 63 Heterogeneity: Chi ^P = 0.57, df = 3 (P = 0.90); P = 0% Totat for coverill event 5 - 1.80 (P = 0.05); P = 0% Totat for coverill event 5 - 1.80 (P = 0.05); P = 0%		iyocard	dial i			(MI) a		BP-DES DP-DES	
Thomas Pilgrim 2021 10 649 13 651 22.1% 0.77 [0.33, 1.76] Yao-Junz Tang 2015 21 220 31 293 48.5% 0.59 [0.38, 1.22] Total (95% CI) 1391 1686 100.0% 0.68 [0.45, 1.01] Total events 42 63 Heterogeneity: ChiP= 0.57, df = 3 (P = 0.30); P = 0% 0.01 0.1 1 10 10	.2) Target vessel n	iyocaro BP-DI	dial i E S	DP-DE	S		Odds Ratio	BP-DES DP-DES Odds Ratio	
Thomas Pilgrim 2021 10 649 13 651 22.1% 0.77 [0.33, 176] Yao-Jun Zhang 2015 21 280 31 293 48.5% 0.69 [0.38, 1.22] Total (95% CI) 1391 1686 100.0% 0.68 [0.45, 1.01] Total events 42 63 Heterogeneity: ChiP=0.57, df=3 (P=0.30); P=0% Totat for correcting for det 7 = 1.8 (Q = 0.08); P=0% 0.01 0.1 1 10 10	.2) Target vessel n Study or Subgroup	iyocaro BP-DI Events	diali ES Total	DP-D8 Events	ES Total	Weight	Odds Ratio M-H, Fixed, 95% Cl	BP-DES DP-DES Odds Ratio	
Yao-Jun Zhang 2015 21 280 31 293 48.5% 0.69 [0.38, 1.22] Total (95% Cl) 1391 1686 100.0% 0.68 [0.45, 1.01] Total events 42 63 Heterogeneity: Chi ^P = 0.57, df = 3 (P = 0.90); P ² = 0% Total for coveral efforts 7 = 1.9 (P = 0.05); P ² = 0% 0.01 0.1 1 10 10	.2) Target vessel n <u>Study or Subgroup</u> Antoinette de Waha 2015	nyocaro BP-DI Events 9	dial i ES <u>Total</u> 291	DP-DE Events 12	ES Total 206	Weight 23.6%	Odds Ratio M-H, Fixed, 95% CI 0.52 [0.21, 1.25]	BP-DES DP-DES Odds Ratio	
Total events 42 63 Heterogeneity: Chi ^P = 0.57, df = 3 (P = 0.90); P = 0% Total for course) effect 7 = 1.90 (P = 0.05); P = 0% 0.01 0.1 1 10 10	.2) Target vessel n <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyun Jong Lee 2015	nyocaro BP-DI Events 9 2	dial i ES <u>Total</u> 291 171	DP-DB Events 12 7	ES Total 206 536	Weight 23.6% 5.8%	Odds Ratio M-H, Fixed, 95% CI 0.52 [0.21, 1.25] 0.89 [0.18, 4.35]	BP-DES DP-DES Odds Ratio	
Total events 42 63 Heterogeneity: Chi ² = 0.57, df = 3 (P = 0.90); P = 0% Dict for overall effort 7 = 1.90 (P = 0.06); P = 0% 0.01 0.1 1 10 10	.2) Target vessel n Study or Subgroup Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021	nyocard BP-DI Events 9 2 10	dial i ES <u>Total</u> 291 171 649	DP-DB Events 12 7 13	ES Total 206 536 651	Weight 23.6% 5.8% 22.1%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 0.52 [0.21, 1.25] 0.89 [0.18, 4.35] 0.77 [0.33, 1.76]	BP-DES DP-DES Odds Ratio	
Heterogeneity: Chi ² = 0.57, df = 3 (P = 0.90); I ² = 0% 0.01 0.1 1 10 10	.2) Target vessel n Study or Subgroup Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015	nyocard BP-DI Events 9 2 10	dial i ES 291 171 649 280	DP-DB Events 12 7 13	Total 206 536 651 293	Weight 23.6% 5.8% 22.1% 48.5%	Odds Ratio M-H, Fixed, 95% CI 0.52 [0.21, 1.25] 0.89 [0.18, 4.35] 0.77 [0.33, 1.76] 0.69 [0.38, 1.22]	BP-DES DP-DES Odds Ratio	
Test for overall effect 7 = 1.99 (P = 0.06) U.U1 U.1 1 1U 1U	.2) Target vessel n Study or Subgroup Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI)	BP-DI Events 9 2 10 21	dial i ES 291 171 649 280	DP-DF Events 12 7 13 31	Total 206 536 651 293	Weight 23.6% 5.8% 22.1% 48.5%	Odds Ratio M-H, Fixed, 95% CI 0.52 [0.21, 1.25] 0.89 [0.18, 4.35] 0.77 [0.33, 1.76] 0.69 [0.38, 1.22]	BP-DES DP-DES Odds Ratio	
	.2) Target vessel n <u>Study or Subgroup</u> Antoinette de Waha 2015 Hyun Jong Lee 2015 Thomas Pilgrim 2021 Yao-Jun Zhang 2015 Total (95% CI) Total events	BP-DI Events 9 2 10 21	dial i ES <u>Total</u> 291 171 649 280 1391	DP-DI Events 12 7 13 31 63	Total 206 536 651 293	Weight 23.6% 5.8% 22.1% 48.5%	Odds Ratio M-H, Fixed, 95% CI 0.52 [0.21, 1.25] 0.89 [0.18, 4.35] 0.77 [0.33, 1.76] 0.69 [0.38, 1.22]	BP-DES DP-DES	

7.3) Target vessel myocardial infarction (MI) over 2 year

	BP-D	ES	DP-D	ES		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Antoinette de Waha 2015	7	291	8	206	20.0%	0.61 [0.22, 1.71]	
Hyo-Soo Kim 2021	8	1700	5	1713	10.9%	1.62 [0.53, 4.95]	
Juan F Iglesias 2019	5	649	6	651	13.0%	0.83 [0.25, 2.75]	
Qi Zhang 2014	17	596	21	596	44.7%	0.80 [0.42, 1.54]	
Thomas Pilgrim 2016	1	211	5	196	11.3%	0.18 [0.02, 1.57]	
Total (95% CI)		3447		3362	100.0%	0.79 [0.51, 1.22]	•
Total events	38		45				
Heterogeneity: Chi ² = 3.61,	df = 4 (P =	= 0.46);	l ² = 0%				0.01 0.1 1 10 100
Test for overall effect: Z = 1.	08 (P = 0	28)					BP-DES DP-DES

209x297mm (300 x 300 DPI)

Fig 8. Stent thrombosis

8.1) Stent thrombosis of	during follow up period
--------------------------	-------------------------

	BP-D		DP-D			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	t M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Antoinette de Waha 2015	17	291	25	206	18.8%	0.45 [0.24, 0.86]	
Hyo-Soo Kim 2021	12	1700	6	1713	4.1%	2.02 [0.76, 5.40]	
Hyun Jong Lee 2015	1	171	7	536	2.3%	0.44 [0.05, 3.64]	
Qi Zhang 2014	11	596	21	596	14.1%	0.51 [0.25, 1.08]	
Thomas Pilgrim 2016	7	211	23	196	15.8%	0.26 [0.11, 0.62]	(
Thomas Pilgrim 2021	22	649	27	651	17.8%	0.81 [0.46, 1.44]	
Yao-Jun Zhang 2015	27	280	45	293	27.2%	0.59 [0.35, 0.98]	
Total (95% CI)		3898		4191	100.0%	0.59 [0.46, 0.77]	◆
Total events	97		154				
Heterogeneity: Chi ² = 11.5	58, df = 6 (f	P = 0.0	7); I ² = 48	%			0.01 0.1 1 10 100
Test for overall effect: Z =	3.87 (P = 0	.0001)					BP-DES DP-DES
8.2) Stent thrombos	515 41 1	year					
,	BP-DE	s	DP-DE			Odds Ratio	Odds Ratio
Study or Subgroup	BP-DE Events	S Total	DP-DE Events	Total		M-H, Random, 95% Cl	Odds Ratio M-H. Random, 95% Cl
Study or Subgroup Antoinette de Waha 2015	BP-DE Events 13	S Total 291	DP-DE Events 24	Total 206	21.2%	M-H, Random, 95% CI 0.35 [0.18, 0.71]	
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021	BP-DE Events 13 12	5 Total 291 1700	DP-DE Events 24 6	Total 206 1713	21.2% 17.0%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40]	
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019	BP-DE Events 13 12 21	5 Total 291 1700 649	DP-DE Events 24 6 22	Total 206 1713 651	21.2% 17.0% 22.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76]	
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 Qi Zhang 2014	BP-DE Events 13 12 21 11	S Total 291 1700 649 596	DP-DE Events 24 6 22 21	Total 206 1713 651 596	21.2% 17.0% 22.6% 20.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76] 0.51 [0.25, 1.08]	
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019	BP-DE Events 13 12 21	5 Total 291 1700 649	DP-DE Events 24 6 22	Total 206 1713 651	21.2% 17.0% 22.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76]	
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 Qi Zhang 2014	BP-DE Events 13 12 21 11	S Total 291 1700 649 596	DP-DE Events 24 6 22 21 23	Total 206 1713 651 596 196	21.2% 17.0% 22.6% 20.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76] 0.51 [0.25, 1.08]	
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016 Total (95% CI) Total events	BP-DE Events 13 12 21 11 7 64	5 Total 291 1700 649 596 211 3447	DP-DE Events 24 6 22 21 23 96	Total 206 1713 651 596 196 3362	21.2% 17.0% 22.6% 20.6% 18.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76] 0.51 [0.25, 1.08] 0.26 [0.11, 0.62]	
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ^a = 0.38	BP-DE Events 13 12 21 11 7 64 ; Chi ² = 14.	5 Total 291 1700 649 596 211 3447 08, df =	DP-DE Events 24 6 22 21 23 96	Total 206 1713 651 596 196 3362	21.2% 17.0% 22.6% 20.6% 18.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76] 0.51 [0.25, 1.08] 0.26 [0.11, 0.62]	M.H. Random, 95% Cl
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016 Total (95% CI) Total events	BP-DE Events 13 12 21 11 7 64 ; Chi ² = 14.	5 Total 291 1700 649 596 211 3447 08, df =	DP-DE Events 24 6 22 21 23 96	Total 206 1713 651 596 196 3362	21.2% 17.0% 22.6% 20.6% 18.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76] 0.51 [0.25, 1.08] 0.26 [0.11, 0.62]	
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Iglesias 2019 Qi Zhang 2014 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ^a = 0.38	BP-DE Events 13 12 21 11 7 64 ; Chi ² = 14. .53 (P = 0.7	S <u>Total</u> 291 1700 649 596 211 3447 08, df= 13)	DP-DE: Events 24 6 22 21 23 96 : 4 (P = 0.	Total 206 1713 651 596 196 3362	21.2% 17.0% 22.6% 20.6% 18.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76] 0.51 [0.25, 1.08] 0.26 [0.11, 0.62]	M.H., Random, 95% Cl
Study or Subgroup Antoinette de Waha 2015 Hyo-Soo Kim 2021 Juan F Jglesias 2019 Ol Zhang 2014 Thomas Pilgrim 2016 Total (95% CI) Total events Heterogeneity: Tau ^a = 0.38 Test for overail effect. Z = 1	BP-DE Events 13 12 21 11 7 64 ; Chi ² = 14. .53 (P = 0.7	S <u>Total</u> 291 1700 649 596 211 3447 08, df= 13) r 2 ye	DP-DE: Events 24 6 22 21 23 96 : 4 (P = 0.	Total 206 1713 651 596 196 3362 007); ₽	21.2% 17.0% 22.6% 20.6% 18.6%	M-H, Random, 95% CI 0.35 [0.18, 0.71] 2.02 [0.76, 5.40] 0.96 [0.52, 1.76] 0.51 [0.25, 1.08] 0.26 [0.11, 0.62]	M.H. Random, 95% Cl

Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
Antoinette de Waha 2015	17	291	25	206	28.3%	0.48 [0.27, 0.87]	
Hyun Jong Lee 2015	1	171	7	536	3.3%	0.45 [0.06, 3.61]	
Thomas Pilgrim 2021	22	649	27	651	26.0%	0.82 [0.47, 1.42]	
Yao-Jun Zhang 2015	27	280	45	293	42.5%	0.63 [0.40, 0.98]	
Total (95% CI)		1391		1686	100.0%	0.63 [0.47, 0.85]	•
Total events	67		104				
Heterogeneity: Chi2 = 1.76,			I ² = 0%				0.01 0.1 1 10 100
Test for overall effect: Z = 3.	06 (P = 0.0	002)					BP-DES DP-DES

