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ABSTRACT
Objectives Air temperature has been considered a 
modifiable and contributable variable in COVID- 19 
transmission. Implementation of non- pharmaceutical 
interventions (NPIs) has also made an impact on COVID- 19 
transmission, changing the transmission pattern to 
intrahousehold transmission under stringent containment 
measures. Therefore, it is necessary to re- estimate the 
influence of air temperature on COVID- 19 transmission 
while excluding the influence of NPIs.
Design, setting and participants This study is a data- 
based comprehensive modelling analysis. A stochastic 
epidemiological model, the ScEIQR model (contactable 
susceptible- exposed- infected- quarantined- removed), was 
established to evaluate the influence of air temperature 
and containment measures on the intrahousehold spread 
of COVID- 19. Epidemic data on COVID- 19, including daily 
confirmed cases, number of close contacts, etc, were 
collected from the National Health Commission of China.
Outcome measures The model was fitted using the 
Metropolis- Hastings algorithm with a cost function based 
on the least squares method. The LOESS (locally weighted 
scatterplot smoothing) regression function was used to 
assess the relationship between air temperature and rate 
of COVID- 19 transmission within the ScEIQR model.
Results The ScEIQR model indicated that the optimal 
temperature for spread of COVID- 19 peaked at 10℃ 
(50℉), ranging from 5℃ to 14℃ (41℉−57.2℉). In the 
fitted model, the fitted intrahousehold transmission rate 
(β’) of COVID- 19 was 10.22 (IQR 8.47–12.35) across 
mainland China. The association between air temperature 
and β’ of COVID- 19 suggests that COVID- 19 might be 
seasonal. Our model also validated the effectiveness 
of NPIs, demonstrating that diminishing contactable 
susceptibility (Sc) and avoiding delay in diagnosis and 
hospitalisation (η) were more effective than contact 
tracing (κ and ρ).
Conclusions We constructed a novel epidemic model 
to estimate the effect of air temperature on COVID- 19 
transmission beyond implementation of NPIs, which can 
inform public health strategy and predict the transmission 
of COVID- 19.

INTRODUCTION
COVID- 19 has been spreading for more 
than 2 years in many countries. Many factors 

such as virus virulence, host defence poten-
tial and number of contacts overall could 
affect its transmission.1 Since the influenza 
virus is affected by changes in tempera-
ture and relative humidity, air temperature 
might be an important factor that can influ-
ence the transmission of SARS- CoV- 2, which 
caused the COVID- 19 epidemic.2 However, 
the effects of meteorological indicators on 
COVID- 19 transmission are unclear. A few 
studies have reported that air temperature 
influences transmission of COVID- 19. Bashir 
and colleagues found a significant associa-
tion between temperature and the COVID- 19 
pandemic in the USA3 4 and Germany.5 
However, some researchers have reported 
contradictory findings.6 7 Thus, the effect of 
air temperature on COVID- 19 transmission 
remains controversial.

In the past 2 years, governments of many 
countries have implemented several non- 
pharmaceutical interventions (NPIs), 
including physical and social distancing, 
quarantine, and isolation, to mitigate the 
outbreak of COVID- 19 at its early stage.8 In 
China, cases of COVID- 19 declined within 
2 months as a direct result of NPIs executed 
since 23 January 2020. Aside from increasing 

Strengths and limitations of this study

 ► We used a Metropolis- Hastings algorithm, the 
Markov chain Monte Carlo method, to estab-
lish a novel epidemiological ScEIQR (contactable 
susceptible- exposed- infected- quarantined- 
removed) model.

 ► Data on early spread and early social intervention 
for COVID- 19 can fit well in the stochastic ScEIQR 
model.

 ► The study explored the influence of air temperature 
on the intrahousehold transmission of COVID- 19.

 ► The limited latitude span in this study narrowed the 
range of air temperatures explored.
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physical and social distance, contact tracing and hospi-
talised isolation were also applied.9 These containment 
measures were effective in controlling the spread of 
COVID- 19. However, what’s the influence of air tempera-
ture on the COVID- 19 incidence and transmission rate 
beyond the effects of NPIs?

