

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Meta-Analysis of Robustness of COVID-19 Diagnostic Kits During Early Pandemic

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053912
Article Type:	Original research
Date Submitted by the Author:	01-Jun-2021
Complete List of Authors:	Shanmugam, Chandrakumar; MNR Medical College and Hospital, Pathology Behring, Michael; The University of Alabama at Birmingham School of Medicine Luthra, Vishwas Leal, Sixto M.; The University of Alabama at Birmingham Department of Medicine Varambally, Sooryanarayana; The University of Alabama at Birmingham Department of Medicine Netto, George J.; The University of Alabama at Birmingham Department of Medicine Manne, Upender; The University of Alabama at Birmingham School of Medicine, Pathology
Keywords:	COVID-19, Molecular diagnostics < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

Meta-Analysis of Robustness of COVID-19 Diagnostic Kits During Early Pandemic

Chandrakumar Shanmugam, M.D., M.B.A.,^{1#} Michael Behring, Ph.D.,^{2#} Vishwas Luthra, M.B.B.S.,³ Sixto M Leal Jr., M.D., Ph.D.,² Sameer Al Diffalha, M.D.,² Sooryanarayana Varambally,^{2, 4} PhD, George J Netto, M.D.,^{2, 4} and Upender Manne, M.S., Ph.D.^{2, 4,*}

Department of Pathology¹, MNR Medical College & Hospital, MNR Nagar, Fasalwadi, Sangareddy, Telangana, India 502279

Department of Pathology², University of Alabama at Birmingham, Birmingham, Alabama, USA 35274

Department of General Medicine³, Sri Guru Ram Das Institute of Medical Sciences and Research, Mehta Road, Vallah, Amritsar, Punjab, India 143501

O'Neal Comprehensive Cancer Center⁴, University of Alabama at Birmingham, Birmingham, Alabama, USA 35274

Authors contributed equally

Running title: Robustness of Diagnostic Kits During Early Phase COVID 19: Lessons

Learned

^{*}Author for Correspondence:

Dr. Upender Manne Professor of Pathology, Epidemiology and Surgery University of Alabama at Birmingham Birmingham, Alabama, USA 35274 Tel: 001 2052493895 Email: upendermanne@uabmc.edu

ABSTRACT:

Background

Accurate detection of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is necessary to mitigate the coronavirus disease-19 (COVID-19) pandemic. However, the test reagents and assay platforms are varied and may not be sufficiently robust to diagnose COVID-19.

Methods

We reviewed 85 studies (21,530 patients), published from five regions of the world, to highlight issues involved in the diagnosis of COVID-19 in the early phase of the pandemic, following the standards outlined in the PRISMA statement. All relevant articles, published up to May 31, 2020, in PubMed, BioRiXv, MedRiXv, and Google Scholar, were included. We evaluated the qualitative (9749 patients) and quantitative (10,355 patients) performance of RT-PCR and serologic diagnostic tests for real-world samples, and assessed the concordance (5,538 patients) between methods in meta-analyses.

Results

The RT-PCR tests exhibited heterogeneity in the primers and reagents used. Of 1,957 positive RT-PCR COVID-19 participants, 1,585 had positive serum antibody (IgM +/- IgG) tests (sensitivity 0.81, 95%CI 0.66-.90). While 3,509 of 3581 participants RT-PCR negative for COVID-19 were found negative by serology testing (specificity 0.98, 95%CI 0.94-0.99). The chemiluminescent immunoassay exhibited the highest sensitivity, followed by ELISA and lateral flow immunoassays. Serology tests had higher sensitivity and specificity for laboratory-approval than for real-world reporting data.

Conclusions

The robustness of the assays/platforms is influenced by variability in sampling and reagents. Serological testing complements and may minimize false negative RT-PCR results. Lack of standardized assay protocols in the early phase of pandemic might have contributed to the spread of COVID-19.

Strengths and limitations of this study:

- This study offers the first evaluation of COVID-19 test performance with consideration of the heterogeneity of RT-PCR primers.
- We compare the performance of manufacturer-based, laboratory/approval data to the performance of the same test kits in a real-world setting.
- We perform a qualitative analysis of RT-PCR assays using 85 studies (21,530 patients), and a quantitative meta-analysis of RT-PCR vs. serum antibody assays in a sub-set of 30 publications (10,355 patients).
- Our findings demonstrate the need for application of real-world, published results to the evaluation of valid test performance, as well as the importance of standardization of assay protocols and reporting criteria in COVID-19 research.

INTRODUCTION

In December 2019, there was a cluster of unexplained pneumonia cases in Wuhan, China, and a novel coronavirus was identified as the causative agent.¹ The virus was named as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), and the disease as corona virus disease-19 (COVID-19).² The clinical spectrum ranges from asymptomatic forms to acute respiratory failure and multi-organ dysfunction syndrome, coagulopathy, and death.^{3,4} In February 2020, the World Health Organization described the spread of these infections as a pandemic, which persists as a global crisis. Robust diagnostic tests are required to mitigate the spread of this virus and thereby to minimize the impact of COVID-19 on the health, economy, and social well-being of mankind.

The standard diagnosis of COVID-19 is based on clinical and radiologic evidence and viral genome detection by RT-PCR in respiratory samples.⁵ Gene-specific primers are used in the RT-PCR assays; structural genes include envelope (E), nucleocapsid (N), and/or spike (S)genes; non-structural genes include RNA-dependent RNA polymerase (RdRp) or open reading frame1ab (ORF1ab) 6.7 Some studies used only a single-gene specific primer, and others used multiple-gene primers. Since studies published in the early phase of the pandemic reported a 3%-41% range of false-negativity by RT-PCR, a repeat RT-PCR testing was suggested.^{8,9} Furthermore, false negativity was attributed to either mutations in the regions to which the primers bind or to sampling and laboratory practices, including collection, transportation, and handling.¹⁰ Timing of sample collection with respect to the course of infection and the sample type also influence test results.¹¹ Alternatively, the diagnosis can be made by detection of antigens (E, N, or S) and/or antibodies (IgM or IgG or both) in blood samples.¹² However, these tests have the potential for false positives owing to cross-reactivity with other human corona viruses.^{13,14} Due to the unprecedented public health emergency, the FDA authorized, on June 1, 2020, EUA requests for more than 15 diagnostic and serologic tests. Though serology testing can detect the false positives of RT-PCR tests in clinically suspected patients, its value in COVID-19 diagnosis as a complementary assay in the

mitigation of the pandemic is not well defined. However, given the complexities in COVID-19 testing, there is a need for a review of performance for tests commonly used.

In this systematic review and meta-analysis, we examine current tests for the diagnosis of COVID-19 and evaluate the sensitivity and specificity of serological tests relative to RT-PCR tests. Our objective was to identify reasons for variability in COVID-19 diagnostic tests in the early phase of the pandemic that might have contributed to the spread of COVID-19. In particular, we assessed the uniformity of primer usage in RT-PCR assays and evaluated whether primers used in gold-standard RT-PCR tests affect the validity of serological tests. Furthermore, we compared the performance of serological tests/platforms in approval contrived/laboratory *vs.* real-world data.

METHODS

Literature Search

This research was accomplished according to standards outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.¹⁵ To find relevant studies, international databases, including PubMed, MedRiXv, BioRiXv, and Google Scholar, were searched for articles published until May 31, 2020. The following search terms were used (selected using English MeSH keywords and Emtree terms): [SARS-CoV-2 AND diagnosis] OR [2019-nCoV AND diagnosis]" OR ["COVID-19 AND diagnosis] and [SARS-CoV-2 AND RT-PCR] OR, [2019-nCoV AND RT-PCR]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND serology]. Additional searches were performed for references listed in the included studies.

Eligibility Criteria

Relevant articles that reported diagnostic information for infected patients were included in the analysis. Pre-print articles with non-peer review were considered for inclusion. Articles were excluded if appropriate information was not reported or if they were in the Chinese language. Population sample sizes of <5 participants were not included; reviews and editorials

BMJ Open

were not considered. For meta-analysis and approval *vs*. real-world performance, studies that reported percent sensitivity/specificity without including patient numbers were also excluded.

Data Extraction and Report Quality Evaluation

Two authors (CS and VL) screened and evaluated the literature independently. Discrepancies were resolved by consensus after evaluation by a third author (MB). The following were extracted for review and meta-analysis: journal name, authors, period of publication (end of May, 2020), location of study, total number of patients, tissue of origin for samples tested, whether samples were from upper or lower respiratory tract (or both), primers for RT-PCR, platforms for serology tests, and antibodies tested for serology. Counts of true positives, false negatives, true negatives, and false positives were used in the meta-analysis.

An author (MB) extracted and analyzed the approved testing kit performance data from the following sources: FDA EUA Authorized Serology Test Performance,¹⁶ the Foundation for Innovative New Diagnostics (FIND) SARS-CoV-2 diagnostic pipeline,¹⁷ and package inserts provided on company websites for each product. Real-world sample testing data from kits in meta-analyses were compared against the performance of the same kits, or platforms, reported in approval documentation. Variables abstracted were study authors/test developer, name of test, test platform, and true positives, false negatives, true negatives, and false positives for each antibody or antibody combination measured (IgM, IgG, IgA, combined, and Pan-Ig). Risk of bias within individual studies of meta-analysis was assessed using the QUADAS 2 tool for assessment of diagnostic studies.¹⁸

Patient and Public Involvement

Since we performed a meta-analysis and systematic review, it was not appropriate or possible to involve patients or the public in the design, conduct, reporting, or dissemination plans of our research.

Statistical Analysis

Statistical analyses were performed with R version 6.3.2 (2019-12-12).¹⁹ The package "meta" was used for meta-analyses.²⁰ Random effects models were used to measure sensitivity and specificity of outcomes across studies. Subgroup analysis was performed to evaluate the effect of assay, RT-PCR primer type, and setting (laboratory *vs.* real-world) upon serum test performance. Heterogeneity across studies and subgroups was evaluated using Cochrane's Q statistic, and residual heterogeneity was quantified as a percentage with the *I*² statistic. An *I*² measure of 0% shows no observed heterogeneity, with increasing values from 0%-100% indicating higher levels of heterogeneity. ²¹ An assumption of homogeneity was rejected for p-values < 0.1. Evaluation of publication bias was not possible in approval data.

RESULTS

Search Results and Population Characteristics

Our search generated 112 publications with potential relevance to the performance of COVID-19 diagnostic tests. After excluding duplicate publications, manuscripts that did not report numbers of patients used for sensitivity/specificity calculations and studies with a sample size of <5 patients, 85 studies were selected for qualitative synthesis of RT-PCR primer usage. From this set, a sub-set of 30 publications were selected for the quantitative meta-analysis of serologic *vs.* RT-PCR diagnostic testing for COVID-19 (**Table S1**). Ancillary analysis compared the performance of these 30 real-world studies to that reported in laboratory approval data from 47 diagnostic serum-based tests. In all, our qualitative synthesis of RT-PCR studies included 85 studies and 21,530 patients. From this synthesis, a group of 30 studies with 10,355 patients from 5 regions of the world were selected for meta-analysis and comparison to performance from laboratory approval data (**Fig S1**).

Uniformity of Primer Usage in RT-PCR Diagnostic Tests

BMJ Open

We reviewed use of single primer of structural genes as compared to use of both structural and non-structural gene primers in 56 population-based studies with 9,872 participants. Overall, high proportions of studies employed both structural and non-structural gene primers in RT-PCR testing (58% in studies and 56% of total participants). Additionally, 29 studies (11,658 patients) did not report RT-PCR primer data. Single markers were most frequently tested in China and North American studies (**Table 1**). In general, the most tested samples were from the upper respiratory tract, regardless of primer status. Sample source and location in the respiratory tract were not reported for 8-20% of patients, and this was more common for studies using single gene primer.

Meta-Analysis: RT-PCR vs. Serum Antibody Testing

In general, patient sera were tested for IgM and IgG antibodies. China was the region with the highest frequency of antibody testing, and lateral flow immunoassay (LFIA) and chemiluminescent immunoassay (CLIA) testing platforms were most often utilized. Of the 45 studies included in the qualitative synthesis, 30 manuscripts reported both serum antibody testing and RT-PCR testing for the same patients. Key characteristics of this population include: China as the regional location for research; lack of reporting of RT-PCR primer information for ~33% of all studies; most studies used IgM and IgG serum-based antibody tests; and LFIA, CLIA, and enzyme-linked immunosorbent assay (ELISA) platforms were common across studies (**Table 2**).

We used the IgM+/-IgG serum antibody test since it was most commonly utilized across studies. Of 1,957 participants (sensitivity 0.81, 95%CI 0.66-0.90) with a positive RT-PCR COVID-19 result, 1,585 were also detected as positive with serum antibody tests. Of 3,581 true negatives in RT-PCR, 3,509 negatives were also found by serum antibody testing (specificity 0.98, 95%CI 0.94-0.99). For both models, heterogeneity between studies was significant (p<0.01 for both, l^2 =97% and l^2 =98% for sensitivity and specificity, respectively).

Sub-analyses of differences based on the testing platform found that sensitivity between groups differed (p <0.0001), with CLIA tests performing best (0.99, 95%CI 0.97-0.99); ELISA

as next-best (0.89, 95%Cl 0.82-0.93); and LFIA as having the poorest sensitivity (0.67, 95%Cl 0.50-0.81). LFIA test sensitivity also showed heterogeneity between studies (p<0.01, *l*² 95%). For IgM/IgG tests, specificity did not differ significantly by platform (p= 0.06). However, a performance trend followed sensitivity, with LFIA underperforming (**Figure 1**).

Serum Antibody Testing Performance: Approval Data vs. Real-World Data

For manufacturer-based, laboratory approval data, IgM+/-IgG testing detected COVID-19 positivity for 1,045 of 1,068 RT-PCR-determined "true" positive patients (sensitivity 0.98, 95%CI 0.92-1.0). In the same group, serum testing correctly identified 1,928 of 1,967 (specificity 0.98, 95%CI 0.95-.099) true negatives by RT-PCR. For both models (sensitivity and specificity), there was evidence of heterogeneity (p <0.01 for both and *I*²=93% and *I*²=94% for sensitivity and specificity, respectively).

We evaluated IgM+/-IgG serum test performance in subgroup analyses comparing laboratory approval performance data to real-world performance in study data. In manufacturer data presented for approval, serum antibody testing detected 1,047 of 1,068 "true positive" cases of COVID-19 (sensitivity 0.98, 95%CI 0.92-1.0). Real-world use of serum IgM+/-IgG testing was evident for 2,450 of 3,025 participants diagnosed with COVID-19 by RT-PCR (sensitivity 0.81, 95% CI 0.66-0.90). For both groups, there was heterogeneity between studies (p <0.01 for both, l^2 =93% and l^2 =97% for approval and real-world specificity, respectively) (**Figure 2**). In addition, the overall sensitivity between approval and real-world testing groups differed significantly (Q=8.37, p=0.004). An analysis of specificity by the same subgroups found no significant difference between laboratory approval and real-world data. Laboratory data identified 1,928 of 1,967 participants with true COVID-19 negative status (specificity 0.98, 95% CI 0.95-0.99). Real-world data found 5,437 of 5,548 true negatives (specificity 0.98, 95% CI, 0.96-0.99) (analysis not shown).

Since, in IgM+/-IgG tests, there were differences in sensitivity between platforms, we evaluated the effect of approval-based data *vs.* real-world data by the type of platform. In an

Page 11 of 38

BMJ Open

analysis stratified for ELISA, CLIA, and LFIA, there was no significant difference in specificity between approval and real-world data (data not shown). However, for ELISA tests, real-world capacity to detect true positives was lower than in laboratory-based analyses. In real-world studies, the sensitivity of ELISA was 0.89 (95% Cl, 0.82-0.93), different from laboratory sensitivity for the same platform (0.94, Cl95% 0.91-0.96, Q =4.74, p=0.03). The LFIA platform also showed a trend of lower real-world sensitivity (0.67, 95% Cl, 0.50-0.81) compared to laboratory approval sensitivity (0.99, Cl95% 0.90-0.99, Q =8.56, p 0.003). Laboratory/real-world groups for CLIA platforms were too small to be tested reliably (1 and 2 groups, respectively).

Serum Antibody Testing Performance: Effect of Primer Choice on Test Validity

To evaluate the reliability of RT-PCR as a gold standard for serum-based test performance, we tested the consequences of using structural and non-structural primers in RT-PCR reference testing of serum. Analyses were divided into three subgroups based on antibody targets: IgM, IgG, and IgG+/-IgM combined. In IgM and combined IgG+/-IgM testing, the primer choice had no significant influence on sensitivity or specificity. However, for IgG antibody tests, use of both a structural and a non-structural gene-specific primers in RT-PCR resulted in reduced sensitivity for serum testing (**Figure 3**, Q=6.17, p=0.013). Furthermore, although not statistically significant, the sensitivity of both IgM and IgG+/-IgM combined data sets was lower when using a referent RT-PCR test with both primer types.

DISCUSSION

Because of the highly infectious nature of COVID-19, a prompt, accurate, and early diagnosis is necessary to deal with the ongoing pandemic, for such diagnoses can help reduce the spread of infection and its associated risk for mortality. Currently, the COVID-19 diagnosis is generally based on RT-PCR assays.⁸ Alternative methods such as antigen- and antibody-based serology tests, although available, have uncertain value. The current systematic review and meta-analysis addresses the challenges encountered in the diagnosis of COVID-19 by

various methods. It also analyzes differences between the FDA-approved EUA data and realworld data. There is worldwide non-uniformity in the performance of RT-PCR, including the number and types of primers and reagents used for COVID19 diagnosis, which raise questions about its generalized applicability. Similarly, the studies based on serological tests showed diagnostic inaccuracies owing to individual differences in mounting an immune response as well as dependency on the time duration after the onset of symptoms. Overall, the sensitivity between RT-PCR and serology tests was 0.81 (95% CI, 0.66-0.90), and specificity was 0.98 (95% CI, 0.94-0.99). Among the various platforms for serodiagnosis, the highest sensitivity was exhibited by ELISA, followed by CLIA and LFIA. Furthermore, use of primers (structural, non-structural, or both) had a variable effect on sensitivity based on antibody targets. Sensitivity was significantly higher for IgG serology tests using structural-primer-only RT-PCR tests as a referent. Serology tests had higher sensitivity for approval-based data than for realworld reporting. This difference was significant for ELISA-based platforms, and a nonsignificant trend towards inflated approval-based sensitivity was evident for both CLIA and LFIA platforms. These observations highlight the inconsistencies/challenges in the COVID-19 diagnosis by RT-PCR, which is the current gold standard, as well as in serologic testing.

For RT-PCR assays, the targets in SARS-CoV-2 include structural genes like *E*, *N* and *S*, and nonstructural genes, including that for *RdRp* or *ORF1ab*.²² In the early phase of the pandemic, some studies used a two-step diagnosis that included an initial screening phase using structural genes followed by a confirmatory phase using nonstructural genes. ^{6,7,23} The test is considered positive when both structural and non-structural markers are positive.^{24,25} However, currently both types of primers are used simultaneously to diagnose COVID-19. The viral load or copy number of the viral genome is expressed as a Ct-value, which when <37 is indicative of a positive test, and a value of \geq 40 is considered negative. A Ct value between >37 and < 40 requires repetition of RT-PCR analysis to confirm the diagnosis.²⁴ However, the Ct value range varies widely according to assays and laboratory practices. A COVID-19-RdRp/Hel assay has a higher sensitivity than a conventional RdRp-P2 assay irrespective of

Page 13 of 38

BMJ Open

the type of sample.²⁶ Overall, higher proportions of studies (58%) employed both structural and non-structural gene primers in RT-PCR testing. Single markers were used in some Chinese and North American studies. These findings are indicative of non-uniformity in the RT-PCR methodology. We note that half of the positive, symptomatic patients became negative by the second week, when they became asymptomatic. In contrast, the asymptomatic, positive patients became negative two days after hospital admission, indicating the importance of a temporal factor in COVID-19 diagnosis by RT-PCR.^{27,28}

Published in the early phase of the pandemic, 11 of 85 studies had clinically suspected COVID-19 patients. In these studies, the average test positivity by RT-PCR, regardless of the sample source, was 44% (Supplementary Table 1), and test sensitivity was influenced by sample source (upper vs. lower respiratory vs. other samples), issues related to testing performance, and delay after onset of symptoms.²⁹ In the early phase of the COVID-19 pandemic, for studies evaluating suspected COVID-19 cases, the total positive RT-PCR for throat swabs was in the range of 30–60% at initial presentation.^{8,30} One study reported a yield of 72-93% positive cases for lower respiratory samples (bronchioalveolar lavage and sputum) as compared to 32-63% positivity for upper respiratory samples (oral and nasopharyngeal swabs) and 29% for stool samples.²⁹ Hence, a negative COVID-19 test based only on an upper respiratory sample at a single time point is questionable. For most studies, the testing sample was from the upper respiratory tract, regardless of primer type used. However, the sample source was not reported for 8-20% of patients, which was more common for studies using only structural gene primers. For stool samples testing positive for COVID-19, 66.7% also tested positive on pharyngeal swabs. Of the stool samples, 64.3% remained positive after pharyngeal clearance of the virus.³¹ In contrast, none of the patients showed a positive test on upper respiratory samples after the anal swabs tested negative.³¹ These findings raise concerns about whether patients with negative respiratory swabs are truly virus-free, and sampling of additional body sites is needed. As determined by various studies, the performance of the RT-PCR depends on usage of comparable protocols, including primers

and reagents.³² Additionally, it is unknown whether the currently used RT-PCR primers detect all SARS-Cov-2 strains.

The specific immune response to SARS-CoV-2 can be measured by serological testing. Several rapid serological tests, including point-of-care tests, are being developed. Even though some of these tests have been approved by the FDA through EUA, their accuracy needs to be validated.³³ A minimum of 1–2 weeks after the onset of infection is needed for seroconversion. Hence, antibody testing is of no value in the early phase of infection. Additionally, its value is limited by its cross-reactivity with other coronaviruses.^{34,35} The initial RT-PCR positivity during the early stages (<15 days) of SARS-CoV-2 infection declines to 66.7% in the later phase (15-39 days), during this period, the antibody test can supplement RT-PCR in the diagnosis of COVID-19.^{34,35} Additionally, serology testing becomes valuable for clinically suspected and RT-PCR negative (false-negative) individuals.

This research has limitations. Due to the dynamic reporting of COVID-19 testing research and inconsistencies in reporting of predictive variables across studies, bias in sampling may have some effect on our results. Patient flow analysis suggests that lack of consistent RT-PCR reference standard given to patients in the same study, as well as the unclear reporting of patient selection methods could contribute to bias in these results (**Fig. S2**). In addition, the observed heterogeneity between studies in the meta-analysis suggests that we must consider the possibility that the differences in results may be due to chance. Lastly, it is questionable to compare two separate testing methods of RT-PCR and seroprevalence in sensitivity/specificity analysis. In particular, given the relationship between time since diagnosis and accuracy of serology testing, a contributor to the observed differences in performance is time.

The effective containment of COVID-19 involves accurate diagnoses and isolation of SARS-CoV-2-infected persons. Robustness of the assays/platforms is determined by variability of the samples, primers, and reagents used. Serological tests alone are of value only during the latter times of infection; however, they complement RT-PCR when used in

BMJ Open

conjunction and minimize false negative RT-PCR results. Additionally, some of the approved serological assays/platforms, particularly those developed using contrived/laboratory data, perform poorly when applied to real-world samples. We are currently in a new phase of the pandemic, and there is a need for a reliable/robust diagnostic test to mitigate the spread of COVID-19.

Our analyses of studies published in the early-phase of the pandemic have highlighted issues related to COVID-19 diagnosis that need to be addressed as follows: 1) The high mutational rate exhibited by the SARS-CoV-2 virus may lead to the generation of new strains. Therefore, like for influenza virus, the existing diagnostic kits need to be modified constantly to optimize the detection of new strains; 2) Though RT-PCR diagnosis of COVID-19 is the gold standard, its combination with a serologic test may increase the accuracy of SARS-CoV-2 detection; 3) Approval agencies must account for the type of data (contrived versus real world) presented by diagnostic kits, there is a need to monitor their performance and assess their robustness in real-world samples, to permit continued use of these kits; and 5) Standardized assay protocols need to be developed and continually updated to mitigate the COVID-19 pandemic.

ACKNOWLEDGEMENTS

This study was supported, in part, by grant 5U54CA118948 and institutional/departmental impact funds (UM), and by CA047888, the UAB Cancer Prevention and Control Training Program (MB). We thank Dr. Donald Hill for his editorial assistance.

DATA SHARING

No additional data is available

AUTHOR CONTRIBUTIONS

CS, MB, and UM made substantial contributions to the conception and design of the work. CS, MB and VL contributed to the acquisition of the study data. Data were analyzed by CS, MB and UM. MB was responsible for the statistical analysis. CS, MB, SML, SAD, SV, GJN, and UM contributed to the interpretation of the data, and to drafting and revising of the manuscript. CS, MB and VL have accessed and verified the data. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work. All authors have read and approved the manuscript.

to beet teries only

Table 1. Characteristics of the studie	es included i	n qualitati	ve analysi	s			6/bmjopen-2021-0539			
	Total Studies	Total pop.	Structur prim		Structural and non- Structural gene primers			gene primers		ported
			N studies	N pop.	N studies	N pop.	N∕studies	N pop.	N studies	N ро
Total	85	21530	22	4265	31	5484	pr 3	123	29	1165
Location							12			
Asia (excl. China)	6	378	2	53	4	325	2022.			
China	28	12187	8	1802	17	3047	N 3	123	24	721
Europe	12	5757	4	528	8	993	Q		4	423
North America	10	3001	8	1882	2	1119	O X			
Global		207					n n		1	207
Primers							80			
N -single	11	2016	11	2016			de			
E -single	4	759	4	759			ď			
S -single	1	412	1	412			frc			
N, E	2	226	2	226			Ä			
S, N	4	852	4	852			<u>-</u> -			
ORF1Ab, single	2	59	-				5 2	59		
RdRp, single	1	64					<u></u>	64		
E+ORF1Ab	2	1119			2	1119	Ъ.	01		
E + RdRp	2	259			2	259				
M, E	1	48			1	48	ğ			
N+ORF1Ab	14	2703			14	2703	E C			
N + E + RdRp	4	333			4	333	ġ.			
S, N, E, RdRp, ORF1ab	4	13			4	13	.			
	1	33			1	33	2 1 Downloaded from http://bmjopen.bmj.com/ on			
N, E, ORF1ab	1				•	33	ă			
N, RNAse P	1	190			1	190	0			
S, N, RdRp, ORF1ab, E, M	1	52			1	52	Ĵ			
N, S, RdRp	1	273			1	273	Ap			
N, E, S, RdRp	2	349			2	349	ı April 23,			
S, ORF1Ab	1	112			1	112	N			
Sample Source	~~	07.00	-		-	0000	μ	<u> </u>	4.5	o
Upper Respiratory	23	6748	3	575	9	2633	1 1 1 2024 by guest.	64	10	347
Upper & Lower Respiratory	1	52			1	52	24		-	
Upper Respiratory + Other*	9	751	3	368	2	44	o 1	38	3	301
Lower Respiratory + Other*	1	273			1	273	< ()			
Upper Respiratory + Serum	20	6407	7	1473	9	1432	Jue		4	3502
Upper Respiratory + Serum + Other*	4	941	2	840	1	80	es 1	21		
Upper & Lower Respiratory + Other*	4	678	1	280	3	398				
Upper & Lower Respiratory + Serum + Other*	2	518			1	132	oro		1	386
Serum	18	2376	6	729	4	440	Protected		8	1207
Other*	1	199					ğ		1	199
Not reported	2	2587					e		2	258

	N studies	N рор.
Total	30	1035
Location		
Asia (excl. China)	2	261
China	19	6375
Europe	7	2900
North America	2	819
PCR primers		
Structural		
N, single	5	1084
E, single	1	49
N, E	1	201
N, S	2	408
Structural and Non-structural		
with ORF1Ab	8	1115
with RdRp	2	186
N, RNAse P	1	190
not reported	10	7122
Ab tested		
lgG	2	220
lgM + lgG	25	7828
lgA + lgG +lgM	1	208
lgA + lgG	1	37
not reported	1	2062
Serum Ab		
CLIA	8	3705
ELISA	8	1908
LFIA	10	3800
CLIA + ELISA	2	548
LFIA + ELISA	1	80
not reported	1	314

Table 2. Characteristics of studies included in guantitative meta-analysis

Figure Legends

- Figure 1. Comparison of Performance (Sensitivity and Specificity) of Serology Tests (IgM/IgG) **Based on Assay Platforms**
- Figure 2. Comparison of Sensitivity of Laboratory setting versus Real World setting of RT-PCR and Serology (IgM/IgG) kits
- Figure 3. The Effect of Primer Choice in RT-PCR Referent on Sensitivity of Tests based on Serum lgG

to beet terier only

References:

- 1. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514-23.
- 2. Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020. (Accessed 6/10/2020, 2020, at <u>https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.</u>)
- 3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
- Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020;109:102433.
- 5. Cheng MP, Papenburg J, Desjardins M, et al. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann Intern Med 2020;172:726-34.
- Chu DKW, Pan Y, Cheng SMS, et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem 2020;66:549-55.
- Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by realtime RT-PCR. Euro Surveill 2020;25.
- Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020;296:E32-e40.
- Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020;296:E41-E5.
- Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn 2020;20:453-4.
- 11. Kim JY, Ko JH, Kim Y, et al. Viral Load Kinetics of SARS-CoV-2 Infection in First Two Patients in Korea. J Korean Med Sci 2020;35:e86.
- Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis 2020;71:778-85.

13.	To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020;20:565-74.
14.	Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020;323:1843-4.
15.	Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8:336-41.
6.	EUA Authorized Serology Test Performance. 2020. (Accessed 6/18/2020, 2020, at https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/eua-authorized-serology-test-performance.)
7.	SARS-CoV-2 diagnostic pipelineSARS-CoV-2 diagnostic pipeline. Foundation for Innovative New Diagnostics (Accessed 7/5/2020, 2020, at <u>https://www.finddx.org/covid-19/pipeline/</u> .)
8.	Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-36.
).	R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria2019.
).	Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019;22:153-60.
1.	Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj 2003;327:557-60.
2.	Yin C. Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics 2020;112:3588-96.
3.	Detection of 2019 novel coronavirus (2019-nCoV) in suspected human cases by RT-PCR WHO,, 2020. at <u>https://www.who.int/docs/default-source/coronaviruse/peiris-protocol-16-1-</u> 20.pdf?sfvrsn=af1aac73_4.)
4.	Liu R, Han H, Liu F, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta 2020;505:172-5.
5.	Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID- 19. J Pharm Anal 2020;10:102-8.

- 26. Chan JF, Yip CC, To KK, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol 2020;58.
- 27. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. Jama 2020;323:2249-51.
- Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect 2020;80:e1-e6.
- 29. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020;323:1843-4.
- 30. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv 2020:2020.02.11.20021493.
- 31. Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 2020;92:833-40.
- 32. Guidance and standard operating procedure: COVID-19 virus testing in NHS laboratories. NHS,, 2020. (Accessed 6/2/2020, 2020, at <u>https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/guidance-and-sop-covid-19-virus-testing-in-nhs-laboratories-v1.pdf</u>.)
- 33. Maxmen A. The researchers taking a gamble with antibody tests for coronavirus. Nature 2020.
- 34. Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020.
- 35. WHO. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance. . WHO; 2020.

