

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Diagnostic yield of massively parallel sequencing in patients with chronic kidney disease of unknown etiology: Rationale and design of a national prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057829
Article Type:	Protocol
Date Submitted by the Author:	29-Sep-2021
Complete List of Authors:	de Haan, Amber; University Medical Centre Groningen, Department of Internal Medicine, Division of Nephrology Eijgelsheim, Mark; University Medical Centre Groningen, Department of Internal Medicine, Division of Nephrology Vogt, Liffert; Amsterdam UMC Location AMC, Department of Internal Medicine, section Nephrology van der Zwaag, Bert; University Medical Center Utrecht, Department of Genetics van Eerde, Albertien; University Medical Center Utrecht, Department of Genetics Knoers, Nine V.A.M.; University Medical Centre Groningen, Department of Genetics de Borst, Martin; University Medical Centre Groningen, Department of Internal Medicine, Division of Nephrology
Keywords:	NEPHROLOGY, End stage renal failure < NEPHROLOGY, Chronic renal failure < NEPHROLOGY, GENETICS
	·

SCHOLARONE[™] Manuscripts Page 1 of 32

BMJ Open

2		
3 4	1	Diagnostic yield of massively parallel sequencing in patients with chronic kidney disease
5	2	of unknown etiology: Rationale and design of a national prospective cohort study
6 7	2	of unknown enology. Rationale and design of a national prospective conort study
7 8		
9	3	
10		
11 12	4	Amber de Haan ¹ , Mark Eijgelsheim ¹ , Liffert Vogt ² , Bert van der Zwaag ³ , Albertien van
13	_	
14	5	Eerde ³ , Nine V.A.M. Knoers ⁴ , Martin H. de Borst ^{1*}
15	6	
16 17	6	
18	7	¹ Department of Internal Medicine, Division of Nephrology, University Medical Center
19	/	Department of Internal Wedleine, Division of Rephrology, Oniversity Wedlear Center
20	8	Groningen, University of Groningen, Groningen, the Netherlands;
21 22	U	Gronnigen, Chiverberg of Cronnigen, Gronnigen, vie Freneriunas,
22	9	² Department of Internal Medicine, section Nephrology, Amsterdam Cardiovascular Sciences,
24		
25	10	Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the
26 27		
28	11	Netherlands;
29	10	³ Demonstrate of Councilies University Medical Counter Uters alto Uters alto the Netherlands.
30	12	³ Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands;
31 32	13	⁴ Department of Genetics, University Medical Center Groningen, University of Groningen,
33	15	Department of Genetics, Oniversity Wearear Center Gröningen, Oniversity of Gröningen,
34	14	Groningen, the Netherlands
35		
36 37	15	
38		
39	16	Word count: 2883
40 41	17	
41	17	
43	18	*Correspondence:
44	10	Correspondence.
45 46	19	Prof. Martin H. de Borst, MD, PhD
40 47	17	
48	20	Department of Internal Medicine, Division of Nephrology
49		
50 51	21	University Medical Center Groningen
52		
53	22	Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, the Netherlands
54	a a	
55 56	23	Email: m.h.de.borst@umcg.nl
56 57		
58		
59		
60		

24 ABSTRACT

Introduction: Chronic kidney disease (CKD) can be caused by a variety of systemic or primary renal diseases. The cause of CKD remains unexplained in approximately 20% of patients. Retrospective studies indicate that massively parallel sequencing (MPS)-based gene panel testing may lead to a genetic diagnosis in 12-56% of patients with unexplained CKD, depending on patient profile. The diagnostic yield of MPS-based testing in a routine healthcare setting is unclear. Therefore, the primary aim of the VARIETY study is to prospectively address the diagnostic yield of MPS-based gene panel testing in patients with unexplained CKD and an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m² before the age of 50 years in clinical practice.

Methods and analysis: The VARIETY study is an ongoing, prospective, nation-wide observational cohort study to investigate the diagnostic yield of MPS-based testing in patients with unexplained CKD in a routine healthcare setting in the Netherlands. Patients are recruited from outpatient clinics in hospitals across the Netherlands. At least 282 patients will be included to meet the primary aim. Secondary analyses include subgroup analyses according to age and eGFR at first presentation, family history, and the presence of extrarenal symptoms.

Ethics and dissemination: Ethical approval for the study has been obtained from the 42 institutional review board of the University Medical Center Groningen. Study findings should 43 inform physicians and policymakers towards optimal implementation of MPS-based 44 diagnostic testing in patients with unexplained CKD.

ARTICLE SUMMARY

Strengths and limitations of this study

- First prospective study to examine the diagnostic yield of massively parallel • sequencing in patients (age 18-50 at first presentation) with unexplained chronic kidney disease in a routine healthcare setting
 - Nation-wide study with relatively large sample size, allowing analyses of specific • subgroups according to age and kidney function at first presentation
 - Study findings should inform physicians and policymakers in the implementation of • gene panel testing in adults (age < 50) with unexplained CKD
- A potential limitation is that the definition of 'unexplained chronic kidney disease' is not unequivocal

56 INTRODUCTION

Chronic kidney disease (CKD) affects 11-16% of the population worldwide [1-3], is associated with extensive co-morbidity and an increased risk of premature mortality, and may ultimately result in end-stage kidney disease (ESKD) requiring dialysis or transplantation [4,5]. CKD may be caused by a variety of systemic (e.g., diabetes, hypertension) or primary renal diseases (e.g. IgA nephropathy, membranous nephropathy). Current diagnostic approaches, including kidney biopsy, are often non-specific or inconclusive, contraindicated or omitted due to lack of clinical consequences [6,7]. Therefore, the cause of CKD remains unknown in approximately 20% of patients with ESKD [8–10]. However, knowledge of the underlying kidney disease can be pivotal as it may influence prognosis and medical treatment. In the setting of kidney transplantation, it may influence (living-related) donor selection and post-transplant recurrence risk. Approximately 27-34% of patients with CKD report a positive family history of kidney disease (first or second degree relative with CKD) [11,12] and a genetic cause can be identified in at least 10% of adults with CKD [13,14], indicating that in many cases a hereditary origin for the disease should be considered. Genetic testing could therefore be a valuable tool in the diagnostic process of CKD of unknown etiology.

Recent studies suggest that massively parallel sequencing (MPS) techniques (previously referred to as next-generation sequencing) [15] could be used as diagnostic tool in adults with unexplained CKD and should even be considered as first mode of diagnostics in patients with ESKD prior to the age of 50 years [16]. Depending on patient selection, MPS led to a genetic diagnosis in 12-56% of patients with unexplained CKD [14,17–19]. However, most of these studies have been performed in a research setting, and therefore little is known about the diagnostic utility of MPS for adults with unexplained CKD in a routine healthcare setting. Moreover, currently available studies have been commonly based on subgroups of larger retrospective cohorts, and are heterogeneous in design and selection of genes used in

Page 5 of 32

BMJ Open

MPS [20]. For this reason, it is difficult to define profiles of patients (e.g. based on age and severity at disease onset, extra-renal manifestations, positive family history) that should preferentially undergo genetic testing. A recent joint publication by the ERA Working Group on Inherited Kidney Disorders (WGIKD) and the Molecular Diagnostics Taskforce of the European Rare Kidney Disease Reference Network (ERKNet) called for further research to explore the diagnostic yield of genetic testing in CKD of unknown origin in a clinical setting [21].

Therefore, the objective of this national prospective cohort study is to determine the diagnostic yield, i.e. the percentage of participants with a genetic diagnosis, using a large MPS-based multi-gene panel for kidney diseases in young patients (first presentation at age 18-50) with unexplained CKD (eGFR <60 mL/min/1.73 m²) in a routine healthcare setting. In addition, we aim to identify specific patient profiles with a high diagnostic yield. These findings can guide physicians and policymakers in implementing MPS-based diagnostic testing in patients with unexplained CKD.

METHODS AND ANALYSIS

Study design

The VARIETY (Validation of algoRithms and IdEnTification of genes in Young patients with unexplained chronic kidney disease) study is a prospective nation-wide observational cohort study designed to investigate the diagnostic yield of genetic testing in patients with unexplained CKD in a routine healthcare setting in the Netherlands. The study will collect and analyze data obtained during routine clinical practice and through a questionnaire. Participants will be included from both academic and non-academic hospitals throughout the Netherlands. The anonymized data are collected, stored and analyzed in the University Medical Center Groningen (UMCG). All participants will give written informed consent on enrolment.

Study population

The targeted study population consist of all patients with unexplained CKD and an eGFR <60 ml/min/1.73m² before the age of 50 years. Unexplained CKD is defined as the absence of all the following criteria: a biopsy-proven diagnosis (e.g. IgA nephropathy), a specific morphological renal diagnosis (e.g. polycystic kidney disease suspected of autosomal/recessive polycystic kidney disease), or a specific or plausible renal diagnosis (e.g. history of long-term insulin-dependent diabetes mellitus before the onset of CKD, lithium-induced nephropathy). Since hypertensive nephropathy is a non-specific diagnosis and hypertension is also a very common consequence of CKD [22], patients with hypertensive nephropathy in the absence of a clear underlying disorder such as renal artery stenosis are considered to have unexplained CKD. Patients with renal hypoplasia, renal atrophy, and non-specific histological conditions (such as secondary focal segmental glomerulosclerosis,

BMJ Open

glomerulonephritis of unknown cause, or interstitial nephritis) are also considered to have unexplained CKD.

Patients with a current age >50 years, but who presented with an eGFR <60 ml/min/1.73m² before the age of 50 years, and renal transplant recipients who had a pre-transplant eGFR <60 ml/min/1.73m² before the age of 50 years are also eligible for inclusion. In addition, genetic testing with a specific MPS-based gene panel (see 'Genetic testing') is required for participation. Exclusion criteria for participation in the VARIETY study are: age <18 years at time of inclusion or patients who do not give or are unable to give informed consent for genetic testing or for the current study.

Recruitment

Patients are recruited from outpatient clinics in both academic and non-academic hospitals across the Netherlands. Patients will be screened by nephrologists or trained study investigators. In case of a study investigator, a list with potential participants will be sent to the treating nephrologist to confirm the diagnosis of unexplained CKD. Eligible participants will be informed about the study by the investigators or their treating nephrologists aware of the study protocol. A study investigator or treating nephrologist will ask for informed consent for this study. Information for patients has been made available in the form of a patient information folder and a website (in Dutch): www.onbegrepennierziekte.nl.

Data collection

Detailed clinical and demographic data are collected from patients' electronic health record (EHR) and through a questionnaire following informed consent. The data will subsequently be entered into a secure electronic case report form.

Electronic health record

The following information will be collected from the EHR: age at inclusion, sex, primary renal disease diagnosis, age at CKD onset/presentation, dialysis or kidney transplantation, age at start dialysis or kidney transplantation, presence of extra-renal features, medication use at inclusion, medical history, family history (including three-generation pedigree), blood pressure at CKD onset and at inclusion, presence of hematuria and/or nephrotic syndrome, laboratory results (serum creatinine, eGFR, total cholesterol, HDL, LDL, triglycerides, 24 hour urine albumin excretion, 24 hour urine creatinine excretion, 24 hour urine total protein excretion, hematuria) at CKD onset/presentation and inclusion, renal histopathology and imaging of the native kidneys, and results of genetic testing in relation to kidney disease. We will also collect information regarding the clinical consequences of a genetic diagnosis and if genetic counseling was performed by a nephrologist or clinical geneticist. If participants are referred to a clinical geneticist, we will also collect the results of any additional genetic testing. ie.

Questionnaire

Data collected from the EHR will be expanded with a questionnaire to collect additional data on family history, medical history, current health complaints, and extra-renal manifestations (Supplemental Table 1).

Genetic testing

We will include patients who have undergone MPS-based multi-gene panel testing, initiated by a clinical geneticist or nephrologist following pre-test counseling as part of clinical care in patients with unexplained CKD, in accordance with guidelines in the Netherlands [23]. Figure 1 shows the suggested flowchart for genetic testing in the VARIETY study, based on these

BMJ Open

recommendations. The criteria as shown in this flow chart are slightly more liberal than the published recommendations, which will help to define the optimal age and eGFR ranges where genetic testing is still of clinical benefit. To stimulate the implementation of the guideline, we made a website for the VARIETY study (www.onbegrepennierziekte.nl) where nephrologists can find information about genetic testing and pre-test genetic counseling.

In order to reduce heterogeneity in the diagnostic approach, we will assess the diagnostic yield of a specific MPS-based gene panel, namely the 'CKD-Y' ('Chronic Kidney Disease in Young patients') targeted exome sequencing (ES) panel available at the University Medical Center (UMC) Utrecht, The Netherlands. The older version of this panel (v18) contains 141 different genes associated with early-onset CKD, including PKD1 and PKD2 (Figure 2). On March 8 2021, the CKD-Y panel was updated (v21) and the number of genes changed from 141 to 256 (Figure 3). This panel was chosen as it is an ES-based panel and contains all the current genes associated with early-onset CKD. In addition, this panel can be ordered by nephrologists without referral to the clinical geneticist. Alternatively, the hereditary kidney disease panel from UMC Utrecht was allowed. This is another targeted ES panel, consisting of 379 genes in the v18 version and 495 genes in the updated v21 version (Supplementary Figure 1-2). Since this panel contains some kidney cancer oncogenes, it may only be ordered by a clinical geneticist. The hereditary kidney disease panel includes all genes of the CKD-Y panel, making it possible to determine if a variant could also have been identified with the CKD-Y panel. Potential findings from the hereditary kidney disease panel that do not overlap with the CKD-Y panel will not be included in the analyses. We will record which version of the CKD-Y and/or hereditary kidney disease panel was used.

193 Primary and secondary analyses

194	The primary analysis will address the diagnostic yield of the CKD-Y panel, defined as the
195	percentage of positive test results (i.e. pathogenic variant(s) explaining the cause of the
196	disease), in the overall cohort of patients with unexplained CKD and an eGFR <60
197	mL/min/1.73 m ² between 18 and 50 years. The pathogenicity of variants will be determined
198	according to the standards and guidelines from the American College of Medical Genetics and
199	Genomics (ACMG) [24]. With this standard, variants are classified into five categories using
200	several lines of evidence, such as available literature, patient databases and in silico prediction
201	programs. Class 1 variants are clearly not pathogenic; class 5 variants are clearly pathogenic.
202	Class 3 are variants of uncertain significance/pathogenicity (VUS), these variants do not
203	confirm or exclude the diagnosis (Table 1) [24]. For the determination of the diagnostic yield,
204	only class 4 and class 5 variants will be considered as a 'positive test result' to determine the
205	diagnostic yield. In cases with two class 4/5 variants in an autosomal recessive gene, these
206	will only be considered a 'positive test result' if testing in parents has confirmed the variants
207	are positioned in trans.