We then used data from China as an appropriate 
example to evaluate the relationship between air 
temperature and the spread of COVID- 19. First, social 
intervention in China was taken almost simultane-
ously and uniformly across provinces, differing only in 
intensity. Second, the latitude span of mainland China 
is large enough to reflect zones with a daily mean air 
temperature of −7℃ to 20℃ in winter. Third, we could 
acquirethe daily number of cases in quarantine from the 
database of National Health Commission of The People's 
Republic of China. Thus, we constructed a new kind of 
SEIR (susceptible- exposed- infected- removed) model, 
called the ScEIQR model (contactable susceptible- 
exposed- infected- quarantined- removed), to depict a 
new pattern of spread of COVID- 19, the intrahousehold 
transmission. The model can separate the influence of 
social intervention measures from confounding factors. 
Hence, with machine learning methods, we achieved 
the precise influence of air temperature on the spread 
of COVID- 19. Moreover, this model validated the effec-
tiveness of NPIs in controlling the transmission of 
COVID- 19.

MATERIALS AND METHODS
Development of the dynamic, non-classic SEIR model for 
COVID-19
The ScEIQR model developed is an expanded SEIR 
epidemic model containing six compartments: Sc 
(contactable susceptible), E (exposed to SARS- CoV- 2), 
Q (daily close contacts in quarantine), I (infectors 
outside the healthcare system), Rh (accumulative hospi-
talised infectors) and Rs (self- recovery individuals with 
asymptomatic infection or mild symptoms who have 
never been hospitalised and registered in the healthcare 
system) (figure 1). Sc represents the contactable suscep-
tible subpopulation under the NPIs, such as lockdown, 
social distancing, cancelling gatherings and closing 
public places, which were set as random variables in 
the model. Q represents the close contacts of infec-
tors found out by epidemiological survey, and notified 
to be in self- quarantine at home, in the hotel or indi-
cated isolating room for 14- day medical observation. Rh 
represents confirmed and hospitalised infectors in isola-
tion wards, reported daily by the public health agency. 
E, I and Rs compartments are outside of the healthcare 
system. Rh is the reported cumulative confirmed cases 
in the model. Several parameters linked the compart-
ments, and the flow velocity of each compartment is 
illustrated in figure 1 (details are in the online supple-
mental methods).

Parameters of the stochastic ScEIQR model
The definition and the initial range of parameters, β’, σ, 
γ, κ, ρ, ω, η and Sc, in the model are listed in table 1. 
β’ is the rate of intrahousehold transmission dependent 
on the biological property of SARS- CoV- 2. σ and γ are 
associated with the intrinsic incubation and communi-
cable periods of COVID- 19. κ, ρ and ω are associated 
with contact tracing and quarantine. η reflects the pace 
of confirmed diagnosis and hospitalised isolation among 
the infectors. Other indexes could be calculated from 
the solved model, such as contact rate (CR), quality of 
CCT (surveyQ), proportion of untraceable infectors 
(approximately equivalent to the asymptomatic) (utI%), 
and the incubation and communicable periods of SARS- 
CoV- 2. Among these, CR reflects the proportion of Sc in 
the population under the integrated NPIs, while surveyQ 
represents the quality of contact tracing.
1. β’: rate of effective intrahousehold transmission for 

the contactable susceptible (Sc).
2. σ: rate of progression from being exposed to being in-

fectious, which is the reciprocal of the incubation peri-
od (days) in the transmission chain.

3. γ: rate of removal for Rself, which is the reciprocal of 
the communicable period of propagating for a self- 
recovery infector in the transmission chain.

4. η: rate of removal for Rh, which is the reciprocal of 
the communicable period of propagating for a hospi-
talised infector in the transmission chain.

5. κ: average number of traceable close contacts for each 
confirmed case, which was investigated and notified to 
be in quarantine by the epidemiological survey group 

Figure 1 Flow diagram of the ScEIQR epidemiological 
model, with six compartments: contactable susceptible 
(Sc), exposed individuals (E), infected individuals who 
were outside public health measures (I), close contacts in 
quarantine (Q), self- recovery individuals (Rs) and cumulative 
hospitalised individuals (Rh). The flow velocities between 
the compartments are indicated. CR, contact rate; ScEIQR, 
contactable susceptible- exposed- infected- quarantined- 
removed model.
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of each province. All close contacts found were as-
sumed to be in 14- day quarantine.

