

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Risk Assessment for Acute Kidney Injury and Death among New COVID-19 Positive Adult Patients without Chronic Kidney Disease

humianan 2021 052625
bmjopen-2021-053635
Original research
20-May-2021
Li, Daniel; Harvard University T H Chan School of Public Health; Johns Hopkins School of Medicine Ren, Hui; Harvard Medical School, Department of Radiology Varelmann, Dirk J.; Brigham and Women's Hospital, Department of Anesthesiology Sarin, Pankaj; Brigham and Women's Hospital, Department of Anesthesiology Xu, Pengcheng; Harvard Medical School, Department of Radiology Wu, Dufan; Harvard Medical School, Department of Radiology Li, Quanzheng; Harvard Medical School, Department of Radiology Lin, Xihong; Harvard University T H Chan School of Public Health, Department of Biostatistics; Harvard University, Department of Statistics
COVID-19, EPIDEMIOLOGY, STATISTICS & RESEARCH METHODS
2 LHRVASAXVLLC

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1

2				
3 4	1	Title Page		
5	2			
6 7 8	3 4	Risk Assessment for Acute Kidney Injury and Death among New COVID-19 Positive Adult Patients without Chronic Kidney Disease		
9 10 11	5 6 7	Short Title: AKI and Death among COVID-19 Patients without CKD		
12 13 14 15 16	8 9 10	Daniel Li, MD, MA, ^{1,2*} Hui Ren, MD, PhD, MPH ^{3*} Dirk J. Varelmann, MD, ⁴ Pankaj Sarin, MD, ⁴ Pengcheng Xu, BS, ³ Dufan Wu, PhD, ³ Quanzheng Li, PhD, ^{3**} Xihong Lin, PhD ^{1,5,6**}		
17 18	11	*Contributed equally, co-first authorship		
19 20	12	¹ Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA.		
21	13	² Johns Hopkins University School of Medicine, Baltimore MD.		
22 23 24	14 15	³ Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston MA.		
25 26	16	⁴ Department of Anesthesiology, Brigham and Women's Hospital, Boston MA.		
27	17	⁵ Department of Statistics, Harvard University, Cambridge MA.		
28 29	18	⁶ Broad Institute of MIT and Harvard, Cambridge, MA.		
30 31	19			
32	20	**Correspondence: Xihong Lin, Quanzheng Li		
33 34	21	Department of Biostatistics		
35 36	22	655 Huntington Ave		
37	23	Building II, Room 419		
38 39	24	Boston, MA 02115		
40 41	25	Telephone: 617 432 2914		
42	26	Fax: 617 432 5619		
43 44	27	Email: xlin@hsph.harvard.edu, li.quanzheng@mgh.harvard.edu		
45 46	28			
47 48 49 50 51 52	29 30	Abstract 277 words; Main Text 3,138 words; References 32; Tables 4; Figures 1; Appendix Tables 5		
53 54 55 56 57 58 59		1		

Page 3 of 40

BMJ Open

1 2		
3 4	1	Abstract
5 6 7	2	Objective: To develop simple but clinically informative risk stratification tools using a
8 9	3	few top demographic factors and biomarkers at COVID-19 diagnosis to predict acute
10 11 12	4	kidney injury (AKI) and death.
13 14	5	Design: Retrospective cohort analysis, follow-up from February 1 through May 28,
15 16 17	6	2020.
18 19 20 21	7	Setting: 3 teaching hospitals, 2 urban and 1 community-based in the Boston area.
22 23	8	Participants: Eligible patients were at least 18 years old, tested COVID-19 positive
24 25	9	from February 1 through May 28, 2020, and had at least two serum creatinine
26 27	10	measurements within 30 days of a new COVID-19 diagnosis. Exclusion criteria were
28 29 30	11	having CKD or having a previous AKI within 3 months of a new COVID-19 diagnosis.
31 32 33	12	Main Outcomes and Measures: Time from new COVID-19 diagnosis until AKI event,
34 35	13	time until death event.
36 37 38	14	Results: Among 3,716 patients, there were 1,855 (49.9%) males and the average age
39 40	15	was 58.6 years (SD 19.2 years). Age, sex, white blood cell, hemoglobin, platelet, C-
41 42	16	reactive protein, and D-dimer levels were most strongly associated with AKI and/or
43 44 45	17	death. We created risk scores using these variables predicting AKI within 3 days and
46 47	18	death within 30 days of a new COVID-19 diagnosis. Area under the curve (AUC) for
48 49	19	predicting AKI within 3 days was 0.785 (95% CI, 0.758 to 0.813) and AUC for death
50 51 52	20	within 30 days was 0.861 (95% CI, 0.843 to 0.878). Hemoglobin was the most predictive
53 54	21	component for AKI, and age the most predictive for death. Predictive accuracies using
55 56	22	all study variables were similar to using the simplified scores.
57 58		2

