

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Parental preference for influenza vaccine for children in China: A discrete choice experiment

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055725
Article Type:	Original research
Date Submitted by the Author:	24-Jul-2021
Complete List of Authors:	Li, Shun-Ping; Shandong University School of Public Health, Centre for Health Management and Policy Research; Shandong University, NHC Key Lab of Health Economics and Policy Research Gong, Tiantian; Shandong University School of Public Health, Centre for Health Management and Policy Research; Shandong University, NHC Key Lab of Health Economics and Policy Research Chen, Gang; Monash Business School, Centre for Health Economics Liu, Ping; Shandong University School of Public Health, Centre for Health Management and Policy Research; Shandong University, NHC Key Lab of Health Economics and Policy Research Lai, Xiaozhen; Peking University, School of Public Health Rong, Hongguo; Peking University, School of Public Health Rong, Hongguo; Peking University, China Center for Health Development Studies; Beijing University of Chinese Medicine, Institute for Excellence in Evidence-based Chinese Medicine Ma, Xiaochen; Peking University, China Center for Health Development Studies Hou, Zhiyuan; Fudan University School of Public Health Fang, Hai; Peking University, China Center for Health Development Studies; Peking University, China Center for Health Development Studies Hou, Zhiyuan; Fudan University School of Public Health Fang, Hai; Peking University, China Center for Health Development Studies; Peking University, Health Science Center-Chinese Center for Disease Control and Prevention Joint Center for Vaccine Economics
Keywords:	PUBLIC HEALTH, INFECTIOUS DISEASES, PAEDIATRICS
	1

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Title: Parental preference for influenza vaccine for children in China: A discrete choice experiment

Author names:

Shunping Li ^{1,2,3}, Tiantian Gong ^{1,2,3}, Gang Chen ⁴, Ping Liu^{1,2,3}, Xiaozhen Lai⁵, Hongguo Rong^{6,7}, Xiaochen Ma⁶, Zhiyuan Hou⁸, Hai Fang ^{6,9,10}

Affiliations:

- 1. Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Lab of Health Economics and Policy Research (Shandong University), Jinan, 250012, China
- 3. Center for Health Preference Research, Shandong University, Jinan 250012, China
- Centre for Health Economics, Monash Business School, Monash University, Melbourne 3145, Australia.
- 5. School of Public Health, Peking University, Beijing 100083, China
- 6. China Center for Health Development Studies, Peking University, Beijing 100083, China
- Institute for Excellence in Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- 8. School of Public Health, Fudan University, Shanghai 200032, China
- 9. Peking University Health Science Center-Chinese Center for Disease Control and Prevention Joint Center for Vaccine Economics, Beijing 100083, China
- Key Laboratory of Reproductive Health National Health Commission of the People's Republic of China, Beijing 100083, China

Corresponding author information:

Hai Fang, Ph.D, Email: hfang@hsc.pku.edu.cn. Tel: +86 (10) 82805702

E-mail for co-authors:

Shunping Li: lishunping@sdu.edu.cn

Tiantian Gong: tian_gchn@163.com

Gang Chen: gang.chen@monash.edu

Ping Liu: liuping_sdu@163.com

Xiaozhen Lai: laixiaozhen@pku.edu.cn

Hongguo Rong: hgrong@bjmu.edu.cn

Xiaochen Ma: xma@hsc.pku.edu.cn

Zhiyuan Hou: zyhou@fudan.edu.cn

ABSTRACT:

Objectives: To explore factors that influenced parents' preferences on influenza vaccination for their children and investigate whether there exists preference heterogeneity among respondents in China. **Design:** Cross-sectional study. A discrete choice experiment was conducted and 5 attributes were identified based on literature review and qualitative interviews. A D-efficiency design was developed using Ngene Software.

Setting: Multistage sampling design was used. According to geographical location and the level of economic development, ten provinces in China were selected, and the survey was conducted at community healthcare centers or stations.

Participants: Parents with at least one child aged between 6 months and 5 years old were recruited and the survey was conducted via a face-to-face interview in 2019. In total, 600 parents completed the survey, and 449 who passed the internal consistency test were included for the main analysis.

Main Outcomes and Measures: A mixed logit model was used to analyze the choice experiment data and vaccine preferences. In addition, sociodemographic characteristics were included to explore the preference heterogeneity.

Results: On average respondents preferred to vaccinate for their children. All attributes were statistically significant and among them, the risk of a severe side effect was the most important attribute, followed by the protection rate and duration of vaccine-induced protection. Contrary to our initial expectation, respondents have a stronger preference for the domestic than the imported vaccine. Some preference heterogeneity among parents was also found and in particular, parents who were older, or got high education placed a higher weight on a higher protection rate.

Conclusion: Vaccination safety and vaccine effectiveness are the two most important characteristics that influenced parents' decision to vaccinate against influenza for their children in China. Results

from this study will facilitate future policy implementations to improve vaccination uptake rates.

Key Words: discrete choice experiment, influenza vaccine, children, parental preference, China

Strengths and limitations of this study:

- This is the first study to explore parental preference for influenza vaccine delivery using DCEs in mainland China.
- We recruited participants nationwide, who were more representative to generalize the conclusions.
- The external validity of DCE results cannot be testified, which was similar to most DCE studies.
- We did not differentiate barriers and facilitators among factors associated with vaccine.

1. Introduction

Influenza is an acute respiratory infection caused by influenza viruses and can result in substantial mortality ¹. Among 4 types of influenza viruses, influenza A and influenza B can create epidemics ². According to the World Health Organization (WHO), annual epidemics of influenza can lead to 3 to 5 million cases of severe illness and about 290,000 to 650,000 respiratory deaths worldwide ². In China, up to 88,000 seasonal influenza-associated respiratory excess deaths occurred each year, accounting for 8.2% of deaths from respiratory diseases ³. All age groups can be affected by influenza, however, the prevalence of influenza among children under 48 months was highest (up to 33%) ⁴. In central China, children under 5 years old accounted for 69% of inpatients owing to influenza-associated outpatient and inpatient health care utilization is substantial in China, particularly for young children ⁶⁷.

It is cost-effective or cost-saving to vaccinate against influenza ⁸⁹. In China, two types of influenza vaccines have been licensed, including trivalent inactivated influenza vaccine (IIV) and tetravalent IIV; whereas the live attenuated influenza vaccine (LAIV) has not been approved ¹⁰. Compared with some European countries, e.g., the Netherlands and the United Kingdom have achieved 82.6% and 72.5% influenza vaccination rate respectively for the elderly in 2008 ¹¹, the average national coverage in China is unexpectedly low and just about 2% for the entire population¹². In addition, the uptake varied dramatically in groups and regions in China. For example, 0.2% of pregnant women in Suzhou reported influenza vaccination within the last 12 months¹³ and the coverage rate among adults in Beijing was 20.6% during the 2014/2015 influenza season¹⁴. Even in Shanghai, influenza vaccine coverage was highest among children and was just 26.6%¹⁵.

BMJ Open

Identifying facilitators and barriers to influenza vaccination would be important to promote vaccination. A systematic review revealed that several facilitators for parents to accept influenza vaccination were belief in vaccine efficacy and influenza severity and susceptibility, perception of advantages of the school setting, and trust in vaccines¹⁶. In China, the barriers were complex. One study surveyed various populations found that the most common reason for being unvaccinated influenza vaccine was worrying about the side effects¹⁵. Another study targeted at quadrivalent influenza vaccine for school-aged children showed that the pivotal barriers hindering parents from having their children vaccinated were fear of side effect and no perceived susceptibility¹⁷. On the contrary, one study indicated perceived severity and knowledge about influenza were not independently significantly associated with uptake¹⁸.

Children aged 6-59 months, recommended routine influenza vaccination strongly by WHO², are also among the priority vaccination groups stated by the Chinese Center for Disease Control and Prevention (CDC) ¹⁰. However, the influenza vaccine for children has not been covered by China's National Immunization Program. The decision to vaccinate against influenza for children mostly depends on parents' views and preferences. Consequently, it is crucial to understand what factors can influence parents' vaccination decisions to facilitate more effective policy implementation.

This study employed a discrete choice experiment (DCE), a stated preference elicitation method based on random utility theory, to explore parental preference for influenza vaccines. DCEs have been widely used to estimate preference for vaccines ¹⁹, such as human papillomavirus, influenza, and hypothetical vaccines ²⁰⁻²². Although there exist some DCE studies on vaccines in China, respondents normally came from one particular province ^{23 24}. This is the first DCE study on vaccination that aims to recruit respondents nationwide by involving parents from ten provinces to

BMJ Open

understand the preference of influenza vaccination. This study aimed to address two research questions: i) to elicit the preference of parents when choosing influenza vaccine for their children; ii) to investigate whether there exists preference heterogeneity among respondents.

2. Methods

Discrete choice experiments are increasingly used in health economics to identify and evaluate the participants' preferences ²⁵. DCEs can also be used to estimate participants' willingness to pay as well as to predict program uptake rates given a set of goods or services characteristics ^{26 27}. In the DCE, a vaccine profile can be described by a series of attributes and their corresponding levels, and under the random utility theory, respondents choose the option with the highest utility from the alternatives presented ²⁸. The DCE design and analysis were conducted following the checklist and reports of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) ie Conjoint Analysis Task Forces ²⁹⁻³¹.

2.1 Survey design

Based on previously published literature ^{19 21 32}, twelve attributes were identified initially. To assess the appropriateness of attributes and levels included and to further narrow down the number of attributes, four experts on vaccination were interviewed face-to-face in Jinan Maternity and Childcare Hospital. Two focus groups (n=12) were also conducted. One focus group included four parents only, and the other contained one vaccinologist, three parents, and four health economics/DCE experts. They were asked to review and rank the list of attributes. Finally, five attributes were selected for this study (Table 1).

[Table 1]

A D-efficient design was developed using Ngene Software (www.choice-metrics.com), which

BMJ Open

yielded 60 choice sets that were further divided into six blocks to reduce respondents' cognitive burden. To check for internal consistency, one choice set in each block was duplicated, which was excluded in the analysis. Each respondent received one block randomly and was asked to answer 11 choice sets. For those who failed the consistency test, their data were excluded from the main analysis. Before completing DCE questions, respondents were also asked to rate the importance of five attributes.

Given the decision to vaccinate is a voluntary decision, instead of directly adding an opt-out option, a two-stage response DCE design was used to maximize the information gained from the respondents ³³. In the first stage, the respondents were forced to choose between two hypothetical vaccination profiles. Then, they were asked to confirm whether they would vaccinate their preferred option from the first stage for their children.

In addition to DCE questions (which were presented in a hardcopy questionnaire), sociodemographic characteristics of respondents and their children were collected using an iPad. A pilot was conducted among 15 parents in Beijing and Jinan in July 2019 to examine the acceptability, comprehensibility, and validity. A few modifications were implemented based on the feedback from the pilot. An example of a final choice set was shown in Figure 1.

[Figure 1]

2.2 Study population and data collection

To ascertain national parental values and preference for influenza vaccines, the survey used a multistage sampling design. First, ten provinces/municipalities were selected based on the Division of Central and Local Financial Governance and Expenditure Responsibilities in the Healthcare Sector released by the State Council in 2018, which divided 31 provinces/municipalities in mainland China

BMJ Open

into five layers. According to geographical location and the level of economic development, ten provinces/municipalities represented eastern region (Shandong and Shanghai), western region (Gansu and Chongqing), southern region (Yunnan and Guangdong), northern region (Beijing and Jilin), middle region (Henan and Jiangxi), which were shown in Figure 2. Next, except for three municipalities (Beijing, Shanghai, and Chongqing), in each of the other seven provinces, one provincial capital, and one non-provincial-capital city were chosen. Finally, the parents with at least one child aged 6 months and 5 years old were recruited from community healthcare centers or stations, which were the main provider of vaccination service.

[Figure 2]

According to a rule of thumb suggested by Orme ³⁴, a sample size of 75 (500*3/2*10=75) would be desirable for the main effects model based on the number of analysis cells, alternatives and choice sets. We aimed to recruit a minimum of 100 respondents in each region ^{27 35}. Hence, we intended to survey 60 parents in each province and 120 parents in each region.

The anonymous survey was administered between August and October 2019. Data was collected by one-on-one face-to-face interviews from parents waiting for routine vaccination for their children or remaining for observation after routine vaccination. The vaccination rates for routine vaccines, such as DTaP, HepB, were more than 95% in China ³⁶, so the sample bias for participants recruited from the vaccination sites was very limited. Before enrolling in the survey, respondents were informed about the survey purpose and content by interviewers who have been trained by the research team. Electronic written consent was obtained from all respondents. The study received ethical approval from the Peking University Institutional Review Board (IRB00001052-19076).

2.3 Statistical analysis

Responses to the hardcopy DCE questionnaire were double-entered into a database set up by the EpiData 3.1 software and then matched with other socio-demographic characteristics obtained from the iPad for statistical analyses. In cases where the number of missing DCE responses was more than two tasks or the majority of socio-demographic data missed, respondents were excluded from the final analysis.

A mixed logit model was employed to analyze DCE data which takes into account potential preference heterogeneity ³⁷. The utility function can be written as below:

$$U_{ijt} = X_{ijt} \beta + \varepsilon_{ijt}$$

Where U_{ijt} is the utility that respondent i derives from choosing alternative j in the choice set t, X_{ijt} is a vector representing the levels of the attributes, β is a vector of coefficients corresponding to attribute levels, and ε_{ijt} is a random error term. The cost attribute was treated as a continuous variable, while other attributes were dummy coded. In a mixed logit model, coefficients of attribute levels are commonly assumed to follow a normal distribution to account for preference heterogeneity, i.e., β is composed of a mean coefficient as well as a standard deviation. A significant positive (negative) coefficient represents a positive (negative) preference for an attribute level. The importance of attribute can be calculated through the difference of level coefficients in the same attribute. Therefore, the relative importance of attributes can be estimated by comparing the utility range of each attribute ³⁸.