6. ρ: virus- positive rate among individuals in quarantine 
in each province.

7. ω: The transition rate of quarantined people develop-
ing to being contagious per day.

Formulation and parameter setting of the ScEIQRsh model
The simultaneous differential equation system for the 
stochastic ScEIQR model is as follows:
1. dE/dt=β’ScI/(Sc+E+I+Rs+Rh+ρQ)–κηρI–σE.
2. dI/dt=σE-ηI-γI.
3. dQ/dt=κηI-ωQ.
4. dRh/dt=ηI+ρωQ.
5. dRs/dt=γI.

In equation (1), unlike the classic SIR (susceptible, 
infected, and recovered) model, one of the most basic 
compartmental model in epidemiology, or SEIR model, 
the denominator of flow- in velocity is (Sc+E+I+Rs+Rh+ρQ) 
instead of N or any other constant. The denominator 
refers to all transmissible individuals in the system. The 
classic SIR or SEIR model assumes that the infectors mix 
with different susceptible individuals every day, while the 
ScEIQR model assumes that the infectors mix with fixed 
contactable susceptible individuals every day.
1. Parameter setting: β’, σ, γ and η were set as random 

variables with Gaussian distribution; κ, ω and ρ were 
set as random variables with uniform distribution.

2. Parameter range setting: β’ (1–19), σ (0.27–0.5), γ 
(0.04–0.3), η (0.001–0.999), κ (0–350), ω (0.07–0.6) 
and ρ (0–0.1).

Sc was set as a random variable with Gaussian distribu-
tion, with a setting range of 0–0.002N, where N denotes the 
total population of the province. Other initial compart-
ment values were estimated as the following: initial 
Rh=H0, initial Rs=0, initial Q=Q0, initial I=H0*(1−η)/η 
and initial E=initial I/σ. H0 and Q0 denote the cumula-
tive hospitalised cases and close contacts in quarantine at 
day 0 (23 February 2020) reported by the public health 
administration of the province. If H0 or Q0 is missing 
in some provinces, H0 or Q0 will be given an assumed 
number.

Epidemic data acquisition
The intrahousehold transmission of COVID- 1910 was 
observed from the beginning of COVID- 19 in mainland 
China.11 Each provincial health commission would report 
the daily number of close contacts in quarantine along 
with the number of daily confirmed cases of COVID- 19. 
These complete data from mainland China were appro-
priate for fitting in the ScEIQR model and for investi-
gating the intrahousehold transmission of COVID- 19. We 
collected data on daily accumulative confirmed COVID- 19 
cases from January to March 2020 from the provincial 
health commission in mainland China. The daily number 
of close contacts in quarantine and the daily number of 
those relieved of quarantine were also collected from the 
provincial government’s website in China. The Xizang 
and Qinghai provinces were excluded because these 
provinces only had 1 and 18 confirmed cases, respectively. 
According to the COVID- 19 guidelines of China, diag-
nosed cases of COVID- 19 were hospitalised in isolation 

Table 1 Definition and setting range of parameters in the ScEIQR model

Parameters Definition Method Setting range

Sc Contactable susceptible under the social NPIs. MCMC (1–0.01N)

β’ Transmission rate: the number of infected people by one infector. MCMC (1–19)

σ Transition rate from exposure to being contagious. MCMC (0.27–0.5)

γ Recovery rate of the asymptomatic infector. MCMC (0.04–0.3)

η Hospitalisation rate and pace of symptomatic infectors. MCMC (0.001–0.999)

κ Extent of epidemiological investigations. MCMC (0–350)

ρ Positive rate of COVID- 19 among quarantined people. MCMC (0–0.1)

ω The transition rate of quarantined people developing to being 
contagious per day.

MCMC (0.07–0.6)

CR Proportion of contactable susceptible (Sc) under the interventive 
social prevention.

Sc/N –

Ipd Time elapsed from exposure to SARS- CoV- 2 to the first apparent 
symptoms.

1/σ+1/η –

utI% Proportion of untraceable infectors, approximately equates to the 
asymptomatic.

γ/(η+κρη+γ) –

SurveyQ Quality of contact tracing. κ•ρ –

Cpd Time for untraceable infectors to becoming contagious among the 
susceptible.