1 2		
2 3 4	1	Conclusion: Simple risk scores using age, sex, a complete blood cell count, C-reactive
5 6	2	protein, and D-dimer were highly predictive of AKI and death and can help simplify and
7 8 9	3	better inform clinical decision making.
9 10 11	4	Key words: COVID-19; kidney injury; risk prediction
12 13	F	
14 15 16	5	
17 18	6	Strengths and limitations of this study
19 20	7	 Various associations between patient variables and COVID-19 acute kidney
21 22 23	8	injury AKI and death have been reported, but it is unclear which variables are
24 25	9	most predictive and important to focus on.
26 27 28	10	 We developed risk scores for predicting AKI and death among new COVID-19
28 29 30	11	positive patients.
31 32	12	Readily obtainable demographic, vital sign, and laboratory values were
33 34 35	13	considered evaluated.
36 37	14	 Findings are limited to patients without chronic kidney disease.
38 39	15	
40 41 42		
43 44		
45 46		
47 48 49		
50 51		
52 53		
54 55 56		
57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 40

BMJ Open

1 Introduction

Although respiratory failure and diffuse inflammatory lung tissue damage are key features of coronavirus disease 2019 (COVID-19), involvement of other organs such as the kidneys has been well documented. Pathologic autopsy examinations of COVID-19 kidneys have shown clusters of coronavirus-like particles in the tubular epithelium and podocytes, upregulation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme 2 and positive immunostaining with SARS-CoV-2 nucleoprotein antibodies.^{1,2} Hemodynamic instability, systemic hypoxia, abnormal coagulation, and inflammation from severe COVID-19 can also directly contribute to acute kidney injury (AKI) and induce acute tubular necrosis.³ Various epidemiologic studies from China, Europe, and the United States have investigated AKI outcomes among COVID-19 patients. Early studies in China have reported AKI incidences ranging from 0.5-15% among hospitalized and outpatient COVID-19 patients.^{4,5} One United Kingdom study found hospitalized COVID-19 patients with AKI had a 3-fold higher odds of death than those without AKI.⁶ Large US population studies of hospitalized COVID-19 patients, primarily in the New York City metropolitan area, have reported AKI incidences ranging from 27-57%, with in-hospital mortality rates ranging from 35-71% among AKI COVID-19 patients.⁷⁻¹⁰ Some of these studies have also explored variable associations with COVID-19 AKI, but none of these studies have investigated which subset of these variables are most predictive of AKI or built risk predictions models using demographic variables and biomarkers. Risk prediction tools have been investigated for COVID-19 deaths. A small

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Risk prediction tools have been investigated for COVID-19 deaths. A small
 number of a priori determined biomarkers were investigated for their associations with

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

the risk of COVID-19 death.¹¹ However, a more data driven approach would compare
the predictive accuracies of these biomarkers to other biomarkers and variables such as
demographic factors and vital signs and build a more powerful risk prediction model
using a comprehensive set of biomarkers, demographic variables, and vital signs.
Different risk factors should also be weighted differently, and understanding the relative
importance of different variables in predicting poor outcomes will allow for more
accurate holistic patient evaluations.

In this study we developed and evaluated new risk assessment tools that can be easily implemented at the bedside or during chart reviews to predict AKI and death after a positive COVID-19 test. Our contributions include (1) identifying the top biomarkers and demographic variables that predict AKI events among COVID-19 patients, (2) investigating a greater number of potential biomarkers and risk factors in predicting death, (3) developing clinical risk assessment tools for both AKI and death using a small number of predictors, and (4) validating that these tools are nearly as predictive as using all available study variables. By understanding which subset of risk factors are most important to focus on, medical providers can more efficiently work up and risk stratify their newly diagnosed COVID-19 patients.

- - 19 Methods

20 Study Population

The Mass General Brigham (MGB) Health system serves a large diverse patient population around Boston and Eastern Massachusetts. Electronic health records from Page 7 of 40

BMJ Open

	1	three major hospitals in this system (Massachusetts General Hospital in Boston,
	2	Brigham and Women's Hospital in Boston, and Newton-Wellesley Hospital in Newton)
	3	were used. The Mass General Brigham Institutional Review Board approved this study,
0 1	4	and the approval number was 2020P001661.
2 3 4	5	We included all patients that 1) were at least 18 years old, 2) tested COVID-19
5 6	6	positive at one of the three hospitals above between February 1, 2020 through May 28,
7 8	7	2020, and 3) had at least 2 serum creatinine tests within 30 days of their SARS-Cov-2
9 0 1	8	PCR test. We excluded patients that 1) met the criteria of acute kidney injury within 3
2 3	9	months before their SARS-CoV-2 test and 2) had chronic kidney disease (CKD)
4 5	10	identified as a preexisting condition from International Classification of Disease (ICD-9
6 7	11	and ICD-10) codes (see below).
8 9 0	12	
1 2 3 4	13	Data Collection
5 6 7	14	Information in electronic health records (EHR) of patients who met the inclusion
, 8 9	15	criteria were extracted from the enterprise data warehouse and included demographic,
0 1	16	comorbidities, clinical, laboratory, and outcome data (death). Demographic and
2 3	17	laboratory data information closest to the time of first SARS-Cov-2 PCR test were kept
4 5 6	18	(except for serum creatinine, multiple values were kept). Serum creatinine laboratory
7 8	19	test results and timestamps within 3 months before and 30 days after the SARS-Cov-2
9 0	20	polymerase chain reaction test were extracted. We categorized ethnic groups other than
1 2 3	21	White, Black, Hispanic, and Asian into a single subgroup. All documented comorbidity
4 5	22	related medical history in MGB healthcare system enterprise data warehouse before the
6 7 8		6
9		

