

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Impact of regulatory body actions and subsequent media coverage on use of services in a fee-for-service system: A longitudinal cohort study of computed tomography scanning in Australia

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057424
Article Type:	Original research
Date Submitted by the Author:	16-Sep-2021
Complete List of Authors:	Youens, David; Curtin University, School of Population Health Doust, Jenny; The University of Queensland Faculty of Medicine and Biomedical Sciences Ha, Ninh ; Curtin University, School of Population health O'Leary, Peter; Curtin University Faculty of Health Sciences, School of Population Health; The University of Western Australia, Medical School, Faculty of Health and Medical Sciences Slavotinek, John; SA Health, SA Medical Imaging; Flinders University, College of Medicine and Public Health Wright, Cameron; Curtin University, School of Population Health; Fiona Stanley Hospital Moorin, Rachael; Curtin University, School of Population Health; The University of Western Australia, School of Population and Global Health
Keywords:	Computed tomography < RADIOLOGY & IMAGING, Diagnostic radiology < RADIOLOGY & IMAGING, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Title page

Title: Impact of regulatory body actions and subsequent media coverage on use of services in a fee-for-service system: A longitudinal cohort study of computed tomography scanning in Australia

Author names and affiliations:

David Youens* ^a, Jenny Doust ^b, Thi Ninh Ha ^a, Peter O'Leary ^{a, c, d}, John Slavotinek ^{e, f}, Cameron Wright ^{a, g, h, i}, Rachael Moorin ^{a, j}

* Corresponding author. <u>David.youens@curtin.edu.au</u>. GPO Box U1987, Perth, Western Australia, 6845

a Health Economics and Data Analytics, School of Population Health, Curtin University, Perth, Australia

b Centre for Longitudinal and Life Course Research, Faculty of Medicine, University of Queensland

c Obstetrics and Gynaecology, Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia

d PathWest Laboratory Medicine, QE2 Medical Centre, Nedlands, Western Australia, Australia

e SA Medical Imaging, SA Health

f College of Medicine and Public Health, Flinders University, Adelaide, South Australia

g Fiona Stanley Fremantle Hospitals Group, Western Australia, Australia

h Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Western Australia, Australia

i School of Medicine, College of Health & Medicine, University of Tasmania, Tasmania, Australia

j School of Population and Global Health, The University of Western Australia, Western Australia, Australia

Word count: 3,853 words

Abstract

<u>Objective:</u> The Professional Service Review (PSR) is an Australian Government agency aiming to reduce inappropriate practices funded via Medicare, Australia's public insurer. Our objective was to examine changes in Computed Tomography (CT) use following the 2008-09 PSR annual report, which noted excessive CT use.

<u>Design:</u> Interrupted Time Series Analysis examined trends in CT use following the 2008-09 PSR report, estimating both change in the immediate rate of CT and the slope of the trend in usage post-intervention.

Setting: Medicare-funded imaging (most out-of-hospital imaging) in Australia.

Participants: Patients receiving Medicare-funded CT and other imaging

<u>Intervention:</u> The 2008-09 PSR report highlighted concerns regarding excessive CT use. Two providers were financially penalised for CT overuse with these cases detailed in the PSR report and highlighted in an associated *Report to the Professions*, distributed to 50,000 providers. Media articles on radiation risks followed.

<u>Outcomes:</u> Quarterly rates of out-of-hospital CT, magnetic resonance imaging (MRI, as a comparator), and all other Medicare-funded diagnostic imaging examinations 2001-2019.

<u>Results:</u> CT scanning increased from 4,663.5 per 100,000 person-years in 2001 to 14,506 in 2019 (211% increase), with substantial variation by type and anatomical region. The 2008-09 PSR report was followed by an immediate reduction in CT scanning of 237.7 CTs per 100,000 people per quarter (95% CI -333.4 to -141.9) though growth in use soon continued at the pre-intervention rate. The degree of change in utilisation following the report differed between states/territories and by scan type, both in terms of the immediate change and the slope. For other diagnostic imaging modalities there was an increase in the slope, while for MRI there was no change in either parameter.

<u>Conclusion</u>: Actions consisting of financial disincentives for service overtesting and provider / public education components may be effective in the short-term to limit excessive use of diagnostic imaging in fee-for-service systems.

Keywords: Diagnostic Imaging, Fee-for-Service, Computed Tomography, Medical Overuse,

Strengths and limitations of this study

- This study made use of whole of population administrative data, improving generalisability and preventing loss to follow-up or non response
- Multiple imaging modalities were examined, allowing for an assessment of CT (the target of the PSR actions) and potential substitution by other modes
- Only data on publicly-funded services accessed in the out-of-hospital setting were available; trends in in-hospital CT use were not examined
- The PSR actions involved multiple components and it was not possible to examine specific components in isolation from each other

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

Overtesting is defined as the use of non-recommended screening tests in asymptomatic patients or more testing than necessary to diagnose patients.¹ Overtesting is problematic due to the wasted resources it incurs and the potential for patient harm. Harms of overtesting may fall under six domains:² physical, psychological, treatment burden, social, financial, and dissatisfaction with health care. Overtesting with CT may manifest in many of these areas, for example physical harms resulting from radiation exposure ^{3,4} or psychological harms resulting from incidental findings.⁵ Overtesting also consumes healthcare expenditure without improving outcomes,¹ imposing an opportunity cost. Overtesting may result from intrapersonal (e.g. fear of litigation, risk aversion, intolerance of uncertainty), interpersonal (e.g. pressure from patients and colleagues) or contextual (e.g. guidelines, financial incentives, time constraints, test availability) factors.⁶ Studies in different countries have shown that over 10% of CT scans reflect overtesting,^{7, 8} indicating substantial room for improvement in this area.

CT scanning in Australia is delivered in public and private hospitals, or in the out-of-hospital setting on referral from a general practitioner (GP) or specialist. Most out-of-hospital CT is performed by private clinics⁹ which are reimbursed on a fee-for-service (FFS) basis by the Federal Government via Medicare, Australia's public insurer, which covers almost all Australian citizens and permanent residents¹⁰ (with prisoners an exception). Similarly, GPs operate in private practices which are reimbursed by Medicare on a FFS basis hence are incentivised to maximise service volumes.¹¹ Patients do not register with practices and are free to change providers at any time, so multiple providers compete for services in the out-ofhospital environment, potentially driving overtesting where patients expect certain medical interventions (such as diagnostic CT) and providers feel compelled to meet patient expectations so as to prevent the patient from being 'lost' to another GP who provides or refers for the expected service.^{12, 13} Note that decisions regarding out-of-hospital CT scanning are primarily made by referrers (GPs and specialists); radiologists at private clinics generally do not know the setting or patient and are not well positioned to deny scans requested. Although Medicare provides reimbursement for CT scans referred by a GP, MRI scans are generally only reimbursed when referred by a specialist (with some exceptions since 2011).¹⁴ Furthermore, MRI machines must be licensed by the Federal Government in order for scans using that machine to attract reimbursement, with license availability restricted.¹⁴ This may limit substitution of CT scans by MRI. No such restrictions exist for other modalities.

One of the bodies regulating healthcare in Australia is the Professional Services Review (PSR), which has responsibility for preventing inappropriate practice, both to protect patients from risk and to reduce Government funding of inappropriate care.¹⁵ The PSR reviews the activities of practitioners where unusual service volumes or prescribing patterns suggest inappropriate care. Upon investigation by the PSR, a practitioner found to have engaged in inappropriate practice (as determined by a peer panel of practitioners) may be partially or fully disgualified from claiming Medicare reimbursements for some time, may be required to repay reimbursements claimed for delivery of inappropriate care, or may face suspension from practice.¹⁶ In the 2008-09 PSR annual report published in October 2009, two providers were penalised for CT overtesting. In addition, the Director's report within the annual report commented on CT overtesting, noting concerns about use of CT screening for lower back pain.¹⁷ Alongside this annual report was the dissemination by the PSR of a *Report to the Professions* to 50,000 health providers detailing these cases (and others), and the PSR director also spoke at medical conferences and to the media.¹⁷ This was followed by a period of media interest concerning CT risks, including the publication of articles highlighting the risks of CT, targeted at both clinical audiences^{18, 19} and the general public.²⁰⁻²³ These articles, published through 2010 and 2011 in national^{21, 23} and state-specific media,²² outlined the PSR director's concerns, cancer risks associated with CT, the role of patient expectations as a factor and alternative imaging modalities. These events are collectively referred to as "the PSR actions" throughout this paper for simplicity. Any change in CT scanning resulting from the PSR actions may reflect either a change in imaging levels overall, or shifts to other modalities.

The aim of this project was to examine the impact of the PSR actions on the rate of CT scanning in Australia, to determine if regulatory body action influences overtesting in the FFS context.

Methods

 This was a retrospective whole-of-population longitudinal cohort study using aggregate-level administrative data. Reporting follows the Reporting of studies Conducted using Observational Routinely-collected health Data (RECORD) guidelines.²⁴

Data source

Quarterly utilisation data for Australia and for each Australian state/territory from Jan-March 2001 to Oct-Dec 2019 inclusive were sourced from publicly available Medicare Benefits Schedule (MBS) records.²⁵ Data pertaining to CT were extracted using MBS item reports. Data for other Medical Imaging modalities (Ultrasound, Nuclear Medicine and MRI) were extracted

using the Group report for Category 5 Diagnostic Imaging Services. Data included only those services performed by a registered provider for services that qualify for Medicare Benefits and for which Services Australia had processed a claim. Data excluded services provided by hospital doctors to public patients in public hospitals and services that qualified for a benefit under the Department of Veterans' Affairs National Treatment Account. The location services were provided (state/territory) was based on patient address. Calendar quarter was determined by the date of processing by Services Australia, not the date the service was provided to the patient. Note that date of processing is typically within days of the service date. For the denominator the Medicare eligible population for each state/territory was sourced from Medicare enrolment data quarterly standard reports.²⁶

CT scanning data were aggregated into fourteen groups reflecting either anatomical area of the scan (e.g. head, chest etc.) or, due to lack of anatomical location on the MBS coding, grouped according to technique (cone beam CT, pelvimetry, spiral angiography and interventional CT) using the MBS item codes in Appendix 1. Since MBS items are for re-imbursement rather than clinical purposes, several items covered multiple CT examinations (Chest, Abdomen/Pelvis and Brain, Chest/Upper Abdomen). For analysis, all CT scanning records pertaining to these items were counted as a single CT scanning event. In the analysis by type of CT these items were grouped separately (see Appendix 2) and were not included in the analysis of their relevant sub-groups (i.e. brain, chest or abdomen/pelvis).

Quarterly rate of imaging

The quarterly rate of MBS funded imaging per 100,000 eligible persons was calculated for all Australia and by state/territory by dividing the number of services processed in that quarter by the eligible Medicare population for that quarter multiplied by 100,000.

Statistical analysis

Interrupted time series analysis (ITSA) was used to evaluate the impact of the PSR actions on the quarterly rate of medical imaging excluding CT, MRI, all CT scanning and type of CT scanning for all Australia and by state/territory.

The analysis was conducted using the '*itsa*' package²⁷ in Stata version 15.²⁸ Since the PSR actions affected the whole of Australia a control group was not available for comparison, therefore the model was a single-group ITSA (i.e. the preintervention trend was projected into the postintervention period to serve as the counterfactual) with a dummy indicator variable set

 to quarter 4 2009 representing the PSR action. Coefficients were estimated using ordinary least squares regression with Newey-West standard errors to handle autocorrelation and heteroskedasticity.

Each model was first fitted with lag 0 specified (i.e. no autocorrelation), following which autocorrelation in the error distribution was tested for using the program '*actest*'²⁹ and the appropriate lag used in the final model. The model was implemented after adjustment for seasonality using Fourier terms (pairs of sine and cosine functions)³⁰ using the program '*circular*'.³¹ Following Imbens and Lemieux³² the median timepoint (quarter 4 2004) of the preintervention period was used as a robustness test to determine if the underlying assumption of stability in time-varying unmeasured confounders should be challenged. Where the post-intervention trend was non-linear, multiple dummy variables were used to adequately capture the shape of the post-intervention trend so that a more accurate estimation of the immediate change in the trend and change in level resulting from the PSR action could be estimated.

Classification of response to the 2009-10 Professional Services Review

For each model the direction and statistical significance of the estimates of the level (initial change in the quarterly rate of CT use) and slope (gradient of the trend in quarterly CT use) parameters in the post-intervention period (or for the slope the immediate post-intervention segment where a non-linear trend was observed) were used to classify the response to the PSR action. The primary typology was based on the direction and significance of the level parameter as follows: Type 1: significant reduction in the level; Type 2: no significant change in the level and Type 3: significant increase in the level. Each type was further classified into sub-types based on the change in the slope parameter: a) significant reduction; b) no significant change and c) significant increase.

Calculation of net change in CT imaging procedures following the PSR action

The net change in the CT procedures performed was calculated from the area between the counterfactual (i.e. pre-intervention slope with no level change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of imaging procedures. To reduce over-estimation of the net change where no significant difference was observed between the pre and post-intervention slopes (i.e. sub type b) the pre-intervention slope parameter was used to define the post-intervention slope rather than the point estimate provided in the ITSA model. Similarly, where no significant difference in level was observed (i.e. type 2), the post-intervention curve was defined with the

BMJ Open

level change set to zero. When the post-intervention trend was non-linear the net change was only calculated until the beginning of the subsequent change in trend. The net change could be negative (i.e. net reduction in the rate of imaging examinations through the post-intervention period) or positive.

Patient and public involvement

As this is an analysis of secondary data, there was no patient or public involvement.

Results

Over the 19-year study period 369.5 million Medicare funded medical imaging examinations were undertaken in Australia (6.2% of all Medicare funded activity) of which CT scanning comprised 11.4% (42.2 million) (Appendix 2). The most frequently performed type of CT scan was abdomen/pelvis comprising 18.8% [~8 million] of all CT examinations, closely followed by head CT (17.6% [7.5 million]) and spinal CT (17.6% [7.4 million]).

As shown in Table 1 the rate of CT scanning increased from 4,663.5 per 100,000 Medicare eligible persons in 2001 to 14,506.1 per 100,000 in 2019. The increase of 211% was much larger than the increases observed for Ultrasound (+150%) and Nuclear Medicine (+96%), or for diagnostic imaging overall (75%). While the largest increase in the rate of imaging (by modality) was observed for MRI (increasing by $\sim 400\%$ over the study period), the absolute rate was still 64% lower than the rate of CT scanning in 2019. Table 1 also shows the rate of CT scanning according to type across the study period. In 2001 the top three types of CT scanning, ranked according to the rate performed per 100,000 persons, were head CT (1,529.8), followed by abdomen/pelvis CT (1,018.9) and CT of the facial bones (629.9). However, by 2019 this ranking had changed such that abdomen/pelvis CT had the highest rate per 100,000 (2,565.0); spinal CT was now ranked second (2,237.1) and head CT third (1,884.4). The largest relative change in the rate of CT scanning by type from 2001 to 2019 was observed in interventional CT which increased by 1,089% (from 95.4 per 100,000 in 2001 to 1,134.0 in 2019. Similarly, the rate of spiral angiographic CT scanning also rose by 1,054% (from 85.5 per 100,000 in 2001 to 987.0 in 2019). Other notably very large relative increases (i.e. more than tripling of the 2001 rate) were observed for chest/abdomen/pelvis CT (+451%), CT of the extremities (+407%) and pelvis CT (+358%). Rate increases of over 100% were observed for chest CT (+199%), abdomen/pelvis CT (+152%) and soft tissue neck CT (+147%). The only type of CT scan to reduce in rate was cone beam CT which was first funded under Medicare in 2011 (quarter 3).

BMJ Open Table 1 Quarterly rate of MBS funded diagnostic imaging by modality and type of CT scanning services in Aus@alia for selected years across the . on 21 study period

Time period (Year and	Rate per 100,000 eligible population						Rate of CT per 100,000 eggible population				
quarter)	All diagnostic imaging	MRI	US	Nuc Med	All CT	Head	Face	≕ Soft ässue Nèek	Chest		
2001Q1	15,422.0	235.7	4,385.1	363.3	1,092.9	376.7	146.2	§ 29.3	125.4		
2001Q2	15,771.5	263.5	4,438.3	372.2	1,127.8	392.8	157.1	29.3 29.6 ded 29.8 fr 30.7	127.1		
2001Q3	16,139.3	281.0	4,476.9	390.7	1,154.8	386.6	169.5	<mark>ਲ</mark> ੋ 29.8	133.		
2001Q4	15,482.3	275.9	4,453.5	368.7	1,286.7	373.7	157.1	ਤੋਂ 30.7	133.5		
Total 2001	62,816.4	1,056.3	17,754.3	1,494.9	4,663.5	1,529.8	629.9	³ _119.4	519.1		
2007Q1	18,596.9	465.5	6,071.7	406.1	2,093.7	438.0	176.3	41.8 39.1 41.2 41.7	187.		
2007Q2	18,794.5	488.8	6,100.9	414.4	2,115.3	449.0	190.0	39.1	183.:		
2007Q3	19,686.1	514.3	6,293.4	426.6	2,144.5	443.8	203.1	a 41.2	194.9		
2007Q4	19,101.8	489.8	6,251.9	437.1	2,162.9	448.3	194.7		200.		
Total 2007	76,183.2	1,958.5	24,719.1	1,684.3	8,516.9	1,779.2	764.2	³ . 163.8	765.		
2013Q1	22,335.4	650.6	8,332.2	633.1	2,699.7	454.3	191.2	e 49.6	230.		
2013Q2	23,799.2	738.5	8,934.5	678.4	2,842.7	474.9	212.4		246.0		
2013Q3	24,502.0	773.4	9,166.0	692.5	2,891.2	473.9	221.0	9. 51.8 April 51.1	255.9		
2013Q4	23,586.7	840.5	8,935.3	673.8	2,813.0	434.7	202.6	8 51.4	254.		
Total 2013	94,233.9	3,004.0	35,372.4	2,678.0	11,247.5	1,837.8	827.3	203.9 24 71.7 9 71.7 9 71.7 1.7 1.7 5.4	986.		
2019Q1	26,965.0	1,186.6	10,977.7	709.2	3,524.9	471.8	217.4	²⁴ 71.7	368.		
2019Q2	27,263.0	1,399.0	10,973.9	721.5	3,553.4	468.8	228.0	ğ 71.7	370.		
2019Q3	28,567.7	1,378.9	11,426.8	754.0	3,774.6	488.5	256.6	ເຊັ່ 75.4	410.		
2019Q4	27,214.2	1,312.8	11,073.7	740.8	3,652.3	455.3	228.2	רר/ ד	402.		
Total 2019	110,013.1	5,277.8	44,453.3	2,925.6	14,506.1	1,884.4	930.2	<u>o</u> 294.4	1,552.		
Percent change total 2001 to total 2019*	75.1	399.6	150.4	95.7	211.1	23.2	47.7	cted by copyright.	199.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 44

 6/bmjopen-2021-05

ptected by

Table 1	continued
---------	-----------

Time period (V			R	ate of CT per 100,	000 eligible p	opulation	157424		
Time period (Year and quarter)	Abdomen/Pelvis	Pelvis	Spine	Chest/Abdomen /Pelvis	Extremity	- Spiral Angiography	Integro	entional	Cone Beam
2001Q1	250.0	17.5		54.5	46.8	18.9	April	21.3	
2001Q2	252.3	16.6		54.5	48.8	20.6	I 2022.	22.2	
2001Q3	256.0	17.9		57.9	50.8	22.5		25.1	
2001Q4	260.5	16.5		60.3	48.8	23.5	Dov	26.7	
Total 2001	1,018.9	68.5	NA	227.3	195.3	85.5	Downloaded from http:	95.4	NA
2007Q1	423.2	21.4	431.6	136.7	90.6	62.9	adeo	77.1	
2007Q2	422.8	21.0	430.5	132.5	93.8	66.9	d fro	79.2	
2007Q3	418.7	22.1	425.0	138.1	96.0	73.7	m	80.1	
2007Q4	423.0	25.1	430.9	142.3	94.1	70.1		84.8	
Total 2007	1,687.7	89.5	1,718.1	549.7	374.5	273.7	//bm	321.3	NA
2013Q1	509.4	26.0	491.5	222.1	145.0	128.2	jopen.bmj.com	168.7	72.0
2013Q2	529.2	27.4	501.1	225.9	154.1	143.9	en.b	182.6	80.9
2013Q3	525.8	28.9	497.8	229.4	156.8	154.6	mj.	190.3	92.9
2013Q4	517.4	29.4	482.9	230.5	154.1	148.4	ŏm	197.1	96.8
Total 2013	2,081.9	111.7	1,973.2	907.9	610.1	575.2	on	738.9	342.7
2019Q1	640.5	69.0	565.4	317.1	234.4	220.7	April 20,	263.8	46.8
2019Q2	633.0	73.3	545.1	309.5	242.9	243.9	il 20	277.6	49.0
2019Q3	652.6	84.6	577.7	314.2	259.3	265.0), 20	292.3	50.0
2019Q4	638.9	86.5	548.9	312.2	252.3	257.2	2024	300.2	46.0
Total 2019	2,565.0	313.5	2,237.1	1,253.0	989.1	987.0	by gu	1,134.0	191.8
Percent change total 2001 to total 2019*	151.7	357.8	30.2	451.3	406.5	1,053.9	uest. Pro	1,089.2	-44.0

MBS: Medicare Benefit Scheme; US: Ultrasound; Nuc Med: Nuclear Medicine; NA = Item not available

Q1 January to March, Q2 April to June, Q3 July to August, Q4 September to December.

Grey cells indicates that MBS funded services were not available for all or part of the specified time period

*Where MBS item was not available in for the whole of 2001 percentage change is calculated from first year it was available in all quarters

Figure 1 shows the results of the ITSA evaluating changes in the use of CT following the PSR actions, by state/territory; values informing the figure are in Appendix 3. On average after adjusting for seasonality and autocorrelation there was a significant reduction in the level parameter (-237.7 CTs per 100,000 Medicare eligible persons [95% Cl -333.4 to -141.9]) indicating an immediate response. However, no significant change in the slope parameter was observed, indicating no sustained effect i.e. following the initial drop in utilisation, growth in CT scanning continued at its previous rate. Despite there being no sustained change, over the post-intervention period (Qtr 4 2009-Qtr 4 2019) the cumulative rate (i.e. the net change) of CT use reduced by 9,744.3 per 100,000 due to the initial level change, compared with the counterfactual. This can be readily observed graphically in Figure 2. Across Australian states and territories, the response differed (Figure 1). In all states/territories except the Northern Territory there was a significant reduction in the level; however, the response in the slope parameter differed. In New South Wales, South Australia and Victoria there was a significant reduction in the slope parameter (i.e. sustained reduction), in Tasmania there was no significant change in the slope, while in the Australian Capital Territory, Queensland, Western Australia and the Northern Territory after the initial reduction in level there was a significant increase in the slope parameter.

Figure 3 shows the results of the ITSA according to type of CT scanning in Australia (values in Appendix 3). The majority of CT scanning types showed an immediate significant reduction in level, the exceptions being CT angiography and chest/abdomen/pelvis CT which showed no change, and interventional CT, which showed an increase in level. With respect to sustained change (i.e. slope) there was a much larger variation across type with reductions (head, face, abdomen/pelvis, spine CT and CT angiography), increases (chest, extremity, soft tissue neck, brain/chest/upper abdomen and interventional CT) and on one occasion no change (pelvis CT) observed. Figure 3 also shows the results of the analysis for MRI, which showed no response in either parameter and all diagnostic imaging excluding CT, which showed no change in the level but an increase in the slope parameter.

Discussion

CT use reduced significantly following the 2008-09 PSR annual report, associated sanctions and subsequent media coverage of CT risks. Following this short-term decline, CT use continued increasing at the pre-intervention rate, though results differed by scan type/region

BMJ Open

and state/territory. Findings indicate that major reviews including financial penalties and surrounding coverage have potential to decrease overtesting, but that reductions may not be sustained.

Being an observational study we cannot assume causation, though we highlight some important points in considering this. There was a close temporal relationship between the PSR report and the changes in CT use, which would be expected if changes were causal. The face validity of a causative relationship can be considered via the overtesting framework developed by Lam et al.⁶ Interpersonal drivers of overtesting may have influenced CT use as the mass media coverage outlined radiation risks to patients and included some discussion of the role of patient expectations in driving imaging requests.²¹⁻²³ On the provider side, fear of reputational damage following a reprimand is also an interpersonal factor. Environmental drivers may have changed if providers grew concerned about financial penalties from the PSR for excessive imaging. Intrapersonally, the risk aversion that drives overtesting in the search for a definitive diagnosis may have been countered by improved knowledge of radiation risks. The risk of reputational damage or financial penalties was low, with the PSR report discussing two providers sanctioned for inappropriate CT. However, these cases were widely disseminated, via the Report to the Professions describing these cases (and others) to 50,000 providers, and the PSR director speaking at medical conferences and to the media.¹⁷ Penalties for inappropriate CT appeared in the 2009-10 and 2011-12 PSR annual reports, however there was no specific discussion in the director's reports nor are we aware of media coverage following these reports. A 2011 review of diagnostic imaging noted that the 2008-09 PSR had likely impacted practice, and that private providers had expressed concerns regarding profitability following this.³³

There is prior evidence in Australia of educational interventions reducing CT. In 2013 the National Prescribing Service's (NPS) MedicineWise program ran an intervention to reduce inappropriate CT for acute lower back pain.³⁴ This included a report to GPs comparing their referral rates for lower back CT to their peers, an online decision support tool and a symptom self-management prescription pad. The intervention reduced lower back CT by over 10%, which persisted through 20-months follow-up. This demonstrates some receptiveness to messaging regarding CT overtesting, though mechanisms of action by which the PSR may have influenced practice would differ. Similarly, the introduction of a Choosing Wisely recommendation to reduce imaging for lower-back pain in the United States in 2012 was followed by a 4% reduction in such imaging.³⁵ The Choosing Wisely campaign regarding lower back CT in the USA did not involve any financial disincentives such as the PSR actions in the

current study, though did garner substantial media attention³⁵ so some drivers of change may have been comparable. A review of interventions to reduce overuse care suggested that educational interventions targeted at both clinicians and patients are among the most effective type,³⁶ supporting the notion that media coverage on CT overtesting may have influenced practice.

Results here differed between states/territories and CT type. Differences in results across CT type do not appear to be driven by differences in the radiation dosages associated with each type, given that Chest / Abdomen / Pelvis scans showed no change in either parameter following the PSR action but expose patients to some of the highest effective doses.³⁷ Differences observed between states / territories may have resulted from differences in the baseline level of CT use; this is likely as availability of CT scanners, one driver of overtesting, does differ between jurisdictions.¹⁴ These differences may have also resulted from differences in messaging in each state / territory, caused by either different levels of media coverage of this issue (as some coverage appeared in local²² rather than national newspapers), or addresses by the PSR director to medical conferences in some states but not others. Baseline attitudes towards CT, and hence the capacity for reductions in use, may have also differed between networks of providers, given the concentration of scanners and providers in capital cities¹⁴ which are in many cases geographically isolated.

There were differences observed between CT and other modalities. In contrast with the drop in CT use following the PSR, MRI showed no change following the 2008-09 PSR report, while for all diagnostic imaging excluding CT the slope increased significantly, while the level parameter showed a large but non-significant increase. This may represent substitution for modalities with lower or no associated radiation exposures (e.g. x-ray or ultrasound, respectively). MRI use increased steadily through the study period, reflecting an increase in availability of MR machines from below- to above-average in comparison to other Organisation for Economic Co-operation and Development countries.³⁸ There was no additional increase in use of MRI following the PSR actions, however, likely because licensing of MR devices is constrained by the Federal Government and most MRI investigations are not reimbursed by Medicare when referred by a GP, limiting potential for substitution.^{39, 40} Alternatively, there may have been an increase in privately funded MRI which would be unobservable in the Medicare data used here.

Implications

Page 15 of 44

BMJ Open

These findings will be of interest to researchers and policymakers wanting to understand mechanisms to prevent overtesting, though contextual factors are important in understanding how effective such actions may be elsewhere. Provider and patient education regarding radiation risks, threats of financial penalties and reputational damage following exposure of inappropriate practice would likely be influential mechanisms across settings. The degree of response to such mechanisms, however, would depend in part on the baseline level of overtesting, driven in part by health system design. In health systems where providers are paid via capitation or salary rather than FFS overtesting may be less common, with FFS systems known to incentivise service volumes.⁴¹ Similarly, in some health systems patients register with a practice⁴² and cannot 'doctor-shop' as is the case in Australia. In such systems providers are not financially incentivised to increase patient satisfaction by delivering requested services, as patients cannot simply access the service via another practice. Overtesting may be incentivised where pay-for-performance programs prioritise patient satisfaction, as providers may feel pressured to refer patients for requested imaging services so as to maintain satisfaction ratings.⁴³ Relationships between providers referring for imaging and those performing imaging may also influence overtesting, e.g. ownership by physicians of radiology services is associated with increased radiology use.⁴⁴ A shift from a volume-driven to a value-driven system could prevent overtesting by focusing on the delivery of interventions to maximise patient outcomes rather than service delivery.⁴⁵ Finally, the PSR actions studied here were facilitated in part by the existence of the PSR which has oversight of all Medicare-funded services and authority to impose penalties. Although the PSR objectives of patient safety and cost containment are priorities globally, mechanisms available to regulators will differ elsewhere.

Strengths

This study benefited from the use of whole of population administrative data, improving generalisability and preventing loss to follow-up or nonresponse. The data cover a long study period both prior to and following the PSR action, improving effect estimates, and covers multiple imaging modalities. The analysis accounted for potential seasonality in the use of CT and non-linearity in post-intervention trends.

Limitations

Data were limited to services funded via Medicare Australia. Comparable data concerning patients in public hospitals were not available, and we cannot comment on potential trends in that setting.

There was no comparator available, which may have supported a more rigorous design. The PSR has a national scope, meaning there was no setting without the PSR action against which to compare trends. Different sets of MBS items were assessed as comparators in the hope of providing control for broader health system changes, but no items could be found for which pre-intervention trends resembled CT.

This study examines an action consisting of multiple components, and we are not able to assess, for example, mass media coverage in isolation from the publication of financial penalties for overtesting.

Conclusion

This study suggests that regulatory body action may influence provider behaviour within a FFS context. However, it also suggests that point-in-time interventions have limited longevity. The combination of financial incentives (i.e. penalties for excessive use), patient and provider education, and risks to reputation via potential for publicising of investigation outcomes was followed by reduced CT use. Further research examining how best to couple such actions with more sustained reinforcement over time to influence behaviour would be useful, in addition to studies assessing the proportionate impacts of individual components.

Author Contributions

RM conducted analyses for this paper. DY and RM prepared the first draft manuscript. RM, JD, POL, JS and CW developed the grant application under which this work was funded. All authors collaborated on writing the paper and approve the submitted version.

Ethics approval

Ethics approval was provided by the Curtin University Human Research Ethics Committee, approval number SMEC-80-10. Participant consent was not sought as data were a publicly available, aggregated collection of data on service volumes. There is no possible way to identify any of the people receiving the services the data relate to, nor to contact them for the purpose of obtaining consent.

Patient consent for publication

None required.

Funding

Funded by the National Health and Medical Research Council grant 1144573.

Data sharing

Data used in these analyses can be requested from the authors.

Competing interests

None declared.

References

1. Greenberg J, Green J. Over-testing: Why More Is Not Better. The American Journal of Medicine. 2014; 127(5):362-363. doi:<u>https://doi.org/10.1016/j.amjmed.2013.10.024</u>.

2. Korenstein D, Chimonas S, Barrow B, et al. Development of a Conceptual Map of Negative Consequences for Patients of Overuse of Medical Tests and Treatments. JAMA Internal Medicine. 2018; 178(10):1401-1407. doi:https://doi.org/jamainternmed.2018.3573.

3. EWeyh A, Busby E, Smotherman C, Gautam S, Salman S. Overutilization of Computed Tomography for Odontogenic Infections. Journal of Oral and Maxillofacial Surgery. 2019; 77(4):671-672. doi:https://doi.org/10.1016/j.joms.2018.10.025.

4. Odia O, Yorkgitis B, Gurien L, et al. An evidence-based algorithm decreases computed tomography use in hemodynamically stable pediatric blunt abdominal trauma patients. The American Journal of Surgery. 2020; 220(2):482-488. doi:https://doi.org/10.1016/j.amjsurg.2020.01.006.

5. Mason M. Looking for Trouble - Patient Preference, Misdiagnosis and Overtesting. JAMA Internal Medicine. 2014; 174(10):1548-1549. doi:<u>https://doi.org/10.1001/jamainternmed.2014.3429</u>.

6. Lam J, Pickles K, Stanaway F, Bell K. Why clinicians overtest: development of a thematic framework. BMC Health Services Research. 2020; 20(1011) doi:<u>https://doi.org/10.1186/s12913-020-05844-9</u>.

7. Melnick E, Szlezak C, Bentley S, et al. CT overuse for mild traumatic brain injury. Jt Comm J Qual Patient Saf. 2012; 38(11):483-489. doi:<u>https://doi.org/10.1016/s1553-7250(12)38064-1</u>.

8. Shobeirian F, Ghomi Z, Soleimani R, Mirshahi R, Taheri M. Overuse of brain CT scan for evaluating mild head trauma in adults. Emergency Radiology. 2020; Epub ahead of print doi:https://doi.org/10.1007/s10140-020-01846-6.

9. Scally P. Radiology Services in Australia: The Director's Highlights HealthManagement; 2009.

10. Willis E, Parry Y. The Australian Health Care System. In: Taylor L, editor. Understanding the Australian Health Care System. 2nd ed. New South Wales: Elsevier; 2012.

11. Vengberg S, Fredriksson M, Burstrom B, Burstrom K, Winblad U. Money matters – primary care providers' perceptions of payment incentives. Journal of Health Organization and Management. 2021; epub ahead of print doi:<u>https://doi.org/10.1108/JHOM-06-2020-0225</u>.

12. Erny-Albrecht K, Bywood P. Corporatisation of general practice - impact and implications Adelaide: Primary Health Care Research & Information Service; 2016.

13. Fletcher M. The Quality of Australian Health Care: Current Issues and Future Directions Canberra: Commonwealth of Australia; 2000.

14. Community Affairs Reference Committee. Availability and accessibility of diagnostic imaging equipment around Australia Canberra: The Senate; 2018.

15. Professional Services Review. About the PSR Scheme [Internet]. Canberra: Australian Government; [cited 25 Feb 2021]. Available from: <u>https://www.psr.gov.au/about-the-psr-scheme</u>.

16.Public Services Review. Stages of the PSR Review Process [Internet]. Canberra: Australian
Government;Cited25Feb2021].Availablefrom:https://www.psr.gov.au/sites/default/files/psrprocess3stagesofreview.pdf?v=1478464898.

17. Professional Services Review. Professional Services Review: Annual Report 2008-09 Canberra: Australian Government; 2009.

18. Butterfield S. How mant are too many for CT scans? [Internet]. ACP Internist; 2011 [cited 20 Jan 2021]. Available from: <u>https://acpinternist.org/archives/2011/02/CT.htm</u>.

19. Rossi J, Lipman G. Computed Tomography and Radiation: Weighing the Risks [Internet]. Morrisville, NC: Relias Media; 2010 [cited 20 Jan 2021]. Available from: https://www.reliasmedia.com/articles/19835-computed-tomography-and-radiation-weighing-the-risks.

20.Wilson P. CT scans and radiation [Internet]. Australian Broadcasting Corporation; 2011 [cited20Jan2021].Availablefrom:https://www.abc.net.au/health/thepulse/stories/2011/08/11/3290494.htm.from:

21. Bourke E. Overuse of CT scans 'putting patients at risk' [Internet]. Australian Broadcasting Corporation; 2010 [cited 20 Jan 2021]. Available from: <u>https://www.abc.net.au/news/2010-03-15/overuse-of-ct-scans-putting-patients-at-risk/364124</u>.