1/γ –

Cpd, communicable period; CR, contact rate; Ipd, incubation period; MCMC, Markov chain Monte Carlo; N, total population of a province; NPIs, 
non- pharmaceutical interventions; ScEIQR, contactable susceptible- exposed- infected- quarantined- removed; utI%, proportion of asymptomatic 
infectors.
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wards; thus, the reported confirmed cases were hospital-
ised infectors in China. Details on the criteria for quaran-
tine of confirmed cases and close contacts are provided in 
the online supplemental methods.

Simulation and model fitting
We fitted both the reported accumulative confirmed 
cases and the daily close contacts in each province with 
Rh and Q compartments in the ScEIQR model using the 
Markov chain Monte Carlo (MCMC) method with cost 
function based on the least squares method. Briefly, the 
model parameters and Sc were random samplings with a 
Metropolis- Hastings algorithm, the MCMC method. The 
proposal distribution for accept- reject is a Bernoulli distri-
bution, which is from the comparison of the cost function 
of curve fitting in iteration (better or not). The simu-
lated curves of both Rh and Q were simultaneously fitted 
with raw data (real- world data) using the least squares 
method and the cost function was the sum of squares for 
error/sum of squares for total (SSE/SST). The optimised 
parameters were documented with 100 000 iterations of 
0.1 step size from 0 to 60 days with burn- in of 50 000 iter-
ations for 29 provinces of mainland China. The expected 
values and SD for each parameter were then confirmed.

Air temperature in the provinces of China during the spread of 
COVID-19
The minimum, mean and maximum air temperatures in 
each province were collected from the National Mete-
orological Administration from 15 January 2020 to 15 
February 2020 (1 week before and 3 weeks after day 
0, which was on 23 January 2020). The LOESS (locally 
weighted scatterplot smoothing) regression depicted the 
relationship between air temperature in 29 provinces and 
the rate of COVID- 19 transmission in the ScEIQR model.

Patient and public involvement
No patients were involved.

Statistical analysis
The 29 provinces enrolled were separated into seven 
geographical regions: North, Northeast, East, Central, 
Northwest, South and Southwest. The curves of Rh and 
Q were simultaneously fitted with raw data using the least 
squares method with a tolerance of 1.05. SSE/SST was 
the cost function. The data process was performed in R 
(V.3.6.1) and the ‘deSolve’ R package was used to solve the 
differential equations. The R source code can be found 
on GitHub. The parameters were denoted by mean±SD 
for each province and the median (IQR: 25%–75%) was 
used to describe the provinces.

RESULTS
Influence of air temperature on the transmissibility of 
COVID-19
The rate of intrahousehold transmission (β’) was first 
calculated and subsequently the non- linear association 

between β’ and air temperature was depicted by LOESS 
fitting.

Calculation of intrahousehold transmission rate (β’)
First, we fit COVID- 19 transmission with the integrated 
social NPIs using the ScEIQR model, which could be 
well fitted with the reported number of daily accumu-
lative confirmed cases and close contacts in quarantine 
in 29 provinces of mainland China (figure 2, online 
supplemental figure S1). The predicted daily Rh and Q 
compartments coincided with the provincial reported 
numbers. The fitting curves, yielded a median intrahouse-
hold transmission rate (β’) for 29 provinces were 10.22 
(IQR 8.47–12.35), implying that 10.22 persons would be 
infected by one infector when the susceptible individuals 
are mostly acquaintances and the Sc is extrapolated to the 
infinite (figure 3A,B, table 2, online supplemental table 
S1).

Range of air temperature for spread of COVID-19
The mean air temperature for every province in China 
spanned from −15℃ (5℉) to 20.25℃ (68.45℉) between 
January and February 2020 (figure 3C). The relationship 
between air temperature and β’ was evaluated. As the daily 
air temperature increased from 0℃ (32℉), the value of 
β’ raised gradually until the air temperature reached 7℃ 
(44.6℉) for a minimum daily temperature or 15℃ (59℉) 
for a maximum daily temperature, respectively, and then 
declined sharply as the temperature continued to rise 
(figure 3). We observed that the transmission rate (β’) 
was higher than 11 for the mean air temperature in the 
5℃−14℃ (41℉−57.2℉) range, which may be most suit-
able for spread of COVID- 19.