BMJ Open

Study	Test + Serum			Serum Tes Sensitivity	
platform = LFIA Paradiso AV, De Summa S, Loconsole D, et al. Vásárhelyi B, Kristóf K et al (LFIA 1) Vásárhelyi B, Kristóf K et al(LFIA 2) Dóhla M, Boesecke C, Schulte B, et al Imai K, Tabata S, Ikeda M, et al. Garcia EP, Perez Tanolra R, Romanyk Cabrera JP, et a Xiang J, Yan M, Li H, Liu T, et al (LFIA) Cassanti I, Nozazi F, Giardina F, et al Liu Y, Liu Y, Diao B, et al. Zhang P, Gao Q, Wang T, et al. Li Z, Yi Y, Luo X, et al. Choe JY, Kim JW, Kwon HH, et al. Random effects model Heterogeneity: I ² = 95%, r ² = 1.4849, p < 0.01	21 7 11 8 60 25 75 25 77 106 352 65	70 21 31 22 139 55 91 30 90 122 397 70 1138	* * * * * * * * * * *	0.30 0.33 0.35 0.36 0.43 0.47 0.82 0.83 0.86 0.87 0.89 0.93 0.67	[0.20; 0.42] [0.15; 0.57] [0.19; 0.55] [0.37; 0.59] [0.34; 0.61] [0.73; 0.90] [0.85; 0.94] [0.80; 0.92] [0.80; 0.92] [0.84; 0.98] [0.50; 0.81]
platform = ELISA Liu L, Liu W, Wang S, et al. Liu W, Liu L, Kou G, et al Xiang J, Yan M, Li H, Liu T, et al (ELISA) Freeman B, Lester S, Mills L, et al. Random effects model Heterogeneity: I ² = 66%, t ² = 0.1558, p = 0.04	127 186 55 95	153 214 63 99 529	****	0.83 0.87 0.87 0.96 0.89	[0.76; 0.89] [0.82; 0.91] [0.77; 0.94] [0.90; 0.99] [0.82; 0.93]
platform = CLIA Lin D, Liu L, Zhang M, et al. Ma H, Zeng W, He H, et al Random effects model Heterogeneity: $l^2 = 6\%$, $\tau^2 = 0.0480$, $p = 0.15$	72 215	74 216 290	•	0.97 1.00 0.99	[0.91; 1.00] [0.97; 1.00] [0.97; 1.00]
Random effects model Heterogeneity: $l^2 = 97\%$, $s^2 = 2.4195$, $p < 0.01$ Residual heterogeneity: $l^2 = 94\%$, $p < 0.01$		1957	0 0.2 0.4 0.6 0.8 1 Overall Sensitivity	0.81	[0.66; 0.90]
Study	Test - Serum		٦	Serum Tes Specificity	
platform = LFIA Väsärhelyi B, Kristöf K et al (LFIA 1) Väsärhelyi B, Kristöf K et al(LFIA 2) Dohla M, Boesecke C, Schulte B, et al Paradiso AV, De Summa S, Loconsole D, et al. Lii Z, YI Y, Luo X, et al. Liu Y, Liu Y, Diao B, et al. Choe JY, Kim JW, Kwon HH, et al. Imai K, Tabata S, Ikeda M, et al. Cassaniti I, Novazi F, Giardina F, et al Xiang J, Yan M, Li H, Liu T, et al (LFIA) Zhang P, Gao Q, Wang T, et al. Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et a Random effects model	440 840 24 107 116 81 76 47 30 35 41 1. 45	604 998 27 120 128 89 79 48 30 35 41 45 2244	* ¹⁰ ***********	0.73 0.84 0.89 0.91 0.96 0.98 1.00 1.00 1.00 0.95	[0.69; 0.76] [0.82; 0.86] [0.71; 0.98] [0.82; 0.94] [0.84; 0.95] [0.83; 0.96] [0.89; 1.00] [0.89; 1.00] [0.90; 1.00] [0.91; 1.00] [0.92; 1.00] [0.89; 0.98]
platform = ELISA Liu L, Liu W, Wang S, et al. Xiang J, Yan M, Li H, Liu T, et al (ELISA) Freeman B, Lester S, Mills L, et al. Liu W, Liu L, Kou G, et al Random effects model Heterogeneity: J ² = 40%, c ² = 0.3762, p = 0.23	116 35 515 100	120 35 519 100 774		0.97 1.00 0.99 1.00 0.99	[0.92; 0.99] [0.90; 1.00] [0.98; 1.00] [0.96; 1.00] [0.97; 1.00]
platform = CLIA Lin D, Liu L, Zhang M, et al. Ma H, Zeng W, He H, et al Random effects model Heterogeneity: $I^2 = 95\%$, $t^2 = 20.3317$, $p = 1.00$	64 483	80 483 563	-=-	0.80 1.00 1.00	[0.70; 0.88] [0.99; 1.00] [0.12; 1.00]
Random effects model Heterogeneity: $l^2 = 98\%$, $t^2 = 3.6305$, $p < 0.01$		3581	0 0.2 0.4 0.6 0.8 1	0.98	[0.94; 0.99]

Figure 1. Comparison of Performance (Sensitivity and Specificity) of Serology Tests (IgM/IgG) Based on Assay Platforms

162x214mm (150 x 150 DPI)

BN
νo
pen:
BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from ht
publ
lishe
d as
10.1
136/
bmjo
pen-
2021
1-053
3912
on 2
36/bmjopen-2021-053912 on 21 April 2022.
ril 20
)22. [
Dowr
load
led fr
from h
_
<u>ă</u>
open
.bmj.
com/
on /
April
23, 2
024 by gu
uest.
Prot
ected
d by u
copy
right.

Study		Test + RT-PCR		Serum Tes Sensitivity	
Setting = Laboratory					
VivaDiag	21	70		0.30	[0.20; 0.4
Smart Test Covid-19 Vyttra	4	4		- 1.00	[0.40; 1.0
Mt. Sinai Laboratory COVID-19 ELISA Antibody Test	37	40		0.92	[0.80; 0.
SARS-CoV-2 IgG/IgM Rapid Test	120	128	+	← 0.94	[0.88; 0.
WANTAI SARS-CoV-2Ab ELISA	293	310	1	0.95	[0.91; 0.
Biohit SARS-CoV-2 IgM/IgG Antibody Test Kit	29	30	-	+ 0.97	[0.83; 1.
Vibrant COVID-19 Ab Assay	52	53	-	+ 0.98	[0.90; 1.
Assure COVID-19 IgG/IgM Rapid Test Device	30	30	-	1.00	[0.88; 1.
RightSign COVID-19 IgG/IgM Rapid Test Cassette	30	30	+	1.00	[0.88; 1.
LYHER Novel Coronavirus (2019-nCoV) IgM/IgG Antibody Combo Test Kit (Colloidal Gold)	30	30	+	1.00	[0.88; 1
COVID-19 IgG/IgM Rapid Test Cassette	30	30	1	1.00	[0.88; 1
One Step COVID-2019 Test	312	313		1.00	[0.98; 1
Random effects model	0.2	1068		< 0.98	[0.92; 1
Heterogeneity: $l^2 = 93\%$, $\tau^2 = 4.5321$, $\rho < 0.01$					[0:02, 1
Setting = Real-World					
Paradiso AV, De Summa S, Loconsole D, et al.	21	70		0.30	[0.20; 0
Vásárhelyi B, Kristóf K et al (LFIA 1)	7	21		0.33	[0.15; 0
Vásárhelyi B, Kristóf K et al(LFIA 2)	11	31	-	0.35	[0.19; 0
Döhla M, Boesecke C, Schulte B, et al	8	22		0.36	[0.17; 0
Imai K, Tabata S, Ikeda M, et al.	60	139	-	0.43	[0.35; 0
Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al.	26	55		0.47	[0.34; 0
Xiang J, Yan M, Li H, Liu T, et al (LFIA)	75	91		0.82	[0.73; 0
Liu L, Liu W, Wang S, et al.	127	153	-		[0.76; 0
Cassaniti I, Novazzi F, Giardina F, et al	25	30	-	0.83	[0.65; 0
Liu Y, Liu Y, Diao B, et al.	77	90	-	0.86	[0.77; 0
Zhang P, Gao Q, Wang T, et al.	106	122		0.87	[0.80; 0
Liu W, Liu L, Kou G, et al	186	214		0.87	[0.82; 0
Xiang J, Yan M, Li H, Liu T, et al (ELISA)	55	63		0.87	[0.77; 0
Li Z, Yi Y, Luo X, et al.	352	397		0.89	[0.85; 0
Choe JY, Kim JW, Kwon HH, et al.	65	70		- 0.93	[0.84; 0
Freeman B, Lester S, Mills L, et al.	95	99	1	+ 0.96	[0.90; 0
Lin D, Liu L, Zhang M, et al.	72	74		+ 0.97	[0.91; 1
Ma H, Zeng W, He H, et al	215	216		1.00	[0.97; 1
Random effects model	215	1957	_	0.81	[0.66; 0
Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.4195$, $p < 0.01$		1957	\sim	0.01	[0.00; 0
Random effects model		3025		> 0.91	[0.82; 0
Heterogeneity: $l^2 = 97\%$, $\tau^2 = 3.8591$, $\rho < 0.01$		ſ			
Residual heterogeneity: $I^2 = 94\%$, $p < 0.01$		0	0.2 0.4 0.6 0.8	1	
			Overall Sensitivity	-	

Figure 2. Comparison of Sensitivity of Laboratory setting versus Real World setting of RT-PCR and Serology (IgM/IgG) kits

164x141mm (150 x 150 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	

Study		Test + RT-PCR			Serum Test Sensitivity	
`Drimer Tune` = Structure! endu				:		
Primer Type` = Structural only	46	61			0.75	10 62-0 96
Infantino M, Grossi V, Lari B, et al.	40	48			0.75	[0.63; 0.86
Tang MS, Hock KG, Logsdon NM, et al (ELISA)	24	40 27			0.85	[0.72; 0.94
Jin Y, Wang M, Zuo Z, et al.	24 45	48			0.89	
Tang MS, Hock KG, Logsdon NM, et al (CLIA)	45 45	48 47				[0.83; 0.99
Zhong L, Chuan J, Gong B, et al. (CLIA)					0.96	[0.85; 0.99
Zhong L, Chuan J, Gong B, et al. (ELISA)	46	47			0.98	[0.89; 1.00
Random effects model		278		\diamond	0.91	[0.83; 0.96
Heterogeneity: $l^2 = 66\%$, $\tau^2 = 0.5140$, $p < 0.01$						
`Primer Type` = Structural & Non-Structural						
Imai K, Tabata S, Ikeda M, et al.	20	139			0.14	[0.09; 0.2
Choe JY, Kim JW, Kwon HH, et al.	19	70			0.27	[0.17; 0.39
Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al	13	39			0.33	[0.19; 0.50
Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al.	23	55			0.42	[0.29; 0.56
Cassaniti I, Novazzi F, Giardina F, et al	24	30		-	0.80	[0.61; 0.92
Xiang J, Yan M, Li H, Liu T, et al (LFIA)	74	91		-	0.81	[0.72; 0.89
Lin D, Liu L, Zhang M, et al.	65	79			0.82	[0.72; 0.90
Xiang J, Yan M, Li H, Liu T, et al (ELISA)	52	63		-	0.83	[0.71; 0.9
Xiang F, Wang X, He X, et al	55	66		-	0.83	0.72; 0.9
Lou B, Li TD, Zheng SF, et al. (LFIA)	69	80			0.86	0.77; 0.93
Lou B, Li TD, Zheng SF, et al. (ELISA)	71	80			0.89	0.80; 0.95
Xie J, Ding C, Li J, et al.	16	16			1.00	[0.79; 1.00
Random effects model		808			0.71	[0.52; 0.8
Heterogeneity: $I^2 = 95\%$, $\tau^2 = 2.0198$, $p < 0.01$						•
Random effects model		1086			0.80	[0.67: 0.89
Heterogeneity: $l^2 = 94\%$, $\tau^2 = 2.1153$, $p < 0.01$		1000			0.00	[0.07, 0.03
Residual heterogeneity: $I^2 = 93\%$, $p < 0.01$			0 0.2 0.4	0.6 0.8 1		

Figure 3. The Effect of Primer Choice in RT-PCR Referent on Sensitivity of Tests based on Serum IgG

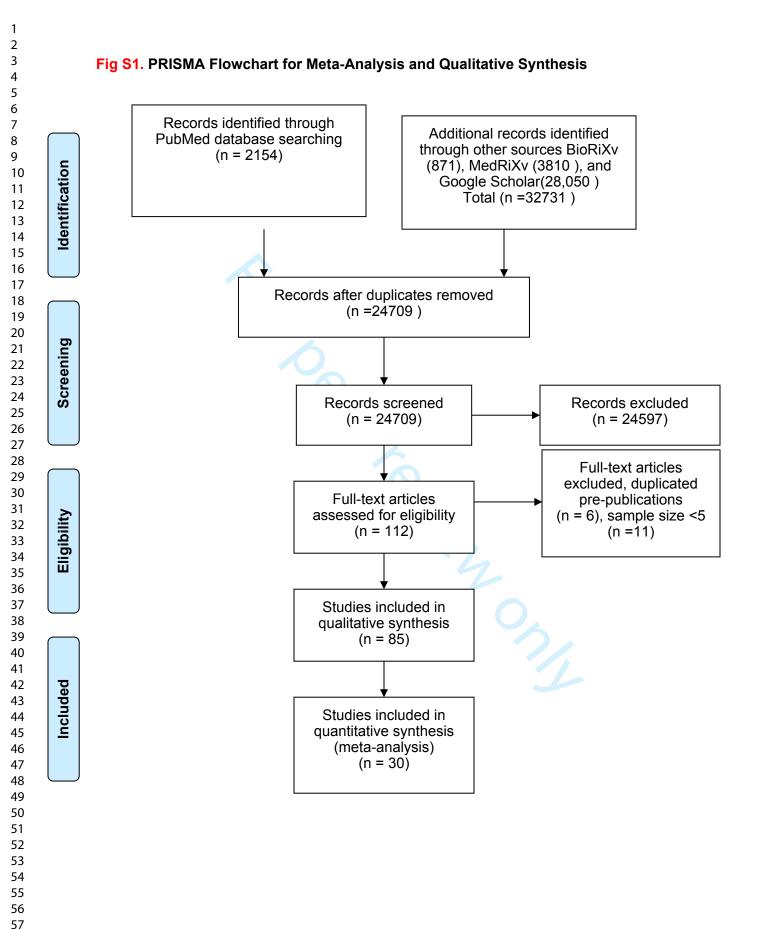
299x199mm (300 x 300 DPI)

BMJ Open Meta-Analysis of Robustness of COVID-19 Diagnostic Kits During Early Pandemic. Supplemental information Table S1. Description of 55 Studies Included for Qualitative Synthesis (gray) and 30 Studies Included in the Meta-Analysis (tan) -

				Denset			-0539	DT		01
Journal	Authors	Region	N (patient s)	Percent COVID-19 positivity	Sample origin	RT-PCR primers	RT-PCR primer type	RT- PCR/Ser ology platform	Serology targeted antibody	Study included in meta- analysis
J Clin Virol	Rahman H, Carter I, Basile K, et al. ¹	Asia	52		UR+LR	S, N, E, RdRp, ORF1ab, M	April 2622. Do	RT-PCR		No
Exp Neurobiol	Won J, Lee S, Park M, et al. ²	Asia	12		UR	N, E, S, RdRp	Beth	RT-PCR		No
Jpn J Infect Dis.	Okamaoto K, Shirato K, Nao N, et al. ³	Asia	25		UR	N, E	Structural	RT-PCR		No
J Med Virol	Choe JY, Kim JW, Kwon HH, et al. 4	Asia	149	0.47	Serum	E, RdRp	Both	RT-PCR /CLIA	lgM + IgG	Yes
Lancet Infect Dis	Yong SEF, Anderson DE, Wei WE, et al. ⁵	Asia	28		UR + Serum	N, single	Strugtural	RT-PCR /ELISA	lgG	No
J Clin Virol	Imai K, Tabata S, Ikeda M, et al. 6	Asia	112		UR + Serum	S, ORF1Ab	Beth	RT-PCR /LFIA	lgM + IgG	Yes
Emerg Microbes Infect	Xu Y, Xiao M, Liu X, et al. ⁷	China	6		Serum		.bmj.com/ on	ELISA + LFIA	lgM	No
Radiology	Ai T, Yang Z, Hou H, Zhan C, et al. 8	China	1014	0.59	UR		n/ on <i>F</i>	RT-PCR		No
NEJM	Cao B, et al. ⁹	China	199		Other		April	RT-PCR		No
Radiology	Bai HX, Hsieh B, Xiong Z, et al. ¹⁰	China	256		UR		23	RT-PCR		No
Lancet	Chen H, Guo J, Wang C, et al. ¹¹	China	9		UR + Other		20	RT-PCR		No
AJR Am J Roentgenol	Liu D, Li L, Wu X, et al. ¹²	China	15		UR		24 t	RT-PCR		No
Eur J Radiol	Long C, Xu H, Shen Q, et al. ¹³	China	87		UR		9 Y G	RT-PCR		No
Pediatr Pulmonol	Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. ¹⁴	China	20		UR		2024 by guest.	RT-PCR		No
Am J Obstetr Gynecol	Yan J, Guo J, Fan C, et al. ¹⁵	China	116	0.56	Other		Protected	RT-PCR		No
J Hosp Infect	Ye G, Li Y, Lu M, et al. ¹⁶	China	91	0.52	UR		ect	RT-PCR		No
J Med Virol	Zhang J, Wang S, Xue Y. ¹⁷	China	14		UR + Other		d	RT-PCR		No
Respir Res	Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. ¹⁸	China	95		UR		by copyrigh	RT-PCR		No
Lancet	Zhou F, Yu T, Du R, et al. ¹⁹	China	191		UR		rigl	RT-PCR		No

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

J Clin Microbiol	Liu W, Liu L, Kou G, et al. ²⁰	China	314		UR + Serum		6/bmjopen-202	RT-PCR	lgM + IgG	Yes
J Med Virol	Li, Y et al. ²¹	China	610	0.40	UR	N, ORF1Ab	Bogh	RT-PCR	-	No
medRxiv	Diao B, Wen K, Chen J, et al. ²²	China	239		UR + Serum	N, ORF1Ab	Bogh	RT-PCR		No
J Clin Microbiol	Chan JF, Yip CC, To KK, et al. ²³	China	273		UR + Other	N, S, RdRp	21th Both	RT-PCR		No
Nature Microbiol	Kong WH, Li Y, Peng MW, et al. 24	China	640		UR	N, ORF1Ab	⊟i Booth	RT-PCR		No
Front Med	Liu W, Wang J, Li W, Zhou Z, Liu S, Rong Z. ²⁵	China	38	0.53	UR + Other	N, ORF1Ab	Boath	RT-PCR		No
Int J Biol Sci	Lo IL, Lio CF, Cheong HH, et al. ²⁶	China	10		UR + LR + Other	N, ORF1Ab	Beed	RT-PCR		No
Travel Med Infect Dis	Wu J, Liu J, Li S, Peng Z, et al. ²⁷	China	132		UR + LR + Serum + Other	N, E, RdRp	d frog http:/	RT-PCR		No
Int J Infect Dis	Xu T, Chen C, Zhu Z, et al. ²⁸	China	51		UR + LR + Other	N, ORF1Ab	Both	RT-PCR		N
J Med Virol	Yuan Y, Wang N, et al. 29	China	6		UR + Other	N, E, RdRp	Both	RT-PCR		N
AJR Am J Roentgenol	Cheng Z, Lu Y, Cao Q, et al. ³⁰	China	33	0.33	UR	N, E, ORF1ab	Both	RT-PCR		N
Arch Pathol Lab Med	Schwartz, DA ³¹	China	38		UR + Other	ORF1Ab, single	Nอีก- struetural	RT-PCR		N
Radiology	Wong HYF, Lam HYS, Fong AH, et al. ³²	China	64		UR	RdRp, single	N- struœural	RT-PCR		No
Chin Med J	Ling Y, Xu SB, Lin YX, et al. ³³	China	292		UR + Other	E, single	Struğural	RT-PCR		No
Clin Infect Dis	Zhao R, Li M, Song H, et al. ³⁴	China	412		UR	S, single	Structural	RT-PCR		N
medRxiv	Ma H, Zeng W, He H, et al. ³⁵	China	699		UR + Serum		by gue	RT-PCR /CLIA	lgM + IgG	Ye
medRxiv	Cai X, Chen J, Hu J, et al. ³⁶	China	443		Serum		lest. Pro	RT-PCR /CLIA	lgM + IgG	Ye
medRxiv	Qian C, Zhou M, Cheng F, et al. 37	China	2062				Protected	RT-PCR /CLIA	lgM + IgG	Υe
J Infect Dis	Zhang G, Nie S, Zhang Z, Zhang Z. ³⁸	China	112		UR + Serum	N, ORF1Ab	Both	RT-PCR /CLIA	lgM + IgG	N
medRxiv	Lin D, Liu L, Zhang M, et al. ³⁹	China	159		UR + Serum	N, ORF1Ab	by Beth	RT-PCR /CLIA	lgM + IgG	Ye


				BMJ Open			6/bmjopen			
J Med Virol	Xie J, Ding C, Li J, et al. 40	China	56		UR +Serum	N, ORF1Ab	en-bh Ban	RT-PCR /CLIA	lgM + IgG	Yes
Nature Med	Long QX, Liu BZ, Deng HJ, et al.	China	285		UR+ Serum	S, N	Strugural	RT-PCR /CLIA	lgM + IgG	No
Int J Infect Dis	Jin Y, Wang M, Zuo Z, et al. 42	China	76	0.57	Serum	N, single	Strugtural	RT-PCR /CLIA	lgM + IgG	Yes
Emerg Microbes Infect	Zhang W, Du RH, Li B, et al. 43	China	278		UR + Other		21 Apr	RT-PCR /ELISA	lgM + IgG	No
Clin Infect Dis	Zhao J, Yuan Q, Wang H, et al.44	China	386		UR + LR + Serum		21 April 2022.	RT-PCR /ELISA	lgM + IgG	Yes
Euro Surveill	Perera RA, Mok CK, Tsang OT, et al. 45	China	51		Serum		Dow	RT-PCR /ELISA	lgM + IgG	Yes
Clin Infect Dis	Xiang F, Wang X, He X, et al. 46	China	216		UR + Serum	N, ORF1Ab	. Download	RT-PCR /ELISA	lgM + IgG	Yes
medRxiv	Xiang J, Yan M, Li H, Liu T, et al. 47	China	154		Serum	N, ORF1Ab	Bath	RT-PCR /ELISA	lgM + IgG	Yes
medRxiv	Liu L, Liu W, Wang S, et al.48	China	238		UR + Serum	N, ORF1Ab	B <mark>ộ</mark> th	RT-PCR /ELISA	lgM + IgG	Yes
Clin Infect Dis	Guo L, Ren L, Yang S, et al. 49	China	208	0.39	Serum	N, single	Strugtural	RT-PCR /ELISA	lgM + IgA + lgG	Yes
Sci China Life Sci	Zhong L, Chuan J, Gong B, et al.50	China	347		UR NP/OP + Serum + Other	N, S	Structural	RT-PCR /ELISA + CLIA	lgM + IgG	Yes
Eur Respir J	Lou B, Li TD, Zheng SF, et al. ⁵¹	China	80		UR + LR + Serum + Other	N, ORF1Ab	com/ on on pril 23, 2024 by guest.	RT-PCR /ELISA + LFIA + CLIA	lgM + IgG	Yes
J Med Virol	Du Z, Zhu F, Guo F, Yang B, Wang T. ⁵²	China	60		Serum		3, 2024	RT-PCR /LFIA	lgM + IgG	No
J Infect	Pan Y, Li X, Yang G, et al. 53	China	105		Serum		t by gu	RT-PCR /LFIA	lgM + IgG	No
J Med Virol	Li Z, Yi Y, Luo X, et al. ⁵⁴	China	525					RT-PCR /LFIA	lgM + IgG	Yes
medRxiv	Liu Y, Liu Y, Diao B, et al. ⁵⁵	China	179		UR + Serum		Protected	RT-PCR /LFIA	lgM + IgG	Yes
Emerg Microbes Infect	Yongchen Z, Shen H, Wang X, et al. ⁵⁶	China	21		UR + Serum + Other	ORF1Ab, single	Nen- struggural	RT-PCR /LFIA	lgM + IgG	No
Anal Chem	Chen Z, Zhang Z, Zhai X, et al.57	China	19		UR + Serum	N, single	Struetural	RT-PCR /LFIA	lgG	Yes

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

9 of 38				BMJ Open			6/bmjope			
medRxiv	Zhang P, Gao Q, Wang T, et al.58	China	163		UR + Serum	N, single	Strugural	RT-PCR /LFIA	lgM + IgG	Ye
JAMA	Grasselli G, Zangrillo A, Zanella A, et al. ⁵⁹	Europe	1591		UR		1-0539	RT-PCR		N
Radiology	Caruso D, Zerunian M, Polici M, et al. ⁶⁰	Europe	158	0.39	UR	N, E, RdRp	Ben	RT-PCR		N
Travel Med Infect Dis	Lagier JC, Colson P, Tissot Dupont H, et al. ⁶¹	Europe	337		UR +LR+ Other	N, E, S, RdRp	Both Bri	RT-PCR		N
J Clin Virol	van Kasteren PB, van der Veer B, van den Brink S, et al. 62	Europe	13		UR	S, N, E, RdRp, ORF1ab	Bogh	RT-PCR		N
Int J Mol Sci	Toptan T, Hoehl S, Westhaus S, et al. ⁶³	Europe	48		UR	M, E	Bogh	RT-PCR		N
Trop Med Infect Dis	Amrane S, Tissot-Dupont H, Doudier, et al. ⁶⁴	Europe	280		UR + LR + Other	E, single	Struetural	RT-PCR		N
J Clin Microbiol	Lambert-Niclot S, Cuffel A, Le Pape S, et al. 65	Europe	138		UR	E, single	Structural	RT-PCR		N
J Med Virol	Infantino M, Grossi V, Lari B, et al.	Europe	61		Serum	S, N	Strugtural	RT-PCR /CLIA	lgM + IgG	Y
Euro Surveill	Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al. ⁶⁷	Europe	37		Serum	N, E, RdRp	Both	RT-PCR /ELISA	lgA + lgG	Y
J Infect	Tré-Hardy M, Blairon L, Wilmet A, et al. ⁶⁸	Europe	182		Serum		pmj.com/ (RT-PCR /ELISA + CLIA	lgA + lgG	N
Orvo Hetil	Vásárhelyi B, Kristóf K, Ostorházi E, Szabó D, Prohászka Z, Merkely B. ⁶⁹	Europe	2310	0.06	UR + Serum		on April 2:	RT-PCR /LFIA	lgM + IgG	Y
Infect Ecol Epidemiol	Hoffman T, Nissen K, Krambrich J, et al. ⁷⁰	Europe	153		Serum		3, 2024	RT-PCR /LFIA	lgM + IgG	Ye
J Med Virol	Cassaniti I, Novazzi F, Giardina F, et al. ⁷¹	Europe	110		UR + Serum	E, RdRp	Both	RT-PCR /LFIA	lgM + IgG	N
medRxiv	Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al. ⁷²	Europe	100		Serum	N, ORF1Ab	Both	RT-PCR /LFIA	lgM + IgG	Ye
medRxiv	Paradiso AV, De Summa S, Loconsole D, et al. ⁷³	Europe	190		UR + Serum	N, RNAse P	Both Both	RT-PCR /LFIA	lgM + IgG	Y
Public Health	Döhla M, Boesecke C, Schulte B, et al. ⁷⁴	Europe	49		Serum	E, single	Struetural	RT-PCR /LFIA	lgM + IgG	Y
J Emerg Infect Dis	Okba NMA, Muller MA, Li W, et al.	Global	207		Serum		copyrigh	RT-PCR /ELISA	lgM + IgG	N

J Clin Virol Offingamento, Grandovin, Martina 113 UR ORF Jab Bötn RT-PCR Mon J Med Virol Pujadas E, Ibeh N, Hernandez America Morth 1006 UR E, ORF Jab Bötn RT-PCR Image Jab No J Infect Dis Burbelo PD, Riedo FX, Morishima North America 100 Serum N, single Strugeral RT-PCR Image Jab No J Infect Dis Burbelo PD, Riedo FX, Morishima North America 32 UR + Other N, single Strugeral RT-PCR Image Jab No Med Virol Penfield CA, Brubaker SG, North 32 UR + Other N, single Strugeral RT-PCR Image Jab No J Appl Lab Med Subnadynata RT, Hoffman MA, Keiner MJ, McLawhon RW, Reed North America 235 Serum N, single Strugeral RT-PCR IgM + IgG No J Appl Lab Med Subnadynata RT, Hoffman MA, Keiner MJ, McLawhon RW, Reed North America 235 Serum N, single Strugeral RT-PCR IgM + IgA No J Appl Lab Med Randad PR, Pisanic N, Kruczynski K, et al. 53 North America 201 UR + LR + Serum N, single Strugeral RT-				BMJ Open			6/bmjopen-			
Jinde Vrion Image of the structure of the str	J Clin Virol		113		UR		Bath	RT-PCR		No
J Infect Dis Burbelo PU, Redo PV, Monshima C, et al. 78 North America 100 Serum N, single Strugural RT-PCR Image North No Am J Obstet Gynecol MFM Penfield CA, Brubaker SG, Limaye MA, et al. 79 North America 32 UR + Other N, single Strugural RT-PCR Image No medRxiv Wyllie AL, Fournier J, et al. 80 North America 444 UR + Other N, single Strugural RT-PCR Image No J Appl Lab Med Subandynata RT, Hoffman MA, Keiner MJ, McLawhon RW, Reed SL, Fitzgerald RL. 81 North America 235 Serum N, single Strugural RT-PCR IgM + IgG No Clin Chem Tang MS, Hock KG, Logsdon NM, et al. 82 North America 201 UR + LR + Serum N, E Bgm RT-PCR (CLIA IgG Yes medRxiv Randad PR, Pisanic N, Kruczynski K, et al. 83 North America 493 UR + Serum N, single Strugural RT-PCR (FLISA IgM + IgA + IgG No JMIR Public Health Surveill Sullivan PS, Saliey C, Guest JL, et al. 86 North America 618 UR NP/DP + Serum N, single Strugural <td< td=""><td>J Med Virol</td><td></td><td>1006</td><td></td><td>UR</td><td></td><td>Bogh</td><td>RT-PCR</td><td></td><td>No</td></td<>	J Med Virol		1006		UR		Bogh	RT-PCR		No
Am J Obstet Gynecol MFM Penfield CA, Brubaker SG, Limaye MA, et al. ⁷⁹ North America 32 UR + Other N, single Struggural RT-PCR No medRxiv Wyllie AL, Fournier J, et al. ⁸⁰ North America 44 UR + Other N, single Struggural RT-PCR No J Appl Lab Med Subandynata RT, Hoffman MA, Keiner MJ, McLawhon RW, Reed SL, Fitzgerald RL. ⁸¹ North America 235 Serum N, single Struggural RT-PCR IgM + IgG No Clin Chem Tang MS, Hock KG, Logsdon NM, et al. ⁸² North America 201 UR + LR + Serum N, E Bgth Bgth RT-PCR /CLIA IgG Yes <i>medRxiv</i> Randad PR, Pisanic N, Kruczynski K, et al. ⁸³ North America 493 UR + Serum N, single Struggural RT-PCR /CLIA IgG No JJMIR Public Health Surveill Sulivan PS, Sailey C, Guest JL, et al. ⁴⁴ North America 159 UR + Serum S, N Strugural RT-PCR /ELISA IgA + IgG No JMIR Public Health bioRxiv Freeman B, Lester S, Mills L, et al. ⁴⁵ North America 618 UR NP/OP + Serum N, single Strugural RT-PCR /ELISA<	J Infect Dis		100		Serum	N, single	Strugtural	RT-PCR		No
ImmedRXiv Wyllie AL, Fournier J, et al. ** America 44 UR + Other N, single Strugural R1-PCR Ize No J Appl Lab Med Suhandynata RT, Hoffman MA, Kelner MJ, McLawhon RW, Reed SL, Fitzgerald RL. *! North America 235 Serum N, single Strugural R1-PCR /CLIA IgM + IgG No Clin Chem Tang MS, Hock KG, Logsdon NM, et al. *2 North America 201 UR + LR + Serum N, E Both Setting R1-PCR /CLIA IgG Yes medRxiv Randad PR, Pisanic N, Kruczynski K, et al. *3 North America 493 UR + Other N, single Strugural Strugural R1-PCR /CLIA IgG Yes JMIR Public Health Surveill Sullivan PS, Sailey C, Guest JL, et al. *4 North America 159 UR + Serum S, N Strugural Strugural R1-PCR /ELISA IgA + IgG No bioRxiv Freeman B, Lester S, Mills L, et al.*5 North America 618 UR NP/OP + Serum N, single Strugural R1-PCR /ELISA IgA + IgG Yes			32		UR + Other	N, single	Strugtural	RT-PCR		No
J Appl Lab Med Kelner MJ, McLawhon RW, Reed North 235 Serum N, single Strugural RT-PCR /CLIA IgG No Clin Chem Tang MS, Hock KG, Logsdon NM, et al. ⁸² North 201 UR + LR + Serum N, E Bgth RT-PCR /CLIA IgG Yes medRxiv Randad PR, Pisanic N, Kruczynski K, et al. ⁸³ North America 493 UR + Serum N, single Strugural RT-PCR /CLIA IgG Yes JMIR Public Health Surveill Sullivan PS, Sailey C, Guest JL, et al. ⁸⁴ North America 159 UR + Serum S, N Strugural RT-PCR //ELISA IgM + IgA + IgG No bioRxiv Freeman B, Lester S, Mills L, et al. ⁸⁵ North America 159 UR NP/OP Serum N, single Strugural RT-PCR //ELISA IgM + IgA + IgG No bioRxiv Freeman B, Lester S, Mills L, et al. ⁸⁵ North America 618 UR NP/OP Serum N, single Strugural RT-PCR //ELISA IgG Yes	medRxiv	Wyllie AL, Fournier J, et al. ⁸⁰	44		UR + Other	N, single	≝ Stru <mark>c</mark> tural	RT-PCR		No
medRxiv Randad PR, Pisanic N, Kruczynski K, et al. 83 North America 493 UR + Other N, single Other Strugural RT-PCR /ELISA IgM + IgA + IgG North IgA + IgG JMIR Public Health Surveill Sullivan PS, Sailey C, Guest JL, et al. 84 North America 159 UR + Serum S, N Strugural RT-PCR /ELISA IgM + IgA + IgG North Age + IgG North America bioRxiv Freeman B, Lester S, Mills L, et al. ⁸⁵ North America 618 UR NP/OP + Serum N, single Strugural RT-PCR /ELISA IgM + IgA + IgG No	J Appl Lab Med	Kelner MJ, McLawhon RW, Reed	235		Serum	N, single		/CLIA		No
medRxiv Randad PR, Pisanic N, Kruczynski K, et al. ⁸³ North America 493 UR + Serum + Other N, single Strugural RT-PCR /ELISA IgM + IgA + IgG No JMIR Public Health Surveill Sullivan PS, Sailey C, Guest JL, et al. ⁸⁴ North America 159 UR + Serum S, N Strugural RT-PCR /ELISA IgM + IgA + IgG No bioRxiv Freeman B, Lester S, Mills L, et al. ⁸⁵ North America 618 UR NP/OP + Serum N, single Strugural RT-PCR /ELISA IgM + IgA + IgG Yes	Clin Chem		201		-	N, E	Beth	/CLIA +	lgG	Yes
Sum Public Health Stall Vall PS, Salley C, Guest JL, et al. 84 Noth America 159 OK + S, N Structural K1-FCK IgM + IgG No bioRxiv Freeman B, Lester S, Mills L, et al. 85 North America 618 UR NP/OP + Serum N, single Structural RT-PCR IgM + IgG Yes	medRxiv		493		Serum +	N, single	Structural			No
al. ⁸⁵ America 010 + Serum N, single Structural /ELISA igG res		Sullivan PS, Sailey C, Guest JL, et al. ⁸⁴	159			S, N	Structural			No
n/ on April 23, 2024 by guest. Protected by o	bioRxiv		618			N, single	0			Yes
copyright							on April 23, 2024 by guest. Protected by copyright			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Suppl. Figure S2. Summary plot of risk of bias for each study included in meta-analysis according to QUADAS-2 domain.