We further examined whether the elicited preferences varied by particular socio-demographic characteristics. Finally, vaccination update rates were predicted to facilitate the interpretation of DCE results to decision-makers. Descriptive analyses including Student's test, χ^2 test, and Wilcoxon rank-

BMJ Open

sum test were adopted to compare means and proportions between subgroups, respectively. All statistical analyses were conducted using Stata 12.1 software. The mixed models were estimated by simulated maximum likelihood using the Stata command developed by Hole³⁹ and 2000 random draws were used to achieve stability.

2.4 Patient and public involvement

The study did not involve the patients. The public was involved at the stage of questionnaire design, pretesting, and feedback from respondents was incorporated into questionnaire revisions.

3. Results

A total of 600 parents consented and participated in the survey. Among them, 3 and 18 parents were excluded from the analysis due to missing of socio-demographic information and failure in completing the majority of DCE questions, respectively. Among the remaining 579 parents, they had a mean age of 31 years old, most (79%) of them are mothers of children, and the mean age of their children was 2 years old. At the time of the survey, 355 (61%) parents were working and 337 (58%) had at least two children. Among DCE responses, 449 (78%) respondents passed the consistent test (i.e., duplicated task) and they were treated as the main study sample. There was no significant difference in socio-demographic characteristics between those who passed and who failed the consistent test except for region (urban vs rural). More details on respondents' socio-demographic characteristics are presented in Table 2.

[Table 2]

3.1 Importance rating

Figure 3 showed the relative importance of five DCE attributes ranked by respondents prior to the

pairwise choice tasks. The most important attribute was the protection rate followed by the risk of severe side effect event, whereas the out-of-pocket cost of the vaccine and duration of vaccine-induced protection were less important.

[Figure 3]

3.2 Discrete choice experiment results

The DCE results incorporating the second-stage choices and based on the main study sample are reported in Table 3. As a sensitivity analysis, the full sample analysis results are shown in Table S1 whilst the analyses on forced-choice responses from the main study sample are presented in Table S2. All attributes were statistically significant. Overall, similar patterns can be seen from the supplementary material.

Focusing on Table 3, the mixed logit model estimates suggested that the higher the protection rate, the longer the duration of vaccine-induced protection, the lower the risk of severe side effect, the lower the cost, the more likely that parents would be willing to vaccine for their children. Contrary to our initial hypothesis, respondents prefer domestic rather than imported vaccination. Most estimated standard deviations were significant, indicating the existence of preference heterogeneity among parents.

The vaccine with the lowest risk of severe side effects had the highest preference weight when compared with a relatively high risk of severe side effects, followed by the highest protection rate. And the duration of vaccine-induced protection was less important. Reducing the risk of severe side effects from high to low could yield 4.4(2.626/0.596) times as much as utilities increasing the duration of vaccine-induced protection from 6 months to 12 months.

The coefficient of non-vaccination was significantly negative, indicating that on average the

BMJ Open

parents were more likely to vaccinate their children against influenza regardless of the vaccine profile described by attributes and levels.

[Table 3]

To evaluate whether there was a significant difference between parents with various characteristics, a series of interaction terms between respondents' characteristics and attribute levels were explored and the result was reported in Table 4. We found that parents who were beyond 30 years old or lived in urban were more likely to choose vaccination. Highly educated, those beyond 30 years old and those who lived in rural areas placed a higher weight on the highest protection rate. And Those who lived in rural areas also had stronger preference for the lowest risk of severe side effect. Other than what has been reported, we found no significant influence between attribute levels and the working status of parents and the gender of children.

[Table 4]

3.3 Predicted uptake rates for different scenarios

[Figure 4]

4. Discussion

This study has estimated parental preference for vaccinating against influenza for their children. To the best of our knowledge, this is the first study to explore parental preference for influenza vaccine delivery using DCEs in mainland China. A previous DCE study conducted in Hong Kong Special Administrative Region surveyed the adult to assess the relative effects of different factors for influenza vaccination choices ⁴⁰. This is also the first DCE study on vaccination that recruits respondents nationwide to achieve a more representative result.

We found that on average respondents from this study preferred vaccination against influenza for their children from the hypothetical vaccination scenarios, which is consistent with other DCE study findings ^{32 41}. The relatively high acceptance was also documented in another survey that aimed to study the knowledge, attitudes, and practices towards the influenza vaccine among young workers in China ⁴².

In general, all the attributes included in our study were statistically significant and preference heterogeneity existed among both observable and non-observable personal characteristics. Among all the attributes, the risk of severe side effects and protection rate of the vaccine were the top two most important characteristics perceived by parents. Their important roles in the choice for vaccination are in line with other influenza vaccine DCE studies ^{21 32}. Similar findings have also been reported in other vaccines. A DCE study surveying girls' preference for HPV vaccination reported that respondents preferred low severe side effects ⁴³ and other studies found willingness to vaccinate was closely related to vaccine safety and efficacy ^{41 44}. The above findings could suggest that to reduce the risk of severe side effects and to increase vaccine effectiveness could be regarded as two universal

BMJ Open

procedures to effectively achieve higher vaccination coverage.

Somewhat surprising, given the recent Changchun Changsheng vaccine incident, this study found that parents preferred the domestic vaccine to the imported vaccine. However, the same finding was also reported in one recent DCE study conducted in Shanghai, even though there are substantial differences, e.g., study population ²⁴. One potential reason for which domestic vaccine was preferred may be that it is thought to be more effective ⁴⁵ and more accessible. And the other is that regulatory environment is more stringent. Indeed, the government facilitated a public consultation after the incident in 2018 ⁴⁶, and the Standing Committee of the National People's Congress voted to adopt the first Vaccine Administration Act in 2019, which aimed to tighten vaccine regulation ⁴⁷.

The out-of-pocket cost was found to be less important compared to the other attributes. Based on the calculation of uptake rates, the probability of vaccination was affected slightly by a change in cost. This differs from some previous studies in which cost was found to be an important factor driving preferences ^{22 38 48}. The above results were incomparable for our study due to differences in targeted vaccines. In reality, the out-of-pocket cost of the influenza vaccine is affordable when comparing to the household income. For example, the highest out-of-pocket cost of the influenza vaccine made up about 1% of monthly income in our study. Furthermore, most families in China are willing to spend more for their children ⁴⁹, and cost is not a key factor.

When studying the preference heterogeneity, the protection rate has again stood out as a key attribute that those who were older, lived in a rural area or got higher education all placed a higher weight on a higher protection rate. By far influenza vaccine has not been included in the national immunization program schedule in China and to improve the vaccination rate in particular for people mentioned above, providing more information about as well as improving the safety and effectiveness

of vaccines will be the most important factor.

The present study had several limitations. Firstly, our study includes 600 respondents recruited from 10 provinces (and among them, 449 was included for the main analysis) which may be not large enough to represent the whole of China. However, we did not find significant regional preference heterogeneity from the analysis. Secondly, though attributes included in our study were identified and selected through previous literature, interview with experts, and focus group discussion, following the recommended procedure, we cannot guarantee that all attributes concerned with parental vaccination choice were included. Thirdly, we did not differentiate barriers and facilitators among factors associated with vaccine, it may be more useful to distinguish barriers and facilitators. Finally, similar to most DCE studies, the external validity of DCE results cannot be testified. Nevertheless, the consistency test and importance rating were implemented to confirm DCE's internal ere. validity.

5. Conclusion

Vaccinating influenza vaccines is the most effective measure to prevent the prevalence of influenza. Although WHO and the Chinese CDC have recommended the influenza vaccine to the whole population, especially the youth, the vaccination rate is extremely low. This study aimed to investigated national parents' preference for vaccinating against influenza for their children based on a nationwide sample. Based on a discrete choice experiment, the study showed that on average parents were more willing to vaccinate their children. Among five attributes been examined, the risk of severe side effects and protection rate were key drivers of preference among parents in China, and preference heterogeneity was found among parents. The findings from this study will shed light on future policy implementation to improve the influenza vaccination rate in China.

2 3 4	
5 6 7	Contributorship statement:
7 8 9	Conceptualization: Shunping Li, Hai Fang.
10	Data curation: Shunping Li, Tiantian Gong.
11 12	Formal analysis: Tiantian Gong, Ping Liu.
13 14	Funding acquisition: Hai Fang.
15 16	Methodology: Gang Chen, Tiantian Gong, Ping Liu.
17 18	Project administration: Shunping Li, Gang Chen.
19 20	Supervision: Shunping Li, Hai Fang.
21 22	Write-original draft: Tiantian Gong
23 24	Writing-review & editing: Shunping Li, Tiantian Gong, Gang Chen, Ping Liu, Xiaozhen Lai,
25 26	Hongguo Rong, Xiaochen Ma, Zhiyuan Hou, Hai Fang.
27 28	Competing interests: There are no competing interests for any author.
29 30	Funding: This work was supported by the National Natural Science Foundation of China (grant
31 32	number 71774006).
33 34	Data availability statement: Data are available upon request. To obtain data, please email Shunping
35 36	Li (lishunping@sdu.edu.cn).
37 38	Ethical Approval statement: The study received ethical approval from the Peking University
39 40	Institutional Review Board (IRB00001052-19076).
41 42	Patient consent for publication: Not required.
43 44	Acknowledgements: We would like to thank all participants for their contribution to this study.
45 46	Word count: 3375.
47 48	
49	
50 51	
52	
53	
54	
55 56	
50 57	
58	

Reference

- Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. *The Lancet* 2018;391(10127):1285-300. doi: <u>https://doi.org/10.1016/S0140-6736(17)33293-2</u>
- WHO. Influenza (seasonal) fact sheet. Available online: https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 12 August 2020).
- 3. Li L, Liu Y, Wu P, et al. Influenza-associated excess respiratory mortality in China, 2010-15: a population-based study. *Lancet Public Health*. Sep 2019;4(9):e473-e481. doi:10.1016/s2468-2667(19)30163-x
- Xingxing Zhang, Shuangsheng Wu, Quanyi Wan, Li Zhang, Man Zhang, Wei Duan, et al. Estimated infection rates and incidence rates of seasonal influenza in Beijing during the 2017-2018 influenza season. *International Journal of Virology*. 2019,26:73-76.
- Yu H, Huang J, Huai Y, et al. The substantial hospitalization burden of influenza in central China: surveillance for severe, acute respiratory infection, and influenza viruses, 2010-2012. *Influenza and other respiratory viruses*. Jan 2014;8(1):53-65. doi:10.1111/irv.12205
- 6. Yang J, Jit M, Leung KS, et al. The economic burden of influenza-associated outpatient visits and hospitalizations in China: a retrospective survey. *Infectious diseases of poverty*. Oct 6 2015;4:44. doi:10.1186/s40249-015-0077-6
- 7. Jia Yu, Tao Zhang, Yin Wang, Junmei Gao, Jun Hua, Jianmei Tian, et al. Clinical characteristics and economic burden of influenza among children under 5 years old, in Suzhou, 2011-2017. *Chinese Journal of Epidemiology*. 2018,39:847-51.
- Peasah SK, Azziz-Baumgartner E, Breese J, Meltzer MI, Widdowson MA. Influenza cost and cost-effectiveness studies globally--a review. *Vaccine*. Nov 4 2013;31(46):5339-48. doi:10.1016/j.vaccine.2013.09.013
- Ting EEK, Sander B, Ungar WJ. Systematic review of the cost-effectiveness of influenza immunization programs. *Vaccine*. Apr 4 2017;35(15):1828-1843. doi:10.1016/j.vaccine.2017.02.044
- Chinese Center for Disease Control and Prevention. Technical guidelines for seasonal influenza vaccination in China, 2019-2020. *Chinese Journal of Viral Diseases*. 2019,06: 1-10 (2019).
- 11. Mereckiene J, Cotter S, apos, et al. Differences in national influenza vaccination policies across the European Union, Norway and Iceland 2008-2009. 2010;15(44):19700. doi:doi:https://doi.org/10.2807/ese.15.44.19700-en
- 12. Yang J, Atkins KE, Feng L, et al. Seasonal influenza vaccination in China: Landscape of diverse regional reimbursement policy, and budget impact analysis. *Vaccine* 2016;34(47):5724-35. doi: https://doi.org/10.1016/j.vaccine.2016.10.013
- 13. Song Y, Zhang T, Chen L, et al. Increasing seasonal influenza vaccination among high risk groups in China: Do community healthcare workers have a role to play? *Vaccine* 2017;35(33):4060-63. doi: <u>https://doi.org/10.1016/j.vaccine.2017.06.054</u>
- 14. Wu S, Su J, Yang P, et al. Factors associated with the uptake of seasonal influenza vaccination in older and younger adults: a large, population-based survey in Beijing, China. *BMJ Open* 2017;7(9):e017459. doi: 10.1136/bmjopen-2017-017459
- 15. Yan S, Wang Y, Zhu W, et al. Barriers to influenza vaccination among different populations in Shanghai. *Human Vaccines & Immunotherapeutics* 2021;17(5):1403-11. doi: 10.1080/21645515.2020.1826250
- 16. Kang GJ, Culp RK, Abbas KM. Facilitators and barriers of parental attitudes and beliefs toward school-located influenza vaccination in the United States: Systematic review. *Vaccine* 2017;35(16):1987-95. doi: 10.1016/j.vaccine.2017.03.014 [published Online First: 2017/03/23]
- Li P, Qiu Z, Feng W, et al. Analysis of factors influencing parents' willingness to accept the quadrivalent influenza vaccine for school-aged children in the Nanhai District, China. *Human Vaccines & Immunotherapeutics* 2020;16(5):1078-85. doi: 10.1080/21645515.2019.1644881
- Chau JPC, Lo SHS, Choi KC, et al. Factors Determining the Uptake of Influenza Vaccination Among Children With Chronic Conditions. *The Pediatric Infectious Disease Journal* 2017;36(7):e197-e202. doi: 10.1097/inf.000000000001550
- Michaels-Igbokwe C, MacDonald S, Currie GR. Individual Preferences for Child and Adolescent Vaccine Attributes: A Systematic Review of the Stated Preference Literature. *The patient* 2017;10(6):687-700. doi: 10.1007/s40271-017-0244-x [published Online First: 2017/05/06]