Validation of NPIs on mitigating the spread of COVID-19
The COVID- 19 pandemic hit many countries due to coro-
navirus mutations. Therefore, containment measures are 
still pivotal in controlling its spread.

Assessment of NPI measures by suppositional simulation
We assessed three independent parameters, CR, η and 
surveyQ, which were crucial to stopping the spread. 
Our model estimated a median Sc of 26.98 (IQR 13.97–
54.57), with the highest value in the province of Hubei 
and lowest in Neimenggu (online supplemental table 
S1). The median CR for 29 provinces was 6.84E- 07 (IQR 
3.77E- 07–1.44E- 06) (figure 4A). To illustrate the influ-
ence of NPI measures on COVID- 19 transmission in the 
ScEIQR model, we arbitrarily adjusted CR, κ, ρ and η 
values with representative 30% or 50% upregulation/
downregulation to simulate the suppositional spreading 
situation. If CR were 30% or 50% enlarged, the even-
tual accumulative hospitalised cases (Rh) would strongly 
increase and the infectors (I) would reduce and vice versa 
(figure 4B,C). The median velocity of hospitalised isola-
tion of infectors (η) was 0.69 (IQR 0.47–0.87) for 29 prov-
inces (figure 4D). η had an opposite influence on CR. If 
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Figure 2 Fitting curves of confirmed cases and close contacts predicted by the ScEIQR model from day 0 to 23 January 23, 
2020. Fitting curves of confirmed cases and close contacts in (A) Beijing, representing North China; (B) Liaoning, representing 
Northeast China; (C) Jiangxi, representing East China; (D) Guangdong, representing South China; (E) Gansu, representing 
Northwest China; (F) Sichuan, representing Southwest China; and (G) Hubei, representing Central China. I, infected individuals 
who were outside public health measures; Q, close contacts in quarantine; Rh, cumulative hospitalised individuals; Sc, 
contactable susceptible; ScEIQR, contactable susceptible- exposed- infected- quarantined- removed model.
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Figure 3 Association between air temperature and transmission rate (β’) of COVID- 19. (A) Transmission rates of COVID- 19 
among acquaintances in 29 provinces grouped by geographical region. (B) Mapping the transmission rate of COVID- 19 in 
29 provinces of mainland China. In A and B, the number represents the provinces in each geographical region: North, 1–5; 
Northeast, 6–8; East, 9–15; Central, 16–18; South, 19–21; Northwest, 22–25; and Southwest, 26–29. (C) Mapping the daily 
mean temperature from 15 January 2020 to 15 February 2020 in 29 provinces of mainland China. (D) Association between daily 
minimum temperature (Tmin) and transmission rate (β’) of COVID- 19 depicted by LOESS regression. (E) Association between 
daily mean temperature (Tmean) and transmission rate (β’) of COVID- 19 depicted by LOESS regression. (F) Association between 
daily maximum temperature (Tmax) and transmission rate (β’) of COVID- 19 depicted by LOESS regression. Dots of different 
colour represent temperature in different provinces. SSE, the sum of squares due to error.

Table 2 Median value of parameters and indexes in 29 provinces of mainland China using the ScEIQR model

Variables Median IQR (25%–75%) Range

β’ 10.22 8.47–12.35 3.29–15.06

σ 0.42 0.40–0.44 0.33–0.48

γ 0.15 0.10–0.22 0.05–0.26

η 0.69 0.47–0.87 0.16–0.97

κ 42.0 27.83–60.78 5.35–147.79

ρ (%) 0.9 0.4–1.6 0.03–5.10

ω 0.12 0.10–0.15 0.07–0.21

Sc 26.98 13.97–54.57 5.91–25 525.54

CR 6.84E- 07 3.77E- 07–1.44E- 06 1.64E- 07–4.33E- 04

Ipd 4.17 3.60–4.71 3.27–9.62

utI% 14.88 8.17–25.37 3.92–34.36

SurveyQ 0.39 0.22–0.55 0.04–2.61

Cpd 6.77 4.53–10.36 3.91–19.90

1/σ 2.39 2.26–2.56 2.07–3.01

Cpd, communicable period; CR, contact rate; Ipd, incubation period; Sc, contactable susceptibility; ScEIQR, contactable susceptible- 
exposed- infected- quarantined- removed; utI%, proportion of asymptomatic infectors.
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η increased by 30% or 50%, the eventual Rh would be 
strongly reduced and vice versa (figure 4E,F).