22. Metherell M. Doctors ignoring CT scan cancer risk: watchdog [Internet]. Sydney: The Sydney Morning Herald; 2010 [cited 20 Jan 2021]. Available from: https://www.smh.com.au/national/doctors-ignoring-ct-scan-cancer-risk-watchdog-20100314q634.html.

23. Parker D. To CT or not to CT: a guide. The Australian. 2010.

24. Benchimol E, Smeeth L, Guttman A, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Medicine. 2015; 12(10):e1001885. doi:https://doi.org/10.1371/journal.pmed.1001885.

25. Services Australia. Medicare Statistics [Internet]. Canberra: Australian Government; 2020 [cited 26 Aug 2020]. Available from: <u>https://www.servicesaustralia.gov.au/organisations/about-us/statistical-information-and-data/medicare-statistics</u>.

26. Services Australia. Monthly and Quarterly Standard Reports [Internet]. Canberra: Australian Government; 2020 [cited 26 Aug 2020]. Available from: http://medicarestatistics.humanservices.gov.au/statistics/mth_qtr_std_report.jsp.

27.Linden A. Conducting Interrupted Time-series Analysis for Single- and Multiple-groupComparisons.TheStataJournal.2015;15(2):480-500.doi:https://doi.org/10.1177/1536867X1501500208.

28. StataCorp. Stata Statistical Software: release 15. College Station, Tx: StataCorp LLC; 2017.

29. Baum C, Schaffer M. Stata module to perform Cumby-Huizinga general test for autocorrelation in time series. Statistical Software Components. 2013; (S457668).

30. Cox N. Speaking Stata: In Praise of Trigonometric Predictors. The Stata Journal. 2006; 6(4):561-579. doi:<u>https://doi.org/10.1177/1536867X0600600408</u>.

31. Cox N. CIRCULAR: Stata module for circular statistics. Statistical Software Components. 2004; (S436601).

32. Imbens G, Lemieus T. Regression discontinuity designs: a guide to practice. Journal of Econometrics. 2008; 142(2):615-635. doi:<u>https://doi.org/10.1016/j.jeconom.2007.05.001</u>.

33. Medical Benefits Reviews Task Group. Review of Funding for Diagnostic Imaging Services: Final Report Canberra: Department of Health and Ageing; 2011.

34. Morgan T, Wu J, Ovchinikova L, et al. A national intervention to reduce imaging for low back pain by general practitioners: a retrospective economic program evaluation using Medicare Benefits Schedule data. BMC Health Services Research. 2019; 19(983) doi:<u>https://doi.org/10.1186/s12913-019-4773-y</u>.

35. Hong A, Ross-Degnan D, Zhang F, Wharam J. Small Decline In Low-Value Back Imaging Associated With The 'Choosing Wisely' Campaign, 2012-14. Health Affairs. 2017; 36(4):671-679. doi:10.1377/hlthaff.2016.1263.

36. Colla C, Mainor A, Hargreaves C, Sequist T, Morden N. Interventions Aimed at Reducing Use of Low-Value Health Services: A Systematic Review. Medical Care Research and Review. 2017; 74(5):507-550. doi:https://doi.org/10.1177/1077558716656970.

37. Albert J. Radiation Risk From CT: Implications for Cancer Screening. Medical Physics and Informatics. 2013; 201:W81-W87. doi:10.2214/AJR.12.9226.

38.Australian National Audit Office. Diagnostic Imaging Reforms [Internet]. Canberra: AustralianGovernment;2014[cited25May2021].Availablefrom:https://www.anao.gov.au/work/performance-audit/diagnostic-imaging-reforms.

39. Diagnostic Imaging Review Team. Review of Funding for Diagnostic Imaging Service: Final Report Department of Health and Ageing; 2012.

40. Department of Health. Requesting of MRI (magnetic resonance imaging) services [Internet]. Canberra: Australian Government; 2020 [cited 25 Feb 2020]. Available from: <u>https://www1.health.gov.au/internet/main/publishing.nsf/Content/gp-requested-mri-services</u>.

41. Blomqvist A, Busby C. How to Pay Family Doctors: Why "Pay per Patient" is Better Than Fee for Service Toronto: C.D. Howe Institute; 2012.

 Lewis D, Longley P. Patterns of Patient Registration with Primary Health Care in the UK National Health Service. Annals of the Association of American Geographers. 2012; 102(5):1135-1145.
 Mehta S. Patient Satisfaction Reporting and Its Implications for Patient Care. AMA Journal of Ethics. 2015; 17(7):616-621. doi:10.1001/journalofethics.2015.17.7.ecas3-1507.

44. Mitchell J, Sunshine J. Consequences of Physicians' Ownership of Health Care Facilities - Joint Ventures in Radiation Therapy. The New England Journal of Medicine. 1992; 327(21):1497 - 1501. doi:https://doi.org/10.1056/NEJM199211193272106.

45. Brady A, Bello J, Derchi L, et al. Radiology in the Era of Value-based Healthcare: A MultiSociety Expert Statement from the ACR, CAR, ESR, IS3R, RANZCR, and RSNA. Radiology. 2021; 298(3):486-491.

Figure legends

Figure 1: Part A indicates change in the quarterly rate of MBS funded CT scans per 100,000 eligible population according to geographic location of service provision following publication of the MBS professional services review (2008-9) and associated media attention. Superscript L and S indicate significant changes in the level and slope parameters, respectively. Part B indicates net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by State.

Figure 2: Impact of the 2008-9 professional services review on the rate of Medicare funded CT scanning (per 100,000 Medicare eligible population) in Australia. Part A indicates quarterly rate of all MBS funded CT scans showing counterfactual and post-intervention fitted line (seasonality removed for simplification). Part B is a representation of the seasonally adjusted area under and between the curves used to estimate net effect of the response to the MBS professional services review 2008-9.

Figure 3: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia per 100,000 eligible population according to type of service following publications of the MBS professional services review (2008-9) and associated media attention. Superscript L and S indicate significant changes in the level and slope parameters, respectively. Part B displays net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by type / anatomical area.

..d na .pe paramete. .po9 - Qtr4 2019, by 1

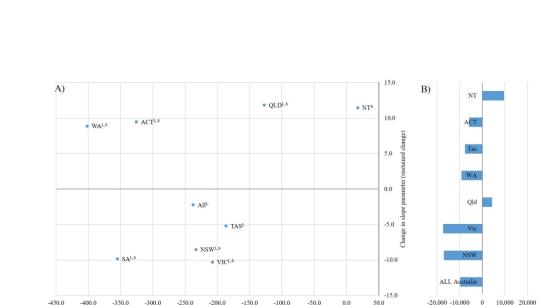
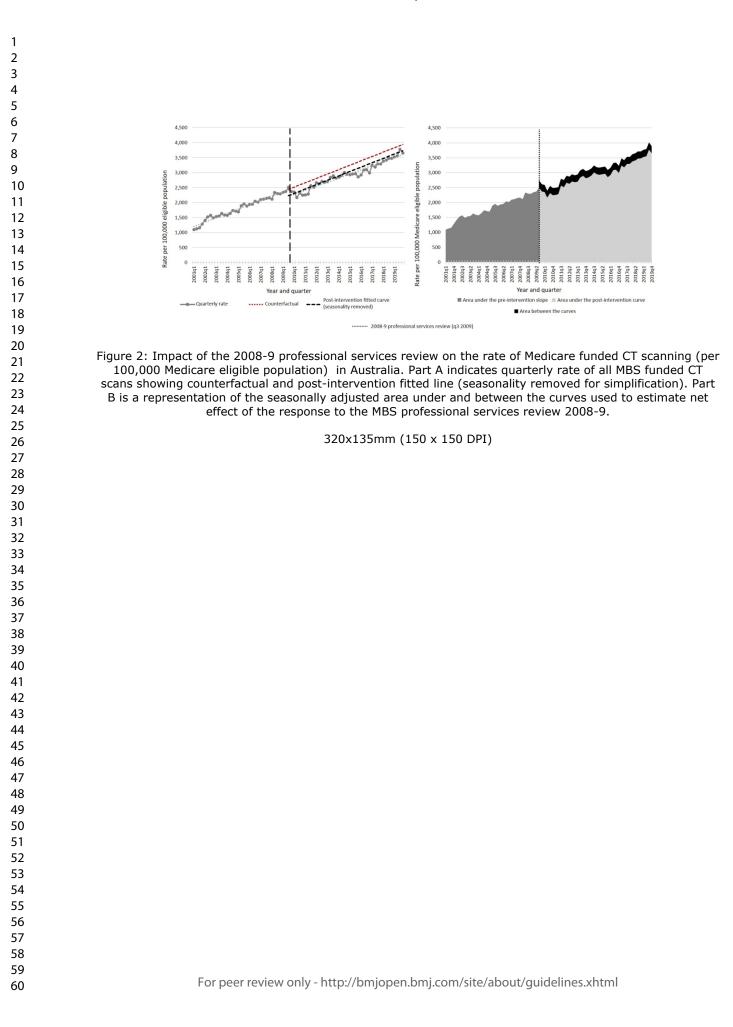


Figure 1. Part A indicates change in the quarterly rate of MBS funded CT scans per 100,000 eligible population according to geographic location of service provision following publication of the MBS professional services review (2008-9) and associated media attention. Superscript L and S indicate significant changes in the level and slope parameters, respectively. Part B indicates net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by State.

nediate change)


Change in level parameter (imm

332x163mm (150 x 150 DPI)

Page 22 of 44

BMJ Open: first published as 10.1136/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

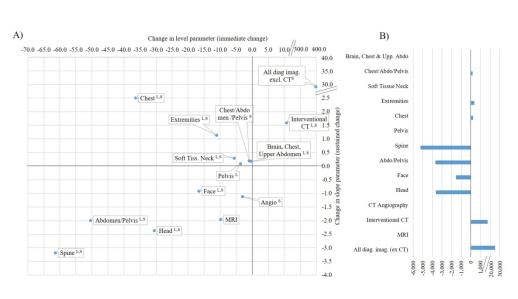


Figure 3: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia per 100,000 eligible population according to type of service following publications of the MBS professional services review (2008-9) and associated media attention. Superscript L and S indicate significant changes in the level and slope parameters, respectively. Part B displays net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by type / anatomical area.

332x170mm (150 x 150 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1	
2 3	
4	
5	
6 7	
8	
9	
10 11	
12	
13	
14 15	
16	
17	
18 19	
20	
21	
22 23	
24	
25 26	
27	
28	
29 30	
31	
32	
33 34	
35	
35 36 37	
37 38	
39	
40	
41 42	
43	
44	
45 46	
υT	

Appendix 1: Grouping of CT MBS iter	ms according to anatomical location or technique
-------------------------------------	--

oppendix 1: Grouping of CT N	BMJ Open MBS items according to anatomical location or techn	6/bmjopen-2021-057424 on
Group	MBS item number	Pescription
Head	56001 / 56041	Brain (Non-contrast)
	56007 / 56047	Brain (Contrast)
	56010 / 56050	Pituitary fossa (+/- Contrast)
	56016 / 56056	Petrous bones (+/- Contrast)
Facial bones	56028 /56036 /56068	Facial bones / sinuses or both (Contrast)
	56022 / 56062	Facial bones / sinuses or Both (Non-contrast)
	56076 / 56030 / 56070	Facial bones / sinuses or both + Brain (+/- Contrast)
	56013 /56053	Orbits (+/- Contrast)
Neck (soft tissue)	56101 /56141	Soft tissue neck (Non-corgirast)
	56107 / 56147	Soft tissue neck (Pre and post contrast)
Chest	56301 / 56341	Chest +/- upper abdo (Non-contrast)
	56307 / 56347	Chest +/- upper abdo (Pré+ post contrast)
Abdomen (+/-Pelvis)	56401 / 56441	Upper Abdo -diaphragm B iliac crest (Non-contrast)
	56407 / 56447	Upper Abdo -diaphragm 🔁 iliac crest (Contrast)
	56501 / 56541	Abdo/Pelvis (Non-contra
	56507 / 56547	Abdo/Pelvis (Contrast)
	56549 / 56551 / 56552 / 56553/ 56554 / 56555	Virtual Colonoscopy
Pelvis only	56409 / 56449	Pelvis (Non-contrast)
	56412 /56452	Pelvis (Contrast)
Chest/Abdo/Pelvis	56801 /56841	Chest/Abdo/Pelvis +/- negk (Non-contrast)
	56807 / 56847	Chest/Abdo/Pelvis +/- negk (Pre + post contrast)
Brain, Chest and Upper	57001 (57041	
Abdomen	57001 /57041	Head + Chest+/-upper abgomen without contrast
	57007 / 57047	Head + Chest +/- upper abdomen with contrast
		ÿright

	BMJ Open	i de la constanti de la consta
		6/bmjopen-2021-
Spine	56220 / 56227	ि Cervical spine (Non-contrast)
	56224 / 56230	Cervical spine (Contrast $\stackrel{\overline{N}}{+}$ Non Contrast)
	56221 / 56228	Thoracic spine (Non-congast)
	56225 / 56231	Thoracic spine (Contrast $\frac{1}{2}$ Non Contrast)
	56223 / 56229	Lumbar spine (Non-contrast)
	56226 / 56232	Lumbar spine (Contrast + Non Contrast)
	56219 / 56259	Spine - 1 or more regions (With Intrathecal Contrast)
	56233 / 56235	Spine (2 exams of any $(C \xi T or L)$ kind Non-contrast)
		Spine (2 exams of any kind (C, T or L) with Contrast + With
	56234 / 56236	Contrast)
	56237 / 56239	Spine (3 regions C,T,L Ngn-contrast)
	56238 /56240	Spine (3 regions C,T,L With Contrast + Non Contrast)
Extremities	56619 / 56620/ 56622/ 56623/ 56625	CT of extremities one or more regions (Non-contrast)
	56626 /56627/ 56628/ 56629/ 56630/ 56659 / 56665	CT of extremities one or hore regions (Non-contrast)
Spiral Angiography*	57350-57356	Spiral angiography (Pre Spost contrast)
	57360/57361	CT of the coronary arteries
Cone Beam CT	56025/56026/57362/57363	Cone Beam CT of teeth and supporting bone structures
Pelvimetry	57201 / 57247	Pelvimetry
		CT in conjunction with a gurgical procedure using intervention
Interventional CT	57341 / 57345	techniques \underline{B}
MBS: Medicare Benefit Scher	ne	20
*C.:1	· · · · · · · · · · · · · · · · · · ·	
*Spiral angiographic C1 item	codes relate specify several broad clinical settings relating to	o their use. Q
		ues
		ר י ק
		rote
		ct ec
		techniques 20, 2024 by guest. Protected by copyright.
		сор
		ýrig
		<u>.</u>

		Number	of imaging proce	edures per quarter,	by type (excl	CŢ)	
Year and quarter	Medicare eligible population	ALL MBS	All Diagnostic Imaging	Diagnostic Imaging excluding CT	ALL MRI	21 AAII US	All Nu Med
2001Q1	19,974,075	53,913,292	3,080,396	2,862,100	47,080	875,892	72,55
2001Q2	20,058,815	54,612,217	3,163,585	2,937,355	52,845		74,6
2001Q3	20,139,806	57,160,177	3,250,431	3,017,862	56,588	§ 901,629	78,6
2001Q4	20,215,957	53,802,181	3,129,899	2,869,771	55,782	890,270 901,629 ad 900,319 877,966	74,5
2002Q1	20,296,405	52,698,145	3,050,855	2,764,530	53,730	훕 877,966	71,2
2002Q2	20,374,998	57,043,850	3,321,404	3,010,541	60,267	fg 949,968	78,4
2002Q3	20,451,273	58,573,985	3,462,073	3,140,545	64,444	995,302	82,3
2002Q4	20,525,042	54,100,126	3,234,123	2,929,308	61,043	961,803	77,0
2003Q1	20,574,715	53,702,789	3,235,168	2,919,654	60,331	<u>9</u> 74,715	75,1
2003Q2	20,640,449	55,029,284	3,296,996	2,977,779	65,296	995,302 961,803 974,715 982,227 91,028,635	77,8
2003Q3	20,724,986	58,373,440	3,492,688	3,153,252	69,926	g1,028,635	81,5
2003Q4	20,805,416	55,102,234	3,316,288	2,986,225	67,265	<u>5</u> 1,009,242	79,2
2004Q1	20,892,413	55,237,593	3,251,558	2,923,221	65,887	2 993,179	75,2
2004Q2	20,971,967	57,668,884	3,397,421	3,053,659	70,744	₹1,025,832	79,5
2004Q3	21,040,363	60,479,828	3,630,147	3,264,529	73,164	<u>5</u> 1,088,136	84,7
2004Q4	21,020,468	58,681,495	3,497,953	3,137,363	73,483	81,074,598	79,9
2005Q1	20,395,854	55,265,155	3,272,212	2,926,937	68,650	N1,018,953	73,8
2005Q2	20,482,464	61,889,434	3,736,003	3,347,527	81,138	¦≩1,157,994	84,6
2005Q3	20,535,311	63,925,592	3,864,039	3,463,294	86,186	ğ1,201,410	86,0
2005Q4	20,570,360	59,950,302	3,634,302	3,245,994	83,508	<u>ឆ</u> ្អី1,157,675	81,1
2006Q1	20,651,536	61,070,666	3,673,330	3,273,759	86,366	ਤਾ,166,540	80,5
2006Q2	20,738,739	62,420,316	3,749,991	3,345,574	90,248	ğ1,190,679	82,2
2006Q3	20,834,970	65,739,068	3,981,768	3,556,490	98,377	<u>8</u> 1.254.468	88,6
2006Q4	20,918,630	62,183,136	3,802,035	3,380,338	94,248	₹1,241,269	84,8
2007Q1	21,023,544	64,047,623	3,909,736	3,469,566	97,875	by 1,241,269 cop1,276,478	85,3

6/bmjopen-2021-0t

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 44				BMJ Oper	n		6/bmjop	
1 2							6/bmjopen-2021-05742	
3	2007Q2	21,075,599	65,922,562	3,961,046	3,515,224	103,019	ي. 1,285,806	87,332
4 5	2007Q3	21,156,498	70,587,243	4,164,895	3,711,184	108,799	¹ / ₄ 1,331,460	90,249
6	2007Q4	21,213,097	68,075,447	4,052,075	3,593,258	103,894	⁹ 1,326,226	92,717
7	2008Q1	21,300,775	66,111,755	3,932,797	3,481,827	97,289	,284,795	86,786
8	2008Q2	21,382,498	73,943,872	4,374,974	3,876,485	113,767	⊒1,446,356	100,177
9 10	2008Q3	21,474,007	73,411,004	4,347,958	3,854,001	114,660	RN 437,929	100,593
11	2008Q4	21,542,093	72,757,668	4,268,041	3,775,261	113,590	.∾ 1,442,680	98,530
12	2009Q1	21,611,182	72,990,845	4,265,199	3,758,331	109,507	§1,442,832	101,325
13	2009Q2	21,712,379	74,849,371	4,450,168	3,935,534	121,502	<u>ឆ</u> ្លី1,515,593	106,838
14 15	2009Q3	21,799,725	79,059,828	4,735,321	4,188,550	134,373	81,592,771	114,116
16	2009Q4	21,864,719	77,132,787	4,439,849	3,921,910	124,633	ธิ์1,539,685	108,432
17	2010Q1	21,995,898	73,945,829	4,423,973	3,905,995	119,415	∃ ⊒1,535,498	109,394
18	2010Q2	22,116,286	78,262,472	4,554,003	4,075,502	132,075	1,583,459	115,291
19 20	2010Q3	22,225,493	80,332,900	4,845,036	4,329,256	134,639	1 ,668,768	125,165
21	2010Q4	22,322,182	79,520,986	4,697,780	4,196,325	134,158	6 1,655,431	124,342
22	2011Q1	22,430,782	78,696,720	4,686,355	4,180,032	129,057	9 1,642,691	121,167
23	2011Q2	22,536,170	80,591,361	4,846,047	4,332,553	140,184	<u>5</u> 1,695,068	127,800
24 25	2011Q3	22,646,567	86,000,221	5,159,265	4,578,841	153,104	₹1,832,694	139,046
26	2011Q4	22,752,945	80,099,988	4,912,101	4,339,480	142,800	9 1,789,169	139,453
27	2012Q1	22,869,958	83,090,073	5,107,472	4,499,155	143,874	<u>⊈</u> 1,862,446	143,865
28	2012Q2	22,975,129	83,419,449	5,146,458	4,542,312	151,104	81,875,437	145,229
29 30	2012Q3	23,083,927	87,331,463	5,406,664	4,781,580	157,745	N. 1,955,461	150,517
31	2012Q4	23,186,999	88,148,306	5,209,940	4,589,199	155,520	[₽] 1,940,993	146,353
32	2013Q1	23,301,712	81,070,495	5,204,538	4,575,455	151,607	1,941,553	147,521
33	2013Q2	23,415,863	87,420,296	5,572,789	4,907,148	172,931	<u>\$</u> 2,092,082	158,845
34 35	2013Q3	23,526,793	91,269,394	5,764,539	5,084,337	181,946	ਸੂ2,156,469	162,931
36	2013Q4	23,516,579	87,442,632	5,546,788	4,885,276	197,653	g2,101,276	158,443
37	2014Q1	23,726,126	87,365,616	5,647,377	4,972,344	214,246	82,126,548	157,860
38	2014Q2	23,816,689	92,173,285	5,845,674	5,153,281	230,868	₹2,186,482	162,773
39 40 41 42	2014Q3	23,923,051	94,962,398	6,089,946	5,370,449	246,153	6 92,265,530 Yight.	165,754
12								

			BMJ Open	ı		6/bmjopen-2021-05742		
						jopei		
						ר-20		
						21-0		
2014Q4	23,997,461	92,135,078	5,897,348	5,190,581	237,560	2,242,799	164,672	
2015Q1	24,105,563	90,560,806	5,901,602	5,195,336	233,585	² / ₄ 2,242,250	162,921	
2015Q2	24,179,690	95,743,360	6,060,642	5,346,902	253,841	⁵ 2,293,992	168,956	
2015Q3	24,278,495	98,437,227	6,261,986	5,542,495	262,668	2,373,981	170,088	
2015Q4	24,366,559	95,229,471	5,967,569	5,272,222	245,411	≣2,328,097	156,482	
2016Q1	24,453,229	92,813,393	5,997,592	5,283,310	240,294	N2,338,670	156,130	
2016Q2	24,553,190	102,637,644	6,440,165	5,682,508	272,750	2,512,656	170,212	
2016Q3	24,636,038	100,005,965	6,462,300	5,698,777	275,305	§2,487,482	171,942	
2016Q4	24,711,652	95,516,816	6,123,586	5,384,207	256,559	<u>a</u> 2,387,030	164,289	
2017Q1	24,821,154	100,586,254	6,557,448	5,752,386	272,317	<u>8</u> 2,567,688	175,505	
2017Q2	24,924,168	103,376,540	6,547,871	5,755,139	294,158	គ្និ៍2,565,789	174,498	
2017Q3	25,007,901	104,773,012	6,770,682	5,947,070	301,470	2 ,608,763	179,662	
2017Q4	25,078,863	104,675,460	6,625,438	5,799,977	293,524	2,610,899	172,694	
2018Q1	25,182,661	101,038,400	6,725,986	5,873,983	290,847	2 ,653,510	180,775	
2018Q2	25,267,605	109,365,729	6,882,768	6,020,760	315,569	2 ,722,980	177,872	
2018Q3	25,353,168	106,249,390	7,057,888	6,177,536	328,216	5 2,764,644	182,907	
2018Q4	25,436,468	106,876,163	6,867,102	5,982,682	312,607	2,764,861	179,849	
2019Q1	25,520,089	105,168,957	6,881,495	5,981,931	302,827	2,801,529	180,979	
2019Q2	25,595,189	111,352,700	6,978,029	6,068,535	358,070	⁹ 2,808,803	184,667	
2019Q3	25,675,916	113,030,934	7,335,021	6,365,854	354,051	₽ <u></u> 2,933,923	193,589	
2019Q4	25,754,980	108,011,995	7,009,009	6,068,363	338,103	2,852,030	190,786	
TOTAL 2001-2019		5,986,242,372	369,444,996	327,257,812	12,158,315	181,610,743	9,438,609	
Percent of all MBS activity			6.17	5.47	0.20	<u>2.20</u>	0.16	
Percent of all Diagnostic Imaging				88.58	3.29	gueg 35.62	2.55	
Percent of all CT scanning				00.30	5.29	.+	2.55	
Tercent of an CT scanning						Prot		
						ecte		
						d by		
						rotected by copyright.		
						0		
						yrig		

f 44				BMJ (Open		6/bmjopen-2021-057424
Table continued)21-057424
		Ν		T examinati Neck	ons per qu	arter, by type	1 on 21
Year and quarter	ALL CT	Head CT	Facial bones CT	(soft tissue) CT	Chest CT	Chest/Abdo/Pelvis CT	Abdamen (+/ pe#vis) CT
2001Q1	218,296	75,243	29,194	5,846	25,038	10,890	N 10 01
2001Q2	226,230	78,787	31,520	5,939	25,496	10,934	50,61 0a 51,56 ed 52,65
2001Q3	232,569	77,870	34,130	6,000	26,799	11,658	ฐธี 51,56
2001Q4	260,128	75,556	31,757	6,216	26,987	12,194	<u>e</u> 52,65
2002Q1	286,325	72,827	28,723	5,943	26,344	12,515	
2002Q2	310,863	80,824	32,855	6,477	28,191	13,491	57,61
2002Q3	321,528	82,648	35,417	6,737	30,494	14,510	59,25
2002Q4	304,815	74,501	31,611	6,479	29,060	14,286	58,3 1
2003Q1	315,514	78,396	30,083	6,508	28,524	15,133	8 61,63
2003Q2	319,217	79,059	32,590	6,549	28,936	15,241	from http://bmjopen.bmj.com/ 64,72 9 66,61
2003Q3	339,436	83,562	34,796	6,976	31,994	16,793	<u>,</u> 64,92
2003Q4	330,063	78,264	31,652	6,996	31,908	17,194	2 64,72
2004Q1	328,337	76,190	29,486	7,002	30,747	17,864	9 66,61
2004Q2	343,762	80,273	33,374	6,994	31,536	18,311	April 20, 71,12
2004Q3	365,618	85,257	36,384	7,272	35,081	19,594	71,17
2004Q4	360,590	82,754	35,066	7,179	35,066	19,973	
2005Q1	345,275	76,760	31,309	6,939	32,483	20,226	²⁴ 69,67
2005Q2	388,476	88,306	37,094	7,862	35,613	22,142	20 70,09 69,67 90 90 76,53 77,32
2005Q3	400,745	91,158	38,797	7,793	37,585	23,170	<u>لە</u> 77,32
2005Q4	388,308	84,502	36,127	7,904	36,823	23,263	
2006Q1	399,571	86,081	35,311	8,134	36,452	24,976	Protected 81,17
2006Q2	404,417	86,807	38,138	7,731	36,276	25,075	
2006Q3	425,278	92,095	41,594	8,055	39,001	26,017	ड्र 83,08
2006Q4	421,697	87,923	38,381	8,577	38,946	26,911	by 83,08 83,32 by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

44 45 46

BMJ C	pen
-------	-----

		20	<i>c</i>	
Pao	Ie.	30	ot	44

					BM1 Of	oen		6/bmjopen-2021-057424 88,975 88,975 88,578 89,103 88,578 89,730 90,417 98,675 96,012 96,012 96,361 102,656 102,856
1 2								n-2021
3	2007Q1	440,170	92,093	37,067	8,779	39,326	28,744	57 88,975
4	2007Q1 2007Q2	445,822	92,093 94,631	40,052	8,245	39,520 38,678	27,920	424 89,103
5 6	2007Q2 2007Q3	453,711	93,891	40,032	8,245 8,724	41,238	29,226	9,103 9,88,578
7	2007Q3 2007Q4	458,817	95,091 95,095	41,294	8,837	42,434	30,196	≥ 89,730
8	2007Q4 2008Q1	450,970	93,095 93,195	38,146	8,837 8,545	42,454 39,569	29,798	₽ 89,730 ⊒ 90,417
9	2008Q1 2008Q2	498,489	101,530	45,024	9,678	43,118	32,623	
10	2008Q2 2008Q3	498,489	97,072	47,054	9,078 9,072	43,118 44,512	32,625	$\frac{100}{100}$ 96,073
11 12	2008Q3 2008Q4	493,937 492,780	97,072	43,048	9,072 9,254	44,912 44,864	33,423	96,361
13	2008Q4 2009Q1	506,868	97,102 98,536	41,934	9,234 9,479	43,779	35,884	$\frac{1}{2}$ $\frac{90,301}{2}$
14	2009Q1 2009Q2	514,634	101,302	41,934	9,479 9,636	43,779	36,118	a 102,030 E 102,856
15	-		101,302					
16 17	2009Q3 2009Q4	546,771	· · · · · · · · · · · · · · · · · · ·	50,834	10,075	48,233	37,953	
18		517,939	100,708	44,414	9,594	45,591	37,405	
19	2010Q1	517,978	100,254	41,898	9,628	43,424	39,023	
20	2010Q2	478,501	93,538	40,507	8,960	40,803	37,635	<u>3</u> . 95,304
21 22	2010Q3	515,780	98,321	46,458	9,666	45,428	39,354	99,595
22	2010Q4	501,455	94,719	42,363	9,825	46,193	39,372	96,336
24	2011Q1	506,323	95,129	39,688	9,981	45,948	41,563	<u>i</u> 100,132
25	2011Q2	513,494	96,725	43,280	9,797	45,808	41,894	
26	2011Q3	580,424	102,851	50,301	10,775	50,818	45,041	⁹ 107,854 April 108,030
27 28	2011Q4	572,621	98,347	44,683	10,532	50,612	44,780	
29	2012Q1	608,317	105,042	45,525	11,083	51,598	49,684	8 116,058
30	2012Q2	604,146	104,413	46,932	11,013	51,212	48,006	202113,052 4 113,827 9 114,814 9 118,692
31	2012Q3	625,084	106,380	50,286	11,121	54,646	49,262	∯ 113,827
32 33	2012Q4	620,741	101,520	46,030	11,208	55,158	50,048	فَوَ 114,814
33 34	2013Q1	629,083	105,860	44,546	11,554	53,664	51,746	<u>ଞ୍</u> ଟୁ 118,692
35	2013Q2	665,641	111,194	49,730	12,124	57,601	52,886	ਸੂ 123,927
36	2013Q3	680,202	111,494	52,005	12,030	60,202	53,962	कू 123,695
37	2013Q4	661,512	102,227	47,646	12,089	59,847	54,211	P 123,927 ec 123,695 e 121,680
38 39	2014Q1	675,033	104,173	46,951	12,169	59,405	56,972	S 126,579
40	2014Q2	692,393	105,582	49,645	12,308	61,240	56,573	ළි 127,207
41								copyright.
42								ī .