Patient selection	on 📃					
Index te	st					
Reference standa	rd					
Flow & timir	ng					
Overall risk of bia	as 📃					
	0%	25%	50%	, ,	75%	100%
		Low risk of bias	Some concerns	High risk of bias	No information	
		Low fisk of blas	Some concerns	High fish of blas		
F	or peer reviev	v only - http://bmj	open.bmj.com/sit	e/about/guidel	ines.xhtml	

- 1. Rahman H, Carter I, Basile K, et al. Interpret with caution: An evaluation of the commercial AusDiagnostics versus in-house developed assays for the detection of SARS-CoV-2 virus. J Clin Virol 2020;127:104374.
- 2. Won J, Lee S, Park M, et al. Development of a Laboratory-safe and Low-cost Detection Protocol for SARS-CoV-2 of the Coronavirus Disease 2019 (COVID-19). Exp Neurobiol 2020;29:107-19.
- 3. Okamaoto K, Shirato K, Nao N, et al. An assessment of real-time RT-PCR kits for SARS-CoV-2 detection. Jpn J Infect Dis 2020.
- 4. Choe JY, Kim JW, Kwon HH, et al. Diagnostic performance of immunochromatography assay for rapid detection of IgM and IgG in coronavirus disease 2019. J Med Virol 2020.
- 5. Yong SEF, Anderson DE, Wei WE, et al. Connecting clusters of COVID-19: an epidemiological and serological investigation. Lancet Infect Dis 2020;20:809-15.
- Imai K, Tabata S, Ikeda M, et al. Clinical evaluation of an immunochromatographic IgM/IgG antibody assay and chest computed tomography for the diagnosis of COVID-19. J Clin Virol 2020;128:104393.
- Xu Y, Xiao M, Liu X, et al. Significance of serology testing to assist timely diagnosis of SARS-CoV-2 infections: implication from a family cluster. Emerg Microbes Infect 2020;9:924-7.
- Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020;296:E32e40.
- 9. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020;382:1787-99.
- 10. Bai HX, Hsieh B, Xiong Z, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology 2020;296:E46-e54.
- 11. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020;395:809-15.
- 12. Liu D, Li L, Wu X, et al. Pregnancy and Perinatal Outcomes of Women With Coronavirus Disease (COVID-19) Pneumonia: A Preliminary Analysis. AJR Am J Roentgenol 2020;215:127-32.
- 13. Long C, Xu H, Shen Q, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol 2020;126:108961.
- 14. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr Pulmonol 2020;55:1169-74.
- 15. Yan J, Guo J, Fan C, et al. Coronavirus disease 2019 in pregnant women: a report based on 116 cases. Am J Obstet Gynecol 2020;223:111.e1-.e14.
- 16. Ye G, Li Y, Lu M, et al. Experience of different upper respiratory tract sampling strategies for detection of COVID-19. J Hosp Infect 2020;105:1-2.
- 17. Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J Med Virol 2020;92:680-2.
- 18. Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res 2020;21:74.
- 19. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62.
- 20. Liu W, Liu L, Kou G, et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J Clin Microbiol 2020;58.

21. Li Y, Yao L, Li J, et al. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J Med Virol 2020;92:903-8.

- 22. Diao B, Wen K, Chen J, et al. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. medRxiv 2020:2020.03.07.20032524.
- 23. Chan JF, Yip CC, To KK, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol 2020;58.
- 24. Kong WH, Li Y, Peng MW, et al. SARS-CoV-2 detection in patients with influenza-like illness. Nat Microbiol 2020;5:675-8.
- 25. Liu W, Wang J, Li W, Zhou Z, Liu S, Rong Z. Clinical characteristics of 19 neonates born to mothers with COVID-19. Front Med 2020;14:193-8.
- 26. Lo IL, Lio CF, Cheong HH, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int J Biol Sci 2020;16:1698-707.
- 27. Wu J, Liu J, Li S, et al. Detection and analysis of nucleic acid in various biological samples of COVID-19 patients. Travel Med Infect Dis 2020:101673.
- 28. Xu T, Chen C, Zhu Z, et al. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int J Infect Dis 2020;94:68-71.
- 29. Yuan Y, Wang N, Ou X. Caution should be exercised for the detection of SARS-CoV-2, especially in the elderly. J Med Virol 2020.
- 30. Cheng Z, Lu Y, Cao Q, et al. Clinical Features and Chest CT Manifestations of Coronavirus Disease 2019 (COVID-19) in a Single-Center Study in Shanghai, China. AJR Am J Roentgenol 2020;215:121-6.
- 31. Schwartz DĂ. An Analysis of 38 Pregnant Women with COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med 2020.
- 32. Wong HYF, Lam HYS, Fong AH, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020;296:E72-e8.
- 33. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl) 2020;133:1039-43.
- 34. Zhao R, Li M, Song H, et al. Early detection of SARS-CoV-2 antibodies in COVID-19 patients as a serologic marker of infection. Clin Infect Dis 2020.
- 35. Ma H, Zeng W, He H, et al. COVID-19 diagnosis and study of serum SARS-CoV-2 specific IgA, IgM and IgG by chemiluminescence immunoanalysis. medRxiv 2020:2020.04.17.20064907.
- 36. Cai X, Chen J, Hu J, et al. A Peptide-based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Corona Virus Disease 2019 (COVID-19). medRxiv 2020:2020.02.22.20026617.
- 37. Qian C, Zhou M, Cheng F, et al. Development and Multicenter Performance Evaluation of The First Fully Automated SARS-CoV-2 IgM and IgG Immunoassays. medRxiv 2020:2020.04.16.20067231.
- 38. Zhang G, Nie S, Zhang Z, Zhang Z. Longitudinal Change of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies in Patients with Coronavirus Disease 2019. J Infect Dis 2020;222:183-8.
- Lin D, Liu L, Zhang M, et al. Evaluations of serological test in the diagnosis of 2019 novel coronavirus (SARS-CoV-2) infections during the COVID-19 outbreak. medRxiv 2020:2020.03.27.20045153.
- 40. Xie J, Ding C, Li J, et al. Characteristics of patients with coronavirus disease (COVID-19) confirmed using an IgM-IgG antibody test. J Med Virol 2020.
- 41. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020;26:845-8.

1		
2		
3	42.	Jin Y, Wang M, Zuo Z, et al. Diagnostic value and dynamic variance of serum antibody in
4		coronavirus disease 2019. Int J Infect Dis 2020;94:49-52.
5	43.	
6		infected patients: implication of multiple shedding routes. Emerg Microbes Infect
7		2020;9:386-9.
8	44.	
9		coronavirus disease 2019. Clin Infect Dis 2020.
10	45.	
11		syndrome coronavirus 2 (SARS-CoV-2), March 2020. Euro Surveill 2020;25.
12 13	46.	
15		with COVID-19. Clin Infect Dis 2020.
14	47.	
16		Gold- Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-
10		2) Causing an Outbreak of Pneumonia (COVID-19). medRxiv 2020:2020.02.27.20028787.
18	48.	
19	4 0.	respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients.
20		medRxiv 2020:2020.03.06.20031856.
21	49.	
22	4 3.	Coronavirus Disease (COVID-19). Clin Infect Dis 2020;71:778-85.
23	50.	
24	50.	diagnosis. Sci China Life Sci 2020;63:777-80.
25	51.	
26	51.	exposure and post symptom onset. Eur Respir J 2020.
27	52.	
28	52.	
29	50	patients with COVID-19. J Med Virol 2020.
30	53.	Pan Y, Li X, Yang G, et al. Serological immunochromatographic approach in diagnosis
31	E۸	with SARS-CoV-2 infected COVID-19 patients. J Infect 2020;81:e28-e32.
32	54.	
33		antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 2020.
34	55.	Liu Y, Liu Y, Diao B, et al. Diagnostic Indexes of a Rapid IgG/IgM Combined Antibody Test
35	50	for SARS-CoV-2. medRxiv 2020:2020.03.26.20044883.
36	56.	Yongchen Z, Shen H, Wang X, et al. Different longitudinal patterns of nucleic acid and
37		serology testing results based on disease severity of COVID-19 patients. Emerg Microbes
38		
39 40	57.	
40 41		Using Lanthanide-Doped Nanoparticles-Based Lateral Flow Immunoassay. Anal Chem
41		2020;92:7226-31.
43	58.	
44		proteins for serological diagnosis of novel coronavirus disease 2019 (COVID-19). medRxiv
45		2020:2020.03.17.20036954.
46	59.	0
47		Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama
48		2020;323:1574-81.
49	60.	Caruso D, Zerunian M, Polici M, et al. Chest CT Features of COVID-19 in Rome, Italy.
50		Radiology 2020;296:E79-e85.
51	61.	Lagier JC, Colson P, Tissot Dupont H, et al. Testing the repatriated for SARS-Cov2:
52		Should laboratory-based quarantine replace traditional quarantine? Travel Med Infect Dis
53		2020;34:101624.
54	62.	
55		commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol 2020;128:104412.
56		
57		
58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		Tor peer review only - http://binjopen.binj.com/site/about/guidennes.xhtml

- ive Detection of anti-SARS-CoV-2 IgG, ateral Flow Immunoassay. Anal Chem combinant nucleocapsid and spike virus disease 2019 (COVID-19). medRxiv e Characteristics and Outcomes of 1591 CUs of the Lombardy Region, Italy. Jama Features of COVID-19 in Rome, Italy. ing the repatriated for SARS-Cov2: itional guarantine? Travel Med Infect Dis
 - S, et al. Comparison of seven 9. J Clin Virol 2020;128:104412.

63. Toptan T, Hoehl S, Westhaus S, et al. Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs. Int J Mol Sci 2020;21.

- 64. Amrane S, Tissot-Dupont H, Doudier B, et al. Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France, January 31st to March 1st, 2020: A respiratory virus snapshot. Travel Med Infect Dis 2020:101632.
- 65. Lambert-Niclot S, Cuffel A, Le Pape S, et al. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. J Clin Microbiol 2020;58.
- 66. Infantino M, Grossi V, Lari B, et al. Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: an Italian experience. J Med Virol 2020.
- 67. Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al. Evaluation of commercial and automated SARS-CoV-2 IgG and IgA ELISAs using coronavirus disease (COVID-19) patient samples. Euro Surveill 2020;25.
- 68. Tré-Hardy M, Blairon L, Wilmet A, et al. The role of serology for COVID-19 control: Population, kinetics and test performance do matter. J Infect 2020;81:e91-e2.
- 69. Vásárhelyi B, Kristóf K, Ostorházi E, Szabó D, Prohászka Z, Merkely B. [The diagnostic value of rapid anti IgM and IgG detecting tests in the identification of patients with SARS CoV-2 virus infection]. Orv Hetil 2020;161:807-12.
- 70. Hoffman T, Nissen K, Krambrich J, et al. Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to SARS-CoV-2. Infect Ecol Epidemiol 2020;10:1754538-.
- 71. Cassaniti I, Novazzi F, Giardina F, et al. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol 2020.
- 72. Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, Arroyo Serrano T, Gomez Herruz P, Cuadros Gonzalez J. Rapid diagnosis of SARS-CoV-2 infection by detecting IgG and IgM antibodies with an immunochromatographic device: a prospective single-center study. medRxiv 2020:2020.04.11.20062158.
- 73. Paradiso AV, De Summa S, Loconsole D, et al. Clinical meanings of rapid serological assay in patients tested for SARS-Co2 RT-PCR. medRxiv 2020:2020.04.03.20052183.
- 74. Döhla M, Boesecke C, Schulte B, et al. Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health 2020;182:170-2.
- 75. OKBA NMA, Muller MA, Li W, et al. SARS-CoV-2 specific antibody responses in COVID-19 patients. medRxiv 2020:2020.03.18.20038059.
- Smithgall MC, Scherberkova I, Whittier S, Green DA. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche cobas for the Rapid Detection of SARS-CoV-2. J Clin Virol 2020;128:104428.
- 77. Pujadas E, Ibeh N, Hernandez MM, et al. Comparison of SARS-CoV-2 detection from nasopharyngeal swab samples by the Roche cobas 6800 SARS-CoV-2 test and a laboratory-developed real-time RT-PCR test. J Med Virol 2020.
- Burbelo PD, Riedo FX, Morishima C, et al. Sensitivity in Detection of Antibodies to Nucleocapsid and Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 in Patients With Coronavirus Disease 2019. J Infect Dis 2020;222:206-13.
- 79. Penfield CA, Brubaker SG, Limaye MA, et al. Detection of SARS-COV-2 in Placental and Fetal Membrane Samples. Am J Obstet Gynecol MFM 2020:100133.
- 80. Wyllie AL, Fournier J, Casanovas-Massana A, et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. medRxiv 2020:2020.04.16.20067835.

60

1		
2 3 4 5	81.	Longitudinal Monitoring of SARS-CoV-2 IgM and IgG Seropositivity to Detect COVID-19. J
6 7	82.	
8	83.	Serologic Assays. Clin Chem 2020;66:1055-62. Randad PR, Pisanic N, Kruczynski K, et al. COVID-19 serology at population scale:
9 10 11 12	84.	SARS-CoV-2-specific antibody responses in saliva. medRxiv 2020. Sullivan PS, Sailey C, Guest JL, et al. Detection of SARS-CoV-2 RNA and Antibodies in Diverse Samples: Protocol to Validate the Sufficiency of Provider-Observed, Home-
13 14		Collected Blood, Saliva, and Oropharyngeal Samples. JMIR Public Health Surveill 2020;6:e19054.
15 16	85.	Freeman B Lester S Mills L et al. Validation of a SARS-CoV-2 spike protein ELISA for
17		use in contact investigations and sero-surveillance. bioRxiv 2020:2020.04.24.057323.
18 19		
20		
21 22		
23 24		
24 25		
26 27		
27		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
<u> </u>		

PRISMA 2009 Checklist

		BMJ Open 33	Page 38 of 3
PRISMA 2	009	BMJ Open 36/bmj Checklist 202	
Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
	<u> </u>	<u> </u>	
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data source study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3
		oadd	
Rationale	3	Describe the rationale for the review in the context of what is already known.	5
8 Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
2 Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and if available, provide registration information including registration number.	N/A
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
7 Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study guthors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6
2 Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6-7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7
6 7 Data items 8	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7
2 Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

PRISMA 2009 Checklist

Page 1 of 2

Page 39 of 38		BMJ Open 136 b	
PRISMA 20)09		
3		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS	·		
4 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Suppl
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Supp table 1
9 Risk of bias within studies 1	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Supp Fig 1
2 Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	figures
5 Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	figures
A Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	figures
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	figures
	<u> </u>		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	7-10
3 Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13
6 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	10-14
39 Funding 10	27	Describe sources of funding for the systematic review and other support (e.g., supply of data; role of funders for the systematic review.	14
,1 2			

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The $\frac{3}{2}$. Additional predotorial predotorial predotorial doi:10.1371/journal.pmed1000097 44

- 45 46
- 47

Meta-Analysis of Robustness of COVID-19 Diagnostic Kits During Early Pandemic

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053912.R1
Article Type:	Original research
Date Submitted by the Author:	05-Jan-2022
Complete List of Authors:	Shanmugam, Chandrakumar; MNR Medical College and Hospital, Pathology Behring, Michael; The University of Alabama at Birmingham School of Medicine Luthra, Vishwas; Sri Guru Ram Das Institute of Medical Sciences and Research Leal, Sixto M.; The University of Alabama at Birmingham Department of Medicine Varambally, Sooryanarayana; The University of Alabama at Birmingham Department of Medicine Netto, George J.; The University of Alabama at Birmingham Department of Medicine Manne, Upender; The University of Alabama at Birmingham School of Medicine, Pathology
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Diagnostics
Keywords:	COVID-19, Molecular diagnostics < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Meta-Analysis of Robustness of COVID-19 Diagnostic Kits During Early Pandemic

Chandrakumar Shanmugam, M.D., M.B.A.,^{1#} Michael Behring, Ph.D.,^{2#} Vishwas Luthra, M.B.B.S.,³ Sixto M Leal Jr., M.D., Ph.D.,² Sooryanarayana Varambally,^{2, 4} PhD, George J Netto, M.D.,^{2, 4} and Upender Manne, M.S., Ph.D.^{2, 4,*}

Department of Pathology¹, MNR Medical College & Hospital, MNR Nagar, Fasalwadi, Sangareddy, Telangana, India 502279

Department of Pathology², University of Alabama at Birmingham, Birmingham, Alabama, USA 35274

Department of General Medicine³, Sri Guru Ram Das Institute of Medical Sciences and Research, Mehta Road, Vallah, Amritsar, Punjab, India 143501

O'Neal Comprehensive Cancer Center⁴, University of Alabama at Birmingham, Birmingham, Alabama, USA 35274

Authors contributed equally

Running title: Robustness of Diagnostic Kits During Early Phase COVID 19: Lessons

Learned

*Author for Correspondence:

Dr. Upender Manne Professor of Pathology, Epidemiology and Surgery University of Alabama at Birmingham Birmingham, Alabama, USA 35274 Tel: 001 2052493895 Email: upendermanne@uabmc.edu

ABSTRACT:

Background

Accurate detection of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is necessary to mitigate the coronavirus disease-19 (COVID-19) pandemic. However, the test reagents and assay platforms are varied and may not be sufficiently robust to diagnose COVID-19.

Methods

We reviewed 85 studies (21,530 patients), published from five regions of the world, to highlight issues involved in the diagnosis of COVID-19 in the early phase of the pandemic. All relevant articles, published up to May 31, 2020, in PubMed, BioRiXv, MedRiXv, and Google Scholar, were included. We evaluated the qualitative (9749 patients) and quantitative (10,355 patients) performance of RT-PCR and serologic diagnostic tests for real-world samples, and assessed the concordance (5,538 patients) between test performance in meta-analyses. Synthesis of results was done using random effects modelling and bias was evaluated according to QUADAS-2 guidelines.

Results

The RT-PCR tests exhibited heterogeneity in the primers and reagents used. Of 1,957 positive RT-PCR COVID-19 participants, 1,585 had positive serum antibody (IgM +/- IgG) tests (sensitivity 0.81, 95%CI 0.66-.90). While 3,509 of 3581 participants RT-PCR negative for COVID-19 were found negative by serology testing (specificity 0.98, 95%CI 0.94-0.99). The chemiluminescent immunoassay exhibited the highest sensitivity, followed by ELISA and lateral flow immunoassays. Serology tests had higher sensitivity and specificity for laboratory-approval than for real-world reporting data.

Discussion

The robustness of the assays/platforms is influenced by variability in sampling and reagents. Serological testing complements and may minimize false negative RT-PCR results. Lack of

standardized assay protocols in the early phase of pandemic might have contributed to the spread of COVID-19.

Strengths and limitations of this study:

- This study offers the first evaluation of COVID-19 test performance with consideration of the heterogeneity of RT-PCR primers.
- We compare the performance of manufacturer-based, laboratory/approval data to the performance of the same test kits in a real-world setting in the <u>early phase</u> of the pandemic.
- We perform a qualitative analysis of RT-PCR assays using 85 studies (21,530 patients), and a quantitative meta-analysis of RT-PCR vs. serum antibody assays in a sub-set of 30 publications (10,355 patients).
- Much of the information in the early pandemic was reported from China, and often from non-peer reviewed, preprint sources.
- Data measuring duration of the infection was not available in majority of included studies.

INTRODUCTION

In December 2019, there was a cluster of unexplained pneumonia cases in Wuhan, China, and a novel coronavirus was identified as the causative agent.¹ The virus was named as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), and the disease as corona virus disease-19 (COVID-19).² The clinical spectrum ranges from asymptomatic forms to acute respiratory failure and multi-organ dysfunction syndrome, coagulopathy, and death.^{3,4} On March 11th 2020, the World Health Organization described the spread of these infections as a pandemic, which persists as a global crisis. Robust diagnostic tests are required to mitigate the spread of this virus and thereby to minimize the impact of COVID-19 on the health, economy, and social well-being of mankind.

The standard diagnosis of COVID-19 is based on clinical and radiologic evidence and viral genome detection by RT-PCR in respiratory samples.⁵ Gene-specific primers are used in the RT-PCR assays; structural genes include envelope (E), nucleocapsid (N), and/or spike (S)genes; non-structural genes include RNA-dependent RNA polymerase (RdRp) or open reading frame1ab (ORF1ab) 6.7 Some studies used only a single-gene specific primer, and others used multiple-gene primers. Since studies published in the early phase of the pandemic reported a 3%-41% range of false-negativity by RT-PCR, a repeat RT-PCR testing was suggested.^{8,9} Furthermore, false negativity was attributed to either mutations in the regions to which the primers bind or to sampling and laboratory practices, including collection, transportation, and handling.¹⁰ Timing of sample collection with respect to the course of infection and the sample type also influence test results.¹¹ Alternatively, the diagnosis can be made by detection of antigens (E, N, or S) and/or antibodies (IgM or IgG or both) in blood samples.¹² However, these tests have the potential for false positives owing to cross-reactivity with other human corona viruses.^{13,14} Due to the unprecedented public health emergency, the FDA authorized, on June 1, 2020, EUA requests for more than 15 diagnostic and serologic tests. Though serology testing can detect the false positives of RT-PCR tests in clinically suspected patients, its value in COVID-19 diagnosis as a complementary assay in the

mitigation of the pandemic is not well defined. However, given the complexities in COVID-19 testing, there is a need for a review of performance for tests commonly used.

In this systematic review and meta-analysis, we examine testing for the diagnosis of COVID-19 in the early pandemic and evaluate the sensitivity and specificity of serological tests relative to RT-PCR tests. Our objectives were to assess the uniformity of primer usage in RT-PCR assays and evaluate whether primers used in gold-standard RT-PCR tests affect the validity of serological tests. Furthermore, we compared the performance of serological tests/platforms in approval contrived/laboratory *vs.* real-world data.

METHODS

Literature Search

This research was accomplished according to standards outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.¹⁵ To find relevant studies, international databases, including PubMed, Embase, MedRiXv, BioRiXv, and Google Scholar, were searched for articles published until May 31, 2020. The following search terms were used (selected using English MeSH keywords and Emtree terms): [SARS-CoV-2 AND diagnosis] OR [2019-nCoV AND diagnosis]" OR ["COVID-19 AND diagnosis] and [SARS-CoV-2 AND RT-PCR] OR, [2019-nCoV AND RT-PCR]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND serology].

Eligibility Criteria

Relevant articles that reported diagnostic information for infected patients were included in the analysis. Pre-print articles with non-peer review were considered for inclusion. Articles were excluded if appropriate information was not reported or if they were in the Chinese language. Population sample sizes of <5 participants were not included; reviews and editorials were not considered. For meta-analysis and approval *vs.* real-world performance, studies that reported percent sensitivity/specificity without including patient numbers were also excluded.

BMJ Open

Data Extraction and Report Quality Evaluation

Two authors (CS and VL) screened and evaluated the literature independently. Discrepancies were resolved by consensus after evaluation by a third author (MB). The following were extracted for review and meta-analysis: journal name, authors, period of publication (end of May, 2020), location of study, total number of patients, tissue of origin for samples tested, whether samples were from upper or lower respiratory tract (or both), primers for RT-PCR, platforms for serology tests, and antibodies tested for serology. Counts of true positives, false negatives, true negatives, and false positives were used in the meta-analysis.

An author (MB) extracted and analyzed the approved testing kit performance data from the following sources: FDA EUA Authorized Serology Test Performance,¹⁶ the Foundation for Innovative New Diagnostics (FIND) SARS-CoV-2 diagnostic pipeline,¹⁷ and package inserts provided on company websites for each product. Real-world sample testing data from kits in meta-analyses were compared against the performance of the same kits, or platforms, reported in approval documentation. Variables abstracted were study authors/test developer, name of test, test platform, and true positives, false negatives, true negatives, and false positives for each antibody or antibody combination measured (IgM, IgG, IgA, combined, and Pan-Ig). Risk of bias within individual studies of meta-analysis was assessed using the QUADAS 2 tool for assessment of diagnostic studies.¹⁸ QUADAS 2 has been developed specifically for evaluating bias in the meta-analyses of diagnostic test accuracy.

Patient and Public Involvement

Since we performed a meta-analysis and systematic review, it was not appropriate or possible to involve patients or the public in the design, conduct, reporting, or dissemination plans of our research.

Statistical Analysis

Statistical analyses were performed with R version 6.3.2 (2019-12-12).¹⁹ The package "meta" was used for meta-analyses.²⁰ Random effects models were used to measure sensitivity and specificity of outcomes across studies. Subgroup analysis was performed to evaluate the effect of assay, RT-PCR primer type, and setting (laboratory *vs.* real-world) upon serum test performance. Heterogeneity across studies and subgroups was evaluated using Cochrane's *Q* statistic, and residual heterogeneity was quantified as a percentage with the *l*² statistic. An *l*² measure of 0% shows no observed heterogeneity, with increasing values from 0%-100% indicating higher levels of heterogeneity. ²¹ An assumption of homogeneity was rejected for p-values < 0.1. The evaluation of publication bias was not possible using FDA and EU reported approval data.

RESULTS

Search Results and Population Characteristics

Our search generated 112 publications with potential relevance to the performance of COVID-19 diagnostic tests. After excluding duplicate publications, manuscripts that did not report numbers of patients used for sensitivity/specificity calculations and studies with a sample size of <5 patients, 85 studies were selected for qualitative synthesis of RT-PCR primer usage. From this set, a sub-set of 30 publications were selected for the quantitative meta-analysis of serologic *vs.* RT-PCR diagnostic testing for COVID-19 (**Table S1**). Ancillary analysis compared the performance of these 30 real-world studies to that reported in laboratory approval data from 47 diagnostic serum-based tests. In all, our qualitative synthesis of RT-PCR studies included 85 studies and 21,530 patients. From this synthesis, a group of 30 studies with 10,355 patients from 5 regions of the world were selected for meta-analysis and comparison to performance from laboratory approval data (**Fig S1**).

Uniformity of Primer Usage in RT-PCR Diagnostic Tests

We reviewed use of single primer of structural genes as compared to use of both structural and non-structural gene primers in 56 population-based studies with 9,872 participants.

BMJ Open

Overall, high proportions of studies employed both structural and non-structural gene primers in RT-PCR testing [55% (31 in 56) in studies and 56% (5484 in 9872) of total participants]. Additionally, 29 studies (11,658 patients) did not report RT-PCR primer data. Single markers were most frequently tested in China and North American studies (**Table 1**). In general, the most tested samples were from the upper respiratory tract, regardless of primer status. Sample source and location in the respiratory tract were not reported for 8-20% of patients, and this was more common for studies using single gene primer.

Meta-Analysis: RT-PCR vs. Serum Antibody Testing

In general, patient sera were tested for IgM and IgG antibodies. China was the region with the highest frequency of antibody testing, and lateral flow immunoassay (LFIA) and chemiluminescent immunoassay (CLIA) testing platforms were most often utilized. Of the 45 studies included in the qualitative synthesis, 30 manuscripts reported both serum antibody testing and RT-PCR testing for the same patients. Key characteristics of this population include: China as the regional location for research; lack of reporting of RT-PCR primer information for ~33% (10/30) of all studies; most studies used IgM and IgG serum-based antibody tests; and LFIA, CLIA, and enzyme-linked immunosorbent assay (ELISA) platforms were common across studies (**Table 2**).

We used the IgM+/-IgG serum antibody test since it was most commonly utilized across studies. Of 1,957 participants (pooled sensitivity 0.81, 95%CI 0.66-0.90) with a positive RT-PCR COVID-19 result, 1,585 were also detected as positive with serum antibody tests. Of 3,581 true negatives in RT-PCR, 3,509 negatives were also found by serum antibody testing (pooled specificity 0.98, 95%CI 0.94-0.99). For both models, heterogeneity between studies was significant (p<0.01 for both, l^2 =97% and l^2 =98% for sensitivity and specificity, respectively).

Sub-analyses of differences based on the testing platform found that sensitivity between groups differed (p <0.0001), with CLIA tests performing best (0.99, 95%CI 0.97-0.99); ELISA as next-best (0.89, 95%CI 0.82-0.93); and LFIA as having the poorest sensitivity (0.67, 95%CI

0.50-0.81). LFIA test sensitivity also showed heterogeneity between studies (p<0.01, l^2 95%). For IgM/IgG tests, specificity did not differ significantly by platform (p=0.06). However, a performance trend followed sensitivity, with LFIA underperforming (**Figure 1 and Figure S2.1**).

Serum Antibody Testing Performance: Approval Data vs. Real-World Data

For manufacturer-based, laboratory approval data, IgM+/-IgG testing detected COVID-19 positivity for 1,045 of 1,068 RT-PCR-determined "true" positive patients (sensitivity 0.98, 95%CI 0.92-1.0). In the same group, serum testing correctly identified 1,928 of 1,967 (specificity 0.98, 95%CI 0.95-.099) true negatives by RT-PCR. For both models (sensitivity and specificity), there was evidence of heterogeneity (p <0.01 for both and *I*²=93% and *I*²=94% for sensitivity and specificity, respectively).

We evaluated IgM+/-IgG serum test performance in subgroup analyses comparing laboratory approval performance data to real-world performance in study data. In manufacturer data presented for approval, serum antibody testing detected 1,047 of 1,068 "true positive" cases of COVID-19 (sensitivity 0.98, 95%CI 0.92-1.0). Real-world use of serum IgM+/-IgG testing was evident for 2,450 of 3,025 participants diagnosed with COVID-19 by RT-PCR (sensitivity 0.81, 95% CI 0.66-0.90). For both groups, there was heterogeneity between studies (p <0.01 for both, *I*²=93% and *I*² =97% for approval and real-world specificity, respectively) (**Figure 2 and Figure S2.2**). In addition, the overall sensitivity between approval and real-world testing groups differed significantly (*Q*=8.37, p=0.004). An analysis of specificity by the same subgroups found no significant difference between laboratory approval and real-world data. Laboratory data identified 1,928 of 1,967 participants with true COVID-19 negative status (specificity 0.98, 95% CI 0.95-0.99). Real-world data found 5,437 of 5,548 true negatives (specificity 0.98, 95% CI, 0.96-0.99) (analysis not shown).

Since, in IgM+/-IgG tests, there were differences in sensitivity between platforms, we evaluated the effect of approval-based data *vs.* real-world data by the type of platform. In an analysis stratified for ELISA, CLIA, and LFIA, there was no significant difference in specificity

Page 11 of 40

BMJ Open

between approval and real-world data (data not shown). However, for ELISA tests, real-world capacity to detect true positives was lower than in laboratory-based analyses. In real-world studies, the sensitivity of ELISA was 0.89 (95% CI, 0.82-0.93), different from laboratory sensitivity for the same platform (0.94, CI95% 0.91-0.96, Q = 4.74, p = 0.03). The LFIA platform also showed a trend of lower real-world sensitivity (0.67, 95% CI, 0.50-0.81) compared to laboratory approval sensitivity (0.99, CI95% 0.90-0.99, Q = 8.56, p 0.003). Laboratory/real-world groups for CLIA platforms were too small to be tested reliably (1 and 2 groups, respectively).