3

4

5 6

7

8

9

10 11

12

13

14 15

16

17

18

BMJ Open

- Brown DS, Johnson FR, Poulos C, et al. Mothers' preferences and willingness to pay for vaccinating daughters against human papillomavirus. *Vaccine* 2010;28(7):1702-8. doi: 10.1016/j.vaccine.2009.12.024 [published Online First: 2010/01/02]
 - 21. de Bekker-Grob EW, Veldwijk J, Jonker M, et al. The impact of vaccination and patient characteristics on influenza vaccination uptake of elderly people: A discrete choice experiment. *Vaccine* 2018;36(11):1467-76. doi: 10.1016/j.vaccine.2018.01.054 [published Online First: 2018/02/11]
 - 22. Wang B, Chen G, Ratcliffe J, et al. Adolescent values for immunisation programs in Australia: A discrete choice experiment. PLoS One 2017;12(7):e0181073. doi: 10.1371/journal.pone.0181073 [published Online First: 2017/07/27]
- 23. Guo N, Zhang G, Zhu D, et al. The effects of convenience and quality on the demand for vaccination: Results from a discrete choice experiment. *Vaccine* 2017;35(21):2848-54. doi: 10.1016/j.vaccine.2017.04.006 [published Online First: 2017/04/16]
- 24. Sun X, Wagner AL, Ji J, et al. A conjoint analysis of stated vaccine preferences in Shanghai, China. *Vaccine* 2020;38(6):1520-25. doi: 10.1016/j.vaccine.2019.11.062 [published Online First: 2019/12/12]
- 25. Soekhai V, de Bekker-Grob EW, Ellis AR, et al. Discrete Choice Experiments in Health Economics: Past, Present and Future. *PharmacoEconomics* 2019;37(2):201-26. doi: 10.1007/s40273-018-0734-2 [published Online First: 2018/11/06]
- 26. de Bekker-Grob EW, Ryan M, Gerard K. Discrete choice experiments in health economics: a review of the literature. *Health Econ* 2012;21(2):145-72. doi: 10.1002/hec.1697 [published Online First: 2012/01/10]
- 27. Lancsar E, Louviere JJP. Conducting Discrete Choice Experiments to Inform Healthcare Decision Making. 2008;26(8):661-77. doi: 10.2165/00019053-200826080-00004
- Clark MD, Determann D, Petrou S, et al. Discrete choice experiments in health economics: a review of the literature. *PharmacoEconomics* 2014;32(9):883-902. doi: 10.1007/s40273-014-0170-x [published Online First: 2014/07/10]
- 29. Bridges JF, Hauber AB, Marshall D, et al. Conjoint analysis applications in health--a checklist: a report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. *Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research* 2011;14(4):403-13. doi: 10.1016/j.jval.2010.11.013 [published Online First: 2011/06/15]
- 30. Reed Johnson F, Lancsar E, Marshall D, et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. *Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research* 2013;16(1):3-13. doi: 10.1016/j.jval.2012.08.2223 [published Online First: 2013/01/23]
- 31. Hauber AB, Gonzalez JM, Groothuis-Oudshoorn CG, et al. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force. *Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research* 2016;19(4):300-15. doi: 10.1016/j.jval.2016.04.004 [published Online First: 2016/06/22]
- Shono A, Kondo M. Parents' preferences for seasonal influenza vaccine for their children in Japan. *Vaccine* 2014;32(39):5071-6. doi: 10.1016/j.vaccine.2014.07.002 [published Online First: 2014/07/27]
- 33. Cheng J, Pullenayegum E, Marshall DA, et al. An empirical comparison of methods for analyzing correlated data from a discrete choice survey to elicit patient preference for colorectal cancer screening. *BMC medical research methodology* 2012;12:15. doi: 10.1186/1471-2288-12-15 [published Online First: 2012/02/22]
- 34. Orme B. Sample size issues for conjoint analysis studies. Sequim: Sawtooth Software Technical paper 1998
- 35. de Bekker-Grob EW, Donkers B, Jonker MF, et al. Sample Size Requirements for Discrete-Choice Experiments in Healthcare: a Practical Guide. 2015;8(5):373-84. doi: 10.1007/s40271-015-0118-z
- 36. Cui Jian CL, Zheng Jingshan, Cao Lingsheng, Duan Mengjuan, Xiao Qiyou. Reported coverage of vaccines in the National

Immunization Program of China, 2015 (in Chinese). Chinese Journal of Vaccines and Immunization 2017;23(6):601-07.

- 37. McFadden D, Econometrics KTJJoA. Mixed MNL models for discrete response. 2000
- 38. Poulos C, Reed Johnson F, Krishnarajah G, et al. Pediatricians' Preferences for Infant Meningococcal Vaccination. Value in Health 2015;18(1):67-77. doi: 10.1016/j.jval.2014.10.010

- 39. Hole AR. Fitting mixed logit models by using maximum simulated likelihood. The Stata Journal 2007;7(3):388-401.
- 40. Liao Q, Lam WWT, Wong CKH, et al. The relative effects of determinants on Chinese adults' decision for influenza vaccination choice: What is the effect of priming? *Vaccine* 2019;37(30):4124-32. doi: 10.1016/j.vaccine.2019.05.072 [published Online First: 2019/06/13]
- 41. Marshall HS, Chen G, Clarke M, et al. Adolescent, parent and societal preferences and willingness to pay for meningococcal B vaccine: A Discrete Choice Experiment. *Vaccine* 2016;34(5):671-77. doi: 10.1016/j.vaccine.2015.11.075
- 42. Ma Y, Li T, Chen W, et al. Knowledge, Attitudes and Practices (KAP) toward seasonal influenza vaccine among young workers in South China. *Hum Vaccin Immunother* 2018;14(5):1283-93. doi: 10.1080/21645515.2017.1423157 [published Online First: 2018/01/09]
- 43. de Bekker-Grob EW, Hofman R, Donkers B, et al. Girls' preferences for HPV vaccination: A discrete choice experiment. *Vaccine* 2010;28(41):6692-97. doi: 10.1016/j.vaccine.2010.08.001
- 44. Dahlstrom LA, Tran TN, Lundholm C, et al. Attitudes to HPV vaccination among parents of children aged 12-15 years-a population-based survey in Sweden. *International journal of cancer* 2010;126(2):500-7. doi: 10.1002/ijc.24712 [published Online First: 2009/07/02]
- 45. Huang Z, Sun X, Wagner AL, et al. Parent and caregiver perceptions about the safety and effectiveness of foreign and domestic vaccines in Shanghai, China. *PLoS One* 2018;13(5):e0197437. doi: 10.1371/journal.pone.0197437 [published Online First: 2018/05/22]
- 46. W Z. Public consultation on Vaccine Administration Act Xinhua Net: Xinhua Net; 2018. Available online: http://www.xinhuanet.com/politics/2018-11/11/c_1123696553.htm(accessed on 22 August 2020).
- 47. The Standing Committee of the National People's Congress. Vaccine Administration Act. Available online: https://www.nmpa.gov.cn/xxgk/fgwj/flxzhfg/20190702121701506.html (accessed on 22 August 2020).
- 48. Veldwijk J, Lambooij MS, Bruijning-Verhagen PCJ, et al. Parental preferences for rotavirus vaccination in young children: A discrete choice experiment. *Vaccine* 2014;32(47):6277-83. doi: 10.1016/j.vaccine.2014.09.004
- 49. Analysis Report on the Current Situation of China's Children's Economic Market in 2020 A Study on market Operation Situation and Development Prospect. Available from: http://baogao.chinabaogao.com/wentibangong/500635500635.html (accessed on 27 August 2020).

Figure titles and footnotes

Fig.1 An example of discrete choice question (translated version)

Fig.2 Provinces/municipalities selected in China

Fig.3 Importance Rating of Attributes

Fig.4 Simulated probabilities for influenza vaccination under change of a single attribute.

Notes: The baseline was presented by a 70% protection rate, 6-month duration, high risk of severe

side effect, domestic and costing CNY150.

Attributes	Attrik	outes levels	Explanation
	1	70%	The percentage of children that wi be protected against an influenz
Protection rate prevented by a vaccine	2	80%	infection when vaccinated.
	3	90%	
	1	6 months	The number of months that the vaccin protects against influenza.
Duration of vaccine-induced protection	2	12 months	protocts against mitachiza.
	1	1/100,000	The number of vaccinated children the will suffer from serious adverse ever
	2	2/100,000	due to vaccination. Serious adver
The risk of serious side effect	3	10/100,000	events included hospitalization prolongation of hospitalization, persiste or significant disability or incapacity.
	1	domestic	The vaccine manufacturers were divident into Chinese-made (domestic) and
Location of vaccine manufacturer	2	imported	foreign (imported) categories
	vaccine co	The parents may have to pay of t vaccine cost out-of-pocket.	
The out-of-pocket cost of a vaccine		75 Yuan	
	3	150 Yuan	

Table 1 Attributes and attributes levels for DCE choice questions

.

(

	All (N	=579)	Parents wh the consist				P-value
• / ``	Mean 31.07	SD 0.21	Mean 31.20	SD 0.25	Mean 30.59	SD 0.42	0.001.0
Age(years) Household size	4.60	0.05	4.57	0.25	4.73	0.42	0.231 a
Monthly income(RMB)	11988.4	482.04	12025.66	480.81	11860	1365.26	0.194 ^a 0.886 ^a
Monthly expenditure(RMB)	6796.17	250.81	6894.88	274.26	6455.23	593.19	0.880 °
Child' age	2.00	0.05	2.02	0.06	1.93	0.11	0.463 ^a
C	Ν	%	Ν	%	Ν	%	0.402
Relation							
Mother	459	79.27	354	78.84	105	80.77	0.633 b
Father	120	20.73	95	21.16	25	19.23	
Ethnic							
Han	534	92.23	414	92.20	120	92.31	0.969 ^b
Minority	45	7.77	35	7.80	10	7.69	
Child gender							
Male	294	50.78	220	49.00	74	56.92	0.111 ^b
Female	285	49.22	229	51.00	56	43.08	
One child							
Yes	242	41.80	189	42.09	53	40.77	0.787 ^b
No	337	58.20	260	57.91	77	59.23	
Child health							
Very good	278	48.01	219	48.78	59	45.38	0.415°
Good	224	38.69	173	38.53	51	39.23	
Fair or poor	77	13.3	57	12.69	20	15.38	
Job							
Working	355	61.31	278	61.92	77	59.23	0.580 ^b
Non-working	224	38.69	171	37.86	53	40.77	
Region							
Urban	357	61.66	288	64.14	69	53.08	0.022 b
Rural	222	38.34	161	35.86	61	46.92	
Education level							
Senior and below	211	53.71	234	52.12	77	59.23	0.152 ^b
College and above	268	46.29	215	47.88	53	40.77	

Table 2 Socio-demographic characteristics of the study population

1.a-Student's test, $b-\chi^2$ test, c-Wilcoxon rank-sum test.

Table 3. Mixed logit model results with only main effects

Attributes	β	SE	P-value	SD	SE	P-value
Non-vaccination	-5.236	0.757	< 0.001	6.391	0.586	< 0.001
Protection rate prevented by a vaccine						
(ref:70%)						
80%	0.935	0.089	< 0.001	0.310	0.229	0.175
90%	1.921	0.133	< 0.001	1.436	0.140	< 0.001
Risk of serious side effect event						
(ref:10/100,000)						
2/100,000	1.795	0.116	< 0.001	0.875	0.152	< 0.001
1/100,000	2.626	0.158	< 0.001	1.754	0.157	< 0.001
Location of vaccine manufacturer (ref:						
domestic)						
Imported	-0.319	0.082	< 0.001	1.181	0.105	< 0.001
Duration of vaccine-induced protection						
(ref:6month)						
12 months	0.596	0.067	< 0.001	0.571	0.101	< 0.001
Cost	-0.002	0.001	0.016	0.011	0.001	< 0.001
Log likelihood			-264	8.049		
No .of respondents			44	49		
No. of observations			134	446		

Note:

1.β-coefficient, SE-standard error, SD-standard deviation, ref-reference. All attributes except for cost were coded for dummy variables.

2. A total of 600 parents enrolled in the survey and 579 completed the majority of the questionnaire at least. Respondents (449) who passed the consistency test were included in the main DCE result reported in this table.