Table 1. Classification of variants according to ACMG guidelines [24]

-	Class	Description
	1	Clearly not pathogenic, common polymorphism
	2	Unlikely to be pathogenic, diagnosis not confirmed molecularly
	3	Unknown significance/pathogenicity, does not exclude or confirm diagnosis
	4	Likely to be pathogenic, consistent with the diagnosis
	5	Clearly pathogenic, result confirms the diagnosis
0		

BMJ Open

Secondary analyses include subgroup analyses according to age and eGFR at first presentation, family history, and the presence of extra-renal symptoms. A positive family history for CKD is recorded if the participant either has a first (parent or child), second (siblings, grandparents, grandchildren), third (aunts, uncles, nephews, nieces) or fourth (cousins) degree relative with CKD. Family history will be obtained from combining information present in the EHR with information obtained from the questionnaire. Other secondary analysis aims to define the percentage of genetic tests with a clinical consequence. A genetic diagnosis is considered to have a clinical consequence if it: 1) negated the need for kidney biopsy, 2) triggered or negated the need for immunosuppressive therapy, 3) provides prognostic information, i.e. the risk of post-transplantation anti-GBM glomerulonephritis, 4) led to, or should lead to, referral to other specialties (e.g. ophthalmologist), 5) led to targeted work-up for associated symptoms or extra-renal manifestations, 6) affected surveillance frequency, 7) led to, or should lead to, genetic testing in potential living related kidney donors, 8) enabled more precise (preconception) genetic counseling for the patient or family members, or 9) led to more precise or extensive follow-up of potentially affected family members.

Tertiary outcomes will be the percentage of participants in which a VUS was identified and the number of incidental/secondary findings (results unrelated to the initial indication for genetic testing). In addition, if a molecular diagnosis is identified and a kidney biopsy from the native kidney is present, we will assess if the biopsy findings match the molecular diagnosis.

Participants without results from genetic testing will be excluded from all analyses. If
 information is missing from the EHR, we will ask the general practitioner to deliver the
 missing data within participants' consent. If the data cannot be retrieved, it will be regarded as

236 "unknown". In case eGFR at CKD onset is missing, the first available eGFR or serum237 creatinine measurement since the diagnosis of CKD will be used.

239 Statistical analysis

Statistical analysis will be performed with IBM SPPS statistics for Windows, version 23 (IBM Corporation, Armonk, NY, USA). An overall significance level of 0.05 will be handled. Continuous variables that are normally distributed will be presented as mean and standard deviation. Non-normally distributed variables will be expressed as median and interguartile range. Frequencies and percentages will be used to describe categorical variables such as gender, family history, renal replacement therapy, extra-renal manifestations, and diagnostic yield. The Chi-square or Fisher's exact test will be used to compare differences in categorical variables between the different subgroups of the secondary analysis. Logistic regression will be performed to identify characteristics associated with a genetic diagnosis.

250 Sample size calculation

The minimal sample size was calculated using the following formula [25], based on the study's primary endpoint:

$$n = \frac{Z^2 * P(1-P)}{d^2}$$

Based on the literature, the expected percentage of positive test results is 17% [14]. Assuming a level of confidence (z) of 1.96 and precision (d) of 0.05 [25], a minimum of 217 participants are required for a reliable assessment of the primary outcome. In order to be clinically and politically significant, we aim to increase the sample size of this prospective cohort study beyond the largest currently available retrospective study, i.e. to include at least 282 patients in the current study [20,25].

BMJ Open

261 Data management

Study data will be recorded digitally using the secure REDCap electronic data capture tool (REDCap, Nashville, TN) hosted at the UMCG [26,27]. Data collection and entry is performed by trained investigators from the UMCG. To minimize differences and errors in data entry, investigators from the UMCG will travel to other participating centers for data collection and entry in REDCap. Data validation in REDCap will be performed according to a data validation plan, which has been made in collaboration with the UMCG Research Data Support and approved by the Institutional Review Board. Data analysis will take place on validated and anonymized data. Upon study closure, data will be extracted from REDCap and exported to SPSS for analysis.

Patient and public involvement

273 Patients and/or the public were not involved in the design of this study.

275 ETHICS AND DISSEMINATION

Ethical approval for the study has been obtained from the institutional review board of the UMCG (METc 2019/106). The study is conducted in accordance with the WMA Declaration of Helsinki. The results of the study will be presented at (inter)national congresses and submitted for open access publication in peer-reviewed journals. In addition to the primary results, related to the main research questions as defined above, case reports/series may be submitted for publication in case of unique or interesting findings and these will also be submitted for publication in peer-reviewed journals. In accordance with the information sheet for participants, the main results and any publications from the VARIETY study will also be made available on the study website. After completion of the study and publication of the main results, request for re-use of the data can be submitted to the corresponding author.

286 CONCLUSION AND STUDY STATUS

Genetic testing shows promising results as a diagnostic tool in adults with CKD and it has the potential to resolve CKD cases with an unknown etiology. However, further research is needed in a clinical setting to define the position of MPS-based diagnostics in clinical practice and to determine which subpopulations will have the highest diagnostic yield. Here, we outlined the design for a prospective cohort study that will determine the diagnostic yield of MPS-based renal gene panel testing in patients with unexplained CKD. The fact that unexplained CKD has not been uniformly defined by international (guideline) committees or institutions may slightly impact external validity of our findings. However, results from this study are likely a step forward in informing physicians and policymakers involved in implementation of genetic testing in patients with unexplained CKD. Inclusion started on 31 July 2019. As of September 2021, 248 patients have been included.

299 Acknowledgements

300 Several authors of this publication (AE and NK) are members of the European Reference
301 Network for Rare Kidney Diseases (ERKNet) - Project ID no. 739532.

Author contributions

AH and MB wrote the first draft of the manuscript. ME, LV, BZ, AE and NK gave feedback
and contributed to manuscript revision. All authors read and approved the submitted version.

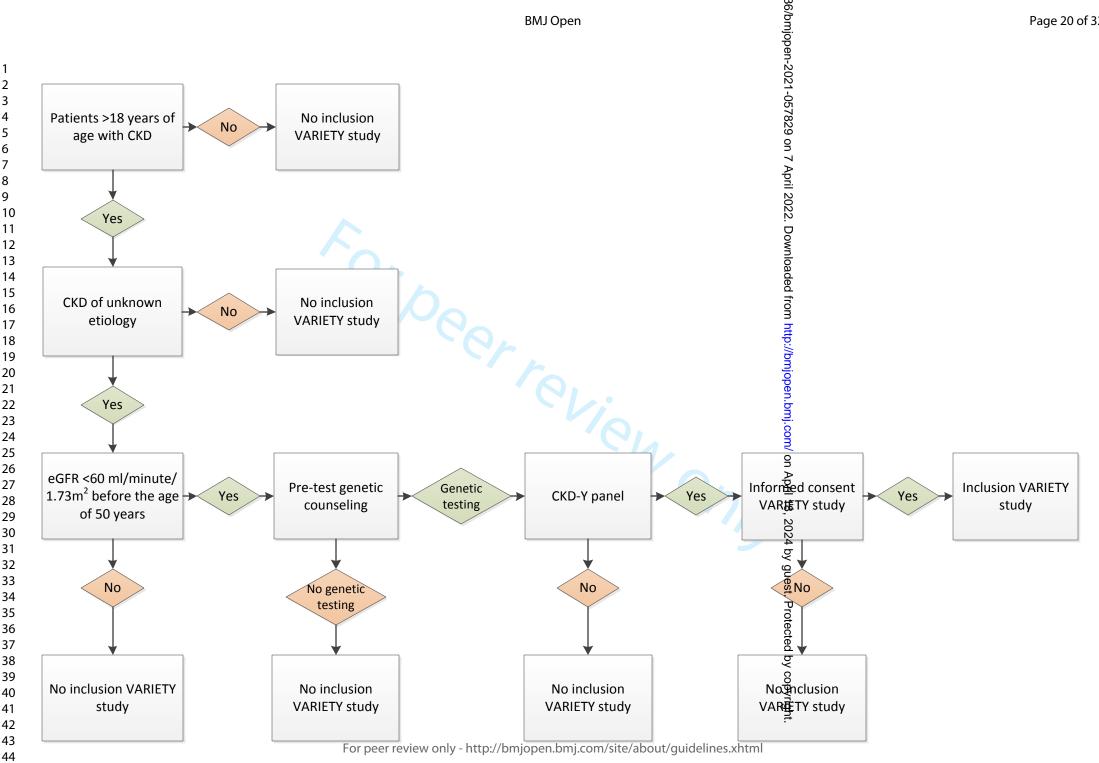
307 Funding statement

308 This collaboration project is co-financed by Sanofi Genzyme and the Dutch Ministry of309 Economic Affairs and Climate Policy by means of the PPP Allowance made available by the

 RVO/6320 and IMAGEN/LSHM20009). Competing interest statement Dr. De Borst and Dr. Vogt have received research support and lecture fees (all to institution) from Sanofi Genzyme related to the current study. Prof. Knoers has received reimbursement of travel expenses for lectures related to the current study from Sanofi Genzyme. 	2		
 311 RV0/6320 and IMAGEN/LSHM20009). 312 313 Competing interest statement 314 Dr. De Borst and Dr. Vogt have received research support and lecture fees (all to institution) 315 from Sanofi Genzyme related to the current study. Prof. Knoers has received reimbursement 316 of travel expenses for lectures related to the current study from Sanofi Genzyme. 		310	Top Sector Life Sciences & Health to stimulate public-private partnerships (grant numbers
 312 313 Competing interest statement 314 Dr. De Borst and Dr. Vogt have received research support and lecture fees (all to institution) 315 from Sanofi Genzyme related to the current study. Prof. Knoers has received reimbursement 316 of travel expenses for lectures related to the current study from Sanofi Genzyme. 		311	RVO/6320 and IMAGEN/LSHM20009).
 313 Competing interest statement 314 Dr. De Borst and Dr. Vogt have received research support and lecture fees (all to institution) 315 from Sanofi Genzyme related to the current study. Prof. Knoers has received reimbursement 316 of travel expenses for lectures related to the current study from Sanofi Genzyme. 	8	312	
12 314 Dr. De Borst and Dr. Vogt have received research support and lecture fees (all to institution) 315 from Sanofi Genzyme related to the current study. Prof. Knoers has received reimbursement 316 of travel expenses for lectures related to the current study from Sanofi Genzyme. 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 78 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 <td>10</td> <td>313</td> <td>Competing interest statement</td>	10	313	Competing interest statement
 315 from Sanofi Genzyme related to the current study. Prof. Knoers has received reimbursement of travel expenses for lectures related to the current study from Sanofi Genzyme. 	12 13	314	Dr. De Borst and Dr. Vogt have received research support and lecture fees (all to institution)
316 of travel expenses for lectures related to the current study from Sanofi Genzyme.	15	315	from Sanofi Genzyme related to the current study. Prof. Knoers has received reimbursement
54 55 56 57 58 59 60	$\begin{array}{c} 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 37\\ 38\\ 39\\ 40\\ 142\\ 43\\ 445\\ 46\\ 78\\ 9\\ 50\\ 1\\ 52\\ 54\\ 55\\ 56\\ 78\\ 9\end{array}$	316	of travel expenses for lectures related to the current study from Sanofi Genzyme.

1 2			
2 3 4	317	REF	ERENCES
5 6	318	1	Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease - A
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	319		systematic review and meta-analysis. PLoS One 2016;11:e0158765.
	320	2	Lv JC, Zhang LX. Prevalence and Disease Burden of Chronic Kidney Disease. In:
	321		Advances in Experimental Medicine and Biology. 2019.
	322	3	Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: Global dimension and
	323		perspectives. Lancet 2013;382:260-72.
	324	4	Go AS, Chertow GM, Fan D, et al. Chronic Kidney Disease and the Risks of Death,
	325		Cardiovascular Events, and Hospitalization. N Engl J Med 2004;351:1296–305.
25 26	326	5	Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and
27 28 29	327		cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet
30 31	328		2013;382:339–52.
32 33	329	6	Luciano RL, Moeckel GW. Update on the Native Kidney Biopsy: Core Curriculum
34 35 36	330		2019. Am J Kidney Dis 2019;73:404–15.
37 38	331	7	Scheckner B, Peyser A, Rube J, et al. Diagnostic yield of renal biopsies: a retrospective
39 40 41	332		single center review. BMC Nephrol 2009;10:11.
42 43 44 45 46 47 48 49 50 51	333	8	Titze S, Schmid M, Köttgen A, et al. Disease burden and risk profile in referred
	334		patients with moderate chronic kidney disease: composition of the German Chronic
	335		Kidney Disease (GCKD) cohort. Nephrol Dial Transplant 2015;30:441-51.
	336	9	Neild GH. Primary renal disease in young adults with renal failure. Nephrol Dial
52 53	337		Transplant 2010;25:1025–32.
54 55 56	338	10	Kramer A, Pippias M, Noordzij M, et al. The European Renal Association – European
57 58	339		Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2016: a
59 60	340		summary. <i>Clin Kidney J</i> 2019;12:702–20.

Page 17 of 32


1

BMJ Open

2 3 4	341	11	Connaughton DM, Bukhari S, Conlon P, et al. The Irish Kidney Gene Project -
5 6	342		Prevalence of Family History in Patients with Kidney Disease in Ireland. Nephron
7 8 9	343		2015;130:293–301.
10 11	344	12	Skrunes R, Svarstad E, Reisæter AV, et al. Familial clustering of esrd in the norwegian
12 13 14	345		population. Clin J Am Soc Nephrol 2014;9:1692–700.
15 16	346	13	Mallett A, Patel C, Salisbury A, et al. The prevalence and epidemiology of genetic
17 18 19	347		renal disease amongst adults with chronic kidney disease in Australia. Orphanet J Rare
20 21	348		Dis 2014;9:98.
22 23 24	349	14	Groopman E, Marasa M, Cameron-Christie S, et al. Diagnostic Utility of Exome
24 25 26	350		Sequencing for Kidney Disease. N Engl J Med 2018;380:142-51.
27 28 29	351	15	Jarvik GP, Evans JP. Mastering genomic terminology. <i>Genet Med</i> 2017;19:491–2.
30 31	352	16	Snoek R, van Jaarsveld RH, Nguyen TQ, et al. Genetics-first approach improves
32 33 34	353		diagnostics of ESKD patients younger than 50 years. Nephrol Dial Transplant
35 36	354		Published Online First: 11 December 2020.
37 38 20	355	17	Lata S, Marasa M, Li Y, et al. Whole-exome sequencing in adults with chronic kidney
39 40 41	356		disease: A pilot study. Ann Intern Med 2018;168:100-9.
42 43	357	18	Ottlewski I, Münch J, Wagner T, et al. Value of renal gene panel diagnostics in adults
44 45 46	358		waiting for kidney transplantation due to undetermined end-stage renal disease. Kidney
47 48	359		<i>Int</i> 2019;96:222–30.
49 50 51	360	19	Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney
52 53	361		disease in adults. Kidney Int 2019;:S0085-2538(18)30839-1.
54 55 56	362	20	de Haan A, Eijgelsheim M, Vogt L, et al. Diagnostic Yield of Next-Generation
57 58	363		Sequencing in Patients With Chronic Kidney Disease of Unknown Etiology. Front
59 60	364		Genet 2019;10.