209x297mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2020 Checklist

Pa	age 39 of 40		BMJ Open	
1 2	PRIS	5MA 2	BMJ Open 1360 mi 999	
3 4 5	Section and Topic	ltem #	Checklist item	Location where item is reported
6	TITLE	. <u></u>	7 5	
7	Title	1	Identify the report as a systematic review.	Title page
8 9	ABSTRACT	1		
9 1(Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Abstract page
1	INTRODUCTION	1	<u>N</u>	
13	Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 7-9
14	Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	
	METHODS	1	d d d	
16	Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 9-11
17 18	Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to dentify studies. Specify the date when each source was last searched or consulted.	
19	Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	
20 21	Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reverse screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	
22 23 24	1 1	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each reports, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	
25 26	Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	
27 28 29	3	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	
30	Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how made reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	
32	Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	
33 34	Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	
35 36		13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	
37		13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	1
38	9	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	
4(4	D .	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysig, meta-regression).	1
4 42	2	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	1
43		14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	1
45		15	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	1
46 47))	1		<u> </u>

PRISMA 2020 Checklist

		BMJ Open	Page 40 of 40
PRIS PRIS	5MA 2	020 Checklist	
3 4 Section and 5 Topic	ltem #	Checklist item	Location where item is reported
6 assessment		N 5	
7 RESULTS	1	S S	
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 11-15
10 11	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were exercised.	
12 Study 12 characteristics	17	Cite each included study and present its characteristics.	
A Risk of bias in	18	Present assessments of risk of bias for each included study.	
16 Results of 17 individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effed estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	
18 Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	
h syntheses 20	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	
21	20c	Present results of all investigations of possible causes of heterogeneity among study results.	1
22	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	
A Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	
5 Certainty of 6 evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	
7 DISCUSSION		S S	
28 Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 15-17
9	23b	Discuss any limitations of the evidence included in the review.	
50 2.1	23c	Discuss any limitations of the review processes used.	
32	23d	Discuss any limitations of the review processes used.	
3 OTHER INFORMA	TION	S S	
34 Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Page 8
35 protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	
36 37	24c	Describe and explain any amendments to information provided at registration or in the protocol.	
38 Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	
39 Competing 40 interests	26	Declare any competing interests of review authors.	
41 Availability of 42 data, code and 43 other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	
44			

45 From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, MMrow CD, Heral (1976) 472620 statement of updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi:

10.1136/bmj.n71

BMJ Open

.1136/bmjopen-2021-058075 on 8 June 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright tration, visk

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Comparison of biodegradable and durable polymer drugeluting stents in acute coronary syndrome: a meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058075.R1
Article Type:	Original research
Date Submitted by the Author:	22-Feb-2022
Complete List of Authors:	Yuan, Haoyong; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Wu, Zhongshi; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Lu, Ting; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Wei, Tingting; Hunan Provincial Maternal and Child Health Care Hospital, Department of Paediatrics Zeng, Yifan; Central South University, Department of Cardiovascular Surgery Liu, Yalin; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Huang, Can; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Medical management
Keywords:	Coronary heart disease < CARDIOLOGY, Coronary intervention < CARDIOLOGY, Myocardial infarction < CARDIOLOGY
Note: The following files were s You must view these files (e.g. 726399_Figure_1.tif 726399_Figure_2.tif 726399_Figure_3.tif 726399_Figure_4.tif 726399_Figure_5.tif 726399_Figure_6.tif 726399_Figure_7.tif 726399_Figure_8.tif	ubmitted by the author for peer review, but cannot be converted to PDF. movies) online.

726399_Figure_9.tif 726399_Figure_10.tif

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

BMJ Open

Comparison of biodegradable and durable polymer drug-eluting stents in acute coronary syndrome: a meta-analysis

Haoyong Yuan, MD^{1,2}, Zhongshi Wu, MD^{1,2}, Ting Lu, MD^{1,2}, Tingting Wei, MD³, Yifan Zeng,

MD¹, Yalin Liu^{1,2}, Can Huang, MD^{1,2*}

¹Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China

²Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan 410008, China

³Department of Paediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China elien

***Corresponding author**: Can Huang

Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University,

#139 Renmin Road, Changsha, Hunan, 410011, P.R. China

Tel: +86 73185292133

Fax: +86 73185292133

E-mail: huangcan413@csu.edu.cn

Word count: 2939

ABSTRACT

Objective: To compare the safety and effectiveness between biodegradable polymer drugeluting stents (BP-DES) and durable polymer drug-eluting stents (DP-DES) in patients with acute coronary syndrome (ACS).

Design: Meta-analysis of randomized controlled trials (RTCs)

Primary and secondary outcome measures: Major adverse cardiovascular events (MACEs) were considered the primary endpoint. Efficacy endpoints included target vessel revascularization (TVR) and target lesion revascularization (TLR). Safety endpoints included all-cause death, cardiac death, target vessel myocardial infarction (TVMI), and ST.

Methods: We searched PubMed, Medline, Embase, and the Cochrane Controlled Register of Trials (CENTRAL) for comparative studies of BP-DES and DP-DES in patients with ACS from January 2000 to July 2021. Statistical pooling was performed for estimating incidence, using a random-effects model with generic inverse-variance weighting. Risk estimates were computed with 95% confidence intervals (CIs).

Results: Eight articles with 7 trails that compared BP-DES and DP-DES in patients with ACS were identified and included in qualitative and quantitative analyses. There was no difference in the baseline characteristics (p>0.05), except for the number of smoking patients (p=0.008), which was significantly lower in the BP-DES group. The meta-analysis demonstrated that MACEs, efficacy endpoints, and safety endpoints were similar between the groups at 1 year (p>0.05). However, the total stent thrombosis (ST) incidence was significantly different between the BP-DES and DP-DES groups in the follow-up period (p=0.0001). Further

BMJ Open

analysis showed a statistically significant difference in MACEs (p=0.002), TLR (p=0.05), TVR (p=0.002), total ST incidence (p=0.0001), and ST incidence (p=0.002) over 2 years.

Conclusion: This meta-analysis revealed that both stent types showed excellent safety and efficacy profiles at 12 months. However, a slight increase in MACEs, TLR, TVR, and ST incidence was observed in the DP-DES group over the 2-year follow-up period, suggesting that BP-DES may be more favorable when treating patients with ACS. Long-term follow-ups are necessary to confirm these findings.

Keywords: acute coronary syndrome, biodegradable drug-eluting stent, durable polymer drugeluting stent, major adverse cardiac event, stent thrombosis, target lesion revascularization, target vessel revascularization

Strengths and limitations of this study

- This meta-analysis includes randomized controlled trials with long-term followups.
- The large sample size ensures adequate statistical power to detect even a small effect of interest.
- Heterogeneity among the BP-DES may distort the reported results.
- The differences in the durations of dual antiplatelet therapy may influence clinical outcomes.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Data availability statement

No additional data available.

Patient and public involvement

We did not require patient and public involvement, as this is a meta-analysis, and no new patients were enrolled in the study.

Ethics approval

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the protocol was registered with PROSPERO (CRD42021253412). This study was approved by the institutional review board of the Second Xiangya Hospital of Central South University.

Funding

This work was supported by the Hunan Provincial Natural Science Foundation of China (grant number 2020JJ4787).

INTRODUCTION

Percutaneous coronary intervention (PCI) is the current standard of care for patients with coronary artery disease, particularly acute coronary syndrome (ACS)^[1, 2].Unlike bare-mental stents (BMS), drug-eluting stents (DES) use antiproliferative agents embedded in a polymer coating on the stent's surface, which inhibit neointimal hyperplasia to reduce the risk of restenosis^[3]. Although DES have substantially improved clinical outcomes, the first-generation durable polymer DES (DP-DES) released sirolimus or paclitaxel, and it was associated with similar risks of death and myocardial infarction to those of BMS beyond 1 year after implantation^[4]. Later, the second-generation DP-DES were confirmed to have lower restenosis rates than first-generation devices and showed reduced rates of stent thrombosis (ST)^[5]. Recently, very late ST and neoatherosclerosis, with adverse clinical outcomes, have been observed with second-generation DP-DES, which has improved the biocompatibility of the polymer^[6]. Late stent failure has been attributed to delayed endothelial healing secondary to a hypersensitivity reaction to the durable polymer^[7].

To address this potential limitation of DP-DES, biodegradable polymer DES (BP-DES) have been developed. Theoretically, BP-DES would lead to a reduction in vascular inflammation and a decreased risk of late stent-related complications due to the advantage of leaving only the BMS after complete drug elution and polymer degradation. BP-DES have been observed to reduce the rate of major adverse cardiac events (MACEs) compared to BMS^[8] and first-generation DP-DES^[9]. Studies of patients who underwent PCI showed that the device-related outcomes were comparable between BP-DES and second-generation DP-DES^[10-13]. Thus, BP-DES would be expected to reduce the risk of ST-related MACEs beyond the first

BMJ Open

year compared to that of DP-DES. However, previous studies enrolled a significant proportion of stable angina patients. ACS confers an increased risk of adverse outcomes due to plaque characteristics, including culprit lesions, thrombus burden, and persistent inflammation, compared to stable coronary artery diseases. ACS also increases the risk of delayed arterial healing and vessel remodeling^[14], reflected by higher rates of incomplete stent strut coverage^{[15, ^{16]} and malpositioning^[17].}

Recently, randomized trials have been performed to compare the efficacy and safety of DP-DES and BP-DES in patients with ACS who underwent PCI. In this meta-analysis, we aimed to summarize studies comparing the two polymer technologies in ACS patients and to analyze the safety and effectiveness of these therapeutic options.

elle

METHODS

Search strategy and registration

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was approved by the institutional review board of the Second Xiangya Hospital, Central South University. The protocol was registered with PROSPERO (CRD42021253412).

Based on the PRISMA statement, PubMed, Medline, Embase, and the Cochrane Controlled Register of Trials (CENTRAL) databases were searched for comparative studies of BP-DES and DP-DES in the treatment of patients with ACS who underwent PCI. The following search terms were used: "BP-DES," "biodegradable," "bioabsorbable," "bioabsorbable polymer drug-eluting stent," "biodegradable polymer drug-eluting stent," "DP-

DES," "durable polymer," "durable polymer drug-eluting stent," "acute coronary syndrome," "ACS," "AMI," "Acute myocardial infarction," "Non ST segment elevation myocardial infarction," "ST segment elevation myocardial infarction," "NSTEMI," and "STEMI." We also reviewed prior meta-analyses and the reference lists of the original trials and review articles to identify further studies. Only English language articles published in peer-reviewed journals from January 2000 to July 2021 were selected. Analyses were conducted by two independent reviewers.

Eligibility criteria

The inclusion criteria for this meta-analysis were as follows: 1) randomized controlled trials (RCTs) comparing BP-DES and DP-DES in the treatment of patients with ACS who underwent PCI; 2) data reporting patients' baseline characteristics, follow-up durations, outcomes at the primary, safety, and efficacy endpoints; 3) mean follow-up time over 12 months; and 4) full-text articles.

The exclusion criteria for the meta-analysis were as follows: 1) duplications of samples and reports (evaluated by 2 independent reviewers); 2) case reports/series; and 3) studies involving data from a national database.

Data extraction and outcome measurement

Two authors (Haoyong Yuan and Tingting Wei) systematically screened the titles and abstracts of publications retrieved using the search strategy to select studies that met the above inclusion criteria. Any disagreement between them regarding the eligibility of particular studies was resolved through discussion and involvement of a third author (Zhongshi Wu), when

BMJ Open

necessary. First, baseline characteristics, including the name of the first author, year of publication, study design, country of origin, number of patients, mean age of subjects, and mean duration of follow-up were gathered from each included article. In addition, sex; body mass index; presence of hypertension, diabetes, dyslipidemia, chronic kidney disease, peripheral vessel disease, or smoking; left ventricular ejection fraction (LVEF), number of stents per person; and total stent length were collected for evaluation of procedure risk. MACEs were considered the primary endpoint. The efficacy endpoints included target vessel revascularization (TVR) and target lesion revascularization (TLR). In addition, all-cause death, cardiac death, target vessel myocardial infarction (TVMI), and ST were employed as endpoints to evaluate the safety of BP-DESs and DP-DESs.

The Risk of Bias 2 (RoB2) tool was employed to assess the quality of RCTs based on sequence generation; randomized group allocation; concealment; blinding of participants, personnel, and outcome assessors; incomplete data; selectivity; outcome reporting; and other sources of bias(Supplementary Material 2)^[18].