Page 31 of 44					BMJ	Open		6/bmjop
1 2								6/bmjopen-2021-057428,500
3	2014Q3	719,497	106,283	54,941	13,046	66,686	58,574	57 128,500
4 5	2014Q4	706,767	104,179	49,805	13,241	67,660	59,008	4 130,637
6	2015Q1	706,266	107,198	49,464	13,017	65,311	60,743	^S 133,591
7	2015Q2	713,740	108,814	52,771	13,231	68,186	60,704	[№] 132,644
8	2015Q3	719,491	108,195	54,781	13,098	72,485	61,291	129,284
9 10	2015Q4	695,347	101,454	47,878	13,227	70,426	62,371	No. 128,975
11	2016Q1	714,282	105,362	47,179	13,505	69,763	64,773	122071
12	2016Q2	757,657	111,103	53,315	14,490	74,077	65,588	§ 140,232
13	2016Q3	763,523	110,128	55,826	14,755	78,893	66,953	140,232 138,167 133,437
14 15	2016Q4	739,379	104,499	50,328	14,453	77,701	65,310	8 133,437
16	2017Q1	805,062	115,414	52,521	15,667	81,219	71,433	
17	2017Q2	792,732	112,646	53,677	15,661	80,405	69,606	³ 144,232
18	2017Q3	823,612	117,302	59,970	15,577	87,261	71,379	145,531
19 20	2017Q4	825,461	114,373	53,565	16,273	86,954	71,591	for 149,116 144,232 145,531 148,272 156,420 156,527 155,815 157,633
21	2018Q1	852,003	118,695	54,068	16,751	85,878	76,133	8 156,420
22	2018Q2	862,008	118,600	57,084	16,811	87,963	74,992	b 156,527
23	2018Q3	880,352	119,379	62,327	16,995	91,688	75,550	<u>,</u> <u>5</u> 155,815
24 25	2018Q4	884,420	118,096	56,790	17,477	94,604	77,554	₹ 157,633
26	2019Q1	899,564	120,415	55,471	18,299	94,124	80,924	⁹ 163,452
27	2019Q2	909,494	119,984	58,368	18,347	94,789	79,216	<u>→ 162,030</u>
28 29	2019Q3	969,167	125,420	65,879	19,370	105,447	80,680	8 167,554
30	2019Q4	940,646	117,270	58,760	19,454	103,562	80,410	≥ <u>8</u> 164,552
31	TOTAL 2001-2019	42,187,184	7,450,445	3,366,188	816,634	4,019,380	3,211,131	3 ,955,402
32	Percent of all MBS		0.4.	0.07	0.01	o o -	0.0 -	v gues 0.13
33 34	activity Percent of all	0.70	0.12	0.06	0.01	0.07	0.05	
35	Diagnostic Imaging	11.42	2.02	0.91	0.22	1.09	0.87	P 2.15
36	Percent of all CT	11.12	2.02	0.71		1.07	0.07	
37 38	scanning		17.66	7.98	1.94	9.53	7.61	t. Protected 18.86
39								y co
40								pyri
41 42								ght.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				BMJ Open		6/bmjopen-2021-05742		
Table continued						1-05742		
			Ν	umber of CT e	xaminations per qua	rter, by type		
Year and quarter	Brain/Chest/ Upper Abdo CT	Pelvis CT	Spine CT	Extremities CT	Spiral Angiography CT	Interventional CTP	Cone Beam CT	CT Pelvimetry
2001Q1	484	3,501	33	9,355	3,770	No.4,249	0	7
2001Q2	520	3,339	33	9,787	4,140	^N 4,455	0	6
2001Q3	458	3,595	21	10,231	4,535	₹ 5,059	0	6
2001Q4	511	3,326	30,308	9,873	4,745	$\frac{1}{200}$ 5,402	0	5
2002Q1	570	3,369	61,118	9,803	4,659	ā 5,447	0	5
2002Q2	603	3,658	63,786	11,201	5,430	ਰੋ <mark>ਂ</mark> 6,124	0	6
2002Q3	594	3,685	63,611	11,630	5,923	^B ,6,439	0	5
2002Q4	569	3,641	62,401	11,023	5,844	6,623	0	4
2003Q1	606	3,703	66,897	11,128	5,674	6,697	0	5
2003Q2	601	3,774	64,279	11,809	6,578	7,524	0	4
2003Q3	825	4,032	66,834	12,383	7,588	8,236	0	4
2003Q4	799	3,801	65,897	12,119	7,375	<u>∃</u> 8,872	0	4
2004Q1	785	3,938	66,965	12,053	7,391	2 8,777	0	5
2004Q2	816	4,007	68,064	13,134	8,454	9,247	0	4
2004Q3	905	3,933	72,040	13,971	9,539	₹9,983	0	4
2004Q4	944	3,905	71,700	13,196	9,487	30,770	0	4
2005Q1	895	3,729	70,464	13,115	8,846	30,420	0	4
2005Q2	991	4,144	76,683	15,638	10,946	<u>¥</u> 2,081	0	4
2005Q3	1,065	4,260	77,925	15,741	12,808	ğ 2,706	0	4
2005Q4	973	3,957	76,276	15,480	12,381	ធ្ល <u>ី</u> 3,422	0	3
2006Q1	1,153	4,092	80,785	15,887	12,450	1 3,113	0	3
2006Q2	1,108	4,253	79,022	17,140	13,247	at 4,100	0	3
2006Q3	1,209	4,385	83,153	18,105	13,158	d 4,100 d 5,063	0	3
2006Q4	1,161	4,530	84,528	17,970	12,964	ष्ट्र6,177	0	3
2007Q1	1,149	4,489	90,737	19,050	13,219	cqpyright.	0	3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4

Page 33 of 44					BMJ Open		6/bmjopen-2021-0 57 42		
1							-2021		
2 3	2007Q2	1,192	4,420	90,739	19,767	14,103		0	289
4	2007Q3	1,309	4,673	89,921	20,303	15,602	46,954	0	318
5 6	2007Q3	1,388	5,321	91,415	19,958	14,875	7,995	0	279
7	2008Q1	1,349	5,088	92,935	20,092	14,167	₹7.414	0	255
8	2008Q1	1,500	6,200	100,562	22,752	16,368	,,414 ⊉0,187	0	272
9	2008Q3	1,415	5,261	99,498	23,278	17,377	N20,489	0	232
10 11	2008Q4	1,471	4,650	100,134	23,436	16,636	22,185	0	216
12	2009Q1	1,588	4,801	104,771	24,479	16,201	₹2,558	0	202
13	2009Q2	1,538	4,980	101,581	25,436	17,557	\$23,715	0	230
14	2009Q3	1,755	5,293	107,077	26,983	19,439	<u>2</u> 4,995	0	247
15 16	2009Q4	1,680	4,702	102,250	25,472	18,485	<u>2</u> 6,978	0	205
17	2010Q1	1,699	4,738	103,685	25,789	17,685	∃ 2 6,216	0	169
18	2010Q2	1,648	4,555	85,806	24,382	18,201	26,982	0	180
19 20	2010Q3	1,767	4,882	95,385	25,813	20,374	28,567	0	170
20	2010Q4	1,849	4,763	90,398	24,944	19,597	80,959	0	137
22	2011Q1	1,963	4,826	92,963	26,139	18,653	2 9,167	0	171
23	2011Q2	1,880	4,780	91,462	27,106	19,789	a0,453	0	151
24 25	2011Q3	2,172	5,466	102,125	30,104	26,968	₹2,923	12,871	155
26	2011Q4	2,221	5,125	100,847	28,793	27,474	34,778	16,263	136
27	2012Q1	2,482	5,636	110,377	31,655	27,675	<u>}</u> 4,698	16,625	179
28	2012Q2	2,403	5,608	107,295	32,250	29,264	35,854	16,696	148
29 30	2012Q3	2,415	5,753	109,471	33,365	31,617	8,847	17,949	145
31	2012Q4	2,442	5,752	110,166	33,269	30,578	¥1,714	17,897	145
32	2013Q1	2,591	6,047	114,534	33,797	29,866	چ 9,310	16,768	108
33	2013Q2	2,838	6,423	117,335	36,080	33,694	a 2,769	18,941	99
34 35	2013Q3	2,937	6,806	117,109	36,896	36,368	14 ,764	21,846	88
36	2013Q4	2,994	6,918	113,552	36,228	34,893	a 6,352	22,773	102
37	2014Q1	3,002	6,976	120,699	37,594	32,916	\$45,383	22,106	108
38	2014Q2	3,130	7,468	119,988	38,547	35,930	\$49,130	25,549	96
39 40	2014Q3	3,224	7,554	123,541	40,648	38,353	\$0,291	27,768	88
40					-	·	60,291 997ight.		
42							it.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				BMJ Open		6/bmjopen-2021-05742		Page
						n-2021-(
2014Q4	3,212	7,817	123,566	41,177	37,057	2,224	17,135	49
2015Q1	3,401	7,898	128,899	41,151	35,762	50,077	9,672	82
2015Q2	3,347	8,294	123,016	41,336	39,666	§1,910	9,739	82
2015Q3	3,879	9,304	121,370	41,927	41,299	\$2,865	9,645	68
2015Q4	3,927	9,217	113,166	40,710	39,087	₹5,872	8,978	59
2016Q1	4,293	9,823	123,714	41,669	38,340	2,317	9,521	62
2016Q2	4,695	10,472	125,323	44,811	44,471	₹7,181	11,836	63
2016Q3	4,957	11,141	124,856	45,329	46,254	₹6,064	10,142	58
2016Q4	4,987	10,832	120,430	44,823	44,577	<u>a</u> 8,579	9,351	72
2017Q1	5,870	12,380	137,018	48,798	45,657	\$9,527	10,370	72
2017Q2	5,992	12,618	129,849	48,133	48,847		10,015	56
2017Q3	6,278	12,830	133,361	49,085	52,435	∃ <u>1,656</u>	10,899	48
2017Q4	6,563	13,081	134,986	49,347	52,331	65,607	12,472	46
2018Q1	7,668	14,379	144,524	52,592	51,199	3,111	10,549	36
2018Q2	7,997	15,461	139,015	54,608	55,177	\$5,107	12,623	43
2018Q3	8,565	16,172	140,824	56,911	58,989	\$5,395	11,699	43
2018Q4	8,943	16,841	139,773	57,016	57,800	3 0,336	11,510	47
2019Q1	9,524	17,606	144,280	59,830	56,311	5 7,328	11,956	44
2019Q2	10,235	18,763	139,531	62,173	62,432	₹1,045	12,537	44
2019Q3	12,202	21,726	148,339	66,588	68,053	₹,046	12,834	29
2019Q4	12,594	22,274	141,373	64,977	66,237	87,304	11,840	39
TOTAL 2001-2019	221,265	541,440	7,428,394	2,239,168	1,963,837	2,466,053	489,375	18,472
Percent of all MBS					-	24 b		
activity	0.00	0.01	0.12	0.04	0.03	by 0.04	0.01	0.00
Percent of all	0.07	0.15	3.01	0.(1	0.52	uest	0.12	0.00
Diagnostic Imaging Percent of all CT	0.06	0.15	2.01	0.61	0.53	<u> </u>	0.13	0.00
r ercent of an C I	0.52	1.28	17.61	5.31	4.66	rotec 5.85	1.16	0.04

 copyright.

Page 35 of 44

BMJ Open

6/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

, septem. Q1: January to March, Q2: April to June, Q3: July to August, Q4: September to December US: Ultrasound, Nuc Med: Nuclear Medicine

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

6/bmjopen-2021

à

right.

			N	lagnitude	of change		21	
Classification of	Geographic	Lev	el*		Slope*			Net change ^b in the rate of
the change ^a	location [#]	Point estimate	95%	6 CL	Point estimate	95%	April 20	CTs performed (Qtr3 2009-Qtr 4 2019)
		r onit estimate	Lower	Upper	r onit estimate	Lower	Uppei	2009 Qu (2019)
	NSW	-233.4	-344.3	-122.4	-8.5	-13.8	-3.2	-16,943.6
1A	SA	-355.0	-449.9	-260.2	-9.8	-15.7	-4.(ष्ट्रे	-22,843.0
	Vic	-207.7	-307.1	-108.3	-10.3	-15.1	-5.4	-17,344.1
1 B	ALL Australia	-237.7	-333.4	-141.9	-2.2	-7.2	2.&	-9,744.3
ID	Tas	-186.7	-308.3	-65.0	-5.2	-13.0	2. 6	-7,652.7
	WA	-402.0	-568.7	-235.3	8.9	0.0	17.7	-9,197.4
1C	ACT	-325.5	-405.2	-245.8	9.5	5.5	13.5	-5,857.7
	Qld	-127.3	-230.9	-23.7	11.8	7.3	13.5 16.4	4,274.8
2 C	NT ^C	17.3	-170.4	205.0	11.5	4.4	18. 5	9,665.8
BS: Medicare Bene	fit Scheme; CT: Com	puted Tomography	scanning				nj.com/ on	

Appendix 3, Table 1: Change in the quarterly rate of MBS funded CT scans per 100,000 eligible population according to geographic location of service provision following publications of the MBS professional services review (2008-9) and associated media attention

^aClassification of change: 1A: Significant reduction in both the level and slope; 1B: Significant reduction in the level bat no change in the slope; 1C: Significant reduction in the level with a significant increase in the slope; 2A: No significant change in the level with a significant reduction in the slope; 2B: No significance change in the level or slope; 2C: No significant change in the level with a significant increase in the slope; 3A: Significant increase in the level with a significant reduction in the slope; 3B: Significant increase in the level with no change in the slope; 3C: Significant increase in both the level and the slope.

[#]ACT: Australian Capital Territory; NSW: New South Wales; NT: Northern Territory; Qld: Queensland; SA: South Australia; Tas: Tasmania; Vic: Victoria; WA: Western Australia.

*Both the level and slope changes are expressed per 100,000 eligible population residing in the location specified at the time of the service provision

95% CL: 95% confidence limits around the point estimate

 p values < 0.05 (95% CL that do not cross zero) are considered as significant changes in level and slope; greyed cells indicate non-significant changes

 6/bmjopen-2021

Values are estimated from the seasonally adjusted single interrupted time series model with autocorrelation correction as required for the data

^bThe net change in the rate was calculated from the area between the counterfactual (i.e. pre-intervention slope with no evel change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of MBS stunded CT scans. Negative values result from the area below the counterfactual being larger than the area above it and indicate a net reduction in the rate of CT scans undertaken over the post-intervention time period; positive values indicate the reverse. In cases where the post-intervention trend was non-linear the net change is limited to the period prior to further disruptions in the trend.

^cPost intervention phase was non-linear therefore change reported in the level and slope are limited to the initial post-indervention period prior to any significant further disruption of the trend. nloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Lev	hange	21 ma* A	Net change ^b in the			
Classification of the change ^a	Type of medical imaging service	Lev Point estimate		6 CL	Sio Point estimate	pe*April 295%	6 CL	rate of CTs performed (Qtr3
		I onit estimate	Lower	Upper	I onit estimate	Lower	Upper	2009-Qtr 4 2019)
	Head CT	-30.5	-43.5	-17.6	-2.4	ම ු.1	-1.6	-3,637.4
1 A	Face CT	-16.6	-23.0	-10.2	-0.9	ਮੀ.4	-0.5	-1,549.7
IA	Abdomen/Pelvis CT	-50.4	-63.4	-37.4	-2.0	æ2.5	-1.4	-3,695.2
	Spine CT	-61.4	-83.6	-39.1	-3.2	Downloaded 14.2	-2.2	-5,230.1
1 B	Pelvis CT [°]	-3.6	-5.8	-1.5	0.1	∃0.1	0.2	-47.3
	Chest CT	-36.4	-46.4	-26.3	2.5	2.0	3.0	273.4
1C	Brain, Chest and Upper Abdo men CT ^C	-0.5	-0.9	-0.1	0.2	2.0 //bmj00.1	0.2	31.1
	Extremities CT	-11.1	-19.0	-3.2	1.1	2 0.5	1.8	366.5
	Soft Tissue Neck CT	-5.6	-7.4	-3.8	0.3	0 .2	0.4	3.9
2A	CT Angiography ^C	-3.0	-6.2	0.3	-1.1	¥ ₹1.7	-0.6	-16.9
2B	MRI ^c	-9.8	-33.0	13.4	-2.0	on4.6	0.7	0.0
2 C	Chest/Abdomen/Pelvis CT	-0.9	-6.2	4.3	0.2	.1	0.4	167.9
20	All diagnostic imaging (excl CT)	393.8	-68.4	856.0	29.2	.03.0	55.4	25,137.6
3 C	Interventional CT	10.7	3.0	18.4	1.6	201.2	2.0	1,739.6
						4 by guest		

BMJ Open Appendix 3, Table 2: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia per 400,000 eligible population according to type of service following publications of the MBS professional services review (2008-9) and associated media attention

^aClassification of change: 1A: Significant reduction in both level and slope; 1B: Significant reduction in level but no change in the slope; 1C: Significant reduction in the level and a significant increase in the slope; 2A: No significant change in level with a significant reduction in slope; 2B: No significance change in the level or slope; 2C: No significant change in level with a significant increase in slope; 3C: Significant inc state in both level and slope.

*Both the level and slope changes are expressed per 100,000 eligible population residing in Australia at the time of these provision opyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 6/bmjopen-2021-0574;

95% CL: 95% confidence limits around the point estimate

p values < 0.05 (95% CL that do not cross zero) are considered as significant changes in level and slope; greyed cells in dicate non-significant changes

^bThe net change in the rate was calculated from the area between the counterfactual (i.e. pre-intervention slope with no revel change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of MBS unded medical imaging services. Negative values result from the area below the counterfactual being larger than the area above it and indicate a net reduction in the rate of CT scans undertaken over the post-intervention time period; positive values indicate the reverse. In cases where the post-intervention trend was non-linear the net change is limited to the period prior to further disruptions in the trend.

^cPost intervention phase was non-linear therefore change reported in the level and slope are limited to the initial post-in ervention period prior to any significant further disruption of the trend. CON http://bonjoper.ver. ed from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

	Item No.	STROBE items	Location in manuscript where items are reported	RECORD items	Location in manuscript where items are reported
Title and abstra	nct		1	>	
	1	 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced 		RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	Abstract - Methods
		summary of what was done and what was found	Pr to	RECORD 1.2: If applicable the geographic region and time tame within which the study took place should be reported in the title or abstract.	Abstract – Methods
			evie	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	N/A
Introduction			1	On	
Background rationale	2	Explain the scientific background and rationale for the investigation being reported		April 20, 2	Throughout Introduction
Objectives	3	State specific objectives, including any prespecified hypotheses		2024 by gu	Last paragraph of Introduction, page 4
Methods			•	est.	
Study Design	4	Present key elements of study design early in the paper		Protected	First sentence of Methods, page 4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection		ted by copyright	Methods – Data source subheading, page 4

BMJ Open Page 4

age 41 of 44	BMJ Open	.1136/b	
1 el 5 5 6 1 7 1 6 1 7 1 7 1 8 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 17 1 18 1 17 1 18 <td< td=""><td> <i>a) Cohort study</i> - Give the igibility criteria, and the purces and methods of selection f participants. Describe the participants. Describe the participants. Describe the provide the provi</td><td>RECORD 6.1: The methods of study population selection (such as codes or algorithms used to identify subjects) should be listed in detail. If this is not possible, an explanation should be provided. RECORD 6.2: Any validation studies of the codes or algorithms used to select the population should be referenced. If validation was conducted for this study and not published elsewhere, detailed methods and results should be provided. RECORD 6.3: If the study involved linkage of databases, consider use of a flow diagram or other graphical display to demonstrate the data linkage process, including the number of individuals with linked data at each stage.</td><td>Methods – Data source subheading; Appendix 1 Codes in Appendix 1. Validation / algorithms N/A N/A</td></td<>	 <i>a) Cohort study</i> - Give the igibility criteria, and the purces and methods of selection f participants. Describe the participants. Describe the participants. Describe the provide the provi	RECORD 6.1: The methods of study population selection (such as codes or algorithms used to identify subjects) should be listed in detail. If this is not possible, an explanation should be provided. RECORD 6.2: Any validation studies of the codes or algorithms used to select the population should be referenced. If validation was conducted for this study and not published elsewhere, detailed methods and results should be provided. RECORD 6.3: If the study involved linkage of databases, consider use of a flow diagram or other graphical display to demonstrate the data linkage process, including the number of individuals with linked data at each stage.	Methods – Data source subheading; Appendix 1 Codes in Appendix 1. Validation / algorithms N/A N/A
ex cc m cc m cr cr cc m cr cc cc m cr cc cc cc cc cc cc cc cc cc cc cc cc	learly define all outcomes, sposures, predictors, potential onfounders, and effect nodifiers. Give diagnostic riteria, if applicable.	RECORD 7.1: A complete list of codes and algorithms used to classify exposures, outcomes, conformders, and effect modifiers should be provided. If these cannot be reported, any explanation should be provided.	Appendix 1. No confounding variables, though counterfactual is described in Methods – Statistical analysis subheading page 5
Data sources/ 8 Fo measurement gi	or each variable of interest, ive sources of data and details f methods of assessment neasurement).	by copyright.	Methods subheadings Data Source and Quarterly rate of

			BMJ Open		1136/bn	Page 42 o
		Describe comparability of assessment methods if there is more than one group			mjopen-202	imaging, pages 4- 5
Bias	9	Describe any efforts to address potential sources of bias			1-057424 on 21 April 2022.	Methods subheading Statistical Analysis, page 5, and Limitations, page 13
Study size	10	Explain how the study size was arrived at			2022. Downloaded f	Population for denominator in rates described in Methods – Quarterly rate of imaging, page 5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	Pr reisi		Downloaded from http://bmjope	Methods – Data source subheading, page 4
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed 	6	2001	n.bmj.com/ on April 20, 2024 by	Methods – Statistical analysis, page 5 N/A N/A
		(d) <i>Cohort study</i> - If applicable, explain how loss to follow-up was addressed			t by guest.	No loss to follow- up
		<i>Case-control study</i> - If applicable, explain how matching of cases and controls was addressed			. Protected by copyright.	N/A
		<i>Cross-sectional study</i> - If applicable, describe analytical			copyright.	N/A

3 of 44		BMJ Open 60
	methods taking account of sampling strategy (e) Describe any sensitivity analyses	N/A
Data access and cleaning methods		RECORD 12.1: Authors should N/A describe the extent to which the investigators had access to the database population used to create the study population.
Linkage		RECORD 12.3: State whether the study included person-level, institutional-level, or other data linkage across two or more databases. The methods of linkage and methods of linkage quality evaluation should be provided.
Results		g g
Participants	 (a) Report the numbers of individuals at each stage of the study (<i>e.g.</i>, numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non- participation at each stage. (c) Consider use of a flow diagram 	RECORD 13.1: Describe in detail the selection of the persons included in the study (<i>i.e.</i> , study populationselection) including filtering based on data quality, data availability and linkage. The selection of included persons can be described in the text and/or by means of the study flow diagram.
Descriptive data	14 (a) Give characteristics of study participants (<i>e.g.</i> , demographic, clinical, social) and information on exposures and potential confounders	Protected N/A, unit of analysis is imaging opyright procedure rathe than persons than persons

Pag	136/b	BMJ Open			
	mjopen-2021-057424		 (b) Indicate the number of participants with missing data for each variable of interest (c) <i>Cohort study</i> - summarise follow-up time (<i>e.g.</i>, average and total amount) 		
Results, first two paragraphs, page 6-7	on 21 April 2022. Downloaded from		Cohort study - Report numbers of outcome events or summary measures over time Case-control study - Report numbers in each exposure category, or summary measures of exposure 	15	Outcome data
Results, unadjusted estimates in paragraph 2, adjusted through remainder	http://bmjopen.bmj.com/ on April 20, 2024 by	r telie	(a) Give unadjusted estimates	16	Main results
	guest. Protected by copyright		Report other analyses done— e.g., analyses of subgroups and interactions, and sensitivity analyses	17	Other analyses
<u> </u>	by			·	Discussion
First paragraph, page 10	соругіс		Summarise key results with reference to study objectives	18	Key results

 Page 44 of 44

Page	45 of 44			BMJ Open	.1136/bn	
1 2 3 4 5 6 7 8 9 10	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias		RECORD 19.1: Discuss the implications of using data that were not created or collected to answer the specific research question(s). Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over time, as they pertain to the study being reported.	Limitations subheading, page 13
11 12 13 14 15 16 17 18	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence		2022. Downloaded from	Throughout discussion
19 20 21	Generalisability	21	Discuss the generalisability (external validity) of the study results	Tr to	http://bmja	Implications subheading, page 13
22 23	Other Information	on	-		pen	
23 24 25 26 27 28	Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	0	n.bmj.com/ on Ap	Page 14
29 30 31 32 33 34	Accessibility of protocol, raw data, and programming code				RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw datagor programming code.	Page 14
35 36 37 38 39 40 41	Committee. The R in press.	Eportin		vational Routinely-collect	prensen HT, von Elm E, Lang An SM, the I cted health Data (RECORD) Statement. <i>I</i>	
42 43 44 45 46 47			For peer review only - ht	ttp://bmjopen.bmj.com/site/		

Impact of regulatory body actions and subsequent media coverage on use of services in a fee-for-service system: A longitudinal cohort study of computed tomography scanning in Australia

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057424.R1
Article Type:	Original research
Date Submitted by the Author:	27-Jan-2022
Complete List of Authors:	Youens, David; Curtin University, School of Population Health Doust, Jenny; The University of Queensland Faculty of Medicine and Biomedical Sciences Ha, Thi Ninh; Curtin University, School of Population health O'Leary, Peter; Curtin University Faculty of Health Sciences, School of Population Health; The University of Western Australia, Medical School, Faculty of Health and Medical Sciences Slavotinek, John; SA Health, SA Medical Imaging; Flinders University, College of Medicine and Public Health Wright, Cameron; Curtin University, School of Population Health; Fiona Stanley Hospital Moorin, Rachael; Curtin University, School of Population Health; The University of Western Australia, School of Population and Global Health
Primary Subject Heading :	Radiology and imaging
Secondary Subject Heading:	Health services research
Keywords:	Computed tomography < RADIOLOGY & IMAGING, Diagnostic radiology < RADIOLOGY & IMAGING, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

1 2		
2 3 4	1	<u>Title page</u>
5 6 7 8	2 3 4	Title: Impact of regulatory body actions and subsequent media coverage on use of services in a fee-for-service system: A longitudinal cohort study of computed tomography scanning in Australia
9 10	5	Author names and affiliations:
11 12 13	6 7	David Youens [*] ^a , Jenny Doust ^b , Thi Ninh Ha ^a , Peter O'Leary ^{a, c, d} , John Slavotinek ^{e, f} , Cameron Wright ^{a, g, h, i} , Rachael Moorin ^{a, j}
14 15 16	8 9	* Corresponding author. <u>David.youens@curtin.edu.au</u> . GPO Box U1987, Perth, Western Australia, 6845
17 18 19	10 11	a Health Economics and Data Analytics, School of Population Health, Curtin University, Perth, Australia
20	12	b Centre for Longitudinal and Life Course Research, Faculty of Medicine, University of Queensland
21 22 23	13 14	c Obstetrics and Gynaecology, Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
24 25	15	d PathWest Laboratory Medicine, QE2 Medical Centre, Nedlands, Western Australia, Australia
26 27	16	e SA Medical Imaging, SA Health
28 29	17	f College of Medicine and Public Health, Flinders University, Adelaide, South Australia
30	18	g Fiona Stanley Fremantle Hospitals Group, Western Australia, Australia
31 32 33	19 20	h Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Western Australia, Australia
34 35	21	i School of Medicine, College of Health & Medicine, University of Tasmania, Tasmania, Australia
36 37 38	22 23	j School of Population and Global Health, The University of Western Australia, Western Australia, Australia
39 40	24	
41 42 43	25	Word count: 4,188 words
44	26	
45 46 47 48 49 50 51 52 53 54	27	
55 56 57 58 59 60		

1 2		
3 4	1	
5 6	2	Abstract
7 8	3	Objective: The Professional Service Review (PSR) is an Australian Government agency
9 10	4	aiming to reduce inappropriate practices funded via Medicare, Australia's public insurer. Our
11	5	objective was to examine changes in Computed Tomography (CT) following the 2008-09
12 13	6	PSR annual report, which noted excessive CT use.
14 15	7	Design: Interrupted Time Series Analysis examined trends in CT use following the 2008-09
16 17	8	PSR report, estimating both change in the immediate rate of CT and the slope of the trend in
18 19	9	usage post-intervention.
20 21 22	10	Setting: Medicare-funded imaging (most out-of-hospital imaging) in Australia.
23 24	11	Participants: Patients receiving Medicare-funded CT and other imaging
25 26	12	Intervention: The 2008-09 PSR report highlighted concerns regarding excessive CT use. Two
27 28	13	providers were financially penalised for CT overuse with these cases detailed in the PSR
29 30	14	report and highlighted in an associated Report to the Professions, distributed to 50,000
31 32	15	providers. Media articles on radiation risks followed.
33 34	16	Outcomes: Quarterly rates of out-of-hospital CT, magnetic resonance imaging (MRI, as a
34 35 36	17	comparator), and all other Medicare-funded diagnostic imaging examinations 2001-2019.
37 38	18	Results: CT scanning increased from 4,663.5 per 100,000 person-years in 2001 to 14,506 in
39	19	2019 (211% increase), with substantial variation by type and anatomical region. The 2008-09
40 41	20	PSR report was followed by an immediate reduction in CT scanning of 237.7 CTs per
42 43	21	100,000 people per quarter (95% CI -333.4 to -141.9) though growth in use soon continued at
44 45	22	the pre-intervention rate. The degree of change in utilisation following the report differed
46 47	23	between states/territories and by scan type, both in terms of the immediate change and the
48	24	slope. For other diagnostic imaging modalities there was an increase in the slope, while for
49 50	25	MRI there was no change in either parameter.
51 52	26	Conclusion: Actions consisting of financial disincentives for service overtesting and provider
53 54	27	/ public education components may limit excessive use of diagnostic imaging in fee-for-
55 56	28	service systems, however effects observed here were only short-lived.
57 58 59 60	29	Keywords: Diagnostic Imaging, Fee-for-Service, Computed Tomography, Medical Overuse,

י ר	
2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\end{array}$	
ב י 2⊏	
25	
26	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	

2

3

4

5

6

7

8

9

10

1 Strengths and limitations of this study

- This study made use of whole of population administrative data, improving generalisability and preventing loss to follow-up or non response
- Multiple imaging modalities were examined, allowing for an assessment of CT (the target of the PSR actions) and potential substitution by other modes
- Only data on publicly-funded services accessed in the out-of-hospital setting were available; trends in in-hospital CT use were not examined
- ιος Joved mu. Is in isolation The PSR actions involved multiple components and it was not possible to examine specific components in isolation from each other

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Introduction

Overtesting is defined as the use of non-recommended screening tests in asymptomatic patients or more testing than necessary to diagnose patients.¹ Overtesting is problematic due to the wasted resources it incurs and the potential for patient harm. Harms of overtesting may fall under six domains:² physical, psychological, treatment burden, social, financial, and dissatisfaction with health care. Overtesting with CT may manifest in many of these areas, for example physical harms resulting from radiation exposure ^{3, 4} psychological harms resulting from incidental findings⁵ plus additional physical harms when these findings lead to further procedures or diagnostic tests.⁶ Overtesting also consumes healthcare expenditure without improving outcomes,¹ imposing an opportunity cost. Overtesting may result from intrapersonal (e.g. fear of litigation, risk aversion, intolerance of uncertainty), interpersonal (e.g. pressure from patients and colleagues) or contextual (e.g. guidelines, financial incentives, time constraints, test availability) factors.⁷ Studies in different countries have shown that over 10% of CT scans reflect overtesting,^{8,9} indicating substantial room for improvement in this area.

CT scanning in Australia is delivered in public and private hospitals, or in the out-of-hospital setting on referral from a general practitioner (GP) or specialist. Most out-of-hospital CT is performed by private clinics¹⁰ which are reimbursed on a fee-for-service (FFS) basis by the Federal Government via Medicare, Australia's public insurer, which covers almost all Australian citizens and permanent residents¹¹ (with prisoners an exception). Similarly, GPs operate in private practices which are reimbursed by Medicare on a FFS basis hence are incentivised to maximise service volumes.¹² Patients do not register with practices and are free to change providers at any time, so multiple providers compete for services in the out-of-hospital environment, potentially driving overtesting where patients expect certain medical interventions (such as diagnostic CT) and providers feel compelled to meet patient expectations so as to prevent the patient from being 'lost' to another GP who provides or refers for the expected service.^{13, 14} Note that decisions regarding out-of-hospital CT scanning are primarily made by referrers (GPs and specialists); radiologists at private clinics generally do not know the setting or patient and are not well positioned to deny scans requested. Although Medicare provides reimbursement for CT scans referred by a GP, MRI scans are generally only reimbursed when referred by a specialist (with some exceptions since 2011).¹⁵ Furthermore, MRI machines must be licensed by the Federal Government in order for scans using that

machine to attract reimbursement, with license availability restricted.¹⁵ This may limit
 substitution of CT scans by MRI. No such restrictions exist for other modalities.

One of the bodies regulating healthcare in Australia is the Professional Services Review (PSR), which has responsibility for preventing inappropriate practice, both to protect patients from risk and to reduce Government funding of inappropriate care.¹⁶ The PSR reviews the activities of practitioners where unusual service volumes or prescribing patterns suggest inappropriate care. Upon investigation by the PSR, a practitioner found to have engaged in inappropriate practice (as determined by a peer panel of practitioners) may be partially or fully disqualified from claiming Medicare reimbursements for some time, may be required to repay reimbursements claimed for delivery of inappropriate care, or may face suspension from practice.¹⁷ In the 2008-09 PSR annual report published in October 2009, two providers were penalised for CT overtesting. In addition, the Director's report within the annual report commented on CT overtesting, noting concerns about use of CT screening for lower back pain.¹⁸ Alongside this annual report was the dissemination by the PSR of a *Report to the* Professions to 50,000 health providers detailing these cases (and others), and the PSR director also spoke at medical conferences and to the media.¹⁸ This was followed by a period of media interest concerning CT risks, including the publication of articles highlighting the risks of CT, targeted at both clinical audiences^{19, 20} and the general public.²¹⁻²⁴ These articles, published through 2010 and 2011 in national^{22, 24} and state-specific media,²³ outlined the PSR director's concerns, cancer risks associated with CT, the role of patient expectations as a factor and alternative imaging modalities. These events are collectively referred to as "the PSR actions" throughout this paper for simplicity. Any change in CT scanning resulting from the PSR actions may reflect either a change in imaging levels overall, or shifts to other modalities.

The aim of this project was to examine the impact of the PSR actions on the rate of CT scanning
in Australia, to determine if regulatory body action influences overtesting in the FFS context.

26 Methods

This was a retrospective whole-of-population longitudinal cohort study using aggregate-level
administrative data. Reporting follows the Reporting of studies Conducted using Observational
Routinely-collected health Data (RECORD) guidelines.²⁵

30 Data source

Page 7 of 47

BMJ Open

Quarterly utilisation data for Australia and for each Australian state/territory from Jan-March 2001 to Oct-Dec 2019 inclusive were sourced from publicly available Medicare Benefits Schedule (MBS) records.²⁶ Data pertaining to CT were extracted using MBS item reports. Data for other Medical Imaging modalities (Ultrasound, Nuclear Medicine and MRI) were extracted using the Group report for Category 5 Diagnostic Imaging Services. Data included only those services performed by a registered provider for services that qualify for Medicare Benefits and for which Services Australia had processed a claim. Data excluded services provided by hospital doctors to public patients in public hospitals and services that qualified for a benefit under the Department of Veterans' Affairs National Treatment Account. These services are not within the purview of the PSR, nor are records of these services available with the MBS data used for the current study. The location services were provided (state/territory) was based on patient address. Calendar quarter was determined by the date of processing by Services Australia, not the date the service was provided to the patient. Note that date of processing is typically within days of the service date. For the denominator the Medicare eligible population for each state/territory was sourced from Medicare enrolment data quarterly standard reports.²⁷

CT scanning data were aggregated into fourteen groups reflecting either anatomical area of the scan (e.g. head, chest etc.) or, due to lack of anatomical location on the MBS coding, grouped according to technique (cone beam CT, pelvimetry, spiral angiography and interventional CT) using the MBS item codes in Appendix 1. Since MBS items are for re-imbursement rather than clinical purposes, several items covered multiple CT examinations (Chest, Abdomen/Pelvis and Brain, Chest/Upper Abdomen). For analysis, all CT scanning records pertaining to these items were counted as a single CT scanning event. In the analysis by type of CT these items were grouped separately (see Appendix 2) and were not included in the analysis of their relevant sub-groups (i.e. brain, chest or abdomen/pelvis).

25 <u>Quarterly rate of imaging</u>

The annual rate of MBS funded imaging per 100,000 eligible persons was calculated for all Australia and by state/territory by dividing the number of services processed in that year by the eligible Medicare population for that year multiplied by 100,000.

29 <u>Statistical analysis</u>

Interrupted time series analysis (ITSA) was used to evaluate the impact of the PSR actions on
 the quarterly rate of medical imaging excluding CT, MRI, all CT scanning and type of CT
 scanning for all Australia and by state/territory.

The analysis was conducted using the '*itsa*' package²⁸ in Stata version 15.²⁹ Since the PSR actions affected the whole of Australia a control group was not available for comparison, therefore the model was a single-group ITSA (i.e. the preintervention trend was projected into the postintervention period to serve as the counterfactual) with a dummy indicator variable set to quarter 4 2009 representing the PSR action. Coefficients were estimated using ordinary least squares regression with Newey-West standard errors to handle autocorrelation and heteroskedasticity.

Each model was first fitted with lag 0 specified (i.e. no autocorrelation), following which autocorrelation in the error distribution was tested for using the program 'actest'³⁰ and the appropriate lag used in the final model. The model was implemented after adjustment for seasonality using Fourier terms (pairs of sine and cosine functions)³¹ using the program *circular*³² Following Imbens and Lemieux³³ the median timepoint (quarter 4 2004) of the preintervention period was used as a robustness test to determine if the underlying assumption of stability in time-varying unmeasured confounders should be challenged. Where the postintervention trend was non-linear, multiple dummy variables were used to adequately capture the shape of the post-intervention trend so that a more accurate estimation of the immediate change in the trend and change in level resulting from the PSR action could be estimated.

34 18 <u>Classification of response to the 2009-10 Professional Services Review</u>

For each model the direction and statistical significance of the estimates of the level (initial change in the quarterly rate of CT use) and slope (gradient of the trend in quarterly CT use) parameters in the post-intervention period (or for the slope the immediate post-intervention segment where a non-linear trend was observed) were used to classify the response to the PSR action. The primary typology was based on the direction and significance of the level parameter as follows: Type 1: significant reduction in the level; Type 2: no significant change in the level and Type 3: significant increase in the level. Each type was further classified into sub-types based on the change in the slope parameter: a) significant reduction; b) no significant change and c) significant increase.

⁵²₅₃ 28 <u>Calculation of net change in CT imaging procedures following the PSR action</u>

The net change in the CT procedures performed was calculated from the area between the counterfactual (i.e. pre-intervention slope with no level change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of imaging procedures. To reduce over-estimation of the net change where

BMJ Open

no significant difference was observed between the pre and post-intervention slopes (i.e. sub type b) the pre-intervention slope parameter was used to define the post-intervention slope rather than the point estimate provided in the ITSA model. Similarly, where no significant difference in level was observed (i.e. type 2), the post-intervention curve was defined with the level change set to zero. When the post-intervention trend was non-linear the net change was only calculated until the beginning of the subsequent change in trend. The net change could be negative (i.e. net reduction in the rate of imaging examinations through the post-intervention period) or positive.

9 <u>Patient and public involvement</u>

10 As this is an analysis of secondary data, there was no patient or public involvement.

11 Results

Over the 19-year study period 369.5 million Medicare funded medical imaging examinations
were undertaken in Australia (6.2% of all Medicare funded activity) of which CT scanning
comprised 11.4% (42.2 million) (Appendix 2). The most frequently performed type of CT scan
was abdomen/pelvis comprising 18.8% [~8 million] of all CT examinations, closely followed
by head CT (17.6% [7.5 million]) and spinal CT (17.6% [7.4 million]).