3 4	365	21	Knoers N, Antignac C, Bergmann C, et al. Genetic testing in the diagnosis of chronic
5 6	366		kidney disease: recommendations for clinical practice. Nephrol Dial Transplant
7 8 9	367		Published Online First: 15 July 2021.
10 11	368	22	Carriazo S, Vanessa Perez-Gomez M, Ortiz A. Hypertensive nephropathy: a major
12 13 14	369		roadblock hindering the advance of precision nephrology. Clin Kidney J 2020;13:504-
15 16	370		9.
17 18 19	371	23	van Eerde A, Rookmaker M, Snoek R. Handreiking Erfelijke Nieraandoeningen en
20 21	372		Urinewegafwijkingen en Nefrologische Verwijsindicaties Klinische Genetica. 2018.
22 23 24	373	24	Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of
25 26	374		sequence variants: A joint consensus recommendation of the American College of
27 28	375		Medical Genetics and Genomics and the Association for Molecular Pathology. Genet
29 30 31	376		Med 2015;17:4–5424.
32 33	377	25	Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical
34 35 36	378		studies. Gastroenterol Hepatol from bed to bench 2013;6:14–7.
37 38	379	26	Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)-A
39 40 41	380		metadata-driven methodology and workflow process for providing translational
42 43	381		research informatics support. J Biomed Inform Published Online First: 2009.
44 45 46	382	27	Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: Building an
40 47 48	383		international community of software platform partners. J Biomed Inform
49 50 51 52 53 54 55 56 57 58 59 60	384		2019;95:103208.

1		
2 3 4	386	FIGURE LEGENDS
5 6 7	387	Figure 1. Flowchart for inclusion VARIETY study. CKD: chronic kidney disease; eGFR:
8 9	388	estimated glomerular filtration rate.
10 11 12	389	
13 14 15	390	Figure 2. Overview of the 141 genes that are analyzed in the exome sequencing b
15 16 17	391	Chronic Kidney Disease in Young patients (CKD-Y) panel version v18 at University
18 19	392	Medical Center Utrecht
20 21 22	393	
23 24 25	394	Figure 3. Overview of the 256 genes that are analyzed in the exome sequencing based
26 27	395	Chronic Kidney Disease in Young patients (CKD-Y) panel version v21 at University
$\begin{array}{c} 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	396	Medical Center Utrecht. Bold genes are also on the CKD-Y panel v18.

 Page 20 of 32

ADCK4CFHFAN1IQCB1MYO1EPKHD1TNAGTCFHR5FAT1ITGA3NEK8PLCE1TRAAGTR1CFIFGAITGA8NOTCH2PMM2TRAAGXTCHD7FN1JAG1NPHP1PTPROTRAALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMAANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPS	ACE	CEP290	EMP2	INF2	MYH11	PKD1	TB2
AGTCFHR5FAT1ITGA3NEK8PLCE1TRAIAGTR1CFIFGAITGA8NOTCH2PMM2TRAAGXTCHD7FN1JAG1NPHP1PTPROTRIALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ACTN4	CFB	EYA1	INVS	MYH9	PKD2	TME
AGTR1CFIFGAITGA8NOTCH2PMM2TRAAGXTCHD7FN1JAG1NPHP1PTPROTRAALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ADCK4	CFH	FAN1	IQCB1	MYO1E	PKHD1	TN
AGXTCHD7FN1JAG1NPHP1PTPROTR1ALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AGT	CFHR5	FAT1	ITGA3	NEK8	PLCE1	TRA
ALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIP4APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AGTR1	CFI	FGA	ITGA8	NOTCH2	PMM2	TRA
AMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIP4APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AGXT	CHD7	FN1	JAG1	NPHP1	PTPRO	TRI
ANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5CC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CNPCNPCNPCNP	ALG1	CLCN5	FOXC2	KANK1	NPHP3	REN	TTC
APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5FC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7FCD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AMN	COL4A3	FRAS1	KANK2	NPHP4	RMND1	UM
APOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNPBCS1LCYP11B1GSNLYZOFD1SIX5SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ANKS6	COL4A4	FREM1	KANK4	NPHS1	ROBO2	VIPA
ARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5CC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	APOA1	COL4A5	FREM2	KIAA0556	NPHS2	RPGRIP1L	VPS
ARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5CC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	APOL1	COQ2	GATA3	KIAA0586	NUP107	RRM2B	WD
B2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5ZNFC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ARHGDIA	COQ6	GLA	LAMB2	NUP205	SALL1	W
BBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNEBCS1LCYP11B1GSNLYZOFD1SIX5IC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ATXN10	CRB2	GLIS2	LMNA	NUP93	SCARB2	XPNI
BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	B2M	CTNS	GRHPR	LMX1B	NXF5	SDCCAG8	ZMPS
C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	BBIP1	CUBN	GRIP1	LRIG2	OCRL	SGPL1	ZNF
CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	BCS1L	CYP11B1	GSN	LYZ	OFD1	SIX5	
CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	C3	CYP11B2	HNF1B	MAFB	OSGEP	SLC41A1	
CD46 DGKE IFT27 MAPKBP1 PDSS1 SMARCAL1	CD151	DACT1	HOGA1	MAGI2	PAX2	SLC4A1	
	CD2AP	DCDC2	HPSE2	MAP7D3	PBX1	SLC7A7	
CEP164 DSTYK IFT81 MUC1 PDSS2 SOX17	CD46	DGKE	IFT27	MAPKBP1	PDSS1	SMARCAL1	
	CEP164	DSTYK	IFT81	MUC1	PDSS2	SOX17	

,			
(

	200 gen	es in the youn	g kidney failu	Ite (CKD-1)		
ACE	BICC1	CUBN	HYLS1	MOCOS	PLCE1	TMEM138
ACTG2	BMPR2	CUL3	IFT27	MTR	PMM2	TMEM216
ACTN4	C3	CYP11B1	IFT74	MTRR	POC1B	TMEM231
ADAMTS9	C8ORF37	CYP11B2	IFT81	MTX2	PODXL	TMEM237
AGT	CACNA1D	CYP17A1	IL1RAP	MUC1	PTPRO	TMEM67
AGTR1	CACNA1H	DAAM2	INF2	MYH11	REN	TMEM72
AGXT	CC2D2A	DACT1	INPP5E	MYH9	RMND1	TNS2
AHI1	CD151	DCDC2	INVS	MYO1E	ROBO2	TNXB
ALG1	CD2AP	DGKE	IQCB1	NEK8	RPGRIP1L	TOGARAM
ALMS1	CD46	DLC1	ITGA3	NOS1AP	RRM2B	TP53RK
AMN	CDK20	DNAJB11	ITGA8	NOTCH2	SALL1	TPRKB
ANKS6	CEP104	DSTYK	ITGB4	NPHP1	SARS2	TRAF3IP
ANLN	CEP164	E2F3	ITSN1	NPHP3	SCARB2	TRAP1
APOA1	CEP290	EMP2	ITSN2	NPHP4	SCNN1A	TRIM32
APOE	CEP41	EYA1	JAG1	NPHS1	SCNN1B	TRIM8
APOL1	CEP83	FAM149B1	KANK1	NPHS2	SCNN1G	TRPC6
APRT	CFB	FAN1	KANK2	NR3C1	SDCCAG8	TTC21B
ARHGAP24	CFH	FAT1	KANK4	NR3C2	SEC61A1	TTC8
ARHGDIA	CFHR1	FGA	KATNIP	NUP107	SGPL1	UMOD
ARL13B	CFHR2	FN1	KCNJ5	NUP133	SIX1	VIPAS39
ARL6	CFHR3	FOXC2	KIAA0586	NUP160	SIX5	VPS33B
ARMC9	CFHR4	FRAS1	KIF3B	NUP205	SLC22A12	WDPCP
ATXN10	CFHR5	FREM1	KIRREL1	NUP85	SLC2A9	WDR19
AVIL	CFI	FREM2	KLHL3	NUP93	SLC3A1	WDR35
B2M	CHD7	GANAB	LAMB2	NXF5	SLC41A1	WDR60
B9D1	CLCN2	GAPVD1	LMNA	OCRL	SLC4A1	WDR73
B9D2	CLCN5	GATA3	LMX1B	OFD1	SLC7A7	WNK1
BBIP1	COL4A3	GATM	LRIG2	OSGEP	SLC7A9	WNK4
BBS1	COL4A4	GLA	LYZ	PAX2	SMARCAL1	WT1
BBS10	COL4A5	GLIS2	LZTFL1	PBX1	SOX17	XDH
BBS12	COQ2	GRHPR	MAFB	PCM1	STX16	XPNPEP:
BBS2	COQ6	GRIP1	MAGI2	PDSS1	TBC1D8B	YRDC
BBS4	COQ8B	GSN	MAP7D3	PDSS2	TBX18	ZMPSTE2
BBS5	CPLANE1	HNF1B	MAPKBP1	PIBF1	TCTN1	ZNF423
BBS7	CRB2	HOGA1	MKKS	PKD1	TCTN2	
BBS9	CSPP1	HPSE2	MKS1	PKD2	TCTN3	
BCS1L	CTNS	HSD11B2	MMACHC	PKHD1	TMEM107	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

SUPPLEMENTARY MATERIAL

ACE	CA2	DGAT1	GSN	MAGED2	ROBO2	ТСТЕУ
ACTG2	CACNA1H	DGKE	GUCY2C	MAGI2	RPGRIP1	TCT
ACTN4	CACNA1S	DMP1	HAAO	MAP7D3	RPGRIP1L	TCT
ADAMTS13	CASR	DNAJB11	HNF1B	MAPKBP1	RRM2B	TCT
ADCK3	CC2D2A	DST	HNF4A	MET	SALL1	THE
ADCK4	CCDC114	DSTYK	HOGA1	MKKS	SALL4	TMEN
AGT	CD151	DYNC2H1	HOXD13	MKS1	SARS2	TMEN
AGTR1	CD2AP	DYNC2LI1	HPRT1	MUC1	SCARB2	TMEN
AGXT	CD46	DZIP1L	HPSE2	MYH11	SCLT1	TMEN
AHI1	CDKN1C	EGF	HSD11B2	MYH9	SCN11A	TMEN
ALDOB	CEP120	EHHADH	IFT122	MYO1E	SCN4A	TMEN
ALG1	CEP164	EMP2	IFT140	MYO5B	SCNN1A	TME
ALG8	CEP290	ENPP1	IFT172	NEK1	SCNN1B	TNY
ALMS1	CEP41	EPCAM	IFT27	NEK8	SCNN1G	TP53
AMN	CEP83	EVC	IFT43	NEUROG3	SDCCAG8	TPR
ANKS3	CFB	EVC2	IFT52	NGF	SDHB	TRAF
ANKS6	CFH	EYA1	IFT57	NOTCH2	SEC61A1	TRA
ANLN	CFHR1	FAH	IFT80	NPHP1	SEC61B	TRIN
ANO1	CFHR2	FAHD2A	IFT81	NPHP3	SEC63	TRP
AP2S1	CFHR3	FAM134B	IKBKAP	NPHP4	SGPL1	TRP
APOA1	CFHR4	FAM20A	INF2	NPHS1	SIX1	TSC
APOL1	CFHR5	FAM58A	INPP5E	NPHS2	SIX2	TSC
APRT	CFI	FAN1	INVS	NR3C1	SIX5	TTC
AQP2	CHD1L	FAT1	IQCB1	NR3C2	SLC12A1	TTC
ARHGAP24	CHD7	FBXL4	ITGA3	NUP107	SLC12A3	UMO
ARHGDIA	CHRM3	FGA	ITGA8	NUP205	SLC16A12	UPK
ARL13B	CLCN5	FGF20	ITGB4	NUP93	SLC22A12	UQC
ARL6	CLCNKA	FGF23	JAG1	NXF5	SLC26A3	VD
ARSA	CLCNKB	FGF8	KAL1	OCRL	SLC2A2	VH
ATP6V0A4	CLDN16	FGFR1	KANK1	OFD1	SLC2A9	VIPA
ATP6V1B1	CLDN19	FH	KANK2	OSGEP	SLC34A1	VPS3
ATP7B	CNNM2	FLCN	KANK4	PAX2	SLC34A3	WDP
ATXN10	COL4A1	FN1	KCNJ1	PAX8	SLC36A2	WDF
AVP	COL4A3	FOXC2	KCNJ10	PBX1	SLC37A4	WDF
AVPR2	COL4A4	FOXF1	KCNJ5	PCBD1	SLC3A1	WDF
B2M	COL4A5	FRAS1	KIAA0556	PDE6D	SLC41A1	WDF
B9D1	COQ2	FREM1	KIAA0586	PDSS1	SLC4A1	WDF
B9D2	COQ4	FREM2	KIF14	PDSS2	SLC4A4	WN]
BBIP1	COQ6	FXYD2	KIF7	PHEX	SLC5A2	WN]
BBS1	COQ7	G6PC	KL	PKD1	SLC6A19	WN'
BBS10	COQ9	GALNT3	KLHL3	PKD2	SLC6A20	WT
BBS12	COX10	GALT	KYNU	PKHD1	SLC7A7	XD

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BBS2	CPT2	GANAB	LAGE3	PLCE1	SLC7A9	XPNPEP3
BBS4	CRB2	GATA3	LAMB2	PMM2	SLC9A3	XPO5
BBS5	CSPP1	GDNF	LCAT	PODXL	SLC9A3R1	YRDC
BBS7	CTNS	GLA	LMNA	PRDM12	SLIT2	ZEB2
BBS9	CUBN	GLI3	LMOD1	PRKCSH	SMARCAL1	ZIC3
BCS1L	CUL3	GLIS2	LMX1B	PSAP	SOX17	ZMPSTE24
BICC1	CYP11B1	GLIS3	LPP	PTEN	SPINT2	ZNF423
BMP4	CYP11B2	GNA11	LRIG2	PTH1R	SPTLC1	
BMPR2	CYP17A1	GPC3	LRP2	PTPRO	SPTLC2	
BSND	CYP24A1	GPC5	LRP4	PYGM	STRA6	
C2CD3	DACT1	GREB1L	LYZ	REN	STX16	
C3	DCDC2	GRHPR	LZTFL1	RET	TBC1D1	
C5orf42	DDX59	GRIP1	MAFB	RMND1	TBX18	