Serum Antibody Testing Performance: Effect of Primer Choice on Test Validity

To evaluate the reliability of RT-PCR as a gold standard for serum-based test performance, we tested the consequences of using structural and non-structural primers in RT-PCR reference testing of serum. Analyses were divided into three subgroups based on antibody targets: IgM, IgG, and IgG+/-IgM combined. In IgM and combined IgG+/-IgM testing, the primer choice had no significant influence on sensitivity or specificity. However, for IgG antibody tests, use of both a structural and a non-structural gene-specific primers in RT-PCR resulted in reduced sensitivity for serum testing (**Figure 3 and Figure S2.3**, Q=6.17, p=0.013). Furthermore, although not statistically significant, the sensitivity of both IgM and IgG+/-IgM combined data sets was lower when using a referent RT-PCR test with both primer types.

DISCUSSION

Because of the highly infectious nature of COVID-19, a prompt, accurate, and early diagnosis is necessary to deal with the ongoing pandemic, for such diagnoses can help reduce the spread of infection and its associated risk for mortality. Currently, the COVID-19 diagnosis is generally based on RT-PCR assays.⁸ Alternative methods such as antigen- and antibody-based serology tests, although available, have uncertain value. The current systematic review and meta-analysis addresses the challenges encountered in the diagnosis of COVID-19 by various methods. It also analyzes differences between the FDA-approved EUA data and real-

world data. There is worldwide non-uniformity in the performance of RT-PCR, including the number and types of primers and reagents used for COVID19 diagnosis, which raise questions about its generalized applicability. Similarly, the studies based on serological tests showed diagnostic inaccuracies owing to individual differences in mounting an immune response as well as dependency on the time duration after the onset of symptoms. Overall, the sensitivity between RT-PCR and serology tests was 0.81 (95% CI, 0.66-0.90), and specificity was 0.98 (95% CI, 0.94-0.99). Among the various platforms for serodiagnosis, the highest sensitivity was exhibited by ELISA, followed by CLIA and LFIA. Furthermore, use of primers (structural, non-structural, or both) had a variable effect on sensitivity based on antibody targets. Sensitivity was significantly higher for IgG serology tests using structural-primer-only RT-PCR tests as a referent. Serology tests had higher sensitivity for approval-based data than for real-world reporting. This difference was significant for ELISA-based platforms, and a non-significant trend towards inflated approval-based sensitivity was evident for both CLIA and LFIA platforms. These observations highlight the inconsistencies/challenges in the COVID-19 diagnosis by RT-PCR, which is the current gold standard, as well as in serologic testing.

For RT-PCR assays, the targets in SARS-CoV-2 include structural genes like *E*, *N* and *S*, and nonstructural genes, including that for *RdRp* or *ORF1ab*.²² In the early phase of the pandemic, some studies used a two-step diagnosis that included an initial screening phase using structural genes followed by a confirmatory phase using nonstructural genes. ^{6,7,23} The test is considered positive when both structural and non-structural markers are positive.^{24,25} However, currently both types of primers are used simultaneously to diagnose COVID-19. The viral load or copy number of the viral genome is expressed as a Ct-value, which when <37 is indicative of a positive test, and a value of \geq 40 is considered negative. A Ct value between >37 and < 40 requires repetition of RT-PCR analysis to confirm the diagnosis.²⁴ However, the Ct value range varies widely according to assays and laboratory practices. A COVID-19-RdRp/Hel assay has a higher sensitivity than a conventional RdRp-P2 assay irrespective of the type of sample.²⁶ Overall, higher proportions of studies (58%) employed both structural

BMJ Open

and non-structural gene primers in RT-PCR testing. Single markers were used in some Chinese and North American studies. These findings are indicative of non-uniformity in the RT-PCR methodology. We note that half of the positive, symptomatic patients became negative by the second week, when they became asymptomatic. In contrast, the asymptomatic, positive patients became negative two days after hospital admission, indicating the importance of a temporal factor in COVID-19 diagnosis by RT-PCR.^{27,28}

Published in the early phase of the pandemic, 11 of 85 studies had clinically suspected COVID-19 patients. In these studies, the average test positivity by RT-PCR, regardless of the sample source, was 44% (Supplementary Table 1), and test sensitivity was influenced by sample source (upper vs. lower respiratory vs. other samples), issues related to testing performance, and delay after onset of symptoms.²⁹ In the early phase of the COVID-19 pandemic, for studies evaluating suspected COVID-19 cases, the total positive RT-PCR for throat swabs was in the range of 30–60% at initial presentation.^{8,30} One study reported a yield of 72-93% positive cases for lower respiratory samples (bronchioalveolar lavage and sputum) as compared to 32-63% positivity for upper respiratory samples (oral and nasopharyngeal swabs) and 29% for stool samples.²⁹ Hence, a negative COVID-19 test based only on an upper respiratory sample at a single time point is questionable. For most studies, the testing sample was from the upper respiratory tract, regardless of primer type used. However, the sample source was not reported for 8-20% of patients, which was more common for studies using only structural gene primers. For stool samples testing positive for COVID-19, 66.7% also tested positive on pharyngeal swabs. Of the stool samples, 64.3% remained positive after pharyngeal clearance of the virus.³¹ In contrast, none of the patients showed a positive test on upper respiratory samples after the anal swabs tested negative.³¹ These findings raise concerns about whether patients with negative respiratory swabs are truly virus-free, and sampling of additional body sites is needed. As determined by various studies, the performance of the RT-PCR depends on usage of comparable protocols, including primers

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

and reagents.³² Additionally, it is unknown whether the currently used RT-PCR primers detect all SARS-Cov-2 strains.

The specific immune response to SARS-CoV-2 can be measured by serological testing. Several rapid serological tests, including point-of-care tests, are being developed. Even though some of these tests have been approved by the FDA through EUA, their accuracy needs to be validated.³³ A minimum of 1–2 weeks after the onset of infection is needed for seroconversion. Hence, antibody testing is of no value in the early phase of infection. Additionally, its value is limited by its cross-reactivity with other coronaviruses.^{34,35} The initial RT-PCR positivity during the early stages (<15 days) of SARS-CoV-2 infection declines to 66.7% in the later phase (15-39 days), during this period, the antibody test can supplement RT-PCR in the diagnosis of COVID-19.^{34,35} Additionally, serology testing becomes valuable for clinically suspected and RT-PCR negative (false-negative) individuals.

This research has limitations. Due to the dynamic reporting of COVID-19 testing research and inconsistencies in reporting of predictive variables across studies, bias in sampling may have some effect on our results. Patient flow analysis suggests that lack of consistent RT-PCR reference standard given to patients in the same study, as well as the unclear reporting of patient selection methods could contribute to bias in these results (**Fig. S3**). In addition, the observed heterogeneity between studies in the meta-analysis suggests that we must consider the possibility that the differences in results may be due to chance. Lastly, it is questionable to compare two separate testing methods of RT-PCR and seroprevalence in sensitivity/specificity analysis. In particular, given the relationship between time since diagnosis and accuracy of serology testing, a contributor to the observed differences in performance is time. Furthermore, because of each diagnostic kit having differing cut points for positive/negative, threshold effect as a source of heterogeneity in sensitivity and specificity cannot be ruled out.

The effective containment of COVID-19 involves accurate diagnoses and isolation of SARS-CoV-2-infected persons. Robustness of the assays/platforms is determined by

BMJ Open

variability of the samples, primers, and reagents used. Serological tests alone are of value only during the latter times of infection; however, they complement RT-PCR when used in conjunction and minimize false negative RT-PCR results. Additionally, some of the approved serological assays/platforms, particularly those developed using contrived/laboratory data, perform poorly when applied to real-world samples. We are currently in a new phase of the pandemic, and there is a need for a reliable/robust diagnostic test to mitigate the spread of COVID-19.

Our analyses of studies published in the early-phase of the pandemic have highlighted issues related to COVID-19 diagnosis that need to be addressed as follows: 1) The high mutational rate exhibited by the SARS-CoV-2 virus may lead to the generation of new strains. Therefore, like for influenza virus, the existing diagnostic kits need to be modified constantly to optimize the detection of new strains; 2) Though RT-PCR diagnosis of COVID-19 is the gold standard, its combination with a serologic test may increase the accuracy of SARS-CoV-2 detection; 3) Approval agencies must account for the type of data (contrived versus real world) presented by diagnostic kits, there is a need to monitor their performance and assess their robustness in real-world samples, to permit continued use of these kits; and 5) Standardized assay protocols need to be developed and continually updated to mitigate the COVID-19 pandemic.

ACKNOWLEDGEMENTS

We thank Dr. Donald Hill for his editorial assistance.

DATA SHARING

Data is available upon request

ETHICAL APPROVAL STATEMENT

Not applicable

FUNDING STATEMENT

This study was supported, in part, by grant 5U54CA118948 and institutional/departmental impact funds (UM), and by CA047888, the UAB Cancer Prevention and Control Training Program (MB).

AUTHOR CONTRIBUTIONS

CS, MB, and UM made substantial contributions to the conception and design of the work. CS, MB and VL contributed to the acquisition of the study data. Data were analyzed by CS, MB and UM. MB was responsible for the statistical analysis. CS, MB, SML, SV, GJN, and UM contributed to the interpretation of the data, and to drafting and revising of the manuscript. CS, MB and VL have accessed and verified the data. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work. All authors have read and approved the manuscript. All authors declare no competing interests.

REGISTRATION AND PROTOCOL

The work in this review was not registered and has no available review protocol.

6/bmjopen-202

N pop. 4265 53 1802 528 1882 2016 759 412 226 852	N studies 31 4 17 8 2 2 2 2 1 14 4 4 1 1	N pop. 5484 325 3047 993 1119 1119 259 48 2703 333 13	2*studies 3 3 2*1 2*1 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected	N pop. 123 123 59 64	N studies 29 24 4 1	721 423
53 1802 528 1882 2016 759 412 226	4 17 8 2 2 2 1 14 4 1	325 3047 993 1119 1119 259 48 2703 333 13		123	24 4	423
1802 528 1882 2016 759 412 226	17 8 2 2 1 14 4 1	3047 993 1119 1119 259 48 2703 333 13		59	4	423
1802 528 1882 2016 759 412 226	17 8 2 2 1 14 4 1	3047 993 1119 1119 259 48 2703 333 13		59	4	721 423 207
528 1882 2016 759 412 226	8 2 2 1 14 4 1	993 1119 1119 259 48 2703 333 13		59	4	423
1882 2016 759 412 226	2 2 2 1 14 4 1	1119 1119 259 48 2703 333 13	2 1 Downloaded from http://bmjopen.bmj.			
2016 759 412 226	2 2 1 14 4 1	1119 259 48 2703 333 13	2 1 ownloaded from http://bmjopen.bmj.		1	207
759 412 226	2 1 14 4 1	259 48 2703 333 13	2 1 nloaded from http://bmjopen.bmj.		1	207
759 412 226	2 1 14 4 1	259 48 2703 333 13	2 1 oaded from http://bmjopen.bmj.			
759 412 226	2 1 14 4 1	259 48 2703 333 13	2 1 ded from http://bmjopen.bmj.			
412 226	2 1 14 4 1	259 48 2703 333 13	2 1 id from http://bmjopen.bmj.			
226	2 1 14 4 1	259 48 2703 333 13	2 1 from http://bmjopen.bmj.			
	2 1 14 4 1	259 48 2703 333 13	2 1 m http://bmjopen.bmj.			
852	2 1 14 4 1	259 48 2703 333 13	2 1 http://bmjopen.bmj.			
	2 1 14 4 1	259 48 2703 333 13	2 1 tp://bmjopen.bmj.			
	2 1 14 4 1	259 48 2703 333 13	//bmjopen.bmj.	64		
	2 1 14 4 1	259 48 2703 333 13	omjopen.bmj.			
	1 14 4 1	48 2703 333 13	jopen.bmj.			
	1 14 4 1	48 2703 333 13	pen.bmj.			
	4 1	2703 333 13	n.bmj.			
	1	13	omj.			
	1	13				
	1					
	1	33	ğ			
	1	190	٦ ۲			
	1	52	9			
	1	273	Þ			
	2	349	- p			
	1	112	=			
			μ			
575	9	2633	N 1	64	10	347
	1	52	02	-	-	
368	2	44	$\frac{4}{2}$ 1	38	3	301
	1	273	y .		-	
1473	9	1432	gr		4	350
840	1	80	la 1	21	•	
		398	st			
	1	132	P		1	386
729			ot		8	120
0			ec			199
			lec			258
at	280 729	280 3 1	280 3 398 1 132 729 4 440	840 1 80 gs. 1 280 3 398 1 1 132 Protected 1 729 4 440 etct atient population by copyrigitized copyrigitized	840 1 80 gs 1 21 280 3 398 1 1 132 729 4 440 etc 1 1 atient population by opyrigitize opyrigitize opyrigitize opyrigitize	

	N studies	N рор.
Total	30	10355
Location		
Asia (excl. China)	2	261
China	19	6375
Europe	7	2900
North America	2	819
PCR primers		
Structural		
N, single	5	1084
E, single	1	49
N, E	1	201
N, S	2	408
Structural and Non-structural		
with ORF1Ab	8	1115
with RdRp	2	186
N, RNAse P	1	190
not reported	10	7122
Ab tested		
lgG	2	220
lgM + lgG	25	7828
IgA + IgG +IgM	1	208
IgA + IgG	1	37
not reported	1	2062
not reported	·	2002
Serum Ab		
CLIA	8	3705
ELISA	8	1908
LFIA	10	3800
CLIA + ELISA	2	548
LFIA + ELISA	1	80
not reported	1	314
CLIA = chemiluminescent immunoassay, L		
linked immunosorbent assay		

Table 2. Characteristics of studies included in guantitative meta-analysis

Figure Legends

- Figure 1. Comparison of Performance (Sensitivity and Specificity) of Serology Tests (IgM/IgG) **Based on Assay Platforms**
- Figure 2. Comparison of Sensitivity of Laboratory setting versus Real World setting of RT-PCR and Serology (IgM/IgG) kits
- Figure 3. The Effect of Primer Choice in RT-PCR Referent on Sensitivity of Tests based on Serum lgG

to beet terier only

References:

- 1. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514-23.
- Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020. (Accessed 6/10/2020, 2020, at <a href="https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.)
- 3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
- Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020;109:102433.
- 5. Cheng MP, Papenburg J, Desjardins M, et al. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann Intern Med 2020;172:726-34.
- 6. Chu DKW, Pan Y, Cheng SMS, et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem 2020;66:549-55.
- Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by realtime RT-PCR. Euro Surveill 2020;25.
- Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020;296:E32-e40.
- Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020;296:E41-E5.
- Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn 2020;20:453-4.
- 11. Kim JY, Ko JH, Kim Y, et al. Viral Load Kinetics of SARS-CoV-2 Infection in First Two Patients in Korea. J Korean Med Sci 2020;35:e86.
- Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis 2020;71:778-85.

13.	To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020;20:565-74.
14.	Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020;323:1843-4.
15.	Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8:336-41.
16.	EUA Authorized Serology Test Performance. 2020. (Accessed 6/18/2020, 2020, at https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/eua-authorized-serology-test-performance.)
17.	SARS-CoV-2 diagnostic pipelineSARS-CoV-2 diagnostic pipeline. Foundation for Innovative New Diagnostics (Accessed 7/5/2020, 2020, at <u>https://www.finddx.org/covid-19/pipeline/</u> .)
18.	Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-36.
19.	R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria2019.
20.	Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019;22:153-60.
21.	Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj 2003;327:557-60.
22.	Yin C. Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics 2020;112:3588-96.
23.	Detection of 2019 novel coronavirus (2019-nCoV) in suspected human cases by RT-PCR WHO,, 2020. at <u>https://www.who.int/docs/default-source/coronaviruse/peiris-protocol-16-1-</u> 20.pdf?sfvrsn=af1aac73_4.)
24.	Liu R, Han H, Liu F, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta 2020;505:172-5.
25.	Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID- 19. J Pharm Anal 2020;10:102-8.

- 26. Chan JF, Yip CC, To KK, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol 2020;58.
- 27. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. Jama 2020;323:2249-51.
- Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect 2020;80:e1-e6.
- 29. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020;323:1843-4.
- 30. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv 2020:2020.02.11.20021493.
- 31. Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 2020;92:833-40.
- 32. Guidance and standard operating procedure: COVID-19 virus testing in NHS laboratories. NHS,, 2020. (Accessed 6/2/2020, 2020, at <u>https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/guidance-and-sop-covid-19-virus-testing-in-nhs-laboratories-v1.pdf</u>.)
- 33. Maxmen A. The researchers taking a gamble with antibody tests for coronavirus. Nature 2020.
- 34. Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020.
- 35. WHO. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance. . WHO; 2020.

BMJ Open

Study		Test + RT-PCR		Serum Tes Sensitivity	
platform = LFIA Paradiso AV. De Summa S, Loconsole D, et al. Vásárhelyi B, Kristóf K et al (LFIA 1) Vásárhelyi B, Kristóf K et al(LFIA 2) Dóhla M, Boesecke C, Schulte B, et al Imai K, Tabata S, Ikeda M, et al. Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et Xiang J, Yan M, Li H, Li T, et al (LFIA) Cassaniti I, Novazzi F, Giardina F, et al Liu Y, Liu Y, Diao B, et al. Zhang P, Gao Q, Wang T, et al. Li Z, Yi Y, Luo X, et al. Cheo JY, Kim JW, Kwon HH, et al. Random effects model Heterogeneirk; f ² = 39K, f ² = 1.4849, p < 0.01	21 7 11 8 60 al. 26 75 25 77 106 352 65	70 21 31 22 139 55 91 30 90 122 397 70 1138	+ + + + + + + + + + + + + + + + + + +	0.30 0.33 0.35 0.36 0.43 0.47 0.82 0.83 0.86 0.87 0.89 0.93 0.67	[0.20; 0.42] [0.15; 0.57] [0.19; 0.55] [0.35; 0.52] [0.34; 0.61] [0.73; 0.90] [0.65; 0.94] [0.77; 0.92] [0.86; 0.92] [0.85; 0.92] [0.84; 0.98] [0.50; 0.81]
platform = ELISA Liu L, Liu W, Wang S, et al. Liu W, Liu L, Kou G, et al Xiang J, Yan M, Li H, Liu T, et al (ELISA) Freeman B, Lester S, Mills L, et al. Random effects model Heterogeneity: $t^2 = 66\%$, $t^2 = 0.1558$, $p = 0.04$	127 186 55 95	153 214 63 99 529	************	0.83 0.87 0.87 0.96 0.89	[0.76; 0.89] [0.82; 0.91] [0.77; 0.94] [0.90; 0.99] [0.82; 0.93]
platform = CLIA Lin D, Liu L, Zhang M, et al. Ma H, Zeng W, He H, et al Random effects model Heterogeneity: $l^2 = 6\%$, $t^2 = 0.0480$, $p = 0.15$	72 215	74 216 290		0.97 1.00 0.99	[0.91; 1.00] [0.97; 1.00] [0.97; 1.00]
Random effects model Heterogeneity. $l^2 = 97\%$, $r^2 = 2.4195$, $p < 0.01$ Residual heterogeneity. $l^2 = 94\%$, $p < 0.01$		1957	0 0.2 0.4 0.6 0.8 1 Overall Sensitivity	0.81	[0.66; 0.90]
Study		Test - RT-PCR		Serum Tes Specificity	
platform = LFIA Vásárhelyi B, Kristóf K et al (LFIA 1) Vásárhelyi B, Kristóf K et al (LFIA 2) Döhla M, Boesecke C, Schulte B, et al Paradiso AV, De Summa S, Loconsole D, et al. Li Z, Yi Y, Luo X, et al. Liu Y, Liu Y, Diao B, et al. Choe JY, Kim JW, Kwon HH, et al. Imai K, Tabata S, Ikeda M, et al. Cassaniti I, Novazi F, Giardina F, et al Xiang J, Yan M, Li H, Liu T, et al (LFIA) Zhang P, Gao Q, Wang T, et al. Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et Random effects model Heterogeneity: /f = 90%, cf = 1.4946, p < 0.01	440 840 24 107 116 81 76 47 30 35 41 41 al. 45	604 998 27 120 128 89 79 48 30 35 41 45 2244	**************	0.73 0.84 0.89 0.91 0.96 0.98 1.00 1.00 1.00 0.95	[0.69; 0.76] [0.82; 0.86] [0.71; 0.98] [0.82; 0.94] [0.84; 0.95] [0.83; 0.96] [0.89; 0.99] [0.89; 1.00] [0.90; 1.00] [0.91; 1.00] [0.92; 1.00] [0.89; 0.98]
platform = ELISA Liu L, Liu W, Wang S, et al. Xiang J, Yan M, Li H, Liu T, et al (ELISA) Freeman B, Lester S, Mills L, et al. Liu W, Liu L, Kou G, et al Random effects model Heterogeneity: $l^{\mu} = 40\%$, $r^{2} = 0.3762$, $p = 0.23$	116 35 515 100	120 35 519 100 774		0.97 1.00 0.99 1.00 0.99	[0.92; 0.99] [0.90; 1.00] [0.98; 1.00] [0.96; 1.00] [0.97; 1.00]
platform = CLIA Lin D, Liu L, Zhang M, et al. Ma H, Zeng W, He H, et al Random effects model Heterogeneity: / ² = 95%, t ² = 20.3317, <i>p</i> = 1.00	64 483	80 483 563		0.80 1.00 1.00	[0.70; 0.88] [0.99; 1.00] [0.12; 1.00]
Random effects model Heterogeneity: $l^2 = 98\%$, $r^2 = 3.6305$, $p < 0.01$ Residual heterogeneity: $l^2 = 79\%$, $p < 0.01$		3581	0 0.2 0.4 0.6 0.8 1 Overall Specificity	0.98	[0.94; 0.99]

Figure 1. Comparison of Performance (Sensitivity and Specificity) of Serology Tests (IgM/IgG) Based on Assay Platforms

162x214mm (150 x 150 DPI)

œ

ΒM
BMJ Open: first
pen
: firs
st p
ublis
shec
as
10.
113
6/br
njop
ben-
202
-1-0
539
12 0
n 2
1 A
oril
BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from http://bmjopen.b
2
nwc
loac
ded
from
nloaded from http://bmjopen.t
p://t
mjo
pen
.bm
ñ A
pril
2 <u>3</u>
2024
t by
vpril 23, 2024 by gue
st. F
st. Protected b
ecte
<u>ح</u>
0
pyri
ght.

Study		Test + RT-PCR		Serum Tes Sensitivity	-
Setting = Laboratory					
VivaDiag	21	70		0.30	[0.20; 0.4
Smart Test Covid-19 Vyttra	4	4		1.00	[0.40; 1.0
Mt. Sinai Laboratory COVID-19 ELISA Antibody Test	37	40		0.92	[0.80; 0.9
SARS-CoV-2 IgG/IgM Rapid Test	120	128		0.94	[0.88; 0.9
WANTAI SARS-CoV-2Ab ELISA	293	310		0.95	[0.91; 0.9
Biohit SARS-CoV-2 IgM/IgG Antibody Test Kit	29	30		0.97	[0.83; 1.0
Vibrant COVID-19 Ab Assay	52	53		0.98	[0.90; 1.0
Assure COVID-19 IgG/IgM Rapid Test Device	30	30	÷	1.00	[0.88; 1.0
RightSign COVID-19 IgG/IgM Rapid Test Cassette	30	30	÷	1.00	[0.88; 1.0
LYHER Novel Coronavirus (2019-nCoV) IgM/IgG Antibody Combo Test Kit	Colloidal Gold) 30	30	÷	1.00	[0.88; 1.
COVID-19 IgG/IgM Rapid Test Cassette	30	30		1.00	[0.88; 1.
One Step COVID-2019 Test	312	313	1	1.00	[0.98; 1.
Random effects model		1068	8	0.98	[0.92; 1.
Heterogeneity: $I^2 = 93\%$, $\tau^2 = 4.5321$, $p < 0.01$					•••••
Setting = Real-World					
Paradiso AV, De Summa S, Loconsole D, et al.	21	70		0.30	[0.20; 0.
Vásárhelyi B, Kristóf K et al (LFIA 1)	7	21		0.33	[0.15; 0.
Vásárhelyi B, Kristóf K et al(LFIA 2)	11	31		0.35	[0.19; 0.
Döhla M, Boesecke C, Schulte B, et al	8	22		0.36	[0.17; 0.
Imai K, Tabata S, Ikeda M, et al.	60	139		0.43	[0.35; 0
Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al.	26	55		0.47	[0.34; 0
Xiang J, Yan M, Li H, Liu T, et al (LFIA)	75	91		0.82	[0.73; 0
Liu L, Liu W, Wang S, et al.	127	153		0.83	[0.76; 0.
Cassaniti I, Novazzi F, Giardina F, et al	25	30		0.83	[0.65; 0
Liu Y, Liu Y, Diao B, et al.	77	90	-	0.86	[0.77; 0
Zhang P, Gao Q, Wang T, et al.	106	122		0.87	[0.80; 0
Liu W, Liu L, Kou G, et al	186	214		0.87	[0.82; 0
Xiang J, Yan M, Li H, Liu T, et al (ELISA)	55	63		0.87	[0.77; 0
Li Z, Yi Y, Luo X, et al.	352	397		0.89	[0.85; 0
Choe JY, Kim JW, Kwon HH, et al.	65	70	******	0.93	[0.84; 0
Freeman B, Lester S, Mills L, et al.	95	99	1	0.96	[0.90; 0
Lin D, Liu L, Zhang M, et al.	72	74	-	0.97	[0.91; 1
Ma H, Zeng W, He H, et al	215	216		1.00	[0.97; 1
Random effects model	210	1957		0.81	[0.66; 0
Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.4195$, $p < 0.01$		1001		0.01	[0.00, 0
Random effects model		3025	\$	0.91	[0.82; 0.
Heterogeneity: $I^2 = 97\%$, $\tau^2 = 3.8591$, $p < 0.01$					-
Residual heterogeneity: $I^2 = 94\%$, $p < 0.01$		(0 0.2 0.4 0.6 0.8 1		

Figure 2. Comparison of Sensitivity of Laboratory setting versus Real World setting of RT-PCR and Serology (IgM/IgG) kits

164x141mm (150 x 150 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	

Study		Test + RT-PCR				Serum Test Sensitivity	
Primer Type` = Structural only							
Infantino M, Grossi V, Lari B, et al.	46	61				0.75	[0.63; 0.86
Tang MS, Hock KG, Logsdon NM, et al (ELISA)	41	48				0.85	[0.72; 0.94
Jin Y, Wang M, Zuo Z, et al.	24	27				0.89	[0.71; 0.98
Tang MS, Hock KG, Logsdon NM, et al (CLIA)	45	48				0.94	[0.83; 0.99
Zhong L, Chuan J, Gong B, et al. (CLIA)	45	47				0.96	[0.85; 0.99
Zhong L, Chuan J, Gong B, et al. (ELISA)	46	47				0.98	[0.89; 1.00
Random effects model		278			\diamond	0.91	[0.83; 0.96
Heterogeneity: $I^2 = 66\%$, $\tau^2 = 0.5140$, $\rho < 0.01$							
Primer Type` = Structural & Non-Structural							
Imai K, Tabata S, Ikeda M, et al.	20	139		-		0.14	[0.09; 0.21
Choe JY, Kim JW, Kwon HH, et al.	19	70				0.27	[0.17; 0.39
Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al	13	39		-	_	0.33	[0.19; 0.50
Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al.	23	55			_	0.42	[0.29; 0.56
Cassaniti I, Novazzi F, Giardina F, et al	24	30			-	0.80	[0.61; 0.92
Xiang J, Yan M, Li H, Liu T, et al (LFIA)	74	91				0.81	[0.72; 0.89
Lin D, Liu L, Zhang M, et al.	65	79				0.82	[0.72; 0.90
Xiang J, Yan M, Li H, Liu T, et al (ELISA)	52	63				0.83	[0.71; 0.91
Xiang F, Wang X, He X, et al	55	66				0.83	[0.72; 0.91
Lou B, Li TD, Zheng SF, et al. (LFIA)	69	80				0.86	[0.77; 0.93
Lou B, Li TD, Zheng SF, et al. (ELISA)	71	80				0.89	[0.80; 0.95
Xie J, Ding C, Li J, et al.	16	16				1.00	[0.79; 1.00
Random effects model		808			\sim	0.71	[0.52; 0.85
Heterogeneity: $I^2 = 95\%$, $\tau^2 = 2.0198$, $p < 0.01$							
Random effects model		1086			\rightarrow	0.80	[0.67; 0.89
Heterogeneity: I ² = 94%, τ ² = 2.1153, p < 0.01							
Residual heterogeneity: $I^2 = 93\%$, $p < 0.01$			0	0.2 0.4	0.6 0.8 1		
				Overa	II Sensitivity		

Figure 3. The Effect of Primer Choice in RT-PCR Referent on Sensitivity of Tests based on Serum IgG

299x199mm (500 x 500 DPI)

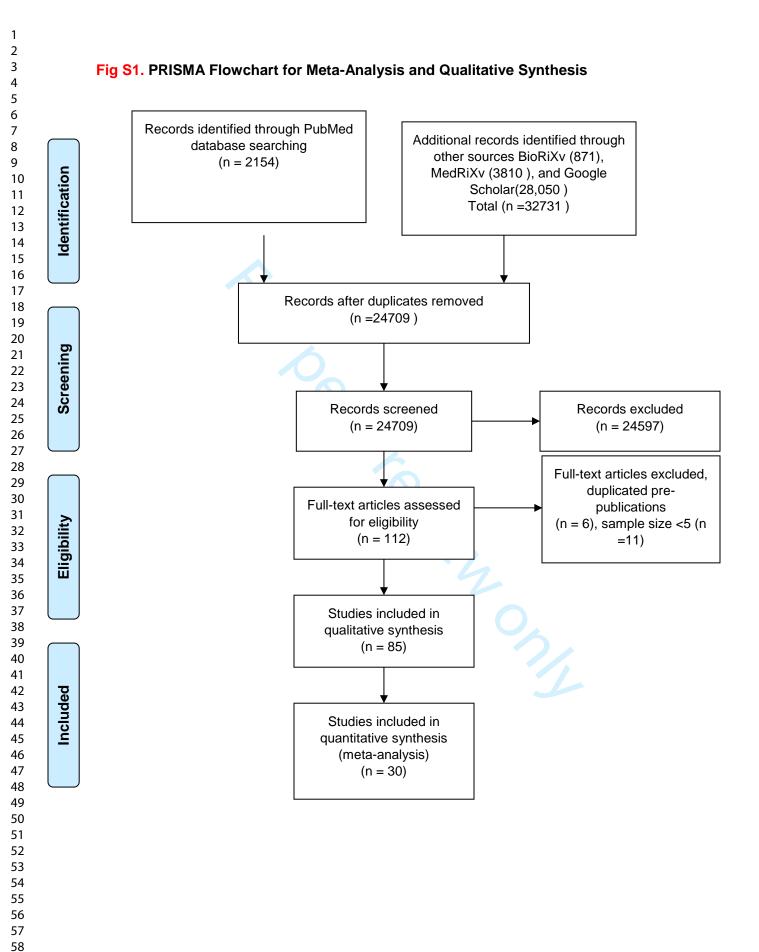
BMJ Open Meta-Analysis of Robustness of COVID-19 Diagnostic Kits During Early Pandemic. Supplemental information Table S1. Description of 55 Studies Included for Qualitative Synthesis (gray) and 30 Studies Included in the Meta-Analysis (tan)

Journal	Authors	Region	N (patient s)	Percent COVID-19 positivity	Sample origin	RT-PCR primers	RT-PCR primer type	RT- PCR/Ser ology platform	Serology targeted antibody	Study included in meta- analysis
J Clin Virol	Rahman H, Carter I, Basile K, et al. ³⁶	Asia	52		UR+LR	S, N, E, RdRp, ORF1ab, M	April 2622. Do	RT-PCR		No
Exp Neurobiol	Won J, Lee S, Park M, et al. ³⁷	Asia	12		UR	N, E, S, RdRp	Beth	RT-PCR		No
Jpn J Infect Dis.	Okamaoto K, Shirato K, Nao N, et al. 38	Asia	25		UR	N, E	Structural	RT-PCR		No
J Med Virol	Choe JY, Kim JW, Kwon HH, et al. 39	Asia	149	0.47	Serum	E, RdRp	Both	RT-PCR /CLIA	lgM + IgG	Yes
Lancet Infect Dis	Yong SEF, Anderson DE, Wei WE, et al. 40	Asia	28		UR + Serum	N, single	Strugtural	RT-PCR /ELISA	lgG	No
J Clin Virol	Imai K, Tabata S, Ikeda M, et al.	Asia	112		UR + Serum	S, ORF1Ab	B ể th	RT-PCR /LFIA	lgM + IgG	Yes
Emerg Microbes Infect	Xu Y, Xiao M, Liu X, et al. 42	China	6		Serum		mj.com/ on	ELISA + LFIA	lgM	No
Radiology	Ai T, Yang Z, Hou H, Zhan C, et al. 8	China	1014	0.59	UR		n/ on /	RT-PCR		No
NEJM	Cao B, et al.43	China	199		Other		A,pril	RT-PCR		No
Radiology	Bai HX, Hsieh B, Xiong Z, et al.44	China	256		UR		23	RT-PCR		No
Lancet	Chen H, Guo J, Wang C, et al. 45	China	9		UR + Other		, 2024	RT-PCR		No
AJR Am J Roentgenol	Liu D, Li L, Wu X, et al. ⁴⁶	China	15		UR		24	RT-PCR		No
Eur J Radiol	Long C, Xu H, Shen Q, et al. 47	China	87		UR		э үс	RT-PCR		No
Pediatr Pulmonol	Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. 48	China	20		UR		by guest. I	RT-PCR		No
Am J Obstetr Gynecol	Yan J, Guo J, Fan C, et al. 49	China	116	0.56	Other		Prot	RT-PCR		No
J Hosp Infect	Ye G, Li Y, Lu M, et al. ⁵⁰	China	91	0.52	UR		ecte	RT-PCR		No
J Med Virol	Zhang J, Wang S, Xue Y. ⁵¹	China	14		UR + Other		d b	RT-PCR		No
Respir Res	Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. 52	China	95		UR		Protected by copyright	RT-PCR		No