As shown in Table 1 the rate of CT scanning increased from 4,662.2 per 100,000 Medicare eligible persons in 2001 to 14,505.2 per 100,000 in 2019. The increase of 211% was much larger than the increases observed for Ultrasound (+150%) and Nuclear Medicine (+96%), or for diagnostic imaging overall (75%). While the largest increase in the rate of imaging (by modality) was observed for MRI (increasing by ~400% over the study period), the absolute rate was still 64% lower than the rate of CT scanning in 2019. Table 1 also shows the rate of CT scanning according to type across the study period. In 2001 the top three types of CT scanning, ranked according to the rate performed per 100,000 persons, were head CT (1,529.9), followed by abdomen/pelvis CT (1,018.9) and CT of the facial bones (629.9). However, by 2019 this ranking had changed such that abdomen/pelvis CT had the highest rate per 100,000 (2,565.0); spinal CT was now ranked second (2,237.2) and head CT third (1,884.4). The largest relative change in the rate of CT scanning by type from 2001 to 2019 was observed in interventional CT which increased by 1,089% (from 95.3 per 100,000 in 2001 to 1,133.8 in 2019. Similarly, the rate of spiral angiographic CT scanning also rose by 1,054% (from 85.5 per 100,000 in 2001 to 986.8 in 2019). Other notably very large relative increases (i.e. more than tripling of the 2001 rate) were observed for chest/abdomen/pelvis CT (+451%), CT of the

2
3
4
5
6
-
/
8
9
10
11
12
12
13 14
14
15
16
16 17
18
19
20
21
22
23
24
25
26
27
27
28
29
30
31 32 33 34 35
32
33
34
25
55
36 37
37
38
39
40
41
41
43
44
45
46
47
48
49 50
50
51
52
53
54
55
56
57

1

extremities (+407%) and pelvis CT (+358%). Rate increases of over 100% were observed for
chest CT (+199%), abdomen/pelvis CT (+152%) and soft tissue neck CT (+147%). The only
type of CT scan to reduce in rate was cone beam CT which was first funded under Medicare in
2011 (quarter 3).

BMJ Open

to beet eview only

Page 11 of 47

 BMJ Open

		Rate	per 100,00	0 eligible po	pulation		Rate of CT pe	er 100,000	eligible	opulation
Y	ear	All diagnostic imaging	MRI	US	Nuc Med	All CT	Head	Face	Soft g tissue⊻ Neck≥	Chest
	2001	62,815.20	1,056.10	17,753.80	1,494.80	4,662.20	1,529.90	629.9	119 🛃	51
	2002	64,018.20	1,173.00	18,540.80	1,514.50	5,993.70	1,522.60	630	125	558.
	2003	64,489.60	1,270.30	19,310.30	1,517.10	6,304.30	1,543.40	624.1	130.00	586.
	2004	65,657.10	1,350.00	19,929.00	1,522.90	6,663.80	1,546.30	640	135 🍝	631.
	2005	70,767.70	1,558.40	22,127.80	1,588.50	7,428.70	1,662.20	699.2	148	695.2
	2006	73,155.60	1,776.10	23,344.80	1,617.60	7,941.90	1,697.70	738	156 9	724.8
	2007	76,179.30	1,958.40	24,717.90	1,684.10	8,516.50	1,779.10	764.1	163 🕏	765.:
	2008	78,983.80	2,050.00	26,189.10	1,801.80	9,036.20	1,815.10	808.6	170	803
	2009	82,260.00	2,252.70	28,004.90	1,980.30	9,592.60	1,874.30	840.9	178	834.9
	2010	83,548.70	2,346.90	29,065.00	2,138.80	9,085.60	1,745.40	772.4	171 🕉	793.2
	2011	86,766.50	2,501.10	30,801.00	2,334.20	9,615.50	1,739.70	787.5	181	854.9
	2012	90,623.80	2,640.90	33,148.70	2,544.40	10,674.40	1,812.40	819.7	192	923.
	2013	94,223.40	3,003.00	35,368.00	2,677.70	11,246.60	1,837.80	827.2	203	986.
	2014	98,378.10	3,891.20	36,959.40	2,727.90	11,705.00	1,760.80	843.5	212	1,068.20
	2015	99,830.50	4,107.90	38,121.70	2,717.40	11,698.90	1,756.70	845.6	21	1,140.50
	2016	101,767.50	4,249.20	39,553.80	2,694.50	12,098.00	1,753.30	840.3	232	1,221.70
	2017	106,182.50	4,653.20	41,481.60	2,814.20	13,008.90	1,842.10	880.3	253	1,345.50
	2018	108,783.70	4,927.40	43,087.80	2,850.30	13,744.10	1,875.90	909.7	268	1,422.70
	2019	110,010.00	5,277.30	44,452.10	2,925.40	14,505.20	1,884.40	930.1	294	1,552.00
	ge total to total	75.1	399.6	150.4	95.7	211.1	23.2	47.7	guest. 146 . Frotected	199

6/bmjopen-202 period

Page 1	2 of 47
--------	---------

Year	BMJ Open BMJ Open 2027 Rate of CT per 100,000 eligible population -2027										
1 Cal	Abdomen/ Pelvis	Pelvis	Spine	Chest / Abdomen / Pelvis	Extremity	Spiral Angiography		rventional CT	Cone Bean		
2001	1,018.90	68.5	N/A	227.2	195.3	85.5	n 21	95.3	N/2		
2002	1,124.90	70.3	1,229.20	268.4	213.8	107	Ap	120.6	N/.		
2003	1,223.40	74	1,275.80	311.1	229.3	131.5	April 2022.	151.4	N/.		
2004	1,320.30	75.2	1,328.60	361	249.5	166.2	022.	184.8	N/		
2005	1,465.50	78.5	1,470.10	433.2	292.6	219.4	Do	237.2	N/.		
2006	1,579.60	83	1,575.40	495.4	332.4	249.3	wnl	281.1	N/.		
2007	1,687.70	89.5	1,718.10	549.7	374.5	273.7	oad	321.2	N/.		
2008	1,780.40	99	1,834.80	599.8	417.9	301.2	ed fi	374.6	N/.		
2009	1,898.20	90.9	1,911.50	677.6	470.7	329.5	mo.	451.6	N/.		
2010	1,782.40	85.4	1,693.50	701	455.4	342.2	Downloaded from http://bmjopen.bmj.com/ on April 20,	508.4	N/		
2011	1,842.80	89.4	1,714.50	766.9	496.3	410.8	0://b	563.4	N/		
2012	1,987.80	98.8	1,899.00	855.4	566.8	517.2	mjoj	656	300		
2013	2,081.80	111.7	1,973.20	907.8	610	575	pen	738.7	342		
2014	2,149.10	124.9	2,043.80	968.4	661.8	604.3	bmj	825.4	387		
2015	2,164.60	143.2	2,007.80	1,011.50	681.4	642.9	8	869.5	15		
2016	2,219.80	171.9	2,010.50	1,068.10	718.3	706	n / 0	911.5	166		
2017	2,352.60	204	2,144.50	1,138.00	782.8	798.3	n A	992.7	175		
2018	2,474.90	248.3	2,229.00	1,202.00	873.6	881.6	pril	1,042.70	183		
2019	2,565.00	313.4	2,237.20	1,253.00	989	986.8	20,	1,133.80	191		
Percent change total 2001 to total 2019*	151.7	357.8	30.2	451.3	406.5	1,053.90	2024 by guest.	1,089.20	-4		

BMJ Open

Figure 1 shows the results of the ITSA evaluating changes in the use of CT following the PSR actions, by state/territory; values informing the figure are in Appendix 3. On average after adjusting for seasonality and autocorrelation there was a significant reduction in the level parameter (-237.7 CTs per 100,000 Medicare eligible persons [95% Cl -333.4 to -141.9]) indicating an immediate response. However, no significant change in the slope parameter was observed, indicating no sustained effect i.e. following the initial drop in utilisation, growth in CT scanning continued at its previous rate. Despite there being no sustained change, over the post-intervention period (Qtr 4 2009-Qtr 4 2019) the cumulative rate (i.e. the net change) of CT use reduced by 9,744.3 per 100,000 due to the initial level change, compared with the counterfactual. This can be readily observed graphically in Figure 2. Across Australian states and territories, the response differed (Figure 1). In all states/territories except the Northern Territory there was a significant reduction in the level; however, the response in the slope parameter differed. In New South Wales, South Australia and Victoria there was a significant reduction in the slope parameter (i.e. sustained reduction), in Tasmania there was no significant change in the slope, while in the Australian Capital Territory, Queensland, Western Australia and the Northern Territory after the initial reduction in level there was a significant increase in the slope parameter.

Figure 3 shows the results of the ITSA according to type of CT scanning in Australia (values in Appendix 3). The majority of CT scanning types showed an immediate significant reduction in level, the exceptions being CT angiography and chest/abdomen/pelvis CT which showed no change, and interventional CT, which showed an increase in level. With respect to sustained change (i.e. slope) there was a much larger variation across type with reductions (head, face, abdomen/pelvis, spine CT and CT angiography), increases (chest, extremity, soft tissue neck, brain/chest/upper abdomen and interventional CT) and on one occasion no change (pelvis CT) observed. Figure 3 also shows the results of the analysis for MRI, which showed no response in either parameter and all diagnostic imaging excluding CT, which showed no change in the level but an increase in the slope parameter. Changes for all diagnostic imaging excluding CT are also presented in Figure 4, displaying the change in the slope parameter through the post-intervention period.

31 Discussion

1 CT use reduced significantly following the 2008-09 PSR annual report, associated sanctions 2 and subsequent media coverage of CT risks. Following this short-term decline, CT use 3 continued increasing at the pre-intervention rate, though results differed by scan type/region 4 and state/territory. Findings indicate that major reviews including financial penalties and 5 surrounding coverage have potential to decrease overtesting, but that reductions may not be 6 sustained.

Being an observational study we cannot assume causation, though we highlight some important points in considering this. There was a close temporal relationship between the PSR report and the changes in CT use, which would be expected if changes were causal. The face validity of a causative relationship can be considered via the overtesting framework developed by Lam et al.⁷ Interpersonal drivers of overtesting may have influenced CT use as the mass media coverage outlined radiation risks to patients and included some discussion of the role of patient expectations in driving imaging requests.²²⁻²⁴ On the provider side, fear of reputational damage following a reprimand is also an interpersonal factor. Environmental drivers may have changed if providers grew concerned about financial penalties from the PSR for excessive imaging. Intrapersonally, the risk aversion that drives overtesting in the search for a definitive diagnosis may have been countered by improved knowledge of radiation risks.

The risk of reputational damage or financial penalties was low, with the PSR report discussing two providers sanctioned for inappropriate CT. However, these cases were widely disseminated, via the Report to the Professions describing these cases (and others) to 50,000 providers. Furthermore the PSR director speaks at national medical conferences and to the media about PSR activities,¹⁸ and attends meetings of medical colleges and the Australian Medical Association to further raise awareness of PSR activities.³⁴ Although we are not aware of any surveys or other material describing awareness of the PSR among providers or patients, the dissemination activities outlined above likely led to a reasonable degree of awareness among providers. Moreover, a 2011 review of diagnostic imaging noted that the 2008-09 PSR had likely impacted practice, and that private providers had expressed concerns regarding profitability following this.³⁵ Penalties for inappropriate CT appeared in the 2009-10 and 2011-12 PSR annual reports, however there was no specific discussion of CT in the director's reports nor are we aware of media coverage following these reports.

There is prior evidence in Australia of educational interventions reducing CT. In 2013 the
National Prescribing Service's (NPS) MedicineWise program ran an intervention to reduce

inappropriate CT for acute lower back pain.³⁶ This included a report to GPs comparing their referral rates for lower back CT to their peers, an online decision support tool and a symptom self-management prescription pad. The intervention reduced lower back CT by over 10%, which persisted through 20-months follow-up. This demonstrates some receptiveness to messaging regarding CT overtesting, though mechanisms of action by which the PSR may have influenced practice would differ. Similarly, the introduction of a Choosing Wisely recommendation to reduce imaging for lower-back pain in the United States in 2012 was followed by a 4% reduction in such imaging.³⁷ The Choosing Wisely campaign regarding lower back CT in the USA did not involve any financial disincentives such as the PSR actions in the current study, though did garner substantial media attention³⁷ so some drivers of change may have been comparable. A review of interventions to reduce overuse care suggested that educational interventions targeted at both clinicians and patients are among the most effective type,³⁸ supporting the notion that media coverage on CT overtesting may have influenced practice.

Results here differed between states/territories and CT type. Differences in results across CT type do not appear to be driven by differences in the radiation dosages associated with each type, given that Chest / Abdomen / Pelvis scans showed no change in either parameter following the PSR action but expose patients to some of the highest effective doses.³⁹ Differences observed between states / territories may have resulted from differences in the baseline level of CT use; this is likely as availability of CT scanners, one driver of overtesting, does differ between jurisdictions.¹⁵ These differences may have also resulted from differences in messaging in each state / territory, caused by either different levels of media coverage of this issue (as some coverage appeared in local²³ rather than national newspapers), or addresses by the PSR director to medical conferences in some states but not others. Baseline attitudes towards CT, and hence the capacity for reductions in use, may have also differed between networks of providers, given the concentration of scanners and providers in capital cities¹⁵ which are in many cases geographically isolated.

There were differences observed between CT and other modalities. In contrast with the drop in CT use following the PSR, MRI showed no change following the 2008-09 PSR report, while for all diagnostic imaging excluding CT the slope increased significantly, while the level parameter showed a large but non-significant increase. This may represent substitution for modalities with lower or no associated radiation exposures (e.g. x-ray or ultrasound, respectively). MRI use increased steadily through the study period, reflecting an increase in

availability of MR machines from below- to above-average in comparison to other
Organisation for Economic Co-operation and Development countries.⁴⁰ There was no
additional increase in use of MRI following the PSR actions, however, likely because licensing
of MR devices is constrained by the Federal Government and most MRI investigations are not
reimbursed by Medicare when referred by a GP, limiting potential for substitution.^{41, 42}
Alternatively, there may have been an increase in privately funded MRI which would be
unobservable in the Medicare data used here.

8 <u>Implications</u>

9 Although the PSR actions were followed by a reduction in CT use, growth then continued at
10 the pre-intervention rate. This suggests that although such actions may be influential, any
11 resulting changes in behaviour may not be sustained in the absence of ongoing intervention.
12 As the PSR publishes annual reports there may be opportunities to replicate the actions assessed
13 here, if media interest in the topic could be sustained, which may produce longer-term changes
14 in CT use.

These findings will be of interest to researchers and policymakers wanting to understand mechanisms to prevent overtesting, though contextual factors are important in understanding how effective such actions may be elsewhere. Provider and patient education regarding radiation risks, threats of financial penalties and reputational damage following exposure of inappropriate practice would likely be influential mechanisms across settings. The degree of response to such mechanisms, however, would depend in part on the baseline level of overtesting, driven in part by health system design. In health systems where providers are paid via capitation or salary rather than FFS overtesting may be less common, with FFS systems known to incentivise service volumes.⁴³ Similarly, in some health systems patients register with a practice⁴⁴ and cannot 'doctor-shop' as is the case in Australia. In such systems providers are not financially incentivised to increase patient satisfaction by delivering requested services, as patients cannot simply access the service via another practice. Overtesting may be incentivised where pay-for-performance programs prioritise patient satisfaction, as providers may feel pressured to refer patients for requested imaging services so as to maintain satisfaction ratings.⁴⁵ Relationships between providers referring for imaging and those performing imaging may also influence overtesting, e.g. ownership by physicians of radiology services is associated with increased radiology use.⁴⁶ A shift from a volume-driven to a value-driven system could prevent overtesting by focusing on the delivery of interventions to maximise patient outcomes

BMJ Open

rather than service delivery.⁴⁷ Finally, the PSR actions studied here were facilitated in part by
the existence of the PSR which has oversight of all Medicare-funded services and authority to
impose penalties. Although the PSR objectives of patient safety and cost containment are
priorities globally, mechanisms available to regulators will differ elsewhere.

5 <u>Strengths</u>

6 This study benefited from the use of whole of population administrative data, improving 7 generalisability and preventing loss to follow-up or nonresponse. The data cover a long study 8 period both prior to and following the PSR action, improving effect estimates, and covers 9 multiple imaging modalities. The analysis accounted for potential seasonality in the use of CT 10 and non-linearity in post-intervention trends.

11 <u>Limitations</u>

Data were limited to services funded via Medicare Australia. Comparable data concerning
patients in public hospitals were not available, and we cannot comment on potential trends in
that setting.

There was no comparator available, which may have supported a more rigorous design. The PSR has a national scope, meaning there was no setting without the PSR action against which to compare trends. Different sets of MBS items were assessed as comparators in the hope of providing control for broader health system changes, but no items could be found for which pre-intervention trends resembled CT.

The data used did not allow for services to be assessed at the level of individual provider. As the PSR targets providers with unusually high volumes of services, it is possible that CT reductions following the PSR were concentrated among a small number of practitioners with high CT referral rates, alternatively it is possible that media messaging led to a more uniform change across providers. We could not assess provider-specific effects due to this data limitation.

Rates here used the Medicare-eligible population as the denominator, though changes in the number of people presenting for care may also be a suitable denominator as changes in this may impact CT use. The quarterly counts of GP contacts were included and show no change around the time of the PSR actions which would account for changes in the rates of CT observed. This study examines an action consisting of multiple components, and we are not able to assess,
 for example, mass media coverage in isolation from the publication of financial penalties for
 overtesting.

4 Conclusion

 5 This study suggests that regulatory body action may influence provider behaviour within a FFS 6 context. However, it also suggests that point-in-time interventions have limited longevity. The 7 combination of financial incentives (i.e. penalties for excessive use), patient and provider 8 education, and risks to reputation via potential for publicising of investigation outcomes was 9 followed by reduced CT use. Further research examining how best to couple such actions with 10 more sustained reinforcement over time to influence behaviour would be useful, in addition to 11 studies assessing the proportionate impacts of individual components.

12 Author Contributions

RM conducted analyses for this paper. DY and RM prepared the first draft manuscript. RM,
JD, POL, JS and CW developed the grant application under which this work was funded. All
authors collaborated on writing the paper and approve the submitted version.

Ethics approval

Ethics approval was provided by the Curtin University Human Research Ethics Committee, approval number SMEC-80-10. Participant consent was not sought as data were a publicly available, aggregated collection of data on service volumes. There is no possible way to identify any of the people receiving the services the data relate to, nor to contact them for the purpose of obtaining consent.

- 22 Patient consent for publication
 - 23 None required.
- 24 Funding

Funded by the National Health and Medical Research Council grant 1144573.

26 Data sharing

27 Data used in these analyses can be requested from the authors.

Competing interests

37

1 None declared.

2 **References**

- Greenberg J, Green J. Over-testing: Why More Is Not Better. The American Journal of
 Medicine. 2014; 127(5):362-363. doi:<u>https://doi.org/10.1016/j.amjmed.2013.10.024</u>.
- Korenstein D, Chimonas S, Barrow B, et al. Development of a Conceptual Map of Negative
 Consequences for Patients of Overuse of Medical Tests and Treatments. JAMA Internal Medicine.
 2018; 178(10):1401-1407. doi:<u>https://doi.org/jamainternmed.2018.3573</u>.
- 8 3. EWeyh A, Busby E, Smotherman C, Gautam S, Salman S. Overutilization of Computed
 9 Tomography for Odontogenic Infections. Journal of Oral and Maxillofacial Surgery. 2019; 77(4):67110 672. doi:<u>https://doi.org/10.1016/j.joms.2018.10.025</u>.
- 7 11 4. Odia O, Yorkgitis B, Gurien L, et al. An evidence-based algorithm decreases computed
 8 12 tomography use in hemodynamically stable pediatric blunt abdominal trauma patients. The American
 9 13 Journal of Surgery. 2020; 220(2):482-488. doi:<u>https://doi.org/10.1016/j.amjsurg.2020.01.006</u>.
- Mason M. Looking for Trouble Patient Preference, Misdiagnosis and Overtesting. JAMA 14 5. 21 15 Internal Medicine. 2014; 174(10):1548-1549. doi: https://doi.org/10.1001/jamainternmed.2014.3429. 22 16 6. Smith-Bindman R. Use of Advanced Imaging Tests and the Not-So-Incidental Harms of 23 17 Incidental Findings. JAMA Internal Medicine. 2018; 178(2):227-228. 24 18 doi:10.1001/jamainternmed.2017.7557. 25
- 26 19 7. Lam J, Pickles K, Stanaway F, Bell K. Why clinicians overtest: development of a thematic
 27 20 framework. BMC Health Services Research. 2020; 20(1011) doi:<u>https://doi.org/10.1186/s12913-020-</u>
 28 21 05844-9.
- 29
 22
 30
 31
 23
 34
 35
 36
 37
 38
 38
 39
 30
 30
 31
 32
 32
 33
 34
 34
 35
 36
 36
 36
 37
 38
 38
 39
 30
 31
 31
 32
 32
 32
 33
 34
 34
 35
 36
 36
 37
 38
 38
 38
 39
 30
 30
 31
 32
 32
 34
 36
 36
 37
 38
 36
 37
 38
 36
 37
 38
 38
 38
 38
 38
 38
 38
 38
 39
 30
 30
 31
 32
 32
 34
 36
 36
 37
 36
 37
 38
 38
 38
 39
 30
 30
 31
 31
 32
 32
 34
 36
 36
 37
 36
 37
 38
 38
 39
 39
 30
 30
 31
 31
 32
 32
 34
 36
 36
 37
 36
 36
 37
 36
 36
 37
 36
 37
 36
 37
 36
 37
 36
 37
 36
 37
 36
 36
 36
 36
 36
 37
 36
 36
 37
 36
 37
 36
 36
 37
 36
 36
 37
 36
 36
 37
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 <
- 24 9. Shobeirian F, Ghomi Z, Soleimani R, Mirshahi R, Taheri M. Overuse of brain CT scan for
 25 evaluating mild head trauma in adults. Emergency Radiology. 2020; Epub ahead of print
 26 doi:<u>https://doi.org/10.1007/s10140-020-01846-6</u>.
- Scally P. Radiology Services in Australia: The Director's Highlights HealthManagement; 2009.
 Willis E. Parry Y. The Australian Health Care System. In: Taylor L. editor. Understanding the
 - 28 11. Willis E, Parry Y. The Australian Health Care System. In: Taylor L, editor. Understanding the
 29 Australian Health Care System. 2nd ed. New South Wales: Elsevier; 2012.
- 38 30 12. Vengberg S, Fredriksson M, Burstrom B, Burstrom K, Winblad U. Money matters primary
 31 care providers' perceptions of payment incentives. Journal of Health Organization and Management.
 32 2021; epub ahead of print doi:<u>https://doi.org/10.1108/JHOM-06-2020-0225</u>.
- 33 13. Erny-Albrecht K, Bywood P. Corporatisation of general practice impact and implications
 34 Adelaide: Primary Health Care Research & Information Service; 2016.
- 443514.Fletcher M. The Quality of Australian Health Care: Current Issues and Future Directions4536Canberra: Commonwealth of Australia; 2000.
- 46 37 15. Community Affairs Reference Committee. Availability and accessibility of diagnostic imaging
 47 38 equipment around Australia Canberra: The Senate; 2018.
- 48
 49
 40
 50
 40
 41
 425
 43
 44
 44
 45
 46
 47
 48
 49
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
- 41 Public Services Review. Stages of the PSR Review Process [Internet]. Canberra: Australian 17. 51 42 Government; [cited 25 Feb 2021]. Available from: 52 43 https://www.psr.gov.au/sites/default/files/psr process 3 stages of review.pdf?v=1478464898. 53
- 544418.Professional Services Review. Professional Services Review: Annual Report 2008-09 Canberra:5545Australian Government; 2009.
- 46 19. Butterfield S. How mant are too many for CT scans? [Internet]. ACP Internist; 2011 [cited 20
 47 Jan 2021]. Available from: <u>https://acpinternist.org/archives/2011/02/CT.htm</u>.
- 58 48 20. Rossi J, Lipman G. Computed Tomography and Radiation: Weighing the Risks [Internet]. 59 49 Relias Media; 2010 [cited 20 Jan Available from: Morrisville, NC: 2021]. 60

2		
3	1	https://www.reliasmedia.com/articles/19835-computed-tomography-and-radiation-weighing-the-
4	2	risks.
5	3	21. Wilson P. CT scans and radiation [Internet]. Australian Broadcasting Corporation; 2011 [cited
6	4	20 Jan 2021]. Available from:
7 8	5	https://www.abc.net.au/health/thepulse/stories/2011/08/11/3290494.htm
o 9	6	22. Bourke E. Overuse of CT scans 'putting patients at risk' [Internet]. Australian Broadcasting
10	7	Corporation; 2010 [cited 20 Jan 2021]. Available from: <u>https://www.abc.net.au/news/2010-03-</u>
11	8	15/overuse-of-ct-scans-putting-patients-at-risk/364124.
12	9	23. Metherell M. Doctors ignoring CT scan cancer risk: watchdog [Internet]. Sydney: The Sydney
13	10	
14		o i i
15	11	https://www.smh.com.au/national/doctors-ignoring-ct-scan-cancer-risk-watchdog-20100314-
16	12	<u>q634.html</u> .
17	13	24. Parker D. To CT or not to CT: a guide. The Australian. 2010.
18	14	25. Benchimol E, Smeeth L, Guttman A, et al. The REporting of studies Conducted using
19	15	Observational Routinely-collected health Data (RECORD) statement. PLoS Medicine. 2015;
20	16	12(10):e1001885. doi: <u>https://doi.org/10.1371/journal.pmed.1001885</u> .
21 22	17	26. Services Australia. Medicare Statistics [Internet]. Canberra: Australian Government; 2020
22	18	[cited 26 Aug 2020]. Available from: <u>https://www.servicesaustralia.gov.au/organisations/about-</u>
23	19	us/statistical-information-and-data/medicare-statistics.
25	20	27. Services Australia. Monthly and Quarterly Standard Reports [Internet]. Canberra: Australian
26	21	Government; 2020 [cited 26 Aug 2020]. Available from:
27	22	http://medicarestatistics.humanservices.gov.au/statistics/mth_qtr_std_report.jsp.
28	23	28. Linden A. Conducting Interrupted Time-series Analysis for Single- and Multiple-group
29	24	Comparisons. The Stata Journal. 2015; 15(2):480-500.
30	25	doi:https://doi.org/10.1177/1536867X1501500208.
31	26	29. StataCorp. Stata Statistical Software: release 15. College Station, Tx: StataCorp LLC; 2017.
32	27	30. Baum C, Schaffer M. Stata module to perform Cumby-Huizinga general test for
33	28	autocorrelation in time series. Statistical Software Components. 2013; (S457668).
34 25	29	31. Cox N. Speaking Stata: In Praise of Trigonometric Predictors. The Stata Journal. 2006; 6(4):561-
35 36	30	579. doi:https://doi.org/10.1177/1536867X0600600408.
37	31	32. Cox N. CIRCULAR: Stata module for circular statistics. Statistical Software Components. 2004;
38	32	(\$436601).
39	33	33. Imbens G, Lemieus T. Regression discontinuity designs: a guide to practice. Journal of
40	34	Econometrics. 2008; 142(2):615-635. doi:https://doi.org/10.1016/j.jeconom.2007.05.001.
41	35	34. Professional Services Review. Statement of Intent [Internet]. 2021 [cited 10 Jan 2022].
42	36	Available from: https://www.psr.gov.au/sites/default/files/Professional%20Services%20Review%20-
43	37	%20Statement%20of%20Intent.pdf.
44	38	35. Medical Benefits Reviews Task Group. Review of Funding for Diagnostic Imaging Services: Final
45	39	Report Canberra: Department of Health and Ageing; 2011.
46	40	36. Morgan T, Wu J, Ovchinikova L, et al. A national intervention to reduce imaging for low back
47 48	40 41	
40 49		pain by general practitioners: a retrospective economic program evaluation using Medicare Benefits
50	42	Schedule data. BMC Health Services Research. 2019; 19(983) doi: <u>https://doi.org/10.1186/s12913-</u>
51	43	<u>019-4773-y</u> .
52	44	37. Hong A, Ross-Degnan D, Zhang F, Wharam J. Small Decline In Low-Value Back Imaging
53	45	Associated With The 'Choosing Wisely' Campaign, 2012-14. Health Affairs. 2017; 36(4):671-679.
54	46	doi:10.1377/hlthaff.2016.1263.
55	47	38. Colla C, Mainor A, Hargreaves C, Sequist T, Morden N. Interventions Aimed at Reducing Use
56	48	of Low-Value Health Services: A Systematic Review. Medical Care Research and Review. 2017;
57	49	74(5):507-550. doi: <u>https://doi.org/10.1177/1077558716656970</u> .
58	50	39. Albert J. Radiation Risk From CT: Implications for Cancer Screening. Medical Physics and
59 60	51	Informatics. 2013; 201:W81-W87. doi:10.2214/AJR.12.9226.
60		

2		
3	1	40. Australian National Audit Office. Diagnostic Imaging Reforms [Internet]. Canberra: Australian
4	2	Government; 2014 [cited 25 May 2021]. Available from:
5 6	3	https://www.anao.gov.au/work/performance-audit/diagnostic-imaging-reforms.
7	4	41. Diagnostic Imaging Review Team. Review of Funding for Diagnostic Imaging Service: Final
8	5	Report Department of Health and Ageing; 2012.
9	6	42. Department of Health. Requesting of MRI (magnetic resonance imaging) services [Internet].
10	7	Canberra: Australian Government; 2020 [cited 25 Feb 2020]. Available from:
11 12	8	https://www1.health.gov.au/internet/main/publishing.nsf/Content/gp-requested-mri-services.
12	9	43. Blomqvist A, Busby C. How to Pay Family Doctors: Why "Pay per Patient" is Better Than Fee
14	10	for Service Toronto: C.D. Howe Institute; 2012.
15	11 12	44. Lewis D, Longley P. Patterns of Patient Registration with Primary Health Care in the UK National Health Service. Annals of the Association of American Geographers. 2012; 102(5):1135-1145.
16	12	45. Mehta S. Patient Satisfaction Reporting and Its Implications for Patient Care. AMA Journal of
17 18	14	Ethics. 2015; 17(7):616-621. doi:10.1001/journalofethics.2015.17.7.ecas3-1507.
10	15	46. Mitchell J, Sunshine J. Consequences of Physicians' Ownership of Health Care Facilities - Joint
20	16	Ventures in Radiation Therapy. The New England Journal of Medicine. 1992; 327(21):1497 - 1501.
21	17	doi:https://doi.org/10.1056/NEJM199211193272106.
22	18	47. Brady A, Bello J, Derchi L, et al. Radiology in the Era of Value-based Healthcare: A MultiSociety
23 24	19	Expert Statement from the ACR, CAR, ESR, IS3R, RANZCR, and RSNA. Radiology. 2021; 298(3):486-491.
24 25	20	
26	20	
27	24	Figure legende
28	21	Figure legends
29 30	22	Figure 1: Dort A indicates shange in the questerly rate of MDS funded CT scene per 100,000
31	22	Figure 1: Part A indicates change in the quarterly rate of MBS funded CT scans per 100,000
32 33	23	eligible population according to geographic location of service provision following publication
34	24	of the MBS professional services review (2008-9) and associated media attention. Superscript
35 36	25	L and S indicate significant changes in the level and slope parameters, respectively. Part B
37	26	indicates net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by State.
38 39	27	
40	27	
41 42	28	Figure 2: Impact of the 2008-9 professional services review on the rate of Medicare funded CT
42 43		
44	29	scanning (per 100,000 Medicare eligible population) in Australia. Part A indicates quarterly
45 46	30	rate of all MBS funded CT scans showing counterfactual and post-intervention fitted line
47	31	(seasonality removed for simplification). Part B is a representation of the seasonally adjusted
48 49	32	area under and between the curves used to estimate net effect of the response to the MBS
50	33	professional services review 2008-9.
51		I the second
52 53	34	
55		
55	35	Figure 3: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia
56 57	36	per 100,000 eligible population according to type of service following publications of the MBS
57 58	50	
59	37	professional services review (2008-9) and associated media attention. Superscript L and S
60		

indicate significant changes in the level and slope parameters, respectively. Part B displays net
 change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by type / anatomical area.

Figure 4: Impact of the 2008-9 professional services review on the rate of Medicare funded
diagnostic imaging excluding CT) (per 100,000 Medicare eligible population) in Australia.
Figure indicates quarterly rate of all MBS imaging claims (excluding CT) showing
counterfactual and post-intervention fitted line (seasonality removed for simplification).

to beet teries only

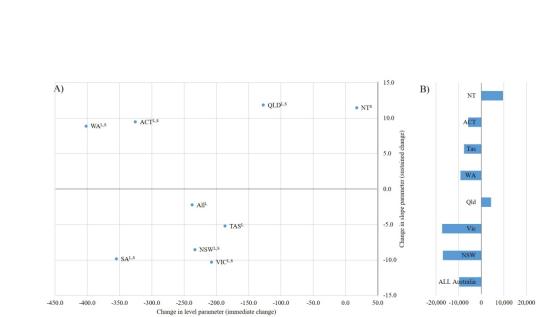
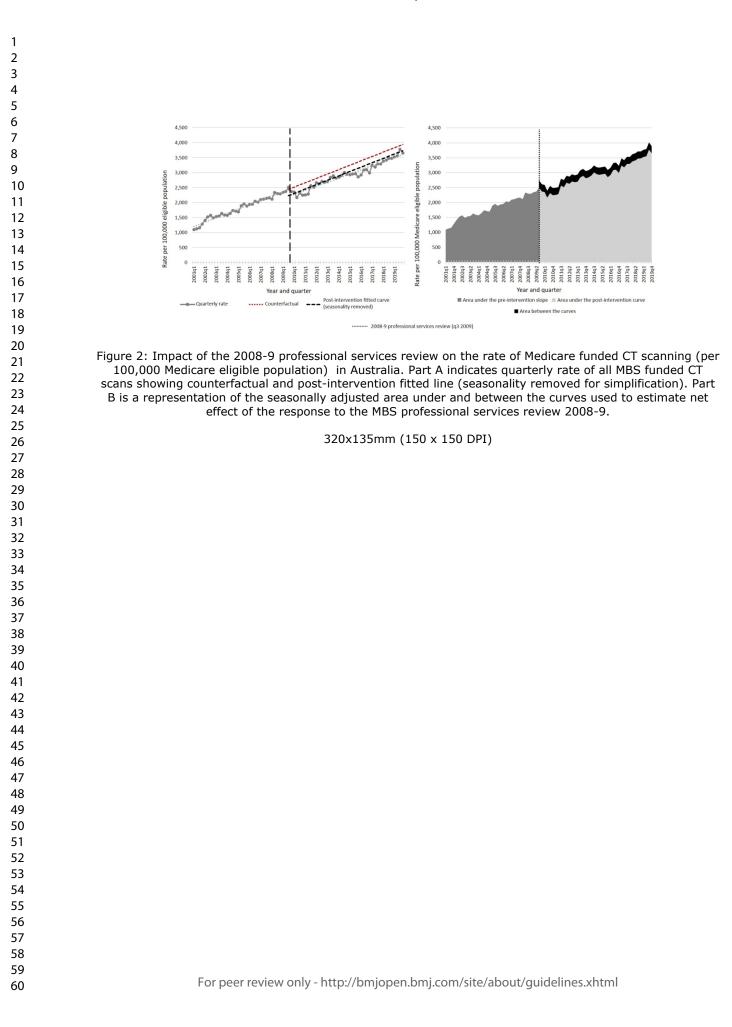


Figure 1. Part A indicates change in the quarterly rate of MBS funded CT scans per 100,000 eligible population according to geographic location of service provision following publication of the MBS professional services review (2008-9) and associated media attention. Superscript L and S indicate significant changes in the level and slope parameters, respectively. Part B indicates net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by State.


nediate change)

332x163mm (150 x 150 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Page 24 of 47

BMJ Open

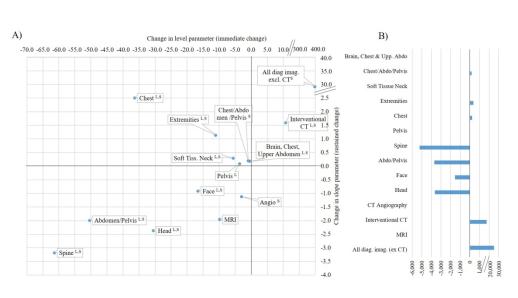


Figure 3: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia per 100,000 eligible population according to type of service following publications of the MBS professional services review (2008-9) and associated media attention. Superscript L and S indicate significant changes in the level and slope parameters, respectively. Part B displays net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by type / anatomical area.