Data analysis and synthesis

Continuous variables are reported as the mean (standard deviation), and categorical variables are expressed as numbers. Statistical pooling was performed to estimate incidence, according to a random-effects model with generic inverse-variance weighting. We computed risk estimates with 95% confidence intervals (CIs), using RevMan 5.3 (The Cochrane Collaboration, The NordicCochrane Centre, Copenhagen, Denmark). Hypothesis testing for superiority was set at the two-tailed 0.05 level. Hypothesis testing for statistical homogeneity

was set at the two-tailed 0.10 level and was based on the Cochran Q test, with I² values of 25%, 50%, and 75% representing mild, moderate, and severe heterogeneity, respectively.

RESULTS

Search results

A total of 895 articles, written in English, were identified through the literature search. After an initial screening of the titles and abstracts, 803 articles were eliminated, as they were not related to the topic of this study. Following the removal of these articles, 92 clinical studies and RCT articles of the two polymers remained. After reading the full texts, 28 articles about acute coronary syndromes remained, with 20 articles including chronic and acute coronary syndrome. Finally, 8 articles, with 7 randomized controlled trials, comparing BP-DES and DP-DES in patients with ACS were identified and included in the qualitative and quantitative analyses^[19-26]. The follow-up duration ranged from 1 year to 5 years (Supplementary Table 1 and Supplementary Material 1).

General features of the trials

A total number of 8089 patients (3898 patients who were treated with BP-DES and 4191 patients who were treated with the DP-DES) were included in this analysis. Further details about the the quality of RCTs, total number of patients retrieved from each trial, publication years, countries of origin of the publications, centers in which trials were performed, follow-up durations, risk factors, and primary, efficacy, and safety endpoints are listed in Supplementary Table 2 and Supplementary Material 2.

Patient characteristics

BMJ Open

The baseline features of the patients are summarized in Tables 2. The mean age of the patients who were treated by BP-DES ranged from 61.3 to 64 years old, whereas the mean age of the patients who were treated by DP-DES ranged from 61.7 to 64.1 years. The proportions of male patients were above 70% in all included trials. There was no difference in age (mean difference [MD]: 0.14, 95%CI: -0.66–0.38; p=0.60, l^2 =0%), sex (male) (odds ratio [OR]: 1.10, 95%CI: 0.99–1.23; p=0.07, l^2 =0%), hypertension (OR: 1.03, 95%CI: 0.94–1.13; p=0.57, l^2 =37%), dyslipidemia (OR: 0.92, 95% CI: 0.83–1.02; p=0.10, l^2 =36%), LVEF (MD: 0.00, 95%CI: 0.00–0.01; p=0.12, l^2 =12%), body mass index (MD:0.07, 95%CI: -0.11 to 0.25; p=0.44, l^2 =0%), diabetes (OR: 0.92, 95%CI: 0.83–1.02; p=0.13, l^2 =21%), total stent length (MD: -0.72, 95%CI: -2.30 to -0.85; p=0.37, l^2 =40%), and number of stents per person (MD: -0.00, 95%CI: -0.05 to 0.04; p=0.84, l^2 =0%) among patients who were implanted with BP-DES or DP-DES. The meta-analysis demonstrated that the number of smoking patients (OR: 1.13, 95%CI: 1.03–1.24; p=0.008, l^2 =29%) was significantly lower in the BP-DES group than that in the DP-DES group (Figure 1-3).

Primary endpoint: MACEs reported during follow-up periods of 1–5 years, 1 year, and over 2 years

MACEs, including all-cause death, recurrent MI, or any coronary repeat revascularization involving TLR, TVR, and non-TVR, were considered the primary endpoint of the trials. A meta-analysis indicated no statistically significant difference in MACEs in a follow-up period ranging from 1 to 5 years between the two groups (OR: 0.87, 95%CI: 0.75–1.01; p=0.07, I^2 =50%). Of the 5 studies that published 1-year outcomes, MACEs were not significantly different between the BP-DES and DP-DES groups (OR: 0.97, 95%CI: 0.81–1.16; p=0.74, I^2 =44%). However, the MACEs with follow-up periods over 2-years are significant lower in the BP-DES group (OR: 0.71, 95%CI: 0.57–0.88; p=0.002, I^2 =0%) (Figure 4).

Efficacy endpoint: TVR and TLR reported during follow-up periods of 1–5 years, 1 year, and over 2 years

TLR and TVR were considered the efficacy endpoints of the trials. The meta-analysis indicated no statistically significant difference in TLR in follow-up periods ranging from 1 to 5 years between the two groups (OR: 0.78, 95%CI: 0.61–1.00; p=0.05, I^2 =48%). Among the 5 studies that published 1-year data, TLR was not significantly different between the BP-DES and DP-DES groups (OR: 0.72, 95%CI: 0.40–1.31; p=0.29, I^2 =65%). The meta-analysis indicated no statistically significant difference in TVR in follow-up periods ranging from 1 to 5 years (OR: 1.01, 95%CI: 0.79–1.28; p=0.96, I^2 =46%) or in the 3 publications with 1 year follow-up periods (OR: 0.98, 95%CI: 0.40–2.38; p=0.96, I^2 =76%). However, the difference in TLR was statistically significant in 4 RCT studies with follow-up periods over 2-years (OR: 0.71, 95%CI: 0.51–1.01; p=0.05, I^2 =0%), and the difference in TVR was also statistically significant in 3 RCT studies with follow-up periods over 2-years (OR: 0.70, 95%CI: 0.52–0.94; p=0.002, I^2 =15%), with values much lower in the BP-DES group (Figures 5, 6).

Safety endpoint: All-cause death, cardiac-related death, target vessel myocardial infarction, and stent thrombosis over follow-up periods of 1–5 years, 1 year, and over 2 years

All-cause death, cardiac-related death, TVMI, and ST were considered the efficacy endpoints. The meta-analysis indicated no statistically significant difference between the two

groups in all-cause death (OR: 0.88, 95%CI: 0.72–1.07; p=0.20, $I^2=0\%$), cardiac-related death (OR: 0.89, 95%CI: 0.71–1.12; p=0.32, I²=20%), and TVMI (OR: 0.73, 95%CI: 0.53–1.01; p=0.05, $I^2=0\%$) over a follow-up period ranging from 1 to 5 years. Of the 5 studies that published 1-year data, all-cause death, cardiac-related death, and TVMI were also not significantly different between the BP-DES and DP-DES groups ([all-cause death, OR: 0.91, 95%CI: 0.71-1.15; p=0.42, I²=0%], [cardiac-related death, OR: 0.96, 95%CI: 0.74-1.26; $p=0.79, I^2=35\%$], [TVMI, OR: 0.73, 95%CI: 0.53–1.01; $p=0.05, I^2=0\%$]). In the 5 studies with follow up periods of over 2-year, similar findings were observed for the all-cause cardiac death, cardiac-related death, and TVMI ([all-cause death, OR: 0.85, 95%CI: 0.64-1.12; p=0.25, I²=0%], [cardiac-related death, OR: 0.77, 95%CI: 0.56–1.17; p=0.12, I²=0%], [TVMI, OR: 0.79, 95%CI: 0.51–1.22; p=0.28, $I^2=0\%$) (Figures 7–9). However, the total ST incidence, including the definite ST, probable ST, and definite or probable ST incidence, was significantly different between the BP-DES and DP-DES groups during the follow-up period (OR: 0.59, 95% CI: 0.46-0.77; p=0.0001, l²=48%). Further analysis revealed no difference in total ST for a 1-year follow-up (OR: 0.61, 95%CI: 0.32–1.15; P=0.13, P=72%), while the meta-analysis indicated a statistically significant difference in the total ST for the follow-ups over 2-years (OR: 0.63, 95%CI: 0.47–0.85; p=0.002, I²=0%) (Figure 10).

DISCUSSION

The choice of stent in patients undergoing PCI for ACS is debated. Coronary intervention with second-generation DP-DES generally reduces the need for revascularization and improves mortality compared to BMS and first-generation DP-DES. Furthermore, the risk of late ST with DP-DES tends to off-set these benefits, as seen in registries and clinical trials comparing DP-

DES to BMS^[15, 27]. BP-DES was designed to leave only the BMS behind once the polymer completely bio-degraded after drug elution and may represent an attractive solution for patients with ACS^[28]. Prior meta-analyses have compared the clinical outcomes among BMS, DP-DES, and BP-DES in patients with stable coronary artery disease, but no previous meta-analysis of RCTs and prospective trials directly compared clinical outcomes between BP-DES and DP-DES for the treatment of ACS. To our knowledge, this meta-analysis exclusively compared BP-DES to DP-DES. It included 7 trials representing 8089 patients with relatively long followup durations, ranging from 1 year to 5 years. Although BP-DES have been hypothesized to offer improved outcomes, mainly in the long term, several prior meta-analyses have demonstrated different outcomes with BP-DES compared to DP-DES in patients undergoing PCI. Bangalore et al. found that BP-DES were associated with higher mortality than DP-DES beyond 1 year of follow-up^[29]. El-Hayek et al. demonstrated no significant difference in mortality between these types of stent^[6]. In our study, there were no significant differences in MACEs, all-cause death, cardiac-related death, TVMI, TVR, or TLR at a follow-up period of 1 year and no significant differences in all-cause death, cardiac death, or TVMI at a follow-up period of over 2 years. However, at a follow-up of over 2-years, MACEs, TVR and TLR are significant lower in the BP group than those in the DP group. Pilgrim T et al. found a higher all-cause mortality among patients treated with BP-SES compared with DP-EES in the BIOSCIENCE trial; they also found comparable rates of all-cause mortality between patients treated with BP-SES and DP-EES in the BIOSTEMI trial with a 2-year follow-up^[6]. Mario Iannaccone et al. found that BP-DES might potentially decrease the risk of ischemic events in selected high-risk subgroups of patients, although the two DES stents share the same safety

BMJ Open

factors for patients in high-anatomical-risk settings like left main (LM) disease^[30]. Together, these findings suggest that BP-DES share similar outcomes in terms of MACEs (all-cause death, cardiac-related death, TVMI, TVR, and TLR) during a 1-year follow-up and might significantly improve clinical outcomes over a 2-year follow-up.

ST is defined as a thrombotic occlusion of a coronary stent^[31] and is a major complication. The risk of ST, particularly late ST (occurring beyond 30 days), remains among the major concerns limiting the use of DES in the treatment of ACS^[32]. Early-generation DP-DES were associated with increased rates of very late (>1 year) ST compared with BMS. It was hypothesized that the mechanism underlying late ST with first DP-DES in ACS was related to adverse reactions with the durable polymer^[33], and the use of more biocompatible polymers has been associated with a reduction in ST in high-risk patients^[9]. In the LEADERS trial, the rate of very late ST was lower with the use of the BP-DES than that with DP-DES^[34]. Our data demonstrated that both BP-DES and DP-DES have similar risks of ST beyond 1 year. However, BP-DES are associated with a significantly reduced risk of ST at a follow-up of over 2 years compared with DP-DES (OR: 0.64, 95%CI: 0.46–0.88; p=0.006, I^2 =0%). In contrast, Kim et al. found that the incidence of ST by groups showed numerically lower rates in the DP-DES group (0.1%) than those in the BP-DES group and that all late ST cases occurred in those receiving thick-strut BP-DES stents. They proposed that no meaningful differences in terms of ST could be identified between the different polymer technologies by intravascular imaging and that the association of polymer technology and the risk of the ST was difficult to prove^{[20,} ^{35, 36]}. Therefore, it may be hypothesized that the BP-DES result in improved arterial healing, which not only minimizes the risk of ST, but also improves the long-term durability of the

antirestenotic efficacy in the long term, although the two groups have a similar risk of ST beyond 1 year.

Limitations

The present study had several limitations. First, this study included RCTs and shares the limitations of original studies. Second, BP-DES are a heterogeneous group of stents, differing with regards to stent platform thickness, time to complete degradation of the polymer, and drug-elution kinetics. DP-DES is an equally heterogeneous group. Innaccone et al. found that lower strut thickness would have a positive clinical outcome, reducing stent thrombosis and target lesion revascularizations^[37]. We were unable to match the stents in regard to strut thickness. As a consequence, the reported results may not be generalizable to all stents from the respective group. Third, over-6-month dual antiplatelet therapy (DAPT) was given to the patients in our including RCT trials. D'Ascenzo et al. found a similar rate of MACEs between durable and biodegradable polymers, irrespective of DAPT length, and the DAPT duration seems to partially impact the risk of adverse events of different types of stents at follow-up^[38]. Thus, we remain concerned that the duration differences of DAPT may influence the clinical outcomes.

CONCLUSION

In this meta-analysis comparing BP-DES to DP-DES in ACS patients who underwent PCI, the data indicated that both polymer types showed excellent safety and efficacy profiles at 1 year. There was a slightly increased incidence of MACEs, TLR, TVR, and ST in the DP-DES group in the follow-up period over 2 years, suggesting that BP-DES may be more favorable for

treating patients with ACS. These findings should be confirmed by long-term follow-up in RCT trials.