Lancot	Zhou E Vu T Du D at al 53	China	191		UR		6/bmjopen-	RT-PCR		
Lancet J Clin Microbiol	Zhou F, Yu T, Du R, et al. ⁵³ Liu W, Liu L, Kou G, et al. ⁵⁴	China China	314		UR + Serum		n-2021-05	RT-PCR	lgM + IgG	,
J Med Virol	Li, Y et al. ⁵⁵	China	610	0.40	UR	N, ORF1Ab	Beth	RT-PCR	igo	
medRxiv	Diao B, Wen K, Chen J, et al. ⁵⁶	China	239		UR + Serum	N, ORF1Ab	n Both	RT-PCR		
J Clin Microbiol	Chan JF, Yip CC, To KK, et al. ²⁶	China	273		UR + Other	N, S, RdRp	Ap B∉h 20	RT-PCR		
Nature Microbiol	Kong WH, Li Y, Peng MW, et al. 57	China	640		UR	N, ORF1Ab	Both	RT-PCR		
Front Med	Liu W, Wang J, Li W, Zhou Z, Liu S, Rong Z. ⁵⁸	China	38	0.53	UR + Other	N, ORF1Ab	Beth	RT-PCR		
Int J Biol Sci	Lo IL, Lio CF, Cheong HH, et al. 59	China	10		UR + LR + Other	N, ORF1Ab	ided Booth	RT-PCR		
Travel Med Infect Dis	Wu J, Liu J, Li S, Peng Z, et al. 60	China	132		UR + LR + Serum + Other	N, E, RdRp	Beth	RT-PCR		
Int J Infect Dis	Xu T, Chen C, Zhu Z, et al. 61	China	51		UR + LR + Other	N, ORF1Ab	Both	RT-PCR		
J Med Virol	Yuan Y, Wang N, et al. 62	China	6		UR + Other	N, E, RdRp	Beth	RT-PCR		
AJR Am J Roentgenol	Cheng Z, Lu Y, Cao Q, et al. 63	China	33	0.33	UR	N, E, ORF1ab	Beth	RT-PCR		
Arch Pathol Lab Med	Schwartz, DA 64	China	38		UR + Other	ORF1Ab, single	Nថ្ជា- stru <u>ឱ</u> ural	RT-PCR		
Radiology	Wong HYF, Lam HYS, Fong AH, et al. ⁶⁵	China	64		UR	RdRp, single	Nost- structural	RT-PCR		
Chin Med J	Ling Y, Xu SB, Lin YX, et al. 66	China	292		UR + Other	E, single	Strugural	RT-PCR		
Clin Infect Dis	Zhao R, Li M, Song H, et al. 67	China	412		UR	S, single	Struetural	RT-PCR		
medRxiv	Ma H, Zeng W, He H, et al.68	China	699		UR + Serum		guest. I	RT-PCR /CLIA	lgM + IgG	١
medRxiv	Cai X, Chen J, Hu J, et al.69	China	443		Serum		Protected	RT-PCR /CLIA	lgM + IgG	١
medRxiv	Qian C, Zhou M, Cheng F, et al. 70	China	2062				by	RT-PCR /CLIA	lgM + IgG	`
J Infect Dis	Zhang G, Nie S, Zhang Z, Zhang Z. ⁷¹	China	112		UR + Serum	N, ORF1Ab	Boyright.	RT-PCR /CLIA	lgM + IgG	

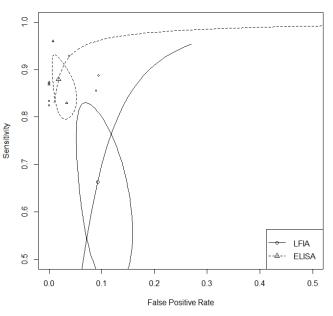
medRxiv	Lin D, Liu L, Zhang M, et al. ⁷²	China	159		UR + Serum	N, ORF1Ab	6/bmjopen-252	RT-PCR /CLIA	lgM + IgG	Yes
J Med Virol	Xie J, Ding C, Li J, et al. ⁷³	China	56		UR +Serum	N, ORF1Ab	Bội	RT-PCR /CLIA	IgH + IgG	Yes
Nature Med	Long QX, Liu BZ, Deng HJ, et al.	China	285		UR+ Serum	S, N	Strugural	RT-PCR /CLIA	lgM + IgG	No
nt J Infect Dis	Jin Y, Wang M, Zuo Z, et al. ⁷⁵	China	76	0.57	Serum	N, single	Strugtural	RT-PCR /CLIA	lgM + IgG	Yes
Emerg Microbes Infect	Zhang W, Du RH, Li B, et al. ⁷⁶	China	278		UR + Other		ril 2022	RT-PCR /ELISA	lgM + IgG	No
Clin Infect Dis	Zhao J, Yuan Q, Wang H, et al. ³⁴	China	386		UR + LR + Serum		•	RT-PCR /ELISA	lgM + IgG	Yes
Euro Surveill	Perera RA, Mok CK, Tsang OT, et al. 77	China	51		Serum		Downloaded	RT-PCR /ELISA	lgM + IgG	Yes
Clin Infect Dis	Xiang F, Wang X, He X, et al. 78	China	216		UR + Serum	N, ORF1Ab	Bếth	RT-PCR /ELISA	lgM + IgG	Yes
medRxiv	Xiang J, Yan M, Li H, Liu T, et al. 79	China	154		Serum	N, ORF1Ab	hteth Bo⊄th	RT-PCR /ELISA	lgM + IgG	Yes
medRxiv	Liu L, Liu W, Wang S, et al. ⁸⁰	China	238		UR + Serum	N, ORF1Ab	Both	RT-PCR /ELISA	lgM + IgG	Yes
Clin Infect Dis	Guo L, Ren L, Yang S, et al. ¹²	China	208	0.39	Serum	N, single	Strugtural	RT-PCR /ELISA	lgM + IgA + IgG	Yes
Sci China Life Sci	Zhong L, Chuan J, Gong B, et al. ⁸¹	China	347		UR NP/OP + Serum + Other	N, S	Structural	RT-PCR /ELISA + CLIA	lgM + IgG	Yes
Eur Respir J	Lou B, Li TD, Zheng SF, et al. 82	China	80		UR + LR + Serum + Other	N, ORF1Ab	April 25 2024 BB 2024	RT-PCR /ELISA + LFIA + CLIA	lgM + IgG	Yes
J Med Virol	Du Z, Zhu F, Guo F, Yang B, Wang T. ⁸³	China	60		Serum		by gu	RT-PCR /LFIA	lgM + IgG	No
J Infect	Pan Y, Li X, Yang G, et al. 84	China	105		Serum		by guest. Protected by copyright.	RT-PCR /LFIA	lgM + IgG	No
J Med Virol	Li Z, Yi Y, Luo X, et al. ⁸⁵	China	525				otectec	RT-PCR /LFIA	lgM + IgG	Yes
nedRxiv	Liu Y, Liu Y, Diao B, et al. ⁸⁶	China	179		UR + Serum		d by c	RT-PCR /LFIA	lgM + IgG	Yes

Page 29 of 40

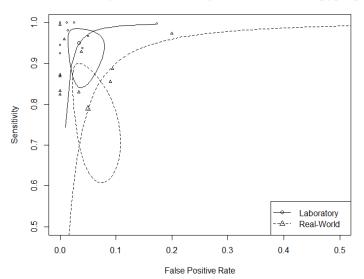

of 40				BMJ Open			6/bmjop			
Emerg Microbes Infect	Yongchen Z, Shen H, Wang X, et al. ⁸⁷	China	21		UR + Serum + Other	ORF1Ab, single	چ N&- struetural	RT-PCR /LFIA	lgM + IgG	No
Anal Chem	Chen Z, Zhang Z, Zhai X, et al.88	China	19		UR + Serum	N, single	Strugural	RT-PCR /LFIA	lgG	Yes
medRxiv	Zhang P, Gao Q, Wang T, et al.89	China	163		UR + Serum	N, single	Strugtural	RT-PCR /LFIA	lgM + IgG	Yes
JAMA	Grasselli G, Zangrillo A, Zanella A, et al. ⁹⁰	Europe	1591		UR		April 2	RT-PCR		No
Radiology	Caruso D, Zerunian M, Polici M, et al. ⁹¹	Europe	158	0.39	UR	N, E, RdRp	Bộth	RT-PCR		No
Travel Med Infect Dis	Lagier JC, Colson P, Tissot Dupont H, et al. 92	Europe	337		UR +LR+ Other	N, E, S, RdRp	Bogh	RT-PCR		No
J Clin Virol	van Kasteren PB, van der Veer B, van den Brink S, et al. 93	Europe	13		UR	S, N, E, RdRp, ORF1ab	ade dath Botom	RT-PCR		No
Int J Mol Sci	Toptan T, Hoehl S, Westhaus S, et al. 94	Europe	48		UR	M, E	B <mark>ộ</mark> th	RT-PCR		Nc
Trop Med Infect Dis	Amrane S, Tissot-Dupont H, Doudier, et al. ⁹⁵	Europe	280		UR + LR + Other	E, single	Strugetural	RT-PCR		No
J Clin Microbiol	Lambert-Niclot S, Cuffel A, Le Pape S, et al. ⁹⁶	Europe	138		UR	E, single	Strugtural	RT-PCR		No
J Med Virol	Infantino M, Grossi V, Lari B, et al. ⁹⁷	Europe	61		Serum	S, N	Strugural	RT-PCR /CLIA	lgM + IgG	Ye
Euro Surveill	Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al. ⁹⁸	Europe	37		Serum	N, E, RdRp	Bøth	RT-PCR /ELISA	lgA + lgG	Ye
J Infect	Tré-Hardy M, Blairon L, Wilmet A, et al. ⁹⁹	Europe	182		Serum		1 23, 2024	RT-PCR /ELISA + CLIA	lgA + lgG	No
Orvo Hetil	Vásárhelyi B, Kristóf K, Ostorházi E, Szabó D, Prohászka Z, Merkely B. ¹⁰⁰	Europe	2310	0.06	UR + Serum		by guest	RT-PCR /LFIA	lgM + IgG	Ye
Infect Ecol Epidemiol	Hoffman T, Nissen K, Krambrich J, et al. ¹⁰¹	Europe	153		Serum		Bath	RT-PCR /LFIA	lgM + IgG	Ye
J Med Virol	Cassaniti I, Novazzi F, Giardina F, et al. ¹⁰²	Europe	110		UR + Serum	E, RdRp	Bath	RT-PCR /LFIA	lgM + IgG	No
medRxiv	Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al. ¹⁰³	Europe	100		Serum	N, ORF1Ab	v coh Boyright.	RT-PCR /LFIA	lgM + IgG	Ye

				BMJ Open			6/bmjopen-252			
medRxiv	Paradiso AV, De Summa S, Loconsole D, et al. ¹⁰⁴	Europe	190		UR + Serum	N, RNAse P	Bath	RT-PCR /LFIA	lgM + IgG	Yes
Public Health	Döhla M, Boesecke C, Schulte B, et al. ¹⁰⁵	Europe	49		Serum	E, single	Strugural	RT-PCR /LFIA	lgM + IgG	Yes
J Emerg Infect Dis	Okba NMA, Muller MA, Li W, et al.	Global	207		Serum		12 on	RT-PCR /ELISA	lgM + IgG	No
J Clin Virol	Smithgall MC, Scherberkova I, Whittier S, Green DA. ¹⁰⁷	North America	113		UR	E, ORF1Ab	21th Both	RT-PCR		No
J Med Virol	Pujadas E, Ibeh N, Hernandez MM, et al. ¹⁰⁸	North America	1006		UR	E, ORF1Ab	≕ Both	RT-PCR		No
J Infect Dis	Burbelo PD, Riedo FX, Morishima C, et al. ¹⁰⁹	North America	100		Serum	N, single	Struetural	RT-PCR		No
Am J Obstet Gynecol MFM	Penfield CA, Brubaker SG, Limaye MA, et al. ¹¹⁰	North America	32		UR + Other	N, single	Strugtural	RT-PCR		No
medRxiv	Wyllie AL, Fournier J, et al. 111	North America	44		UR + Other	N, single	Stru	RT-PCR		No
J Appl Lab Med	Suhandynata RT, Hoffman MA, Kelner MJ, McLawhon RW, Reed SL, Fitzgerald RL. ¹¹²	North America	235		Serum	N, single	Structural	RT-PCR /CLIA	lgM + IgG	No
Clin Chem	Tang MS, Hock KG, Logsdon NM, et al. ¹¹³	North America	201		UR + LR + Serum	N, E	Both	rt-pcr /clia + Elisa	lgG	Yes
medRxiv	Randad PR, Pisanic N, Kruczynski K, et al. ¹¹⁴	North America	493		UR + Serum + Other	N, single	Structural	rt-pcr /elisa	lgM + lgA + lgG	No
JMIR Public Health Surveill	Sullivan PS, Sailey C, Guest JL, et al. ¹¹⁵	North America	159		UR + Serum	S, N	Struetural	RT-PCR /ELISA	lgM + IgA + IgG	No
bioRxiv	Freeman B, Lester S, Mills L, et al. ¹¹⁶	North America	618		UR NP/OP + Serum	N, single	Strugural	RT-PCR /ELISA	lgM + IgG	Yes

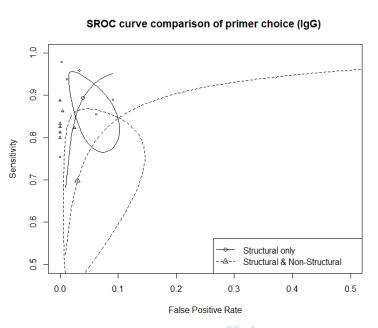
3

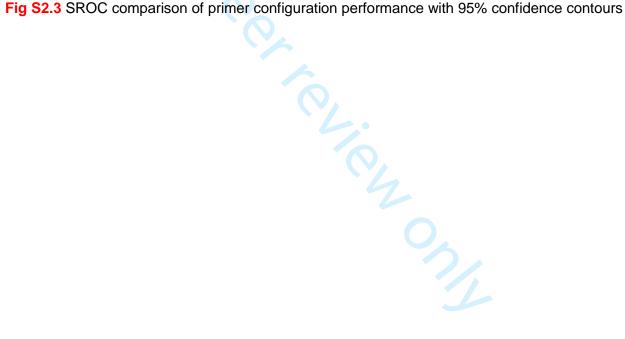

by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



BMJ Open

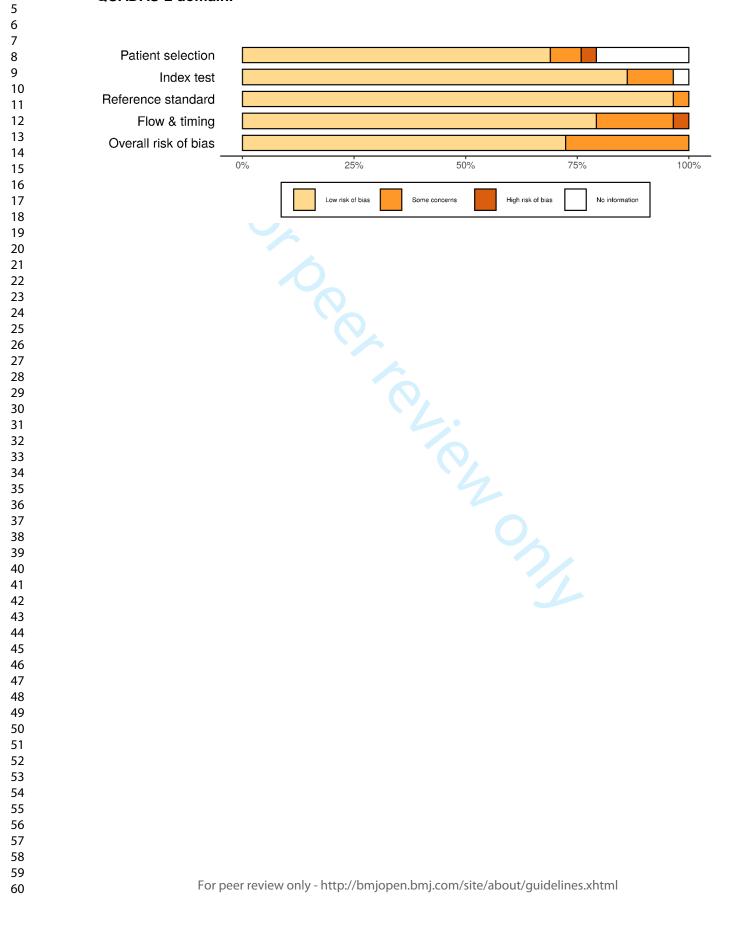

Fig S2.1 SROC comparison of LFIA and ELISA performance with 95% confidence contours



SROC curve comparison of Laboratory and Real-World setting (IgM/IgG)

Fig S2.2 SROC comparison of Laboratory and Real-World performance with 95% confidence contours

BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.



BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Fig S3. Summary plot of risk of bias for each study included in meta-analysis according to QUADAS-2 domain.

1

2 3

CITATIONS

- 8. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. *Radiology* 2020;296(2):E32-e40. doi: 10.1148/radiol.2020200642 [published Online First: 2020/02/27]
- 12. Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). *Clin Infect Dis* 2020;71(15):778-85. doi: 10.1093/cid/ciaa310 [published Online First: 2020/03/22]
- 26. Chan JF, Yip C, To KK, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol 2020;58(5) doi: 10.1128/jcm.00310-20 [published Online First: 2020/03/07]
- 34. Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. *Clin Infect Dis* 2020 doi: 10.1093/cid/ciaa344 [published Online First: 2020/03/30]
- 36. Rahman H, Carter I, Basile K, et al. Interpret with caution: An evaluation of the commercial AusDiagnostics versus in-house developed assays for the detection of SARS-CoV-2 virus. *J Clin Virol* 2020;127:104374. doi: 10.1016/j.jcv.2020.104374 [published Online First: 2020/05/04]
- 37. Won J, Lee S, Park M, et al. Development of a Laboratory-safe and Low-cost Detection Protocol for SARS-CoV-2 of the Coronavirus Disease 2019 (COVID-19). *Exp Neurobiol* 2020;29(2):107-19. doi: 10.5607/en20009 [published Online First: 2020/03/12]
- 38. Okamaoto K, Shirato K, Nao N, et al. An assessment of real-time RT-PCR kits for SARS-CoV-2 detection. *Jpn J Infect Dis* 2020 doi: 10.7883/yoken.JJID.2020.108 [published Online First: 2020/05/01]
- 39. Choe JY, Kim JW, Kwon HH, et al. Diagnostic performance of immunochromatography assay for rapid detection of IgM and IgG in coronavirus disease 2019. *J Med Virol* 2020 doi: 10.1002/jmv.26060 [published Online First: 2020/05/28]
- 40. Yong SEF, Anderson DE, Wei WE, et al. Connecting clusters of COVID-19: an epidemiological and serological investigation. *Lancet Infect Dis* 2020;20(7):809-15. doi: 10.1016/s1473-3099(20)30273-5 [published Online First: 2020/04/25]
- 41. Imai K, Tabata S, Ikeda M, et al. Clinical evaluation of an immunochromatographic IgM/IgG antibody assay and chest computed tomography for the diagnosis of COVID-19. *J Clin Virol* 2020;128:104393. doi: 10.1016/j.jcv.2020.104393 [published Online First: 2020/05/11]

BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

- 42. Xu Y, Xiao M, Liu X, et al. Significance of serology testing to assist timely diagnosis of SARS-CoV-2 infections: implication from a family cluster. *Emerg Microbes Infect* 2020;9(1):924-27. doi: 10.1080/22221751.2020.1752610 [published Online First: 2020/04/15]
- 43. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. *N Engl J Med* 2020;382(19):1787-99. doi: 10.1056/NEJMoa2001282 [published Online First: 2020/03/19]
- 44. Bai HX, Hsieh B, Xiong Z, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. *Radiology* 2020;296(2):E46-e54. doi: 10.1148/radiol.2020200823 [published Online First: 2020/03/11]
- 45. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. *Lancet* 2020;395(10226):809-15. doi: 10.1016/s0140-6736(20)30360-3 [published Online First: 2020/03/11]
- 46. Liu D, Li L, Wu X, et al. Pregnancy and Perinatal Outcomes of Women With Coronavirus Disease (COVID-19) Pneumonia: A Preliminary Analysis. *AJR Am J Roentgenol* 2020;215(1):127-32. doi: 10.2214/ajr.20.23072 [published Online First: 2020/03/19]
- 47. Long C, Xu H, Shen Q, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol 2020;126:108961. doi: 10.1016/j.ejrad.2020.108961 [published Online First: 2020/04/02]
- 48. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. *Pediatr Pulmonol* 2020;55(5):1169-74. doi: 10.1002/ppul.24718 [published Online First: 2020/03/07]
- 49. Yan J, Guo J, Fan C, et al. Coronavirus disease 2019 in pregnant women: a report based on 116 cases. *Am J Obstet Gynecol* 2020;223(1):111.e1-11.e14. doi: 10.1016/j.ajog.2020.04.014 [published Online First: 2020/04/23]

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

- 50. Ye G, Li Y, Lu M, et al. Experience of different upper respiratory tract sampling strategies for detection of COVID-19. *J Hosp Infect* 2020;105(1):1-2. doi: 10.1016/j.jhin.2020.03.012 [published Online First: 2020/03/17]
- 51. Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. *J Med Virol* 2020;92(6):680-82. doi: 10.1002/jmv.25742 [published Online First: 2020/03/04]
- 52. Zhang G, Zhang J, Wang B, et al. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. *Respir Res* 2020;21(1):74. doi: 10.1186/s12931-020-01338-8 [published Online First: 2020/03/29]
- 53. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet* 2020;395(10229):1054-62. doi: 10.1016/s0140-6736(20)30566-3 [published Online First: 2020/03/15]
- 54. Liu W, Liu L, Kou G, et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. *J Clin Microbiol* 2020;58(6) doi: 10.1128/jcm.00461-20 [published Online First: 2020/04/02]
- 55. Li Y, Yao L, Li J, et al. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. *J Med Virol* 2020;92(7):903-08. doi: 10.1002/jmv.25786 [published Online First: 2020/03/29]
- 56. Diao B, Wen K, Chen J, et al. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. *medRxiv* 2020:2020.03.07.20032524. doi: 10.1101/2020.03.07.20032524
- 57. Kong WH, Li Y, Peng MW, et al. SARS-CoV-2 detection in patients with influenza-like illness. *Nat Microbiol* 2020;5(5):675-78. doi: 10.1038/s41564-020-0713-1 [published Online First: 2020/04/09]
- 58. Liu W, Wang J, Li W, et al. Clinical characteristics of 19 neonates born to mothers with COVID-19. *Front Med* 2020;14(2):193-98. doi: 10.1007/s11684-020-0772-y [published Online First: 2020/04/15]
- 59. Lo IL, Lio CF, Cheong HH, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. *Int J Biol Sci* 2020;16(10):1698-707. doi: 10.7150/ijbs.45357 [published Online First: 2020/04/01]
- 60. Wu J, Liu J, Li S, et al. Detection and analysis of nucleic acid in various biological samples of COVID-19 patients. *Travel Med Infect Dis* 2020:101673. doi: 10.1016/j.tmaid.2020.101673 [published Online First: 2020/04/21]
- 61. Xu T, Chen C, Zhu Z, et al. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. *Int J Infect Dis* 2020;94:68-71. doi: 10.1016/j.ijid.2020.03.022 [published Online First: 2020/03/18]
- 62. Yuan Y, Wang N, Ou X. Caution should be exercised for the detection of SARS-CoV-2, especially in the elderly. *J Med Virol* 2020 doi: 10.1002/jmv.25796 [published Online First: 2020/04/01]
- 63. Cheng Z, Lu Y, Cao Q, et al. Clinical Features and Chest CT Manifestations of Coronavirus Disease 2019 (COVID-19) in a Single-Center Study in Shanghai, China. *AJR Am J Roentgenol* 2020;215(1):121-26. doi: 10.2214/ajr.20.22959 [published Online First: 2020/03/17]
- 64. Schwartz DA. An Analysis of 38 Pregnant Women with COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med 2020 doi: 10.5858/arpa.2020-0901-SA [published Online First: 2020/03/18]
- 65. Wong HYF, Lam HYS, Fong AH, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. *Radiology* 2020;296(2):E72-e78. doi: 10.1148/radiol.2020201160 [published Online First: 2020/03/29]
- 66. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. *Chin Med J (Engl)* 2020;133(9):1039-43. doi: 10.1097/cm9.00000000000774 [published Online First: 2020/03/03]
- 67. Zhao R, Li M, Song H, et al. Early detection of SARS-CoV-2 antibodies in COVID-19 patients as a serologic marker of infection. *Clin Infect Dis* 2020 doi: 10.1093/cid/ciaa523 [published Online First: 2020/05/02]
- 68. Ma H, Zeng W, He H, et al. COVID-19 diagnosis and study of serum SARS-CoV-2 specific IgA, IgM and IgG by chemiluminescence immunoanalysis. *medRxiv* 2020:2020.04.17.20064907. doi: 10.1101/2020.04.17.20064907
- 69. Cai X, Chen J, Hu J, et al. A Peptide-based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Corona Virus Disease 2019 (COVID-19). *medRxiv* 2020:2020.02.22.20026617. doi: 10.1101/2020.02.22.20026617

	ω
	Ş
	\overline{a}
7	ğ
	Ĕ.
1	ŧ
1	ŝ
7	g
	0
1	sh
1	ed
1	as
	<u> </u>
1	0
	g
ł	/bmiopen-
4	nio
-	ğ
	÷.
1	Ż
i	Ň
	2021-0
	ថ្ល
	ğ
i	$\overline{\mathbf{N}}$
1)53912 on
Ì	1 21 April 2022
	~
÷	₫
	<u>-</u>
	20
	N
Ì	ril 2022. D
1	ğ
	≦
	00
	loade
	loaded
	loaded fro
	loaded from
	loaded from htt
	loaded from http:/
	loaded from http://b
	loaded from http://bmi
	loaded from http://bmiop
	loaded from http://bmiopen
	loaded from http://bmiopen.bi
	loaded from http://bmiopen.bmi.
	loaded from http://bmiopen.bmi.co
	loaded from http://bmiopen.bmi.com/
	loaded from http://bmiopen.bmi.com/ or
	loaded from http://bmiopen.bmi.com/ on /
	loaded from http://bmiopen.bmi.com/ on Api
	loaded from http://bmiopen.bmi.com/ on April 2
	loaded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	aded from http://bmiopen.bmi.com/ on April 23.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.

9.

Auton	hou M, Cheng F, et al. Development and Multicenter Performance Evaluation of The First Fully nated SARS-CoV-2 IgM and IgG Immunoassays. <i>medRxiv</i> 2020:2020.04.16.20067231. doi: 01/2020.04.16.20067231
71. Zhang G, 2 Anti	Nie S, Zhang Z, et al. Longitudinal Change of Severe Acute Respiratory Syndrome Coronavirus ibodies in Patients with Coronavirus Disease 2019. <i>J Infect Dis</i> 2020;222(2):183-88. doi: 093/infdis/jiaa229 [published Online First: 2020/05/03]
72. Lin D, Liu (SAR	L, Zhang M, et al. Evaluations of serological test in the diagnosis of 2019 novel coronavirus S-CoV-2) infections during the COVID-19 outbreak. <i>medRxiv</i> 2020:2020.03.27.20045153. doi: 01/2020.03.27.20045153
73. Xie J, Din an Igl	g C, Li J, et al. Characteristics of patients with coronavirus disease (COVID-19) confirmed using M-IgG antibody test. <i>J Med Virol</i> 2020 doi: 10.1002/jmv.25930 [published Online First: /04/25]
74. Long QX, Med 2	Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. <i>Nat</i> 2020;26(6):845-48. doi: 10.1038/s41591-020-0897-1 [published Online First: 2020/05/01] ng M, Zuo Z, et al. Diagnostic value and dynamic variance of serum antibody in coronavirus
disea: 2020/	se 2019. Int J Infect Dis 2020;94:49-52. doi: 10.1016/j.ijid.2020.03.065 [published Online First: /04/07]
implic	Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: cation of multiple shedding routes. <i>Emerg Microbes Infect</i> 2020;9(1):386-89. doi: 080/22221751.2020.1729071 [published Online First: 2020/02/18]
coron	A, Mok CK, Tsang OT, et al. Serological assays for severe acute respiratory syndrome navirus 2 (SARS-CoV-2), March 2020. <i>Euro Surveill</i> 2020;25(16) doi: 10.2807/1560 .Es.2020.25.16.2000421 [published Online First: 2020/04/30]
78. Xiang F, V <i>Clin I</i> i	Nang X, He X, et al. Antibody Detection and Dynamic Characteristics in Patients with COVID-19 Infect Dis 2020 doi: 10.1093/cid/ciaa461 [published Online First: 2020/04/20]
Immu Outbr	(an M, Li H, et al. Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold- inochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an reak of Pneumonia (COVID-19). <i>medRxiv</i> 2020:2020.02.27.20028787. doi: 01/2020.02.27.20028787
80. Liu L, Liu syndr	W, Wang S, et al. A preliminary study on serological assay for severe acute respiratory rome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients. <i>medRxiv</i> :2020.03.06.20031856. doi: 10.1101/2020.03.06.20031856
81. Zhong L, (<i>Sci</i> 20	Chuan J, Gong B, et al. Detection of serum IgM and IgG for COVID-19 diagnosis. <i>Sci China Life</i> 020;63(5):777-80. doi: 10.1007/s11427-020-1688-9 [published Online First: 2020/03/25]
symp	TD, Zheng SF, et al. Serology characteristics of SARS-CoV-2 infection since exposure and post tom onset. <i>Eur Respir J</i> 2020 doi: 10.1183/13993003.00763-2020 [published Online First: /05/21]
83. Du Z, Zhu	IF, Guo F, et al. Detection of antibodies against SARS-CoV-2 in patients with COVID-19. J Med 2020 doi: 10.1002/jmv.25820 [published Online First: 2020/04/04]
infect	X, Yang G, et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 ed COVID-19 patients. <i>J Infect</i> 2020;81(1):e28-e32. doi: 10.1016/j.jinf.2020.03.051 [published e First: 2020/04/14]
SARS	Luo X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test fo S-CoV-2 infection diagnosis. <i>J Med Virol</i> 2020 doi: 10.1002/jmv.25727 [published Online First: /02/28]
86. Liu Y, Liu CoV-2	Y, Diao B, et al. Diagnostic Indexes of a Rapid IgG/IgM Combined Antibody Test for SARS- 2. <i>medRxiv</i> 2020:2020.03.26.20044883. doi: 10.1101/2020.03.26.20044883
result	TZ, Shen H, Wang X, et al. Different longitudinal patterns of nucleic acid and serology testing is based on disease severity of COVID-19 patients. <i>Emerg Microbes Infect</i> 2020;9(1):833-36. 0.1080/22221751.2020.1756699 [published Online First: 2020/04/21]
88. Chen Z, Z Lanth	Zhang Z, Zhai X, et al. Rapid and Sensitive Detection of anti-SARS-CoV-2 IgG, Using nanide-Doped Nanoparticles-Based Lateral Flow Immunoassay. <i>Anal Chem</i> 2020;92(10):7226- oi: 10.1021/acs.analchem.0c00784 [published Online First: 2020/05/05]
diagn	Gao Q, Wang T, et al. Evaluation of recombinant nucleocapsid and spike proteins for serologica losis of novel coronavirus disease 2019 (COVID-19). <i>medRxiv</i> 2020:2020.03.17.20036954. doi: 01/2020.03.17.20036954
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 90. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. *Jama* 2020;323(16):1574-81. doi: 10.1001/jama.2020.5394 [published Online First: 2020/04/07]
- 91. Caruso D, Zerunian M, Polici M, et al. Chest CT Features of COVID-19 in Rome, Italy. *Radiology* 2020;296(2):E79-e85. doi: 10.1148/radiol.2020201237 [published Online First: 2020/04/04]
- 92. Lagier JC, Colson P, Tissot Dupont H, et al. Testing the repatriated for SARS-Cov2: Should laboratorybased quarantine replace traditional quarantine? *Travel Med Infect Dis* 2020;34:101624. doi: 10.1016/j.tmaid.2020.101624 [published Online First: 2020/03/18]
- 93. van Kasteren PB, van der Veer B, van den Brink S, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. *J Clin Virol* 2020;128:104412. doi: 10.1016/j.jcv.2020.104412 [published Online First: 2020/05/18]
- 94. Toptan T, Hoehl S, Westhaus S, et al. Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs. *Int J Mol Sci* 2020;21(12) doi: 10.3390/ijms21124396 [published Online First: 2020/06/25]
- 95. Amrane S, Tissot-Dupont H, Doudier B, et al. Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France, - January 31st to March 1st, 2020: A respiratory virus snapshot. *Travel Med Infect Dis* 2020:101632. doi: 10.1016/j.tmaid.2020.101632 [published Online First: 2020/03/25]
- 96. Lambert-Niclot S, Cuffel A, Le Pape S, et al. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. J Clin Microbiol 2020;58(8) doi: 10.1128/jcm.00977-20 [published Online First: 2020/05/15]
- 97. Infantino M, Grossi V, Lari B, et al. Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: an Italian experience. J Med Virol 2020 doi: 10.1002/jmv.25932 [published Online First: 2020/04/25]
- 98. Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al. Evaluation of commercial and automated SARS-CoV-2 IgG and IgA ELISAs using coronavirus disease (COVID-19) patient samples. *Euro Surveill* 2020;25(18) doi: 10.2807/1560-7917.Es.2020.25.18.2000603 [published Online First: 2020/05/14]
- 99. Tré-Hardy M, Blairon L, Wilmet A, et al. The role of serology for COVID-19 control: Population, kinetics and test performance do matter. *J Infect* 2020;81(2):e91-e92. doi: 10.1016/j.jinf.2020.05.019 [published Online First: 2020/05/18]
- 100. Vásárhelyi B, Kristóf K, Ostorházi E, et al. [The diagnostic value of rapid anti IgM and IgG detecting tests in the identification of patients with SARS CoV-2 virus infection]. Orv Hetil 2020;161(20):807-12. doi: 10.1556/650.2020.31859 [published Online First: 2020/05/05]
- 101. Hoffman T, Nissen K, Krambrich J, et al. Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to SARS-CoV-2. *Infect Ecol Epidemiol* 2020;10(1):1754538-38. doi: 10.1080/20008686.2020.1754538
- 102. Cassaniti I, Novazzi F, Giardina F, et al. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. *J Med Virol* 2020 doi: 10.1002/jmv.25800 [published Online First: 2020/04/01]
- 103. Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al. Rapid diagnosis of SARS-CoV-2 infection by detecting IgG and IgM antibodies with an immunochromatographic device: a prospective single-center study. *medRxiv* 2020:2020.04.11.20062158. doi: 10.1101/2020.04.11.20062158
- 104. Paradiso AV, De Summa S, Loconsole D, et al. Clinical meanings of rapid serological assay in patients tested for SARS-Co2 RT-PCR. *medRxiv* 2020:2020.04.03.20052183. doi: 10.1101/2020.04.03.20052183
- 105. Döhla M, Boesecke C, Schulte B, et al. Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. *Public Health* 2020;182:170-72. doi: 10.1016/j.puhe.2020.04.009 [published Online First: 2020/04/26]
- 106. OKBA NMA, Muller MA, Li W, et al. SARS-CoV-2 specific antibody responses in COVID-19 patients. medRxiv 2020:2020.03.18.20038059. doi: 10.1101/2020.03.18.20038059
- 107. Smithgall MC, Scherberkova I, Whittier S, et al. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche cobas for the Rapid Detection of SARS-CoV-2. *J Clin Virol* 2020;128:104428. doi: 10.1016/j.jcv.2020.104428 [published Online First: 2020/05/22]
- 108. Pujadas E, Ibeh N, Hernandez MM, et al. Comparison of SARS-CoV-2 detection from nasopharyngeal swab samples by the Roche cobas 6800 SARS-CoV-2 test and a laboratory-developed real-time RT-PCR test. *J Med Virol* 2020 doi: 10.1002/jmv.25988 [published Online First: 2020/05/10]