Supplementary Figure 1. The 379 genes that are on the hereditary kidney disease panel v18

at University Medical Center Utrecht. Bold genes are also on the CKD-Y panel v18.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	49.	5 genes in here	editary kidn	ey disease panel	v21	
ACE	CACNA1H	DGAT1	GREB1L	LRIG2	PRDM12	STRA6
ACTA2	CACNA1S	DGKE	GREM1	LRP10	PRDX1	STRADA
ACTG2	CASR	DHCR7	GRHPR	LRP2	PRKCSH	STX16
ACTN4	CBWD1	DICER1	GRIP1	LRP4	PSAP	SYNPO
ADAMTS13	CBY1	DLC1	GSN	LRP5	PTEN	TBC1D
ADAMTS9	CC2D2A	DMP1	GUCY2C		PTH1R	TBC1D8
ADCK3	CCDC114	DNAJB11	HAAO	LZTFL1	PTPRO	TBX18
ADCY10	CCDC28B	DOCK4	HNF1B	MAFB	PYGM	TBX6
AGK	CD151	DOCK	HNF4A	MAGED2	RBM8A	TCTEX1
AGT	CD131 CD2AP	DSTYK	HOGA1	MAGI2	REN	TCTEAL
AGTR1	CD2AI CD46	DYNC2H1	HOXA10	MAO12 MAP7D3	RERE	TCTN1 TCTN2
AGXT	CD40 CDC73	DYNC2LI1	HOXA10	MAI7D3 MAPKBP1	RERE	TCTN2 TCTN3
AUXI AHI1		DINC2LII DZIP1L				
ALDOB	CDK20		HOXD13	MET	RICTOR	THBD
	CDKN1C	E2F3	HPRT1	MKKS	RMND1	TMEM1
ALG1	CENPF	EGF	HPSE2	MKS1	ROBO1	TMEM1
ALG5	CEP104	EHHADH	HRAS	MMACHC	ROBO2	TMEM1
ALG6	CEP120	ELP1	HSD11B2	MOCOS	RPGRIP1	TMEM2
ALG8	<i>CEP164</i>	EMP2	HSPA6	MTR	RPGRIP1L	TMEM2.
ALG9	<i>CEP290</i>	ENPP1	HYLS1	MTRR	RRAGD	TMEM2.
ALMS1	<i>CEP41</i>	EPCAM	ICK	MTX2	RRM2B	TMEM2
ALPL	CEP55	ERCC6	IFT122	MUC1	SALL1	TMEM6
AMN	<i>CEP83</i>	ERCC8	IFT140	MYH11	SALL4	TMEM7
ANKFY1	CFB	EVC	IFT172	• MYH9	SARS2	TNS2
ANKS3	CFH	EVC2	IFT27	MYLK	SCARB2	TNXB
ANKS6	CFHR1	EVX1	IFT43	MYO1E	SCLT1	TOGARA
ANLN	CFHR2	EXOC8	IFT52	MYO5B	SCN11A	TP53RI
ANOS1	CFHR3	EYA1	IFT57	NAALADL2	SCN4A	TP63
AP2S1	CFHR4	FAH	IFT74	NCAPG2	SCNN1A	TPRKE
APOA1	CFHR5	FAHD2A	IFT80	NEK1	SCNN1B	TRAF3I
APOE	CFI	FAM134B	<i>IFT81</i>	NEK8	SCNN1G	TRAP1
APOL1	CHD1L	FAM149B1	IL1RAP	NEU1	SDCCAG8	TRIM3
APRT	CHD7	FAM20A	INF2	NEUROG3	SDHB	TRIM8
AQP2	CHRM3	FAM20C	INPP5E	NGF	SEC61A1	TRPC6
ARHGAP24	CHRNA3	FAM58A	INTU	NOS1AP	SEC61B	TRPM
ARHGDIA	CLCN2	FAN1	INVS	NOTCH2	SEC63	TRPM7
ARL13B	CLCN5	FAT1	IQCB1	NPHP1	SGPL1	TSC1
ARL3	CLCNKA	FBXL4	ISL1	NPHP3	SIX1	TSC2
ARL6	CLCNKB	FGA	ITGA3	NPHP4	SIX2	TSHZ3
ARMC9	CLDN10	FGF20	ITGA8	NPHS1	SIX5	TTC211
ARSA	CLDN16	FGF20 FGF23	ITGA0 ITGB4	NPHS2	SKAP2	TTC8
ATP1A1	CLDN10 CLDN19	FGF25 FGF8	ITSN1	NPNT	SLC12A1	TXNDC
ATP6V0A4	CLDN19 CNNM2	FGFR1	ITSN1 ITSN2	NR3C1	SLC12A1 SLC12A3	UMOD
ATP6V1B1	CININIZ COL4A1	FH	JAG1	NR3C1 NR3C2	SLC12A3 SLC16A12	UMOD UPK3A
ATP7B	COL4A1 COL4A3	FLCN	JAGI KANKI	NRAS	SLC10A12 SLC19A2	UPKSA
AII/D	COL4A3	FLUN	ΛΑΙΝΛΙ	CANVI	SLC19H2	UQUU

	ATXN10	COL4A4	FN1	KANK2	NUP107	SLC22A12	VDR
	AVIL	COL4A5	FOXC2	KANK4	<i>NUP133</i>	SLC26A1	VHL
	AVP	COQ2	FOXF1	KATNIP	<i>NUP160</i>	SLC26A3	VIPAS39
	AVPR2	COQ4	FOXI1	KCNJ1	NUP205	SLC2A2	VPS33B
	<i>B2M</i>	COQ6	FRAS1	KCNJ10	NUP85	SLC2A9	WDPCP
	B9D1	COQ7	FREM1	KCNJ5	<i>NUP93</i>	SLC34A1	<i>WDR19</i>
	B9D2	COQ8B	FREM2	KCTD1	NXF5	SLC34A3	WDR34
	BBIP1	COQ9	FXYD2	KCTD3	OCRL	SLC36A2	WDR35
	BBS1	COX10	G6PC	KIAA0586	OFD1	SLC37A4	WDR60
	BBS10	CPLANE1	GALNT3	KIAA0753	OSGEP	SLC3A1	WDR72
	BBS12	CPT2	GALT	KIF14	PAX2	SLC41A1	<i>WDR73</i>
	BBS2	CRB2	GANAB	KIF3B	PAX8	SLC4A1	WNK1
	BBS4	CSPP1	GAPVD1	KIF7	PBX1	SLC4A4	WNK4
	BBS5	CTNS	GATA3	KIRREL1	PCBD1	SLC5A2	WNT4
	BBS7	CUBN	GATM	KL	PCM1	SLC6A19	WNT9B
	BBS9	CUL3	GDNF	KLHL3	PDE6D	SLC6A20	WT1
	BCS1L	CYP11B1	GDF6	KRAS	PDSS1	SLC7A7	XDH
	BICC1	CYP11B2	GFRA1	KYNU	PDSS2	SLC7A9	XPNPEP3
	BMP4	CYP17A1	GLA	LAGE3	PHEX	SLC9A3	XPO5
	BMPR2	CYP24A1	GLI3	LAMA5	PIBF1	SLC9A3R1	YRDC
	BNC2	CYP27B1	GLIS2	LAMB2	PKD1	SLIT2	ZEB2
	BSND	CYP2R1	GLIS3	LCAT	PKD2	SLIT3	ZIC3
	C2CD3	CYP3A4	GNA11	LHX1	PKHD1	SMARCAL1	ZMPSTE24
	С3	DAAM2	GNAS	LMNA	PLCE1	SOX17	ZNF365
	<i>C80RF37</i>	DACT1	GON7	LMOD1	<i>PMM2</i>	SPINT2	ZNF423
	CA2	DCDC2	GPC3	LMX1B	POC1B	SPTLC1	
	CACNA1D	DDX59	GPC5	LPP	PODXL	SPTLC2	
-							

Supplementary Figure 2. The 495 genes that are on the hereditary kidney disease panel v21

at University Medical Center Utrecht. Bold genes are also hereditary kidney disease panel v18

and italic genes are also on the CKD-Y panel v21.

Supplementary Table	Questionnaire for participants (or	iginal version is in Dutch)
---------------------	------------------------------------	-----------------------------

Number	Question	Answer possibilitie
	General questions	
1	What is your country of birth?	Open
2	What is the country of birth of your maternal grandmother?	Open
3	What is the country of birth of your maternal grandfather?	Open
4	What is the country of birth of your paternal grandmother?	Open
5	What is the country of birth of your paternal grandfather?	Open
	Medical health and current health complaints	1
6	At which age did you get the diagnosis chronic kidney disease?	Open
7	Did you undergo dialysis in the past or are you currently on dialysis?	Yes/no/unknown
8	Did you undergo a kidney transplantation in the past?	Yes/no/unknown
9	Do you have high blood pressure? If you are taking blood pressure-lowering medication and have a normal blood pressure thanks to the medication, you can also fill in "yes".	Yes/no/unknown
10	Have you ever been admitted to the emergency room for high blood pressure?	Yes/no/unknown
11	Are you unable or do you have trouble with sweating?	Yes/no/unknown

1	
2 3	
3 4	
5	
6 7	
7	
8	
9 10	
11	
12	
13 14	
14	
15 16	
16 17	
18	
19	
20	
21 22	
23	
24	
25	
26 27	
27 28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39 40	
41	
42	
43	
44 45	
45 46	
47	
48	
49 50	
50 51	
51 52	
53	
54	
55	
56 57	
57 58	
59	
60	

12	Do you suffer from heat- or cold intolerance? This means that	Yes/no/unknown
	you have trouble with handling heat or cold.	
13	Have you experienced a burning pain or a feeling of tingling	Yes/no/unknown
	in the hands and/or feet now or in the past?	
13a	If so, did this pain or tingling feeling arise or get worse with	Open
	fever, exertion, stress, or if the hands or feet became very hot	
	or cold?	
14	Do you have dark, red-purple spots in your skin? Especially	Yes/no/unknown
	between your belly button and knees?	
15	Do you have any problems with seeing or any eye complaints?	Yes/no/unknown
15a	If so, what are your problems with seeing and/or eye	Open
	complaints?	
16	Do you have any hearing problems of hearing disabilities?	Yes/no/unknown
16a	If so, what for hearing problems or disabilities do you have?	Open
17	Have you suffered from gout now or in the past?	Yes/no/unknown
18	Have you ever had a stroke (cerebral infraction, brain	Yes/no/unknown
	hemorrhage or TIA)?	
19	Did you ever have a myocardial infarction?	Yes/no/unknown
20	Do you have a heart rhythm disorder?	Yes/no/unknown
20a	If so, which heart rhythm disorder do you have?	Open
21	Do you have a thickening of the heart muscle (hypertrophic	Yes/no/unknown
	cardiomyopathy)?	

22	Do you have health complaints not mentioned in the previous	Yes/no/unknown
	questions?	
22a	If so, which heath complaints do you experience?	Open
	Family history	
23	How many biological children, alive or deceased, do you	Open
	have?	
24	Do you (still) have any desire to have children?	Yes/no/unknown
25	How many siblings, alive or deceased, do you have?	Open
26	How many half-brothers and/or half-sisters, alive or deceased,	Open
	do you have?	
27	How many siblings, alive or deceased, does your mother	Open
	have?	
28	How many siblings, alive or deceased, does your father have?	Open
29	Are your grandparents still alive?	Yes/no/unknown
29a	Did one of your grandparents pass away before the age of 50	Yes/no/unknown
	years?	
30	Are your parents blood relatives (e.g. second cousins)?	Yes/no/unknown
30a	If so, how are your parents related to each other?	Open
31	Are you and your partner blood relatives (e.g. cousins, second	Yes/no/I do not have
	cousins)?	a partner/unknown
31a	If so, how are you and your partner related to each other?	Open
32	Does gout run in your family?	Yes/no/unknown
33	Do you have family members with a high blood pressure at a	Yes/no/unknown
	young age?	
34	Does anyone in your family have an intellectual disability?	Yes/no/unknown

	BMJ Open	
35	Dou you have family members with kidney disease (children,	Yes/no/unknown
	parents, siblings, grandparents, uncles/aunts, cousins,	
	nephews/nieces)?	
35a	If so, how many family members have a kidney disease?	Open
35b	In how many family members if the cause for the kidney	Open
	disease unknown?	
35c	If you know the cause of the kidney disease of other family	Open
	members, please write down the cause of the kidney disease in	
	this field. If you do not know the cause, you can leave this	
	field empty.	
35d	How many family members with a kidney disease have had a	Open
	kidney transplantation or dialysis?	
	Final questions	
36	Have you visited a clinical geneticist or have you been	Yes/no/unknown
	referred to a clinical geneticist?	
37	Do you already known the results from genetic testing at the	Yes/no/unknown
	time of completing this questionnaire?	

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			1
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
bouing	5	recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	6-7
i unicipants	0	of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	NA
		of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	8-11
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-12
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	13
Study size	10	Explain how the study size was arrived at	12
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	12
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	12
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	12
		(c) Explain how missing data were addressed	11
		(d) Cohort study—If applicable, explain how loss to follow-up was	NA
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		account of sampling strategy	

Continued on next page

2
3
4
5
6
0
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
53
54
55
56
57
58
59

1 2

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	NA
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	NA
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study-Report numbers in each exposure category, or summary	NA
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	NA
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	NA
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	NA
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	NA
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	14
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	NA
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	14
-		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

NA: not applicable

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Diagnostic yield of massively parallel sequencing in patients with chronic kidney disease of unknown etiology: Rationale and design of a national prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057829.R1
Article Type:	Protocol
Date Submitted by the Author:	28-Jan-2022
Complete List of Authors:	de Haan, Amber; University Medical Centre Groningen, Department of Internal Medicine, Division of Nephrology Eijgelsheim, Mark; University Medical Centre Groningen, Department of Internal Medicine, Division of Nephrology Vogt, Liffert; Amsterdam UMC Location AMC, Department of Internal Medicine, section Nephrology van der Zwaag, Bert; University Medical Center Utrecht, Department of Genetics van Eerde, Albertien; University Medical Center Utrecht, Department of Genetics Knoers, Nine V.A.M.; University Medical Centre Groningen, Department of Genetics de Borst, Martin; University Medical Centre Groningen, Department of Internal Medicine, Division of Nephrology
Primary Subject Heading :	Renal medicine
Secondary Subject Heading:	Diagnostics, Genetics and genomics
Keywords:	NEPHROLOGY, End stage renal failure < NEPHROLOGY, Chronic renal failure < NEPHROLOGY, GENETICS

Page 1 of 34

BMJ Open

2		
3 4	1	Diagnostic yield of massively parallel sequencing in patients with chronic kidney disease
5	2	of unknown etiology: Rationale and design of a national prospective cohort study
6 7		
8	2	
9 10	3	
11	4	Amber de Haan ¹ , Mark Eijgelsheim ¹ , Liffert Vogt ² , Bert van der Zwaag ³ , Albertien van
12 13		
14	5	Eerde ³ , Nine V.A.M. Knoers ⁴ , Martin H. de Borst ^{1*}
15 16	6	
17	Ũ	
18 19	7	¹ Department of Internal Medicine, Division of Nephrology, University Medical Center
20	0	Creatingen University of Creatingen Creatingen the Netherlands
21	8	Groningen, University of Groningen, Groningen, the Netherlands;
22 23	9	² Department of Internal Medicine, section Nephrology, Amsterdam Cardiovascular Sciences,
24		
25 26	10	Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the
27	11	Netherlands;
28 29		
30	12	³ Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands;
31 32	13	⁴ Department of Genetics, University Medical Center Groningen, University of Groningen,
33	15	Department of Genetics, Oniversity Wedicar Center Gröningen, Oniversity of Gröningen,
34 25	14	Groningen, the Netherlands
35 36		
37	15	
38 39	16	Word count: 2918
40		
41 42	17	
43	18	*Correspondence:
44 45	10	
45 46	19	Prof. Martin H. de Borst, MD, PhD
47	20	
48 49	20	Department of Internal Medicine, Division of Nephrology
50	21	University Medical Center Groningen
51 52		
53	22	Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, the Netherlands
54 55	23	Email: m h de harst@umag nl
55 56	23	Email: m.h.de.borst@umcg.nl
57		
58 59		
60		

24 ABSTRACT

Introduction: Chronic kidney disease (CKD) can be caused by a variety of systemic or primary renal diseases. The cause of CKD remains unexplained in approximately 20% of patients. Retrospective studies indicate that massively parallel sequencing (MPS)-based gene panel testing may lead to a genetic diagnosis in 12-56% of patients with unexplained CKD, depending on patient profile. The diagnostic yield of MPS-based testing in a routine healthcare setting is unclear. Therefore, the primary aim of the VARIETY (Validation of algoRithms and IdEnTification of genes in Young patients with unexplained chronic kidney disease) study is to prospectively address the diagnostic yield of MPS-based gene panel testing in patients with unexplained CKD and an estimated glomerular filtration rate (eGFR) $<60 \text{ mL/min}/1.73 \text{ m}^2$ before the age of 50 years in clinical practice.