Author contributions

Can Huang, Zhongshi Wu, and Haoyong Yuan developed the idea of the study, participated in its design and coordination and helped to draft the manuscript. Ting Lu and Tingting Wei contributed to the acquisition and interpretation of data. Yifan Zeng and Yalin Liu provided critical review and substantially revised the manuscript. All authors read and approved the final manuscript.

SUPPLEMENTARY TABLE LEGENDS

Table 1. The characteristics of the included trials

Table 2. The baseline features of the patients

FIGURE LEGENDS

Figure 1 . Baseline characteristics and stent information of patients with acute coronary syndrome

Figure 2. Baseline characteristics and stent information of patients with acute coronary syndrome

Figure 3. Baseline characteristics and stent information of patients with acute coronary syndrome

Figure 4. Primary endpoint: major adverse cardiac events

Figure 5. Target vessel revascularization

Figure 6. Target lesion revascularization

Figure 7. All-cause death

Figure 8. Cardiac-related death

Figure 9. Target vessel myocardial infarction

Figure 10. Stent thrombosis

1	
2	
3	
4	
5	
7	
6 7 8 9	
9	
10	
11	
11 12	
13	
14 15	
15 16	
17	
18	
19 20	
20	
21 22	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31 22	
32 33	
34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47 48	
48 49	
5 0	
51	
52	
53	
54	
55	
56 57	
57 58	
58 59	
60	

参考文献

- [1] Mehta S R, Cannon C P, Fox K A, et al. Routine vs selective invasive strategies in patients with acute coronary syndromes: a collaborative meta-analysis of randomized trials[J]. JAMA, 2005,293(23):2908-2917.
- [2] Fox K A, Clayton T C, Damman P, et al. Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data[J]. J Am Coll Cardiol, 2010,55(22):2435-2445.
- [3] Torii S, Jinnouchi H, Sakamoto A, et al. Drug-eluting coronary stents: insights from preclinical and pathology studies[J]. Nat Rev Cardiol, 2020,17(1):37-51.
- [4] Valgimigli M, Campo G, Percoco G, et al. Comparison of angioplasty with infusion of tirofiban or abciximab and with implantation of sirolimus-eluting or uncoated stents for acute myocardial infarction: the MULTISTRATEGY randomized trial[J]. JAMA, 2008,299(15):1788-1799.
- [5] Raber L, Magro M, Stefanini G G, et al. Very late coronary stent thrombosis of a newergeneration everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study[J]. Circulation, 2012,125(9):1110-1121.
- [6] El-Hayek G, Bangalore S, Casso D A, et al. Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents[J]. JACC Cardiovasc Interv, 2017,10(5):462-473.
- [7] Finn A V, Nakazawa G, Kolodgie F D, et al. Temporal course of neointimal formation after drug-eluting stent placement: is our understanding of restenosis changing?[J]. JACC Cardiovasc Interv, 2009,2(4):300-302.
- [8] Raber L, Kelbaek H, Ostojic M, et al. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction: the COMFORTABLE AMI randomized trial[J]. JAMA, 2012,308(8):777-787.
- [9] Sabate M, Cequier A, Iniguez A, et al. Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial[J]. Lancet, 2012,380(9852):1482-1490.
- [10]von Birgelen C, Kok M M, van der Heijden L C, et al. Very thin strut biodegradable polymer everolimus-eluting and sirolimus-eluting stents versus durable polymer zotarolimus-eluting stents in allcomers with coronary artery disease (BIO-RESORT): a three-arm, randomised, non-inferiority trial[J]. Lancet, 2016,388(10060):2607-2617.
- [11]Pilgrim T, Heg D, Roffi M, et al. Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for percutaneous coronary revascularisation (BIOSCIENCE): a randomised, single-blind, non-inferiority trial[J].

Lancet, 2014,384(9960):2111-2122.

- [12]Smits P C, Hofma S, Togni M, et al. Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent (COMPARE II): a randomised, controlled, non-inferiority trial[J]. Lancet, 2013,381(9867):651-660.
- [13] Natsuaki M, Kozuma K, Morimoto T, et al. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent: a randomized, controlled, noninferiority trial[J]. J Am Coll Cardiol, 2013,62(3):181-190.
- [14]Pilgrim T, Piccolo R, Heg D, et al. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary revascularisation of acute myocardial infarction[J]. EuroIntervention, 2016,12(11):e1343-e1354.
- [15]Gonzalo N, Barlis P, Serruys P W, et al. Incomplete stent apposition and delayed tissue coverage are more frequent in drug-eluting stents implanted during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction than in drug-eluting stents implanted for stable/unstable angina: insights from optical coherence tomography[J]. JACC Cardiovasc Interv, 2009,2(5):445-452.
- [16] Raber L, Baumgartner S, Garcia-Garcia H M, et al. Long-term vascular healing in response to sirolimus- and paclitaxel-eluting stents: an optical coherence tomography study[J]. JACC Cardiovasc Interv, 2012,5(9):946-957.
- [17] Cook S, Ladich E, Nakazawa G, et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis[J]. Circulation, 2009,120(5):391-399.
- [18] Sterne J A, Hernan M A, Reeves B C, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions[J]. BMJ, 2016,355:i4919.
- [19] de Waha A, King L A, Stefanini G G, et al. Long-term outcomes of biodegradable versus durable polymer drug-eluting stents in patients with acute ST-segment elevation myocardial infarction: a pooled analysis of individual patient data from three randomised trials[J]. EuroIntervention, 2015,10(12):1425-1431.
- [20]Kim H S, Kang J, Hwang D, et al. Durable Polymer Versus Biodegradable Polymer Drug-Eluting Stents After Percutaneous Coronary Intervention in Patients with Acute Coronary Syndrome: The HOST-REDUCE-POLYTECH-ACS Trial[J]. Circulation, 2021,143(11):1081-1091.
- [21]Lee H J, Park T K, Song Y B, et al. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent in patients with acute myocardial infarction[J]. Int J Cardiol, 2015,183:190-197.
- [22] Iglesias J F, Muller O, Heg D, et al. Biodegradable polymer sirolimus-eluting stents versus

58

59

60

durable polymer everolimus-eluting stents in patients with ST-segment elevation myocardial infarction (BIOSTEMI): a single-blind, prospective, randomised superiority trial[J]. Lancet, 2019,394(10205):1243-1253.

- [23] Zhang Q, Qiu J P, Kirtane A J, et al. Comparison of biodegradable polymer versus durable polymer sirolimus-eluting stenting in patients with acute st-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of the RESOLVE study[J]. J Interv Cardiol, 2014,27(2):131-141.
- [24] Pilgrim T, Piccolo R, Heg D, et al. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary myocardial infarction[J]. revascularisation of acute EuroIntervention, 2016,12(11):e1343-e1354.
- [25] Zhang Y J, Iqbal J, Windecker S, et al. Biolimus-eluting stent with biodegradable polymer improves clinical outcomes in patients with acute myocardial infarction[J]. Heart, 2015,101(4):271-278.
- [26] Pilgrim T, Muller O, Heg D, et al. Biodegradable- Versus Durable-Polymer Drug-Eluting Stents for STEMI: Final 2-Year Outcomes of the BIOSTEMI Trial[J]. JACC Cardiovasc Interv, 2021,14(6):639-648.
- [27] Guagliumi G, Costa M A, Sirbu V, et al. Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial[J]. Circulation, 2011,123(3):274-281.
- [28] Torii S, Jinnouchi H, Sakamoto A, et al. Drug-eluting coronary stents: insights from preclinical and pathology studies[J]. Nat Rev Cardiol, 2020,17(1):37-51.
- [29] Bangalore S, Toklu B, Amoroso N, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis[J]. BMJ, 2013,347:f6625.
- [30] Iannaccone M, Barbero U, De Benedictis M, et al. Comparison of bioresorbable vs durable polymer drug-eluting stents in unprotected left main (from the RAIN-CARDIOGROUP VII Study)[J]. BMC Cardiovasc Disord, 2020,20(1):225.
- [31] Modi K, Soos M P, Mahajan K. Stent Thrombosis[J]. 2022.
- [32] Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study[J]. Lancet, 2007,369(9562):667-678.
- [33] Siqueira D A, Abizaid A A, Costa J R, et al. Late incomplete apposition after drug-eluting stent implantation: incidence and potential for adverse clinical outcomes[J]. Eur Heart J,

2007,28(11):1304-1309.

- [34] Stefanini G G, Byrne R A, Serruys P W, et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials[J]. Eur Heart J, 2012,33(10):1214-1222.
- [35]Guagliumi G, Shimamura K, Sirbu V, et al. Temporal course of vascular healing and neoatherosclerosis after implantation of durable- or biodegradable-polymer drug-eluting stents[J]. Eur Heart J, 2018,39(26):2448-2456.
- [36]Kuramitsu S, Kazuno Y, Sonoda S, et al. Vascular response to bioresorbable polymer sirolimus-eluting stent vs. permanent polymer everolimus-eluting stent at 9-month follow-up: an optical coherence tomography sub-study from the CENTURY II trial[J]. Eur Heart J Cardiovasc Imaging, 2016,17(1):34-40.
- [37] Iannaccone M, Gatti P, Barbero U, et al. Impact of strut thickness and number of crown and connectors on clinical outcomes on patients treated with second-generation drug eluting stent[J]. Catheter Cardiovasc Interv, 2020,96(7):1417-1422.
- [38]D'Ascenzo F, Iannaccone M, Saint-Hilary G, et al. Impact of design of coronary stents and length of dual antiplatelet therapies on ischaemic and bleeding events: a network metaanalysis of 64 randomized controlled trials and 102 735 patients[J]. Eur Heart J, 2017,38(42):3160-3172.

校对报告

当前使用的样式是 [中华人民共和国国家标准_GBT_7714-2005]

- 当前文档包含的题录共 43 条
- 有0条题录存在必填字段内容缺失的问题
- 所有题录的数据正常

 Supplementary Material 1: search stratege and PRISMA flow chart for included studies A. Search stratege

1. Pubmed (N=688)

Search date: from January 2000 to July 2021

Search terms:

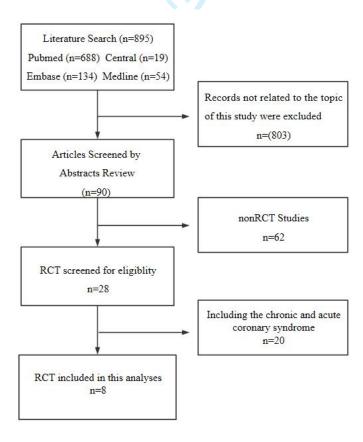
1[#]. ("BP-DES"[MeSH Terms] OR "BP-DES"[All Fields] OR "biodegradable "[All Fields] OR "bioabsorbable "[All Fields] OR "bioabsorbable polymer drug-eluting stent"[All Fields] OR "biodegradable polymer drug-eluting stent"[All Fields]) AND ("acute coronary syndrome"[All Fields] OR "ACS"[All Fields] OR "AMI"[All Fields] OR "Acute myocardial infarction"[All Fields] OR "Non ST segment elevation myocardial infarction"[All Fields] OR "ST segment elevation myocardial infarction"[All Fields] OR "STEMI"[All Fields])

2[#]. ("DP-DES"[All Fields] OR "DP-DES"[MeSH Terms] OR "durable polymer"[All Fields] OR "durable polymer drug-eluting stent"[All Fields]) AND ("acute coronary syndrome"[All Fields] OR "ACS"[All Fields] OR "AMI"[All Fields] OR "Acute myocardial infarction"[All Fields] OR "Non ST segment elevation myocardial infarction"[All Fields] OR "ST segment elevation myocardial infarction"[All Fields] OR "NSTEMI"[All Fields] OR "STEMI"[All Fields])

3[#]. ("BP-DES"[MeSH Terms] OR "BP-DES"[All Fields] OR "biodegradable "[All Fields] OR "bioabsorbable "[All Fields] OR "bioabsorbable polymer drug-eluting stent"[All Fields] OR "biodegradable polymer drug-eluting stent"[All Fields]) and ("DP-DES"[All Fields] OR "DP-DES"[MeSH Terms] OR "durable polymer"[All Fields] OR "durable polymer drug-eluting stent"[All Fields]) AND ("acute coronary syndrome"[All Fields] OR "ACS"[All Fields] OR "AMI"[All Fields]) OR "Acute myocardial infarction"[All Fields] OR "Non ST segment elevation myocardial infarction"[All Fields] OR "ST segment elevation myocardial infarction"[All Fields] OR "NSTEMI"[All Fields] OR "STEMI"[All Fields])