2 3 4		r
5 6 7 8 9		-
7 8 9		
10 11		
12 13		
14 15		
16 17 18		
19 20		
21 22		
23 24		
25 26		
27 28 29		
30 31		
32 33		
34 35		
36 37		
38 39 40		
40 41 42		-
43 44		
45 46]
47 48		
49 50 51		2
52 53		1
54 55		
56 57		
58 59		

Table 4 Results of Mixed logit model with main effects and interactions

Attributes	β	SE	P-value	95	%CI
Non-vaccination	-6.178	0.767	< 0.001	-7.680	-4.67
Protection rate prevented by a vaccine (ref:70%)					
80%	0.940	0.088	< 0.001	0.767	1.113
90%	1.218	0.235	< 0.001	0.758	1.679
Risk of serious side effect event (ref:10/100,000)					
2/100,000	1.804	0.116	< 0.001	1.576	2.031
1/100,000	2.334	0.265	< 0.001	1.815	2.854
Location of vaccine manufacturer (ref: domestic)					
Imported	-0.298	0.079	< 0.001	-0.454	-0.14
Duration of vaccine-induced protection(ref:6month)					
12 months	0.583	0.065	< 0.001	0.456	0.711
Cost	-0.001	0.002	0.624	-0.005	0.003
Interaction terms					
Non-vaccination * age (>30 years old)	2.843	0.778	< 0.001	1.319	4.367
Non-vaccination * rural	-2.216	0.973	0.023	-4.123	-1.30
Non-vaccination * father	-0.157	0.746	0.833	-1.620	-0.30
Non-vaccination *only one child	1.017	0.967	0.293	-0.878	2.911
90% protection rate* age (>30 years old)	0.581	0.209	0.005	0.173	0.990
90% protection rate* rural	0.732	0.220	0.001	0.302	1.163
90% protection rate* education level (college and above)	0.540	0.213	0.011	0.123	0.956
90% protection rate*only one child	-0.231	0.216	0.285	-0.655	0.192
Lowest risk of serious side effect*only one child	-0.506	0.236	0.032	-0.969	-0.04
Lowest risk of serious side effect*rural	0.838	0.240	< 0.001	0.367	1.309
Lowest risk of serious side effect* age (>30 years old)	0.372	0.223	0.096	-0.066	0.810
Lowest risk of serious side effect* education level	0.291	0.230	0.206	-0.160	0.742
(college and above)					
Log likelihood			-2631.978		
No .of respondents			449		
No .of observations			13446		

Note:

60

1.β-coefficient, SE-standard error, SD-standard deviation, CI-confidence interval, ref-reference. All attributes except for cost were coded for dummy variables.

2. A total of 600 parents enrolled in the survey and 579 completed the majority of the questionnaire at least. Respondents (130) who failed the consistency test were excluded from the main DCE result reported in this table.

3. Interaction terms were treated as fixed effect variables, and the others as random effect variables.

	Influenza vaccine A	Influenza vaccine B
Protection rate prevented by a	70%	90%
vaccine		
Duration of vaccine-induced	12 months 6 months	
protection		
Risk of severe side effect	2/100,000	1/100,000
Location of vaccine manufacturer	domestic	imported
Out-of-pocket cost of the vaccine	0 Yuan	75 Yuan
Which option would you be more likely to choose?		
In reality, would you vaccine your child the option you chose before	E	Yes
	Γ	No

Fig.1 An example of discrete choice question (translated version)

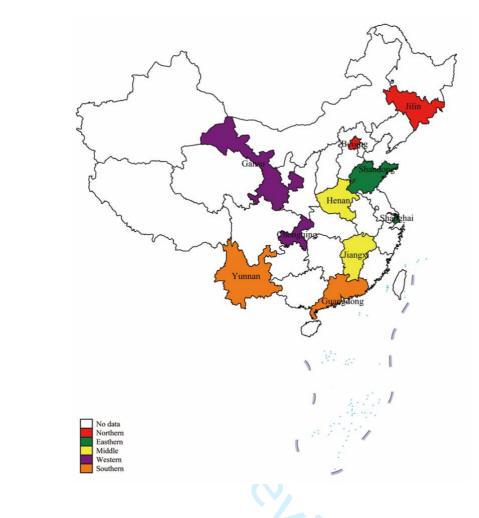
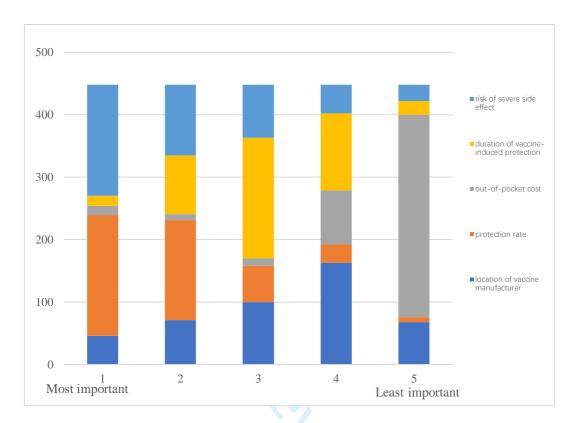
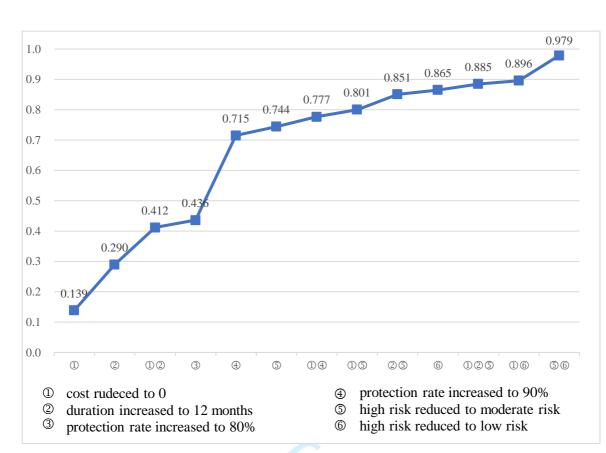




Fig.2 Provinces/municipalities selected in China

BMJ Open

Fig.4 Simulated probabilities for influenza vaccination under change of a single attribute

Notes: The baseline was presented by a 70% protection rate, 6-month duration, high risk of severe side

effect, domestic and costing CNY150.

SUPPLEMENTARY MATERIAL

Table S1 Mixed logit model results with only	y main effects for unforced choice in the full sample
Table SI Mixed logic model results with one	y main chects for unforced choice in the run sample

Attributes	β	SE	P-value	SD	SE	P-value
Non-vaccination	-3.487	0.477	< 0.001	5.172	0.455	< 0.001
Protection rate prevented by a vaccine						
(ref:70%)						
80%	0.803	0.069	< 0.001	0.065	0.303	0.830
90%	1.655	0.099	< 0.001	1.187	0.104	< 0.001
Risk of severe side effect event						
(ref:10/100,000)						
2/100,000	1.559	0.089	< 0.001	0.794	0.126	< 0.001
1/100,000	2.205	0.116	< 0.001	1.539	0.124	< 0.001
Location of vaccine manufacturer (ref:						
domestic)						
Imported	-0.257	0.062	< 0.001	0.934	0.080	< 0.001
Duration of vaccine-induced protection						
(ref:6month)						
12 months	0.594	0.055	< 0.001	0.599	0.090	< 0.001
Cost	-0.002	0.001	0.010	0.010	0.001	< 0.001
Log likelihood			-370	9.407		
Respondents, n			5	79		
Observations, n			173	337		

Note:

1.unforced choice-parents can choose to not vaccinate influenza vaccines for their children and the opt-out choice in the second stage was analyzed in the model.

2.β-coefficient, SE-standard error, SD-standard deviation, ref-reference. All attributes except for cost were coded dummy variables.

3. A total of 600 parents enrolled in the survey and 579 completed the majority of the questionnaire.

Attributes	β	SE	P-value	SD	SE	P-value
Protection rate prevented by a vaccine						
(ref:70%)						
80%	0.794	0.078	< 0.001	0.104	0.354	0.769
90%	1.679	0.119	< 0.001	1.271	0.128	< 0.001
Risk of severe side effect event						
(ref:10/100,000)						
2/100,000	1.718	0.111	< 0.001	0.982	0.141	< 0.001
1/100,000	2.558	0.156	< 0.001	1.774	0.154	< 0.001
Location of vaccine manufacturer (ref:						
domestic)						
Imported	-0.248	0.072	0.001	1.050	0.093	< 0.001
Duration of vaccine-induced protection						
(ref:6month)						
12 months	0.526	0.060	< 0.001	0.520	0.098	< 0.001
Cost	-0.001	0.001	0.190	0.010	0.001	< 0.001
Log likelihood			-239	9.908		
Respondents, n			4	77		
Observations, n			95	38		

Table S2 Mixed logit model results with only main effects for forced-choice data

Note:

1.forced choice: parents were forced to choose the preferred vaccine from alternatives presented and the choice in the first stage was analyzed in the model.

2.β-coefficient, SE-standard error, SD-standard deviation, ref-reference. All attributes except for cost were coded dummy variables.

3. A total of 600 parents enrolled in the survey and 579 completed the majority of the questionnaire at least. Respondents (477) who passed the consistency test in the first stage were included in the main effects DCE result reported in this table.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
5 0
51
52
52 53
55 54
54 55
55 56
50 57
57 58
58 59
59 60
55
60

STROBE Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	2-3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
.		was done and what was found	
Introduction	2	Euclair the exist if a background and extinuals for the investigation hairs	15
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-8
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	8
-		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	9
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	NA
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	9
		(d) If applicable, describe analytical methods taking account of sampling	NA
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	11
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	NA
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	10
I		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	10
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	11,1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted	NA
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	

		(b) Report category boundaries when continuous variables were	NA
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	NA
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	11,12
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	13,14
Limitations	19	Discuss limitations of the study, taking into account sources of potential	15
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	13,14
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	16
		study and, if applicable, for the original study on which the present article	
		is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Parental preference for influenza vaccine for children in China: A discrete choice experiment

Article Type: Orig Date Submitted by the Author: 16- Complete List of Authors: Li, S Hea Lab Gor Lab Gor Lab Gor Gor Hea Lab Che Liu, Mar Hea Lai, Rom Stur in E Ma, Stur Hou	jopen-2021-055725.R1 ginal research -Feb-2022 Shun-Ping; Shandong University School of Public Health, Centre for alth Management and Policy Research; Shandong University, NHC Key of Health Economics and Policy Research ng, Tiantian; Shandong University School of Public Health, Centre for alth Management and Policy Research; Shandong University, NHC Key of Health Economics and Policy Research; Shandong University, NHC Key of Health Economics and Policy Research en, Gang; Monash Business School, Centre for Health Economics , Ping; Shandong University School of Public Health, Centre for Health nagement and Policy Research; Shandong University, NHC Key Lab of alth Economics and Policy Research
Date Submitted by the Author: 16- Complete List of Authors: Li, G Lab Gorn Lab Gorn Lab Che Liu, Mar Hea Lab Che Liu, Mar Hea Lai, Rom Studie Studie Hou	Feb-2022 Shun-Ping; Shandong University School of Public Health, Centre for alth Management and Policy Research; Shandong University, NHC Key of Health Economics and Policy Research ng, Tiantian; Shandong University School of Public Health, Centre for alth Management and Policy Research; Shandong University, NHC Key of Health Economics and Policy Research en, Gang; Monash Business School, Centre for Health Economics , Ping; Shandong University School of Public Health, Centre for Health nagement and Policy Research; Shandong University, NHC Key Lab of
Author: 16- Complete List of Authors: Li, S Hea Lab Gor Hea Lab Che Liu, Mar Hea Lai, S Che Liu, Mar Hea Lai, S Che Liu, Mar Hea Lai, S Che Liu, Mar Hea Lab Che Liu, S Che Liu, S S Che Liu, S Che Liu, S Che Liu, S Che Liu, S Che Liu, S Che S Che Liu, S Che S C Che S C Che S Che S C C Che S C C Che S C C Che S C C Che C C Che C C C Che S C C C C C C C C C C C C C C C C C C	Shun-Ping; Shandong University School of Public Health, Centre for alth Management and Policy Research; Shandong University, NHC Key of Health Economics and Policy Research ng, Tiantian; Shandong University School of Public Health, Centre for alth Management and Policy Research; Shandong University, NHC Key of Health Economics and Policy Research en, Gang; Monash Business School, Centre for Health Economics , Ping; Shandong University School of Public Health, Centre for Health nagement and Policy Research; Shandong University, NHC Key Lab of
Hea Lab Gor Hea Lab Che Liu, Mar Hea Lai, Ron Stuu in E Ma, Stuu Hou	alth Management and Policy Research; Shandong University, NHC Key o of Health Economics and Policy Research ng, Tiantian; Shandong University School of Public Health, Centre for alth Management and Policy Research; Shandong University, NHC Key o of Health Economics and Policy Research en, Gang; Monash Business School, Centre for Health Economics , Ping; Shandong University School of Public Health, Centre for Health nagement and Policy Research; Shandong University, NHC Key Lab of
Stu	A Kiaozhen; Peking University, School of Public Health ng, Hongguo; Peking University, China Center for Health Development idies; Beijing University of Chinese Medicine, Institute for Excellence Evidence-based Chinese Medicine , Xiaochen; Peking University, China Center for Health Development idies u, Zhiyuan; Fudan University School of Public Health ng, Hai; Peking University, China Center for Health Development idies; Peking University, Health Science Center-Chinese Center for ease Control and Prevention Joint Center for Vaccine Economics
Primary Subject Heading :	plic health
Secondary Subject Heading: Pub	plic health, Paediatrics, Infectious diseases
Keywords: PUE	