332x170mm (150 x 150 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Page 26 of 47

BMJ Open: first published as 10.1136/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

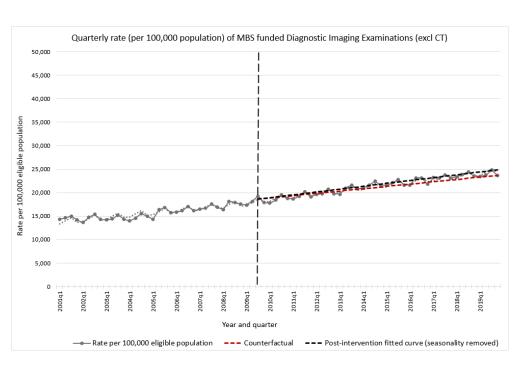


Figure 4: Impact of the 2008-9 professional services review on the rate of Medicare funded diagnostic imaging excluding CT) (per 100,000 Medicare eligible population) in Australia. Figure indicates quarterly rate of all MBS imaging claims (excluding CT) showing counterfactual and post-intervention fitted line (seasonality removed for simplification).

655x428mm (38 x 38 DPI)

1 2 3 4 5 6 7 8 9	
10 11 12 13 14 15 16 17	
 18 19 20 21 22 23 24 25 26 27 28 29 	
30 31 32 33 34 35	
36 37 38 39 40 41 42 43	
44 45 46	

Appendix 1: Grouping of CT N	BMJ Open MBS items according to anatomical location or techn	6/bmjopen-2021-057424
Group	MBS item number	A24 9 22 24 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
П J	5(001 / 5(041	Brain (Non-contrast)
Head	56001 / 56041	
	56007 / 56047	Brain (Contrast)
	56010 / 56050	Pituitary fossa (+/- Contrast)
C · 11	56016 / 56056	Petrous bones (+/- Contrast)
Facial bones	56028 /56036 /56068	Facial bones / sinuses or both (Contrast)
	56022 / 56062	Facial bones / sinuses or Both (Non-contrast)
	56076 / 56030 / 56070	Facial bones / sinuses or $both + Brain (+/- Contrast)$
	56013 /56053	Orbits (+/- Contrast)
Neck (soft tissue)	56101 /56141	Soft tissue neck (Non-congrast)
	56107 / 56147	Soft tissue neck (Pre and post contrast)
Chest	56301 / 56341	Chest +/- upper abdo (Non-contrast)
	56307 / 56347	Chest +/- upper abdo (Pre+ post contrast)
Abdomen (+/-Pelvis)	56401 / 56441	Upper Abdo -diaphragm B iliac crest (Non-contrast)
	56407 / 56447	Upper Abdo -diaphragm 投 iliac crest (Contrast)
	56501 / 56541	Abdo/Pelvis (Non-contrast)
	56507 / 56547	Abdo/Pelvis (Contrast)
	56549 / 56551 / 56552 / 56553/ 56554 / 56555	Virtual Colonoscopy
Pelvis only	56409 / 56449	Pelvis (Non-contrast) Pelvis (Contrast)
	56412 /56452	Pelvis (Contrast)
Chest/Abdo/Pelvis	56801 /56841	Chest/Abdo/Pelvis +/- neck (Non-contrast)
	56807 / 56847	Chest/Abdo/Pelvis +/- neek (Pre + post contrast)
Brain, Chest and Upper		ctee
Abdomen	57001 /57041	Head + Chest+/-upper abgomen without contrast
	57007 / 57047	Head + Chest +/- upper abdomen with contrast

3 4

	BMJ Open	6/bmjopen-2021
		op en
		2021-0
Spine	56220 / 56227	Cervical spine (Non-cont
•	56224 / 56230	Cervical spine (Contrast Non Contrast)
	56221 / 56228	Thoracic spine (Non-contrast)
	56225 / 56231	Thoracic spine (Contrast 🛓 Non Contrast)
	56223 / 56229	Lumbar spine (Non-contrast)
	56226 / 56232	Lumbar spine (Contrast + Non Contrast)
	56219 / 56259	Spine - 1 or more regions \mathcal{G} With Intrathecal Contrast)
	56233 / 56235	Spine (2 exams of any (C Tor L) kind Non-contrast)
		Spine (2 exams of any kind (C, T or L) with Contrast + Without
	56234 / 56236	Contrast)
	56237 / 56239	Spine (3 regions C,T,L Ngn-contrast)
	56238 /56240	Spine (3 regions C,T,L With Contrast + Non Contrast)
Extremities	56619 / 56620/ 56622/ 56623/ 56625	CT of extremities one or more regions (Non-contrast)
	56626 /56627/ 56628/ 56629/ 56630/ 56659 / 56665	CT of extremities one or hore regions (Non-contrast)
Spiral Angiography*	57350-57356	Spiral angiography (Pre post contrast)
	57360/57361	CT of the coronary arteries
Cone Beam CT	56025/56026/57362/57363	Cone Beam CT of teeth and supporting bone structures
Pelvimetry	57201 / 57247	Pelvimetry
	572.41 / 572.45	CT in conjunction with a gurgical procedure using intervention
Interventional CT	57341 / 57345	techniques <u>A</u>
		20,
MBS: Medicare Benefit Scher	ne	20
Spiral angiagraphic CT item	codes relate specify several broad clinical settings relating to	their use
Spiral angiographic C1 item	codes relate specify several broad childear settings relating to	
		ues
		r P
		ote
		cted
		1 by
		their use. 2024 by guest. Protected by copyright.
		Ŷſ
		<u> </u>

			ł	3MJ Open		6/bmjopen-2021		
Appendi	x 2: Size of the Medicare elig					d by type, per c	luarter	
Year and quarter	Medicare eligible population	ALL MBS	r of imaging proce General Practitioner visits	All Diagnostic Imaging	Tter, by type (e Diagnostic Imaging excluding CT	xcl CT) 9 21 ALL MRI <u>Fil</u> 20 22	All US	All Nuc Med
2001Q1	19,974,075	53,913,292	22,535,443	3,080,396	2,862,100	47,080	875,892	72,55
2001Q2		54,612,217	23,208,144	3,163,585	2,937,355	52,84 ₹	890,270	74,65
2001Q3	20,139,806	57,160,177	24,425,178	3,250,431	3,017,862	56,58	901,629	78,69
2001Q4	20,215,957	53,802,181	22,153,529	3,129,899	2,869,771	55,782	900,319	74,53
2002Q1	20,296,405	52,698,145	21,476,055	3,050,855	2,764,530	53,73 Ē	877,966	71,29
2002Q2	20,374,998	57,043,850	23,767,570	3,321,404	3,010,541	60,26 ⁷	949,968	78,44
2002Q3	20,451,273	58,573,985	24,368,388	3,462,073	3,140,545	64,44	995,302	82,3
2002Q4	20,525,042	54,100,126	21,792,309	3,234,123	2,929,308	61,04	961,803	77,0
2003Q1	20,574,715	53,702,789	21,315,160	3,235,168	2,919,654	60,33	974,715	75,12
2003Q2	20,640,449	55,029,284	22,356,470	3,296,996	2,977,779	65,29	982,227	77,8
2003Q3	20,724,986	58,373,440	24,129,408	3,492,688	3,153,252	69,92 6	1,028,635	81,5
2003Q4	20,805,416	55,102,234	21,673,949	3,316,288	2,986,225	67,26	1,009,242	79,2
2004Q1	20,892,413	55,237,593	21,666,698	3,251,558	2,923,221	65,887	993,179	75,2
2004Q2	20,971,967	57,668,884	22,696,197	3,397,421	3,053,659	70,744	1,025,832	79,5
2004Q3	21,040,363	60,479,828	24,247,888	3,630,147	3,264,529	73,1648	1,088,136	84,7
2004Q4	21,020,468	58,681,495	22,853,173	3,497,953	3,137,363	73,483	1,074,598	79,9
2005Q1	20,395,854	55,265,155	21,262,334	3,272,212	2,926,937	68,65€	1,018,953	73,8
2005Q2	20,482,464	61,889,434	24,051,201	3,736,003	3,347,527	81,136	1,157,994	84,6
2005Q3	20,535,311	63,925,592	25,233,583	3,864,039	3,463,294	86,18 6	1,201,410	86,0
2005Q4	20,570,360	59,950,302	22,770,828	3,634,302	3,245,994	83,50හ	1,157,675	81,1
2006Q1	20,651,536	61,070,666	22,888,207	3,673,330	3,273,759	86,36 6	1,166,540	80,5
2006Q2	20,738,739	62,420,316	23,652,256	3,749,991	3,345,574	90,24 &	1,190,679	82,2
2006Q3	20,834,970	65,739,068	25,539,356	3,981,768	3,556,490	98,37	1,254,468	88,6
2006Q4	20,918,630	62,183,136	23,051,071	3,802,035	3,380,338	94,24 & yright.	1,241,269	84,8

BMJ	Open
-----	------

Page 30 of 47

				BN	ЛJ Open		6/bmjopen-2021		
1							pen-20		
2							21-0		
3	2007Q1	21,023,544	64,047,623	23,223,619	3,909,736	3,469,566	97,875	1,276,478	85,374
4 5	2007Q2	21,075,599	65,922,562	24,130,232	3,961,046	3,515,224	103,01	1,285,806	87,332
6	2007Q3	21,156,498	70,587,243	26,691,515	4,164,895	3,711,184	108,79%	1,331,460	90,249
7	2007Q4	21,213,097	68,075,447	24,303,827	4,052,075	3,593,258	103,894	1,326,226	92,717
8	2008Q1	21,300,775	66,111,755	23,520,354	3,932,797	3,481,827	97,28	1,284,795	86,786
9 10	2008Q2	21,382,498	73,943,872	26,298,507	4,374,974	3,876,485	113,76	1,446,356	100,177
11	2008Q3	21,474,007	73,411,004	26,802,312	4,347,958	3,854,001	114,660	1,437,929	100,593
12	2008Q4	21,542,093	72,757,668	25,038,849	4,268,041	3,775,261	113,59 (§	1,442,680	98,530
13	2009Q1	21,611,182	72,990,845	24,512,108	4,265,199	3,758,331	109,50	1,442,832	101,325
14 15	2009Q2	21,712,379	74,849,371	26,821,617	4,450,168	3,935,534	121,502	1,515,593	106,838
16	2009Q3	21,799,725	79,059,828	27,838,442	4,735,321	4,188,550	134,37£	1,592,771	114,116
17	2009Q4	21,864,719	77,132,787	26,394,306	4,439,849	3,921,910	124,63 ³	1,539,685	108,432
18	2010Q1	21,995,898	73,945,829	25,424,324	4,423,973	3,905,995	119,41	1,535,498	109,394
19 20	2010Q2	22,116,286	78,262,472	26,549,056	4,554,003	4,075,502	132,07	1,583,459	115,291
21	2010Q3	22,225,493	80,332,900	28,142,355	4,845,036	4,329,256	134,63%	1,668,768	125,165
22	2010Q4	22,322,182	79,520,986	26,438,106	4,697,780	4,196,325	134,15🕹	1,655,431	124,342
23	2011Q1	22,430,782	78,696,720	26,010,154	4,686,355	4,180,032	129,05	1,642,691	121,167
24 25	2011Q2	22,536,170	80,591,361	27,413,666	4,846,047	4,332,553	140,184	1,695,068	127,800
26	2011Q3	22,646,567	86,000,221	29,054,464	5,159,265	4,578,841	153,10	1,832,694	139,046
27	2011Q4	22,752,945	80,099,988	26,848,618	4,912,101	4,339,480	142,800	1,789,169	139,453
28 29	2012Q1	22,869,958	83,090,073	27,328,488	5,107,472	4,499,155	143,8748	1,862,446	143,865
30	2012Q2	22,975,129	83,419,449	28,489,105	5,146,458	4,542,312	151,1048	1,875,437	145,229
31	2012Q3	23,083,927	87,331,463	29,872,637	5,406,664	4,781,580	157,745	1,955,461	150,517
32	2012Q4	23,186,999	88,148,306	27,973,187	5,209,940	4,589,199	155,520	1,940,993	146,353
33	2013Q1	23,301,712	81,070,495	27,558,438	5,204,538	4,575,455	151,607	1,941,553	147,521
34 35	2013Q2	23,415,863	87,420,296	30,105,954	5,572,789	4,907,148	172,93 b	2,092,082	158,845
36	2013Q3	23,526,793	91,269,394	31,279,774	5,764,539	5,084,337	181,94 6	2,156,469	162,931
37	2013Q4	23,516,579	87,442,632	28,772,106	5,546,788	4,885,276	197,65. <u>\$</u>	2,101,276	158,443
38	2014Q1	23,726,126	87,365,616	29,058,733	5,647,377	4,972,344	214,24	2,126,548	157,860
39 40	2014Q2	23,816,689	92,173,285	30,602,781	5,845,674	5,153,281	230,86g	2,186,482	162,773
41							yright.		
42							it.		

31 of 47					BMJ Open		6/bmjopen-2021		
							pen-2		
							021-		
	2014Q3	23,923,051	94,962,398	32,149,396	6,089,946	5,370,449	246,153	2,265,530	165,754
	2014Q4	23,997,461	92,135,078	29,577,466	5,897,348	5,190,581	237,56	2,242,799	164,672
	2015Q1	24,105,563	90,560,806	29,192,987	5,901,602	5,195,336	233,585	2,242,250	162,921
	2015Q2	24,179,690	95,743,360	32,217,965	6,060,642	5,346,902	253,84₽	2,293,992	168,956
	2015Q3	24,278,495	98,437,227	33,192,194	6,261,986	5,542,495	262,668	2,373,981	170,088
	2015Q4	24,366,559	95,229,471	30,215,723	5,967,569	5,272,222	245,41	2,328,097	156,482
	2016Q1	24,453,229	92,813,393	29,917,061	5,997,592	5,283,310	240,294	2,338,670	156,130
	2016Q2	24,553,190	102,637,644	33,843,841	6,440,165	5,682,508	272,750€	2,512,656	170,212
	2016Q3	24,636,038	100,005,965	33,410,503	6,462,300	5,698,777	275,30 ²	2,487,482	171,942
	2016Q4	24,711,652	95,516,816	30,979,374	6,123,586	5,384,207	256,55%	2,387,030	164,289
	2017Q1	24,821,154	100,586,254	31,735,405	6,557,448	5,752,386	272,3175	2,567,688	175,505
	2017Q2	24,924,168	103,376,540	33,864,514	6,547,871	5,755,139	294,158	2,565,789	174,498
	2017Q3	25,007,901	104,773,012	35,065,253	6,770,682	5,947,070	301,470	2,608,763	179,662
	2017Q4	25,078,863	104,675,460	32,269,893	6,625,438	5,799,977	293,52	2,610,899	172,694
	2018Q1	25,182,661	101,038,400	32,092,680	6,725,986	5,873,983	290,84	2,653,510	180,775
	2018Q2	25,267,605	109,365,729	35,737,557	6,882,768	6,020,760	315,569	2,722,980	177,872
	2018Q3	25,353,168	106,249,390	34,517,832	7,057,888	6,177,536	328,21	2,764,644	182,907
	2018Q4	25,436,468	106,876,163	33,190,019	6,867,102	5,982,682	312,602	2,764,861	179,849
	2019Q1	25,520,089	105,168,957	32,968,083	6,881,495	5,981,931	302,827	2,801,529	180,979
	2019Q2	25,595,189	111,352,700	37,391,585	6,978,029	6,068,535	▲ 358,07 🖉	2,808,803	184,667
	2019Q3	25,675,916	113,030,934	36,443,353	7,335,021	6,365,854	354,05	2,933,923	193,589
	2019Q4	25,754,980	108,011,995	33,510,224	7,009,009	6,068,363	338,1038	2,852,030	190,786
	TOTAL						24 b		
	2001- 2019		5,986,242,372	2,089,094,937	369,444,996	327,257,812	12,158,315 6	131,610,743	9,438,609
	Percent of all N	IBS activity		34.9	6.17	5.47	$0.2^{"}_{ m D}$	2.2	0.16
	Percent of all D	agnostic Imaging				88.58	3.2%	35.62	2.55
	Percent of all C	T scanning					ected		
							by c		
							by copyright		
							th.		
			For peer revi	ew only - http://bmjo	open.bmj.com/sit	.e/about/guideliı	nes.xhtml		
					-	0			

				BMJ (Dpen		∿bmjopen-∵
Table continued							6/bmjopen-2021-057424 on
Year and quarter	ALL CT	N Head CT	umber of C Facial bones CT	T examinati Neck (soft tissue) CT	ions per qu Chest CT	arter, by type Chest/Abdo/Pelvis CT	Abdame petvis)
2001Q1	218,296	75,243	29,194	5,846	25,038	10,890	2. D
2001Q2	226,230	78,787	31,520	5,939	25,496	10,934	owr
2001Q3	232,569	77,870	34,130	6,000	26,799	11,658	Downloaded
2001Q4	260,128	75,556	31,757	6,216	26,987	12,194	ded
2002Q1	286,325	72,827	28,723	5,943	26,344	12,515	from http://bmjopen.bmj.com/ on April 20,
2002Q2	310,863	80,824	32,855	6,477	28,191	13,491	n ht
2002Q3	321,528	82,648	35,417	6,737	30,494	14,510	tp://
2002Q4	304,815	74,501	31,611	6,479	29,060	14,286	bmj
2003Q1	315,514	78,396	30,083	6,508	28,524	15,133	ope
2003Q2	319,217	79,059	32,590	6,549	28,936	15,241	n.br
2003Q3	339,436	83,562	34,796	6,976	31,994	16,793	nj.c
2003Q4	330,063	78,264	31,652	6,996	31,908	17,194)mo
2004Q1	328,337	76,190	29,486	7,002	30,747	17,864	on (
2004Q2	343,762	80,273	33,374	6,994	31,536	18,311	Apri
2004Q3	365,618	85,257	36,384	7,272	35,081	19,594	120
2004Q4	360,590	82,754	35,066	7,179	35,066	19,973	
2005Q1	345,275	76,760	31,309	6,939	32,483	20,226	24 b
2005Q2	388,476	88,306	37,094	7,862	35,613	22,142	, D Vc
2005Q3	400,745	91,158	38,797	7,793	37,585	23,170	ues
2005Q4	388,308	84,502	36,127	7,904	36,823	23,263	2024 by guest. Protected
2006Q1	399,571	86,081	35,311	8,134	36,452	24,976	rote
2006Q2	404,417	86,807	38,138	7,731	36,276	25,075	cted
2006Q3	425,278	92,095	41,594	8,055	39,001	26,017	by
2006Q4	421,697	87,923	38,381	8,577	38,946	26,911	by copyright.

Page 33 of 47					BMJ O	pen	6/bmjopen-2021-057424 00 28,744 27,920 28,7424 00 29,226 29,226 29 30,196 April 2022 32,623 99	
1 2							-2021-	
3	2007Q1	440,170	92,093	37,067	8,779	39,326	28,744 7 8	8,975
4 5	2007Q2	445,822	94,631	40,052	8,245	38,678	27,920	9,103
6	2007Q3	453,711	93,891	42,974	8,724	41,238	29,226 ⁹ 8	8,578
7	2007Q4	458,817	95,095	41,294	8,837	42,434	30,196 ¹³ _≥ 8	9,730
8	2008Q1	450,970	93,195	38,146	8,545	39,569	29,798 🚊 9	0,417
9 10	2008Q2	498,489	101,530	45,024	9,678	43,118	32,623	8,675
11	2008Q3	493,957	97,072	47,054	9,072	44,512		6,012
12	2008Q4	492,780	97,102	43,048	9,254	44,864	õ	6,361
13	2009Q1	506,868	98,536	41,934	9,479	43,779	35,884 🗟 102	2,656
14 15	2009Q2	514,634	101,302	45,716	9,636	43,969	36,118	2,856
16	2009Q3	546,771	107,069	50,834	10,075	48,233		6,818
17	2009Q4	517,939	100,708	44,414	9,594	45,591		0,455
18	2010Q1	517,978	100,254	41,898	9,628	43,424	39,023	3,770
19 20	2010Q2	478,501	93,538	40,507	8,960	40,803	37,635 9	5,304
21	2010Q3	515,780	98,321	46,458	9,666	45,428	39,354 😽 9	9,595
22	2010Q4	501,455	94,719	42,363	9,825	46,193	39,372 5 9	6,336
23	2011Q1	506,323	95,129	39,688	9,981	45,948	41,563	0,132
24 25	2011Q2	513,494	96,725	43,280	9,797	45,808		0,369
26	2011Q3	580,424	102,851	50,301	10,775	50,818	45,041 9 10	7,854
27	2011Q4	572,621	98,347	44,683	10,532	50,612	44,780 <u>P</u> 10	8,030
28	2012Q1	608,317	105,042	45,525	11,083	51,598		6,058
29 30	2012Q2	604,146	104,413	46,932	11,013	51,212	48,006	3,052
31	2012Q3	625,084	106,380	50,286	11,121	54,646	N	3,827
32	2012Q4	620,741	101,520	46,030	11,208	55,158	50,048 🖉 114	4,814
33	2013Q1	629,083	105,860	44,546	11,554	53,664	51,746 g 11	8,692
34 35	2013Q2	665,641	111,194	49,730	12,124	57,601	52,886 בי 12	
36	2013Q3	680,202	111,494	52,005	12,030	60,202	53,962 of 12	3,695
37	2013Q4	661,512	102,227	47,646	12,089	59,847	52,886 P 12. 53,962 ec 12. 54,211 ec 12.	1,680
38	2014Q1	675,033	104,173	46,951	12,169	59,405	56,972 56,972	6,579
39 40	2014Q2	692,393	105,582	49,645	12,308	61,240	56,573 g 12	7,207
41	-						56,573 ^{co} 12'	
42								

BMJ	Open
-----	------

Page 34 of 47

							1 1 1 1 1 6/bmjopen-2021-057424 on 21 April
2014Q3	719,497	106,283	54,941	13,046	66,686	58,574	0574
2014Q4	706,767	104,179	49,805	13,241	67,660	59,008	²⁴
2015Q1	706,266	107,198	49,464	13,017	65,311	60,743	n 1
2015Q2	713,740	108,814	52,771	13,231	68,186	60,704	$\frac{1}{2}$
2015Q3	719,491	108,195	54,781	13,098	72,485	61,291	pril 1
2015Q4	695,347	101,454	47,878	13,227	70,426	62,371	2022.
2016Q1	714,282	105,362	47,179	13,505	69,763	64,773	
2016Q2	757,657	111,103	53,315	14,490	74,077	65,588	OWn 1
2016Q3	763,523	110,128	55,826	14,755	78,893	66,953	Downloaded
2016Q4	739,379	104,499	50,328	14,453	77,701	65,310	
2017Q1	805,062	115,414	52,521	15,667	81,219	71,433	from http://bmjopen.bmj.com/ on Apri
2017Q2	792,732	112,646	53,677	15,661	80,405	69,606	n ht
2017Q3	823,612	117,302	59,970	15,577	87,261	71,379	p://
2017Q4	825,461	114,373	53,565	16,273	86,954	71,591	omj
2018Q1	852,003	118,695	54,068	16,751	85,878	76,133	oper
2018Q2	862,008	118,600	57,084	16,811	87,963	74,992	ן.bn
2018Q3	880,352	119,379	62,327	16,995	91,688	75,550	nj.cc
2018Q4	884,420	118,096	56,790	17,477	94,604	77,554) m
2019Q1	899,564	120,415	55,471	18,299	94,124	80,924	on /
2019Q2	909,494	119,984	58,368	18,347	94,789	79,216	pril
2019Q3	969,167	125,420	65,879	19,370	105,447	80,680	20,
2019Q4	940,646	117,270	58,760	19,454	103,562	80,410	20
TOTAL 2001-2019	42,187,184	7,450,445	3,366,188	816,634	4,019,380	3,211,131	₽ ,
Percent of all MBS activity	0.70	0.12	0.06	0.01	0.07	0.05	gue:
Percent of all Diagnostic Imaging		2.02	0.91	0.22	1.09	0.87	st. Protected by copyright
Percent of all CT	11.42	2.02	0.91	0.22	1.09	0.07	otec
scanning		17.66	7.98	1.94	9.53	7.61	fed

Table continued	
-----------------	--

				BMJ Open		/bmjope				
Table continued						6/bmjopen-2021-05742				
	Number of CT examinations per quarter, by type									
Year and quarter	Brain/Chest/ Upper Abdo CT	Pelvis CT	Spine CT	Extremities CT	Spiral Angiography CT	Interventional CTP	Cone Beam CT	CT Pelvimetry		
2001Q1	484	3,501	33	9,355	3,770	2024,249	0	7:		
2001Q2	520	3,339	33	9,787	4,140	^N ₂ 4,455	0	6		
2001Q3	458	3,595	21	10,231	4,535	§ 5,059	0	64		
2001Q4	511	3,326	30,308	9,873	4,745	no 5,402	0	5		
2002Q1	570	3,369	61,118	9,803	4,659	ā 5,447	0	5		
2002Q2	603	3,658	63,786	11,201	5,430	ਰੋਂ 6,124	0	6		
2002Q3	594	3,685	63,611	11,630	5,923	∃ 6,439	0	5		
2002Q4	569	3,641	62,401	11,023	5,844	6,623	0	4		
2003Q1	606	3,703	66,897	11,128	5,674	56,697	0	5		
2003Q2	601	3,774	64,279	11,809	6,578	7,524	0	4		
2003Q3	825	4,032	66,834	12,383	7,588	8,236	0	4		
2003Q4	799	3,801	65,897	12,119	7,375	3 .8,872	0	4		
2004Q1	785	3,938	66,965	12,053	7,391	2 8,777	0	5		
2004Q2	816	4,007	68,064	13,134	8,454	9,247	0	4		
2004Q3	905	3,933	72,040	13,971	9,539	<u>₽</u> 9,983	0	4		
2004Q4	944	3,905	71,700	13,196	9,487	₿0,770	0	4		
2005Q1	895	3,729	70,464	13,115	8,846	20,420	0	4		
2005Q2	991	4,144	76,683	15,638	10,946	12,081	0	4		
2005Q3	1,065	4,260	77,925	15,741	12,808	<u>ک</u> 2,706	0	4		
2005Q4	973	3,957	76,276	15,480	12,381	ធ្លី 3,422	0	3		
2006Q1	1,153	4,092	80,785	15,887	12,450	±3,113	0	3		
2006Q2	1,108	4,253	79,022	17,140	13,247	at 4,100	0	3		
2006Q3	1,209	4,385	83,153	18,105	13,158	र्षे 5,063	0	3		
2006Q4	1,161	4,530	84,528	17,970	12,964	. बु6,177	0	3		
2007Q1	1,149	4,489	90,737	19,050	13,219	cqpyright.	0	3		

					BMJ Open		6/bmjopen-2021		Page
1 2									
3	2007Q2	1,192	4,420	90,739	19,767	14,103		0	289
4 5	2007Q3	1,309	4,673	89,921	20,303	15,602	4 6,954	0	318
6	2007Q4	1,388	5,321	91,415	19,958	14,875	A7,995	0	279
7	2008Q1	1,349	5,088	92,935	20,092	14,167	₹7,414	0	255
8	2008Q2	1,500	6,200	100,562	22,752	16,368	₹20,187	0	272
9 10	2008Q3	1,415	5,261	99,498	23,278	17,377	No.489	0	232
11	2008Q4	1,471	4,650	100,134	23,436	16,636	22,185	0	216
12	2009Q1	1,588	4,801	104,771	24,479	16,201	§2,558	0	202
13	2009Q2	1,538	4,980	101,581	25,436	17,557	a 3,715	0	230
14 15	2009Q3	1,755	5,293	107,077	26,983	19,439	24,995	0	247
16	2009Q4	1,680	4,702	102,250	25,472	18,485	₹ 6,9 78	0	205
17	2010Q1	1,699	4,738	103,685	25,789	17,685	2 6,216	0	169
18 10	2010Q2	1,648	4,555	85,806	24,382	18,201	26,982	0	180
19 20	2010Q3	1,767	4,882	95,385	25,813	20,374	28,567	0	170
21	2010Q4	1,849	4,763	90,398	24,944	19,597	\$ 0,959	0	137
22	2011Q1	1,963	4,826	92,963	26,139	18,653	2 9,167	0	171
23	2011Q2	1,880	4,780	91,462	27,106	19,789	3 0,453	0	151
24 25	2011Q3	2,172	5,466	102,125	30,104	26,968	₹2,923	12,871	155
26	2011Q4	2,221	5,125	100,847	28,793	27,474	₹4,778	16,263	136
27	2012Q1	2,482	5,636	110,377	31,655	27,675	A 9314,698	16,625	179
28	2012Q2	2,403	5,608	107,295	32,250	29,264	35,854	16,696	148
29 30	2012Q3	2,415	5,753	109,471	33,365	31,617	8,847	17,949	145
31	2012Q4	2,442	5,752	110,166	33,269	30,578	₽ ₩1,714	17,897	145
32	2013Q1	2,591	6,047	114,534	33,797	29,866	<u>چ</u> 9,310	16,768	108
33	2013Q2	2,838	6,423	117,335	36,080	33,694	ä <u>4</u> 2,769	18,941	99
34 35	2013Q3	2,937	6,806	117,109	36,896	36,368	14 ,764	21,846	88
36	2013Q4	2,994	6,918	113,552	36,228	34,893	a.	22,773	102
37	2014Q1	3,002	6,976	120,699	37,594	32,916	\$45,383	22,106	108
38	2014Q2	3,130	7,468	119,988	38,547	35,930	\$49,130	25,549	96
39 40	2014Q3	3,224	7,554	123,541	40,648	38,353		27,768	88
41	-						Synight.		
42							it.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 36 of 47

e 37 of 47					BMJ Open		6/bmjopen-2021-05742		
							oper		
							ר-20		
							21-0		
	2014Q4	3,212	7,817	123,566	41,177	37,057	2,224	17,135	49
	2015Q1	3,401	7,898	128,899	41,151	35,762	\$0,077	9,672	82
	2015Q2	3,347	8,294	123,016	41,336	39,666	₹1,910	9,739	82
	2015Q3	3,879	9,304	121,370	41,927	41,299	\$2,865	9,645	68
	2015Q4	3,927	9,217	113,166	40,710	39,087	₹5,872	8,978	59
	2016Q1	4,293	9,823	123,714	41,669	38,340	N2,317	9,521	62
	2016Q2	4,695	10,472	125,323	44,811	44,471	ອ7,181	11,836	63
	2016Q3	4,957	11,141	124,856	45,329	46,254	§ 6,064	10,142	58
	2016Q4	4,987	10,832	120,430	44,823	44,577	<u>ឆ</u> 8,579	9,351	72
	2017Q1	5,870	12,380	137,018	48,798	45,657	\$9,527	10,370	72
	2017Q2	5,992	12,618	129,849	48,133	48,847	<u>₹</u> 0,995	10,015	56
	2017Q3	6,278	12,830	133,361	49,085	52,435	⊴ 1,656	10,899	48
	2017Q4	6,563	13,081	134,986	49,347	52,331	5,607	12,472	46
	2018Q1	7,668	14,379	144,524	52,592	51,199	3,111	10,549	36
	2018Q2	7,997	15,461	139,015	54,608	55,177	\$5,107	12,623	43
	2018Q3	8,565	16,172	140,824	56,911	58,989	\$5,395	11,699	43
	2018Q4	8,943	16,841	139,773	57,016	57,800	70,336	11,510	47
	2019Q1	9,524	17,606	144,280	59,830	56,311	₹7,328	11,956	44
	2019Q2	10,235	18,763	139,531	62,173	62,432	₹1,045	12,537	44
	2019Q3	12,202	21,726	148,339	66,588	68,053	₫5,046	12,834	29
	2019Q4	12,594	22,274	141,373	64,977	66,237	37,304	11,840	39
	TOTAL 2001-2019	221,265	541,440	7,428,394	2,239,168	1,963,837	2,466,053	489,375	18,472
	Percent of all MBS						14 b		
	activity	0.00	0.01	0.12	0.04	0.03	by 0.04	0.01	0.00
	Percent of all Diagnostic Imaging	0.06	0.15	2.01	0.61	0.53	uest 0.67	0.13	0.00
	Percent of all CT	0.00	0.13	2.01	0.01	0.33		0.15	0.00
	scanning	0.52	1.28	17.61	5.31	4.66	rotect 5.85	1.16	0.04
							e d		
	MBS: Medicare Benefit Scheme						уу с		
							by copyright		
							.ight		
							•		

6/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

, « Septem. Q1: January to March, Q2: April to June, Q3: July to August, Q4: September to December US: Ultrasound, Nuc Med: Nuclear Medicine

6/bmjopen-2021

à

right.

1 2 3 4 5	Aj se
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20 21	
22	
22	
24	
25	Μ
26	1,1
27	aC
28	Si
29	No
30	lev
31	the
32	
33	#A
34	W
35	
36	*E
37	95
38	95
39 40	ру
40	I
42	
43	

44 45 46 ppendix 3, Table 1: Change in the quarterly rate of MBS funded CT scans per 100,000 eligible population according to geographic location of ervice provision following publications of the MBS professional services review (2008-9) and associated media attention

			Ν	lagnitude	e of change		ו 21	
Classification of	Geographic	Lev	Level*			pe*	Net change ^b in the rate of	
the change ^a	location [#]	Daint actimate	95%	CL	Daint actimate	0e* April 20 95% CL 20		CTs performed (Qtr3 2009-Qtr 4 2019)
		Point estimate	Lower	Upper	Point estimate	Lower	Upper	2009 Qui + 2019)
	NSW	-233.4	-344.3	-122.4	-8.5	-13.8	-3.2	-16,943.6
1A	SA	-355.0	-449.9	-260.2	-9.8	-15.7	-4.(हे	-22,843.0
	Vic	-207.7	-307.1	-108.3	-10.3	-15.1	-5.4	-17,344.1
1 B	ALL Australia	-237.7	-333.4	-141.9	-2.2	-7.2	2.8	-9,744.3
ID	Tas	-186.7	-308.3	-65.0	-5.2	-13.0	2. <u>ē</u>	-7,652.7
	WA	-402.0	-568.7	-235.3	8.9	0.0	17.7	-9,197.4
1C	ACT	-325.5	-405.2	-245.8	9.5	5.5	13.5	-5,857.7
	Qld	-127.3	-230.9	-23.7	11.8	7.3	16.4	4,274.8
2C	NT ^C	17.3	-170.4	205.0	11.5	4.4	18. 5	9,665.8
							nj. co	
BS: Medicare Bene	fit Scheme; CT: Com	nputed Tomography	scanning				m/ or	

Classification of change: 1A: Significant reduction in both the level and slope; 1B: Significant reduction in the level bat no change in the slope; 1C: ignificant reduction in the level with a significant increase in the slope; 2A: No significant change in the level with a significant reduction in the slope; 2B: o significance change in the level or slope; 2C: No significant change in the level with a significant increase in the slope; 3A: Significant increase in the vel with a significant reduction in the slope; 3B: Significant increase in the level with no change in the slope; 3C: Significant increase in both the level and e slope.

ACT: Australian Capital Territory; NSW: New South Wales; NT: Northern Territory; Qld: Queensland; SA: South Australia; Tas: Tasmania; Vic: Victoria; A: Western Australia.

Both the level and slope changes are expressed per 100,000 eligible population residing in the location specified at the service provision

5% CL: 95% confidence limits around the point estimate

values < 0.05 (95% CL that do not cross zero) are considered as significant changes in level and slope; greyed cells indicate non-significant changes

6/bmjopen-2021

Values are estimated from the seasonally adjusted single interrupted time series model with autocorrelation correction strengthered for the data

 ^bThe net change in the rate was calculated from the area between the counterfactual (i.e. pre-intervention slope with no evel change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of MBS stunded CT scans. Negative values result from the area below the counterfactual being larger than the area above it and indicate a net reduction in the rate of CT scans undertaken over the post-intervention time period; positive values indicate the reverse. In cases where the post-intervention trend was non-linear the net change is limited to the period prior to further disruptions in the trend.