2. OVID (N=207, EMBS=134, MEDLINE=54, Controlled Register of Trials=19)

Search date: from January 2000 to July 2021


Search terms:

1[#].("BP-DES" OR "bioabsorbable polymer drug-eluting stent" OR "biodegradable polymer drug-eluting stent") and ("acute coronary syndrome" OR "ACS" OR "AMI" OR "Acute myocardial infarction" OR "Non ST segment elevation myocardial infarction" OR "ST segment elevation myocardial infarction" OR "NSTEMI" OR "STEMI")

2[#].("DP-DES" OR "durable polymer drug-eluting stent") and ("acute coronary syndrome" OR "ACS" OR "AMI" OR "Acute myocardial infarction" OR "Non ST segment elevation myocardial infarction" OR "ST segment elevation myocardial infarction" OR "NSTEMI" OR "STEMI")

3[#].("BP-DES" OR "bioabsorbable polymer drug-eluting stent" OR "biodegradable polymer drug-eluting stent") and ("DP-DES" OR "durable polymer drug-eluting stent") and ("acute coronary syndrome" OR "ACS" OR "AMI" OR "Acute myocardial infarction" OR "Non ST segment elevation myocardial infarction" OR "ST segment elevation myocardial infarction" OR "NSTEMI" OR "STEMI")

B. PRISMA flow chart for studies included in the meta-analysis

1 2	
3	Supplementary Material 2. Risk-of-bias summary for included trials
4 5	
6 7	A.
8 9 10 11 12 13 14	Unique IDStudy IDD1D2D3D4D5Overallmeta1Hyo-Soo Kim++++++++meta2Thomas Pilgrim++++++++meta3Juan F Iglesias!+++++++meta4Thomas Pilgrim+++++++High riskmeta5Yao-Jun Zhang++++!+D1Randomisation process
15	meta5 Yao-Jun Zhang + + + + ! + D1 Randomisation process meta6 Hyun Jong Lee + + + + + D2 Deviations from the intended interventions
16 17	metalo nyun jong Lee metalo nyun jong Lee t D2 Deviations from the internet interventions metalo D3 Missing outcome data
17 18	meta8 QI ZHANG !!! + + ! + D4 Measurement of the outcome
19	D5 Selection of the reported result
20 21	
22	B.
23	As percentage (intention-to-treat)
24 25	As percentage (intention-to-treat)
26	Overall Bias
27	Selection of the reported result
28 29	Measurement of the outcome
30	Mising outcome data Deviations from intended
31 32	Randomization process
33	0 20 40 60 80 100
34	
35 36	Low risk Some concerns High risk
37	
38	
39 40	
41	
42	
43 44	
45	
46	
47 48	
49	
50 51	
52	
53	
54 55	
56	
57	
58 59	
60	

6/bmjopen-2021-058075 on 8 June

Table 1. The characteristics of the included trails

Authors	Years	Journal	Study	Center	Country		NO.patients	
							BP-DES	DP-DES
<u>Hyo-Soo Kim</u>	<u>2021</u>	Circulation	<u>RCT</u>	multicentre	Korea fo	<u>12 month</u>	<u>1700</u>	<u>1713</u>
Thomas Pilgrim	<u>2021</u>	JACC	<u>RCT</u>	multicentre	Switzerland Switzerland	<u>24month</u>	<u>649</u>	<u>651</u>
Juan F Iglesias	<u>2019</u>	The Lancet	<u>RCT</u>	multicentre			<u>649</u>	<u>651</u>
<u>Thomas Pilgrim</u>	<u>2016</u>	EuroIntervention	<u>RCT</u>	multicentre	Switzerland	<u>12 month</u>	<u>211</u>	<u>196</u>
<u>Yao-Jun Zhang</u>	<u>2015</u>	Heart	<u>RCT</u>	multicentre	Netherlands 9	<u>60month</u>	<u>280</u>	<u>293</u>
<u>Hyun Jong Lee</u>	<u>2015</u>	International journal of cardiology	<u>RCT</u>	multicentre	Korea 23		<u>171</u>	<u>536</u>
Antoinette de Waha	<u>2015</u>	EuroIntervention	<u>RCT</u>	multicentre	multicentre		<u>291</u>	<u>206</u>
Qi Zhang	<u>2014</u>	Journal of Interventional Cardiology	<u>RCT</u>	multicentre	<u>China</u> guest	<u>12 month</u>	<u>596</u>	<u>596</u>
					Protected by copyright			
					ted by	-		
					соруп			
					ight.	•		

36/bmjopen-2021-058075 on

Table 2. The baseline features of the patients

	basic charact	ers						3 June			
Authors	Age		SEX(MA	SEX(MALE)		Body mass index		Hypertension NO		Diabetes	
	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	
Hyo-Soo Kim	63.1±11.1	63.0±11.1	1337	1351	25.0±3.2	24.9±3.1	1147	1092 oaded	747	789	
Juan F Iglesias	62.2±11.8	63.2±11.8	513	477	26.9 ± 4.3	26.8± 4.3	281	297 from	73	82	
Thomas Pilgrim	61.3±12.4	61.7±12.7	170	151	27.0±4.3	27.0±4.3	102	98 //br	30	27	
Yao-Jun Zhang	62.9±11.7	62.8±11.7	215	210	27.5±4.4	27.8±4.6	181	198 njopen.	55	46	
Hyun Jong Lee	64±14.08	63±14.08	128	400	1	10	102	308 bmj. co	82	269	
Antoinette de Waha	62.5±12.1	63.1±12.6	214	149	/	1	142	110 g	56	34	
Qi Zhang	63.9±13.1	64.1±12.1	475	467	/	/	360	98 http://bmjopen.bmj.com/ on April 23, 376 376	129	113	
								2024 b			
								y guest			
								. Prote			
								cted b			
								2024 by guest. Protected by copyright.			
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml											

36/bmjopen-2021-058075 on

Table 2. The baseline features of the patients

	basic char	acters						3 June		
Authors	Dyslipider	mia	smoking		LVEF, %		Stent number	r per person	Total stent length, mm	
	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DPDES	BP-DES	DP-DES
Hyo-Soo Kim	1,247	1,280	515	475	58.7±10.4	58.5±10.4	1.7±1.1	1.721.0	42.9±31.9	41.7±30.2
Juan F Iglesias	304	302	294	250	49.0 ± 11.0	48.4 ± 11.2	1.37 ± 0.64	1.3 ± 0.66	31.91±18.21	33.92±19.7
Thomas Pilgrim	110	101	93	77	49.5±10.9	48.3±11.1	1.42±0.71	1.39±0.71	29.49±17.83	30.52±18.9
Yao-Jun Zhang	152	176	107	115	51.5±10.1	51.4±11.8	2.2±0.5	2.2 0.6	26.6±15	27.9±15.2
Hyun Jong Lee	116	389	65	228	55 (45–65)	52 (43-62)	/	bmj.com/ on April 23, / / /	/	/
Antoinette de Waha	119	109	120	90	47±10	48±12	1	n/ on <i>P</i>	25.9±12.6	27.7±14.2
Qi Zhang	87	76	257	223	50±12	49.0 ± 17.0	Ph	April 23	/	/
								2024 1		
								by gue		
								st. Prot		
								tected		
								by co		
								2024 by guest. Protected by copyright.		
		For	peer review	only - http:/	/bmjopen.bmj.c	com/site/about/	guidelines.xhtn	nl		

Comparison of biodegradable and durable polymer drugeluting stents in acute coronary syndrome: a meta-analysis

Journal:	BMJ Open					
Manuscript ID	bmjopen-2021-058075.R2					
Article Type:	Original research					
Date Submitted by the Author:	29-Mar-2022					
Complete List of Authors:	Yuan, Haoyong; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Wu, Zhongshi; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Lu, Ting; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Wei, Tingting; Hunan Provincial Maternal and Child Health Care Hospital, Department of Paediatrics Zeng, Yifan; Central South University, Department of Cardiovascular Surgery Liu, Yalin; Central South University, Department of Cardiovascular Surgery; Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials Huang, Can; Central South University, Department of Cardiovascular Biomaterials					
Primary Subject Heading :	Cardiovascular medicine					
Secondary Subject Heading:	Medical management					
Keywords:	Coronary heart disease < CARDIOLOGY, Coronary intervention < CARDIOLOGY, Myocardial infarction < CARDIOLOGY					
Note: The following files were s You must view these files (e.g. 726399_Figure_1.tif 726399_Figure_2.tif 726399_Figure_3.tif 726399_Figure_4.tif 726399_Figure_5.tif 726399_Figure_6.tif 726399_Figure_7.tif 726399_Figure_8.tif	submitted by the author for peer review, but cannot be converted to PDF. . movies) online.					

726399_	_Figure_	_9.tif
726399_	_Figure_	_10.tif

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

RELEX ONL

BMJ Open

Comparison of biodegradable and durable polymer drug-eluting stents in acute coronary syndrome: a meta-analysis

Haoyong Yuan, MD^{1,2}, Zhongshi Wu, MD^{1,2}, Ting Lu, MD^{1,2}, Tingting Wei, MD³, Yifan Zeng,

MD¹, Yalin Liu^{1,2}, Can Huang, MD^{1,2*}

¹Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China

²Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan 410008, China

³Department of Paediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China elien

***Corresponding author**: Can Huang

Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University,

#139 Renmin Road, Changsha, Hunan, 410011, P.R. China

Tel: +86 73185292133

Fax: +86 73185292133

E-mail: huangcan413@csu.edu.cn

Word

count:

ABSTRACT

Objective: To compare the safety and effectiveness between biodegradable polymer drugeluting stents (BP-DES) and durable polymer drug-eluting stents (DP-DES) in patients with acute coronary syndrome (ACS)

Design: Meta-analysis of randomized controlled trials (RTCs)

Primary and secondary outcome measures: Major adverse cardiovascular events (MACEs) were considered the primary endpoint. Efficacy endpoints included target vessel revascularization (TVR) and target lesion revascularization (TLR). Safety endpoints included all-cause death, cardiac death, target vessel myocardial infarction (TVMI), and ST.

Methods: We searched PubMed, Medline, Embase, and the Cochrane Controlled Register of Trials (CENTRAL) for comparative studies of BP-DES and DP-DES in patients with ACS from January 2000 to July 2021. Statistical pooling was performed to estimate incidence using a random-effects model with generic inverse-variance weighting. Risk estimates were computed with 95% confidence intervals (CIs).

Results: Eight articles with seven RCTs that compared BP-DES and DP-DES in patients with ACS were identified and included in the qualitative and quantitative analyses. There was no difference in the baseline characteristics, except for the number of smoking patients (OR: 1.13, 95% CI: 1.03-1.24; p=0.008, I^2 =29%), which was significantly lower in the BP-DES group. The meta-analysis demonstrated that MACEs, efficacy endpoints, and safety endpoints were similar between the groups at 1 year. However, the incidence of total stent thrombosis (ST) was significantly different between the BP-DES and DP-DES groups in the follow-up

period (p=0.0001). Further analysis showed a statistically significant difference in MACEs (OR: 0.71, 95% CI: 0.57–0.88; p=0.002, *I*²=0%), TLR (OR: 0.71, 95% CI: 0.51–1.01; p=0.05, *I*²=0%), TVR (OR: 0.70, 95% CI: 0.52–0.94; p=0.002, *I*²=15%), total ST incidence (OR: 0.59, 95% CI: 0.46–0.77; p=0.0001, *I*²=48%), and ST incidence (OR: 0.63, 95% CI: 0.47–0.85; p=0.002, *I*²=0%) over 2 years.

Conclusion: This meta-analysis revealed that both stent types demonstrated excellent safety and efficacy profiles at 12 months. However, a slight increase in MACEs, TLR, TVR, and ST incidence was observed in the DP-DES group over the 2-year follow-up period, suggesting that BP-DES may be more favorable when treating patients with ACS.

Keywords: acute coronary syndrome, biodegradable drug-eluting stent, durable polymer drugeluting stent, major adverse cardiac event, stent thrombosis, target lesion revascularization, target vessel revascularization

Strengths and limitations of this study

- This meta-analysis included randomized controlled trials with long-term followups.
- The large sample size ensures adequate statistical power to detect even a small effect of interest.
- Heterogeneity among the BP-DES may distort the reported results.
- The differences in the duration of dual antiplatelet therapy may influence clinical outcomes.

to occur teries only

INTRODUCTION

Percutaneous coronary intervention (PCI) is the current standard of care for patients with coronary artery disease, particularly acute coronary syndrome (ACS)^[1, 2]. Unlike bare-metal stents (BMS), drug-eluting stents (DES) use antiproliferative agents embedded in a polymer coating on the stent's surface, which inhibit neointimal hyperplasia to reduce the risk of restenosis^[3]. DES have substantially improved clinical outcomes; however, the first-generation durable polymer DES (DP-DES) were known to release sirolimus or paclitaxel, and were associated with similar risks of death and myocardial infarction compared with those of BMS beyond 1 year after implantation^[4]. Later, the second-generation DP-DES were confirmed to have lower restenosis rates than the first-generation devices and demonstrated reduced rates of stent thrombosis (ST)^[5]. Recently, very late ST and neoatherosclerosis, with adverse clinical outcomes, have been observed with the second-generation DP-DES, which has improved the biocompatibility of the polymer^[6]. Late stent failure has been attributed to delayed endothelial healing secondary to a hypersensitivity reaction due to the durable polymer^[7].