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1 ว		
2 3	1	Title: Parental preference for influenza vaccine for children in China: A discrete choice experiment
4 5		
6	2	Author names:
7	3	Shunping Li ^{1,2,3} , Tiantian Gong ^{1,2,3} , Gang Chen ⁴ , Ping Liu ^{1,2,3} , Xiaozhen Lai ⁵ , Hongguo Rong ^{6,7} ,
8 9	4	Xiaochen Ma ⁶ , Zhiyuan Hou ⁸ , Hai Fang ^{6,9,10}
10 11	5	Affiliations:
12	6	1. Centre for Health Management and Policy Research, School of Public Health, Cheeloo College
13 14	7	of Medicine, Shandong University, Jinan, 250012, China
15	8	2. NHC Key Lab of Health Economics and Policy Research (Shandong University), Jinan,
16 17	9	250012, China
18	10	3. Center for Health Preference Research, Shandong University, Jinan 250012, China
19 20	11	4. Centre for Health Economics, Monash Business School, Monash University, Melbourne 3145,
20 21	12	Australia.
22 23	13	5. School of Public Health, Peking University, Beijing 100083, China
23 24	14	6. China Center for Health Development Studies, Peking University, Beijing 100083, China
25	15	7. Institute for Excellence in Evidence-based Chinese Medicine, Beijing University of Chinese
26 27	16	Medicine, Beijing 100029, China
28	17	8. School of Public Health, Fudan University, Shanghai 200032, China
29 30	18	9. Peking University Health Science Center-Chinese Center for Disease Control and Prevention
31	19	Joint Center for Vaccine Economics, Beijing 100083, China
32 33	20	10. Key Laboratory of Reproductive Health National Health Commission of the People's Republic
34	21	of China, Beijing 100083, China
35 36		
37	22	Corresponding author information:
38 39	23	Hai Fang, Ph.D, Email: hfang@bjmu.edu.cn. Tel: +86 (10) 82805702
40	24	E-mail for co-authors:
41 42	27	E-mail for co-authors: Shunping Li: lishunping@sdu.edu.cn Tiantian Gong: tian_gchn@163.com
43	25	Shunping Li: lishunping@sdu.edu.cn
44 45	26	
46	27	Gang Chen: gang.chen@monash.edu
47 48	28	Ping Liu: liuping_sdu@163.com
49	29	Xiaozhen Lai: laixiaozhen@pku.edu.cn
50 51	30	Hongguo Rong: hgrong@bjmu.edu.cn
52	31	Xiaochen Ma: xma@hsc.pku.edu.cn
53 54	32	Zhiyuan Hou: zyhou@fudan.edu.cn
55		
56 57		
58		
59 60		
00		

2 3 4	1
4 5 6	2
7 8 9	3
10 11 12	4
13 14	5
15 16 17	6
18 19	7
20 21 22	8
23 24 25	9
26 27	10
28 29 30	11
31 32 33	12
34 35	13
36 37 38	14
39 40	15
41 42 43	16
44 45 46	17
47 48	18
49 50 51	19
52 53	20
54 55 56	21
57 58 59	22

60

ABSTRACT: 1 **Objectives:** To investigate what factors affect parents' influenza vaccination preference for their 2 children and whether there exists preference heterogeneity among respondents in China. 3 Design: Cross-sectional study. A discrete choice experiment (DCE) was conducted. Five attributes 4 were identified based on literature review and qualitative interviews, including protection rate, 5 6 duration of vaccine-induced protection, risk of serious side effects, location of manufacturer and outof-pocket cost. 7 Setting: Multistage sampling design was used. According to geographical location and the level of 8 economic development, ten provinces in China were selected, and the survey was conducted at 9 community healthcare centers or stations. 0 Participants: Parents with at least one child aged between 6 months and 5 years old were recruited 1 2 and the survey was conducted via a face-to-face interview in 2019. In total, 600 parents completed the survey, and 449 who passed the internal consistency test were included in the main analysis. 3 Main Outcomes and Measures: A mixed logit model was used to estimate factors affecting parents' 4 preference to vaccinate their children. In addition, sociodemographic characteristics were included to 5 explore the preference heterogeneity. 6 **Results:** In general, respondents preferred to vaccinate their children. All attributes were statistically 7 significant and among them, the risk of severe side effects was the most important attribute, followed 8 by the protection rate and duration of vaccine-induced protection. Contrary to our initial expectation, 9 respondents have a stronger preference for the domestic than the imported vaccine. Some preference 20 heterogeneity among parents was also found and in particular, parents who were older, or highly 21

23 **Conclusion:** Vaccination safety and vaccine effectiveness are the two most important characteristics

educated placed a higher weight on a higher protection rate.

BMJ Open

1	
2 3 4	1
5 6	2
7 8 9	3
10 11	
12 13	4
14 15	5
16 17 18	6
19 20	7
21 22 23	8
24 25	9
26 27 28	10
29 30	11
31 32	10
33 34	12
35 36	
37 38	
39	
40 41	
42 43	
44 45	
46	
47 48	
49 50	
51 52	
53	
54 55	
56 57	
58 59	
60	

1	that influenced parents' decision to vaccinate against influenza for their children in China. Results
2	from this study will facilitate future policy implementations to improve vaccination uptake rates.
3	Key Words: discrete choice experiment, influenza vaccine, children, parental preference, China
4	Strengths and limitations of this study:
5	• This is the first nationwide study to explore parental preference for influenza vaccine for their
6	children using DCEs in mainland China.
7	• The experimental design and data analysis were conducted following the International Society
8	for Pharmacoeconomics and Outcomes Research (ISPOR) Conjoint Analysis Task Forces.
9	• The external validity of DCE results cannot be testified, which is a common limitation of most
10	DCE studies.
11	• We did not differentiate barriers and facilitators among factors associated with the vaccination
12	decision.
	decision.

1. Introduction

Influenza is an acute respiratory infection caused by influenza viruses and can result in substantial mortality¹. Among 4 types of influenza viruses, influenza A and influenza B can create epidemics². According to the World Health Organization (WHO), annual epidemics of influenza can lead to 3 to 5 million cases of severe illness and about 290,000 to 650,000 respiratory deaths worldwide ². In China, up to 88,100 seasonal influenza-associated respiratory excess deaths occurred each year from 2010 to 2014, accounting for 8.2% of deaths from respiratory diseases ³. All age groups can be affected by influenza, however, the prevalence of influenza among children under 48 months was highest (up to 33%)⁴. In central China, children under 5 years old accounted for 69% of inpatients owing to influenza-associated severe acute respiratory infections ⁵. The economic burden of influenza-associated outpatient and inpatient health care utilization is substantial in China, particularly for young children ⁶⁷.

It is cost-effective or cost-saving to vaccinate against influenza⁸⁹. In China, two types of influenza vaccines have been licensed, including trivalent inactivated influenza vaccine (IIV) and tetravalent IIV; whereas the live attenuated influenza vaccine (LAIV) has not been approved ¹⁰. The vaccination rate in children 6 months to 18 years of age was 49% in the United States during the 2010-2011 flu seasons¹¹, the vaccination rates in 2010 and 2011 in the Israeli paediatric population were 21.4% for children from 6 months to 2 years of age and 16.1% for children from 2 to 5 years of age¹². However, the vaccination coverage among children aged under 5 years was stable at a low level of 3-4% from 2015 to 2019 in China¹³. It is important to understand parental attitudes and preferences for vaccines and to explore key factors associated with parents' decisions to vaccinate their children.

22 Identifying facilitators and barriers to influenza vaccination would be important to promote

BMJ Open

vaccination. A systematic review revealed that several facilitators for parents to accept influenza vaccination were belief in vaccine efficacy and influenza severity and susceptibility, perception of advantages of the school setting (e.g., it is very convenient to vaccinate children in school), and trust in vaccines¹⁴. In China, the barriers were complex. One study surveyed various populations and found that the most common reason for being unvaccinated in the influenza vaccine was worrying about the side effects¹⁵. Another study that targeted at quadrivalent influenza vaccine for school-aged children showed that the pivotal barriers hindering parents from having their children vaccinated were fear of side effects and no perceived susceptibility¹⁶. On the contrary, one study indicated that perceived severity and knowledge about influenza were not independently significantly associated with uptake¹⁷. Children aged 6-59 months, recommended routine influenza vaccination strongly by WHO², are also among the priority vaccination groups stated by the Chinese Center for Disease Control and Prevention (CDC)¹⁰. However, the influenza vaccine for children has not been covered by China's National Immunization Program. The decision to vaccinate against influenza for children mostly depends on parents' views and preferences. Consequently, it is crucial to understand the factors affecting parents' decisions to vaccinate their children which will help the government to implement more targeted vaccination promotion strategies, so as to improve the vaccination rate of influenza vaccine for the nation.

As a stated preference method, DCEs can simulate different hypothetical vaccination scenarios and elicit respondents' preferences. DCEs have been widely used to estimate preference for vaccines ¹⁸, such as human papillomavirus, influenza, and hypothetical vaccines ¹⁹⁻²¹. Although there exist some DCE studies on vaccines in China, respondents normally came from one particular province ²² ²³. This is the first nationwide DCE study on vaccination that aims to recruit respondents by involving

Page 7 of 33

BMJ Open

parents from ten provinces to understand the preference for influenza vaccination. This study aimed to address two research questions: i) to elicit the preference of parents when choosing influenza vaccine for their children; ii) to investigate whether there exists preference heterogeneity among respondents.

2. Methods

Discrete choice experiments are increasingly used in health economics to identify and evaluate the participants' preferences ²⁴. DCEs can also be used to estimate participants' willingness to pay as well as to predict program uptake rates given a set of goods or services characteristics ^{25 26}. In the DCE, a vaccine profile can be described by a series of attributes and their corresponding levels, and under the random utility theory, respondents choose the option with the highest utility from the alternatives presented ²⁷. The DCE design and analysis were conducted following the checklist and reports of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Conjoint Analysis Task Forces ²⁸⁻³⁰.

2.1 Survey design

Based on previously published literature ^{18 20 31}, twelve attributes were identified initially. To assess the appropriateness of these potential attributes and their levels and to further narrow down the number of attributes, four experts on vaccination were interviewed face-to-face in Jinan Maternity and Childcare Hospital. Two focus groups (n=12) were also conducted. One focus group included four parents only, and the other contained one vaccine expert, three parents, and four health economics/DCE experts. They were asked to review and rank the list of attributes. Finally, five attributes were selected for this study (Table 1). The attribute levels were also decided based on the influenza vaccine instructions and clinical randomized controlled trials evidence. They have been

reviewed by experts and discussed in the focus group interviews.

[Table 1] A D-efficient design was developed using Ngene Software (www.choice-metrics.com), which yielded 60 choice sets that were further divided into six blocks to reduce respondents' cognitive burden. To check for internal consistency, one choice set in each block was duplicated. Each respondent received one block randomly and was asked to answer 11 choice sets. For those who failed the consistency test, their data were excluded from the main analysis. Before completing DCE questions, respondents were also asked to rate the importance of five attributes. Given vaccination is a voluntary decision, an opt-out option was included and implemented by using a two-stage response design to maximize the information gained from the respondents ³². In the first stage, the respondents were forced to choose between two hypothetical vaccinations. Then, they were asked to confirm whether they would vaccinate their preferred option from the first stage for their children. In addition to DCE questions (which were presented in a hardcopy questionnaire), socio-demographic characteristics of respondents and their children were collected using an iPad. A pilot was conducted among 15 parents in Beijing and Jinan in July 2019 to examine the acceptability, comprehensibility, and validity. A few modifications were implemented based on the feedback from the pilot. An example of a final choice set was shown in Figure 1.

[Figure 1]

2.2 Study population and data collection

This DCE, as well as a related DCE on parental preference on vaccination for children in general ³³, were embedded in a nationwide project on Strategies of Influenza Vaccination in China study ³⁴. A

BMJ Open

multistage sampling method was adopted to elicit parental values and preferences for influenza vaccines across the country, the details of which has also been reported elsewhere ³³. Initially, ten provinces/municipalities were selected according to geographical location and the level of economic development, including the eastern region (Shandong and Shanghai), western region (Gansu and Chongqing), southern region (Yunnan and Guangdong), northern region (Beijing and Jilin), middle region (Henan and Jiangxi), which can be seen in Figure 2. Next, except for three municipalities (Beijing, Shanghai, and Chongqing), in each of the other seven provinces, one provincial capital, and one non-provincial-capital city were chosen. A district and a county were randomly selected from each city. Finally, 30 parents with at least one child aged between 6 months and 5 years old were randomly recruited from each community healthcare center or station. [Figure 2] According to a rule of thumb suggested by Orme³⁵, a sample size of 75 (500*3/2*10=75) would be desirable for the main effects model based on the number of analysis cells, alternatives and choice sets. We aimed to recruit a minimum of 100 respondents in each region ^{26 36}. Hence, we intended to survey 60 parents in each province and 120 parents in each region. The anonymous survey was administered between August and October 2019. Data was collected through one-by-one face-to-face interviews with parents waiting for routine vaccination for their children or remaining for observation after routine vaccination. The vaccination rates for routine vaccines, such as DTaP, HepB, were more than 95% in China³⁷, so the sample bias for participants recruited from the vaccination sites was very limited. Before enrolling in the survey, respondents were informed about the purpose and content of the survey by interviewers who have been trained by

59 22 the research team. Electronic written consent was obtained from all respondents. The study received

ethical approval from the Peking University Institutional Review Board (IRB00001052-19076).

2.3 Statistical analysis

Responses to the hardcopy DCE questionnaire were double-entered into a database set up by the EpiData 3.1 software and then matched with other socio-demographic characteristics obtained from the iPad for statistical analyses. In cases where the number of missing DCE responses was more than two tasks or the majority of socio-demographic data was missing, respondents were excluded from the final analysis.

A mixed logit model was employed to analyze DCE data which takes into account potential preference heterogeneity ³⁸. The utility function can be written as below:

$$U_{ijt} = X_{ijt}\beta + \varepsilon_{ijt}$$

Where U_{iit} is the utility that respondent i derives from choosing alternative j in the choice set t, X_{iit} is a vector representing the levels of the attributes, β is a vector of coefficients corresponding to attribute levels, and ε_{iit} is a random error term. The cost attribute was treated as a continuous variable, while other attributes were dummy coded. In a mixed logit model, coefficients of attribute levels are commonly assumed to follow a normal distribution to account for preference heterogeneity, i.e., β is composed of a mean coefficient as well as a standard deviation. A significant positive (negative) coefficient represents a positive (negative) preference for an attribute level. The importance of an attribute can be calculated through the difference of level coefficients in the same attribute. Therefore, the relative importance of attributes can be estimated by comparing the utility range of each attribute

We further examined whether the elicited preferences varied by particular socio-demographic characteristics. Finally, vaccination update rates were predicted to facilitate the interpretation of DCE

BMJ Open

results to decision-makers. Descriptive analyses including Student's t-test, χ^2 test, and Wilcoxon rank-sum test were adopted to compare means and proportions between subgroups, respectively. All statistical analyses were conducted using Stata 12.1 software. The mixed models were estimated by simulated maximum likelihood using the Stata command developed by Hole⁴⁰ and 2000 random draws were used to achieve stability.