Methods and analysis: The VARIETY study is an ongoing, prospective, nation-wide observational cohort study to investigate the diagnostic yield of MPS-based testing in patients with unexplained CKD in a routine healthcare setting in the Netherlands. Patients are recruited from outpatient clinics in hospitals across the Netherlands. At least 282 patients will be included to meet the primary aim. Secondary analyses include subgroup analyses according to age and eGFR at first presentation, family history, and the presence of extrarenal symptoms.

Ethics and dissemination: Ethical approval for the study has been obtained from the 43 institutional review board of the University Medical Center Groningen. Study findings should 44 inform physicians and policymakers towards optimal implementation of MPS-based 45 diagnostic testing in patients with unexplained CKD.

46 ARTICLE SUMMARY

47 Strengths and limitations of this study

- First prospective study to examine the diagnostic yield of massively parallel
 sequencing in patients (age <50 at first presentation) with unexplained chronic kidney
 disease in a routine healthcare setting
 - Nation-wide study with relatively large sample size, allowing analyses of specific subgroups according to age and kidney function at first presentation
 - Study findings should inform physicians and policymakers in the implementation of gene panel testing in adults (age < 50) with unexplained CKD
- A potential limitation is that the definition of 'unexplained chronic kidney disease' is
 not unequivocal

reliez onz

57 INTRODUCTION

Chronic kidney disease (CKD) affects 11-16% of the population worldwide [1-3], is associated with extensive co-morbidity and an increased risk of premature mortality, and may ultimately result in end-stage kidney disease (ESKD) requiring dialysis or transplantation [4,5]. CKD may be caused by a variety of systemic (e.g., diabetes, hypertension) or primary renal diseases (e.g. IgA nephropathy, membranous nephropathy). Current diagnostic approaches, including kidney biopsy, are often non-specific or inconclusive, contraindicated or omitted due to lack of clinical consequences [6,7]. Therefore, the cause of CKD remains unknown in approximately 20% of patients with ESKD [8–10]. However, knowledge of the underlying kidney disease can be pivotal as it may influence prognosis and medical treatment. In the setting of kidney transplantation, it may influence (living-related) donor selection and post-transplant recurrence risk. Approximately 27-34% of patients with CKD report a positive family history of kidney disease (first or second degree relative with CKD) [11,12] and a genetic cause can be identified in at least 10% of adults with CKD [13,14], indicating that in many cases a hereditary origin for the disease should be considered. Genetic testing could therefore be a valuable tool in the diagnostic process of CKD of unknown etiology.

Recent studies suggest that massively parallel sequencing (MPS) techniques (previously referred to as next-generation sequencing) [15] could be used as diagnostic tool in adults with unexplained CKD and should even be considered as first mode of diagnostics in patients with ESKD prior to the age of 50 years [16]. Depending on patient selection, MPS led to a genetic diagnosis in 12-56% of patients with unexplained CKD [14,17–19]. However, most of these studies have been performed in a research setting, and therefore little is known about the diagnostic utility of MPS for adults with unexplained CKD in a routine healthcare setting. Moreover, currently available studies have been commonly based on subgroups of larger retrospective cohorts, and are heterogeneous in design and selection of genes used in

BMJ Open

MPS [20]. For this reason, it is difficult to define profiles of patients (e.g. based on age and severity at disease onset, extra-renal manifestations, positive family history) that should preferentially undergo genetic testing. A recent joint publication by the ERA Working Group on Inherited Kidney Disorders (WGIKD) and the Molecular Diagnostics Taskforce of the European Rare Kidney Disease Reference Network (ERKNet) called for further research to explore the diagnostic yield of genetic testing in CKD of unknown origin in a clinical setting [21].

Therefore, the objective of this national prospective cohort study is to determine the diagnostic yield, i.e. the percentage of participants with a genetic diagnosis, using a large MPS-based multi-gene panel for kidney diseases in young patients (first presentation at age <50) with unexplained CKD (eGFR <60 mL/min/1.73 m²) in a routine healthcare setting. In addition, we aim to identify specific patient profiles with a high diagnostic yield. These findings can guide physicians and policymakers in implementing MPS-based diagnostic testing in patients with unexplained CKD.

METHODS AND ANALYSIS

98 Study design

The VARIETY (Validation of algoRithms and IdEnTification of genes in Young patients with unexplained chronic kidney disease) study is a prospective nation-wide observational cohort study designed to investigate the diagnostic yield of genetic testing in patients with unexplained CKD in a routine healthcare setting in the Netherlands. The study will collect and analyze data obtained during routine clinical practice and through a questionnaire. Participants will be included from both academic and non-academic hospitals throughout the Netherlands. The anonymized data are collected, stored and analyzed in the University Medical Center Groningen (UMCG). All participants will give written informed consent on enrolment.

31 108

Study population

The targeted study population consist of all patients with unexplained CKD and an eGFR <60 ml/min/1.73m² before the age of 50 years. Unexplained CKD is defined as the absence of all the following criteria: a biopsy-proven diagnosis (e.g. IgA nephropathy), a specific morphological renal diagnosis (e.g. polycystic kidney disease suspected of autosomal/recessive polycystic kidney disease), or a specific or plausible renal diagnosis (e.g. history of long-term insulin-dependent diabetes mellitus before the onset of CKD, lithium-induced nephropathy). Since hypertensive nephropathy is a non-specific diagnosis and hypertension is also a very common consequence of CKD [22], patients with hypertensive nephropathy in the absence of a clear underlying disorder such as renal artery stenosis are considered to have unexplained CKD. Patients with renal hypoplasia, renal atrophy, and non-specific histological conditions (such as secondary focal segmental glomerulosclerosis,

BMJ Open

glomerulonephritis of unknown cause, or interstitial nephritis) are also considered to haveunexplained CKD.

Patients with a current age >50 years, but who presented with an eGFR <60 ml/min/1.73m² before the age of 50 years, and renal transplant recipients who had a pre-transplant eGFR <60 ml/min/1.73m² before the age of 50 years are also eligible for inclusion. In addition, genetic testing with a specific MPS-based gene panel (see 'Genetic testing') is required for participation. Exclusion criteria for participation in the VARIETY study are: age <18 years at time of inclusion or patients who do not give or are unable to give informed consent for genetic testing or for the current study.

131 Recruitment

To ensure a representative sample of CKD patients, patients are recruited from outpatient clinics in both academic and non-academic hospitals across the Netherlands. Depending on the hospital, patients will be screened by the primary treating nephrologists or by trained study investigators. In case of a study investigator, a list with potential participants will be sent to the treating nephrologist to confirm the diagnosis of unexplained CKD. Eligible participants will be informed about the study by the investigators or their treating nephrologists aware of the study protocol. A study investigator or treating nephrologist will ask for informed consent for this study. Information for patients has been made available in the form of patient information folder website Dutch): а and а (in www.onbegrepennierziekte.nl.

143 Data collection

Detailed clinical and demographic data are collected from patients' electronic health record (EHR) and through a questionnaire following informed consent. The data will subsequently be entered into a secure electronic case report form.

 148 Electronic health record

The following information will be collected from the EHR: age at inclusion, sex, primary renal disease diagnosis, age at CKD onset/presentation, dialysis or kidney transplantation, age at start dialysis or kidney transplantation, presence of extra-renal features, medication use at inclusion, medical history, family history (including three-generation pedigree), blood pressure at CKD onset and at inclusion, presence of hematuria and/or nephrotic syndrome, laboratory results (serum creatinine, eGFR, total cholesterol, HDL, LDL, triglycerides, 24 hour urine albumin excretion, 24 hour urine creatinine excretion, 24 hour urine total protein excretion, hematuria) at CKD onset/presentation and inclusion, renal histopathology and imaging of the native kidneys, and results of genetic testing in relation to kidney disease. We will also collect information regarding the clinical consequences of a genetic diagnosis and if genetic counseling was performed by a nephrologist or clinical geneticist. If participants are referred to a clinical geneticist, we will also collect the results of any additional genetic testing.

45 162

Questionnaire

Data collected from the EHR will be expanded with a questionnaire to collect additional data on family history, medical history, current health complaints, and extra-renal manifestations (Supplemental Table 1).

56 167

168 Genetic testing

Page 9 of 34

BMJ Open

We will include patients who have undergone MPS-based multi-gene panel testing, initiated by a clinical geneticist or nephrologist following pre-test counseling as part of clinical care in patients with unexplained CKD, in accordance with guidelines in the Netherlands [23]. Figure 1 shows the suggested flowchart for genetic testing in the VARIETY study, based on these recommendations. The criteria as shown in this flow chart are slightly more liberal than the published recommendations, which will help to define the optimal age and eGFR ranges where genetic testing is still of clinical benefit. To stimulate the implementation of the guideline, we made a website for the VARIETY study (www.onbegrepennierziekte.nl) where nephrologists can find information about genetic testing and pre-test genetic counseling.

In order to reduce heterogeneity in the diagnostic approach, we will assess the diagnostic yield of a specific MPS-based gene panel, namely the 'CKD-Y' ('Chronic Kidney Disease in Young patients') targeted exome sequencing (ES) panel available at the University Medical Center (UMC) Utrecht, The Netherlands. The older version of this panel (v18) contains 141 different genes associated with early-onset CKD, including PKD1 and PKD2 (Figure 2). On March 8 2021, the CKD-Y panel was updated (v21) and the number of genes changed from 141 to 256 (Figure 3). This panel was chosen as it is an ES-based panel and contains all the current genes associated with early-onset CKD. In addition, this panel can be ordered by nephrologists without referral to the clinical geneticist. Alternatively, the hereditary kidney disease panel from UMC Utrecht was allowed. This is another targeted ES panel, consisting of 379 genes in the v18 version and 495 genes in the updated v21 version (Supplementary Figure 1-2). Since this panel contains some kidney cancer oncogenes, it may only be ordered by a clinical geneticist. The hereditary kidney disease panel includes all genes of the CKD-Y panel, making it possible to determine if a variant could also have been identified with the CKD-Y panel. Potential findings from the hereditary kidney disease panel that do not overlap with the CKD-Y panel will not be included in the primary analyses. **BMJ** Open

Patients with older versions of the CKD-Y and hereditary kidney disease panels can be included. We will record which version of the CKD-Y and/or hereditary kidney disease panel was used. The procedures for ES and variant filtering have been described before [24]. Copy number variation (CNV) detection was performed using an in-house adapted, diagnostically validated, version of the ExomeDepth CNV detection tool [25].

200 Primary and secondary analyses

The primary analysis will address the diagnostic yield of the CKD-Y panel, defined as the percentage of positive test results (i.e. pathogenic variant(s) explaining the cause of the disease), in the overall cohort of patients with unexplained CKD and an eGFR <60 mL/min/1.73 m² before the age of 50 years. We will perform a sensitivity analysis in patients with onset eGFR $<60 \text{ mL/min}/1.73 \text{ m}^2$ between the age of 18 and 50 years. The pathogenicity of variants will be determined according to the standards and guidelines from the American College of Medical Genetics and Genomics (ACMG) [26]. With this standard, variants are classified into five categories using several lines of evidence, such as available literature, patient databases and in silico prediction programs. Class 1 variants are clearly not pathogenic; class 5 variants are clearly pathogenic. Class 3 are variants of uncertain significance/pathogenicity (VUS), these variants do not confirm or exclude the diagnosis (Table 1) [26]. For the determination of the diagnostic yield, only class 4 and class 5 variants will be considered as a 'positive test result' to determine the diagnostic yield. In cases with two class 4/5 variants in an autosomal recessive gene, these will only be considered a 'positive test result' if testing in parents has confirmed the variants are positioned in trans.

Table 1. Classification of variants according to ACMG guidelines [26]

Page 11 of 34

Class	Description					
1	Clearly not pathogenic, common polymorphism					
2	Unlikely to be pathogenic, diagnosis not confirmed molecularly					
3	Unknown significance/pathogenicity, does not exclude or confirm diagnosis					
4	Likely to be pathogenic, consistent with the diagnosis					
5	Clearly pathogenic, result confirms the diagnosis					

Secondary analyses include subgroup analyses according to age and eGFR at first presentation, family history, and the presence of extra-renal symptoms. A positive family history for CKD is recorded if the participant either has a first (parent or child), second (siblings, grandparents, grandchildren), third (aunts, uncles, nephews, nieces) or fourth (cousins) degree relative with CKD. Family history will be obtained from combining information present in the EHR with information obtained from the questionnaire. Other secondary analysis aims to define the percentage of genetic tests with a clinical consequence. A genetic diagnosis is considered to have a clinical consequence if it: 1) negated the need for kidney biopsy, 2) triggered or negated the need for immunosuppressive therapy, 3) provides prognostic information, i.e. the risk of post-transplantation anti-GBM glomerulonephritis, 4) led to, or should lead to, referral to other specialties (e.g. ophthalmologist), 5) led to targeted work-up for associated symptoms or extra-renal manifestations, 6) affected surveillance frequency, 7) led to, or should lead to, genetic testing in potential living related kidney donors, 8) enabled more precise (preconception) genetic counseling for the patient or family members, or 9) led to more precise or extensive follow-up of potentially affected family members.

BMJ Open

Tertiary outcomes will be the percentage of participants in which a VUS was identified and the number of incidental/secondary findings (results unrelated to the initial indication for genetic testing). In addition, if a molecular diagnosis is identified and a kidney biopsy from the native kidney is present, we will assess if the biopsy findings match the molecular diagnosis. Finally, we will perform health economic analyses to determine if MPS in patients with unexplained CKD is cost-effective.

We will report the number of participants who withdraw from participating in the VARIETY study after initial inclusion and the number of participants who have initially been included, but upon further analysis by the study team did not match the inclusion criteria. Participants without results from genetic testing will be excluded from all analyses. If information is missing from the EHR, we will ask the general practitioner to deliver the missing data within participants' consent. If the data cannot be retrieved, it will be regarded as "unknown". In case eGFR at CKD onset is missing, the first available eGFR or serum creatinine measurement since the diagnosis of CKD will be used.

251 Statistical analysis

Statistical analysis will be performed with IBM SPSS statistics for Windows, version 23 (IBM Corporation, Armonk, NY, USA). An overall significance level of 0.05 will be handled. Continuous variables that are normally distributed will be presented as mean and standard deviation. Non-normally distributed variables will be expressed as median and interguartile range. Frequencies and percentages will be used to describe categorical variables such as gender, family history, renal replacement therapy, extra-renal manifestations, and diagnostic yield. The Chi-square or Fisher's exact test will be used to compare differences in categorical variables between the different subgroups of the secondary analysis. Logistic regression will be performed to identify characteristics associated with a genetic diagnosis.

formula [27], based on the	
esults is 17% [14]. Assuming	
minimum of 217 participants	-
In order to be clinically and	
his prospective cohort study	
include at least 282 patients	
	-
electronic data capture tool	
ata collection and entry is	
ize differences and errors in	
participating centers for data	-
l be performed according to a	
h the UMCG Research Data	-
a analysis will take place on	
extracted from REDCap and	
study.	

262 Sample size calculation

The minimal sample size was calculated using the following formula [27], based on the study's primary endpoint:

$$n = \frac{Z^2 * P(1-P)}{d^2}$$

Based on the literature, the expected percentage of positive test results is 17% [14]. Assuming a level of confidence (z) of 1.96 and precision (d) of 0.05 [27], a minimum of 217 participants are required for a reliable assessment of the primary outcome. In order to be clinically and politically significant, we aim to increase the sample size of this prospective cohort study beyond the largest currently available retrospective study, i.e. to include at least 282 patients in the current study [20,27].