To address this potential limitation of DP-DES, biodegradable polymer DES (BP-DES) have been developed. Theoretically, BP-DES would lead to a reduction in vascular inflammation and a decreased risk of late stent-related complications due to the advantage of leaving the BMS only after complete drug elution and polymer degradation. BP-DES have been observed to reduce the rate of major adverse cardiac events (MACEs) compared with BMS^[8] and first-generation DP-DES^[9]. Studies of patients who underwent PCI revealed that the device-related outcomes were comparable between BP-DES and second-generation DP-DES^[10-13]. Thus, BP-DES would be expected to reduce the risk of ST-related MACEs beyond

the first year compared with that of DP-DES. However, previous studies enrolled a significant proportion of stable angina patients. ACS confers an increased risk of adverse outcomes due to plaque characteristics, including culprit lesions, thrombus burden, and persistent inflammation, compared with stable coronary artery diseases. ACS also increases the risk of delayed arterial healing and vessel remodeling^[14], reflected by higher rates of incomplete stent strut coverage^[15, 16] and malpositioning^[17].

Recently, many randomized trials have been performed to compare the efficacy and safety of DP-DES and BP-DES in patients with ACS who underwent PCI. In this meta-analysis, we aimed to summarize the studies comparing the two polymer technologies in ACS patients and analyze the safety and effectiveness of these therapeutic options.

elle

METHODS

Search strategy and registration

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was approved by the institutional review board of the Second Xiangya Hospital, Central South University. The protocol was registered with PROSPERO (CRD42021253412).

Based on the PRISMA statement, PubMed, Medline, Embase, and the Cochrane Controlled Register of Trials (CENTRAL) databases were searched for comparative studies of BP-DES and DP-DES that were used in the treatment of patients with ACS who underwent PCI. The following search terms were used: "BP-DES," "biodegradable," "bioabsorbable," "bioabsorbable polymer drug-eluting stent," "biodegradable polymer drug-eluting stent," "DP-

BMJ Open

DES," "durable polymer," "durable polymer drug-eluting stent," "acute coronary syndrome," "ACS," "AMI," "Acute myocardial infarction," "Non ST segment elevation myocardial infarction," "ST segment elevation myocardial infarction," "NSTEMI," and "STEMI." We also reviewed prior meta-analyses and the reference lists of the original trials and reviewed articles to identify further studies. Only English language articles published in peer-reviewed journals from January 2000 to July 2021 were selected. Analyses were conducted by two independent reviewers.

Eligibility criteria

The inclusion criteria for this meta-analysis were as follows: 1) randomized controlled trials (RCTs) comparing BP-DES and DP-DES in the treatment of patients with ACS who underwent PCI; 2) data reporting patients' baseline characteristics, follow-up durations, outcomes at the primary, safety, and efficacy endpoints; 3) mean follow-up time over 12 months; and 4) full-text articles.

The exclusion criteria for the meta-analysis were as follows: 1) duplications of samples and reports (evaluated by two independent reviewers); 2) case reports/series; and 3) studies involving data from a national database.

Data extraction and outcome measurement

Two authors (Haoyong Yuan and Tingting Wei) systematically screened the titles and abstracts of publications retrieved using the search strategy to select studies that met the above inclusion criteria. Any disagreement regarding the eligibility of particular studies was resolved through discussion and involvement of a third author (Zhongshi Wu), when necessary. First,

baseline characteristics, including the name of the first author, year of publication, study design, country of origin, number of patients, mean age of participants, and mean duration of follow-up, were gathered from each included article. In addition, data on sex; body mass index; the presence of hypertension, diabetes, dyslipidemia, chronic kidney disease, peripheral vessel disease, or smoking; left ventricular ejection fraction (LVEF); number of stents per person; and total stent length were collected for evaluation of procedure-related risks. MACEs were considered the primary endpoint. The efficacy endpoints included target vessel revascularization (TVR) and target lesion revascularization (TLR). In addition, all-cause death, cardiac death, target vessel myocardial infarction (TVMI), and ST were used as endpoints to evaluate the safety of BP-DES and DP-DES.

The Risk of Bias 2 (RoB2) tool was utilized to assess the quality of RCTs based on sequence generation; randomized group allocation; concealment; blinding of participants, personnel, and outcome assessors; incomplete data; selectivity; outcome reporting; and other sources of bias (Supplementary Material 1)^[18].

Data analysis and synthesis

Continuous variables were reported as the mean (standard deviation), and categorical variables were expressed as numbers. Statistical pooling was performed to estimate incidence, according to a random-effects model with generic inverse-variance weighting. We computed risk estimates with 95% confidence intervals (CIs), using RevMan 5.3 (The Cochrane Collaboration, The NordicCochrane Centre, Copenhagen, Denmark). Hypothesis testing for superiority was set at the two-tailed 0.05 level. Hypothesis testing for statistical homogeneity

BMJ Open

was set at the two-tailed 0.10 level and was based on the Cochran Q test, with I² values of 25%, 50%, and 75% representing mild, moderate, and severe heterogeneity, respectively.

RESULTS

Search results

A total of 895 articles, written in English, were identified through the literature search. After an initial screening of the titles and abstracts, 803 articles were eliminated, as they were not related to the topic of this study. Following the removal of these articles, 92 clinical studies and RCTs of the two polymers remained. After reading the full texts, 28 articles about ACS remained, with 20 articles including chronic and ACS. Finally, eight articles, with seven RCTs, comparing BP-DES and DP-DES in patients with ACS were identified and included in the qualitative and quantitative analyses^[19-26]. The follow-up duration ranged from 1 year to 5 years (Supplementary Table 1 and Supplementary Material 2).

General features of the trials

A total number of 8089 patients (3898 patients who were treated with BP-DES and 4191 patients who were treated with DP-DES) were included in this analysis. Further details about the quality of RCTs; total number of patients retrieved from each trial; publication years; countries of origin of the publications; centers in which the trials were performed; follow-up durations; risk factors; and primary, efficacy, and safety endpoints are listed in Supplementary Table 2 and Supplementary Material 2.

Patient characteristics

The baseline features of the patients are summarized in Supplementary Tables 2. The mean age of the patients who were treated by BP-DES ranged from 61.3 to 64 years, whereas the mean age of the patients who were treated by DP-DES ranged from 61.7 to 64.1 years. The proportions of male patients were above 70% in all included trials. There was no difference in age (mean difference [MD]: 0.14, 95% CI: -0.66–0.38; p=0.60, l^2 =0%), sex (male) (odds ratio [OR]: 1.10, 95% CI: 0.99–1.23; p=0.07, l^2 =0%), hypertension (OR: 1.03, 95% CI: 0.94–1.13; p=0.57, l^2 =37%), dyslipidemia (OR: 0.92, 95% CI: 0.83–1.02; p=0.10, l^2 =36%), LVEF (MD: 0.00, 95% CI: 0.00–0.01; p=0.12, l^2 =12%), body mass index (MD: 0.07, 95% CI: -0.11 to 0.25; p=0.44, l^2 =0%), diabetes (OR: 0.92, 95% CI: 0.83–1.02; p=0.13, l^2 =21%), total stent length (MD: -0.72, 95% CI: -2.30 to -0.85; p=0.37, l^2 =40%), and in the number of stents per person (MD: -0.00, 95% CI: -0.05 to 0.04; p=0.84, l^2 =0%) among patients who were implanted with BP-DES or DP-DES. The meta-analysis demonstrated that the number of smoking patients (OR: 1.13, 95% CI: 1.03–1.24; p=0.008, l^2 =29%) was significantly lower in the BP-DES group than that in the DP-DES group (Figure 1-3).

Primary endpoint: MACEs reported during follow-up periods of 1–5 years, 1 year, and over 2 years

MACEs, including all-cause death, recurrent MI, or any coronary repeat revascularization involving TLR, TVR, and non-TVR, were considered to be the primary endpoint of the trials. A meta-analysis indicated no statistically significant difference in the MACEs in a follow-up period ranging from 1 to 5 years between the two groups (OR: 0.87, 95% CI: 0.75–1.01; p=0.07, I^2 =50%). Of the five studies that published 1-year outcomes, MACEs were not significantly different between the BP-DES and DP-DES groups (OR: 0.97, 95% CI: 0.81–1.16; p=0.74,

BMJ Open

 I^2 =44%). However, MACEs with follow-up periods of over 2 years were significantly lower in the BP-DES group (OR: 0.71, 95% CI: 0.57–0.88; p=0.002, I^2 =0%) (Figure 4).

Efficacy endpoint: TVR and TLR reported during follow-up periods of 1–5 years, 1 year, and over 2 years

TLR and TVR were considered the efficacy endpoints of the trials. The meta-analysis indicated no statistically significant difference in TLR in the follow-up periods ranging from 1 to 5 years between the two groups (OR: 0.78, 95% CI: 0.61–1.00; p=0.05, l^2 =48%). Among the five studies that published 1-year data, TLR was not significantly different between the BP-DES and DP-DES groups (OR: 0.72, 95% CI: 0.40–1.31; p=0.29, l^2 =65%). The meta-analysis indicated no statistically significant difference in TVR in the follow-up periods ranging from 1 to 5 years (OR: 1.01, 95% CI: 0.79–1.28; p=0.96, l^2 =46%) or in the three publications with 1-year follow-up periods (OR: 0.98, 95% CI: 0.40–2.38; p=0.96, l^2 =76%). However, the difference in TLR was statistically significant in four RCT studies with follow-up periods of over 2 years (OR: 0.71, 95% CI: 0.51–1.01; p=0.05, l^2 =0%), and the difference in TVR was also statistically significant in three RCT studies with follow-up periods of over 2 years (OR: 0.52–0.94; p=0.002, l^2 =15%), with values much lower in the BP-DES group (Figures 5 and 6).

Safety endpoint: All-cause death, cardiac-related death, target vessel myocardial infarction, and stent thrombosis over follow-up periods of 1–5 years, 1 year, and over 2 years

All-cause death, cardiac-related death, TVMI, and ST were considered the efficacy endpoints. The meta-analysis indicated no statistically significant difference between the two

groups in all-cause death (OR: 0.88, 95% CI: 0.72–1.07; p=0.20, $I^2=0\%$), cardiac-related death (OR: 0.89, 95% CI: 0.71–1.12; p=0.32, I²=20%), and TVMI (OR: 0.73, 95% CI: 0.53–1.01; p=0.05, $I^2=0\%$) over a follow-up period ranging from 1 to 5 years. Of the five studies that published 1-year data, all-cause death, cardiac-related death, and TVMI were also not significantly different between the BP-DES and DP-DES groups ([all-cause death, OR: 0.91, 95% CI: 0.71–1.15; p=0.42, I²=0%], [cardiac-related death, OR: 0.96, 95% CI: 0.74–1.26; p=0.79, $I^2=35\%$], and [TVMI, OR: 0.73, 95% CI: 0.53–1.01; p=0.05, $I^2=0\%$]). In the five studies with follow-up periods of over 2 years, similar findings were observed for the all-cause cardiac death, cardiac-related death, and TVMI ([all-cause death, OR: 0.85, 95% CI: 0.64–1.12; p=0.25, I²=0%], [cardiac-related death, OR: 0.77, 95% CI: 0.56–1.17; p=0.12, I²=0%], and [TVMI, OR: 0.79, 95% CI: 0.51–1.22; p=0.28, I^2 =0%]) (Figures 7–9). However, the total ST incidence, including the definite ST, probable ST, and definite or probable ST incidence, was significantly different between the BP-DES and DP-DES groups during the follow-up period (OR: 0.59, 95% CI: 0.46–0.77; p=0.0001, 12=48%). Further analysis revealed no difference in total ST for the 1-year follow-up (OR: 0.61, 95% CI: 0.32–1.15; P=0.13, $I^2=72\%$), while the meta-analysis indicated a statistically significant difference in the total ST for the follow-up periods of over 2 years (OR: 0.63, 95% CI: 0.47–0.85; p=0.002, I²=0%) (Figure 10).