^cPost intervention phase was non-linear therefore change reported in the level and slope are limited to the initial post-indervention period prior to any significant further disruption of the trend. or beer teview only nloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Page 41 of 47

				Net change ^b in the				
Classification of	Type of medical imaging	Lev	el*		Slo	rate of CTs		
the change ^a	service	Daint actimate	. 95% C		Daint actimate	ب ي 105%	6 CL	performed (Qtr3
		Point estimate	Lower	Upper	Point estimate	Lower	Upper	2009-Qtr 4 2019)
	Head CT	-30.5	-43.5	-17.6	-2.4	DownToade	-1.6	-3,637.4
1A	Face CT	-16.6	-23.0	-10.2	-0.9	ਮੈ.4	-0.5	-1,549.7
IA	Abdomen/Pelvis CT	-50.4	-63.4	-37.4	-2.0	a2.5	-1.4	-3,695.2
	Spine CT	-61.4	-83.6	-39.1	-3.2	ă , 4.2	-2.2	-5,230.1
1B	Pelvis CT ^c	-3.6	-5.8	-1.5	0.1	1 0.1	0.2	-47.3
	Chest CT	-36.4	-46.4	-26.3	2.5	2.0	3.0	273.4
1 C	Brain, Chest and Upper Abdo men CT ^C	-0.5	-0.9	-0.1	0.2	0.1	0.2	31.1
	Extremities CT	-11.1	-19.0	-3.2	1.1	2 0.5	1.8	366.5
	Soft Tissue Neck CT	-5.6	-7.4	-3.8	0.3	0 .2	0.4	3.9
2A	CT Angiography ^C	-3.0	-6.2	0.3	-1.1	8 1.7	-0.6	-16.9
2B	MRI ^c	-9.8	-33.0	13.4	-2.0	on4.6	0.7	0.0
2 C	Chest/Abdomen/Pelvis CT	-0.9	-6.2	4.3	0.2	j 10.1	0.4	167.9
20	All diagnostic imaging (excl CT)	393.8	-68.4	856.0	29.2	.0, ²	55.4	25,137.6
3 C	Interventional CT	10.7	3.0	18.4	1.6	No.1.2	2.0	1,739.0

BMJ Open Appendix 3, Table 2: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia per 100,000 eligible population according to type of service following publications of the MBS professional services review (2008-9) and associated media attention

MBS: Medicare Benefit Scheme; MRI: Magnetic Resonance Imaging; CT: Computed Tomography scanning

^aClassification of change: 1A: Significant reduction in both level and slope; 1B: Significant reduction in level but no change in the slope; 1C: Significant reduction in the level and a significant increase in the slope; 2A: No significant change in level with a significant reduction in slope; 2B: No significance change in the level or slope; 2C: No significant change in level with a significant increase in slope; 3C: Significant inc Rease in both level and slope.

by gues

*Both the level and slope changes are expressed per 100,000 eligible population residing in Australia at the time of these provision opyright.

6/bmjopen-2021-0574;

95% CL: 95% confidence limits around the point estimate

 p values < 0.05 (95% CL that do not cross zero) are considered as significant changes in level and slope; greyed cells indicate non-significant changes

^bThe net change in the rate was calculated from the area between the counterfactual (i.e. pre-intervention slope with no revel change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of MBS unded medical imaging services. Negative values result from the area below the counterfactual being larger than the area above it and indicate a net reduction in the rate of CT scans undertaken over the post-intervention time period; positive values indicate the reverse. In cases where the post-intervention trend was non-linear the net change is limited to the period prior to further disruptions in the trend.

^cPost intervention phase was non-linear therefore change reported in the level and slope are limited to the initial post-in ervention period prior to any significant further disruption of the trend. on http://bnipper.vr. ed from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open

			1	2021	
	Item No.	STROBE items	Location in manuscript where items are reported	RECORD items	Location in manuscript where items ar reported
Title and abstra	nct	1			1000100
	1	 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced 		RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	Abstract - Methods
		summary of what was done and what was found	Pr to	RECORD 1.2: If applicable the geographic region and time frame within which the study took place should be reported in the title or abstract.	Abstract – Methods
			erie	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	N/A
Introduction				9	
Background rationale	2	Explain the scientific background and rationale for the investigation being reported		April 20, 2024	Throughout Introduction
Objectives	3	State specific objectives, including any prespecified hypotheses		by	Last paragraph Introduction, pa
Methods	- 1			guest.	
Study Design	4	Present key elements of study design early in the paper		Protect	First sentence o Methods, page
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection		Protected by copyright	Methods – Data source subheading, pag 4

			BMJ Open	1136/bn	Page 44
Participants	6	(a) Cohort study - Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> - Give the eligibility criteria, and the		RECORD 6.1: The methods of study population selection (such as codes or algorithms used to identify subjects) should be listed in detail. If this is not possible, an explanation should be provided.	Methods – Data source subheading; Appendix 1
		sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i> - Give the eligibility criteria, and the sources and methods of selection of participants		RECORD 6.2: Any validation studies of the codes or algorithms used to select the population should be referenced. If validation was conducted for this study and not published elsewhere, detailed methods and results should be provided.	Codes in Appendix 1. Validation / algorithms N/A
		(b) Cohort study - For matched studies, give matching criteria and number of exposed and unexposed Case-control study - For matched studies, give matching criteria and the number of controls per case	or revie	RECORD 6.3: If the study involved linkage of databases, consider use of a flow diagram or other graphical display to demonstrate the data linkage process, including the number of individuals with linked data at each stage.	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.		RECORD 7.1: A complete list of codes and algorithms used to classify exposures, outcomes, confounders, and effect modifiers should be provided. If these cannot be reported, any explanation should be provided.	Appendix 1. No confounding variables, though counterfactual is described in Methods – Statistical analysis subheading page 5
Data sources/ measurement	8	For each variable of interest, give sources of data and details of methods of assessment (measurement).		ad by copyright.	Methods subheadings Data Source and Quarterly rate of

5 of 47			BMJ Open		1136/bm	
		Describe comparability of assessment methods if there is more than one group			mjopen-2021	imaging, pages 4 5
Bias	9	Describe any efforts to address potential sources of bias			1-057424 on 21 April	Methods subheading Statistical Analysis, page 5 and Limitations, page 13
Study size	10	Explain how the study size was arrived at			-057424 on 21 April 2022. Downloaded from http://bmjope	Population for denominator in rates described i Methods – Quarterly rate of imaging, page 5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	r rei.		rom http://bmjope	Methods – Data source subheading, pag 4
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) <i>Cohort study</i> - If applicable, explain how loss to follow-up was addressed <i>Case-control study</i> - If applicable, explain how matching of cases and controls was addressed 		2074	n.bmj.com/ on April 20, 2024 by guest. Protected by copyright	Methods – Statistical analysis, page 5 N/A N/A No loss to follow up N/A
		<i>Cross-sectional study</i> - If applicable, describe analytical			copyrigh	N/A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Open	36/bm
	methods taking account of sampling strategy (e) Describe any sensitivity analyses		njopen-2021-0
Data access and cleaning methods		RECORD 12.1: Authors describe the extent to wh investigators had access population used to create population. RECORD 12.2: Authors provide information on th cleaning methods used in	ich ^P the to the database the study E should he data
Linkage		RECORD 12.3: State wh study included person-le institutional-level, or oth across two or more datab methods of linkage and r linkage quality evaluatio provided.	ether the N/A vel, er Gata linkage pases. The nethods of
Results			ġ
Participants	13(a) Report the numbers of individuals at each stage of the study (e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non- participation at each stage. (c) Consider use of a flow diagram	RECORD 13.1: Describe selection of the persons i study (<i>i.e.</i> , study populat including filtering based quality, data availability The selection of included be described in the text a means of the study flow	nclided in the paragraph, page ion selection) (concerning on data imaging and linkage. examinations, no persons can persons) nd/§r by diagram.
Descriptive data	14(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders		Uest N/A, unit of Tet N/A, unit of analysis is imaging by imaging Op procedure rather than persons ht

47 of 47			BMJ Open		1136/br	
		 (b) Indicate the number of participants with missing data for each variable of interest (c) <i>Cohort study</i> - summarise follow-up time (<i>e.g.</i>, average and total amount) 			njopen-2021-057424	
Outcome data	15	Cohort study - Report numbers of outcome events or summary measures over timeCase-control study - Report numbers in each exposure category, or summary measures of exposureCross-sectional study - Report numbers of outcome events or summary measures			on 21 April 2022. Downloaded from	Results, first two paragraphs, page 6-7
Main results	16	(a) Give unadjusted estimates	revie	2011	http://bmjopen.bmj.com/ on April 20, 2024 by	Results, unadjusted estimates in paragraph 2, adjusted through remainder
Other analyses	17	Report other analyses done— e.g., analyses of subgroups and interactions, and sensitivity analyses			guest. Protected by	
Discussion						
Key results	18	Summarise key results with reference to study objectives			copyright.	First paragraph, page 10

			/bn	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	RECORD 19.1: Discuss the implications of using data that were n created or collected to answer the specific research question(s) Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over time, as they pertain to the study bein reported.	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	2022. Downloaded from	Throughout discussion
Generalisability	21	Discuss the generalisability (external validity) of the study results	http://bmj	Implications subheading, page 13
Other Information	-		реплания странализация с странализация с странализация с странализация с странализация с странализация с страна При странализация с странализация с странализация с странализация с странализация с странализация с странализаци	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	.bmj.com/ on Ap	Page 14
Accessibility of protocol, raw data, and programming code			RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw datagor programming code.	
Committee. The R	Eportin		e, Petersen I, Sørensen HT, von Elm E, Lang h SM, th Routinely-collected health Data (RECORD) Statement icense.	

The association of regulatory body actions and subsequent media coverage with use of services in a fee-for-service system: A longitudinal cohort study of computed tomography scanning in Australia

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057424.R2
Article Type:	Original research
Date Submitted by the Author:	25-Feb-2022
Complete List of Authors:	Youens, David; Curtin University, School of Population Health Doust, Jenny; The University of Queensland Faculty of Medicine and Biomedical Sciences Ha, Thi Ninh; Curtin University, School of Population health O'Leary, Peter; Curtin University Faculty of Health Sciences, School of Population Health; The University of Western Australia, Medical School, Faculty of Health and Medical Sciences Slavotinek, John; SA Health, SA Medical Imaging; Flinders University, College of Medicine and Public Health Wright, Cameron; Curtin University, School of Population Health; Fiona Stanley Hospital Moorin, Rachael; Curtin University, School of Population Health; The University of Western Australia, School of Population and Global Health
Primary Subject Heading :	Radiology and imaging
Secondary Subject Heading:	Health services research
Keywords:	Computed tomography < RADIOLOGY & IMAGING, Diagnostic radiology < RADIOLOGY & IMAGING, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

1 2		
2 3 4	1	<u>Title page</u>
4 5 6 7	2 3	Title: The association of regulatory body actions and subsequent media coverage with use of services in a fee-for-service system: A longitudinal cohort study of computed tomography
8 9	4	scanning in Australia
10	5	Author names and affiliations:
11 12 13	6 7	David Youens* ^a , Jenny Doust ^b , Thi Ninh Ha ^a , Peter O'Leary ^{a, c, d} , John Slavotinek ^{e, f} , Cameron Wright ^{a, g, h, i} , Rachael Moorin ^{a, j}
14 15 16	8 9	* Corresponding author. <u>David.youens@curtin.edu.au</u> . GPO Box U1987, Perth, Western Australia, 6845
17 18 19	10 11	a Health Economics and Data Analytics, School of Population Health, Curtin University, Perth, Australia
20 21	12	b Centre for Longitudinal and Life Course Research, Faculty of Medicine, University of Queensland
22 23	13 14	c Obstetrics and Gynaecology, Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
24 25	15	d PathWest Laboratory Medicine, QE2 Medical Centre, Nedlands, Western Australia, Australia
26 27	16	e SA Medical Imaging, SA Health
28 29	17	f College of Medicine and Public Health, Flinders University, Adelaide, South Australia
30 31	18	g Fiona Stanley Fremantle Hospitals Group, Western Australia, Australia
32 33 34	19 20	h Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Western Australia, Australia
35	21	i School of Medicine, College of Health & Medicine, University of Tasmania, Tasmania, Australia
36 37 38	22 23	j School of Population and Global Health, The University of Western Australia, Western Australia, Australia
39 40	24	
41 42	25	Word count: 4,188 words
43 44	26	
45 46 47	27	
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
59 60		
00		

1 2		
3 4	1	
5 6	2	Abstract
7 8	3	Objective: The Professional Service Review (PSR) is an Australian Government agency
9 10	4	aiming to reduce inappropriate practices funded via Medicare, Australia's public insurer. Our
11	5	objective was to examine changes in Computed Tomography (CT) following the 2008-09
12 13	6	PSR annual report, which noted excessive CT use.
14 15	7	Design: Interrupted Time Series Analysis examined trends in CT use following the 2008-09
16 17	8	PSR report, estimating both change in the immediate rate of CT and the slope of the trend in
18 19	9	usage post-intervention.
20 21 22	10	Setting: Medicare-funded imaging (most out-of-hospital imaging) in Australia.
23 24	11	Participants: Patients receiving Medicare-funded CT and other imaging
25 26	12	Intervention: The 2008-09 PSR report highlighted concerns regarding excessive CT use. Two
27 28	13	providers were financially penalised for CT overuse with these cases detailed in the PSR
29 30	14	report and highlighted in an associated Report to the Professions, distributed to 50,000
30 31 32	15	providers. Media articles on radiation risks followed.
33 34	16	Outcomes: Quarterly rates of out-of-hospital CT, magnetic resonance imaging (MRI, as a
34 35 36	17	comparator), and all other Medicare-funded diagnostic imaging examinations 2001-2019.
37 38	18	Results: CT scanning increased from 4,663.5 per 100,000 person-years in 2001 to 14,506 in
39	19	2019 (211% increase), with substantial variation by type and anatomical region. The 2008-09
40 41	20	PSR report was followed by an immediate reduction in CT scanning of 237.7 CTs per
42 43	21	100,000 people per quarter (95% CI -333.4 to -141.9) though growth in use soon continued at
44 45	22	the pre-intervention rate. The degree of change in utilisation following the report differed
46 47	23	between states/territories and by scan type, both in terms of the immediate change and the
48	24	slope. For other diagnostic imaging modalities there was an increase in the slope, while for
49 50	25	MRI there was no change in either parameter.
51 52	26	Conclusion: Actions consisting of financial disincentives for service overtesting and provider
53 54	27	/ public education components may limit excessive use of diagnostic imaging in fee-for-
55 56	28	service systems, however effects observed here were only short-lived.
57 58 59 60	29	Keywords: Diagnostic Imaging, Fee-for-Service, Computed Tomography, Medical Overuse,

י ר	
2	
3	
4	
5	
6	
7	
8	
å	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\end{array}$	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
55	
56	
57	
58	
59	

2

3

4

5

6

7

8

9

10

1 Strengths and limitations of this study

- This study made use of whole of population administrative data, improving generalisability and preventing loss to follow-up or non response
- Multiple imaging modalities were examined, allowing for an assessment of CT (the target of the PSR actions) and potential substitution by other modes
- Only data on publicly-funded services accessed in the out-of-hospital setting were available; trends in in-hospital CT use were not examined
- ιος Joved mu. Is in isolation The PSR actions involved multiple components and it was not possible to examine specific components in isolation from each other

1 Introduction

Overtesting is defined as the use of non-recommended screening tests in asymptomatic patients or more testing than necessary to diagnose patients.¹ Overtesting is problematic due to the wasted resources it incurs and the potential for patient harm. Harms of overtesting may fall under six domains:² physical, psychological, treatment burden, social, financial, and dissatisfaction with health care. Overtesting with CT may manifest in many of these areas, for example physical harms resulting from radiation exposure ^{3, 4} psychological harms resulting from incidental findings⁵ plus additional physical harms when these findings lead to further procedures or diagnostic tests.⁶ Overtesting also consumes healthcare expenditure without improving outcomes,¹ imposing an opportunity cost. Overtesting may result from intrapersonal (e.g. fear of litigation, risk aversion, intolerance of uncertainty), interpersonal (e.g. pressure from patients and colleagues) or contextual (e.g. guidelines, financial incentives, time constraints, test availability) factors.⁷ Studies in different countries have shown that over 10% of CT scans reflect overtesting,^{8,9} indicating substantial room for improvement in this area.

CT scanning in Australia is delivered in public and private hospitals, or in the out-of-hospital setting on referral from a general practitioner (GP) or specialist. Most out-of-hospital CT is performed by private clinics¹⁰ which are reimbursed on a fee-for-service (FFS) basis by the Federal Government via Medicare, Australia's public insurer, which covers almost all Australian citizens and permanent residents¹¹ (with prisoners an exception). Similarly, GPs operate in private practices which are reimbursed by Medicare on a FFS basis hence are incentivised to maximise service volumes.¹² Patients do not register with practices and are free to change providers at any time, so multiple providers compete for services in the out-of-hospital environment, potentially driving overtesting where patients expect certain medical interventions (such as diagnostic CT) and providers feel compelled to meet patient expectations so as to prevent the patient from being 'lost' to another GP who provides or refers for the expected service.^{13, 14} Note that decisions regarding out-of-hospital CT scanning are primarily made by referrers (GPs and specialists); radiologists at private clinics generally do not know the setting or patient and are not well positioned to deny scans requested. Although Medicare provides reimbursement for CT scans referred by a GP, MRI scans are generally only reimbursed when referred by a specialist (with some exceptions since 2011).¹⁵ Furthermore, MRI machines must be licensed by the Federal Government in order for scans using that

machine to attract reimbursement, with license availability restricted.¹⁵ This may limit
 substitution of CT scans by MRI. No such restrictions exist for other modalities.

One of the bodies regulating healthcare in Australia is the Professional Services Review (PSR), which has responsibility for preventing inappropriate practice, both to protect patients from risk and to reduce Government funding of inappropriate care.¹⁶ The PSR reviews the activities of practitioners where unusual service volumes or prescribing patterns suggest inappropriate care. Upon investigation by the PSR, a practitioner found to have engaged in inappropriate practice (as determined by a peer panel of practitioners) may be partially or fully disqualified from claiming Medicare reimbursements for some time, may be required to repay reimbursements claimed for delivery of inappropriate care, or may face suspension from practice.¹⁷ In the 2008-09 PSR annual report published in October 2009, two providers were penalised for CT overtesting. In addition, the Director's report within the annual report commented on CT overtesting, noting concerns about use of CT screening for lower back pain.¹⁸ Alongside this annual report was the dissemination by the PSR of a *Report to the* Professions to 50,000 health providers detailing these cases (and others), and the PSR director also spoke at medical conferences and to the media.¹⁸ This was followed by a period of media interest concerning CT risks, including the publication of articles highlighting the risks of CT, targeted at both clinical audiences^{19, 20} and the general public.²¹⁻²⁴ These articles, published through 2010 and 2011 in national^{22, 24} and state-specific media,²³ outlined the PSR director's concerns, cancer risks associated with CT, the role of patient expectations as a factor and alternative imaging modalities. These events are collectively referred to as "the PSR actions" throughout this paper for simplicity. Any change in CT scanning resulting from the PSR actions may reflect either a change in imaging levels overall, or shifts to other modalities.

The aim of this project was to examine the impact of the PSR actions on the rate of CT scanning
in Australia, to determine if regulatory body action influences overtesting in the FFS context.

26 Methods

This was a retrospective whole-of-population longitudinal cohort study using aggregate-level
administrative data. Reporting follows the Reporting of studies Conducted using Observational
Routinely-collected health Data (RECORD) guidelines.²⁵

30 Data source

Page 7 of 47

BMJ Open

Quarterly utilisation data for Australia and for each Australian state/territory from Jan-March 2001 to Oct-Dec 2019 inclusive were sourced from publicly available Medicare Benefits Schedule (MBS) records.²⁶ Data pertaining to CT were extracted using MBS item reports. Data for other Medical Imaging modalities (Ultrasound, Nuclear Medicine and MRI) were extracted using the Group report for Category 5 Diagnostic Imaging Services. Data included only those services performed by a registered provider for services that qualify for Medicare Benefits and for which Services Australia had processed a claim. Data excluded services provided by hospital doctors to public patients in public hospitals and services that qualified for a benefit under the Department of Veterans' Affairs National Treatment Account. These services are not within the purview of the PSR, nor are records of these services available with the MBS data used for the current study. The location services were provided (state/territory) was based on patient address. Calendar quarter was determined by the date of processing by Services Australia, not the date the service was provided to the patient. Note that date of processing is typically within days of the service date. For the denominator the Medicare eligible population for each state/territory was sourced from Medicare enrolment data quarterly standard reports.²⁷

CT scanning data were aggregated into fourteen groups reflecting either anatomical area of the scan (e.g. head, chest etc.) or, due to lack of anatomical location on the MBS coding, grouped according to technique (cone beam CT, pelvimetry, spiral angiography and interventional CT) using the MBS item codes in Appendix 1. Since MBS items are for re-imbursement rather than clinical purposes, several items covered multiple CT examinations (Chest, Abdomen/Pelvis and Brain, Chest/Upper Abdomen). For analysis, all CT scanning records pertaining to these items were counted as a single CT scanning event. In the analysis by type of CT these items were grouped separately (see Appendix 2) and were not included in the analysis of their relevant sub-groups (i.e. brain, chest or abdomen/pelvis).

25 <u>Quarterly rate of imaging</u>

The annual rate of MBS funded imaging per 100,000 eligible persons was calculated for all Australia and by state/territory by dividing the number of services processed in that year by the eligible Medicare population for that year multiplied by 100,000.

29 <u>Statistical analysis</u>

Interrupted time series analysis (ITSA) was used to evaluate the impact of the PSR actions on
 the quarterly rate of medical imaging excluding CT, MRI, all CT scanning and type of CT
 scanning for all Australia and by state/territory.

The analysis was conducted using the '*itsa*' package²⁸ in Stata version 15.²⁹ Since the PSR actions affected the whole of Australia a control group was not available for comparison, therefore the model was a single-group ITSA (i.e. the preintervention trend was projected into the postintervention period to serve as the counterfactual) with a dummy indicator variable set to quarter 4 2009 representing the PSR action. Coefficients were estimated using ordinary least squares regression with Newey-West standard errors to handle autocorrelation and heteroskedasticity.

Each model was first fitted with lag 0 specified (i.e. no autocorrelation), following which autocorrelation in the error distribution was tested for using the program 'actest'³⁰ and the appropriate lag used in the final model. The model was implemented after adjustment for seasonality using Fourier terms (pairs of sine and cosine functions)³¹ using the program *circular*³² Following Imbens and Lemieux³³ the median timepoint (quarter 4 2004) of the preintervention period was used as a robustness test to determine if the underlying assumption of stability in time-varying unmeasured confounders should be challenged. Where the postintervention trend was non-linear, multiple dummy variables were used to adequately capture the shape of the post-intervention trend so that a more accurate estimation of the immediate change in the trend and change in level resulting from the PSR action could be estimated.

34 18 <u>Classification of response to the 2009-10 Professional Services Review</u>

For each model the direction and statistical significance of the estimates of the level (initial change in the quarterly rate of CT use) and slope (gradient of the trend in quarterly CT use) parameters in the post-intervention period (or for the slope the immediate post-intervention segment where a non-linear trend was observed) were used to classify the response to the PSR action. The primary typology was based on the direction and significance of the level parameter as follows: Type 1: significant reduction in the level; Type 2: no significant change in the level and Type 3: significant increase in the level. Each type was further classified into sub-types based on the change in the slope parameter: a) significant reduction; b) no significant change and c) significant increase.

⁵²₅₃ 28 <u>Calculation of net change in CT imaging procedures following the PSR action</u>

The net change in the CT procedures performed was calculated from the area between the counterfactual (i.e. pre-intervention slope with no level change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of imaging procedures. To reduce over-estimation of the net change where

BMJ Open

no significant difference was observed between the pre and post-intervention slopes (i.e. sub type b) the pre-intervention slope parameter was used to define the post-intervention slope rather than the point estimate provided in the ITSA model. Similarly, where no significant difference in level was observed (i.e. type 2), the post-intervention curve was defined with the level change set to zero. When the post-intervention trend was non-linear the net change was only calculated until the beginning of the subsequent change in trend. The net change could be negative (i.e. net reduction in the rate of imaging examinations through the post-intervention period) or positive.

9 <u>Patient and public involvement</u>

10 As this is an analysis of secondary data, there was no patient or public involvement.

11 Results

Over the 19-year study period 369.5 million Medicare funded medical imaging examinations
were undertaken in Australia (6.2% of all Medicare funded activity) of which CT scanning
comprised 11.4% (42.2 million) (Appendix 2). The most frequently performed type of CT scan
was abdomen/pelvis comprising 18.8% [~8 million] of all CT examinations, closely followed
by head CT (17.6% [7.5 million]) and spinal CT (17.6% [7.4 million]).

As shown in Table 1 the rate of CT scanning increased from 4,662.2 per 100,000 Medicare eligible persons in 2001 to 14,505.2 per 100,000 in 2019. The increase of 211% was much larger than the increases observed for Ultrasound (+150%) and Nuclear Medicine (+96%), or for diagnostic imaging overall (75%). While the largest increase in the rate of imaging (by modality) was observed for MRI (increasing by ~400% over the study period), the absolute rate was still 64% lower than the rate of CT scanning in 2019. Table 1 also shows the rate of CT scanning according to type across the study period. In 2001 the top three types of CT scanning, ranked according to the rate performed per 100,000 persons, were head CT (1,529.9), followed by abdomen/pelvis CT (1,018.9) and CT of the facial bones (629.9). However, by 2019 this ranking had changed such that abdomen/pelvis CT had the highest rate per 100,000 (2,565.0); spinal CT was now ranked second (2,237.2) and head CT third (1,884.4). The largest relative change in the rate of CT scanning by type from 2001 to 2019 was observed in interventional CT which increased by 1,089% (from 95.3 per 100,000 in 2001 to 1,133.8 in 2019. Similarly, the rate of spiral angiographic CT scanning also rose by 1,054% (from 85.5 per 100,000 in 2001 to 986.8 in 2019). Other notably very large relative increases (i.e. more than tripling of the 2001 rate) were observed for chest/abdomen/pelvis CT (+451%), CT of the

2
3
4
5
6
-
/
8
9
10
11
12
12
13 14
14
15
16
16 17
18
19
20
21
22
23
24
25
26
27
27
28
29
30
31 32 33 34 35
32
33
34
25
55
36 37
37
38
39
40
41
41
43
44
45
46
47
48
49 50
50
51
52
53
54
55
56
57

1

extremities (+407%) and pelvis CT (+358%). Rate increases of over 100% were observed for
chest CT (+199%), abdomen/pelvis CT (+152%) and soft tissue neck CT (+147%). The only
type of CT scan to reduce in rate was cone beam CT which was first funded under Medicare in
2011 (quarter 3).

BMJ Open

to beet eview only

Page 11 of 47

 BMJ Open

	Rate per 100,000 eligible population Rate of CT per 100,000 eligible po							opulation		
Y	ear	All diagnostic imaging	MRI	US	Nuc Med	All CT	Head	Face	Soft g tissue⊻ Neck≥	Chest
	2001	62,815.20	1,056.10	17,753.80	1,494.80	4,662.20	1,529.90	629.9	119 🛃	51
	2002	64,018.20	1,173.00	18,540.80	1,514.50	5,993.70	1,522.60	630	125	558.
	2003	64,489.60	1,270.30	19,310.30	1,517.10	6,304.30	1,543.40	624.1	130.00	586.
	2004	65,657.10	1,350.00	19,929.00	1,522.90	6,663.80	1,546.30	640	135 🍝	631.
	2005	70,767.70	1,558.40	22,127.80	1,588.50	7,428.70	1,662.20	699.2	148	695.2
	2006	73,155.60	1,776.10	23,344.80	1,617.60	7,941.90	1,697.70	738	156	724.8
	2007	76,179.30	1,958.40	24,717.90	1,684.10	8,516.50	1,779.10	764.1	163 🕏	765.:
	2008	78,983.80	2,050.00	26,189.10	1,801.80	9,036.20	1,815.10	808.6	170	803
	2009	82,260.00	2,252.70	28,004.90	1,980.30	9,592.60	1,874.30	840.9	178	834.9
	2010	83,548.70	2,346.90	29,065.00	2,138.80	9,085.60	1,745.40	772.4	171 🕉	793.2
	2011	86,766.50	2,501.10	30,801.00	2,334.20	9,615.50	1,739.70	787.5	181	854.9
	2012	90,623.80	2,640.90	33,148.70	2,544.40	10,674.40	1,812.40	819.7	192	923.
	2013	94,223.40	3,003.00	35,368.00	2,677.70	11,246.60	1,837.80	827.2	203	986.
	2014	98,378.10	3,891.20	36,959.40	2,727.90	11,705.00	1,760.80	843.5	212	1,068.20
	2015	99,830.50	4,107.90	38,121.70	2,717.40	11,698.90	1,756.70	845.6	21	1,140.50
	2016	101,767.50	4,249.20	39,553.80	2,694.50	12,098.00	1,753.30	840.3	232	1,221.70
	2017	106,182.50	4,653.20	41,481.60	2,814.20	13,008.90	1,842.10	880.3	253	1,345.50
	2018	108,783.70	4,927.40	43,087.80	2,850.30	13,744.10	1,875.90	909.7	268	1,422.70
	2019	110,010.00	5,277.30	44,452.10	2,925.40	14,505.20	1,884.40	930.1	294	1,552.00
	ge total to total	75.1	399.6	150.4	95.7	211.1	23.2	47.7	guest. 146 . Frotected	199

6/bmjopen-202 period

Page 1	2 of 47
--------	---------

Year			Rate of	of CT per 100,000 eli	gible popula	tion	6/bmjopen-2021-05		
1 Cal	Abdomen/ Pelvis	Pelvis	Spine	Chest / Abdomen / Pelvis	Extremity	Spiral Angiography		rventional CT	Con Bean
2001	1,018.90	68.5	N/A	227.2	195.3	85.5	n 21	95.3	N/A
2002	1,124.90	70.3	1,229.20	268.4	213.8	107	Ap	120.6	N/.
2003	1,223.40	74	1,275.80	311.1	229.3	131.5	April 2022.	151.4	N/.
2004	1,320.30	75.2	1,328.60	361	249.5	166.2	022.	184.8	N/
2005	1,465.50	78.5	1,470.10	433.2	292.6	219.4	Do	237.2	N/.
2006	1,579.60	83	1,575.40	495.4	332.4	249.3	wnl	281.1	N/.
2007	1,687.70	89.5	1,718.10	549.7	374.5	273.7	oad	321.2	N/.
2008	1,780.40	99	1,834.80	599.8	417.9	301.2	ed fi	374.6	N/.
2009	1,898.20	90.9	1,911.50	677.6	470.7	329.5	mo.	451.6	N/.
2010	1,782.40	85.4	1,693.50	701	455.4	342.2	Downloaded from http://bmjopen.bmj.com/ on April 20,	508.4	N/
2011	1,842.80	89.4	1,714.50	766.9	496.3	410.8	o://b	563.4	N/
2012	1,987.80	98.8	1,899.00	855.4	566.8	517.2	mjoj	656	300
2013	2,081.80	111.7	1,973.20	907.8	610	575	pen	738.7	342
2014	2,149.10	124.9	2,043.80	968.4	661.8	604.3	bmj	825.4	387
2015	2,164.60	143.2	2,007.80	1,011.50	681.4	642.9	8	869.5	15
2016	2,219.80	171.9	2,010.50	1,068.10	718.3	706	n / 0	911.5	166
2017	2,352.60	204	2,144.50	1,138.00	782.8	798.3	n A	992.7	175
2018	2,474.90	248.3	2,229.00	1,202.00	873.6	881.6	pril	1,042.70	183
2019	2,565.00	313.4	2,237.20	1,253.00	989	986.8	20,	1,133.80	191
Percent change total 2001 to total 2019*	151.7	357.8	30.2	451.3	406.5	1,053.90	2024 by guest.	1,089.20	-4

BMJ Open

Figure 1 shows the results of the ITSA evaluating changes in the use of CT following the PSR actions, by state/territory; values informing the figure are in Appendix 3. On average after adjusting for seasonality and autocorrelation there was a significant reduction in the level parameter (-237.7 CTs per 100,000 Medicare eligible persons [95% Cl -333.4 to -141.9]) indicating an immediate response. However, no significant change in the slope parameter was observed, indicating no sustained effect i.e. following the initial drop in utilisation, growth in CT scanning continued at its previous rate. Despite there being no sustained change, over the post-intervention period (Qtr 4 2009-Qtr 4 2019) the cumulative rate (i.e. the net change) of CT use reduced by 9,744.3 per 100,000 due to the initial level change, compared with the counterfactual. This can be readily observed graphically in Figure 2. Across Australian states and territories, the response differed (Figure 1). In all states/territories except the Northern Territory there was a significant reduction in the level; however, the response in the slope parameter differed. In New South Wales, South Australia and Victoria there was a significant reduction in the slope parameter (i.e. sustained reduction), in Tasmania there was no significant change in the slope, while in the Australian Capital Territory, Queensland, Western Australia and the Northern Territory after the initial reduction in level there was a significant increase in the slope parameter.

Figure 3 shows the results of the ITSA according to type of CT scanning in Australia (values in Appendix 3). The majority of CT scanning types showed an immediate significant reduction in level, the exceptions being CT angiography and chest/abdomen/pelvis CT which showed no change, and interventional CT, which showed an increase in level. With respect to sustained change (i.e. slope) there was a much larger variation across type with reductions (head, face, abdomen/pelvis, spine CT and CT angiography), increases (chest, extremity, soft tissue neck, brain/chest/upper abdomen and interventional CT) and on one occasion no change (pelvis CT) observed. Figure 3 also shows the results of the analysis for MRI, which showed no response in either parameter and all diagnostic imaging excluding CT, which showed no change in the level but an increase in the slope parameter. Changes for all diagnostic imaging excluding CT are also presented in Figure 4, displaying the change in the slope parameter through the post-intervention period.

31 Discussion

1 CT use reduced significantly following the 2008-09 PSR annual report, associated sanctions 2 and subsequent media coverage of CT risks. Following this short-term decline, CT use 3 continued increasing at the pre-intervention rate, though results differed by scan type/region 4 and state/territory. Findings indicate that major reviews including financial penalties and 5 surrounding coverage have potential to decrease overtesting, but that reductions may not be 6 sustained.

Being an observational study we cannot assume causation, though we highlight some important points in considering this. There was a close temporal relationship between the PSR report and the changes in CT use, which would be expected if changes were causal. The face validity of a causative relationship can be considered via the overtesting framework developed by Lam et al.⁷ Interpersonal drivers of overtesting may have influenced CT use as the mass media coverage outlined radiation risks to patients and included some discussion of the role of patient expectations in driving imaging requests.²²⁻²⁴ On the provider side, fear of reputational damage following a reprimand is also an interpersonal factor. Environmental drivers may have changed if providers grew concerned about financial penalties from the PSR for excessive imaging. Intrapersonally, the risk aversion that drives overtesting in the search for a definitive diagnosis may have been countered by improved knowledge of radiation risks.