The value of surveyQ, the product of κ times ρ, was 0.39 
(IQR 0.22–0.55), which indicated that on average 0.39 of 
positive cases were in close contact with confirmed infec-
tious individuals according to CCT (figure 4G). κ and ρ 
can be used to assess the effectiveness of CCT. The median 
κ in 29 provinces was 42.0 (IQR 27.83–60.78), suggesting 
that, on average, 42 close contacts of an infector had 
been traced by CCT (online supplemental figure S2A). 
The COVID- 19 positivity rate (ρ) among close contacts 

was 0.98% (IQR 0.47%–1.60%), ranging from 0.03% 
to 5.10% (online supplemental figure S2B), which was 
quite close to the WHO- China joint report of 0.9%–5% 
in China.11 With higher κ or ρ, the eventual accumulative 
number of confirmed COVID- 19 would diminish and the 
Rh would reach a plateau (figure 4H,I, online supple-
mental figure S2C,D,E,F). For the same adjusted extent, 
the effectiveness of CR and avoiding delay in diagnosis 
and hospitalisation in preventing spread was stronger 
than that of CCT parameters κ and ρ. The incubation 
and communicable periods of COVID- 19 were calculated 

Figure 4 Evaluation of the effectiveness of three NPI measures and the suppositional simulation. (A) The model was used 
to calculate CR for 28 provinces. In B, C, E, F, H and I, the solid curves are the fitted curves in our modelling analysis. The 
dashed lines represent the suppositional simulation curves after adjusting the value of three NPI measures. The small dashed 
line shows the upregulation of the values of the NPI measures, while the big dashed line shows the downregulation of the 
values of the NPI measures. The red curves represent the Rh compartment; the purple curve represents the Q compartment; 
and the orange curve represents the I compartment. (B) Change in Rh, Q and I compartments after adjusting the CR 30% up 
or down. (C) Change in Rh, Q and I compartments after adjusting the CR 50% up or down. (D) Hospitalisation rate and pace, 
η, in the 29 provinces. (E) Change in Rh, Q and I compartments after adjusting η 30% up or down. (F) Change in Rh, Q and I 
compartments after adjusting η 50% up or down. (G) Quality of contact tracing, surveyQ, was depicted among 29 provinces. (H) 
Simulation of Rh, Q and I compartments after adjustment for κ for one- third down or three times up. (I) Simulation of Rh, Q and I 
compartments after adjustment of ρ 1/3 down or 3 times up. CR, contact rate.
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using the ScEIQR model and the results were consistent 
with other studies (table 2, online supplemental figure 
S3), suggesting that this novel model is reasonable.

Blind zone of contact tracing and asymptomatic infectors in NPIs
With the integrated social NPIs, COVID- 19 transmission 
occurred between undetected infectors and acquain-
tances and a few strangers with whom the infectors had 
contact with for daily necessities. In a typical intrahouse-
hold transmission, the index case infected directly four 
family members and one friend and indirectly the friend’s 
family within half a month12 (figure 5A). CCT can easily 
find the close contacts of acquaintances but would be 
inefficient in identifying transmission among strangers 
in public spaces. For example, a salesman infected two 
unacquainted sales associates in other sales areas sequen-
tially without gathering in a large mall, and one of the 
infected sales associates transmitted the infection to a 
customer without direct contact after lingering for 30 min 
(figure 5B). This transmission chain among strangers 
could not be easily identified by contact tracing and was 
only revealed after all participants’ symptoms appeared 
(figure 5C).

Another blind spot of contact tracing is the asymp-
tomatic infection. The ScEIQR model showed that the 

proportion of infectors who are asymptomatic and with 
mild symptoms without hospitalisation (the propor-
tion of untraceable infectors, utI%) was 14.88% (IQR 
8.17%–25.37%), ranging from 3.92% to 34.36% across 
29 provinces, which implied that 14.88% of patients 
with COVID- 19, on average, could not be identified with 
social NPIs and the average proportion of asymptom-
atic patients with COVID- 19 was 14.88% (IQR 8.17%–
25.37%) (figure 5D). The higher surveyQ of CCT can 
only reduce but not eliminate utI% (figure 5E), but high 
η could decline utI% (figure 5F). Hence, contact tracing 
is insufficient in finding all the infectors, especially in 
stranger–stranger transmission and asymptomatic infec-
tion. Air temperature also influences the ratio of asymp-
tomatic infectors. When the mean air temperature was 
subzero, the utI% was high (figure 5G).