273 Data management

274 Study data will be recorded digitally using the secure REDCap (REDCap, Nashville, TN) hosted at the UMCG [28,29]. Date of the UMCG [28,29]. 275 276 performed by trained investigators from the UMCG. To minim 277 data entry, investigators from the UMCG will travel to other 278 collection and entry in REDCap. Data validation in REDCap will 279 data validation plan, which has been made in collaboration with 280 Support and approved by the Institutional Review Board. Data 281 validated and anonymized data. Upon study closure, data will be 282 exported to SPSS for analysis.

284 Patient and public involvement

285 Patients and/or the public were not involved in the design of this study.

287 ETHICS AND DISSEMINATION

Ethical approval for the study has been obtained from the institutional review board of the UMCG (METc 2019/106). The study is conducted in accordance with the WMA Declaration of Helsinki. The results of the study will be presented at (inter)national congresses and submitted for open access publication in peer-reviewed journals. In addition to the primary results, related to the main research questions as defined above, case reports/series may be submitted for publication in case of unique or interesting findings and these will also be submitted for publication in peer-reviewed journals. In accordance with the information sheet for participants, the main results and any publications from the VARIETY study will also be made available on the study website. After completion of the study and publication of the main results, request for re-use of the data can be submitted to the corresponding author.

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

310

314

298 CONCLUSION AND STUDY STATUS

299 Genetic testing shows promising results as a diagnostic tool in adults with CKD and it has the 300 potential to resolve CKD cases with an unknown etiology. However, further research is 301 needed in a clinical setting to define the position of MPS-based diagnostics in clinical practice 302 and to determine which subpopulations will have the highest diagnostic yield. Here, we 303 outlined the design for a prospective cohort study that will determine the diagnostic yield of 304 MPS-based renal gene panel testing in patients with unexplained CKD. The fact that 305 unexplained CKD has not been uniformly defined by international (guideline) committees or 306 institutions may slightly impact external validity of our findings. However, results from this 307 study are likely a step forward in informing physicians and policymakers involved in 308 implementation of genetic testing in patients with unexplained CKD. Inclusion started on 31 309 July 2019. As of September 2021, 248 patients have been included.

311 Acknowledgements

Several authors of this publication (AE and NK) are members of the European Reference
Network for Rare Kidney Diseases (ERKNet) - Project ID no. 739532.

315 Author contributions

316 AH and MB wrote the first draft of the manuscript. ME, LV, BZ, AE and NK gave feedback

317 and contributed to manuscript revision. All authors read and approved the submitted version.

9 318 0 1 210 E

319 **Funding statement**

320 This collaboration project is co-financed by Sanofi Genzyme and the Dutch Ministry of
321 Economic Affairs and Climate Policy by means of the PPP Allowance made available by the

322 Top Sector Life Sciences & Health to stimulate public-private partnerships (grant numbers
323 RVO/6320 and IMAGEN/LSHM20009).

325 Competing interest statement

326 Dr. De Borst and Dr. Vogt have received research support and lecture fees (all to institution)

327 from Sanofi Genzyme related to the current study. Prof. Knoers has received reimbursement

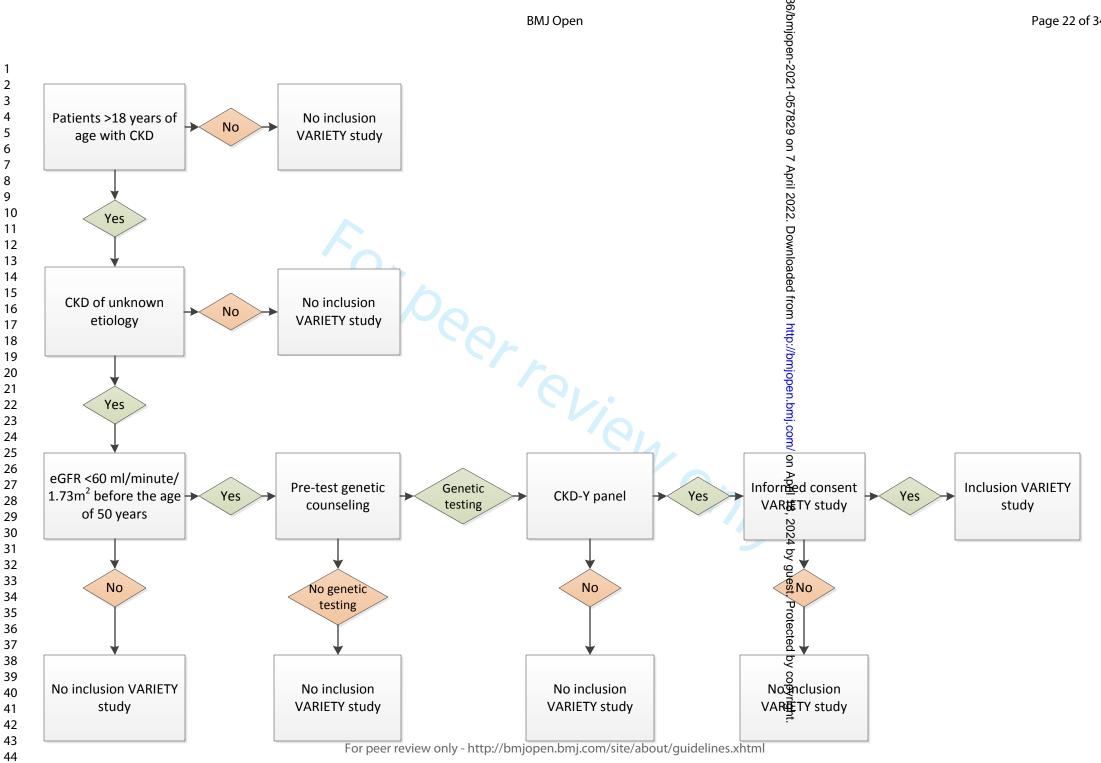
328 of travel expenses for lectures related to the current study from Sanofi Genzyme.

or of the text on the second

2			
3 4	329	REF	FERENCES
5 6	330	1	Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease - A
7 8 9	331		systematic review and meta-analysis. PLoS One 2016;11:e0158765.
10 11	332	2	Lv JC, Zhang LX. Prevalence and Disease Burden of Chronic Kidney Disease. In:
12 13 14	333		Advances in Experimental Medicine and Biology. 2019.
15 16	334	3	Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: Global dimension and
17 18 19	335		perspectives. <i>Lancet</i> 2013;382:260–72.
20 21	336	4	Go AS, Chertow GM, Fan D, et al. Chronic Kidney Disease and the Risks of Death,
22 23 24	337		Cardiovascular Events, and Hospitalization. N Engl J Med 2004;351:1296–305.
25 26	338	5	Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and
27 28 29	339		cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet
29 30 31	340		2013;382:339–52.
32 33 34	341	6	Luciano RL, Moeckel GW. Update on the Native Kidney Biopsy: Core Curriculum
34 35 36	342		2019. Am J Kidney Dis 2019;73:404–15.
37 38	343	7	Scheckner B, Peyser A, Rube J, et al. Diagnostic yield of renal biopsies: a retrospective
39 40 41	344		single center review. <i>BMC Nephrol</i> 2009;10:11.
42 43	345	8	Titze S, Schmid M, Köttgen A, et al. Disease burden and risk profile in referred
44 45 46	346		patients with moderate chronic kidney disease: composition of the German Chronic
47 48	347		Kidney Disease (GCKD) cohort. Nephrol Dial Transplant 2015;30:441-51.
49 50 51	348	9	Neild GH. Primary renal disease in young adults with renal failure. Nephrol Dial
52 53	349		Transplant 2010;25:1025–32.
54 55 56	350	10	Kramer A, Pippias M, Noordzij M, et al. The European Renal Association – European
57 58	351		Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2016: a
59 60	352		summary. <i>Clin Kidney J</i> 2019;12:702–20.

BMJ Open

3 4	353	11	Connaughton DM, Bukhari S, Conlon P, et al. The Irish Kidney Gene Project -
5 6	354		Prevalence of Family History in Patients with Kidney Disease in Ireland. Nephron
7 8 9	355		2015;130:293–301.
10 11	356	12	Skrunes R, Svarstad E, Reisæter AV, et al. Familial clustering of esrd in the norwegian
12 13 14	357		population. Clin J Am Soc Nephrol 2014;9:1692–700.
15 16	358	13	Mallett A, Patel C, Salisbury A, et al. The prevalence and epidemiology of genetic
17 18 19	359		renal disease amongst adults with chronic kidney disease in Australia. Orphanet J Rare
20 21	360		Dis 2014;9:98.
22 23 24	361	14	Groopman E, Marasa M, Cameron-Christie S, et al. Diagnostic Utility of Exome
24 25 26	362		Sequencing for Kidney Disease. N Engl J Med 2018;380:142-51.
27 28 29	363	15	Jarvik GP, Evans JP. Mastering genomic terminology. <i>Genet Med</i> 2017;19:491–2.
30 31	364	16	Snoek R, van Jaarsveld RH, Nguyen TQ, et al. Genetics-first approach improves
32 33 34	365		diagnostics of ESKD patients younger than 50 years. Nephrol Dial Transplant
35 36	366		Published Online First: 11 December 2020.
37 38 39	367	17	Lata S, Marasa M, Li Y, et al. Whole-exome sequencing in adults with chronic kidney
40 41	368		disease: A pilot study. Ann Intern Med 2018;168:100-9.
42 43 44	369	18	Ottlewski I, Münch J, Wagner T, et al. Value of renal gene panel diagnostics in adults
44 45 46	370		waiting for kidney transplantation due to undetermined end-stage renal disease. Kidney
47 48	371		<i>Int</i> 2019;96:222–30.
49 50 51	372	19	Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney
52 53	373		disease in adults. Kidney Int 2019;:S0085-2538(18)30839-1.
54 55 56	374	20	de Haan A, Eijgelsheim M, Vogt L, et al. Diagnostic Yield of Next-Generation
57 58	375		Sequencing in Patients With Chronic Kidney Disease of Unknown Etiology. Front
59 60	376		<i>Genet</i> 2019;10.


Page 19 of 34

BMJ Open

1 2			
3 4	377	21	Knoers N, Antignac C, Bergmann C, et al. Genetic testing in the diagnosis of chronic
5 6	378		kidney disease: recommendations for clinical practice. Nephrol Dial Transplant
7 8 9	379		Published Online First: 15 July 2021.
10 11	380	22	Carriazo S, Vanessa Perez-Gomez M, Ortiz A. Hypertensive nephropathy: a major
12 13 14	381		roadblock hindering the advance of precision nephrology. Clin Kidney J 2020;13:504-
14 15 16	382		9.
17 18 19	383	23	van Eerde A, Rookmaker M, Snoek R. Handreiking Erfelijke Nieraandoeningen en
20 21	384		Urinewegafwijkingen en Nefrologische Verwijsindicaties Klinische Genetica. 2018.
22 23 24	385	24	Dubail J, Huber C, Chantepie S, et al. SLC10A7 mutations cause a skeletal dysplasia
24 25 26	386		with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun
27 28	387		2018;9:3087.
29 30 31	388	25	Plagnol V, Curtis J, Epstein M, et al. A robust model for read count data in exome
32 33	389		sequencing experiments and implications for copy number variant calling.
34 35 36	390		<i>Bioinformatics</i> 2012;28:2747–54.
37 38	391	26	Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of
39 40 41	392		sequence variants: A joint consensus recommendation of the American College of
41 42 43	393		Medical Genetics and Genomics and the Association for Molecular Pathology. Genet
44 45	394		Med 2015;17:4–5424.
46 47 48	395	27	Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical
49 50	396		studies. Gastroenterol Hepatol from bed to bench 2013;6:14-7.
51 52 53	397	28	Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)-A
54 55	398		metadata-driven methodology and workflow process for providing translational
56 57	399		research informatics support. J Biomed Inform Published Online First: 2009.
58 59 60	400	29	Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: Building an

1 2		
2 3 4	401	international community of software platform partners. J Biomed Inform
5 6	402	2019;95:103208.
7 8		
9		
10 11		
12 13		
14 15		
16 17		
17 18 19		
20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50		
51 52		
53 54		
55 56		
57 58		
59 60		
		20
		20

1		
2 3 4	404	FIGURE LEGENDS
5 6 7	405	Figure 1. Flowchart for inclusion VARIETY study. CKD: chronic kidney disease; eGFR:
8 9	406	estimated glomerular filtration rate.
10 11 12	407	
13 14	408	Figure 2. Overview of the 141 genes that are analyzed in the exome sequencing based
15 16 17	409	Chronic Kidney Disease in Young patients (CKD-Y) panel version v18 at University
18 19	410	Medical Center Utrecht
20 21 22	411	
23 24	412	Figure 3. Overview of the 256 genes that are analyzed in the exome sequencing based
25 26 27	413	Chronic Kidney Disease in Young patients (CKD-Y) panel version v21 at University
28 29 30	414	Medical Center Utrecht. Bold genes are also on the CKD-Y panel v18.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		
		21