The risk of reputational damage or financial penalties was low, with the PSR report discussing two providers sanctioned for inappropriate CT. However, these cases were widely disseminated, via the Report to the Professions describing these cases (and others) to 50,000 providers. Furthermore the PSR director speaks at national medical conferences and to the media about PSR activities,¹⁸ and attends meetings of medical colleges and the Australian Medical Association to further raise awareness of PSR activities.³⁴ Although we are not aware of any surveys or other material describing awareness of the PSR among providers or patients, the dissemination activities outlined above likely led to a reasonable degree of awareness among providers. Moreover, a 2011 review of diagnostic imaging noted that the 2008-09 PSR had likely impacted practice, and that private providers had expressed concerns regarding profitability following this.³⁵ Penalties for inappropriate CT appeared in the 2009-10 and 2011-12 PSR annual reports, however there was no specific discussion of CT in the director's reports nor are we aware of media coverage following these reports.

There is prior evidence in Australia of educational interventions reducing CT. In 2013 the
National Prescribing Service's (NPS) MedicineWise program ran an intervention to reduce

inappropriate CT for acute lower back pain.³⁶ This included a report to GPs comparing their referral rates for lower back CT to their peers, an online decision support tool and a symptom self-management prescription pad. The intervention reduced lower back CT by over 10%, which persisted through 20-months follow-up. This demonstrates some receptiveness to messaging regarding CT overtesting, though mechanisms of action by which the PSR may have influenced practice would differ. Similarly, the introduction of a Choosing Wisely recommendation to reduce imaging for lower-back pain in the United States in 2012 was followed by a 4% reduction in such imaging.³⁷ The Choosing Wisely campaign regarding lower back CT in the USA did not involve any financial disincentives such as the PSR actions in the current study, though did garner substantial media attention³⁷ so some drivers of change may have been comparable. A review of interventions to reduce overuse care suggested that educational interventions targeted at both clinicians and patients are among the most effective type,³⁸ supporting the notion that media coverage on CT overtesting may have influenced practice.

Results here differed between states/territories and CT type. Differences in results across CT type do not appear to be driven by differences in the radiation dosages associated with each type, given that Chest / Abdomen / Pelvis scans showed no change in either parameter following the PSR action but expose patients to some of the highest effective doses.³⁹ Differences observed between states / territories may have resulted from differences in the baseline level of CT use; this is likely as availability of CT scanners, one driver of overtesting, does differ between jurisdictions.¹⁵ These differences may have also resulted from differences in messaging in each state / territory, caused by either different levels of media coverage of this issue (as some coverage appeared in local²³ rather than national newspapers), or addresses by the PSR director to medical conferences in some states but not others. Baseline attitudes towards CT, and hence the capacity for reductions in use, may have also differed between networks of providers, given the concentration of scanners and providers in capital cities¹⁵ which are in many cases geographically isolated.

There were differences observed between CT and other modalities. In contrast with the drop in CT use following the PSR, MRI showed no change following the 2008-09 PSR report, while for all diagnostic imaging excluding CT the slope increased significantly, while the level parameter showed a large but non-significant increase. This may represent substitution for modalities with lower or no associated radiation exposures (e.g. x-ray or ultrasound, respectively). MRI use increased steadily through the study period, reflecting an increase in

availability of MR machines from below- to above-average in comparison to other
Organisation for Economic Co-operation and Development countries.⁴⁰ There was no
additional increase in use of MRI following the PSR actions, however, likely because licensing
of MR devices is constrained by the Federal Government and most MRI investigations are not
reimbursed by Medicare when referred by a GP, limiting potential for substitution.^{41, 42}
Alternatively, there may have been an increase in privately funded MRI which would be
unobservable in the Medicare data used here.

8 <u>Implications</u>

9 Although the PSR actions were followed by a reduction in CT use, growth then continued at
10 the pre-intervention rate. This suggests that although such actions may be influential, any
11 resulting changes in behaviour may not be sustained in the absence of ongoing intervention.
12 As the PSR publishes annual reports there may be opportunities to replicate the actions assessed
13 here, if media interest in the topic could be sustained, which may produce longer-term changes
14 in CT use.

These findings will be of interest to researchers and policymakers wanting to understand mechanisms to prevent overtesting, though contextual factors are important in understanding how effective such actions may be elsewhere. Provider and patient education regarding radiation risks, threats of financial penalties and reputational damage following exposure of inappropriate practice would likely be influential mechanisms across settings. The degree of response to such mechanisms, however, would depend in part on the baseline level of overtesting, driven in part by health system design. In health systems where providers are paid via capitation or salary rather than FFS overtesting may be less common, with FFS systems known to incentivise service volumes.⁴³ Similarly, in some health systems patients register with a practice⁴⁴ and cannot 'doctor-shop' as is the case in Australia. In such systems providers are not financially incentivised to increase patient satisfaction by delivering requested services, as patients cannot simply access the service via another practice. Overtesting may be incentivised where pay-for-performance programs prioritise patient satisfaction, as providers may feel pressured to refer patients for requested imaging services so as to maintain satisfaction ratings.⁴⁵ Relationships between providers referring for imaging and those performing imaging may also influence overtesting, e.g. ownership by physicians of radiology services is associated with increased radiology use.⁴⁶ A shift from a volume-driven to a value-driven system could prevent overtesting by focusing on the delivery of interventions to maximise patient outcomes

BMJ Open

rather than service delivery.⁴⁷ Finally, the PSR actions studied here were facilitated in part by
the existence of the PSR which has oversight of all Medicare-funded services and authority to
impose penalties. Although the PSR objectives of patient safety and cost containment are
priorities globally, mechanisms available to regulators will differ elsewhere.

5 <u>Strengths</u>

6 This study benefited from the use of whole of population administrative data, improving 7 generalisability and preventing loss to follow-up or nonresponse. The data cover a long study 8 period both prior to and following the PSR action, improving effect estimates, and covers 9 multiple imaging modalities. The analysis accounted for potential seasonality in the use of CT 10 and non-linearity in post-intervention trends.

11 <u>Limitations</u>

Data were limited to services funded via Medicare Australia. Comparable data concerning
patients in public hospitals were not available, and we cannot comment on potential trends in
that setting.

There was no comparator available, which may have supported a more rigorous design. The PSR has a national scope, meaning there was no setting without the PSR action against which to compare trends. Different sets of MBS items were assessed as comparators in the hope of providing control for broader health system changes, but no items could be found for which pre-intervention trends resembled CT.

The data used did not allow for services to be assessed at the level of individual provider. As the PSR targets providers with unusually high volumes of services, it is possible that CT reductions following the PSR were concentrated among a small number of practitioners with high CT referral rates, alternatively it is possible that media messaging led to a more uniform change across providers. We could not assess provider-specific effects due to this data limitation.

Rates here used the Medicare-eligible population as the denominator, though changes in the number of people presenting for care may also be a suitable denominator as changes in this may impact CT use. The quarterly counts of GP contacts were included and show no change around the time of the PSR actions which would account for changes in the rates of CT observed. This study examines an action consisting of multiple components, and we are not able to assess,
 for example, mass media coverage in isolation from the publication of financial penalties for
 overtesting.

4 Conclusion

 5 This study suggests that regulatory body action may influence provider behaviour within a FFS 6 context. However, it also suggests that point-in-time interventions have limited longevity. The 7 combination of financial incentives (i.e. penalties for excessive use), patient and provider 8 education, and risks to reputation via potential for publicising of investigation outcomes was 9 followed by reduced CT use. Further research examining how best to couple such actions with 10 more sustained reinforcement over time to influence behaviour would be useful, in addition to 11 studies assessing the proportionate impacts of individual components.

12 Author Contributions

RM conducted analyses for this paper. DY and RM prepared the first draft manuscript. RM,
JD, POL, JS, TH and CW developed the grant application under which this work was funded.
All authors collaborated on writing the paper and approve the submitted version.

Ethics approval

Ethics approval was provided by the Curtin University Human Research Ethics Committee, approval number SMEC-80-10. Participant consent was not sought as data were a publicly available, aggregated collection of data on service volumes. There is no possible way to identify any of the people receiving the services the data relate to, nor to contact them for the purpose of obtaining consent.

- 22 Patient consent for publication
 - 23 None required.
- 24 Funding

Funded by the National Health and Medical Research Council grant 1144573.

26 Data sharing

27 Data used in these analyses can be requested from the authors.

Competing interests

37

1 None declared.

2 **References**

- Greenberg J, Green J. Over-testing: Why More Is Not Better. The American Journal of
 Medicine. 2014; 127(5):362-363. doi:<u>https://doi.org/10.1016/j.amjmed.2013.10.024</u>.
- Korenstein D, Chimonas S, Barrow B, et al. Development of a Conceptual Map of Negative
 Consequences for Patients of Overuse of Medical Tests and Treatments. JAMA Internal Medicine.
 2018; 178(10):1401-1407. doi:<u>https://doi.org/jamainternmed.2018.3573</u>.
- 8 3. EWeyh A, Busby E, Smotherman C, Gautam S, Salman S. Overutilization of Computed
 9 Tomography for Odontogenic Infections. Journal of Oral and Maxillofacial Surgery. 2019; 77(4):67110 672. doi:<u>https://doi.org/10.1016/j.joms.2018.10.025</u>.
- 7 11 4. Odia O, Yorkgitis B, Gurien L, et al. An evidence-based algorithm decreases computed
 8 12 tomography use in hemodynamically stable pediatric blunt abdominal trauma patients. The American
 9 13 Journal of Surgery. 2020; 220(2):482-488. doi:<u>https://doi.org/10.1016/j.amjsurg.2020.01.006</u>.
- Mason M. Looking for Trouble Patient Preference, Misdiagnosis and Overtesting. JAMA 14 5. 21 15 Internal Medicine. 2014; 174(10):1548-1549. doi: https://doi.org/10.1001/jamainternmed.2014.3429. 22 16 6. Smith-Bindman R. Use of Advanced Imaging Tests and the Not-So-Incidental Harms of 23 17 Incidental Findings. JAMA Internal Medicine. 2018; 178(2):227-228. 24 18 doi:10.1001/jamainternmed.2017.7557. 25
- 26 19 7. Lam J, Pickles K, Stanaway F, Bell K. Why clinicians overtest: development of a thematic
 27 20 framework. BMC Health Services Research. 2020; 20(1011) doi:<u>https://doi.org/10.1186/s12913-020-</u>
 28 21 05844-9.
- 29
 22
 30
 31
 23
 34
 35
 36
 37
 38
 38
 39
 30
 30
 31
 32
 32
 33
 34
 34
 35
 36
 36
 36
 37
 38
 38
 39
 30
 31
 31
 32
 32
 32
 33
 34
 34
 35
 36
 36
 37
 38
 38
 38
 39
 30
 30
 31
 32
 32
 34
 36
 36
 37
 38
 38
 39
 30
 30
 31
 32
 32
 34
 36
 36
 37
 36
 37
 38
 38
 38
 39
 30
 30
 31
 31
 32
 32
 34
 36
 36
 37
 36
 37
 36
 37
 36
 37
 36
 37
 36
 37
 36
 37
 37
 38
 38
 39
 30
 30
 31
 32
 36
 36
 37
 36
 37
 36
 37
 36
 37
 36
 37
 36
 37
 36
 37
 37
 37
 38
 37
 38
 37
 38
 37
 38
 37
 38
 37
 38
 37
 38
 38
 38
 39
 39
 30
 31
 31
 32
 36
 36
 37
 37
 38
 38
 38
 39
 39
 30
 31
 31
 32
 32
 34
 34
 34
 34
 36
 36
 36
 37
 36
 36
 37
 36
 36
 37
 36
 36
 <
- 24 9. Shobeirian F, Ghomi Z, Soleimani R, Mirshahi R, Taheri M. Overuse of brain CT scan for
 25 evaluating mild head trauma in adults. Emergency Radiology. 2020; Epub ahead of print
 26 doi:<u>https://doi.org/10.1007/s10140-020-01846-6</u>.
- Scally P. Radiology Services in Australia: The Director's Highlights HealthManagement; 2009.
 Willis E. Parry Y. The Australian Health Care System. In: Taylor L. editor. Understanding the
 - 28 11. Willis E, Parry Y. The Australian Health Care System. In: Taylor L, editor. Understanding the
 29 Australian Health Care System. 2nd ed. New South Wales: Elsevier; 2012.
- 38 30 12. Vengberg S, Fredriksson M, Burstrom B, Burstrom K, Winblad U. Money matters primary
 31 care providers' perceptions of payment incentives. Journal of Health Organization and Management.
 32 2021; epub ahead of print doi:<u>https://doi.org/10.1108/JHOM-06-2020-0225</u>.
- 33 13. Erny-Albrecht K, Bywood P. Corporatisation of general practice impact and implications
 34 Adelaide: Primary Health Care Research & Information Service; 2016.
- 443514.Fletcher M. The Quality of Australian Health Care: Current Issues and Future Directions4536Canberra: Commonwealth of Australia; 2000.
- 46 37 15. Community Affairs Reference Committee. Availability and accessibility of diagnostic imaging
 47 38 equipment around Australia Canberra: The Senate; 2018.
- 48
 49
 40
 50
 40
 41
 425
 43
 44
 44
 45
 46
 47
 48
 49
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
- 41 Public Services Review. Stages of the PSR Review Process [Internet]. Canberra: Australian 17. 51 42 Government; [cited 25 Feb 2021]. Available from: 52 43 https://www.psr.gov.au/sites/default/files/psr process 3 stages of review.pdf?v=1478464898. 53
- 544418.Professional Services Review. Professional Services Review: Annual Report 2008-09 Canberra:5545Australian Government; 2009.
- 46 19. Butterfield S. How mant are too many for CT scans? [Internet]. ACP Internist; 2011 [cited 20
 47 Jan 2021]. Available from: <u>https://acpinternist.org/archives/2011/02/CT.htm</u>.
- 58 48 20. Rossi J, Lipman G. Computed Tomography and Radiation: Weighing the Risks [Internet]. 59 49 Relias Media; 2010 [cited 20 Jan Available from: Morrisville, NC: 2021]. 60

2		
3	1	https://www.reliasmedia.com/articles/19835-computed-tomography-and-radiation-weighing-the-
4	2	risks.
5	3	21. Wilson P. CT scans and radiation [Internet]. Australian Broadcasting Corporation; 2011 [cited
6	4	20 Jan 2021]. Available from:
7 8	5	https://www.abc.net.au/health/thepulse/stories/2011/08/11/3290494.htm
o 9	6	22. Bourke E. Overuse of CT scans 'putting patients at risk' [Internet]. Australian Broadcasting
9 10	7	Corporation; 2010 [cited 20 Jan 2021]. Available from: <u>https://www.abc.net.au/news/2010-03-</u>
11	8	15/overuse-of-ct-scans-putting-patients-at-risk/364124.
12	9	23. Metherell M. Doctors ignoring CT scan cancer risk: watchdog [Internet]. Sydney: The Sydney
13	9 10	
14		
15	11	https://www.smh.com.au/national/doctors-ignoring-ct-scan-cancer-risk-watchdog-20100314-
16	12	<u>q634.html</u> .
17	13	24. Parker D. To CT or not to CT: a guide. The Australian. 2010.
18	14	25. Benchimol E, Smeeth L, Guttman A, et al. The REporting of studies Conducted using
19	15	Observational Routinely-collected health Data (RECORD) statement. PLoS Medicine. 2015;
20	16	12(10):e1001885. doi: <u>https://doi.org/10.1371/journal.pmed.1001885</u> .
21 22	17	26. Services Australia. Medicare Statistics [Internet]. Canberra: Australian Government; 2020
22	18	[cited 26 Aug 2020]. Available from: <u>https://www.servicesaustralia.gov.au/organisations/about-</u>
23	19	us/statistical-information-and-data/medicare-statistics.
25	20	27. Services Australia. Monthly and Quarterly Standard Reports [Internet]. Canberra: Australian
26	21	Government; 2020 [cited 26 Aug 2020]. Available from:
27	22	http://medicarestatistics.humanservices.gov.au/statistics/mth_qtr_std_report.jsp.
28	23	28. Linden A. Conducting Interrupted Time-series Analysis for Single- and Multiple-group
29	24	Comparisons. The Stata Journal. 2015; 15(2):480-500.
30	25	doi:https://doi.org/10.1177/1536867X1501500208.
31	26	29. StataCorp. Stata Statistical Software: release 15. College Station, Tx: StataCorp LLC; 2017.
32	27	30. Baum C, Schaffer M. Stata module to perform Cumby-Huizinga general test for
33	28	autocorrelation in time series. Statistical Software Components. 2013; (S457668).
34 25	29	31. Cox N. Speaking Stata: In Praise of Trigonometric Predictors. The Stata Journal. 2006; 6(4):561-
35 36	30	579. doi:https://doi.org/10.1177/1536867X0600600408.
37	31	32. Cox N. CIRCULAR: Stata module for circular statistics. Statistical Software Components. 2004;
38	32	(\$436601).
39	33	33. Imbens G, Lemieus T. Regression discontinuity designs: a guide to practice. Journal of
40	34	Econometrics. 2008; 142(2):615-635. doi:https://doi.org/10.1016/j.jeconom.2007.05.001.
41	35	34. Professional Services Review. Statement of Intent [Internet]. 2021 [cited 10 Jan 2022].
42	36	Available from: https://www.psr.gov.au/sites/default/files/Professional%20Services%20Review%20-
43	37	%20Statement%20of%20Intent.pdf.
44	38	35. Medical Benefits Reviews Task Group. Review of Funding for Diagnostic Imaging Services: Final
45	39	Report Canberra: Department of Health and Ageing; 2011.
46	40	36. Morgan T, Wu J, Ovchinikova L, et al. A national intervention to reduce imaging for low back
47 48	40 41	
40 49		pain by general practitioners: a retrospective economic program evaluation using Medicare Benefits
50	42	Schedule data. BMC Health Services Research. 2019; 19(983) doi: <u>https://doi.org/10.1186/s12913-</u>
51	43	<u>019-4773-y</u> .
52	44	37. Hong A, Ross-Degnan D, Zhang F, Wharam J. Small Decline In Low-Value Back Imaging
53	45	Associated With The 'Choosing Wisely' Campaign, 2012-14. Health Affairs. 2017; 36(4):671-679.
54	46	doi:10.1377/hlthaff.2016.1263.
55	47	38. Colla C, Mainor A, Hargreaves C, Sequist T, Morden N. Interventions Aimed at Reducing Use
56	48	of Low-Value Health Services: A Systematic Review. Medical Care Research and Review. 2017;
57	49	74(5):507-550. doi: <u>https://doi.org/10.1177/1077558716656970</u> .
58	50	39. Albert J. Radiation Risk From CT: Implications for Cancer Screening. Medical Physics and
59 60	51	Informatics. 2013; 201:W81-W87. doi:10.2214/AJR.12.9226.
60		

2		
3	1	40. Australian National Audit Office. Diagnostic Imaging Reforms [Internet]. Canberra: Australian
4	2	Government; 2014 [cited 25 May 2021]. Available from:
5 6	3	https://www.anao.gov.au/work/performance-audit/diagnostic-imaging-reforms.
7	4	41. Diagnostic Imaging Review Team. Review of Funding for Diagnostic Imaging Service: Final
8	5	Report Department of Health and Ageing; 2012.
9	6	42. Department of Health. Requesting of MRI (magnetic resonance imaging) services [Internet].
10	7	Canberra: Australian Government; 2020 [cited 25 Feb 2020]. Available from:
11 12	8	https://www1.health.gov.au/internet/main/publishing.nsf/Content/gp-requested-mri-services.
12	9	43. Blomqvist A, Busby C. How to Pay Family Doctors: Why "Pay per Patient" is Better Than Fee
14	10	for Service Toronto: C.D. Howe Institute; 2012.
15	11 12	44. Lewis D, Longley P. Patterns of Patient Registration with Primary Health Care in the UK National Health Service. Annals of the Association of American Geographers. 2012; 102(5):1135-1145.
16	12	45. Mehta S. Patient Satisfaction Reporting and Its Implications for Patient Care. AMA Journal of
17 18	14	Ethics. 2015; 17(7):616-621. doi:10.1001/journalofethics.2015.17.7.ecas3-1507.
10	15	46. Mitchell J, Sunshine J. Consequences of Physicians' Ownership of Health Care Facilities - Joint
20	16	Ventures in Radiation Therapy. The New England Journal of Medicine. 1992; 327(21):1497 - 1501.
21	17	doi:https://doi.org/10.1056/NEJM199211193272106.
22	18	47. Brady A, Bello J, Derchi L, et al. Radiology in the Era of Value-based Healthcare: A MultiSociety
23 24	19	Expert Statement from the ACR, CAR, ESR, IS3R, RANZCR, and RSNA. Radiology. 2021; 298(3):486-491.
24 25	20	
26	20	
27	24	Figure legende
28	21	Figure legends
29 30	22	Figure 1: Dort A indicates shange in the questerly rate of MDS funded CT scene per 100,000
31	22	Figure 1: Part A indicates change in the quarterly rate of MBS funded CT scans per 100,000
32 33	23	eligible population according to geographic location of service provision following publication
34	24	of the MBS professional services review (2008-9) and associated media attention. Superscript
35 36	25	L and S indicate significant changes in the level and slope parameters, respectively. Part B
37	26	indicates net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by State.
38 39	27	
40	27	
41 42	28	Figure 2: Impact of the 2008-9 professional services review on the rate of Medicare funded CT
42 43		
44	29	scanning (per 100,000 Medicare eligible population) in Australia. Part A indicates quarterly
45 46	30	rate of all MBS funded CT scans showing counterfactual and post-intervention fitted line
47	31	(seasonality removed for simplification). Part B is a representation of the seasonally adjusted
48 49	32	area under and between the curves used to estimate net effect of the response to the MBS
50	33	professional services review 2008-9.
51		r
52 53	34	
55	-	
55	35	Figure 3: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia
56 57	36	per 100,000 eligible population according to type of service following publications of the MBS
57 58	50	
59	37	professional services review (2008-9) and associated media attention. Superscript L and S
60		

indicate significant changes in the level and slope parameters, respectively. Part B displays net
 change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by type / anatomical area.

Figure 4: Impact of the 2008-9 professional services review on the rate of Medicare funded
diagnostic imaging excluding CT) (per 100,000 Medicare eligible population) in Australia.
Figure indicates quarterly rate of all MBS imaging claims (excluding CT) showing
counterfactual and post-intervention fitted line (seasonality removed for simplification).

tor occite iew only

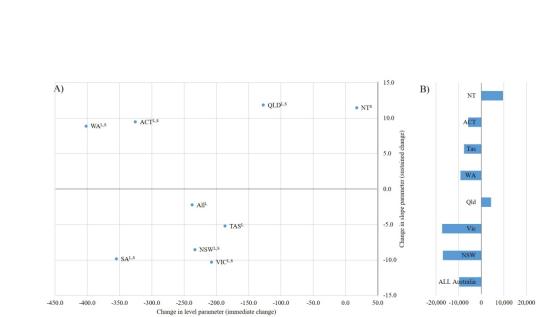
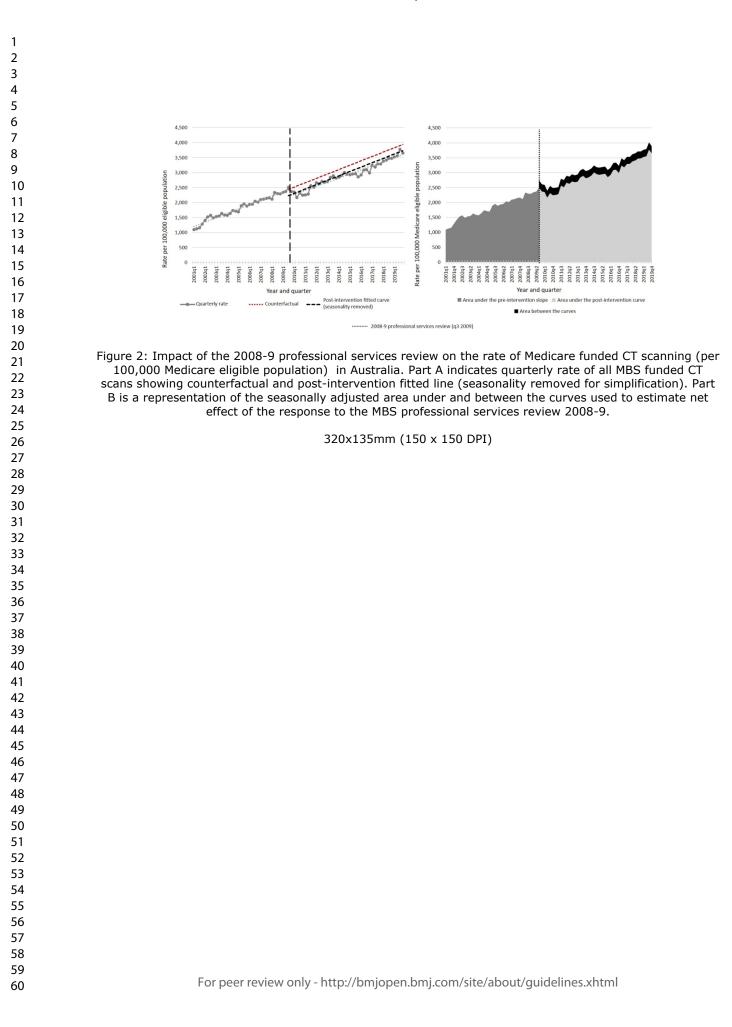


Figure 1. Part A indicates change in the quarterly rate of MBS funded CT scans per 100,000 eligible population according to geographic location of service provision following publication of the MBS professional services review (2008-9) and associated media attention. Superscript L and S indicate significant changes in the level and slope parameters, respectively. Part B indicates net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by State.


nediate change)

332x163mm (150 x 150 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Page 24 of 47

BMJ Open

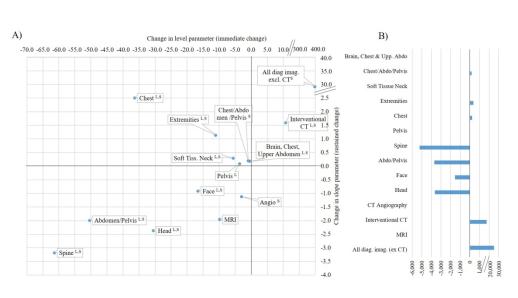


Figure 3: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia per 100,000 eligible population according to type of service following publications of the MBS professional services review (2008-9) and associated media attention. Superscript L and S indicate significant changes in the level and slope parameters, respectively. Part B displays net change in rate of CTs performed Qtr3 2009 - Qtr4 2019, by type / anatomical area.

332x170mm (150 x 150 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Page 26 of 47

BMJ Open: first published as 10.1136/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

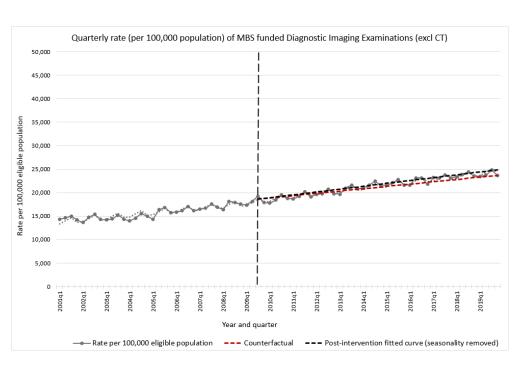


Figure 4: Impact of the 2008-9 professional services review on the rate of Medicare funded diagnostic imaging excluding CT) (per 100,000 Medicare eligible population) in Australia. Figure indicates quarterly rate of all MBS imaging claims (excluding CT) showing counterfactual and post-intervention fitted line (seasonality removed for simplification).

655x428mm (38 x 38 DPI)

1 2 3 4 5 6 7 8 9	
10 11 12 13 14 15 16 17	
 18 19 20 21 22 23 24 25 26 27 28 29 	
30 31 32 33 34 35	
36 37 38 39 40 41 42 43	
44 45 46	

Appendix 1: Grouping of CT N	BMJ Open MBS items according to anatomical location or techn	6/bmjopen-2021-057424
Group	MBS item number	A24 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
П J	5(001 / 5(041	Brain (Non-contrast)
Head	56001 / 56041	
	56007 / 56047	Brain (Contrast)
	56010 / 56050	Pituitary fossa (+/- Contrast)
C · 11	56016 / 56056	Petrous bones (+/- Contrast)
Facial bones	56028 /56036 /56068	Facial bones / sinuses or both (Contrast)
	56022 / 56062	Facial bones / sinuses or Both (Non-contrast)
	56076 / 56030 / 56070	Facial bones / sinuses or $both + Brain (+/- Contrast)$
	56013 /56053	Orbits (+/- Contrast)
Neck (soft tissue)	56101 /56141	Soft tissue neck (Non-congrast)
	56107 / 56147	Soft tissue neck (Pre and post contrast)
Chest	56301 / 56341	Chest +/- upper abdo (Non-contrast)
	56307 / 56347	Chest +/- upper abdo (Pre+ post contrast)
Abdomen (+/-Pelvis)	56401 / 56441	Upper Abdo -diaphragm B iliac crest (Non-contrast)
	56407 / 56447	Upper Abdo -diaphragm 投 iliac crest (Contrast)
	56501 / 56541	Abdo/Pelvis (Non-contrast)
	56507 / 56547	Abdo/Pelvis (Contrast)
	56549 / 56551 / 56552 / 56553/ 56554 / 56555	Virtual Colonoscopy
Pelvis only	56409 / 56449	Pelvis (Non-contrast) Pelvis (Contrast)
	56412 /56452	Pelvis (Contrast)
Chest/Abdo/Pelvis	56801 /56841	Chest/Abdo/Pelvis +/- neck (Non-contrast)
	56807 / 56847	Chest/Abdo/Pelvis +/- neek (Pre + post contrast)
Brain, Chest and Upper		ctee
Abdomen	57001 /57041	Head + Chest+/-upper abgomen without contrast
	57007 / 57047	Head + Chest +/- upper abdomen with contrast

3 4

	BMJ Open	6/bmjopen-2021
		op en
		2021-0
Spine	56220 / 56227	Cervical spine (Non-cont
•	56224 / 56230	Cervical spine (Contrast Non Contrast)
	56221 / 56228	Thoracic spine (Non-contrast)
	56225 / 56231	Thoracic spine (Contrast 🛓 Non Contrast)
	56223 / 56229	Lumbar spine (Non-contrast)
	56226 / 56232	Lumbar spine (Contrast + Non Contrast)
	56219 / 56259	Spine - 1 or more regions \mathcal{G} With Intrathecal Contrast)
	56233 / 56235	Spine (2 exams of any (C Tor L) kind Non-contrast)
		Spine (2 exams of any kind (C, T or L) with Contrast + Without
	56234 / 56236	ý <u>d</u>
	56237 / 56239	
	56238 /56240	4
Extremities	56619 / 56620/ 56622/ 56623/ 56625	
	56626 /56627/ 56628/ 56629/ 56630/ 56659 / 56665	
Spiral Angiography*	57350-57356	Spiral angiography (Pre post contrast)
	57360/57361	CT of the coronary arteries
Cone Beam CT	56025/56026/57362/57363	Cone Beam CT of teeth and supporting bone structures
Pelvimetry	57201 / 57247	Pelvimetry
	572.41 / 572.45	
Interventional CT	5/341/5/345	techniques 2
		34 / 56236Contrast)37 / 56239Spine (3 regions C,T,L Ngn-contrast)38 /56240Spine (3 regions C,T,L With Contrast + Non Contrast)19 / 56620/ 56622/ 56623/ 56625CT of extremities one or more regions (Non-contrast)26 /56627/ 56628/ 56629/ 56630/ 56659 / 56665CT of extremities one or more regions (Non-contrast)50-57356Spiral angiography (Pre topost contrast)60/57361CT of the coronary arteries25/56026/57362/57363Cone Beam CT of teeth and supporting bone structures
MBS: Medicare Benefit Scher	ne	
Spiral angiagraphic CT item	and as valate specify several bread aligned settings valating to	their use
Spiral angiographic C1 item	codes relate specify several broad chinical settings relating to	
		ues
		r P
		ote
		cted
		1 by
		ç
		Ŷſ
		<u> </u>

			ł	3MJ Open		6/bmjopen-2021							
Appendi	Appendix 2: Size of the Medicare eligible population, and numbers of imaging procedures performed by type, per quarter												
Year and quarter	Medicare eligible population	ALL MBS	r of imaging proce General Practitioner visits	All Diagnostic Imaging	Tter, by type (e Diagnostic Imaging excluding CT	xcl CT) 9 21 ALL MRI <u>Fil</u> 20 22	All US	All Nuc Med					
2001Q1	19,974,075	53,913,292	22,535,443	3,080,396	2,862,100	47,080	875,892	72,55					
2001Q2		54,612,217	23,208,144	3,163,585	2,937,355	52,84 ₹	890,270	74,65					
2001Q3	20,139,806	57,160,177	24,425,178	3,250,431	3,017,862	56,58	901,629	78,69					
2001Q4	20,215,957	53,802,181	22,153,529	3,129,899	2,869,771	55,782	900,319	74,53					
2002Q1	20,296,405	52,698,145	21,476,055	3,050,855	2,764,530	53,73 Ē	877,966	71,29					
2002Q2	20,374,998	57,043,850	23,767,570	3,321,404	3,010,541	60,26 ⁷	949,968	78,44					
2002Q3	20,451,273	58,573,985	24,368,388	3,462,073	3,140,545	64,44	995,302	82,3					
2002Q4	20,525,042	54,100,126	21,792,309	3,234,123	2,929,308	61,04	961,803	77,0					
2003Q1	20,574,715	53,702,789	21,315,160	3,235,168	2,919,654	60,33	974,715	75,12					
2003Q2	20,640,449	55,029,284	22,356,470	3,296,996	2,977,779	65,29	982,227	77,8					
2003Q3	20,724,986	58,373,440	24,129,408	3,492,688	3,153,252	69,92 6	1,028,635	81,5					
2003Q4	20,805,416	55,102,234	21,673,949	3,316,288	2,986,225	67,26	1,009,242	79,2					
2004Q1	20,892,413	55,237,593	21,666,698	3,251,558	2,923,221	65,887	993,179	75,2					
2004Q2	20,971,967	57,668,884	22,696,197	3,397,421	3,053,659	70,744	1,025,832	79,5					
2004Q3	21,040,363	60,479,828	24,247,888	3,630,147	3,264,529	73,1648	1,088,136	84,7					
2004Q4	21,020,468	58,681,495	22,853,173	3,497,953	3,137,363	73,483	1,074,598	79,9					
2005Q1	20,395,854	55,265,155	21,262,334	3,272,212	2,926,937	68,65€	1,018,953	73,8					
2005Q2	20,482,464	61,889,434	24,051,201	3,736,003	3,347,527	81,136	1,157,994	84,6					
2005Q3	20,535,311	63,925,592	25,233,583	3,864,039	3,463,294	86,18 6	1,201,410	86,0					
2005Q4	20,570,360	59,950,302	22,770,828	3,634,302	3,245,994	83,50හ	1,157,675	81,1					
2006Q1	20,651,536	61,070,666	22,888,207	3,673,330	3,273,759	86,36 6	1,166,540	80,5					
2006Q2	20,738,739	62,420,316	23,652,256	3,749,991	3,345,574	90,24 &	1,190,679	82,2					
2006Q3	20,834,970	65,739,068	25,539,356	3,981,768	3,556,490	98,37	1,254,468	88,6					
2006Q4	20,918,630	62,183,136	23,051,071	3,802,035	3,380,338	94,24 & yright.	1,241,269	84,8					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ	Open
-----	------

Page 30 of 47

				BN	ЛJ Open		6/bmjopen-2021		
1							pen-20		
2							21-0		
3	2007Q1	21,023,544	64,047,623	23,223,619	3,909,736	3,469,566	97,875	1,276,478	85,374
4 5	2007Q2	21,075,599	65,922,562	24,130,232	3,961,046	3,515,224	103,01	1,285,806	87,332
6	2007Q3	21,156,498	70,587,243	26,691,515	4,164,895	3,711,184	108,79%	1,331,460	90,249
7	2007Q4	21,213,097	68,075,447	24,303,827	4,052,075	3,593,258	103,894	1,326,226	92,717
8	2008Q1	21,300,775	66,111,755	23,520,354	3,932,797	3,481,827	97,28	1,284,795	86,786
9 10	2008Q2	21,382,498	73,943,872	26,298,507	4,374,974	3,876,485	113,76	1,446,356	100,177
11	2008Q3	21,474,007	73,411,004	26,802,312	4,347,958	3,854,001	114,660	1,437,929	100,593
12	2008Q4	21,542,093	72,757,668	25,038,849	4,268,041	3,775,261	113,59 (§	1,442,680	98,530
13	2009Q1	21,611,182	72,990,845	24,512,108	4,265,199	3,758,331	109,50	1,442,832	101,325
14 15	2009Q2	21,712,379	74,849,371	26,821,617	4,450,168	3,935,534	121,502	1,515,593	106,838
16	2009Q3	21,799,725	79,059,828	27,838,442	4,735,321	4,188,550	134,37£	1,592,771	114,116
17	2009Q4	21,864,719	77,132,787	26,394,306	4,439,849	3,921,910	124,63 ³	1,539,685	108,432
18	2010Q1	21,995,898	73,945,829	25,424,324	4,423,973	3,905,995	119,41	1,535,498	109,394
19 20	2010Q2	22,116,286	78,262,472	26,549,056	4,554,003	4,075,502	132,07	1,583,459	115,291
21	2010Q3	22,225,493	80,332,900	28,142,355	4,845,036	4,329,256	134,63%	1,668,768	125,165
22	2010Q4	22,322,182	79,520,986	26,438,106	4,697,780	4,196,325	134,15🕹	1,655,431	124,342
23	2011Q1	22,430,782	78,696,720	26,010,154	4,686,355	4,180,032	129,05	1,642,691	121,167
24 25	2011Q2	22,536,170	80,591,361	27,413,666	4,846,047	4,332,553	140,184	1,695,068	127,800
26	2011Q3	22,646,567	86,000,221	29,054,464	5,159,265	4,578,841	153,10	1,832,694	139,046
27	2011Q4	22,752,945	80,099,988	26,848,618	4,912,101	4,339,480	142,800	1,789,169	139,453
28 29	2012Q1	22,869,958	83,090,073	27,328,488	5,107,472	4,499,155	143,8748	1,862,446	143,865
30	2012Q2	22,975,129	83,419,449	28,489,105	5,146,458	4,542,312	151,1048	1,875,437	145,229
31	2012Q3	23,083,927	87,331,463	29,872,637	5,406,664	4,781,580	157,745	1,955,461	150,517
32	2012Q4	23,186,999	88,148,306	27,973,187	5,209,940	4,589,199	155,520	1,940,993	146,353
33	2013Q1	23,301,712	81,070,495	27,558,438	5,204,538	4,575,455	151,607	1,941,553	147,521
34 35	2013Q2	23,415,863	87,420,296	30,105,954	5,572,789	4,907,148	172,93 b	2,092,082	158,845
36	2013Q3	23,526,793	91,269,394	31,279,774	5,764,539	5,084,337	181,94 6	2,156,469	162,931
37	2013Q4	23,516,579	87,442,632	28,772,106	5,546,788	4,885,276	197,65. <u>\$</u>	2,101,276	158,443
38	2014Q1	23,726,126	87,365,616	29,058,733	5,647,377	4,972,344	214,24	2,126,548	157,860
39 40	2014Q2	23,816,689	92,173,285	30,602,781	5,845,674	5,153,281	230,86g	2,186,482	162,773
41							yright.		
42							it.		