1

2 3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

BMJ Open

- 109. Burbelo PD, Riedo FX, Morishima C, et al. Sensitivity in Detection of Antibodies to Nucleocapsid and Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 in Patients With Coronavirus Disease 2019. J Infect Dis 2020;222(2):206-13. doi: 10.1093/infdis/jiaa273 [published Online First: 2020/05/20]
 - 110. Penfield CA, Brubaker SG, Limaye MA, et al. Detection of SARS-COV-2 in Placental and Fetal Membrane Samples. Am J Obstet Gynecol MFM 2020:100133. doi: 10.1016/j.ajogmf.2020.100133 [published Online First: 2020/05/12]
 - 111. Wyllie AL, Fournier J, Casanovas-Massana A, et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. *medRxiv* 2020:2020.04.16.20067835. doi: 10.1101/2020.04.16.20067835
 - 112. Suhandynata RT, Hoffman MA, Kelner MJ, et al. Longitudinal Monitoring of SARS-CoV-2 IgM and IgG Seropositivity to Detect COVID-19. *J Appl Lab Med* 2020 doi: 10.1093/jalm/jfaa079 [published Online First: 2020/05/20]
 - 113. Tang MS, Hock KG, Logsdon NM, et al. Clinical Performance of Two SARS-CoV-2 Serologic Assays. *Clin Chem* 2020;66(8):1055-62. doi: 10.1093/clinchem/hvaa120 [published Online First: 2020/05/14]
- 114. Randad PR, Pisanic N, Kruczynski K, et al. COVID-19 serology at population scale: SARS-CoV-2specific antibody responses in saliva. *medRxiv* 2020 doi: 10.1101/2020.05.24.20112300 [published Online First: 2020/06/09]
- 115. Sullivan PS, Sailey C, Guest JL, et al. Detection of SARS-CoV-2 RNA and Antibodies in Diverse Samples: Protocol to Validate the Sufficiency of Provider-Observed, Home-Collected Blood, Saliva, and Oropharyngeal Samples. *JMIR Public Health Surveill* 2020;6(2):e19054. doi: 10.2196/19054 [published Online First: 2020/04/21]
- 116. Freeman B, Lester S, Mills L, et al. Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and sero-surveillance. *bioRxiv* 2020:2020.04.24.057323. doi: 10.1101/2020.04.24.057323

PRISMA 2020 Checklist

			BMJ Open		Page 40 of 40
1	PRISM	1A 20	BMJ Open 000000000000000000000000000000000000		
3 4	Section and Topic	ltem #	Checklist item	2 2 2 2	Reported on page #
5	TITLE			<u>د</u>	
6	Title	1	Identify the report as a systematic review.	ວ ວ	1
8	ABSTRACT			<u>ې</u>	
9	Abstract	2	See the PRISMA 2020 for Abstracts checklist.	>	3
10	INTRODUCTION				
11	Rationale	3			5
12	Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.		5
3	METHODS				
5	Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	<u>,</u>	6
16 17	Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to date when each source was last searched or consulted.	dentify studies. Specify the	6
8	Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.		6
19 20	Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many read and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in		6-7
21 22 23	Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each reports independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of process.	t, whether they worked utomation tools used in the	6-7
4 5	Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results		7
26 27	·	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, fund assumptions made about any missing or unclear information.	ng sources). Describe any	7
28 29	Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how me study and whether they worked independently, and if applicable, details of automation tools used in the process.	ny reviewers assessed each	7
0	Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentat	on of results.	6
1 2 3	Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study inter- comparing against the planned groups for each synthesis (item #5)).	vention characteristics and	6-7
34 35	·	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing sume conversions.	ary statistics, or data	6-7
36		13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	• D	7
37 38		13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was per model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used		7
39		13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analys	, #s, meta-regression).	7
0		13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	- /	N/A
1	Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting bias	<u>\$</u>).	7
43 44 45 46	Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	.	7

PRISMA 2020 Checklist

e 41 of 40		BMJ Open 30	
PRISM	/A 20	BMJ Open 36, bm. open 20 Checklist 20	
Section and Topic	ltem #	Checklist item	Reported on page #
RESULTS		89 1 1	
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the Sumber of studies included in the review, ideally using a flow diagram.	n Supp
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Supp
Study	17	Cite each included study and present its characteristics.	Supp
characteristics			Table 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Supp Fig 2
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Figures
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Supp Fig
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Figures
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Figures
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	N/A
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Supp Fig
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Figures
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	10-14
	23b	Discuss any limitations of the evidence included in the review.	13
	23c	Discuss any limitations of the review processes used.	13
	23d	Discuss implications of the results for practice, policy, and future research.	14
OTHER INFORMA	TION		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	15
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	15
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	N/A
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the provided with the review.	14
Competing interests	26	Declare any competing interests of review authors.	15
Availability of data, code and	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	14

44 From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 45 For peer Feliew Grifformalion Wigit patter for the prismon and the prism

BMJ Open

Meta-Analysis of the Robustness of COVID-19 Diagnostic Kit Performance During the Early Pandemic

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053912.R2
Article Type:	Original research
Date Submitted by the Author:	21-Mar-2022
Complete List of Authors:	Shanmugam, Chandrakumar; MNR Medical College and Hospital, Pathology Behring, Michael; The University of Alabama at Birmingham School of Medicine Luthra, Vishwas; Sri Guru Ram Das Institute of Medical Sciences and Research Leal, Sixto M.; The University of Alabama at Birmingham Department of Medicine Varambally, Sooryanarayana; The University of Alabama at Birmingham Department of Medicine Netto, George J.; The University of Alabama at Birmingham Department of Medicine Manne, Upender; The University of Alabama at Birmingham School of Medicine, Pathology
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Diagnostics
Keywords:	Public health < INFECTIOUS DISEASES, COVID-19, Molecular diagnostics < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Meta-Analysis of the Robustness of COVID-19 Diagnostic Kit Performance During the Early Pandemic

Chandrakumar Shanmugam, M.D., M.B.A.,^{1#} Michael Behring, Ph.D.,^{2#} Vishwas Luthra, M.B.B.S.,³ Sixto M Leal Jr., M.D., Ph.D.,² Sooryanarayana Varambally,^{2, 4} PhD, George J Netto, M.D.,^{2, 4} and Upender Manne, M.S., Ph.D.^{2, 4,*}

Department of Pathology¹, MNR Medical College & Hospital, MNR Nagar, Fasalwadi, Sangareddy, Telangana, India 502279

Department of Pathology², University of Alabama at Birmingham, Birmingham, Alabama, USA 35274

Department of General Medicine³, Sri Guru Ram Das Institute of Medical Sciences and Research, Mehta Road, Vallah, Amritsar, Punjab, India 143501

O'Neal Comprehensive Cancer Center⁴, University of Alabama at Birmingham, Birmingham, Alabama, USA 35274

Authors contributed equally

Running title: Robustness of Diagnostic Kits During Early Phase COVID 19: Lessons

Learned

^{*}Author for Correspondence:

Dr. Upender Manne Professor of Pathology, Epidemiology and Surgery University of Alabama at Birmingham Birmingham, Alabama, USA 35274 Tel: 001 2052493895 Email: upendermanne@uabmc.edu

ABSTRACT:

Background

Accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is necessary to mitigate the coronavirus disease-19 (COVID-19) pandemic. However, the test reagents and assay platforms are varied and may not be sufficiently robust to diagnose COVID-19.

Methods

We reviewed 85 studies (21,530 patients), published from five regions of the world, to highlight issues involved in the diagnosis of COVID-19 in the early phase of the pandemic. All relevant articles, published up to May 31, 2020, in PubMed, BioRiXv, MedRiXv, and Google Scholar, were included. We evaluated the qualitative (9749 patients) and quantitative (10,355 patients) performance of RT-PCR and serologic diagnostic tests for real-world samples, and assessed the concordance (5,538 patients) between test performance in meta-analyses. Synthesis of results was done using random effects modelling and bias was evaluated according to QUADAS-2 guidelines.

Results

The RT-PCR tests exhibited heterogeneity in the primers and reagents used. Of 1,957 positive RT-PCR COVID-19 participants, 1,585 had positive serum antibody (IgM +/- IgG) tests (sensitivity 0.81, 95%CI 0.66-.90). While 3,509 of 3581 participants RT-PCR negative for COVID-19 were found negative by serology testing (specificity 0.98, 95%CI 0.94-0.99). The chemiluminescent immunoassay exhibited the highest sensitivity, followed by ELISA and lateral flow immunoassays. Serology tests had higher sensitivity and specificity for laboratory-approval than for real-world reporting data.

Discussion

The robustness of the assays/platforms is influenced by variability in sampling and reagents. Serological testing complements and may minimize false negative RT-PCR results. Lack of

standardized assay protocols in the early phase of pandemic might have contributed to the spread of COVID-19.

Strengths and limitations of this study:

- This study offers the first evaluation of COVID-19 test performance with consideration of the heterogeneity of RT-PCR primers.
- We compare the performance of manufacturer-based, laboratory/approval data to the performance of the same test kits in a real-world setting in the <u>early phase</u> of the pandemic.
- We perform a qualitative analysis of RT-PCR assays using 85 studies (21,530 patients), and a quantitative meta-analysis of RT-PCR vs. serum antibody assays in a sub-set of 30 publications (10,355 patients).
- Much of the information in the early pandemic was reported from China, and often from non-peer reviewed, preprint sources.
- Data measuring duration of the infection was not available in majority of included studies.

INTRODUCTION

In December 2019, there was a cluster of unexplained pneumonia cases in Wuhan, China, and a novel coronavirus was identified as the causative agent.¹ The virus was named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease as coronavirus disease-19 (COVID-19).² The clinical spectrum ranges from asymptomatic forms to acute respiratory failure and multi-organ dysfunction syndrome, coagulopathy, and death.^{3,4} On March 11th 2020, the World Health Organization described the spread of these infections as a pandemic, which persists as a global crisis. Robust diagnostic tests are required to mitigate the spread of this virus and thereby to minimize the impact of COVID-19 on the health, economy, and social well-being of mankind.

The standard diagnosis of COVID-19 is based on clinical and radiologic evidence and viral genome detection by RT-PCR in respiratory samples.⁵ Gene-specific primers are used in the RT-PCR assays; structural genes include envelope (E), nucleocapsid (N), and/or spike (S)genes; non-structural genes include RNA-dependent RNA polymerase (RdRp) or open reading frame1ab (ORF1ab) 6.7 Some studies used only a single-gene specific primer, and others used multiple-gene primers. Since studies published in the early phase of the pandemic reported a 3%-41% range of false-negativity by RT-PCR, a repeat RT-PCR testing was suggested.^{8,9} Furthermore, false negativity was attributed to either mutations in the regions to which the primers bind or to sampling and laboratory practices, including collection, transportation, and handling.¹⁰ Timing of sample collection with respect to the course of infection and the sample type also influence test results.¹¹ Alternatively, the diagnosis can be made by detection of antigens (E, N, or S) and/or antibodies (IgM or IgG or both) in blood samples.¹² However, these tests have the potential for false positives owing to cross-reactivity with other human coronaviruses.^{13,14} Due to the unprecedented public health emergency, the FDA authorized, on June 1, 2020, EUA requests for more than 15 diagnostic and serologic tests. Though serology testing can detect the false positives of RT-PCR tests in clinically suspected patients, its value in COVID-19 diagnosis as a complementary assay in the

mitigation of the pandemic is not well defined. However, given the complexities in COVID-19 testing, there is a need for a review of performance for tests commonly used.

In this systematic review and meta-analysis, we examine testing for the diagnosis of COVID-19 in the early pandemic and evaluate the sensitivity and specificity of serological tests relative to RT-PCR tests. Our objectives were to assess the uniformity of primer usage in RT-PCR assays and evaluate whether primers used in gold-standard RT-PCR tests affect the validity of serological tests. Furthermore, we compared the performance of serological tests/platforms in approval contrived/laboratory *vs.* real-world data.

METHODS

Literature Search

This research was accomplished according to standards outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.¹⁵ To find relevant studies, international databases, including PubMed, Embase, MedRiXv, BioRiXv, and Google Scholar, were searched for articles published until May 31, 2020. The following search terms were used (selected using English MeSH keywords and Emtree terms): [SARS-CoV-2 AND diagnosis] OR [2019-nCoV AND diagnosis]" OR ["COVID-19 AND diagnosis] and [SARS-CoV-2 AND RT-PCR] OR, [2019-nCoV AND RT-PCR]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND RT-PCR] and [SARS-CoV-2 AND serology] OR [2019-nCoV AND serology]" OR ["COVID-19 AND serology].

Eligibility Criteria

Relevant articles that reported diagnostic information for infected patients were included in the analysis. Pre-print articles with non-peer review were considered for inclusion. Articles were excluded if appropriate information was not reported or if they were in the Chinese language. Population sample sizes of <5 participants were not included; reviews and editorials were not considered. For meta-analysis and approval *vs.* real-world performance, studies that reported percent sensitivity/specificity without including patient numbers were also excluded.

BMJ Open

Data Extraction and Report Quality Evaluation

Two authors (CS and VL) screened and evaluated the literature independently. Discrepancies were resolved by consensus after evaluation by a third author (MB). The following were extracted for review and meta-analysis: journal name, authors, period of publication (end of May, 2020), location of study, total number of patients, tissue of origin for samples tested, whether samples were from upper or lower respiratory tract (or both), primers for RT-PCR, platforms for serology tests, and antibodies tested for serology. Counts of true positives, false negatives, true negatives, and false positives were used in the meta-analysis.

An author (MB) extracted and analyzed the approved testing kit performance data from the following sources: FDA EUA Authorized Serology Test Performance,¹⁶ the Foundation for Innovative New Diagnostics (FIND) SARS-CoV-2 diagnostic pipeline,¹⁷ and package inserts provided on company websites for each product. Real-world sample testing data from kits in meta-analyses were compared against the performance of the same kits, or platforms, reported in approval documentation. Variables abstracted were study authors/test developer, name of test, test platform, and true positives, false negatives, true negatives, and false positives for each antibody or antibody combination measured (IgM, IgG, IgA, combined, and Pan-Ig). Risk of bias within individual studies of meta-analysis was assessed using the QUADAS 2 tool for assessment of diagnostic studies.¹⁸ QUADAS 2 has been developed specifically for evaluating bias in the meta-analyses of diagnostic test accuracy.

Patient and Public Involvement

Since we performed a meta-analysis and systematic review, it was not appropriate or possible to involve patients or the public in the design, conduct, reporting, or dissemination plans of our research.

Statistical Analysis

BMJ Open

Statistical analyses were performed with R version 6.3.2 (2019-12-12).¹⁹ The package "meta" was used for meta-analyses.²⁰ Random effects models were used to measure sensitivity and specificity of outcomes across studies. Subgroup analysis was performed to evaluate the effect of assay, RT-PCR primer type, and setting (laboratory *vs.* real-world) upon serum test performance. Heterogeneity across studies and subgroups was evaluated using Cochrane's *Q* statistic, and residual heterogeneity was quantified as a percentage with the *l*² statistic. An *l*² measure of 0% shows no observed heterogeneity, with increasing values from 0%-100% indicating higher levels of heterogeneity. ²¹ An assumption of homogeneity was rejected for p-values < 0.1. The evaluation of publication bias was not possible using FDA and EU reported approval data.

RESULTS

Search Results and Population Characteristics

Our search generated 112 publications with potential relevance to the performance of COVID-19 diagnostic tests. After excluding duplicate publications, manuscripts that did not report numbers of patients used for sensitivity/specificity calculations and studies with a sample size of <5 patients, 85 studies were selected for qualitative synthesis of RT-PCR primer usage. From this set, a sub-set of 30 publications were selected for the quantitative meta-analysis of serologic *vs.* RT-PCR diagnostic testing for COVID-19 (**Table S1**). Ancillary analysis compared the performance of these 30 real-world studies to that reported in laboratory approval data from 47 diagnostic serum-based tests. In all, our qualitative synthesis of RT-PCR studies included 85 studies and 21,530 patients. From this synthesis, a group of 30 studies with 10,355 patients from 5 regions of the world were selected for meta-analysis and comparison to performance from laboratory approval data (**Fig S1**).

Uniformity of Primer Usage in RT-PCR Diagnostic Tests

We reviewed use of single primer of structural genes as compared to use of both structural and non-structural gene primers in 56 population-based studies with 9,872 participants.

BMJ Open

Overall, high proportions of studies employed both structural and non-structural gene primers in RT-PCR testing [55% (31 in 56) in studies and 56% (5484 in 9872) of total participants]. Additionally, 29 studies (11,658 patients) did not report RT-PCR primer data. Single markers were most frequently tested in China and North American studies (**Table 1**). In general, the most tested samples were from the upper respiratory tract, regardless of primer status. Sample source and location in the respiratory tract were not reported for 8-20% of patients, and this was more common for studies using single gene primer.

Meta-Analysis: RT-PCR vs. Serum Antibody Testing

In general, patient sera were tested for IgM and IgG antibodies. China was the region with the highest frequency of antibody testing, and lateral flow immunoassay (LFIA) and chemiluminescent immunoassay (CLIA) testing platforms were most often utilized. Of the 45 studies included in the qualitative synthesis, 30 manuscripts reported both serum antibody testing and RT-PCR testing for the same patients. Key characteristics of this population include: China as the regional location for research; lack of reporting of RT-PCR primer information for ~33% (10/30) of all studies; most studies used IgM and IgG serum-based antibody tests; and LFIA, CLIA, and enzyme-linked immunosorbent assay (ELISA) platforms were common across studies (**Table 2**).

We used the IgM+/-IgG serum antibody test since it was most commonly utilized across studies. Of 1,957 participants (pooled sensitivity 0.81, 95%CI 0.66-0.90) with a positive RT-PCR COVID-19 result, 1,585 were also detected as positive with serum antibody tests. Of 3,581 true negatives in RT-PCR, 3,509 negatives were also found by serum antibody testing (pooled specificity 0.98, 95%CI 0.94-0.99). For both models, heterogeneity between studies was significant (p<0.01 for both, l^2 =97% and l^2 =98% for sensitivity and specificity, respectively).

Sub-analyses of differences based on the testing platform found that sensitivity between groups differed (p <0.0001), with CLIA tests performing best (0.99, 95%CI 0.97-0.99); ELISA as next-best (0.89, 95%CI 0.82-0.93); and LFIA as having the poorest sensitivity (0.67, 95%CI

0.50-0.81). LFIA test sensitivity also showed heterogeneity between studies (p<0.01, l^2 95%). For IgM/IgG tests, specificity did not differ significantly by platform (p=0.06). However, a performance trend followed sensitivity, with LFIA underperforming (**Figure 1 and Figure S2.1**).

Serum Antibody Testing Performance: Approval Data vs. Real-World Data

For manufacturer-based, laboratory approval data, IgM+/-IgG testing detected COVID-19 positivity for 1,045 of 1,068 RT-PCR-determined "true" positive patients (sensitivity 0.98, 95%CI 0.92-1.0). In the same group, serum testing correctly identified 1,928 of 1,967 (specificity 0.98, 95%CI 0.95-.099) true negatives by RT-PCR. For both models (sensitivity and specificity), there was evidence of heterogeneity (p <0.01 for both and *I*²=93% and *I*²=94% for sensitivity and specificity, respectively).

We evaluated IgM+/-IgG serum test performance in subgroup analyses comparing laboratory approval performance data to real-world performance in study data. In manufacturer data presented for approval, serum antibody testing detected 1,047 of 1,068 "true positive" cases of COVID-19 (sensitivity 0.98, 95%CI 0.92-1.0). Real-world use of serum IgM+/-IgG testing was evident for 2,450 of 3,025 participants diagnosed with COVID-19 by RT-PCR (sensitivity 0.81, 95% CI 0.66-0.90). For both groups, there was heterogeneity between studies (p <0.01 for both, *I*²=93% and *I*² =97% for approval and real-world specificity, respectively) (**Figure 2 and Figure S2.2**). In addition, the overall sensitivity between approval and real-world testing groups differed significantly (*Q*=8.37, p=0.004). An analysis of specificity by the same subgroups found no significant difference between laboratory approval and real-world data. Laboratory data identified 1,928 of 1,967 participants with true COVID-19 negative status (specificity 0.98, 95% CI 0.95-0.99). Real-world data found 5,437 of 5,548 true negatives (specificity 0.98, 95% CI, 0.96-0.99) (analysis not shown).

Since, in IgM+/-IgG tests, there were differences in sensitivity between platforms, we evaluated the effect of approval-based data *vs.* real-world data by the type of platform. In an analysis stratified for ELISA, CLIA, and LFIA, there was no significant difference in specificity

Page 11 of 40

BMJ Open

between approval and real-world data (data not shown). However, for ELISA tests, real-world capacity to detect true positives was lower than in laboratory-based analyses. In real-world studies, the sensitivity of ELISA was 0.89 (95% CI, 0.82-0.93), different from laboratory sensitivity for the same platform (0.94, CI95% 0.91-0.96, Q = 4.74, p = 0.03). The LFIA platform also showed a trend of lower real-world sensitivity (0.67, 95% CI, 0.50-0.81) compared to laboratory approval sensitivity (0.99, CI95% 0.90-0.99, Q = 8.56, p 0.003). Laboratory/real-world groups for CLIA platforms were too small to be tested reliably (1 and 2 groups, respectively).

Serum Antibody Testing Performance: Effect of Primer Choice on Test Validity

To evaluate the reliability of RT-PCR as a gold standard for serum-based test performance, we tested the consequences of using structural and non-structural primers in RT-PCR reference testing of serum. Analyses were divided into three subgroups based on antibody targets: IgM, IgG, and IgG+/-IgM combined. In IgM and combined IgG+/-IgM testing, the primer choice had no significant influence on sensitivity or specificity. However, for IgG antibody tests, use of both a structural and a non-structural gene-specific primers in RT-PCR resulted in reduced sensitivity for serum testing (**Figure 3 and Figure S2.3**, Q=6.17, p=0.013). Furthermore, although not statistically significant, the sensitivity of both IgM and IgG+/-IgM combined data sets was lower when using a referent RT-PCR test with both primer types.

DISCUSSION

Because of the highly infectious nature of COVID-19, a prompt, accurate, and early diagnosis is necessary to deal with the ongoing pandemic, for such diagnoses can help reduce the spread of infection and its associated risk for mortality. Currently, the COVID-19 diagnosis is generally based on RT-PCR assays.⁸ Alternative methods such as antigen- and antibody-based serology tests, although available, have uncertain value. The current systematic review and meta-analysis addresses the challenges encountered in the diagnosis of COVID-19 by various methods. It also analyzes differences between the FDA-approved EUA data and real-

BMJ Open

world data. There is worldwide non-uniformity in the performance of RT-PCR, including the number and types of primers and reagents used for COVID19 diagnosis, which raise questions about its generalized applicability. Similarly, the studies based on serological tests showed diagnostic inaccuracies owing to individual differences in mounting an immune response as well as dependency on the time duration after the onset of symptoms. Overall, the sensitivity between RT-PCR and serology tests was 0.81 (95% CI, 0.66-0.90), and specificity was 0.98 (95% CI, 0.94-0.99). Among the various platforms for serodiagnosis, the highest sensitivity was exhibited by ELISA, followed by CLIA and LFIA. Furthermore, use of primers (structural, non-structural, or both) had a variable effect on sensitivity based on antibody targets. Sensitivity was significantly higher for IgG serology tests using structural-primer-only RT-PCR tests as a referent. Serology tests had higher sensitivity for approval-based data than for real-world reporting. This difference was significant for ELISA-based platforms, and a non-significant trend towards inflated approval-based sensitivity was evident for both CLIA and LFIA platforms. These observations highlight the inconsistencies/challenges in the COVID-19 diagnosis by RT-PCR, which is the current gold standard, as well as in serologic testing.

For RT-PCR assays, the targets in SARS-CoV-2 include structural genes like *E*, *N* and *S*, and nonstructural genes, including that for *RdRp* or *ORF1ab*.²² In the early phase of the pandemic, some studies used a two-step diagnosis that included an initial screening phase using structural genes followed by a confirmatory phase using nonstructural genes. ^{6,7,23} The test is considered positive when both structural and non-structural markers are positive.^{24,25} However, currently both types of primers are used simultaneously to diagnose COVID-19. The viral load or copy number of the viral genome is expressed as a Ct-value, which when <37 is indicative of a positive test, and a value of \geq 40 is considered negative. A Ct value between >37 and < 40 requires repetition of RT-PCR analysis to confirm the diagnosis.²⁴ However, the Ct value range varies widely according to assays and laboratory practices. A COVID-19-RdRp/Hel assay has a higher sensitivity than a conventional RdRp-P2 assay irrespective of the type of sample.²⁶ Overall, higher proportions of studies (58%) employed both structural

BMJ Open

and non-structural gene primers in RT-PCR testing. Single markers were used in some Chinese and North American studies. These findings are indicative of non-uniformity in the RT-PCR methodology. We note that half of the positive, symptomatic patients became negative by the second week, when they became asymptomatic. In contrast, the asymptomatic, positive patients became negative two days after hospital admission, indicating the importance of a temporal factor in COVID-19 diagnosis by RT-PCR.^{27,28}

Published in the early phase of the pandemic, 11 of 85 studies had clinically suspected COVID-19 patients. In these studies, the average test positivity by RT-PCR, regardless of the sample source, was 44% (Supplementary Table 1), and test sensitivity was influenced by sample source (upper vs. lower respiratory vs. other samples), issues related to testing performance, and delay after onset of symptoms.²⁹ In the early phase of the COVID-19 pandemic, for studies evaluating suspected COVID-19 cases, the total positive RT-PCR for throat swabs was in the range of 30–60% at initial presentation.^{8,30} One study reported a yield of 72-93% positive cases for lower respiratory samples (bronchioalveolar lavage and sputum) as compared to 32-63% positivity for upper respiratory samples (oral and nasopharyngeal swabs) and 29% for stool samples.²⁹ Hence, a negative COVID-19 test based only on an upper respiratory sample at a single time point is questionable. For most studies, the testing sample was from the upper respiratory tract, regardless of primer type used. However, the sample source was not reported for 8-20% of patients, which was more common for studies using only structural gene primers. For stool samples testing positive for COVID-19, 66.7% also tested positive on pharyngeal swabs. Of the stool samples, 64.3% remained positive after pharyngeal clearance of the virus.³¹ In contrast, none of the patients showed a positive test on upper respiratory samples after the anal swabs tested negative.³¹ These findings raise concerns about whether patients with negative respiratory swabs are truly virus-free, and sampling of additional body sites is needed. As determined by various studies, the performance of the RT-PCR depends on usage of comparable protocols, including primers

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

and reagents.³² Additionally, it is unknown whether the currently used RT-PCR primers detect all SARS-Cov-2 strains.

The specific immune response to SARS-CoV-2 can be measured by serological testing. Several rapid serological tests, including point-of-care tests, are being developed. Even though some of these tests have been approved by the FDA through EUA, their accuracy needs to be validated.³³ A minimum of 1–2 weeks after the onset of infection is needed for seroconversion. Hence, antibody testing is of no value in the early phase of infection. Additionally, its value is limited by its cross-reactivity with other coronaviruses.^{34,35} The initial RT-PCR positivity during the early stages (<15 days) of SARS-CoV-2 infection declines to 66.7% in the later phase (15-39 days), during this period, the antibody test can supplement RT-PCR in the diagnosis of COVID-19.^{34,35} Additionally, serology testing becomes valuable for clinically suspected and RT-PCR negative (false-negative) individuals.

This research has limitations. Due to the dynamic reporting of COVID-19 testing research and inconsistencies in reporting of predictive variables across studies, bias in sampling may have some effect on our results. Patient flow analysis suggests that lack of consistent RT-PCR reference standard given to patients in the same study, as well as the unclear reporting of patient selection methods could contribute to bias in these results (**Fig. S3**). In addition, the observed heterogeneity between studies in the meta-analysis suggests that we must consider the possibility that the differences in results may be due to chance. Lastly, it is questionable to compare two separate testing methods of RT-PCR and seroprevalence in sensitivity/specificity analysis. In particular, given the relationship between time since diagnosis and accuracy of serology testing, a contributor to the observed differences in performance is time. Furthermore, because of each diagnostic kit having differing cut points for positive/negative, threshold effect as a source of heterogeneity in sensitivity and specificity cannot be ruled out.

The effective containment of COVID-19 involves accurate diagnoses and isolation of SARS-CoV-2-infected persons. Robustness of the assays/platforms is determined by

BMJ Open

variability of the samples, primers, and reagents used. Serological tests alone are of value only during the latter times of infection; however, they complement RT-PCR when used in conjunction and minimize false negative RT-PCR results. Additionally, some of the approved serological assays/platforms, particularly those developed using contrived/laboratory data, perform poorly when applied to real-world samples. We are currently in a new phase of the pandemic, and there is a need for a reliable/robust diagnostic test to mitigate the spread of COVID-19.