DISCUSSION

The choice of stent in patients undergoing PCI for ACS is debated. Coronary intervention with second-generation DP-DES generally reduces the need for revascularization and improves mortality compared with BMS and first-generation DP-DES. Furthermore, the risk of late ST

BMJ Open

with DP-DES tends to off-set these benefits, as seen in registries and clinical trials comparing DP-DES to BMS^[15, 27]. BP-DES was designed to leave only the BMS behind once the polymer completely bio-degraded after drug elution and may represent an attractive solution for patients with ACS^[28]. Prior meta-analyses have compared the clinical outcomes among BMS, DP-DES, and BP-DES in patients with stable coronary artery disease, but no previous meta-analysis of RCTs and prospective trials directly compared clinical outcomes between BP-DES and DP-DES for the treatment of ACS. To our knowledge, this meta-analysis exclusively compared BP-DES to DP-DES. It included seven trials representing 8089 patients with relatively long follow-up durations, ranging from 1 year to 5 years. BP-DES have been hypothesized to offer improved outcomes, mainly in the long term; however, several prior meta-analyses have demonstrated different outcomes with BP-DES compared with DP-DES in patients undergoing PCI. Bangalore et al. observed that BP-DES were associated with higher mortality than DP-DES beyond 1 year of follow-up^[29]. El-Hayek et al. demonstrated no significant difference in mortality between these stent types ^[6]. In our study, there were no significant differences in MACEs, all-cause death, cardiac-related death, TVMI, TVR, or TLR at a follow-up period of 1 year and no significant differences in all-cause death, cardiac death, or TVMI at a follow-up period of over 2 years. However, at a follow-up of over 2 years, MACEs, TVR, and TLR were significantly lower in the BP group than those in the DP group. Pilgrim et al. observed higher all-cause mortality among patients treated with BP-DES than with DP-DES in the BIOSCIENCE trial; they also observed comparable all-cause mortality rates among patients treated with BP-DES and DP-DES in the BIOSTEMI trial with a 2-year follow-up^[6]. Mario Iannaccone et al. observed that BP-DES might decrease the risk of ischemic events in selected

high-risk subgroups of patients, although the two DES stents share the same safety factors for patients in high-anatomical-risk settings like left main (LM) disease^[30]. Together, these findings suggest that BP-DES share similar outcomes in terms of MACEs (all-cause death, cardiac-related death, TVMI, TVR, and TLR) during a 1-year follow-up and might show significantly improved clinical outcomes over a 2-year follow-up.

ST is defined as a thrombotic occlusion of a coronary stent^[31] and is a major complication. The risk of ST, particularly late ST (occurring beyond 30 days), remains one of the major concerns limiting the use of DES in the treatment of ACS^[32]. Early-generation DP-DES were associated with increased rates of very late (>1 year) ST compared with BMS. It was hypothesized that the mechanism underlying late ST with first DP-DES in ACS was related to adverse reactions with the durable polymer^[33], and the use of more biocompatible polymers has been associated with a reduction in ST in high-risk patients^[9]. In the LEADERS trial, the rate of very late ST was lower with the use of the BP-DES than that with DP-DES^[34]. Our data demonstrated that both BP-DES and DP-DES have similar risks of ST beyond 1 year. However, BP-DES are associated with a significantly reduced risk of ST at a follow-up of over 2 years compared with DP-DES (OR: 0.64, 95% CI: 0.46–0.88; p=0.006, $l^2=0\%$). In contrast, Kim et al. observed that the incidence of ST by groups demonstrated numerically lower rates in the DP-DES group (0.1%) than those in the BP-DES group and that all late ST cases occurred in those receiving thick-strut BP-DES stents. They proposed that no meaningful differences in terms of ST could be identified between the different polymer technologies by intravascular imaging and that the association of polymer technology and the risk of the ST was difficult to prove^[20, 35, 36]. Therefore, it may be hypothesized that BP-DES result in improved arterial

BMJ Open

healing, which not only minimizes the risk of ST, but also improves the long-term durability of the antirestenotic efficacy in the long term, although the two groups have a similar risk of ST beyond 1 year.

Limitations

The present study had several limitations. First, this study included RCTs and shares the limitations of original studies. Second, BP-DES are a heterogeneous group of stents, differing in stent platform thickness, time to complete degradation of the polymer, and drug-elution kinetics. DP-DES is an equally heterogeneous group. Innaccone et al. observed that lower strut thickness would have a positive clinical outcome, thereby reducing stent thrombosis and target lesion revascularizations^[37]. We were unable to match the stents with regards to the strut thickness. Consequently, the reported results may not be generalizable to all stents from the respective group. Third, over 6 months of dual antiplatelet therapy (DAPT) was provided to the patients in our study, including those in RCTs. D'Ascenzo et al. observed a similar rate of MACEs between durable and biodegradable polymers, irrespective of DAPT length, and the DAPT duration seems to partially impact the risk of adverse events of different types of stents during follow-up^[38]. Thus, we remain concerned that the duration differences of DAPT may influence the clinical outcomes.

CONCLUSION

In this meta-analysis comparing BP-DES to DP-DES in ACS patients who underwent PCI, the data indicated that both polymer types demonstrated excellent safety and efficacy profiles at 1 year. There was a slightly increased incidence of MACEs, TLR, TVR, and ST in the DP- DES group in the follow-up period of over 2 years, suggesting that BP-DES may be more favorable for treating patients with ACS. These findings should be confirmed by long-term follow-ups in RCT trials.

tor occurrence with any

Data availability statement

No additional data is available.

Patient and public involvement

We did not require patient and public involvement, as this is a meta-analysis, and no new patients were enrolled in the study.

Ethics approval

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the protocol was registered with PROSPERO (CRD42021253412). This study was approved by the institutional review board of the Second Xiangya Hospital of Central South University.

Funding

This work was supported by the Hunan Provincial Natural Science Foundation of China (grant number 2020JJ4787).

Competing interests And Acknowledgements

The authors report no conflicts of interest in this work. We would like to thank Editage (www.editage.com) for English language editing

Author contributions

Can Huang, Zhongshi Wu, and Haoyong Yuan developed the idea of the study, participated in its design and coordination, and helped draft the manuscript. Ting Lu and Tingting Wei contributed to the acquisition and interpretation of data. Yifan Zeng and Yalin Liu provided a critical review and substantially revised the manuscript. All authors read and approved the final

manuscript.

For peer teriew only

patients with acute coronary syndromes: a collaborative meta-analysis of randomized trials[J]. JAMA, 2005,293(23):2908-2917.

[2] Fox K A, Clayton T C, Damman P, et al. Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data[J]. J Am Coll Cardiol, 2010,55(22):2435-2445.

[3] Torii S, Jinnouchi H, Sakamoto A, et al. Drug-eluting coronary stents: insights from preclinical and pathology studies[J]. Nat Rev Cardiol, 2020,17(1):37-51.

[4] Valgimigli M, Campo G, Percoco G, et al. Comparison of angioplasty with infusion of tirofiban or abciximab and with implantation of sirolimus-eluting or uncoated stents for acute myocardial infarction: the MULTISTRATEGY randomized trial[J]. JAMA, 2008,299(15):1788-1799.

[5] Raber L, Magro M, Stefanini G G, et al. Very late coronary stent thrombosis of a newergeneration everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study[J]. Circulation, 2012,125(9):1110-1121.

[6] El-Hayek G, Bangalore S, Casso D A, et al. Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents[J]. JACC Cardiovasc Interv, 2017,10(5):462-473.

[7] Finn A V, Nakazawa G, Kolodgie F D, et al. Temporal course of neointimal formation after drug-eluting stent placement: is our understanding of restenosis changing?[J]. JACC Cardiovasc Interv, 2009,2(4):300-302.

[8] Raber L, Kelbaek H, Ostojic M, et al. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction: the COMFORTABLE AMI randomized trial[J]. JAMA, 2012,308(8):777-787.

[9] Sabate M, Cequier A, Iniguez A, et al. Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial[J]. Lancet, 2012,380(9852):1482-1490.

[10] von Birgelen C, Kok M M, van der Heijden L C, et al. Very thin strut biodegradable polymer everolimus-eluting and sirolimus-eluting stents versus durable polymer zotarolimus-eluting stents in allcomers with coronary artery disease (BIO-RESORT): a three-arm, randomised, non-inferiority trial[J]. Lancet, 2016,388(10060):2607-2617.

[11]Pilgrim T, Heg D, Roffi M, et al. Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for percutaneous coronary revascularisation (BIOSCIENCE): a randomised, single-blind, non-inferiority trial[J]. Lancet, 2014,384(9960):2111-2122.

[12] Smits P C, Hofma S, Togni M, et al. Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent (COMPARE II): a randomised, controlled, non-inferiority trial[J]. Lancet, 2013,381(9867):651-660.

[13]Natsuaki M, Kozuma K, Morimoto T, et al. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent: a randomized, controlled, noninferiority trial[J]. J Am Coll Cardiol, 2013,62(3):181-190.

[14]Pilgrim T, Piccolo R, Heg D, et al. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary revascularisation of acute myocardial infarction[J]. EuroIntervention, 2016,12(11):e1343-e1354.

[15]Gonzalo N, Barlis P, Serruys P W, et al. Incomplete stent apposition and delayed tissue coverage are more frequent in drug-eluting stents implanted during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction than in drug-eluting stents implanted for stable/unstable angina: insights from optical coherence tomography[J]. JACC Cardiovasc Interv, 2009,2(5):445-452.

[16] Raber L, Baumgartner S, Garcia-Garcia H M, et al. Long-term vascular healing in response to sirolimus- and paclitaxel-eluting stents: an optical coherence tomography study[J]. JACC Cardiovasc Interv, 2012,5(9):946-957.

[17] Cook S, Ladich E, Nakazawa G, et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis[J]. Circulation, 2009,120(5):391-399.

[18] Sterne J A, Hernan M A, Reeves B C, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions[J]. BMJ, 2016,355:i4919.

[19] de Waha A, King L A, Stefanini G G, et al. Long-term outcomes of biodegradable versus durable polymer drug-eluting stents in patients with acute ST-segment elevation myocardial infarction: a pooled analysis of individual patient data from three randomised trials[J]. EuroIntervention, 2015,10(12):1425-1431.

[20]Kim H S, Kang J, Hwang D, et al. Durable Polymer Versus Biodegradable Polymer Drug-Eluting Stents After Percutaneous Coronary Intervention in Patients with Acute Coronary Syndrome: The HOST-REDUCE-POLYTECH-ACS Trial[J]. Circulation, 2021,143(11):1081-1091.

[21]Lee H J, Park T K, Song Y B, et al. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent in patients with acute myocardial infarction[J]. Int J Cardiol, 2015,183:190-197.

[22] Iglesias J F, Muller O, Heg D, et al. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with ST-segment elevation

myocardial infarction (BIOSTEMI): a single-blind, prospective, randomised superiority trial[J]. Lancet, 2019,394(10205):1243-1253.

[23]Zhang Q, Qiu J P, Kirtane A J, et al. Comparison of biodegradable polymer versus durable polymer sirolimus-eluting stenting in patients with acute st-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of the RESOLVE study[J]. J Interv Cardiol, 2014,27(2):131-141.

[24]Pilgrim T, Piccolo R, Heg D, et al. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary revascularisation of acute myocardial infarction[J]. EuroIntervention, 2016,12(11):e1343-e1354.

[25]Zhang Y J, Iqbal J, Windecker S, et al. Biolimus-eluting stent with biodegradable polymer improves clinical outcomes in patients with acute myocardial infarction[J]. Heart, 2015,101(4):271-278.

[26]Pilgrim T, Muller O, Heg D, et al. Biodegradable- Versus Durable-Polymer Drug-Eluting Stents for STEMI: Final 2-Year Outcomes of the BIOSTEMI Trial[J]. JACC Cardiovasc Interv, 2021,14(6):639-648.

[27] Guagliumi G, Costa M A, Sirbu V, et al. Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial[J]. Circulation, 2011,123(3):274-281.

[28] Torii S, Jinnouchi H, Sakamoto A, et al. Drug-eluting coronary stents: insights from preclinical and pathology studies[J]. Nat Rev Cardiol, 2020,17(1):37-51.

[29]Bangalore S, Toklu B, Amoroso N, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis[J]. BMJ, 2013,347:f6625.

[30] Iannaccone M, Barbero U, De Benedictis M, et al. Comparison of bioresorbable vs durable polymer drug-eluting stents in unprotected left main (from the RAIN-CARDIOGROUP VII Study)[J]. BMC Cardiovasc Disord, 2020,20(1):225.

[31] Modi K, Soos M P, Mahajan K. Stent Thrombosis[J]. 2022.

[32] Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study[J]. Lancet, 2007,369(9562):667-678.