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

31 of 47					BMJ Open		6/bmjopen-2021		
							pen-2		
							021-		
	2014Q3	23,923,051	94,962,398	32,149,396	6,089,946	5,370,449	246,153	2,265,530	165,754
	2014Q4	23,997,461	92,135,078	29,577,466	5,897,348	5,190,581	237,56	2,242,799	164,672
	2015Q1	24,105,563	90,560,806	29,192,987	5,901,602	5,195,336	233,585	2,242,250	162,921
	2015Q2	24,179,690	95,743,360	32,217,965	6,060,642	5,346,902	253,84₽	2,293,992	168,956
	2015Q3	24,278,495	98,437,227	33,192,194	6,261,986	5,542,495	262,668	2,373,981	170,088
	2015Q4	24,366,559	95,229,471	30,215,723	5,967,569	5,272,222	245,41 R	2,328,097	156,482
	2016Q1	24,453,229	92,813,393	29,917,061	5,997,592	5,283,310	240,294	2,338,670	156,130
	2016Q2	24,553,190	102,637,644	33,843,841	6,440,165	5,682,508	272,750€	2,512,656	170,212
	2016Q3	24,636,038	100,005,965	33,410,503	6,462,300	5,698,777	275,30 ²	2,487,482	171,942
	2016Q4	24,711,652	95,516,816	30,979,374	6,123,586	5,384,207	256,55%	2,387,030	164,289
	2017Q1	24,821,154	100,586,254	31,735,405	6,557,448	5,752,386	272,3175	2,567,688	175,505
	2017Q2	24,924,168	103,376,540	33,864,514	6,547,871	5,755,139	294,158	2,565,789	174,498
	2017Q3	25,007,901	104,773,012	35,065,253	6,770,682	5,947,070	301,470	2,608,763	179,662
	2017Q4	25,078,863	104,675,460	32,269,893	6,625,438	5,799,977	293,52	2,610,899	172,694
	2018Q1	25,182,661	101,038,400	32,092,680	6,725,986	5,873,983	290,84	2,653,510	180,775
	2018Q2	25,267,605	109,365,729	35,737,557	6,882,768	6,020,760	315,569	2,722,980	177,872
	2018Q3	25,353,168	106,249,390	34,517,832	7,057,888	6,177,536	328,21	2,764,644	182,907
	2018Q4	25,436,468	106,876,163	33,190,019	6,867,102	5,982,682	312,602	2,764,861	179,849
	2019Q1	25,520,089	105,168,957	32,968,083	6,881,495	5,981,931	302,827	2,801,529	180,979
	2019Q2	25,595,189	111,352,700	37,391,585	6,978,029	6,068,535	▲ 358,07 🖉	2,808,803	184,667
	2019Q3	25,675,916	113,030,934	36,443,353	7,335,021	6,365,854	354,05	2,933,923	193,589
	2019Q4	25,754,980	108,011,995	33,510,224	7,009,009	6,068,363	338,1038	2,852,030	190,786
	TOTAL						24 b		
	2001- 2019		5,986,242,372	2,089,094,937	369,444,996	327,257,812	12,158,315 6	131,610,743	9,438,609
	Percent of all N	IBS activity		34.9	6.17	5.47	$0.2^{"}_{ m D}$	2.2	0.16
	Percent of all D	agnostic Imaging				88.58	3.2%	35.62	2.55
	Percent of all C	T scanning					ected		
							by c		
							by copyright		
							th.		
			For peer revi	ew only - http://bmjo	open.bmj.com/sit	.e/about/guideliı	nes.xhtml		
					-	0			

				BMJ (Dpen		∿bmjopen-∵
Table continued							6/bmjopen-2021-057424 on
Year and quarter	ALL CT	N Head CT	umber of C Facial bones CT	T examinati Neck (soft tissue) CT	ions per qu Chest CT	arter, by type Chest/Abdo/Pelvis CT	Abdame petvis)
2001Q1	218,296	75,243	29,194	5,846	25,038	10,890	2. D
2001Q2	226,230	78,787	31,520	5,939	25,496	10,934	owr
2001Q3	232,569	77,870	34,130	6,000	26,799	11,658	Downloaded
2001Q4	260,128	75,556	31,757	6,216	26,987	12,194	ded
2002Q1	286,325	72,827	28,723	5,943	26,344	12,515	from http://bmjopen.bmj.com/ on April 20,
2002Q2	310,863	80,824	32,855	6,477	28,191	13,491	n ht
2002Q3	321,528	82,648	35,417	6,737	30,494	14,510	tp://
2002Q4	304,815	74,501	31,611	6,479	29,060	14,286	bmj
2003Q1	315,514	78,396	30,083	6,508	28,524	15,133	ope
2003Q2	319,217	79,059	32,590	6,549	28,936	15,241	n.br
2003Q3	339,436	83,562	34,796	6,976	31,994	16,793	nj.c
2003Q4	330,063	78,264	31,652	6,996	31,908	17,194) mo
2004Q1	328,337	76,190	29,486	7,002	30,747	17,864	on (
2004Q2	343,762	80,273	33,374	6,994	31,536	18,311	Apri
2004Q3	365,618	85,257	36,384	7,272	35,081	19,594	120
2004Q4	360,590	82,754	35,066	7,179	35,066	19,973	
2005Q1	345,275	76,760	31,309	6,939	32,483	20,226	24 b
2005Q2	388,476	88,306	37,094	7,862	35,613	22,142	, D Vc
2005Q3	400,745	91,158	38,797	7,793	37,585	23,170	ues
2005Q4	388,308	84,502	36,127	7,904	36,823	23,263	2024 by guest. Protected
2006Q1	399,571	86,081	35,311	8,134	36,452	24,976	rote
2006Q2	404,417	86,807	38,138	7,731	36,276	25,075	cted
2006Q3	425,278	92,095	41,594	8,055	39,001	26,017	by
2006Q4	421,697	87,923	38,381	8,577	38,946	26,911	by copyright.

Page 33 of 47					BMJ O	pen	6/bmjopen-2021-057424 00 28,744 27,920 28,7424 00 29,226 29,226 29 30,196 April 2022 32,623 99	
1 2							-2021-	
3	2007Q1	440,170	92,093	37,067	8,779	39,326	28,744 7 8	8,975
4 5	2007Q2	445,822	94,631	40,052	8,245	38,678	27,920	9,103
6	2007Q3	453,711	93,891	42,974	8,724	41,238	29,226 ⁹ 8	8,578
7	2007Q4	458,817	95,095	41,294	8,837	42,434	30,196 ¹³ _≥ 8	9,730
8	2008Q1	450,970	93,195	38,146	8,545	39,569	29,798 🚊 9	0,417
9 10	2008Q2	498,489	101,530	45,024	9,678	43,118	32,623	8,675
11	2008Q3	493,957	97,072	47,054	9,072	44,512		6,012
12	2008Q4	492,780	97,102	43,048	9,254	44,864	õ	6,361
13	2009Q1	506,868	98,536	41,934	9,479	43,779	35,884 🗟 102	2,656
14 15	2009Q2	514,634	101,302	45,716	9,636	43,969	36,118	2,856
16	2009Q3	546,771	107,069	50,834	10,075	48,233		6,818
17	2009Q4	517,939	100,708	44,414	9,594	45,591		0,455
18	2010Q1	517,978	100,254	41,898	9,628	43,424	39,023	3,770
19 20	2010Q2	478,501	93,538	40,507	8,960	40,803	37,635 9	5,304
21	2010Q3	515,780	98,321	46,458	9,666	45,428	39,354 😽 9	9,595
22	2010Q4	501,455	94,719	42,363	9,825	46,193	39,372 5 9	6,336
23	2011Q1	506,323	95,129	39,688	9,981	45,948	41,563	0,132
24 25	2011Q2	513,494	96,725	43,280	9,797	45,808		0,369
26	2011Q3	580,424	102,851	50,301	10,775	50,818	45,041 9 10	7,854
27	2011Q4	572,621	98,347	44,683	10,532	50,612	44,780 <u>P</u> 10	8,030
28	2012Q1	608,317	105,042	45,525	11,083	51,598		6,058
29 30	2012Q2	604,146	104,413	46,932	11,013	51,212	48,006	3,052
31	2012Q3	625,084	106,380	50,286	11,121	54,646	N	3,827
32	2012Q4	620,741	101,520	46,030	11,208	55,158	50,048 🖉 114	4,814
33	2013Q1	629,083	105,860	44,546	11,554	53,664	51,746 g 11	8,692
34 35	2013Q2	665,641	111,194	49,730	12,124	57,601	52,886 בי 12	
36	2013Q3	680,202	111,494	52,005	12,030	60,202	53,962 of 12	3,695
37	2013Q4	661,512	102,227	47,646	12,089	59,847	52,886 P 12. 53,962 ec 12. 54,211 ec 12.	1,680
38	2014Q1	675,033	104,173	46,951	12,169	59,405	56,972 56,972	6,579
39 40	2014Q2	692,393	105,582	49,645	12,308	61,240	56,573 g 12	7,207
41	-						56,573 ^{co} 12'	
42								

BMJ	Open
-----	------

Page 34 of 47

							1 1 1 1 1 6/bmjopen-2021-057424 on 21 April
2014Q3	719,497	106,283	54,941	13,046	66,686	58,574	0574
2014Q4	706,767	104,179	49,805	13,241	67,660	59,008	²⁴
2015Q1	706,266	107,198	49,464	13,017	65,311	60,743	n 1
2015Q2	713,740	108,814	52,771	13,231	68,186	60,704	$\frac{1}{2}$
2015Q3	719,491	108,195	54,781	13,098	72,485	61,291	pril 1
2015Q4	695,347	101,454	47,878	13,227	70,426	62,371	2022.
2016Q1	714,282	105,362	47,179	13,505	69,763	64,773	
2016Q2	757,657	111,103	53,315	14,490	74,077	65,588	OWn 1
2016Q3	763,523	110,128	55,826	14,755	78,893	66,953	Downloaded
2016Q4	739,379	104,499	50,328	14,453	77,701	65,310	
2017Q1	805,062	115,414	52,521	15,667	81,219	71,433	from http://bmjopen.bmj.com/ on Apri
2017Q2	792,732	112,646	53,677	15,661	80,405	69,606	n ht
2017Q3	823,612	117,302	59,970	15,577	87,261	71,379	p://
2017Q4	825,461	114,373	53,565	16,273	86,954	71,591	omj
2018Q1	852,003	118,695	54,068	16,751	85,878	76,133	oper
2018Q2	862,008	118,600	57,084	16,811	87,963	74,992	ן.bn
2018Q3	880,352	119,379	62,327	16,995	91,688	75,550	nj.cc
2018Q4	884,420	118,096	56,790	17,477	94,604	77,554) m
2019Q1	899,564	120,415	55,471	18,299	94,124	80,924	on /
2019Q2	909,494	119,984	58,368	18,347	94,789	79,216	pril
2019Q3	969,167	125,420	65,879	19,370	105,447	80,680	20,
2019Q4	940,646	117,270	58,760	19,454	103,562	80,410	20
TOTAL 2001-2019	42,187,184	7,450,445	3,366,188	816,634	4,019,380	3,211,131	₽ ,
Percent of all MBS activity	0.70	0.12	0.06	0.01	0.07	0.05	gue:
Percent of all Diagnostic Imaging		2.02	0.91	0.22	1.09	0.87	st. Protected by copyright
Percent of all CT	11.42	2.02	0.91	0.22	1.09	0.07	otec
scanning		17.66	7.98	1.94	9.53	7.61	fed

Table continued	
-----------------	--

				BMJ Open		/bmjope		
Table continued						6/bmjopen-2021-05742		
			Ň	umber of CT e	xaminations per qua	4		
Year and quarter	Brain/Chest/ Upper Abdo CT	Pelvis CT	Spine CT	Extremities CT	Spiral Angiography CT	Interventional CTP	Cone Beam CT	CT Pelvimetry
2001Q1	484	3,501	33	9,355	3,770	2024,249	0	7:
2001Q2	520	3,339	33	9,787	4,140	^N ₂ 4,455	0	6
2001Q3	458	3,595	21	10,231	4,535	§ 5,059	0	64
2001Q4	511	3,326	30,308	9,873	4,745	no 5,402	0	5
2002Q1	570	3,369	61,118	9,803	4,659	ā 5,447	0	5
2002Q2	603	3,658	63,786	11,201	5,430	ਰੋਂ 6,124	0	6
2002Q3	594	3,685	63,611	11,630	5,923	∃ 6,439	0	5
2002Q4	569	3,641	62,401	11,023	5,844	6,623	0	4
2003Q1	606	3,703	66,897	11,128	5,674	56,697	0	5
2003Q2	601	3,774	64,279	11,809	6,578	7,524	0	4
2003Q3	825	4,032	66,834	12,383	7,588	8,236	0	4
2003Q4	799	3,801	65,897	12,119	7,375	3 .8,872	0	4
2004Q1	785	3,938	66,965	12,053	7,391	2 8,777	0	5
2004Q2	816	4,007	68,064	13,134	8,454	9,247	0	4
2004Q3	905	3,933	72,040	13,971	9,539	<u>₽</u> 9,983	0	4
2004Q4	944	3,905	71,700	13,196	9,487	₿0,770	0	4
2005Q1	895	3,729	70,464	13,115	8,846	20,420	0	4
2005Q2	991	4,144	76,683	15,638	10,946	12,081	0	4
2005Q3	1,065	4,260	77,925	15,741	12,808	<u>ک</u> 2,706	0	4
2005Q4	973	3,957	76,276	15,480	12,381	ធ្លី 3,422	0	3
2006Q1	1,153	4,092	80,785	15,887	12,450	±3,113	0	3
2006Q2	1,108	4,253	79,022	17,140	13,247	at 4,100	0	3
2006Q3	1,209	4,385	83,153	18,105	13,158	र्षे 5,063	0	3
2006Q4	1,161	4,530	84,528	17,970	12,964	. बु6,177	0	3
2007Q1	1,149	4,489	90,737	19,050	13,219	cqpyright.	0	3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

					BMJ Open		6/bmjopen-2021		Page
1 2									
3	2007Q2	1,192	4,420	90,739	19,767	14,103		0	289
4 5	2007Q3	1,309	4,673	89,921	20,303	15,602	4 6,954	0	318
6	2007Q4	1,388	5,321	91,415	19,958	14,875	A7,995	0	279
7	2008Q1	1,349	5,088	92,935	20,092	14,167	₹7,414	0	255
8	2008Q2	1,500	6,200	100,562	22,752	16,368	₹20,187	0	272
9 10	2008Q3	1,415	5,261	99,498	23,278	17,377	No.489	0	232
11	2008Q4	1,471	4,650	100,134	23,436	16,636	22,185	0	216
12	2009Q1	1,588	4,801	104,771	24,479	16,201	§2,558	0	202
13	2009Q2	1,538	4,980	101,581	25,436	17,557	a 3,715	0	230
14 15	2009Q3	1,755	5,293	107,077	26,983	19,439	24,995	0	247
16	2009Q4	1,680	4,702	102,250	25,472	18,485	₹ 6,9 78	0	205
17	2010Q1	1,699	4,738	103,685	25,789	17,685	2 6,216	0	169
18 10	2010Q2	1,648	4,555	85,806	24,382	18,201	26,982	0	180
19 20	2010Q3	1,767	4,882	95,385	25,813	20,374	28,567	0	170
21	2010Q4	1,849	4,763	90,398	24,944	19,597	\$ 0,959	0	137
22	2011Q1	1,963	4,826	92,963	26,139	18,653	2 9,167	0	171
23	2011Q2	1,880	4,780	91,462	27,106	19,789	3 0,453	0	151
24 25	2011Q3	2,172	5,466	102,125	30,104	26,968	₹2,923	12,871	155
26	2011Q4	2,221	5,125	100,847	28,793	27,474	₹4,778	16,263	136
27	2012Q1	2,482	5,636	110,377	31,655	27,675	A 9314,698	16,625	179
28	2012Q2	2,403	5,608	107,295	32,250	29,264	35,854	16,696	148
29 30	2012Q3	2,415	5,753	109,471	33,365	31,617	8,847	17,949	145
31	2012Q4	2,442	5,752	110,166	33,269	30,578	₽ ₩1,714	17,897	145
32	2013Q1	2,591	6,047	114,534	33,797	29,866	<u>چ</u> 9,310	16,768	108
33	2013Q2	2,838	6,423	117,335	36,080	33,694	ä <u>4</u> 2,769	18,941	99
34 35	2013Q3	2,937	6,806	117,109	36,896	36,368	1 4,764	21,846	88
36	2013Q4	2,994	6,918	113,552	36,228	34,893	a.352	22,773	102
37	2014Q1	3,002	6,976	120,699	37,594	32,916	\$45,383	22,106	108
38	2014Q2	3,130	7,468	119,988	38,547	35,930	\$49,130	25,549	96
39 40	2014Q3	3,224	7,554	123,541	40,648	38,353		27,768	88
41	-						Synight.		
42							it.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 36 of 47

e 37 of 47					BMJ Open		6/bmjopen-2021-05742		
							oper		
							ר-20		
							21-0		
	2014Q4	3,212	7,817	123,566	41,177	37,057	2,224	17,135	49
	2015Q1	3,401	7,898	128,899	41,151	35,762	\$0,077	9,672	82
	2015Q2	3,347	8,294	123,016	41,336	39,666	₹1,910	9,739	82
	2015Q3	3,879	9,304	121,370	41,927	41,299	\$2,865	9,645	68
	2015Q4	3,927	9,217	113,166	40,710	39,087	₹5,872	8,978	59
	2016Q1	4,293	9,823	123,714	41,669	38,340	N2,317	9,521	62
	2016Q2	4,695	10,472	125,323	44,811	44,471	ອ7,181	11,836	63
	2016Q3	4,957	11,141	124,856	45,329	46,254	§ 6,064	10,142	58
	2016Q4	4,987	10,832	120,430	44,823	44,577	<u>ឆ</u> 8,579	9,351	72
	2017Q1	5,870	12,380	137,018	48,798	45,657	\$9,527	10,370	72
	2017Q2	5,992	12,618	129,849	48,133	48,847	<u>₹</u> 0,995	10,015	56
	2017Q3	6,278	12,830	133,361	49,085	52,435	⊴ 1,656	10,899	48
	2017Q4	6,563	13,081	134,986	49,347	52,331	5,607	12,472	46
	2018Q1	7,668	14,379	144,524	52,592	51,199	3,111	10,549	36
	2018Q2	7,997	15,461	139,015	54,608	55,177	\$5,107	12,623	43
	2018Q3	8,565	16,172	140,824	56,911	58,989	\$5,395	11,699	43
	2018Q4	8,943	16,841	139,773	57,016	57,800	70,336	11,510	47
	2019Q1	9,524	17,606	144,280	59,830	56,311	₹7,328	11,956	44
	2019Q2	10,235	18,763	139,531	62,173	62,432	₹1,045	12,537	44
	2019Q3	12,202	21,726	148,339	66,588	68,053	₫5,046	12,834	29
	2019Q4	12,594	22,274	141,373	64,977	66,237	37,304	11,840	39
	TOTAL 2001-2019	221,265	541,440	7,428,394	2,239,168	1,963,837	2,466,053	489,375	18,472
	Percent of all MBS						14 b		
	activity	0.00	0.01	0.12	0.04	0.03	by 0.04	0.01	0.00
	Percent of all Diagnostic Imaging	0.06	0.15	2.01	0.61	0.53	uest 0.67	0.13	0.00
	Percent of all CT	0.00	0.13	2.01	0.01	0.33		0.15	0.00
	scanning	0.52	1.28	17.61	5.31	4.66	rotect 5.85	1.16	0.04
							e d		
	MBS: Medicare Benefit Scheme						уу с		
							by copyright		
							.ight		
							•		

6/bmjopen-2021-057424 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

, « Septem. Q1: January to March, Q2: April to June, Q3: July to August, Q4: September to December US: Ultrasound, Nuc Med: Nuclear Medicine

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

6/bmjopen-2021

à

right.

1 2 3 4 5	Aj se
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20 21	
22	
22	
24	
25	Μ
26	1,1
27	aC
28	Si
29	No
30	lev
31	the
32	
33	#A
34	W
35	
36	*E
37	95
38	95
39 40	ру
40	I
42	
43	

44 45 46 ppendix 3, Table 1: Change in the quarterly rate of MBS funded CT scans per 100,000 eligible population according to geographic location of ervice provision following publications of the MBS professional services review (2008-9) and associated media attention

Classification of	Geographic	Lev	el*		Sloj	pe*	Net change ^b in the rate of	
the change ^a	location [#]	Daint actimate	95% CL		Daint actimate	pe* April 20 95% CL 20		CTs performed (Qtr3 2009-Qtr 4 2019)
		Point estimate	Lower	Upper	Point estimate	Lower	Upper	2009 Qui + 2019)
1A	NSW	-233.4	-344.3	-122.4	-8.5	-13.8	-3.2	-16,943.6
	SA	-355.0	-449.9	-260.2	-9.8	-15.7	-4.(हे	-22,843.0
	Vic	-207.7	-307.1	-108.3	-10.3	-15.1	-5.4	-17,344.1
1 B	ALL Australia	-237.7	-333.4	-141.9	-2.2	-7.2	2.8	-9,744.3
ID	Tas	-186.7	-308.3	-65.0	-5.2	-13.0	2. <u>ē</u>	-7,652.7
	WA	-402.0	-568.7	-235.3	8.9	0.0	17.7	-9,197.4
1C	ACT	-325.5	-405.2	-245.8	9.5	5.5	13.5	-5,857.7
	Qld	-127.3	-230.9	-23.7	11.8	7.3	16.4	4,274.8
2C	NT ^C	17.3	-170.4	205.0	11.5	4.4	18. 5	9,665.8
							nj. co	
BS: Medicare Bene	fit Scheme; CT: Com	nputed Tomography	scanning				m/ or	

Classification of change: 1A: Significant reduction in both the level and slope; 1B: Significant reduction in the level bat no change in the slope; 1C: ignificant reduction in the level with a significant increase in the slope; 2A: No significant change in the level with a significant reduction in the slope; 2B: o significance change in the level or slope; 2C: No significant change in the level with a significant increase in the slope; 3A: Significant increase in the vel with a significant reduction in the slope; 3B: Significant increase in the level with no change in the slope; 3C: Significant increase in both the level and e slope.

ACT: Australian Capital Territory; NSW: New South Wales; NT: Northern Territory; Qld: Queensland; SA: South Australia; Tas: Tasmania; Vic: Victoria; A: Western Australia.

Both the level and slope changes are expressed per 100,000 eligible population residing in the location specified at the service provision

5% CL: 95% confidence limits around the point estimate

values < 0.05 (95% CL that do not cross zero) are considered as significant changes in level and slope; greyed cells indicate non-significant changes

6/bmjopen-2021

Values are estimated from the seasonally adjusted single interrupted time series model with autocorrelation correction strengthered for the data

 ^bThe net change in the rate was calculated from the area between the counterfactual (i.e. pre-intervention slope with no evel change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of MBS stunded CT scans. Negative values result from the area below the counterfactual being larger than the area above it and indicate a net reduction in the rate of CT scans undertaken over the post-intervention time period; positive values indicate the reverse. In cases where the post-intervention trend was non-linear the net change is limited to the period prior to further disruptions in the trend.

^cPost intervention phase was non-linear therefore change reported in the level and slope are limited to the initial post-indervention period prior to any significant further disruption of the trend. or beer teview only nloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 41 of 47

			Net change ^b in the					
Classification of	Type of medical imaging service	Lev	el*		Slo	rate of CTs performed (Qtr3		
the change ^a		Daint actimate	95% CL		Daint actiments			595% CL
		Point estimate	Lower	Upper	Point estimate	Lower	Upper	2009-Qtr 4 2019)
	Head CT	-30.5	-43.5	-17.6	-2.4	DownToade	-1.6	-3,637.4
1A	Face CT	-16.6	-23.0	-10.2	-0.9	ਮੈ.4	-0.5	-1,549.7
	Abdomen/Pelvis CT	-50.4	-63.4	-37.4	-2.0	a2.5	-1.4	-3,695.2
	Spine CT	-61.4	-83.6	-39.1	-3.2	ă , 4.2	-2.2	-5,230.1
1B	Pelvis CT ^c	-3.6	-5.8	-1.5	0.1	1 0.1	0.2	-47.3
	Chest CT	-36.4	-46.4	-26.3	2.5	2.0	3.0	273.4
1 C	Brain, Chest and Upper Abdo men CT ^C	-0.5	-0.9	-0.1	0.2	0.1	0.2	31.1
	Extremities CT	-11.1	-19.0	-3.2	1.1	2 0.5	1.8	366.5
	Soft Tissue Neck CT	-5.6	-7.4	-3.8	0.3	0 .2	0.4	3.9
2A	CT Angiography ^C	-3.0	-6.2	0.3	-1.1	8 1.7	-0.6	-16.9
2B	MRI ^c	-9.8	-33.0	13.4	-2.0	on4.6	0.7	0.0
2C	Chest/Abdomen/Pelvis CT	-0.9	-6.2	4.3	0.2	j 10.1	0.4	167.9
	All diagnostic imaging (excl CT)	393.8	-68.4	856.0	29.2	.0, ²	55.4	25,137.6
3 C	Interventional CT	10.7	3.0	18.4	1.6	No.1.2	2.0	1,739.0

BMJ Open Appendix 3, Table 2: Change in the quarterly rate of MBS funded medical imaging undertaken in Australia per 100,000 eligible population according to type of service following publications of the MBS professional services review (2008-9) and associated media attention

MBS: Medicare Benefit Scheme; MRI: Magnetic Resonance Imaging; CT: Computed Tomography scanning

^aClassification of change: 1A: Significant reduction in both level and slope; 1B: Significant reduction in level but no change in the slope; 1C: Significant reduction in the level and a significant increase in the slope; 2A: No significant change in level with a significant reduction in slope; 2B: No significance change in the level or slope; 2C: No significant change in level with a significant increase in slope; 3C: Significant inc Rease in both level and slope.

by gues

*Both the level and slope changes are expressed per 100,000 eligible population residing in Australia at the time of these provision opyright.

6/bmjopen-2021-0574;

95% CL: 95% confidence limits around the point estimate

 p values < 0.05 (95% CL that do not cross zero) are considered as significant changes in level and slope; greyed cells indicate non-significant changes

^bThe net change in the rate was calculated from the area between the counterfactual (i.e. pre-intervention slope with no revel change) and the post-intervention observed (defined using the seasonally adjusted model level and slope parameters) curves of the quarterly rate of MBS unded medical imaging services. Negative values result from the area below the counterfactual being larger than the area above it and indicate a net reduction in the rate of CT scans undertaken over the post-intervention time period; positive values indicate the reverse. In cases where the post-intervention trend was non-linear the net change is limited to the period prior to further disruptions in the trend.

^cPost intervention phase was non-linear therefore change reported in the level and slope are limited to the initial post-in ervention period prior to any significant further disruption of the trend. on http://bnipper.vr. ed from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

			1	2021	
	Item No.	STROBE items	Location in manuscript where items are reported	RECORD items	Location in manuscript where items ar reported
Title and abstra	nct	1			1000100
	1	 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced 		RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	Abstract - Methods
		summary of what was done and what was found	Pr to	RECORD 1.2: If applicable the geographic region and time frame within which the study took place should be reported in the title or abstract.	Abstract – Methods
			erie	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	N/A
Introduction				9	
Background rationale	2	Explain the scientific background and rationale for the investigation being reported		April 20, 2024	Throughout Introduction
Objectives	3	State specific objectives, including any prespecified hypotheses		by	Last paragraph Introduction, pa
Methods	- 1			guest.	
Study Design	4	Present key elements of study design early in the paper		Protect	First sentence o Methods, page
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection		Protected by copyright	Methods – Data source subheading, pag 4

			BMJ Open	1136/bn	Page 44
Participants	6	(a) Cohort study - Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> - Give the eligibility criteria, and the		RECORD 6.1: The methods of study population selection (such as codes or algorithms used to identify subjects) should be listed in detail. If this is not possible, an explanation should be provided.	Methods – Data source subheading; Appendix 1
		sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i> - Give the eligibility criteria, and the sources and methods of selection of participants		RECORD 6.2: Any validation studies of the codes or algorithms used to select the population should be referenced. If validation was conducted for this study and not published elsewhere, detailed methods and results should be provided.	Codes in Appendix 1. Validation / algorithms N/A
		(b) Cohort study - For matched studies, give matching criteria and number of exposed and unexposed Case-control study - For matched studies, give matching criteria and the number of controls per case	or revie	RECORD 6.3: If the study involved linkage of databases, consider use of a flow diagram or other graphical display to demonstrate the data linkage process, including the number of individuals with linked data at each stage.	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.		RECORD 7.1: A complete list of codes and algorithms used to classify exposures, outcomes, confounders, and effect modifiers should be provided. If these cannot be reported, any explanation should be provided.	Appendix 1. No confounding variables, though counterfactual is described in Methods – Statistical analysis subheading page 5
Data sources/ measurement	8	For each variable of interest, give sources of data and details of methods of assessment (measurement).		ad by copyright.	Methods subheadings Data Source and Quarterly rate of

5 of 47			BMJ Open		1136/bm	
		Describe comparability of assessment methods if there is more than one group			mjopen-2021	imaging, pages 4 5
Bias	9	Describe any efforts to address potential sources of bias			1-057424 on 21 April	Methods subheading Statistical Analysis, page 5 and Limitations, page 13
Study size	10	Explain how the study size was arrived at			-057424 on 21 April 2022. Downloaded from http://bmjope	Population for denominator in rates described i Methods – Quarterly rate of imaging, page 5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	r rei.		rom http://bmjope	Methods – Data source subheading, pag 4
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) <i>Cohort study</i> - If applicable, explain how loss to follow-up was addressed <i>Case-control study</i> - If applicable, explain how matching of cases and controls was addressed 		2074	n.bmj.com/ on April 20, 2024 by guest. Protected by copyright	Methods – Statistical analysis, page 5 N/A N/A No loss to follow up N/A
		<i>Cross-sectional study</i> - If applicable, describe analytical			copyrigh	N/A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Open 36	Pag
	methods taking account of sampling strategy (e) Describe any sensitivity analyses	njopen-2021-0	N/A
Data access and cleaning methods		RECORD 12.1: Authors should describe the extent to which the investigators had access to the da population used to create the stu population.	dy
Linkage		RECORD 12.3: State whether the study included person-level, institutional-level, or other data across two or more databases. The methods of linkage and methods linkage quality evaluation should provided.	e N/A linkage of
Results		ġ	
Participants	13(a) Report the numbers of individuals at each stage of the study (e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non- participation at each stage. (c) Consider use of a flow diagram	RECORD 13.1: Describe indeta selection of the persons included study (<i>i.e.</i> , study population sele including filtering based on data quality, data availability and ink The selection of included person be described in the text and/or by means of the study flow diagram	l in the paragraph, page ction) (concerning imaging cage. examinations, no s can persons)
Descriptive data	14(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders	guest. Protected by copyright	N/A, unit of analysis is imaging procedure rather than persons

47 of 47			BMJ Open		1136/br	
		 (b) Indicate the number of participants with missing data for each variable of interest (c) <i>Cohort study</i> - summarise follow-up time (<i>e.g.</i>, average and total amount) 			njopen-2021-057424	
Outcome data	15	Cohort study - Report numbers of outcome events or summary measures over timeCase-control study - Report numbers in each exposure category, or summary measures of exposureCross-sectional study - Report numbers of outcome events or summary measures			on 21 April 2022. Downloaded from	Results, first two paragraphs, page 6-7
Main results	16	(a) Give unadjusted estimates	revie	2011	http://bmjopen.bmj.com/ on April 20, 2024 by	Results, unadjusted estimates in paragraph 2, adjusted through remainder
Other analyses	17	Report other analyses done— e.g., analyses of subgroups and interactions, and sensitivity analyses			guest. Protected by	
Discussion						
Key results	18	Summarise key results with reference to study objectives			copyright.	First paragraph, page 10

			/bn	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	RECORD 19.1: Discuss the implications of using data that were n created or collected to answer the specific research question(s) Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over time, as they pertain to the study bein reported.	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	2022. Downloaded from	Throughout discussion
Generalisability	21	Discuss the generalisability (external validity) of the study results	http://bmj	Implications subheading, page 13
Other Information	-		per en	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	.bmj.com/ on Ap	Page 14
Accessibility of protocol, raw data, and programming code			RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw datagor programming code.	
Committee. The R	Eportin		e, Petersen I, Sørensen HT, von Elm E, Lang Sh SM, th Routinely-collected health Data (RECORD) Statement icense.	