BMJ Open

ADCK4CFHFAN1IQCB1MYO1EPKHD1TNAGTCFHR5FAT1ITGA3NEK8PLCE1TRAAGTR1CFIFGAITGA8NOTCH2PMM2TRAAGXTCHD7FN1JAG1NPHP1PTPROTRAALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMAANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPS	ADCK4CFHFAN1IQCB1MYO1EPKHD1TNAGTCFHR5FAT1ITGA3NEK8PLCE1TRAAGTR1CFIFGAITGA8NOTCH2PMM2TRAGXTCHD7FN1JAG1NPHP1PTPROTRALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIP4APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVP5APOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMP5BBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5TNFC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7TACD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ADCK4CFHFAN1IQCB1MYO1EPKHD1AGTCFHR5FAT1ITGA3NEK8PLCE1TAGTR1CFIFGAITGA8NOTCH2PMM2AAGXTCHD7FN1JAG1NPHP1PTPROALG1CLCN5FOXC2KANK1NPHP3RENAMNCOL4A3FRAS1KANK2NPHP4RMND1ANKS6COL4A4FREM1KANK4NPHS1ROBO2YAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIPILAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2YB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ACE	CEP290	EMP2	INF2	MYH11	PKD1	ТВУ
AGTCFHR5FAT1ITGA3NEK8PLCE1TRALAGTR1CFIFGAITGA8NOTCH2PMM2TRALAGXTCHD7FN1JAG1NPHP1PTPROTRIALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AGTCFHR5FAT1ITGA3NEK8PLCE1TRAAGTR1CFIFGAITGA8NOTCH2PMM2TR.AGXTCHD7FN1JAG1NPHP1PTPROTRALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	AGTCFHR5FAT1ITGA3NEK8PLCE1TAGTR1CFIFGAITGA8NOTCH2PMM2AGXTCHD7FN1JAG1NPHP1PTPROALG1CLCN5FOXC2KANK1NPHP3RENAMNCOL4A3FRAS1KANK2NPHP4RMND1ANKS6COL4A4FREM1KANK4NPHS1ROBO2YAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2YB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAG12PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ACTN4	CFB	EYA1	INVS	MYH9	PKD2	TME
AGTR1CFIFGAITGA8NOTCH2PMM2TRAAGXTCHD7FN1JAG1NPHP1PTPROTRAALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AGTR1CFIFGAITGA8NOTCH2PMM2TR.AGXTCHD7FN1JAG1NPHP1PTPROTR.ALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5TRC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APCD46DGKEIFT27MAP7D3PBX1SLC7A7CD46CEP164DSTYKIFT81MUC1PDSS2SOX17TR	AGTR1CFIFGAITGA8NOTCH2PMM2AGXTCHD7FN1JAG1NPHP1PTPROALG1CLCN5FOXC2KANK1NPHP3RENAMNCOL4A3FRAS1KANK2NPHP4RMND1ANKS6COL4A4FREM1KANK4NPHS1ROBO2YAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2YB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ADCK4	CFH	FAN1	IQCB1	MYO1E	PKHD1	TN
AGXTCHD7FN1JAG1NPHP1PTPROTR1ALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5TC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1 </td <td>AGXTCHD7FN1JAG1NPHP1PTPROTRALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIP2APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVP5APOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMP5BBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPS2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17</td> <td>AGXTCHD7FN1JAG1NPHP1PTPROALG1CLCN5FOXC2KANK1NPHP3RENAMNCOL4A3FRAS1KANK2NPHP4RMND1ANKS6COL4A4FREM1KANK4NPHS1ROBO2NAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2NB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1NBCS1LCYP11B1GSNLYZOFD1SIX5C3C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1</td> <td>AGT</td> <td>CFHR5</td> <td>FAT1</td> <td>ITGA3</td> <td>NEK8</td> <td>PLCE1</td> <td>TRA</td>	AGXTCHD7FN1JAG1NPHP1PTPROTRALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIP2APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVP5APOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMP5BBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPS2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	AGXTCHD7FN1JAG1NPHP1PTPROALG1CLCN5FOXC2KANK1NPHP3RENAMNCOL4A3FRAS1KANK2NPHP4RMND1ANKS6COL4A4FREM1KANK4NPHS1ROBO2NAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2NB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1NBCS1LCYP11B1GSNLYZOFD1SIX5C3C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AGT	CFHR5	FAT1	ITGA3	NEK8	PLCE1	TRA
ALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIP4APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBEIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ALG1CLCN5FOXC2KANK1NPHP3RENTTCAMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	ALG1CLCN5FOXC2KANK1NPHP3RENAMNCOL4A3FRAS1KANK2NPHP4RMND1ANKS6COL4A4FREM1KANK4NPHS1ROBO2NAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2NB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AGTR1	CFI	FGA	ITGA8	NOTCH2	PMM2	TRA
AMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIP4APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBEIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AMNCOL4A3FRAS1KANK2NPHP4RMND1UMANKS6COL4A4FREM1KANK4NPHS1ROBO2VIP4APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVP5APOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMP5BBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	AMNCOL4A3FRAS1KANK2NPHP4RMND1ANKS6COL4A4FREM1KANK4NPHS1ROBO2NAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2NB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AGXT	CHD7	FN1	JAG1	NPHP1	PTPRO	TRF
ANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5CC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1 </td <td>ANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNHBCS1LCYP11B1GSNLYZOFD1SIX5C3C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17XXXXX</td> <td>ANKS6COL4A4FREM1KANK4NPHS1ROBO2YAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2YB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1YBCS1LCYP11B1GSNLYZOFD1SIX5C3CJ51DACT1HOGA1MAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1</td> <td>ALG1</td> <td>CLCN5</td> <td>FOXC2</td> <td>KANK1</td> <td>NPHP3</td> <td>REN</td> <td>TTC</td>	ANKS6COL4A4FREM1KANK4NPHS1ROBO2VIPAAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNHBCS1LCYP11B1GSNLYZOFD1SIX5C3C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17XXXXX	ANKS6COL4A4FREM1KANK4NPHS1ROBO2YAPOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2YB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1YBCS1LCYP11B1GSNLYZOFD1SIX5C3CJ51DACT1HOGA1MAFBOSGEPSLC41A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ALG1	CLCN5	FOXC2	KANK1	NPHP3	REN	TTC
APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CPACAL1	APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LVPSAPOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	APOA1COL4A5FREM2KIAA0556NPHS2RPGRIP1LAPOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2XB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1KBCS1LCYP11B1GSNLYZOFD1SIX5C3CJ151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	AMN	COL4A3	FRAS1	KANK2	NPHP4	RMND1	UM
APOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	APOL1COQ2GATA3KIAA0586NUP107RRM2BWDARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5C3C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	APOL1COQ2GATA3KIAA0586NUP107RRM2BARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2YB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ANKS6	COL4A4	FREM1	KANK4	NPHS1	ROBO2	VIPA
ARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5CC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ARHGDIACOQ6GLALAMB2NUP205SALL1WATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5C3C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	ARHGDIACOQ6GLALAMB2NUP205SALL1ATXN10CRB2GLIS2LMNANUP93SCARB2XB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	APOA1	COL4A5	FREM2	KIAA0556	NPHS2	RPGRIP1L	VPS
ATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNPBCS1LCYP11B1GSNLYZOFD1SIX5ZNPC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ATXN10CRB2GLIS2LMNANUP93SCARB2XPNB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX5ZNIC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	ATXN10CRB2GLIS2LMNANUP93SCARB2XB2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	APOL1	COQ2	GATA3	KIAA0586	NUP107	RRM2B	WD]
B2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5ZNFC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	B2MCTNSGRHPRLMX1BNXF5SDCCAG8ZMPSBBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNFBCS1LCYP11B1GSNLYZOFD1SIX5IC3CYP11B2HNF1BMAFBOSGEPSLC41A1ICD151DACT1HOGA1MAGI2PAX2SLC4A1ICD2APDCDC2HPSE2MAP7D3PBX1SLC7A7ICD46DGKEIFT27MAPKBP1PDSS1SMARCAL1ICEP164DSTYKIFT81MUC1PDSS2SOX17I	B2MCTNSGRHPRLMX1BNXF5SDCCAG8ZBBIP1CUBNGRIP1LRIG2OCRLSGPL1FBCS1LCYP11B1GSNLYZOFD1SIX5FC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ARHGDIA	COQ6	GLA	LAMB2	NUP205	SALL1	W
BBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNEBCS1LCYP11B1GSNLYZOFD1SIX5IC3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	BBIP1CUBNGRIP1LRIG2OCRLSGPL1ZNIBCS1LCYP11B1GSNLYZOFD1SIX51C3CYP11B2HNF1BMAFBOSGEPSLC41A11CD151DACT1HOGA1MAGI2PAX2SLC4A11CD2APDCDC2HPSE2MAP7D3PBX1SLC7A71CD46DGKEIFT27MAPKBP1PDSS1SMARCAL11CEP164DSTYKIFT81MUC1PDSS2SOX171	BBIP1CUBNGRIP1LRIG2OCRLSGPL1BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	ATXN10	CRB2	GLIS2	LMNA	NUP93	SCARB2	XPNI
BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	BCS1LCYP11B1GSNLYZOFD1SIX5C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	B2M	CTNS	GRHPR	LMX1B	NXF5	SDCCAG8	ZMPS
C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	C3CYP11B2HNF1BMAFBOSGEPSLC41A1CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	BBIP1	CUBN	GRIP1	LRIG2	OCRL	SGPL1	ZNF
CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1CEP164DSTYKIFT81MUC1PDSS2SOX17	CD151DACT1HOGA1MAGI2PAX2SLC4A1CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	BCS1L	CYP11B1	GSN	LYZ	OFD1	SIX5	
CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	CD2AP CD46DCDC2HPSE2MAP7D3 MAPKBP1PBX1 PDSS1SLC7A7 SMARCAL1 SOX17CEP164DSTYKIFT81MUC1PDSS2SOX17	CD2APDCDC2HPSE2MAP7D3PBX1SLC7A7CD46DGKEIFT27MAPKBP1PDSS1SMARCAL1	C3	CYP11B2	HNF1B	MAFB	OSGEP	SLC41A1	
CD46 DGKE IFT27 MAPKBP1 PDSS1 SMARCAL1	CD46 DGKE IFT27 MAPKBP1 PDSS1 SMARCAL1 CEP164 DSTYK IFT81 MUC1 PDSS2 SOX17	CD46 DGKE IFT27 MAPKBP1 PDSS1 SMARCAL1	CD151	DACT1	HOGA1	MAGI2	PAX2	SLC4A1	
	CEP164 DSTYK IFT81 MUC1 PDSS2 SOX17		CD2AP	DCDC2	HPSE2	MAP7D3	PBX1	SLC7A7	
CEP164 DSTYK IFT81 MUC1 PDSS2 SOX17		CEP164 DSTYK IFT81 MUC1 PDSS2 SOX17	CD46	DGKE	IFT27	MAPKBP1	PDSS1	SMARCAL1	
			CEP164	DSTYK	IFT81	MUC1	PDSS2	SOX17	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	256 gen	es in the youn	g kidney failu	re (CKD-Y)	panel v21	
ACE	BICC1	CUBN	HYLS1	MOCOS	PLCE1	TMEM13
ACTG2	BMPR2	CUL3	IFT27	MTR	PMM2	TMEM210
ACTN4	C3	CYP11B1	IFT74	MTRR	POC1B	TMEM23
ADAMTS9	C8ORF37	CYP11B2	IFT81	MTX2	PODXL	TMEM23
AGT	CACNA1D	CYP17A1	IL1RAP	MUC1	PTPRO	TMEM6
AGTR1	CACNA1H	DAAM2	INF2	MYH11	REN	TMEM72
AGXT	CC2D2A	DACT1	INPP5E	MYH9	RMND1	TNS2
AHI1	CD151	DCDC2	INVS	MYO1E	ROBO2	TNXB
ALG1	CD2AP	DGKE	IQCB1	NEK8	RPGRIP1L	TOGARAN
ALMS1	CD46	DLC1	ITGA3	NOS1AP	RRM2B	TP53RK
AMN	CDK20	DNAJB11	ITGA8	NOTCH2	SALL1	TPRKB
ANKS6	CEP104	DSTYK	ITGB4	NPHP1	SARS2	TRAF3IF
ANLN	CEP164	E2F3	ITSN1	NPHP3	SCARB2	TRAP1
APOA1	CEP290	EMP2	ITSN2	NPHP4	SCNN1A	TRIM32
APOE	CEP41	EYA1	JAG1	NPHS1	SCNN1B	TRIM8
APOL1	CEP83	FAM149B1	KANK1	NPHS2	SCNN1G	TRPC6
APRT	CFB	FAN1	KANK2	NR3C1	SDCCAG8	TTC21E
ARHGAP24	CFH	FAT1	KANK4	NR3C2	SEC61A1	TTC8
ARHGDIA	CFHR1	FGA	KATNIP	NUP107	SGPL1	UMOD
ARL13B	CFHR2	FN1	KCNJ5	NUP133	SIX1	VIPAS3
ARL6	CFHR3	FOXC2	KIAA0586	NUP160	SIX5	VPS33B
ARMC9	CFHR4	FRAS1	KIF3B	NUP205	SLC22A12	WDPCP
ATXN10	CFHR5	FREM1	KIRREL1	NUP85	SLC2A9	WDR19
AVIL	CFI	FREM2	KLHL3	NUP93	SLC3A1	WDR35
B2M	CHD7	GANAB	LAMB2	NXF5	SLC41A1	WDR60
B9D1	CLCN2	GAPVD1	LMNA	OCRL	SLC4A1	WDR73
B9D2	CLCN5	GATA3	LMX1B	OFD1	SLC7A7	WNK1
BBIP1	COL4A3	GATM	LRIG2	OSGEP	SLC7A9	WNK4
BBS1	COL4A4	GLA	LYZ	PAX2	SMARCAL1	WT1
BBS10	COL4A5	GLIS2	LZTFL1	PBX1	SOX17	XDH
BBS12	COQ2	GRHPR	MAFB	PCM1	STX16	XPNPEP
BBS2	COQ6	GRIP1	MAGI2	PDSS1	TBC1D8B	YRDC
BBS4	COQ8B	GSN	MAP7D3	PDSS2	TBX18	ZMPSTE
BBS5	CPLANE1	HNF1B	MAPKBP1	PIBF1	TCTN1	ZNF423
BBS7	CRB2	HOGA1	MKKS	PKD1	TCTN2	
BBS9	CSPP1	HPSE2	MKS1	PKD2	TCTN3	
BCS1L	CTNS	HSD11B2	MMACHC	PKHD1	TMEM107	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

SUPPLEMENTARY MATERIAL

ACE	CA2	DGAT1	GSN	MAGED2	ROBO2	ТСТЕУ
ACTG2	CACNA1H	DGKE	GUCY2C	MAGI2	RPGRIP1	TCT
ACTN4	CACNA1S	DMP1	HAAO	MAP7D3	RPGRIP1L	TCT
ADAMTS13	CASR	DNAJB11	HNF1B	MAPKBP1	RRM2B	TCT
ADCK3	CC2D2A	DST	HNF4A	MET	SALL1	THE
ADCK4	CCDC114	DSTYK	HOGA1	MKKS	SALL4	TMEN
AGT	CD151	DYNC2H1	HOXD13	MKS1	SARS2	TMEN
AGTR1	CD2AP	DYNC2LI1	HPRT1	MUC1	SCARB2	TMEN
AGXT	CD46	DZIP1L	HPSE2	MYH11	SCLT1	TMEN
AHI1	CDKN1C	EGF	HSD11B2	MYH9	SCN11A	TMEN
ALDOB	CEP120	EHHADH	IFT122	MYO1E	SCN4A	TMEN
ALG1	CEP164	EMP2	IFT140	MYO5B	SCNN1A	TME
ALG8	CEP290	ENPP1	IFT172	NEK1	SCNN1B	TNY
ALMS1	CEP41	EPCAM	IFT27	NEK8	SCNN1G	TP53
AMN	CEP83	EVC	IFT43	NEUROG3	SDCCAG8	TPR
ANKS3	CFB	EVC2	IFT52	NGF	SDHB	TRAF
ANKS6	CFH	EYA1	IFT57	NOTCH2	SEC61A1	TRA
ANLN	CFHR1	FAH	IFT80	NPHP1	SEC61B	TRIN
ANO1	CFHR2	FAHD2A	IFT81	NPHP3	SEC63	TRP
AP2S1	CFHR3	FAM134B	IKBKAP	NPHP4	SGPL1	TRP
APOA1	CFHR4	FAM20A	INF2	NPHS1	SIX1	TSC
APOL1	CFHR5	FAM58A	INPP5E	NPHS2	SIX2	TSC
APRT	CFI	FAN1	INVS	NR3C1	SIX5	TTC
AQP2	CHD1L	FAT1	IQCB1	NR3C2	SLC12A1	TTC
ARHGAP24	CHD7	FBXL4	ITGA3	NUP107	SLC12A3	UMO
ARHGDIA	CHRM3	FGA	ITGA8	NUP205	SLC16A12	UPK
ARL13B	CLCN5	FGF20	ITGB4	NUP93	SLC22A12	UQC
ARL6	CLCNKA	FGF23	JAG1	NXF5	SLC26A3	VD
ARSA	CLCNKB	FGF8	KAL1	OCRL	SLC2A2	VH
ATP6V0A4	CLDN16	FGFR1	KANK1	OFD1	SLC2A9	VIPA
ATP6V1B1	CLDN19	FH	KANK2	OSGEP	SLC34A1	VPS3
ATP7B	CNNM2	FLCN	KANK4	PAX2	SLC34A3	WDP
ATXN10	COL4A1	FN1	KCNJ1	PAX8	SLC36A2	WDF
AVP	COL4A3	FOXC2	KCNJ10	PBX1	SLC37A4	WDF
AVPR2	COL4A4	FOXF1	KCNJ5	PCBD1	SLC3A1	WDF
B2M	COL4A5	FRAS1	KIAA0556	PDE6D	SLC41A1	WDF
B9D1	COQ2	FREM1	KIAA0586	PDSS1	SLC4A1	WDF
B9D2	COQ4	FREM2	KIF14	PDSS2	SLC4A4	WN]
BBIP1	COQ6	FXYD2	KIF7	PHEX	SLC5A2	WN]
BBS1	COQ7	G6PC	KL	PKD1	SLC6A19	WN'
BBS10	COQ9	GALNT3	KLHL3	PKD2	SLC6A20	WT
BBS12	COX10	GALT	KYNU	PKHD1	SLC7A7	XD