DISCUSSION
It is important to understand the effects of the meteoro-
logical conditions on the spread of COVID- 19 to predict 
its prevalence, especially with intrahousehold trans-
mission. In our study, we found that the transmission 
rate (β’) increased as air temperature rose from −5℃ 

Figure 5 Transmission patterns of COVID- 19 under social NPIs and the association of untraceable infectors with surveyQ, 
η and air temperature. (A) A representative example of intrafamily and interfamily transmissions of COVID- 19 in Beijing. (B) A 
representative example of COVID- 19 transmission among strangers in a large mall. (C) Stranger–stranger transmission is the 
blind zone of contact tracing. (D) Median proportion of asymptomatic infectors among 29 provinces. (E) Non- linear association 
between the ratio of untraceable infectors and surveyQ. Higher surveyQ could reduce the ratio of untraceable infectors. 
However, as surveyQ increases, the proportion of untraceable infectors remains constant. (F) Non- linear association between 
the ratio of untraceable infectors and η. Higher η could reduce the ratio of untraceable infectors either. (G) Relationship 
between the ratio of untraceable infectors and daily mean temperature (Tmean). NPIs, non- pharmaceutical interventions; utI%, 
proportion of asymptomatic infectors.
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(23℉), with the peak of β’ occurring at the minimum, 
average and maximum temperatures of 7℃ (44.6℉), 
10℃ (50℉) and 15℃ (59℉), respectively, and then 
starting to decline at a higher temperature, across the 
29 provinces in China. The finding is consistent with 
the curves reported by Wang et al,13 who claimed that 
the peak of accumulative cases in 492 cities appeared at 
the minimum, average and maximum temperatures of 
6.7℃ (44.06℉), 8.72℃ (47.7℉) and 12.42℃ (54.36℉), 
respectively. Wang et al13 and Sajadi et al14 found that 
the regions along the 30°–50o N’ latitude with an 
average temperature of 5℃−11℃ (41℉−51.8℉) showed 
increased transmission of COVID- 19. We also coinci-
dentally discovered that the optimal mean tempera-
ture ranges for COVID- 19 transmission is at 5℃−14℃ 
(41℉−57.2℉). Lowen et al2 proved that the transmission 
of the influenza virus through droplets was greater and 
the peak duration of virus shedding lasted longer at 5℃ 
(41℉) than at 20℃ (68℉). Indeed, the transmission 
rate of COVID- 19 at 5℃ (7.39±1.62) was higher than 
the transmission rate at 20.25℃ (4.39±1.63). Another 
similar infectious disease, SARS (severe acute respira-
tory syndrome), was found to have a higher transmis-
sion rate in temperatures below 24.6℃ in Hong Kong.15 
From the curves we have illustrated, we could suspect 
that the transmission rate would be further reduced, 
although not eliminated, at temperatures greater than 
20.25℃ (68.45℉). It can be expected that the spread of 
COVID- 19 would be moderate in northern hemispheres 
in the summer and it is likely to become a seasonal infec-
tious disease. The broader air temperature range for 
optimal COVID- 19 transmission strongly suggests the 
current necessity and urgency of vaccines.

Besides air temperature, the most important measures 
to contain the COVID- 19 epidemic are vaccines and NPIs. 
After the first- level public health emergency response on 
23 January 2020, integrated NPIs were implemented in 
mainland China during the COVID- 19 epidemic.9 The 
pattern of spread of COVID- 19 changed to an intrahouse-
hold transmission. A report of the ‘WHO- China Joint 
Mission on COVID- 19’ verified that about 78%–85% 
of infections in the Guangdong and Sichuan provinces 
occurred within families.11 In Beijing, 176 out of 262 
confirmed cases were intrahousehold members.10 Using 
our ScEIQR epidemic model, we estimated for the first 
time the effectiveness of integrated NPIs in simulating the 
restricted spread of COVID- 19 among acquaintances. The 
ScEIQR model can fit the realistic provincial epidemic 
and NPI data on COVID- 19 in China without adjusting 
the parameters. Unlike the classic SEIR epidemic model, 
which assumes that infectors mix with all susceptible indi-
viduals daily, in the ScEIQR model the infectors mix with 
contactable susceptible individuals daily, which include 
family members, relatives, coworkers, friends and some 
other contactable strangers who provide daily necessities 
to the infectors. Because contact among acquaintances is 
more frequent than contact among the whole population, 