2.4 Patient and public involvement

The study did not involve the patients. The public was involved at the stage of questionnaire design, pretesting, and feedback from respondents was incorporated into questionnaire revisions.

3. Results

A total of 600 parents consented and participated in the survey. Among them, 3 and 18 parents were excluded from the analysis due to missing socio-demographic information and failure in completing the majority of DCE questions, respectively. Among the remaining 579 parents, they had a mean age of 31 years old, most (79%) of them are mothers of children, and the mean age of their children was 2 years old. At the time of the survey, 355 (61%) parents were working and 337 (58%) had at least two children. Among DCE responses, 449 (78%) respondents passed the consistent test (i.e., duplicated task) and they were treated as the main study sample. There was no significant difference in socio-demographic characteristics between those who passed and who failed the consistent test except for the region (urban vs rural). More details on respondents' socio-demographic characteristics are presented in Table 2.

[Table 2]

3.1 Importance rating

Figure 3 showed the relative importance of five DCE attributes ranked by respondents prior to the pairwise choice tasks. The most important attribute was the protection rate followed by the risk of severe side effect events, whereas the out-of-pocket cost of the vaccine and duration of vaccineinduced protection were less important.

[Figure 3]

3.2 Discrete choice experiment results

The DCE results incorporating the second-stage choices and based on the main study sample are reported in Table 3. As a sensitivity analysis, the full sample analysis results are shown in Table S1 whilst the analyses on forced-choice responses from the main study sample are presented in Table S2. All attributes were statistically significant. Overall, similar patterns can be seen in the supplementary material.

Focusing on Table 3, the mixed logit model estimates suggested that the higher the protection rate, the longer the duration of vaccine-induced protection, the lower the risk of severe side effects, the lower the cost, the more likely that parents would be willing to vaccine for their children. Contrary to our initial hypothesis, respondents prefer domestic rather than imported vaccination. Most estimated standard deviations were significant, indicating the existence of preference heterogeneity among parents.

The vaccine with the lowest risk of severe side effects had the highest preference weight when compared with a relatively high risk of severe side effects, followed by the highest protection rate. And the duration of vaccine-induced protection was less important. Reducing the risk of severe side effects from high to low could yield 4.4 (2.626/0.596) times as much as utilities increasing the duration of vaccine-induced protection from 6 months to 12 months.

BMJ Open

2 3 4	1	The coefficient of non-vaccination was significantly negative, indicating that on average the
5 6	2	parents were more likely to vaccinate their children against influenza regardless of the vaccine profile
7 8 9	3	described by attributes and levels.
10 11	4	[Table 3]
12 13 14	5	To evaluate whether there was a significant difference between parents with various characteristics,
15 16 17	6	a series of interaction terms between respondents' characteristics and attribute levels were explored
18 19	7	and the result was reported in Table 4. We found that parents who were beyond 30 years old or lived
20 21 22	8	in urban were more likely to choose vaccination. Highly educated, those beyond 30 years old and
23 24	9	those who lived in rural areas placed a higher weight on the highest protection rate. Those who lived
25 26 27	10	in rural areas also had a stronger preference for the lowest risk of severe side effects. Other than what
28 29 30	11	has been reported, we found no significant influence between attribute levels and the working status
31	12	of parents and the gender of children.
32	12	
33 34	13	
33	13	[Table 4]
33 34 35 36	13 14	[Table 4] 3.3 Predicted uptake rates for different scenarios
33 34 35 36 37 38	13	[Table 4]
 33 34 35 36 37 38 39 40 41 42 43 	13 14	[Table 4] 3.3 Predicted uptake rates for different scenarios
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	13 14 15	[Table 4] 3.3 Predicted uptake rates for different scenarios Figure 4 showed the results of predicted probability when changing a particular attribute level based
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	13 14 15 16	[Table 4] 3.3 Predicted uptake rates for different scenarios Figure 4 showed the results of predicted probability when changing a particular attribute level based on results reported in Table 3. Corresponding to the reference within DCE's main effect analysis, the
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	13 14 15 16 17	[Table 4] 3.3 Predicted uptake rates for different scenarios Figure 4 showed the results of predicted probability when changing a particular attribute level based on results reported in Table 3. Corresponding to the reference within DCE's main effect analysis, the scenario was selected as the baseline presented by 70% protection rate, 6-month duration, high risk
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	 13 14 15 16 17 18 	[Table 4] 3.3 Predicted uptake rates for different scenarios Figure 4 showed the results of predicted probability when changing a particular attribute level based on results reported in Table 3. Corresponding to the reference within DCE's main effect analysis, the scenario was selected as the baseline presented by 70% protection rate, 6-month duration, high risk of severe side effects, domestic and costing CNY150. For the change within an attribute, the decrease
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	 13 14 15 16 17 18 19 	[Table 4] 3.3 Predicted uptake rates for different scenarios Figure 4 showed the results of predicted probability when changing a particular attribute level based on results reported in Table 3. Corresponding to the reference within DCE's main effect analysis, the scenario was selected as the baseline presented by 70% protection rate, 6-month duration, high risk of severe side effects, domestic and costing CNY150. For the change within an attribute, the decrease in the risk of serious adverse effects from high to low had the largest effect on preference for influenza
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	 13 14 15 16 17 18 19 20 	[Table 4] 3.3 Predicted uptake rates for different scenarios Figure 4 showed the results of predicted probability when changing a particular attribute level based on results reported in Table 3. Corresponding to the reference within DCE's main effect analysis, the scenario was selected as the baseline presented by 70% protection rate, 6-month duration, high risk of severe side effects, domestic and costing CNY150. For the change within an attribute, the decrease in the risk of serious adverse effects from high to low had the largest effect on preference for influenza vaccines, in which the probability of taking that vaccination increased by 86%. For the changes with

protection rate.

[Figure 4]

4. Discussion

This study has estimated parental preference for vaccinating against influenza for their children. To the best of our knowledge, this is the first nationwide study to explore parental preference for influenza vaccine delivery using DCEs in mainland China. A previous DCE study conducted in Hong Kong Special Administrative Region surveyed the adult to assess the relative effects of different factors on influenza vaccination choices ⁴¹.

We found that on average respondents from this study preferred vaccination against influenza for their children from the hypothetical vaccination scenarios, which is consistent with other DCE study findings ^{31 42}. The relatively high acceptance was also documented in another survey that aimed to study the knowledge, attitudes, and practices towards the influenza vaccine among young workers in China⁴³.

In general, all the attributes included in our study were statistically significant and preference heterogeneity existed among both observable and non-observable personal characteristics. Among all the attributes, the risk of severe side effects and the protection rate of the vaccine were the top two most important characteristics perceived by parents. Their important roles in the choice for vaccination are in line with other influenza vaccine DCE studies ²⁰³¹. Similar findings have also been reported in other vaccines. A DCE study surveying girls' preference for HPV vaccination reported that respondents preferred low severe side effects ⁴⁴ and other studies found willingness to vaccinate was closely related to vaccine safety and efficacy ^{42 45}. The above findings could suggest that reducing the risk of severe side effects and increasing vaccine effectiveness could be regarded as two universal

BMJ Open

procedures to effectively achieve higher vaccination coverage.

Somewhat surprising, given the recent Changchun Changsheng vaccine incident, this study found that parents preferred the domestic vaccine to the imported vaccine. In 2017 and 2018, Changchun Changsheng Biotechnology Co., Ltd. had two consecutive cases of serious violations of the drug production quality management specification, such as fraud in the vaccine production process. It has had a very bad impact on society. However, the same finding was also reported in one recent DCE study conducted in Shanghai, even though there are substantial differences, e.g., study population ²³. One potential reason for which domestic vaccine was preferred may be that it is thought to be more effective ⁴⁶ and more accessible. And the other is that the regulatory environment is more stringent. Indeed, the government facilitated a public consultation after the incident in 2018⁴⁷, and the Standing Committee of the National People's Congress voted to adopt the first Vaccine Administration Act in 2019, which aimed to tighten vaccine regulation ⁴⁸.

The out-of-pocket cost was found to be less important compared to the other attributes. Based on the calculation of uptake rates, the probability of vaccination was affected slightly by a change in cost. This differs from some previous studies in which cost was found to be an important factor driving preferences ^{21 39 49}. The above results were incomparable for our study due to differences in targeted vaccines. In reality, the out-of-pocket cost of the influenza vaccine is affordable when compared to the household income. For example, the highest out-of-pocket cost of the influenza vaccine made up about 1% of the monthly income in our study. Furthermore, most families in China are willing to spend more for their children ⁵⁰, and the cost is not a key factor.

When studying the preference heterogeneity, the protection rate has again stood out as a key attribute that those who were older, lived in a rural area or got higher education all placed a higher

weight on a higher protection rate. By far influenza vaccine has not been included in the national
immunization program schedule in China and to improve the vaccination rate in particular for people
mentioned above, providing more information about as well as improving the safety and effectiveness
of vaccines will be the most important factor.

Consistent with the results of our study, vaccine safety and serious adverse events are repeatedly shown to be a top concern for parents ⁵¹. Not only the provision of information to parents or education interventions, but also communication strategies should be focused on for healthcare communicators/practitioners. Communication processes that build rapport and trust are needed. Healthcare providers play a vital part and are often the most trusted sources of vaccine information ⁵². For the relevant regulatory department, the strict supervision of domestic vaccines should be strengthened to increase parents' trust in influenza vaccine, to improve the vaccination rate of influenza vaccine for children. Vaccine providers should conduct self-examination and establish good credit. On the premise of improving the safety and effectiveness of influenza vaccines, vaccine manufacturers should pay more attention to publicity and brand building.

The present study had several limitations. Firstly, our study includes 600 respondents recruited from 10 provinces (and among them, 449 of them were included for the main analysis) which maybe not large enough to represent the whole of China. However, we did not find significant regional preference heterogeneity in the analysis. Secondly, though attributes included in our study were identified and selected through previous literature, interview with experts, and focus group discussions, following the recommended procedure, we cannot guarantee that all attributes concerned with parental vaccination choice were included. Thirdly, we did not differentiate barriers and facilitators among factors associated with the vaccine, it may be more useful to distinguish between

39 144041

BMJ Open

barriers and facilitators. Finally, similar to most DCE studies, the external validity of DCE results
cannot be testified. Nevertheless, the consistency test and importance rating were implemented to
confirm DCE's internal validity.

5. Conclusion

Vaccinating influenza vaccines is the most effective measure to prevent the prevalence of influenza. Although WHO and the Chinese CDC have recommended the influenza vaccine to the whole population, especially the youth, the vaccination rate is extremely low. This study aimed to investigate national parents' preference for vaccinating against influenza for their children based on a nationwide sample. Based on a discrete choice experiment, the study showed that on average parents were more willing to vaccinate their children. Among the five attributes been examined, the risk of severe side effects and protection rate were key drivers of preference among parents in China, and preference heterogeneity was found among parents. The findings from this study will shed light on future policy implementation to improve the influenza vaccination rate in China.

⁴²/₄₃ 15 Contributorship statement:

- ⁴⁴ 16 Conceptualization: Shunping Li, Hai Fang.
- ⁴⁶ 17 Data curation: Shunping Li, Tiantian Gong.
- ⁴⁸ 18 Formal analysis: Tiantian Gong, Ping Liu.
- 50 19 Funding acquisition: Hai Fang.
- Methodology: Gang Chen, Tiantian Gong, Ping Liu.
- ⁵⁴ 21 Project administration: Shunping Li, Gang Chen.⁵⁵
- 56 22 Supervision: Shunping Li, Hai Fang.
- 58 23 Write-original draft: Tiantian Gong59
- 60 24 Writing-review & editing: Shunping Li, Tiantian Gong, Gang Chen, Ping Liu, Xiaozhen Lai,

- Hongguo Rong, Xiaochen Ma, Zhiyuan Hou, Hai Fang. **Competing interests:** There are no competing interests for any author. Funding: This work was supported by the National Natural Science Foundation of China (grant number 71774006). **Data availability statement:** Data are available upon request. To obtain data, please email Shunping Li (lishunping@sdu.edu.cn). Ethical Approval statement: The study received ethical approval from the Peking University
 - Institutional Review Board (IRB00001052-19076).
 - Patient consent for publication: Not required.
 - Acknowledgements: We would like to thank all participants for their contribution to this study.
 - beet tellewony Word count: 3375. 22 11