Our analyses of studies published in the early-phase of the pandemic have highlighted issues related to COVID-19 diagnosis that need to be addressed as follows: 1) The high mutational rate exhibited by the SARS-CoV-2 virus may lead to the generation of new strains. Therefore, like for influenza virus, the existing diagnostic kits need to be modified constantly to optimize the detection of new strains; 2) Though RT-PCR diagnosis of COVID-19 is the gold standard, its combination with a serologic test may increase the accuracy of SARS-CoV-2 detection; 3) Approval agencies must account for the type of data (contrived versus real world) presented by diagnostic kits, there is a need to monitor their performance and assess their robustness in real-world samples, to permit continued use of these kits; and 5) Standardized assay protocols need to be developed and continually updated to mitigate the COVID-19 pandemic.

ACKNOWLEDGEMENTS

We thank Dr. Donald Hill for his editorial assistance.

DATA SHARING

Data is available upon request

ETHICAL APPROVAL STATEMENT

Not applicable

FUNDING STATEMENT

This study was supported, in part, by grant 5U54CA118948 and institutional/departmental impact funds (UM), and by CA047888, the UAB Cancer Prevention and Control Training Program (MB).

AUTHOR CONTRIBUTIONS

CS, MB, and UM made substantial contributions to the conception and design of the work. CS, MB and VL contributed to the acquisition of the study data. Data were analyzed by CS, MB and UM. MB was responsible for the statistical analysis. CS, MB, SML, SV, GJN, and UM contributed to the interpretation of the data, and to drafting and revising of the manuscript. CS, MB and VL have accessed and verified the data. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work. All authors have read and approved the manuscript. All authors declare no competing interests.

REGISTRATION AND PROTOCOL

The work in this review was not registered and has no available review protocol.

6/bmjopen-202

	Total Studies	Total pop.	Structur prim		Structural Struc gene p		21-053 912 Non-Str on gene p	ructural primers	Not rep	ported
			N studies	N pop.	N studies	N pop.	N∕studies	N pop.	N studies	N ро
Total	85	21530	22	4265	31	5484	3 pril 2022.	123	29	116
Location							12			
Asia (excl. China)	6	378	2	53	4	325	02			
China	28	12187	8	1802	17	3047		123	24	721
Europe	12	5757	4	528	8	993	D		4	423
North America	10	3001	8	1882	2	1119	0 ¥			
Global		207					n		1	207
Primers							oa			
N -single	11	2016	11	2016			de			
E -single	4	759	4	759			å			
S -single	1	412	1	412			fro			
N, E	2	226	2	226			Ξ.			
S, N	4	852	4	852			ht			
ORF1Ab, single	2	59					ਰ 2	59		
RdRp, single	1	64					<u> </u>	64		
E+ORF1Ab	2	1119			2	1119	Ĕ			
E + RdRp	2	259			2	259	jog			
M, E	1	48			1	48	ĕ			
N+ORF1Ab	14	2703			14	2703	n.b			
N + E + RdRp	4	333			4	333	ă			
S, N, E, RdRp, ORF1ab	1	13			1	13	<u>.</u> .			
N, E, ORF1ab	1	33			1	33	ğ			
N, RNAse P	1	190			1	190	2			
S, N, RdRp, ORF1ab, E, M	1	52			1	52	on			
N, S, RdRp	1	273			1	273	⊳			
N, E, S, RdRp	2	349			2	349	pri.			
S, ORF1Ab	1	112			1	112	12			
Sample Source							2 1 Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected			
Upper Respiratory	23	6748	3	575	9	2633	22 1	64	10	347
Upper & Lower Respiratory	1	52			1	52)2			
Upper Respiratory + Other*	9	751	3	368	2	44	4 1	38	3	301
Lower Respiratory + Other*	1	273			1	273	ÿ			
Upper Respiratory + Serum	20	6407	7	1473	9	1432	nɓ		4	350
Upper Respiratory + Serum + Other*	4	941	2	840	1	80	0 0 1	21		
Upper & Lower Respiratory + Other*	4	678	1	280	3	398	÷.			
Upper & Lower Respiratory + Serum + Other*	2	518			1	132	Pr		1	386
Serum	18	2376	6	729	4	440	ote		8	120
Other*	1	199					ect		1	199
Not reported	2	2587					e		2	258

	N studies	N рор.
Total	30	10355
Location		
Asia (excl. China)	2	261
China	19	6375
Europe	7	2900
North America	2	819
PCR primers		
Structural		
N, single	5	1084
E, single	1	49
N, E	1	201
N, S	2	408
Structural and Non-structural		
with ORF1Ab	8	1115
with RdRp	2	186
N, RNAse P	1	190
not reported	10	7122
Ab tested		
lgG	2	220
lgM + lgG	25	7828
IgA + IgG +IgM	1	208
IgA + IgG	1	37
not reported	1	2062
not reported	·	2002
Serum Ab		
CLIA	8	3705
ELISA	8	1908
LFIA	10	3800
CLIA + ELISA	2	548
LFIA + ELISA	1	80
not reported	1	314
CLIA = chemiluminescent immunoassay, L		
linked immunosorbent assay		

Table 2. Characteristics of studies included in guantitative meta-analysis

Figure Legends

- Figure 1. Comparison of Performance (Sensitivity and Specificity) of Serology Tests (IgM/IgG) **Based on Assay Platforms**
- Figure 2. Comparison of Sensitivity of Laboratory setting versus Real World setting of RT-PCR and Serology (IgM/IgG) kits
- Figure 3. The Effect of Primer Choice in RT-PCR Referent on Sensitivity of Tests based on Serum lgG

to beet terier only

References:

- 1. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514-23.
- Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020. (Accessed 6/10/2020, 2020, at <a href="https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.)
- 3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
- Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020;109:102433.
- 5. Cheng MP, Papenburg J, Desjardins M, et al. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann Intern Med 2020;172:726-34.
- 6. Chu DKW, Pan Y, Cheng SMS, et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem 2020;66:549-55.
- Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by realtime RT-PCR. Euro Surveill 2020;25.
- Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020;296:E32-e40.
- Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020;296:E41-E5.
- Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn 2020;20:453-4.
- 11. Kim JY, Ko JH, Kim Y, et al. Viral Load Kinetics of SARS-CoV-2 Infection in First Two Patients in Korea. J Korean Med Sci 2020;35:e86.
- Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis 2020;71:778-85.

13.	To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020;20:565-74.
14.	Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020;323:1843-4.
15.	Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8:336-41.
16.	EUA Authorized Serology Test Performance. 2020. (Accessed 6/18/2020, 2020, at https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/eua-authorized-serology-test-performance.)
17.	SARS-CoV-2 diagnostic pipelineSARS-CoV-2 diagnostic pipeline. Foundation for Innovative New Diagnostics (Accessed 7/5/2020, 2020, at <u>https://www.finddx.org/covid-19/pipeline/</u> .)
18.	Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-36.
19.	R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria2019.
20.	Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019;22:153-60.
21.	Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj 2003;327:557-60.
22.	Yin C. Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics 2020;112:3588-96.
23.	Detection of 2019 novel coronavirus (2019-nCoV) in suspected human cases by RT-PCR WHO,, 2020. at <u>https://www.who.int/docs/default-source/coronaviruse/peiris-protocol-16-1-</u> 20.pdf?sfvrsn=af1aac73_4.)
24.	Liu R, Han H, Liu F, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta 2020;505:172-5.
25.	Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID- 19. J Pharm Anal 2020;10:102-8.

- 26. Chan JF, Yip CC, To KK, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol 2020;58.
- 27. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. Jama 2020;323:2249-51.
- Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect 2020;80:e1-e6.
- 29. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020;323:1843-4.
- 30. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv 2020:2020.02.11.20021493.
- 31. Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 2020;92:833-40.
- 32. Guidance and standard operating procedure: COVID-19 virus testing in NHS laboratories. NHS,, 2020. (Accessed 6/2/2020, 2020, at <u>https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/guidance-and-sop-covid-19-virus-testing-in-nhs-laboratories-v1.pdf</u>.)
- 33. Maxmen A. The researchers taking a gamble with antibody tests for coronavirus. Nature 2020.
- 34. Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020.
- 35. WHO. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance. . WHO; 2020.

BMJ Open

Study		Test + RT-PCR		Serum Tes Sensitivity	
platform = LFIA Paradiso AV, De Summa S, Loconsole D, et al. Vásárhelyi B, Kristóf K et al (LFIA 1) Vásárhelyi B, Kristóf K et al (LFIA 2) Dóhla M, Boesecke C, Schulte B, et al Imai K, Tabata S, Ikeda M, et al. Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et Xiang J, Yan M, Li H, Li T, et al (LFIA) Cassaniti I, Novazzi F, Giardina F, et al Liu Y, Liu Y, Diao B, et al. Zhang P, Gao Q, Wang T, et al. Li Z, Yi Y, Luo X, et al. Cheo JY, Kim JW, Kwon HH, et al. Random effects model Heterogeneirk; f ² = 39%, f ² = 1.4849, p < 0.01	21 7 11 8 60 al. 26 75 25 77 106 352 65	70 21 31 22 139 55 91 30 90 122 397 70 1138	++++++++++++++++++++++++++++++++++++++	0.30 0.33 0.35 0.36 0.43 0.47 0.82 0.83 0.86 0.87 0.89 0.93 0.67	[0.20; 0.42] [0.15; 0.57] [0.19; 0.55] [0.35; 0.52] [0.35; 0.52] [0.35; 0.94] [0.77; 0.92] [0.85; 0.94] [0.77; 0.92] [0.85; 0.92] [0.84; 0.98] [0.50; 0.81]
platform = ELISA Liu L, Liu W, Wang S, et al. Liu W, Liu L, Kou G, et al Xiang J, Yan M, Li H, Liu T, et al (ELISA) Freeman B, Lester S, Mills L, et al. Random effects model Heterogeneity: $t^2 = 66\%$, $t^2 = 0.1558$, $p = 0.04$	127 186 55 95	153 214 63 99 529	************	0.83 0.87 0.87 0.96 0.89	[0.76; 0.89] [0.82; 0.91] [0.77; 0.94] [0.90; 0.99] [0.82; 0.93]
platform = CLIA Lin D, Liu L, Zhang M, et al. Ma H, Zeng W, He H, et al Random effects model Heterogeneity: $l^2 = 6\%$, $t^2 = 0.0480$, $p = 0.15$	72 215	74 216 290		0.97 1.00 0.99	[0.91; 1.00] [0.97; 1.00] [0.97; 1.00]
Random effects model Heterogeneity. $l^2 = 97\%$, $r^2 = 2.4195$, $p < 0.01$ Residual heterogeneity. $l^2 = 94\%$, $p < 0.01$		1957	0 0.2 0.4 0.6 0.8 1 Overall Sensitivity	0.81	[0.66; 0.90]
Study		Test - RT-PCR		Serum Tes Specificity	
platform = LFIA Vásárhelyi B, Kristóf K et al (LFIA 1) Vásárhelyi B, Kristóf K et al (LFIA 2) Döhla M, Boesecke C, Schulte B, et al Paradiso AV, De Summa S, Loconsole D, et al. Li Z, Yi Y, Luo X, et al. Liu Y, Liu Y, Diao B, et al. Choe JY, Kim JW, Kwon HH, et al. Imai K, Tabata S, Ikeda M, et al. Cassaniti I, Novazi F, Giardina F, et al Xiang J, Yan M, Li H, Liu T, et al (LFIA) Zhang P, Gao Q, Wang T, et al. Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et Random effects model Heterogeneity: /f = 90%, r ² = 1.4946, p < 0.01	440 840 24 107 116 81 76 47 30 35 41 41 al. 45	604 998 27 120 128 89 79 48 30 35 41 45 2244	**************	0.73 0.84 0.89 0.91 0.96 0.98 1.00 1.00 1.00 1.00 0.95	[0.69; 0.76] [0.82; 0.86] [0.71; 0.98] [0.82; 0.94] [0.84; 0.95] [0.83; 0.96] [0.89; 0.99] [0.89; 1.00] [0.90; 1.00] [0.91; 1.00] [0.92; 1.00] [0.89; 0.98]
platform = ELISA Liu L, Liu W, Wang S, et al. Xiang J, Yan M, Li H, Liu T, et al (ELISA) Freeman B, Lester S, Mills L, et al. Liu W, Liu L, Kou G, et al Random effects model Heterogeneity: $l^{\mu} = 40\%$, $r^{2} = 0.3762$, $p = 0.23$	116 35 515 100	120 35 519 100 774		0.97 1.00 0.99 1.00 0.99	[0.92; 0.99] [0.90; 1.00] [0.98; 1.00] [0.96; 1.00] [0.97; 1.00]
platform = CLIA Lin D, Liu L, Zhang M, et al. Ma H, Zeng W, He H, et al Random effects model Heterogeneity: / ² = 95%, τ ² = 20.3317, p = 1.00	64 483	80 483 563		0.80 1.00 1.00	[0.70; 0.88] [0.99; 1.00] [0.12; 1.00]
Random effects model Heterogeneity: $l^2 = 98\%$, $r^2 = 3.6305$, $p < 0.01$ Residual heterogeneity: $l^2 = 79\%$, $p < 0.01$		3581	0 0.2 0.4 0.6 0.8 1	0.98	[0.94; 0.99]

Figure 1. Comparison of Performance (Sensitivity and Specificity) of Serology Tests (IgM/IgG) Based on Assay Platforms

162x214mm (150 x 150 DPI)

BMJ Open

œ

ΒM
BMJ Open: first
pen
: firs
st p
ublis
shec
as
10.
113
6/br
njop
ben-
202
-1-0
539
12 0
n 2
1 Þ
pril
202:
t published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downl
owr
lloa
ded
fror
BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from http://bmjopen.b
:p://t
Щ.
per
ı.bm
<u>1</u> . 8
m o
л А
pril
23,
vpril 23, 2024 by gue
4 by
gue
est.
st. Protected b
ecte
q p
У С
pyr
ight.
•

Study		Test + RT-PCR		Serum Tes Sensitivity	-
Setting = Laboratory					
VivaDiag	21	70		0.30	[0.20; 0.4
Smart Test Covid-19 Vyttra	4	4		1.00	[0.40; 1.0
Mt. Sinai Laboratory COVID-19 ELISA Antibody Test	37	40		0.92	[0.80; 0.9
SARS-CoV-2 IgG/IgM Rapid Test	120	128		0.94	[0.88; 0.9
WANTAI SARS-CoV-2Ab ELISA	293	310		0.95	[0.91; 0.9
Biohit SARS-CoV-2 IgM/IgG Antibody Test Kit	29	30		0.97	[0.83; 1.0
Vibrant COVID-19 Ab Assay	52	53		0.98	[0.90; 1.0
Assure COVID-19 IgG/IgM Rapid Test Device	30	30		1.00	[0.88; 1.0
RightSign COVID-19 IgG/IgM Rapid Test Cassette	30	30		1.00	[0.88; 1.0
LYHER Novel Coronavirus (2019-nCoV) IgM/IgG Antibody Combo Test Kit (Colloidal Gold) 30	30		1.00	[0.88; 1.
COVID-19 IgG/IgM Rapid Test Cassette	30	30	÷	1.00	[0.88; 1.
One Step COVID-2019 Test	312	313	-	1.00	[0.98; 1.
Random effects model		1068	Ø	0.98	[0.92; 1.
Heterogeneity: $I^2 = 93\%$, $\tau^2 = 4.5321$, $p < 0.01$					•••••
Setting = Real-World					
Paradiso AV, De Summa S, Loconsole D, et al.	21	70		0.30	[0.20; 0.
Vásárhelyi B, Kristóf K et al (LFIA 1)	7	21		0.33	[0.15; 0.
Vásárhelyi B, Kristóf K et al(LFIA 2)	11	31		0.35	[0.19; 0.
Döhla M, Boesecke C, Schulte B, et al	8	22		0.36	[0.17; 0.
Imai K, Tabata S, Ikeda M, et al.	60	139	-	0.43	[0.35; 0
Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al.	26	55		0.47	[0.34; 0
Xiang J, Yan M, Li H, Liu T, et al (LFIA)	75	91		0.82	[0.73; 0
Liu L, Liu W, Wang S, et al.	127	153		0.83	[0.76; 0.
Cassaniti I, Novazzi F, Giardina F, et al	25	30		0.83	[0.65; 0
Liu Y, Liu Y, Diao B, et al.	77	90		0.86	[0.77; 0
Zhang P, Gao Q, Wang T, et al.	106	122		0.87	[0.80; 0
Liu W, Liu L, Kou G, et al	186	214		0.87	[0.82; 0
Xiang J, Yan M, Li H, Liu T, et al (ELISA)	55	63		0.87	[0.77; 0
Li Z, Yi Y, Luo X, et al.	352	397		0.89	[0.85; 0
Choe JY, Kim JW, Kwon HH, et al.	65	70		0.93	[0.84; 0
Freeman B, Lester S, Mills L, et al.	95	99	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0.96	[0.90; 0
Lin D, Liu L, Zhang M, et al.	72	74		0.97	[0.91; 1
Ma H, Zeng W, He H, et al	215	216	-	1.00	[0.97; 1
Random effects model	210	1957	\sim	0.81	[0.66; 0
Heterogeneity: $J^2 = 97\%$, $\tau^2 = 2.4195$, $p < 0.01$					[0.00, 0
Random effects model		3025	\diamond	0.91	[0.82; 0.
Heterogeneity: $I^2 = 97\%$, $\tau^2 = 3.8591$, $p < 0.01$					-
Residual heterogeneity: $I^2 = 94\%$, $p < 0.01$		(0 0.2 0.4 0.6 0.8 1		

Figure 2. Comparison of Sensitivity of Laboratory setting versus Real World setting of RT-PCR and Serology (IgM/IgG) kits

164x141mm (150 x 150 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	

Study		Test + RT-PCR					Serum Test Sensitivity	
Primer Type` = Structural only								
Infantino M, Grossi V, Lari B, et al.	46	61			-		0.75	[0.63; 0.86
Tang MS, Hock KG, Logsdon NM, et al (ELISA)	41	48					0.85	[0.72; 0.94
Jin Y, Wang M, Zuo Z, et al.	24	27					0.89	[0.71; 0.98
Tang MS, Hock KG, Logsdon NM, et al (CLIA)	45	48					0.94	[0.83; 0.99
Zhong L, Chuan J, Gong B, et al. (CLIA)	45	47				-++	0.96	[0.85; 0.99
Zhong L, Chuan J, Gong B, et al. (ELISA)	46	47					0.98	[0.89; 1.00
Random effects model		278				\diamond	0.91	[0.83; 0.96
Heterogeneity: $I^2 = 66\%$, $\tau^2 = 0.5140$, $p < 0.01$								
Primer Type` = Structural & Non-Structural								
Imai K, Tabata S, Ikeda M, et al.	20	139	- +	•			0.14	[0.09; 0.21
Choe JY, Kim JW, Kwon HH, et al.	19	70		-			0.27	[0.17; 0.39
Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al	13	39		-			0.33	[0.19; 0.50
Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al.	23	55			•		0.42	[0.29; 0.56
Cassaniti I, Novazzi F, Giardina F, et al	24	30			_	- <u>+</u>	0.80	[0.61; 0.92
Xiang J, Yan M, Li H, Liu T, et al (LFIA)	74	91				- <u>+</u>	0.81	[0.72; 0.89
Lin D, Liu L, Zhang M, et al.	65	79				- 	0.82	[0.72; 0.90
Xiang J, Yan M, Li H, Liu T, et al (ELISA)	52	63					0.83	[0.71; 0.91
Xiang F, Wang X, He X, et al	55	66					0.83	[0.72; 0.91
Lou B, Li TD, Zheng SF, et al. (LFIA)	69	80				÷••	0.86	[0.77; 0.93
Lou B, Li TD, Zheng SF, et al. (ELISA)	71	80					0.89	[0.80; 0.95
Xie J, Ding C, Li J, et al.	16	16					1.00	[0.79; 1.00
Random effects model		808			\sim	\rightarrow	0.71	[0.52; 0.85
Heterogeneity: $I^2 = 95\%$, $\tau^2 = 2.0198$, $p < 0.01$								
Random effects model		1086				\langle	0.80	[0.67; 0.89
Heterogeneity: I ² = 94%, τ ² = 2.1153, p < 0.01								-
Residual heterogeneity: $I^2 = 93\%$, $p < 0.01$			0	0.2 0	.4 0.6	0.8 1		
				Ove	rall Sens	itivity		

Figure 3. The Effect of Primer Choice in RT-PCR Referent on Sensitivity of Tests based on Serum IgG

299x199mm (500 x 500 DPI)

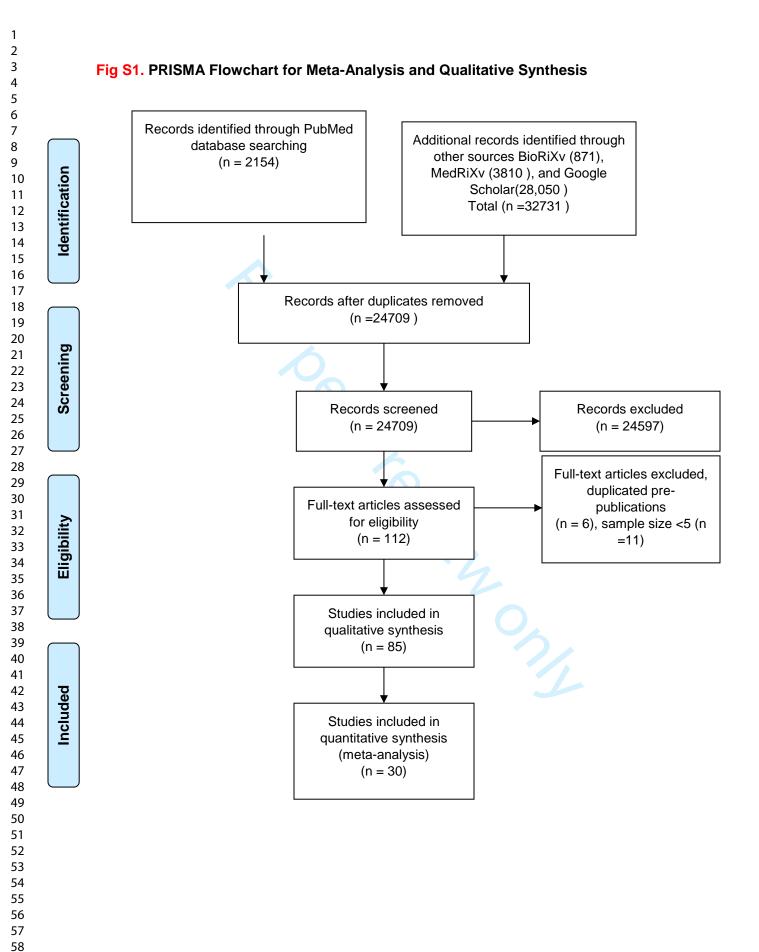
BMJ Open Meta-Analysis of Robustness of COVID-19 Diagnostic Kits During Early Pandemic. Supplemental information Table S1. Description of 55 Studies Included for Qualitative Synthesis (gray) and 30 Studies Included in the Meta-Analysis (tan)

Journal	Authors	Region	N (patient s)	Percent COVID-19 positivity	Sample origin	RT-PCR primers	RT-PCR primer type	RT- PCR/Ser ology platform	Serology targeted antibody	Study included in meta- analysis
J Clin Virol	Rahman H, Carter I, Basile K, et al. ³⁶	Asia	52		UR+LR	S, N, E, RdRp, ORF1ab, M	April 2622. Do	RT-PCR		No
Exp Neurobiol	Won J, Lee S, Park M, et al. ³⁷	Asia	12		UR	N, E, S, RdRp	Beth	RT-PCR		No
Jpn J Infect Dis.	Okamaoto K, Shirato K, Nao N, et al. 38	Asia	25		UR	N, E	Structural	RT-PCR		No
J Med Virol	Choe JY, Kim JW, Kwon HH, et al. 39	Asia	149	0.47	Serum	E, RdRp	Both	RT-PCR /CLIA	lgM + IgG	Yes
Lancet Infect Dis	Yong SEF, Anderson DE, Wei WE, et al. 40	Asia	28		UR + Serum	N, single	Strugtural	RT-PCR /ELISA	lgG	No
J Clin Virol	Imai K, Tabata S, Ikeda M, et al.	Asia	112		UR + Serum	S, ORF1Ab	B ể th	RT-PCR /LFIA	lgM + IgG	Yes
Emerg Microbes Infect	Xu Y, Xiao M, Liu X, et al. 42	China	6		Serum		mj.com/ on	ELISA + LFIA	lgM	No
Radiology	Ai T, Yang Z, Hou H, Zhan C, et al. 8	China	1014	0.59	UR		n/ on /	RT-PCR		No
NEJM	Cao B, et al.43	China	199		Other		A,pril	RT-PCR		No
Radiology	Bai HX, Hsieh B, Xiong Z, et al.44	China	256		UR		23	RT-PCR		No
Lancet	Chen H, Guo J, Wang C, et al. 45	China	9		UR + Other		, 2024	RT-PCR		No
AJR Am J Roentgenol	Liu D, Li L, Wu X, et al. ⁴⁶	China	15		UR		24	RT-PCR		No
Eur J Radiol	Long C, Xu H, Shen Q, et al. 47	China	87		UR		э үс	RT-PCR		No
Pediatr Pulmonol	Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. 48	China	20		UR		by guest. I	RT-PCR		No
Am J Obstetr Gynecol	Yan J, Guo J, Fan C, et al. 49	China	116	0.56	Other		Prot	RT-PCR		No
J Hosp Infect	Ye G, Li Y, Lu M, et al. ⁵⁰	China	91	0.52	UR		ecte	RT-PCR		No
J Med Virol	Zhang J, Wang S, Xue Y. ⁵¹	China	14		UR + Other		d b	RT-PCR		No
Respir Res	Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. 52	China	95		UR		Protected by copyright	RT-PCR		No

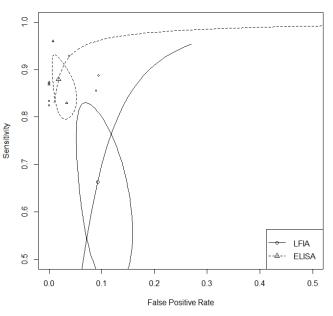
Lancot	Zhou E Vu T Du D at al 53	China	191		UR		6/bmjopen-	RT-PCR		
Lancet J Clin Microbiol	Zhou F, Yu T, Du R, et al. ⁵³ Liu W, Liu L, Kou G, et al. ⁵⁴	China China	314		UR + Serum		n-2021-05	RT-PCR	lgM + IgG	,
J Med Virol	Li, Y et al. ⁵⁵	China	610	0.40	UR	N, ORF1Ab	Beth	RT-PCR	igo	
medRxiv	Diao B, Wen K, Chen J, et al. ⁵⁶	China	239		UR + Serum	N, ORF1Ab	n Both	RT-PCR		
J Clin Microbiol	Chan JF, Yip CC, To KK, et al. ²⁶	China	273		UR + Other	N, S, RdRp	Ap B∉h 20	RT-PCR		
Nature Microbiol	Kong WH, Li Y, Peng MW, et al. 57	China	640		UR	N, ORF1Ab	Both	RT-PCR		
Front Med	Liu W, Wang J, Li W, Zhou Z, Liu S, Rong Z. ⁵⁸	China	38	0.53	UR + Other	N, ORF1Ab	Beth	RT-PCR		
Int J Biol Sci	Lo IL, Lio CF, Cheong HH, et al. 59	China	10		UR + LR + Other	N, ORF1Ab	ided Booth	RT-PCR		
Travel Med Infect Dis	Wu J, Liu J, Li S, Peng Z, et al. 60	China	132		UR + LR + Serum + Other	N, E, RdRp	Beth	RT-PCR		
Int J Infect Dis	Xu T, Chen C, Zhu Z, et al. 61	China	51		UR + LR + Other	N, ORF1Ab	Both	RT-PCR		
J Med Virol	Yuan Y, Wang N, et al. 62	China	6		UR + Other	N, E, RdRp	Beth	RT-PCR		
AJR Am J Roentgenol	Cheng Z, Lu Y, Cao Q, et al. 63	China	33	0.33	UR	N, E, ORF1ab	Beth	RT-PCR		
Arch Pathol Lab Med	Schwartz, DA 64	China	38		UR + Other	ORF1Ab, single	Nថ្ជា- stru <u>ឱ</u> ural	RT-PCR		
Radiology	Wong HYF, Lam HYS, Fong AH, et al. ⁶⁵	China	64		UR	RdRp, single	Nost- structural	RT-PCR		
Chin Med J	Ling Y, Xu SB, Lin YX, et al. 66	China	292		UR + Other	E, single	Structural	RT-PCR		
Clin Infect Dis	Zhao R, Li M, Song H, et al. 67	China	412		UR	S, single	Struetural	RT-PCR	1	
medRxiv	Ma H, Zeng W, He H, et al.68	China	699		UR + Serum		guest. I	RT-PCR /CLIA	lgM + IgG	١
medRxiv	Cai X, Chen J, Hu J, et al.69	China	443		Serum		Protected	RT-PCR /CLIA	lgM + IgG	١
medRxiv	Qian C, Zhou M, Cheng F, et al. 70	China	2062				by	RT-PCR /CLIA	lgM + IgG	`
J Infect Dis	Zhang G, Nie S, Zhang Z, Zhang Z. ⁷¹	China	112		UR + Serum	N, ORF1Ab	Boyright.	RT-PCR /CLIA	lgM + IgG	

medRxiv	Lin D, Liu L, Zhang M, et al. ⁷²	China	159		UR + Serum	N, ORF1Ab	6/bmjopen-252	RT-PCR /CLIA	lgM + IgG	Yes
J Med Virol	Xie J, Ding C, Li J, et al. ⁷³	China	56		UR +Serum	N, ORF1Ab	Bội	RT-PCR /CLIA	IgH + IgG	Yes
Nature Med	Long QX, Liu BZ, Deng HJ, et al.	China	285		UR+ Serum	S, N	Strugural	RT-PCR /CLIA	lgM + IgG	No
nt J Infect Dis	Jin Y, Wang M, Zuo Z, et al. ⁷⁵	China	76	0.57	Serum	N, single	Strugtural	RT-PCR /CLIA	lgM + IgG	Yes
Emerg Microbes Infect	Zhang W, Du RH, Li B, et al. ⁷⁶	China	278		UR + Other		ril 2022	RT-PCR /ELISA	lgM + IgG	No
Clin Infect Dis	Zhao J, Yuan Q, Wang H, et al. ³⁴	China	386		UR + LR + Serum		•	RT-PCR /ELISA	lgM + IgG	Yes
Euro Surveill	Perera RA, Mok CK, Tsang OT, et al. 77	China	51		Serum		Downloaded	RT-PCR /ELISA	lgM + IgG	Yes
Clin Infect Dis	Xiang F, Wang X, He X, et al. 78	China	216		UR + Serum	N, ORF1Ab	Bếth	RT-PCR /ELISA	lgM + IgG	Yes
medRxiv	Xiang J, Yan M, Li H, Liu T, et al. 79	China	154		Serum	N, ORF1Ab	hteth Bo⊄th	RT-PCR /ELISA	lgM + IgG	Yes
medRxiv	Liu L, Liu W, Wang S, et al. ⁸⁰	China	238		UR + Serum	N, ORF1Ab	Both	RT-PCR /ELISA	lgM + IgG	Yes
Clin Infect Dis	Guo L, Ren L, Yang S, et al. ¹²	China	208	0.39	Serum	N, single	Strugtural	RT-PCR /ELISA	lgM + IgA + IgG	Yes
Sci China Life Sci	Zhong L, Chuan J, Gong B, et al. ⁸¹	China	347		UR NP/OP + Serum + Other	N, S	Structural	RT-PCR /ELISA + CLIA	lgM + IgG	Yes
Eur Respir J	Lou B, Li TD, Zheng SF, et al. 82	China	80		UR + LR + Serum + Other	N, ORF1Ab	April 25 2024 BB 2024	RT-PCR /ELISA + LFIA + CLIA	lgM + IgG	Yes
J Med Virol	Du Z, Zhu F, Guo F, Yang B, Wang T. ⁸³	China	60		Serum		by guest. Protected by copyright.	RT-PCR /LFIA	lgM + IgG	No
J Infect	Pan Y, Li X, Yang G, et al. 84	China	105		Serum		est. Pr	RT-PCR /LFIA	lgM + IgG	No
J Med Virol	Li Z, Yi Y, Luo X, et al. ⁸⁵	China	525				otecte	RT-PCR /LFIA	lgM + IgG	Yes
nedRxiv	Liu Y, Liu Y, Diao B, et al. ⁸⁶	China	179		UR + Serum		d by c	RT-PCR /LFIA	lgM + IgG	Yes