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BBS2	CPT2	GANAB	LAGE3	PLCE1	SLC7A9	XPNPEP3
BBS4	CRB2	GATA3	LAMB2	PMM2	SLC9A3	XPO5
BBS5	CSPP1	GDNF	LCAT	PODXL	SLC9A3R1	YRDC
BBS7	CTNS	GLA	LMNA	PRDM12	SLIT2	ZEB2
BBS9	CUBN	GLI3	LMOD1	PRKCSH	SMARCAL1	ZIC3
BCS1L	CUL3	GLIS2	LMX1B	PSAP	SOX17	ZMPSTE24
BICC1	CYP11B1	GLIS3	LPP	PTEN	SPINT2	ZNF423
BMP4	CYP11B2	GNA11	LRIG2	PTH1R	SPTLC1	
BMPR2	CYP17A1	GPC3	LRP2	PTPRO	SPTLC2	
BSND	CYP24A1	GPC5	LRP4	PYGM	STRA6	
C2CD3	DACT1	GREB1L	LYZ	REN	STX16	
C3	DCDC2	GRHPR	LZTFL1	RET	TBC1D1	
C5orf42	DDX59	GRIP1	MAFB	RMND1	TBX18	

Supplementary Figure 1. The 379 genes that are on the hereditary kidney disease panel v18

at University Medical Center Utrecht. Bold genes are also on the CKD-Y panel v18.

	49	5 genes in here	editary kidn	ey disease panel	v21	
ACE	CACNA1H	DGAT1	GREB1L	LRIG2	PRDM12	STRA6
ACTA2	CACNA1S	DGKE	GREM1	LRP10	PRDX1	STRADA
ACTG2	CASR	DHCR7	GRHPR	LRP2	PRKCSH	STX16
ACTN4	CBWD1	DICER1	GRIP1	LRP4	PSAP	SYNPC
ADAMTS13	CBY1	DLC1	GSN	LRP5	PTEN	TBC1D
ADAMTS9	CC2D2A	DMP1	GUCY2C	LYZ	PTH1R	TBC1D8
ADCK3	CCDC114	DNAJB11	HAAO	LZTFL1	PTPRO	TBX18
ADCY10	CCDC28B	DOCK4	HNF1B	MAFB	PYGM	TBX6
AGK	CD151	DST	HNF4A	MAGED2	RBM8A	TCTEX1
AGT	CD2AP	DSTYK	HOGA1	MAGI2	REN	TCTNI
AGTR1	CD46	DYNC2H1	HOXA10	MAP7D3	RERE	TCTN2
AGXT	CDC73	DYNC2LI1	HOXA13	MAPKBP1	RET	TCTN2
AHI1	CDK20	DZIP1L	HOXD13	MET	RICTOR	THBD
ALDOB	CDK20 CDKN1C	E2F3	HPRT1	MKKS	RICTOR RMND1	TMEM1
ALG1	CENPF	EGF	HPSE2	MKKS MKS1	ROBO1	TMENII TMEMI
ALG5	CENT ¹ CEP104	EHHADH	HRAS	MACHC	<i>ROBO1</i>	TMEM1
ALG6	CEP120	ELP1	HSD11B2	MOCOS	RPGRIP1	TMEM1 TMEM2
ALG0	CEP120 CEP164	ELPT EMP2	HSPA6	MOCOS MTR	RPGRIP1L	TMEM2
ALG0 ALG9						
ALO9 ALMS1	CEP290	ENPP1	HYLS1	MTRR	RRAGD	TMEM2
ALMSI	CEP41	EPCAM	ICK	MTX2	RRM2B	TMEM2
	CEP55	ERCC6	IFT122	MUC1	SALL1	
AMN	CEP83	ERCC8	IFT140	MYH11	SALL4	
ANKFY1	CFB	EVC	IFT172	MYH9	SARS2	TNS2
ANKS3	CFH	EVC2	IFT27	MYLK	SCARB2	TNXB
ANKS6	CFHR1	EVX1	IFT43	MYO1E	SCLT1	TOGARA
ANLN	CFHR2	EXOC8	IFT52	MYO5B	SCN11A	TP53R
ANOS1	CFHR3	EYA1	IFT57	NAALADL2	SCN4A	TP63
AP2S1	CFHR4	FAH	IFT74	NCAPG2	SCNN1A	TPRKI
APOA1	CFHR5	FAHD2A	IFT80	NEK1	SCNN1B	TRAF3L
APOE	CFI	FAM134B	<i>IFT81</i>	NEK8	SCNN1G	TRAPI
APOL1	CHD1L	FAM149B1	IL1RAP	NEU1	SDCCAG8	TRIM3
APRT	CHD7	FAM20A	INF2	NEUROG3	SDHB	TRIM
AQP2	CHRM3	FAM20C	INPP5E	NGF	SEC61A1	TRPCe
ARHGAP24	CHRNA3	FAM58A	INTU	NOS1AP	SEC61B	TRPM
ARHGDIA	CLCN2	FAN1	INVS	NOTCH2	SEC63	TRPM
ARL13B	CLCN5	FAT1	IQCB1	NPHP1	SGPL1	TSC1
ARL3	CLCNKA	FBXL4	ISL1	NPHP3	SIX1	TSC2
ARL6	CLCNKB	FGA	ITGA3	NPHP4	SIX2	TSHZ
ARMC9	CLDN10	FGF20	ITGA8	NPHS1	SIX5	TTC21
ARSA	CLDN16	FGF23	ITGB4	NPHS2	SKAP2	TTC8
ATP1A1	CLDN19	FGF8	ITSN1	NPNT	SLC12A1	TXNDC
ATP6V0A4	CNNM2	FGFR1	ITSN2	NR3C1	SLC12A3	UMOL
ATP6V1B1	COL4A1	FH	JAG1	NR3C2	SLC16A12	UPK3A
ATP7B	COL4A3	FLCN	KANK1	NRAS	SLC19A2	UQCC

ATXN10	COL4A4	FN1	KANK2	<i>NUP107</i>	SLC22A12	VDR
AVIL	COL4A5	FOXC2	KANK4	<i>NUP133</i>	SLC26A1	VHL
AVP	COQ2	FOXF1	KATNIP	NUP160	SLC26A3	VIPAS39
AVPR2	COQ4	FOXI1	KCNJ1	NUP205	SLC2A2	VPS33B
B2M	COQ6	FRAS1	KCNJ10	NUP85	SLC2A9	WDPCP
B9D1	COQ7	FREM1	KCNJ5	<i>NUP93</i>	SLC34A1	WDR19
B9D2	COQ8B	FREM2	KCTD1	NXF5	SLC34A3	WDR34
BBIP1	COQ9	FXYD2	KCTD3	OCRL	SLC36A2	WDR35
BBS1	COX10	G6PC	KIAA0586	OFD1	SLC37A4	WDR60
BBS10	CPLANE1	GALNT3	KIAA0753	OSGEP	SLC3A1	WDR72
BBS12	CPT2	GALT	KIF14	PAX2	SLC41A1	WDR73
BBS2	CRB2	GANAB	KIF3B	PAX8	SLC4A1	WNK1
BBS4	CSPP1	GAPVD1	KIF7	PBX1	SLC4A4	WNK4
BBS5	CTNS	GATA3	KIRREL1	PCBD1	SLC5A2	WNT4
BBS7	CUBN	GATM	KL	PCM1	SLC6A19	WNT9B
BBS9	CUL3	GDNF	KLHL3	PDE6D	SLC6A20	WT1
BCS1L	CYP11B1	GDF6	KRAS	PDSS1	SLC7A7	XDH
BICC1	CYP11B2	GFRA1	KYNU	PDSS2	SLC7A9	XPNPEP3
BMP4	CYP17A1	GLA	LAGE3	PHEX	SLC9A3	XPO5
BMPR2	CYP24A1	GLI3	LAMA5	PIBF1	SLC9A3R1	YRDC
BNC2	CYP27B1	GLIS2	LAMB2	PKD1	SLIT2	ZEB2
BSND	CYP2R1	GLIS3	LCAT	PKD2	SLIT3	ZIC3
C2CD3	CYP3A4	GNA11	LHX1	PKHD1	SMARCAL1	ZMPSTE24
С3	DAAM2	GNAS	LMNA	PLCE1	SOX17	ZNF365
C80RF37	DACT1	GON7	LMOD1	PMM2	SPINT2	ZNF423
CA2	DCDC2	GPC3	LMX1B	POC1B	SPTLC1	
CACNA1D	DDX59	GPC5	LPP	PODXL	SPTLC2	

Supplementary Figure 2. The 495 genes that are on the hereditary kidney disease panel v21

at University Medical Center Utrecht. Bold genes are also hereditary kidney disease panel v18

and italic genes are also on the CKD-Y panel v21.

Supplementary Table 1	. Questionnaire for participants	s (original version is in Dutch)
-----------------------	----------------------------------	----------------------------------

Number	Question	Answer possibilitie					
	General questions						
1	What is your country of birth?	Open					
2	What is the country of birth of your maternal grandmother?	Open					
3	What is the country of birth of your maternal grandfather?	Open					
4	What is the country of birth of your paternal grandmother?	Open					
5	What is the country of birth of your paternal grandfather?	Open					
	Medical health and current health complaints						
6	At which age did you get the diagnosis chronic kidney disease?	Open					
7	Did you undergo dialysis in the past or are you currently on dialysis?	Yes/no/unknown					
8	Did you undergo a kidney transplantation in the past?	Yes/no/unknown					
9	Do you have high blood pressure? If you are taking blood pressure-lowering medication and have a normal blood pressure thanks to the medication, you can also fill in "yes".	Yes/no/unknown					
10	Have you ever been admitted to the emergency room for high blood pressure?	Yes/no/unknown					
11	Are you unable or do you have trouble with sweating?	Yes/no/unknown					

1 2	
3	
4	
5 6	
6 7	
8 9	
10	
11 12	
12 13	
14	
15 16	
16 17	
18 19	
20	
21 22	
22 23	
24	
25 26	
26 27	
28 29	
30	
31 32	
33	
34 35	
36	
37 38	
30 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
51 52	
53	
54 55	
56	
57 58	
59	
60	

10		X 7 / / 1
12	Do you suffer from heat- or cold intolerance? This means that	Yes/no/unknown
	you have trouble with handling heat or cold.	
13	Have you experienced a burning pain or a feeling of tingling	Yes/no/unknown
	in the hands and/or feet now or in the past?	
13a	If so, did this pain or tingling feeling arise or get worse with	Open
	fever, exertion, stress, or if the hands or feet became very hot	
	or cold?	
14	Do you have dark, red-purple spots in your skin? Especially	Yes/no/unknown
	between your belly button and knees?	
15	Do you have any problems with seeing or any eye complaints?	Yes/no/unknown
15a	If so, what are your problems with seeing and/or eye	Open
	complaints?	
16	Do you have any hearing problems of hearing disabilities?	Yes/no/unknown
16a	If so, what for hearing problems or disabilities do you have?	Open
17	Have you suffered from gout now or in the past?	Yes/no/unknown
18	Have you ever had a stroke (cerebral infraction, brain	Yes/no/unknown
	hemorrhage or TIA)?	
19	Did you ever have a myocardial infarction?	Yes/no/unknown
20	Do you have a heart rhythm disorder?	Yes/no/unknown
20a	If so, which heart rhythm disorder do you have?	Open
21	Do you have a thickening of the heart muscle (hypertrophic	Yes/no/unknown
	cardiomyopathy)?	

22	Do you have health complaints not mentioned in the previous	Yes/no/unknown
	questions?	
22a	If so, which heath complaints do you experience?	Open
	Family history	
23	How many biological children, alive or deceased, do you	Open
	have?	
24	Do you (still) have any desire to have children?	Yes/no/unknown
25	How many siblings, alive or deceased, do you have?	Open
26	How many half-brothers and/or half-sisters, alive or deceased,	Open
	do you have?	
27	How many siblings, alive or deceased, does your mother	Open
	have?	
28	How many siblings, alive or deceased, does your father have?	Open
29	Are your grandparents still alive?	Yes/no/unknown
29a	Did one of your grandparents pass away before the age of 50	Yes/no/unknown
	years?	
30	Are your parents blood relatives (e.g. second cousins)?	Yes/no/unknown
30a	If so, how are your parents related to each other?	Open
31	Are you and your partner blood relatives (e.g. cousins, second	Yes/no/I do not have
	cousins)?	a partner/unknown
31a	If so, how are you and your partner related to each other?	Open
32	Does gout run in your family?	Yes/no/unknown
33	Do you have family members with a high blood pressure at a	Yes/no/unknown
	young age?	
34	Does anyone in your family have an intellectual disability?	Yes/no/unknown

	BMJ Open	
35	Dou you have family members with kidney disease (children,	Yes/no/unknown
55		I es/110/ difkito wit
	parents, siblings, grandparents, uncles/aunts, cousins,	
	nephews/nieces)?	
35a	If so, how many family members have a kidney disease?	Open
35b	In how many family members if the cause for the kidney	Open
	disease unknown?	
35c	If you know the cause of the kidney disease of other family	Open
	members, please write down the cause of the kidney disease in	
	this field. If you do not know the cause, you can leave this	
	field empty.	
35d	How many family members with a kidney disease have had a	Open
	kidney transplantation or dialysis?	
	Final questions	
36	Have you visited a clinical geneticist or have you been	Yes/no/unknown
	referred to a clinical geneticist?	
37	Do you already known the results from genetic testing at the	Yes/no/unknown
	time of completing this questionnaire?	
		1

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
Setting	5	recruitment, exposure, follow-up, and data collection	Ŭ
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	6-7
i unicipanto	Ū	of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	NA
		of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	8-1
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-12
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	13
Study size	10	Explain how the study size was arrived at	12
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	12
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	12
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	12
		(c) Explain how missing data were addressed	11
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was	NA
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
			1
		controls was addressed	
		controls was addressed	

Continued on next page

2
3
4
4
5
6
7
, 8
-
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
27
28
29
30
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	NA
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	NA
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	NA
		Case-control study—Report numbers in each exposure category, or summary	NA
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	NA
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	NA
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	NA
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	NA
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	14
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	NA
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	14
0		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

NA: not applicable

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.