2		
3	1	Rafaranca
4	1	Reference
5 6	2	
7	2	1. Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling
8	3	study. <i>The Lancet</i> 2018;391(10127):1285-300. doi: <u>https://doi.org/10.1016/S0140-6736(17)33293-2</u>
9 10	4	2. WHO. Influenza (seasonal) fact sheet. Available online: https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)
10 11	5	(accessed on 12 August 2020).
12	6	3. Li L, Liu Y, Wu P, et al. Influenza-associated excess respiratory mortality in China, 2010-15: a population-based study. <i>Lancet</i>
13	7	Public Health. Sep 2019;4(9):e473-e481. doi:10.1016/s2468-2667(19)30163-x
14 15	8	4. Xingxing Zhang, Shuangsheng Wu, Quanyi Wan, Li Zhang, Man Zhang, Wei Duan, et al. Estimated infection rates and
16	9	incidence rates of seasonal influenza in Beijing during the 2017-2018 influenza season. International Journal of Virology.
17	10	2019,26:73-76.
18	11	5. Yu H, Huang J, Huai Y, et al. The substantial hospitalization burden of influenza in central China: surveillance for severe, acute
19 20	12	respiratory infection, and influenza viruses, 2010-2012. Influenza and other respiratory viruses. Jan 2014;8(1):53-65.
20	13	doi:10.1111/irv.12205
22	14	6. Yang J, Jit M, Leung KS, et al. The economic burden of influenza-associated outpatient visits and hospitalizations in China: a
23	15	retrospective survey. Infectious diseases of poverty. Oct 6 2015;4:44. doi:10.1186/s40249-015-0077-6
24 25	16	7. Jia Yu, Tao Zhang, Yin Wang, Junmei Gao, Jun Hua, Jianmei Tian, et al. Clinical characteristics and economic burden of
25	17	influenza among children under 5 years old, in Suzhou, 2011-2017. Chinese Journal of Epidemiology. 2018,39:847-51.
27	18	8. Peasah SK, Azziz-Baumgartner E, Breese J, Meltzer MI, Widdowson MA. Influenza cost and cost-effectiveness studies
28	19	globallya review. Vaccine. Nov 4 2013;31(46):5339-48. doi:10.1016/j.vaccine.2013.09.013
29 30	20	9. Ting EEK, Sander B, Ungar WJ. Systematic review of the cost-effectiveness of influenza immunization programs. Vaccine. Apr
31	21	4 2017;35(15):1828-1843. doi:10.1016/j.vaccine.2017.02.044
32	22	10. Chinese Center for Disease Control and Prevention. Technical guidelines for seasonal influenza vaccination in China, 2019-
33	23	2020. Chinese Journal of Viral Diseases. 2019,06: 1-10 (2019).
34 35	24	11. Livni G, Wainstein A, Birk E, et al. Influenza Vaccination Rate and Reasons for Nonvaccination in Children With Cardiac
36	25	Disease. Pediatr Infect Dis J. 2017 Nov;36(11):e268-e271. doi: 10.1097/INF.00000000001579.
37	26	12. Scheuerman O, Zilber E, Davidovits M, et al. Nephrologists need to play a key role in improving annual influenza vaccination
38	27	rates in children with kidney disease. Acta Paediatr. 2017 May;106(5):812-818. doi: 10.1111/apa.13763.
39 40	28	13. Zhang Y, Muscatello DJ, Cao Z, et al. A model of influenza infection and vaccination in children aged under 5 years in Beijing,
41	20 29	China. Hum Vaccin Immunother. 2020 Jul 2;16(7):1685-1690. doi: 10.1080/21645515.2019.1705692.
42	30	14. Kang GJ, Culp RK, Abbas KM. Facilitators and barriers of parental attitudes and beliefs toward school-located influenza
43		
44 45	31	vaccination in the United States: Systematic review. <i>Vaccine</i> 2017;35(16):1987-95. doi: 10.1016/j.vaccine.2017.03.014
46	32	[published Online First: 2017/03/23]
47	33	15. Yan S, Wang Y, Zhu W, et al. Barriers to influenza vaccination among different populations in Shanghai. Human Vaccines &
48	34	Immunotherapeutics 2021;17(5):1403-11. doi: 10.1080/21645515.2020.1826250.
49 50	35	16. Li P, Qiu Z, Feng W, et al. Analysis of factors influencing parents' willingness to accept the quadrivalent influenza vaccine for
51	36	school-aged children in the Nanhai District, China. Human Vaccines & Immunotherapeutics 2020;16(5):1078-85. doi:
52	37	10.1080/21645515.2019.1644881
53	38	17. Chau JPC, Lo SHS, Choi KC, et al. Factors Determining the Uptake of Influenza Vaccination Among Children With Chronic
54 55	39	Conditions. The Pediatric Infectious Disease Journal 2017;36(7):e197-e202. doi: 10.1097/inf.000000000001550
56	40	18. Michaels-Igbokwe C, MacDonald S, Currie GR. Individual Preferences for Child and Adolescent Vaccine Attributes: A
57	41	Systematic Review of the Stated Preference Literature. The patient 2017;10(6):687-700. doi: 10.1007/s40271-017-0244-x
58	42	[published Online First: 2017/05/06]
59 60	43	19. Brown DS, Johnson FR, Poulos C, et al. Mothers' preferences and willingness to pay for vaccinating daughters against human
00	44	papillomavirus. Vaccine 2010;28(7):1702-8. doi: 10.1016/j.vaccine.2009.12.024 [published Online First: 2010/01/02]
		18

BMJ Open

1		
2	1	20. de Bekker-Grob EW, Veldwijk J, Jonker M, et al. The impact of vaccination and patient characteristics on influenza vaccination
3	2	uptake of elderly people: A discrete choice experiment. Vaccine 2018;36(11):1467-76. doi: 10.1016/j.vaccine.2018.01.054
4 5	3	[published Online First: 2018/02/11]
6	4	21. Wang B, Chen G, Ratcliffe J, et al. Adolescent values for immunisation programs in Australia: A discrete choice experiment.
7	5	PLoS One 2017;12(7):e0181073. doi: 10.1371/journal.pone.0181073 [published Online First: 2017/07/27]
8	6	22. Guo N, Zhang G, Zhu D, et al. The effects of convenience and quality on the demand for vaccination: Results from a discrete
9 10	7	choice experiment. Vaccine 2017;35(21):2848-54. doi: 10.1016/j.vaccine.2017.04.006 [published Online First: 2017/04/16]
11	8	23. Sun X, Wagner AL, Ji J, et al. A conjoint analysis of stated vaccine preferences in Shanghai, China. <i>Vaccine</i> 2020;38(6):1520-25.
12	9	doi: 10.1016/j.vaccine.2019.11.062 [published Online First: 2019/12/12]
13	10	24. Soekhai V, de Bekker-Grob EW, Ellis AR, et al. Discrete Choice Experiments in Health Economics: Past, Present and Future.
14 15	10	
16		<i>PharmacoEconomics</i> 2019;37(2):201-26. doi: 10.1007/s40273-018-0734-2 [published Online First: 2018/11/06]
17	12	25. de Bekker-Grob EW, Ryan M, Gerard K. Discrete choice experiments in health economics: a review of the literature. <i>Health</i>
18	13	Econ 2012;21(2):145-72. doi: 10.1002/hec.1697 [published Online First: 2012/01/10]
19 20	14	26. Lancsar E, Louviere JJP. Conducting Discrete Choice Experiments to Inform Healthcare Decision Making. 2008;26(8):661-77.
20 21	15	doi: 10.2165/00019053-200826080-00004
22	16	27. Clark MD, Determann D, Petrou S, et al. Discrete choice experiments in health economics: a review of the literature.
23	17	PharmacoEconomics 2014;32(9):883-902. doi: 10.1007/s40273-014-0170-x [published Online First: 2014/07/10]
24	18	28. Bridges JF, Hauber AB, Marshall D, et al. Conjoint analysis applications in healtha checklist: a report of the ISPOR Good
25 26	19	Research Practices for Conjoint Analysis Task Force. Value in health : the journal of the International Society for
20	20	Pharmacoeconomics and Outcomes Research 2011;14(4):403-13. doi: 10.1016/j.jval.2010.11.013 [published Online First:
28	21	2011/06/15]
29	22	29. Reed Johnson F, Lancsar E, Marshall D, et al. Constructing experimental designs for discrete-choice experiments: report of the
30 31	23	ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value in health : the journal of the
32	24	International Society for Pharmacoeconomics and Outcomes Research 2013;16(1):3-13. doi: 10.1016/j.jval.2012.08.2223
33	25	[published Online First: 2013/01/23]
34	26	30. Hauber AB, Gonzalez JM, Groothuis-Oudshoorn CG, et al. Statistical Methods for the Analysis of Discrete Choice Experiments:
35 36	27	A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Value in health : the journal of the
37	28	International Society for Pharmacoeconomics and Outcomes Research 2016;19(4):300-15. doi: 10.1016/j.jval.2016.04.004
38	20 29	[published Online First: 2016/06/22]
39	29 30	31. Shono A, Kondo M. Parents' preferences for seasonal influenza vaccine for their children in Japan. <i>Vaccine</i> 2014;32(39):5071-6.
40 41		
42	31	doi: 10.1016/j.vaccine.2014.07.002 [published Online First: 2014/07/27]
43	32	32. Cheng J, Pullenayegum E, Marshall DA, et al. An empirical comparison of methods for analyzing correlated data from a discrete
44	33	choice survey to elicit patient preference for colorectal cancer screening. BMC medical research methodology 2012;12:15. doi:
45 46	34	10.1186/1471-2288-12-15 [published Online First: 2012/02/22]
46 47	35	33. Gong T, Chen G, Liu P, Lai X, Rong H, Ma X, Hou Z, Fang H, Li S. Parental Vaccine Preferences for Their Children in China:
48	36	A Discrete Choice Experiment. Vaccines (Basel). 2020 Nov 16;8(4):687.
49	37	34. Rong H, Lai X, Ma X, Hou Z, Li S, Jing R, Zhang H, Peng Z, Feng L, Fang H. Seasonal Influenza Vaccination and
50	38	Recommendation: The Difference between General Practitioners and Public Health Workers in China. Vaccines (Basel). 2020
51 52	39	May 31;8(2):265.
53	40	35. Orme B. Sample size issues for conjoint analysis studies. Sequim: Sawtooth Software Technical paper 1998
54	41	36. de Bekker-Grob EW, Donkers B, Jonker MF, et al. Sample Size Requirements for Discrete-Choice Experiments in Healthcare: a
55 56	42	Practical Guide. 2015;8(5):373-84. doi: 10.1007/s40271-015-0118-z
57 58	43	37. Cui Jian CL, Zheng Jingshan, Cao Lingsheng, Duan Mengjuan, Xiao Qiyou. Reported coverage of vaccines in the National
59 60	44	Immunization Program of China, 2015 (in Chinese). Chinese Journal of Vaccines and Immunization 2017;23(6):601-07.

Page 21 of 33

1

BMJ Open

2	1	38. McFadden D, Econometrics KTJJoA. Mixed MNL models for discrete response. 2000
3	2	39. Poulos C, Reed Johnson F, Krishnarajah G, et al. Pediatricians' Preferences for Infant Meningococcal Vaccination.
4 5	3	Value in Health 2015;18(1):67-77. doi: 10.1016/j.jval.2014.10.010
6	4	40. Hole AR. Fitting mixed logit models by using maximum simulated likelihood. The Stata Journal 2007;7(3):388-401.
7	5	41. Liao Q, Lam WWT, Wong CKH, et al. The relative effects of determinants on Chinese adults' decision for influenza vaccination
8	6	choice: What is the effect of priming? <i>Vaccine</i> 2019;37(30):4124-32. doi: 10.1016/j.vaccine.2019.05.072 [published Online
9 10	7	First: 2019/06/13]
11	8	42. Marshall HS, Chen G, Clarke M, et al. Adolescent, parent and societal preferences and willingness to pay for meningococcal B
12	o 9	
13		vaccine: A Discrete Choice Experiment. <i>Vaccine</i> 2016;34(5):671-77. doi: 10.1016/j.vaccine.2015.11.075
14	10	43. Ma Y, Li T, Chen W, et al. Knowledge, Attitudes and Practices (KAP) toward seasonal influenza vaccine among young workers
15 16	11	in South China. Hum Vaccin Immunother 2018;14(5):1283-93. doi: 10.1080/21645515.2017.1423157 [published Online First:
17	12	2018/01/09]
18	13	44. de Bekker-Grob EW, Hofman R, Donkers B, et al. Girls' preferences for HPV vaccination: A discrete choice experiment.
19	14	Vaccine 2010;28(41):6692-97. doi: 10.1016/j.vaccine.2010.08.001
20 21	15	45. Dahlstrom LA, Tran TN, Lundholm C, et al. Attitudes to HPV vaccination among parents of children aged 12-15 years-a
21 22	16	population-based survey in Sweden. International journal of cancer 2010;126(2):500-7. doi: 10.1002/ijc.24712 [published
23	17	Online First: 2009/07/02]
24	18	46. Huang Z, Sun X, Wagner AL, et al. Parent and caregiver perceptions about the safety and effectiveness of foreign and domestic
25	19	vaccines in Shanghai, China. PLoS One 2018;13(5):e0197437. doi: 10.1371/journal.pone.0197437 [published Online First:
26 27	20	2018/05/22]
28	21	47. W Z. Public consultation on Vaccine Administration Act Xinhua Net: Xinhua Net; 2018. Available online:
29	22	http://www.xinhuanet.com/politics/2018-11/11/c 1123696553.htm(accessed on 22 August 2020).
30	23	48. The Standing Committee of the National People's Congress, Vaccine Administration Act. Available online:
31 32	24	https://www.nmpa.gov.cn/xxgk/fgwj/flxzhfg/20190702121701506.html (accessed on 22 August 2020).
33	25	49. Veldwijk J, Lambooij MS, Bruijning-Verhagen PCJ, et al. Parental preferences for rotavirus vaccination in young children: A
34	25 26	discrete choice experiment. Vaccine 2014;32(47):6277-83. doi: 10.1016/j.vaccine.2014.09.004
35	20 27	
36 37	27	50. Analysis Report on the Current Situation of China's Children's Economic Market in 2020 - A Study on market Operation
38		Situation and Development Prospect. Available from: http://baogao.chinabaogao.com/wentibangong/500635500635.html
39	29 20	(accessed on 27 August 2020).
40	30	51. Freed GL, Clark SJ, Butchart AT, et al. Parental vaccine safety concerns in 2009. Pediatrics. 2010 Apr;125(4):654-9. doi:
41 42	31	10.1542/peds.2009-1962.
43	32	52. Freed GL, Clark SJ, Butchart AT, et al. Sources and perceived credibility of vaccine-safety information for parents. Pediatrics.
44	33	2011 May;127 Suppl 1:S107-12. doi: 10.1542/peds.2010-1722P.
45		
46 47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57 58		
59		
60		

Figure titles and footnotes

Fig.1 An example of discrete choice question (translated version)

Fig.2 Provinces/municipalities selected in China

Fig.3 Importance Rating of Attributes

Fig.4 Simulated probabilities for influenza vaccination under change of a single attribute.