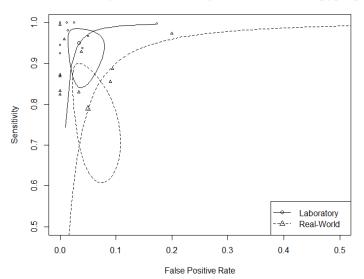
Page 29 of 40

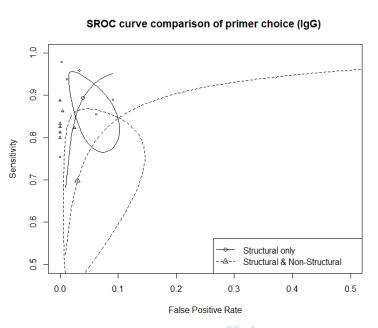

of 40				BMJ Open			6/bmjop			
Emerg Microbes Infect	Yongchen Z, Shen H, Wang X, et al. ⁸⁷	China	21		UR + Serum + Other	ORF1Ab, single	۹ N&- struetural	RT-PCR /LFIA	lgM + IgG	No
Anal Chem	Chen Z, Zhang Z, Zhai X, et al.88	China	19		UR + Serum	N, single	Struggural	RT-PCR /LFIA	lgG	Yes
medRxiv	Zhang P, Gao Q, Wang T, et al.89	China	163		UR + Serum	N, single	Structural	RT-PCR /LFIA	lgM + IgG	Yes
JAMA	Grasselli G, Zangrillo A, Zanella A, et al. ⁹⁰	Europe	1591		UR		April 2	RT-PCR		No
Radiology	Caruso D, Zerunian M, Polici M, et al. ⁹¹	Europe	158	0.39	UR	N, E, RdRp	Both D	RT-PCR		No
Travel Med Infect Dis	Lagier JC, Colson P, Tissot Dupont H, et al. 92	Europe	337		UR +LR+ Other	N, E, S, RdRp	Both	RT-PCR		No
J Clin Virol	van Kasteren PB, van der Veer B, van den Brink S, et al. 93	Europe	13		UR	S, N, E, RdRp, ORF1ab	adedah Borom	RT-PCR		No
Int J Mol Sci	Toptan T, Hoehl S, Westhaus S, et al. 94	Europe	48		UR	M, E	B <mark>ộ</mark> th	RT-PCR		Nc
Trop Med Infect Dis	Amrane S, Tissot-Dupont H, Doudier, et al. ⁹⁵	Europe	280		UR + LR + Other	E, single	Strugtural	RT-PCR		No
J Clin Microbiol	Lambert-Niclot S, Cuffel A, Le Pape S, et al. ⁹⁶	Europe	138		UR	E, single	Strugtural	RT-PCR		No
J Med Virol	Infantino M, Grossi V, Lari B, et al. 97	Europe	61		Serum	S, N	Strugtural	RT-PCR /CLIA	lgM + IgG	Ye
Euro Surveill	Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al. ⁹⁸	Europe	37		Serum	N, E, RdRp	n B ot h	RT-PCR /ELISA	lgA + lgG	Ye
J Infect	Tré-Hardy M, Blairon L, Wilmet A, et al. ⁹⁹	Europe	182		Serum		1 23, 2024	RT-PCR /ELISA + CLIA	lgA + lgG	Nc
Orvo Hetil	Vásárhelyi B, Kristóf K, Ostorházi E, Szabó D, Prohászka Z, Merkely B. ¹⁰⁰	Europe	2310	0.06	UR + Serum		t by guest	RT-PCR /LFIA	lgM + IgG	Ye
Infect Ecol Epidemiol	Hoffman T, Nissen K, Krambrich J, et al. ¹⁰¹	Europe	153		Serum		Protecteth	RT-PCR /LFIA	lgM + IgG	Ye
J Med Virol	Cassaniti I, Novazzi F, Giardina F, et al. ¹⁰²	Europe	110		UR + Serum	E, RdRp	Booth by	RT-PCR /LFIA	lgM + IgG	No
medRxiv	Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al. ¹⁰³	Europe	100		Serum	N, ORF1Ab	w day Bayyright.	RT-PCR /LFIA	lgM + IgG	Ye

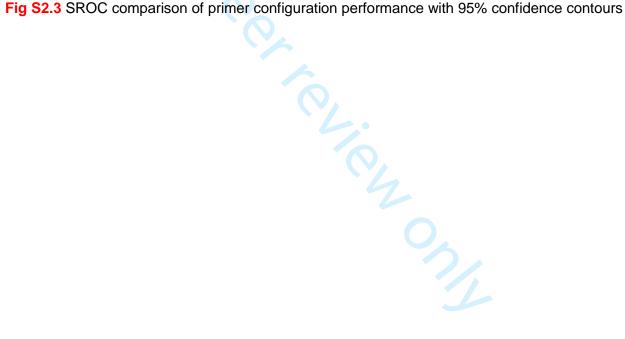
				BMJ Open			6/bmjopen-252			
medRxiv	Paradiso AV, De Summa S, Loconsole D, et al. ¹⁰⁴	Europe	190		UR + Serum	N, RNAse P	Bath	RT-PCR /LFIA	lgM + IgG	Yes
Public Health	Döhla M, Boesecke C, Schulte B, et al. ¹⁰⁵	Europe	49		Serum	E, single	Strugural	RT-PCR /LFIA	lgM + IgG	Yes
J Emerg Infect Dis	Okba NMA, Muller MA, Li W, et al.	Global	207		Serum		12 on	RT-PCR /ELISA	lgM + IgG	No
J Clin Virol	Smithgall MC, Scherberkova I, Whittier S, Green DA. ¹⁰⁷	North America	113		UR	E, ORF1Ab	21th Both	RT-PCR		No
J Med Virol	Pujadas E, Ibeh N, Hernandez MM, et al. ¹⁰⁸	North America	1006		UR	E, ORF1Ab	≕ Both	RT-PCR		No
J Infect Dis	Burbelo PD, Riedo FX, Morishima C, et al. ¹⁰⁹	North America	100		Serum	N, single	Struetural	RT-PCR		No
Am J Obstet Gynecol MFM	Penfield CA, Brubaker SG, Limaye MA, et al. ¹¹⁰	North America	32		UR + Other	N, single	Strugtural	RT-PCR		No
medRxiv	Wyllie AL, Fournier J, et al. 111	North America	44		UR + Other	N, single	Stru	RT-PCR		No
J Appl Lab Med	Suhandynata RT, Hoffman MA, Kelner MJ, McLawhon RW, Reed SL, Fitzgerald RL. ¹¹²	North America	235		Serum	N, single	Structural	RT-PCR /CLIA	lgM + IgG	No
Clin Chem	Tang MS, Hock KG, Logsdon NM, et al. ¹¹³	North America	201		UR + LR + Serum	N, E	Both	rt-pcr /clia + Elisa	lgG	Yes
medRxiv	Randad PR, Pisanic N, Kruczynski K, et al. ¹¹⁴	North America	493		UR + Serum + Other	N, single	Structural	rt-pcr /elisa	lgM + lgA + lgG	No
JMIR Public Health Surveill	Sullivan PS, Sailey C, Guest JL, et al. ¹¹⁵	North America	159		UR + Serum	S, N	Struetural	RT-PCR /ELISA	lgM + IgA + IgG	No
bioRxiv	Freeman B, Lester S, Mills L, et al. ¹¹⁶	North America	618		UR NP/OP + Serum	N, single	Strugural	RT-PCR /ELISA	lgM + IgG	Yes


3

by guest. Protected by copyright.


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

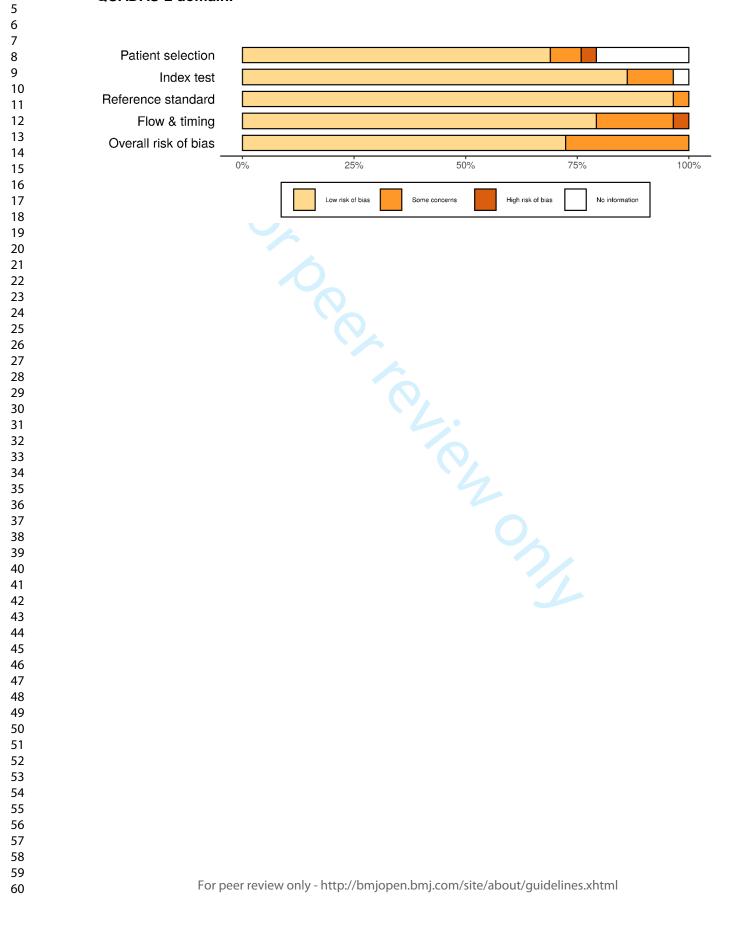

Fig S2.1 SROC comparison of LFIA and ELISA performance with 95% confidence contours



SROC curve comparison of Laboratory and Real-World setting (IgM/IgG)

Fig S2.2 SROC comparison of Laboratory and Real-World performance with 95% confidence contours

BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.



BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Fig S3. Summary plot of risk of bias for each study included in meta-analysis according to QUADAS-2 domain.

1

2 3

CITATIONS

- 8. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. *Radiology* 2020;296(2):E32-e40. doi: 10.1148/radiol.2020200642 [published Online First: 2020/02/27]
- 12. Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). *Clin Infect Dis* 2020;71(15):778-85. doi: 10.1093/cid/ciaa310 [published Online First: 2020/03/22]
- 26. Chan JF, Yip C, To KK, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol 2020;58(5) doi: 10.1128/jcm.00310-20 [published Online First: 2020/03/07]
- 34. Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. *Clin Infect Dis* 2020 doi: 10.1093/cid/ciaa344 [published Online First: 2020/03/30]
- 36. Rahman H, Carter I, Basile K, et al. Interpret with caution: An evaluation of the commercial AusDiagnostics versus in-house developed assays for the detection of SARS-CoV-2 virus. *J Clin Virol* 2020;127:104374. doi: 10.1016/j.jcv.2020.104374 [published Online First: 2020/05/04]
- 37. Won J, Lee S, Park M, et al. Development of a Laboratory-safe and Low-cost Detection Protocol for SARS-CoV-2 of the Coronavirus Disease 2019 (COVID-19). *Exp Neurobiol* 2020;29(2):107-19. doi: 10.5607/en20009 [published Online First: 2020/03/12]
- 38. Okamaoto K, Shirato K, Nao N, et al. An assessment of real-time RT-PCR kits for SARS-CoV-2 detection. *Jpn J Infect Dis* 2020 doi: 10.7883/yoken.JJID.2020.108 [published Online First: 2020/05/01]
- 39. Choe JY, Kim JW, Kwon HH, et al. Diagnostic performance of immunochromatography assay for rapid detection of IgM and IgG in coronavirus disease 2019. *J Med Virol* 2020 doi: 10.1002/jmv.26060 [published Online First: 2020/05/28]
- 40. Yong SEF, Anderson DE, Wei WE, et al. Connecting clusters of COVID-19: an epidemiological and serological investigation. *Lancet Infect Dis* 2020;20(7):809-15. doi: 10.1016/s1473-3099(20)30273-5 [published Online First: 2020/04/25]
- 41. Imai K, Tabata S, Ikeda M, et al. Clinical evaluation of an immunochromatographic IgM/IgG antibody assay and chest computed tomography for the diagnosis of COVID-19. *J Clin Virol* 2020;128:104393. doi: 10.1016/j.jcv.2020.104393 [published Online First: 2020/05/11]

BMJ Open: first published as 10.1136/bmjopen-2021-053912 on 21 April 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

- 42. Xu Y, Xiao M, Liu X, et al. Significance of serology testing to assist timely diagnosis of SARS-CoV-2 infections: implication from a family cluster. *Emerg Microbes Infect* 2020;9(1):924-27. doi: 10.1080/22221751.2020.1752610 [published Online First: 2020/04/15]
- 43. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. *N Engl J Med* 2020;382(19):1787-99. doi: 10.1056/NEJMoa2001282 [published Online First: 2020/03/19]
- 44. Bai HX, Hsieh B, Xiong Z, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. *Radiology* 2020;296(2):E46-e54. doi: 10.1148/radiol.2020200823 [published Online First: 2020/03/11]
- 45. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. *Lancet* 2020;395(10226):809-15. doi: 10.1016/s0140-6736(20)30360-3 [published Online First: 2020/03/11]
- 46. Liu D, Li L, Wu X, et al. Pregnancy and Perinatal Outcomes of Women With Coronavirus Disease (COVID-19) Pneumonia: A Preliminary Analysis. *AJR Am J Roentgenol* 2020;215(1):127-32. doi: 10.2214/ajr.20.23072 [published Online First: 2020/03/19]
- 47. Long C, Xu H, Shen Q, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol 2020;126:108961. doi: 10.1016/j.ejrad.2020.108961 [published Online First: 2020/04/02]
- 48. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. *Pediatr Pulmonol* 2020;55(5):1169-74. doi: 10.1002/ppul.24718 [published Online First: 2020/03/07]
- 49. Yan J, Guo J, Fan C, et al. Coronavirus disease 2019 in pregnant women: a report based on 116 cases. *Am J Obstet Gynecol* 2020;223(1):111.e1-11.e14. doi: 10.1016/j.ajog.2020.04.014 [published Online First: 2020/04/23]

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

- 50. Ye G, Li Y, Lu M, et al. Experience of different upper respiratory tract sampling strategies for detection of COVID-19. *J Hosp Infect* 2020;105(1):1-2. doi: 10.1016/j.jhin.2020.03.012 [published Online First: 2020/03/17]
- 51. Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. *J Med Virol* 2020;92(6):680-82. doi: 10.1002/jmv.25742 [published Online First: 2020/03/04]
- 52. Zhang G, Zhang J, Wang B, et al. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. *Respir Res* 2020;21(1):74. doi: 10.1186/s12931-020-01338-8 [published Online First: 2020/03/29]
- 53. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet* 2020;395(10229):1054-62. doi: 10.1016/s0140-6736(20)30566-3 [published Online First: 2020/03/15]
- 54. Liu W, Liu L, Kou G, et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. *J Clin Microbiol* 2020;58(6) doi: 10.1128/jcm.00461-20 [published Online First: 2020/04/02]
- 55. Li Y, Yao L, Li J, et al. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. *J Med Virol* 2020;92(7):903-08. doi: 10.1002/jmv.25786 [published Online First: 2020/03/29]
- 56. Diao B, Wen K, Chen J, et al. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. *medRxiv* 2020:2020.03.07.20032524. doi: 10.1101/2020.03.07.20032524
- 57. Kong WH, Li Y, Peng MW, et al. SARS-CoV-2 detection in patients with influenza-like illness. *Nat Microbiol* 2020;5(5):675-78. doi: 10.1038/s41564-020-0713-1 [published Online First: 2020/04/09]
- 58. Liu W, Wang J, Li W, et al. Clinical characteristics of 19 neonates born to mothers with COVID-19. *Front Med* 2020;14(2):193-98. doi: 10.1007/s11684-020-0772-y [published Online First: 2020/04/15]
- 59. Lo IL, Lio CF, Cheong HH, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. *Int J Biol Sci* 2020;16(10):1698-707. doi: 10.7150/ijbs.45357 [published Online First: 2020/04/01]
- 60. Wu J, Liu J, Li S, et al. Detection and analysis of nucleic acid in various biological samples of COVID-19 patients. *Travel Med Infect Dis* 2020:101673. doi: 10.1016/j.tmaid.2020.101673 [published Online First: 2020/04/21]
- 61. Xu T, Chen C, Zhu Z, et al. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. *Int J Infect Dis* 2020;94:68-71. doi: 10.1016/j.ijid.2020.03.022 [published Online First: 2020/03/18]
- 62. Yuan Y, Wang N, Ou X. Caution should be exercised for the detection of SARS-CoV-2, especially in the elderly. *J Med Virol* 2020 doi: 10.1002/jmv.25796 [published Online First: 2020/04/01]
- 63. Cheng Z, Lu Y, Cao Q, et al. Clinical Features and Chest CT Manifestations of Coronavirus Disease 2019 (COVID-19) in a Single-Center Study in Shanghai, China. *AJR Am J Roentgenol* 2020;215(1):121-26. doi: 10.2214/ajr.20.22959 [published Online First: 2020/03/17]
- 64. Schwartz DA. An Analysis of 38 Pregnant Women with COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med 2020 doi: 10.5858/arpa.2020-0901-SA [published Online First: 2020/03/18]
- 65. Wong HYF, Lam HYS, Fong AH, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. *Radiology* 2020;296(2):E72-e78. doi: 10.1148/radiol.2020201160 [published Online First: 2020/03/29]
- 66. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. *Chin Med J (Engl)* 2020;133(9):1039-43. doi: 10.1097/cm9.00000000000774 [published Online First: 2020/03/03]
- 67. Zhao R, Li M, Song H, et al. Early detection of SARS-CoV-2 antibodies in COVID-19 patients as a serologic marker of infection. *Clin Infect Dis* 2020 doi: 10.1093/cid/ciaa523 [published Online First: 2020/05/02]
- 68. Ma H, Zeng W, He H, et al. COVID-19 diagnosis and study of serum SARS-CoV-2 specific IgA, IgM and IgG by chemiluminescence immunoanalysis. *medRxiv* 2020:2020.04.17.20064907. doi: 10.1101/2020.04.17.20064907
- 69. Cai X, Chen J, Hu J, et al. A Peptide-based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Corona Virus Disease 2019 (COVID-19). *medRxiv* 2020:2020.02.22.20026617. doi: 10.1101/2020.02.22.20026617

	ω
	Ş
	\overline{a}
7	ğ
	Ĕ.
1	ŧ
1	Š
7	g
	0
1	sh
1	ed
1	as
	<u> </u>
1	0
	g
ł	/bmiopen-
4	nio
-	ğ
	÷.
	Ż
i	Ň
	2021-0
	ថ្ល
	ğ
i	$\overline{\mathbf{N}}$
1)53912 on
Ì	1 21 April 2022
	~
÷	₫
	<u>-</u>
	20
	N
Ì	ril 2022. D
1	ğ
	≦
	00
	loade
	loaded
	loaded fro
	loaded from
	loaded from htt
	loaded from http:/
	loaded from http://b
	loaded from http://bmi
	loaded from http://bmiop
	loaded from http://bmiopen
	loaded from http://bmiopen.bi
	loaded from http://bmiopen.bmi.
	loaded from http://bmiopen.bmi.co
	loaded from http://bmiopen.bmi.com/
	loaded from http://bmiopen.bmi.com/ or
	loaded from http://bmiopen.bmi.com/ on /
	loaded from http://bmiopen.bmi.com/ on Api
	loaded from http://bmiopen.bmi.com/ on April 2
	loaded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	aded from http://bmiopen.bmi.com/ on April 23.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	aded from http://bmiopen.bmi.com/ on April 23.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.
	baded from http://bmiopen.bmi.com/ on April 23. 2024 by quest.

9.

Automated SA	heng F, et al. Development and RS-CoV-2 IgM and IgG Immur 04.16.20067231		
71. Zhang G, Nie S, Zl 2 Antibodies ir		ease 2019. J Infect Dis 20	biratory Syndrome Coronavirus 020;222(2):183-88. doi:
72. Lin D, Liu L, Zhang (SARS-CoV-2	M, et al. Evaluations of serolo) infections during the COVID-1 03.27.20045153	gical test in the diagnosis	
73. Xie J, Ding C, Li J,			e (COVID-19) confirmed using ublished Online First:
74. Long QX, Liu BZ, I Med 2020;26(Deng HJ, et al. Antibody respor 6):845-48. doi: 10.1038/s41591 o Z, et al. Diagnostic value and	-020-0897-1 [published C	Online First: 2020/05/01]
disease 2019. 2020/04/07]	Int J Infect Dis 2020;94:49-52.	doi: 10.1016/j.ijid.2020.03	3.065 [published Online First:
implication of 1 10.1080/2222	Li B, et al. Molecular and serold multiple shedding routes. <i>Emer</i> 1751.2020.1729071 [published]	g Microbes Infect 2020;9(Online First: 2020/02/18]	(1):386-89. doi:
coronavirus 2	K, Tsang OT, et al. Serological (SARS-CoV-2), March 2020. <i>E</i> .25.16.2000421 [published Onli	uro Surveill 2020;25(16) o	
78. Xiang F, Wang X, <i>Clin Infect Dis</i>	He X, et al. Antibody Detection 2020 doi: 10.1093/cid/ciaa461	and Dynamic Characteris [published Online First: 2	
Immunochrom Outbreak of P	H, et al. Evaluation of Enzyme- atographic Assay Kit for Detect neumonia (COVID-19). <i>medRx</i> 02.27.20028787	tion of Novel Coronavirus	(SARS-Cov-2) Causing an
80. Liu L, Liu W, Wang syndrome core	g S, et al. A preliminary study or onavirus 2 (SARS-CoV-2) in 23 .06.20031856. doi: 10.1101/202	8 admitted hospital patier	
31. Zhong L, Chuan J, <i>Sci</i> 2020;63(5)	Gong B, et al. Detection of ser):777-80. doi: 10.1007/s11427-0	um IgM and IgG for COV 020-1688-9 [published Or	
	ng SF, et al. Serology character et. <i>Eur Respir J</i> 2020 doi: 10.11		ection since exposure and post 0 [published Online First:
33. Du Z, Zhu F, Guo I	F, et al. Detection of antibodies 10.1002/jmv.25820 [published		patients with COVID-19. <i>J Med</i>
	G, et al. Serological immunoch D-19 patients. <i>J Infect</i> 2020;81 020/04/14]		
	et al. Development and clinical a infection diagnosis. <i>J Med Virol</i>		IgG combined antibody test for 5727 [published Online First:
86. Liu Y, Liu Y, Diao I	B, et al. Diagnostic Indexes of a xiv 2020:2020.03.26.20044883.		
results based	H, Wang X, et al. Different long on disease severity of COVID-1 2221751.2020.1756699 [publis	9 patients. Emerg Microl	bes Infect 2020;9(1):833-36.
88. Chen Z, Zhang Z, Z Lanthanide-Do	Zhai X, et al. Rapid and Sensiti pped Nanoparticles-Based Late 21/acs.analchem.0c00784 [pub	ve Detection of anti-SARS ral Flow Immunoassay. A	S-CoV-2 IgG, Using Anal Chem 2020;92(10):7226-
89. Zhang P, Gao Q, V diagnosis of n		ombinant nucleocapsid ar	nd spike proteins for serologica
For p	eer review only - http://bmjopen.	bmj.com/site/about/guide	lines.xhtml

- 90. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. *Jama* 2020;323(16):1574-81. doi: 10.1001/jama.2020.5394 [published Online First: 2020/04/07]
- 91. Caruso D, Zerunian M, Polici M, et al. Chest CT Features of COVID-19 in Rome, Italy. *Radiology* 2020;296(2):E79-e85. doi: 10.1148/radiol.2020201237 [published Online First: 2020/04/04]

2 3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

- 92. Lagier JC, Colson P, Tissot Dupont H, et al. Testing the repatriated for SARS-Cov2: Should laboratorybased quarantine replace traditional quarantine? *Travel Med Infect Dis* 2020;34:101624. doi: 10.1016/j.tmaid.2020.101624 [published Online First: 2020/03/18]
- 93. van Kasteren PB, van der Veer B, van den Brink S, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. *J Clin Virol* 2020;128:104412. doi: 10.1016/j.jcv.2020.104412 [published Online First: 2020/05/18]
- 94. Toptan T, Hoehl S, Westhaus S, et al. Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs. *Int J Mol Sci* 2020;21(12) doi: 10.3390/ijms21124396 [published Online First: 2020/06/25]
- 95. Amrane S, Tissot-Dupont H, Doudier B, et al. Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France, - January 31st to March 1st, 2020: A respiratory virus snapshot. *Travel Med Infect Dis* 2020:101632. doi: 10.1016/j.tmaid.2020.101632 [published Online First: 2020/03/25]
- 96. Lambert-Niclot S, Cuffel A, Le Pape S, et al. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. J Clin Microbiol 2020;58(8) doi: 10.1128/jcm.00977-20 [published Online First: 2020/05/15]
- 97. Infantino M, Grossi V, Lari B, et al. Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: an Italian experience. J Med Virol 2020 doi: 10.1002/jmv.25932 [published Online First: 2020/04/25]
- 98. Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al. Evaluation of commercial and automated SARS-CoV-2 IgG and IgA ELISAs using coronavirus disease (COVID-19) patient samples. *Euro Surveill* 2020;25(18) doi: 10.2807/1560-7917.Es.2020.25.18.2000603 [published Online First: 2020/05/14]
- 99. Tré-Hardy M, Blairon L, Wilmet A, et al. The role of serology for COVID-19 control: Population, kinetics and test performance do matter. *J Infect* 2020;81(2):e91-e92. doi: 10.1016/j.jinf.2020.05.019 [published Online First: 2020/05/18]
- 100. Vásárhelyi B, Kristóf K, Ostorházi E, et al. [The diagnostic value of rapid anti IgM and IgG detecting tests in the identification of patients with SARS CoV-2 virus infection]. Orv Hetil 2020;161(20):807-12. doi: 10.1556/650.2020.31859 [published Online First: 2020/05/05]
- 101. Hoffman T, Nissen K, Krambrich J, et al. Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to SARS-CoV-2. *Infect Ecol Epidemiol* 2020;10(1):1754538-38. doi: 10.1080/20008686.2020.1754538
- 102. Cassaniti I, Novazzi F, Giardina F, et al. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. *J Med Virol* 2020 doi: 10.1002/jmv.25800 [published Online First: 2020/04/01]
- 103. Garcia FP, Perez Tanoira R, Romanyk Cabrera JP, et al. Rapid diagnosis of SARS-CoV-2 infection by detecting IgG and IgM antibodies with an immunochromatographic device: a prospective single-center study. *medRxiv* 2020:2020.04.11.20062158. doi: 10.1101/2020.04.11.20062158
- 104. Paradiso AV, De Summa S, Loconsole D, et al. Clinical meanings of rapid serological assay in patients tested for SARS-Co2 RT-PCR. *medRxiv* 2020:2020.04.03.20052183. doi: 10.1101/2020.04.03.20052183
- 105. Döhla M, Boesecke C, Schulte B, et al. Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. *Public Health* 2020;182:170-72. doi: 10.1016/j.puhe.2020.04.009 [published Online First: 2020/04/26]
- 106. OKBA NMA, Muller MA, Li W, et al. SARS-CoV-2 specific antibody responses in COVID-19 patients. medRxiv 2020:2020.03.18.20038059. doi: 10.1101/2020.03.18.20038059
- 107. Smithgall MC, Scherberkova I, Whittier S, et al. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche cobas for the Rapid Detection of SARS-CoV-2. *J Clin Virol* 2020;128:104428. doi: 10.1016/j.jcv.2020.104428 [published Online First: 2020/05/22]
- 108. Pujadas E, Ibeh N, Hernandez MM, et al. Comparison of SARS-CoV-2 detection from nasopharyngeal swab samples by the Roche cobas 6800 SARS-CoV-2 test and a laboratory-developed real-time RT-PCR test. *J Med Virol* 2020 doi: 10.1002/jmv.25988 [published Online First: 2020/05/10]

BMJ Open

- 109. Burbelo PD, Riedo FX, Morishima C, et al. Sensitivity in Detection of Antibodies to Nucleocapsid and Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 in Patients With Coronavirus Disease 2019. J Infect Dis 2020;222(2):206-13. doi: 10.1093/infdis/jiaa273 [published Online First: 2020/05/20]
 - 110. Penfield CA, Brubaker SG, Limaye MA, et al. Detection of SARS-COV-2 in Placental and Fetal Membrane Samples. Am J Obstet Gynecol MFM 2020:100133. doi: 10.1016/j.ajogmf.2020.100133 [published Online First: 2020/05/12]
 - 111. Wyllie AL, Fournier J, Casanovas-Massana A, et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. *medRxiv* 2020:2020.04.16.20067835. doi: 10.1101/2020.04.16.20067835
 - 112. Suhandynata RT, Hoffman MA, Kelner MJ, et al. Longitudinal Monitoring of SARS-CoV-2 IgM and IgG Seropositivity to Detect COVID-19. *J Appl Lab Med* 2020 doi: 10.1093/jalm/jfaa079 [published Online First: 2020/05/20]
 - 113. Tang MS, Hock KG, Logsdon NM, et al. Clinical Performance of Two SARS-CoV-2 Serologic Assays. *Clin Chem* 2020;66(8):1055-62. doi: 10.1093/clinchem/hvaa120 [published Online First: 2020/05/14]
- 114. Randad PR, Pisanic N, Kruczynski K, et al. COVID-19 serology at population scale: SARS-CoV-2specific antibody responses in saliva. *medRxiv* 2020 doi: 10.1101/2020.05.24.20112300 [published Online First: 2020/06/09]
- 115. Sullivan PS, Sailey C, Guest JL, et al. Detection of SARS-CoV-2 RNA and Antibodies in Diverse Samples: Protocol to Validate the Sufficiency of Provider-Observed, Home-Collected Blood, Saliva, and Oropharyngeal Samples. *JMIR Public Health Surveill* 2020;6(2):e19054. doi: 10.2196/19054 [published Online First: 2020/04/21]
- 116. Freeman B, Lester S, Mills L, et al. Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and sero-surveillance. *bioRxiv* 2020:2020.04.24.057323. doi: 10.1101/2020.04.24.057323

PRISMA 2020 Checklist

			BMJ Open		Page 40 of 40
1	PRISM	1A 20	BMJ Open 000000000000000000000000000000000000		
3 4	Section and Topic	ltem #	Checklist item	2 2 2 2	Reported on page #
5	TITLE			<u>د</u>	
6	Title	1	Identify the report as a systematic review.	ວ ວ	1
8	ABSTRACT			<u>ې</u>	
9	Abstract	2	See the PRISMA 2020 for Abstracts checklist.	>	3
10	INTRODUCTION				
11	Rationale	3			5
12	Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.		5
3	METHODS				
5	Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	<u>,</u>	6
16 17	Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to date when each source was last searched or consulted.	dentify studies. Specify the	6
8	Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.		6
19 20	Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many read and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in		6-7
21 22 23	Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each reports independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of process.	t, whether they worked utomation tools used in the	6-7
4 5	Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results		7
26 27	·	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, fund assumptions made about any missing or unclear information.	ng sources). Describe any	7
28 29	Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how me study and whether they worked independently, and if applicable, details of automation tools used in the process.	ny reviewers assessed each	7
0	Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentat	on of results.	6
1-2-3	Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study inter- comparing against the planned groups for each synthesis (item #5)).	vention characteristics and	6-7
34 35		13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing sume conversions.	ary statistics, or data	6-7
36		13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	• D	7
37 38		13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was per model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used		7
39		13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analys	, #s, meta-regression).	7
0		13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	- /	N/A
1	Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting bias	<u>\$</u>).	7
43 44 45 46	Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	.	7

PRISMA 2020 Checklist

e 41 of 40		BMJ Open BMJ Open		
PRISM	MA 20	BMJ Open 36/bmjopen-20		
Section and Topic	ltem #	Checklist item -5		Reported on page #
RESULTS				
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the due the review, ideally using a flow diagram.	umber of studies included in	Supp
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded	cluded.	Supp
Study	17	Cite each included study and present its characteristics.		Supp
characteristics				Table 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.		Supp Fig 2
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect (e.g. confidence/credible interval), ideally using structured tables or plots.	t estimate and its precision	Figures
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.		Supp Fig
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary esem confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of	nate and its precision (e.g. the effect.	Figures
	20c	Present results of all investigations of possible causes of heterogeneity among study results.		Figures
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.		N/A
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis asses	d.	Supp Fig
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.		Figures
DISCUSSION		ġ		
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.		10-14
	23b	Discuss any limitations of the evidence included in the review.		13
	23c	Discuss any limitations of the review processes used.		13
	23d	Discuss implications of the results for practice, policy, and future research.		14
OTHER INFORMA	TION	022		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review	ew was not registered.	15
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared. C Describe and explain any amendments to information provided at registration or in the protocol. C		15
	24c	Describe and explain any amendments to information provided at registration or in the protocol.		N/A
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the B^{+}	view.	14
Competing interests	26	Declare any competing interests of review authors.		15
Availability of data, code and	27	Report which of the following are publicly available and where they can be found: template data collection forms; data studies; data used for all analyses; analytic code; any other materials used in the review.	a extracted from included	14

44 From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 45 For peer Feliew Grifformalion Wigit patter for the prismon and the prism