[33] Siqueira D A, Abizaid A A, Costa J R, et al. Late incomplete apposition after drugeluting stent implantation: incidence and potential for adverse clinical outcomes[J]. Eur Heart J, 2007,28(11):1304-1309.

 [34] Stefanini G G, Byrne R A, Serruys P W, et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials[J]. Eur Heart J, 2012,33(10):1214-1222.

[35]Guagliumi G, Shimamura K, Sirbu V, et al. Temporal course of vascular healing and neoatherosclerosis after implantation of durable- or biodegradable-polymer drug-eluting stents[J]. Eur Heart J, 2018,39(26):2448-2456.

[36]Kuramitsu S, Kazuno Y, Sonoda S, et al. Vascular response to bioresorbable polymer sirolimus-eluting stent vs. permanent polymer everolimus-eluting stent at 9-month followup: an optical coherence tomography sub-study from the CENTURY II trial[J]. Eur Heart J Cardiovasc Imaging, 2016,17(1):34-40.

[37] Iannaccone M, Gatti P, Barbero U, et al. Impact of strut thickness and number of crown and connectors on clinical outcomes on patients treated with second-generation drug eluting stent[J]. Catheter Cardiovasc Interv, 2020,96(7):1417-1422.

[38]D'Ascenzo F, Iannaccone M, Saint-Hilary G, et al. Impact of design of coronary stents and length of dual antiplatelet therapies on ischaemic and bleeding events: a network metaanalysis of 64 randomized controlled trials and 102 735 patients[J]. Eur Heart J, 2017,38(42):3160-3172.

SUPPLEMENTARY TABLE LEGENDS

 Table 1. The characteristics of the included trials

Table 2. The baseline features of the patients

FIGURE LEGENDS

Figure 1. Baseline characteristics and stent information of patients with acute coronary syndrome

Figure 2. Baseline characteristics and stent information of patients with acute coronary syndrome

Figure 3. Baseline characteristics and stent information of patients with acute coronary syndrome

Figure 4. Primary endpoint: major adverse cardiac events

Figure 5. Target vessel revascularization

Figure 6. Target lesion revascularization

Figure 7. All-cause death

Figure 8. Cardiac-related death

Figure 9. Target vessel myocardial infarction

Figure 10. Stent thrombosis

Supplementary Material 2: search stratege and PRISMA flow chart for included studies A. Search stratege

1. Pubmed (N=688)

Search date: from January 2000 to July 2021

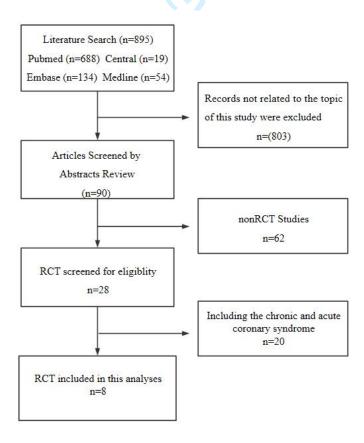
Search terms:

 1[#]. ("BP-DES"[MeSH Terms] OR "BP-DES"[All Fields] OR "biodegradable "[All Fields] OR "bioabsorbable "[All Fields] OR "bioabsorbable polymer drug-eluting stent"[All Fields] OR "biodegradable polymer drug-eluting stent"[All Fields]) AND ("acute coronary syndrome"[All Fields] OR "ACS"[All Fields] OR "AMI"[All Fields] OR "Acute myocardial infarction"[All Fields] OR "Non ST segment elevation myocardial infarction"[All Fields] OR "ST segment elevation myocardial infarction"[All Fields] OR "STEMI"[All Fields])

2[#]. ("DP-DES"[All Fields] OR "DP-DES"[MeSH Terms] OR "durable polymer"[All Fields] OR "durable polymer drug-eluting stent"[All Fields]) AND ("acute coronary syndrome"[All Fields] OR "ACS"[All Fields] OR "AMI"[All Fields] OR "Acute myocardial infarction"[All Fields] OR "Non ST segment elevation myocardial infarction"[All Fields] OR "ST segment elevation myocardial infarction"[All Fields] OR "NSTEMI"[All Fields] OR "STEMI"[All Fields])

3[#]. ("BP-DES"[MeSH Terms] OR "BP-DES"[All Fields] OR "biodegradable "[All Fields] OR "bioabsorbable "[All Fields] OR "bioabsorbable polymer drug-eluting stent"[All Fields] OR "biodegradable polymer drug-eluting stent"[All Fields]) and ("DP-DES"[All Fields] OR "DP-DES"[MeSH Terms] OR "durable polymer"[All Fields] OR "durable polymer drug-eluting stent"[All Fields]) AND ("acute coronary syndrome"[All Fields] OR "ACS"[All Fields] OR "AMI"[All Fields] OR "Acute myocardial infarction"[All Fields] OR "Non ST segment elevation myocardial infarction"[All Fields] OR "ST segment elevation myocardial infarction"[All Fields] OR "NSTEMI"[All Fields] OR "STEMI"[All Fields])

2. OVID (N=207, EMBS=134, MEDLINE=54, Controlled Register of Trials=19) Search date: from January 2000 to July 2021


Search terms:

1[#].("BP-DES" OR "bioabsorbable polymer drug-eluting stent" OR "biodegradable polymer drug-eluting stent") and ("acute coronary syndrome" OR "ACS" OR "AMI" OR "Acute myocardial infarction" OR "Non ST segment elevation myocardial infarction" OR "ST segment elevation myocardial infarction" OR "NSTEMI" OR "STEMI")

2[#].("DP-DES" OR "durable polymer drug-eluting stent") and ("acute coronary syndrome" OR "ACS" OR "AMI" OR "Acute myocardial infarction" OR "Non ST segment elevation myocardial infarction" OR "ST segment elevation myocardial infarction" OR "NSTEMI" OR "STEMI")

3[#].("BP-DES" OR "bioabsorbable polymer drug-eluting stent" OR "biodegradable polymer drug-eluting stent") and ("DP-DES" OR "durable polymer drug-eluting stent") and ("acute coronary syndrome" OR "ACS" OR "AMI" OR "Acute myocardial infarction" OR "Non ST segment elevation myocardial infarction" OR "ST segment elevation myocardial infarction" OR "NSTEMI" OR "STEMI")

B. PRISMA flow chart for studies included in the meta-analysis

66/bmjopen-2021-058075 on 8 June

Table 1. The characteristics of the included trails

Authors	Verm	Journal	0 to 1 to	Cantan)) 	NO.patients	S
	Years	Journal	Study	Center	Country	Follow up	BP-DES	DP-DE
<u>Hyo-Soo Kim</u>	<u>2021</u>	Circulation	<u>RCT</u>	multicentre	Korea c	<u>12 month</u>	<u>1700</u>	<u>1713</u>
<u>Thomas Pilgrim</u>	<u>2021</u>	JACC	<u>RCT</u>	multicentre	Switzerland	24month	<u>649</u>	<u>651</u>
Juan F Iglesias	<u>2019</u>	The Lancet	<u>RCT</u>	multicentre	Switzerland	<u>12 month</u>	<u>649</u>	<u>651</u>
<u>Thomas Pilgrim</u>	<u>2016</u>	EuroIntervention	<u>RCT</u>	multicentre	Switzerland	<u>12 month</u>	<u>211</u>	<u>196</u>
Yao-Jun Zhang	<u>2015</u>	Heart	<u>RCT</u>	multicentre	<u>Netherlands</u> ⊆	<u>60month</u>	<u>280</u>	<u>293</u>
Hyun Jong Lee	<u>2015</u>	International journal of cardiology	<u>RCT</u>	multicentre	Korea	<u>24month</u>	<u>171</u>	<u>536</u>
Antoinette de Waha	<u>2015</u>	EuroIntervention	<u>RCT</u>	multicentre	multicentre		<u>291</u>	<u>206</u>
Qi Zhang	<u>2014</u>	Journal of Interventional Cardiology	<u>RCT</u>	multicentre	<u>China</u>	<u>12 month</u>	<u>596</u>	<u>596</u>
						- - -		
					гноцестей ру сорундни.			
		For peer review only - http://br	njopen.bmj.com	n/site/about/quid	elines.xhtml			

36/bmjopen-2021-058075 on

Table 2. The baseline features of the patients

	basic charact	ers						3 June			
Authors	Age		SEX(MA	SEX(MALE)		Body mass index		Hypertension No		Diabetes	
	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	
Hyo-Soo Kim	63.1±11.1	63.0±11.1	1337	1351	25.0±3.2	24.9±3.1	1147	1092 oadeo	747	789	
Juan F Iglesias	62.2±11.8	63.2±11.8	513	477	$26.9{\pm}4.3$	26.8± 4.3	281	297 from	73	82	
Thomas Pilgrim	61.3±12.4	61.7±12.7	170	151	27.0±4.3	27.0±4.3	102	98 //bn	30	27	
Yao-Jun Zhang	62.9±11.7	62.8±11.7	215	210	27.5±4.4	27.8±4.6	181	198 n.	55	46	
Hyun Jong Lee	64±14.08	63±14.08	128	400	1	10	102	308 <u>bm</u> . 308	82	269	
Antoinette de Waha	62.5±12.1	63.1±12.6	214	149	/	1	142	110 g	56	34	
Qi Zhang	63.9±13.1	64.1±12.1	475	467	/	/	360	0092 oaded from http://bmjopen.bmj.com/ on April 23, 308 376 376	129	113	
								2024 by			
								/ guest			
								. Protec			
								cted by			
								2024 by guest. Protected by copyright.			
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml											

36/bmjopen-2021-058075 on

Table 2. The baseline features of the patients

	basic char	acters						3 June		
Authors	Dyslipider	Dyslipidemia smoking			LVEF, %		Stent number	r per person	Total stent length, mm	
	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DP-DES	BP-DES	DPDES	BP-DES	DP-DES
Hyo-Soo Kim	1,247	1,280	515	475	58.7±10.4	58.5±10.4	1.7±1.1	1.721.0	42.9±31.9	41.7±30.2
Juan F Iglesias	304	302	294	250	49.0 ± 11.0	48.4 ± 11.2	1.37 ± 0.64	1.3 ± 0.66	31.91±18.21	33.92±19.7
Thomas Pilgrim	110	101	93	77	49.5±10.9	48.3±11.1	1.42±0.71	1.39±0.71	29.49±17.83	30.52±18.9
Yao-Jun Zhang	152	176	107	115	51.5±10.1	51.4±11.8	2.2±0.5	2.2 0.6	26.6±15	27.9±15.2
Hyun Jong Lee	116	389	65	228	55 (45–65)	52 (43-62)	/	bmj.com/ on April 23, / / /	/	/
Antoinette de Waha	119	109	120	90	47±10	48±12	/	n/ on A /	25.9±12.6	27.7±14.2
Qi Zhang	87	76	257	223	50±12	49.0 ± 17.0	Ph	April 23	/	/
								2024 by guest. Protected by copyright.		
								oy gues		
								st. Prot		
								ected		
								by cop		
								yright.		
		For	peer review	only - http:/	/bmjopen.bmj.c	com/site/about/	guidelines.xhtn	าไ		

1								
2 3	Sunnlar	ientary Materia		, of his	a aumm	any far	inalu	ided trials
4	Supplen	ientary Materia	I 2. KISK	k-01-D1a	s summ	lary lor	inciu	ided triais
5 6	А.							
7	А.							
8	<u>Unique ID</u>	Study ID	<u>D1</u> D		<u>D4 D5</u>	Overal1		
9 10	metal	Hyo-Soo Kim	•		• •	+	•	Low risk
11	meta2	Thomas Pilgrim	•		• •			Some concerns
12	meta3	Juan F Iglesias		14 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• •		-	High risk
13 14	meta4	Thomas Pilgrim			•		1000	
15	meta5	Yao-Jun Zhang			•	-	D1	Randomisation process
16	meta6	Hyun Jong Lee			• •		D2	Deviations from the intended interventions
17 18	meta7	Antoinette de Waha				~	D3	Missing outcome data
19	meta8	QI ZHANG			•	U	D4 D5	Measurement of the outcome Selection of the reported result
20							05	Selection of the reported result
21	B.							
22 23								
24		As percentag	ge (inte	ention	-to-tre	eat)		
25								
26 27		Overall B						
28		n of the reported res rement of the outco					_	
29	Measur	Mising outcome da						
30 31	Devi	ations from intende						
32	I	Randomization proce	ess					
33			0	20 4	40 60	80	100	
34 35		Low risk	Somo cor		Lligh rick			
36		LOW FISK	Some con		nign risk			
37								
38 39								
40								
41								
42 43								
44								
45								
46 47								
48								
49								
50 51								
52								
53								
54								
55 56								
57								
58								
59 60								
00								