Notes: The baseline was presented by a 70% protection rate, 6-month duration, high risk of severe

side effect, domestic and costing CNY150.

Attrik	outes levels	Explanation
1	70%	The percentage of children that wi be protected against an influenz
2	80%	infection when vaccinated.
3	90%	
1	6 months	The number of months that the vaccir protects against influenza.
2	12 months	
1	1/100,000	The number of vaccinated children th will suffer from serious adverse even
2	2/100,000	due to vaccination. Serious adverse events included hospitalization
3	10/100,000	prolongation of hospitalization, persister or significant disability or incapacity.
1	domestic	The vaccine manufacturers were divide into Chinese-made (domestic) ar
2	imported	foreign (imported) categories
1	0 Yuan	The parents may have to pay of the vaccine cost out-of-pocket.
2	75 Yuan	vacenie cost out of poeket.
3	150 Yuan	
	1 2 3 1 2 1 2 3 1 2 1 2 1 2	 2 80% 3 90% 1 6 months 2 12 months 1 1/100,000 2 2/100,000 3 10/100,000 1 domestic 2 imported 1 0 Yuan 2 75 Yuan 3 150 Yuan

Table 1 Attributes and attributes levels for DCE choice questions

.

	All (N	All (N=579)		Parents who passed the consistency test		Parents who failed the consistency test	
Age(years)	Mean 31.07	SD 0.21	Mean 31.20	SD 0.25	Mean 30.59	SD 0.42	0.231 ª
Household size	4.60	0.05	4.57	0.06	4.73	0.12	0.194 ª
Monthly income(RMB)	11988.4	482.04	12025.66	480.81	11860	1365.26	0.886 a
Monthly expenditure(RMB)	6796.17	250.81	6894.88	274.26	6455.23	593.19	0.465 a
Child' age	2.00	0.05	2.02	0.06	1.93	0.11	0.462 a
	Ν	%	Ν	%	Ν	%	
Relation							
Mother	459	79.27	354	78.84	105	80.77	0.633 ^b
Father	120	20.73	95	21.16	25	19.23	
Ethnic							
Han	534	92.23	414	92.20	120	92.31	0.969 ^t
Minority	45	7.77	35	7.80	10	7.69	
Child gender							
Male	294	50.78	220	49.00	74	56.92	0.111 ^b
Female	285	49.22	229	51.00	56	43.08	
One child							
Yes	242	41.80	189	42.09	53	40.77	0.787 ^b
No	337	58.20	260	57.91	77	59.23	
Child health							
Very good	278	48.01	219	48.78	59	45.38	0.415°
Good	224	38.69	173	38.53	51	39.23	
Fair or poor	77	13.3	57	12.69	20	15.38	
Job							
Working	355	61.31	278	61.92	77	59.23	0.580 ^b
Non-working	224	38.69	171	37.86	53	40.77	
Region							
Urban	357	61.66	288	64.14	69	53.08	0.022 b
Rural	222	38.34	161	35.86	61	46.92	
Education level							
Senior and below	211	53.71	234	52.12	77	59.23	0.152 b
College and above	268	46.29	215	47.88	53	40.77	

Table 2 Socio-demographic characteristics of the study population

Note:

1.a-Student's test, $b-\chi^2$ test, c-Wilcoxon rank-sum test.

1 2 3	Table 3. Mixed logit model results with o	only main effe
4 5	Attributes	β
6	Non-vaccination	-5.236
7 8 9	Protection rate prevented by a vaccine (ref:70%)	
10	80%	0.935
11 12 13	90% Risk of serious side effects event	1.921

fects

Attributes	β	SE	P-value	SD	SE	P-value
Non-vaccination	-5.236	0.757	< 0.001	6.391	0.586	< 0.001
Protection rate prevented by a vaccine						
(ref:70%)						
80%	0.935	0.089	< 0.001	0.310	0.229	0.175
90%	1.921	0.133	< 0.001	1.436	0.140	< 0.001
Risk of serious side effects event						
(ref:10/100,000)						
2/100,000	1.795	0.116	< 0.001	0.875	0.152	< 0.001
1/100,000	2.626	0.158	< 0.001	1.754	0.157	< 0.001
Location of vaccine manufacturer (ref:						
domestic)						
Imported	-0.319	0.082	< 0.001	1.181	0.105	< 0.001
Duration of vaccine-induced protection						
(ref:6month)						
12 months	0.596	0.067	< 0.001	0.571	0.101	< 0.001
Cost	-0.002	0.001	0.016	0.011	0.001	< 0.001
Log likelihood	V		-264	8.049		
No .of respondents			44	49		
No. of observations			134	446		

Note:

1.β-coefficient, SE-standard error, SD-standard deviation, ref-reference. All attributes except for cost were coded for dummy variables.

2. A total of 600 parents enrolled in the survey and 579 completed the majority of the questionnaire at least. Respondents (449) who passed the consistency test were included in the main DCE result reported in this table.

2
3
4
5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
∠∪ 21
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35 36
36
77
37 38
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
54 55
56
57
58
59
<u> </u>

1 2

Table 4 Results of Mixed logit model with main effects and interactions

Attributes	β	SE	P-value	95	%CI
Non-vaccination	-6.178	0.767	< 0.001	-7.680	-4.67
Protection rate prevented by a vaccine (ref:70%)					
80%	0.940	0.088	< 0.001	0.767	1.113
90%	1.218	0.235	< 0.001	0.758	1.679
Risk of serious side effects event (ref:10/100,000)					
2/100,000	1.804	0.116	< 0.001	1.576	2.03
1/100,000	2.334	0.265	< 0.001	1.815	2.854
Location of vaccine manufacturer (ref: domestic)					
Imported	-0.298	0.079	< 0.001	-0.454	-0.14
Duration of vaccine-induced protection(ref:6month)					
12 months	0.583	0.065	< 0.001	0.456	0.71
Cost	-0.001	0.002	0.624	-0.005	0.00
Interaction terms					
Non-vaccination * age (>30 years old)	2.843	0.778	< 0.001	1.319	4.36
Non-vaccination * rural	-2.216	0.973	0.023	-4.123	-1.30
Non-vaccination * father	-0.157	0.746	0.833	-1.620	-0.30
Non-vaccination *only one child	1.017	0.967	0.293	-0.878	2.91
90% protection rate* age (>30 years old)	0.581	0.209	0.005	0.173	0.99
90% protection rate* rural	0.732	0.220	0.001	0.302	1.16
90% protection rate* education level (college and	0.540	0.213	0.011	0.123	0.950
above)					
90% protection rate*only one child	-0.231	0.216	0.285	-0.655	0.192
Lowest risk of serious side effects*only one child	-0.506	0.236	0.032	-0.969	-0.04
Lowest risk of serious side effects*rural	0.838	0.240	< 0.001	0.367	1.30
Lowest risk of serious side effects* age (>30 years old)	0.372	0.223	0.096	-0.066	0.81
Lowest risk of serious side effects* education level	0.291	0.230	0.206	-0.160	0.742
(college and above)					
Log likelihood			-2631.978		
No .of respondents			449		
No .of observations			13446		

Note:

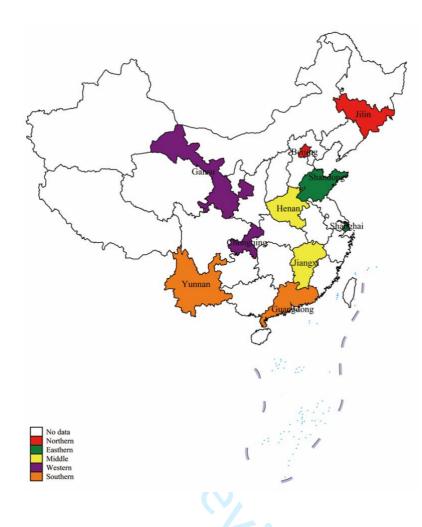
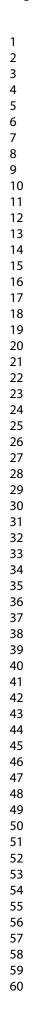
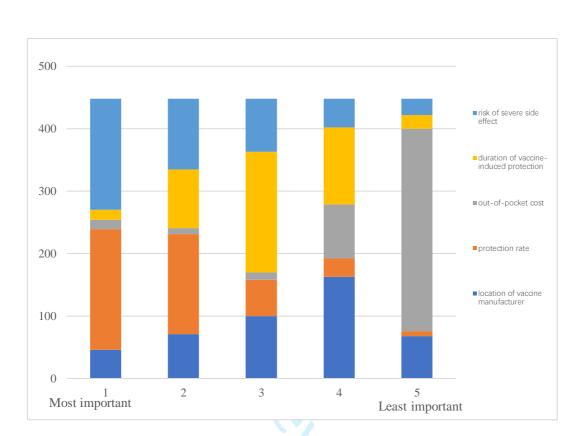
1.β-coefficient, SE-standard error, SD-standard deviation, CI-confidence interval, ref-reference. All attributes except for cost were coded for dummy variables.

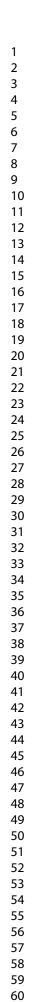
2. A total of 600 parents enrolled in the survey and 579 completed the majority of the questionnaire at least. Respondents (130) who failed the consistency test were excluded from the main DCE result reported in this table.

3. Interaction terms were treated as fixed effect variables, and the others as random effect variables.

	Influenza vaccine A	Influenza vaccine B	
Protection rate prevented by a	70%	90%	
vaccine			
Duration of vaccine-induced	12 months	6 months	
protection			
Risk of severe side effect	2/100,000	1/100,000	
Location of vaccine manufacturer	domestic	imported	
Out-of-pocket cost of the vaccine	0 Yuan	75 Yuan	
Which option would you be more likely to choose?			
In reality, would you vaccine your child the option you chose before	Yes		
	[No	

Fig.1 An example of discrete choice question (translated version)


Fig.2 Provinces/municipalities selected in China

BMJ Open



Fig.4 Simulated probabilities for influenza vaccination under change of a single attribute. The baseline

was presented by a 70% protection rate, 6-month duration, high risk of severe side effect, domestic and

costing CNY150.

Simulated probabilities for influenza vaccination under change of a single attribute.

SUPPLEMENTARY MATERIAL

Table S1 Mixed logit model results with only main effects for unforced choice in the full sample

Attributes	β	SE	P-value	SD	SE	P-value
Non-vaccination	-3.487	0.477	< 0.001	5.172	0.455	< 0.001
Protection rate prevented by a vaccine						
(ref:70%)						
80%	0.803	0.069	< 0.001	0.065	0.303	0.830
90%	1.655	0.099	< 0.001	1.187	0.104	< 0.001
Risk of severe side effect event						
(ref:10/100,000)						
2/100,000	1.559	0.089	< 0.001	0.794	0.126	< 0.001
1/100,000	2.205	0.116	< 0.001	1.539	0.124	< 0.001
Location of vaccine manufacturer (ref:						
domestic)						
Imported	-0.257	0.062	< 0.001	0.934	0.080	< 0.001
Duration of vaccine-induced protection						
(ref:6month)						
12 months	0.594	0.055	< 0.001	0.599	0.090	< 0.001
Cost	-0.002	0.001	0.010	0.010	0.001	< 0.001
Log likelihood			-370	9.407		
Respondents, n			5	79		
Observations, n			17.	337		

Note:

1.unforced choice-parents can choose to not vaccinate influenza vaccines for their children and the opt-out choice in the second stage was analyzed in the model.

2.β-coefficient, SE-standard error, SD-standard deviation, ref-reference. All attributes except for cost were coded dummy variables.

3. A total of 600 parents enrolled in the survey and 579 completed the majority of the questionnaire.

Attributes	β	SE	P-value	SD	SE	P-value
Protection rate prevented by a vaccine						
(ref:70%)						
80%	0.794	0.078	< 0.001	0.104	0.354	0.769
90%	1.679	0.119	< 0.001	1.271	0.128	< 0.001
Risk of severe side effect event						
(ref:10/100,000)						
2/100,000	1.718	0.111	< 0.001	0.982	0.141	< 0.001
1/100,000	2.558	0.156	< 0.001	1.774	0.154	< 0.001
Location of vaccine manufacturer (ref:						
domestic)						
Imported	-0.248	0.072	0.001	1.050	0.093	< 0.001
Duration of vaccine-induced protection						
(ref:6month)						
12 months	0.526	0.060	< 0.001	0.520	0.098	< 0.001
Cost	-0.001	0.001	0.190	0.010	0.001	< 0.001
Log likelihood			-239	9.908		
Respondents, n			4	77		
Observations, n			95	38		

Table S2 Mixed logit model results with only main effects for forced-choice data

Note:

1.forced choice: parents were forced to choose the preferred vaccine from alternatives presented and the choice in the first stage was analyzed in the model.

2.β-coefficient, SE-standard error, SD-standard deviation, ref-reference. All attributes except for cost were coded dummy variables.

3. A total of 600 parents enrolled in the survey and 579 completed the majority of the questionnaire at least. Respondents (477) who passed the consistency test in the first stage were included in the main effects DCE result reported in this table.

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	NA
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	9
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	NA
		(<u>e</u>) Describe any sensitivity analyses	11
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	NA
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10
		(b) Indicate number of participants with missing data for each variable of interest	10
Outcome data	15*	Report numbers of outcome events or summary measures	11,1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	NA

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
50	
59	
<u> </u>	

1 2

		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11,12
Discussion			
Key results	18	Summarise key results with reference to study objectives	13,14
Limitations	19	Discuss limitations of the study, taking into account sources of potential	15
		bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	13,14
		limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	16

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.