the β’ value tends to be larger in our model than in the 
classic SEIR model in other studies.16

In the NPI measures, CR and avoiding delay in diag-
nosis and hospitalisation are more effective in dimin-
ishing the eventual accumulative number of COVID- 19 
cases than the CCT parameters κ and ρ. In case of 
insufficient medical resources, better way to improve 
delay in diagnosis and hospitalisation could be to 
increase laboratory capacity for SARS- CoV- 2 testing or 
to build makeshift hospitals to increase bed capacity.17 
Contact tracing is also helpful in mitigating the spread 
of COVID- 19, especially among close contacts (quaran-
tine for targeted susceptible) than among the common 
susceptible individuals. The surveyQ (κ•ρ) of CCT 
could be improved by adding more CCT staff, loos-
ening the criteria for close contacts in CCT, broadening 
SARS- CoV- 2 testing to close contacts or using digital 
tools. It is undeniable that the above methods require 
more human and financial resources and may not be 
suitable in every country.

Nevertheless, lockdown and stay- at- home orders 
profoundly affect the society and the economy. Contact 
tracing is a less severe option without unnecessary quar-
antines. In brief, decreasing the number of contactable 
susceptible (Sc or c) individuals and avoiding delay in 
diagnosis and hospitalisation are crucial factors in the 
control of COVID- 19.

Additionally, asymptomatic but infectious individ-
uals are the source of recurrence of COVID- 19. We 
demonstrated that the median and highest proportions 
of asymptomatic infectious people were 14.88% and 
34.36%, respectively, consistent with the reported 18% 
among 700 infectious individuals who never showed 
symptoms on the Diamond Princess in the study of Mizu-
moto et al18 and with the 30.8% of asymptomatic cases 
among 565 Japanese citizens evacuated from Wuhan in 
the study of Nishiura et al.19 Low air temperature could 
also increase the proportion of asymptomatic infectors. 
Hence, in addition to monitoring air temperature, it is 
crucial to implement containment measures. The incu-
bation period that emerged from the ScEIQR model 
aligns with the 3- day incubation reported in a study of 
1099 laboratory- confirmed cases by Zhong et al,20 which 
indicates that the model accurately simulates real- world 
transmission.

Our study was based on a novel ScEIQR NPI model but 
only included epidemic data from mainland China for 
model validation because we could not access NPI data, 
for example, close contacts, in other countries. This model 
could be fitted even with limited NPI data, although the 
results might be less accurate. The limited latitude span 
in this study narrowed the range of air temperatures, 
especially higher temperatures; therefore, the association 
of air temperature with the rate of COVID- 19 transmis-
sion was informative and suggestive.21
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CONCLUSIONS
In conclusion, we provide a new tool for quantitatively 
assessing the influence of air temperature or the effective-
ness of NPI strategy in the COVID- 19 outbreak. We also 
speculated that the appropriate temperature for SARS- 
CoV- 2 transmission is within 5℃−14℃ (41℉−57.2℉) 
under implementation of NPIs. The stochastic ScEIQR 
model was constructed, which can fit well the early 
spread and early social intervention data of COVID- 19. 
The effectiveness of NPIs in mitigating the transmis-
sion of COVID- 19 was evaluated. Keeping a low number 
of contactable susceptible individuals and promoting 
prompt diagnosis and hospitalised isolation of COVID- 
19- positive individuals can mitigate early intrahousehold 
transmission of COVID- 19, guiding the implementation 
of effective public health intervention strategies for 
COVID- 19 prevention. This model can apply to other 
regions because the proportion of acquaintances and 
strangers can be auto- adjusted in the fitting process. It is 
also suitable for other infectious diseases.
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