2		
3 4	1	first time of SARS-Cov-2 test were extracted. Preexisting conditions, including
5 6	2	hypertension, diabetes, cardiovascular disease, and heart failure, were classified using
7 8	3	their ICD-9 or ICD-10 codes.
9 10 11	4	
12 13		
14 15	5	Definitions of Outcomes
16 17 18	6	Per the Kidney Disease Improving Global Outcomes (KDIGO) criteria, AKI was
19 20	7	defined as a change in serum creatinine (SCr) of 0.3 mg/dl over a 48-hour period, a
21 22	8	50% increase in baseline creatinine in 7 days, or urine value <0.5 ml/kg/hour for 6
23 24 25	9	hours. ¹² Due to difficulties obtaining accurate urine volumes from electronic health
25 26 27	10	record data, we only use serum creatinine to define AKI events. If patients had more
28 29	11	than 2 SCr tests in their EHR, we used all available SCr tests to define the earliest time.
30 31 32	12	Death times were directly extracted from the data warehouse.
33 34	13	
35		
36 37 38	14	Statistical Analyses
39 40	15	Continuous variables were transformed into categorical variables to improve
41 42 43	16	interpretability of results and account for nonlinear associations. Counts and
43 44 45	17	percentages were presented, and two proportion z-tests were used to compare the
46 47	18	proportion of deaths among AKI and non-AKI patients. For AKI survival analyses,
48 49 50	19	observations without AKI were censored after 30 days, at the time of death, or at
50 51 52	20	5/28/2020, whichever came first. For death survival analyses, observations without
53 54	21	death were censored at 5/28/2020. Multiple multivariable Cox proportional hazards
55 56 57	22	models included age, sex, race, diabetes, cardiovascular disease, hypertension, heart
57 58 50		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 40

BMJ Open

1	
2	
3 4	
5	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20 27	
∠/ 20	
28	
29	
30	
31	
32	
33	
27	
24	
35	
36	
32 33 34 35 36 37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
55	
57	
58	
59	
60	

failure, body mass index (BMI), temperature, heart rate, systolic blood pressure, white 1 blood cell count (WBC), hemoglobin, platelets, C-reactive protein (CRP), ferritin, D-and 2 3 dimer. Given the missing data with respiratory rate interleukin-6 (IL-6) values, we performed exploratory multiple imputation Cox regression analyses. Additional details 4 are in the sensitivity analysis section. 5 6 We next built a simplified Cox model for clinical use by using a stepwise variable 7 selection procedure for Cox models alternating between "forward" and "backwards" steps to identify the first 5 variables to be included.¹³ Simplified Cox models were fit 8 9 using only the selected 5 variables and Harrell's C-Statistics were obtained (survival

selection procedure for Cox models alternating between "forward" and "backwards"
steps to identify the first 5 variables to be included.¹³ Simplified Cox models were fit
using only the selected 5 variables and Harrell's C-Statistics were obtained (survival
outcome). Model coefficient (linear prediction) accuracy was evaluated. We evaluated
area under receive operating characteristic (ROC) curves (AUC) for predicting AKI
within 3 days and death within 30 days of a new COVID-19 diagnosis (binary outcome).
Net reclassification improvement (NRI) of adding all remaining covariates was also
calculated.

Risk scores were obtained by rounding simplified model coefficients for easier 15 16 clinical risk assessment use. For suggested risk score cutoffs, Kaplan-Meier event curves were plotted, log rank tests were performed, and sensitivities, specificities, 17 positive and negative likelihood ratios were calculated. Approximate pre-test to post-test 18 19 probability changes from likelihood ratios were calculated using the linear approximation proposed by McGee.¹⁴ Cutoffs for low risk were chosen so that the negative likelihood 20 ratio would be ≈ 0.20 with a pre- to post-test probability decrease of $\approx 30\%$, while cutoffs 21 22 for high risk were chosen so that the positive likelihood ratio would be ≈5.0 with a pre- to post-test probability increase of $\approx 30\%$ and that at least 15% of patients (560) would be 23

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

identified as high risk.¹⁴We ran 1,000 internal cross validation iterations in which 70% of data were randomly assigned to training, the other 30% to testing. For each iteration, simplified Cox models were fit to the training data, coefficients were rounded to obtain risk scores, and AUC's were calculated using the predicted testing data risk scores. We performed two sensitivity analyses. First, the multivariable cause-specific and subdistribution hazard to documented AKI events within 30 days accounting for the competing risk of death was modeled.¹⁵ Second, we performed a multiple imputation analysis by creating 10 imputation datasets with imputed values for missing respiratory rate and IL-6 and then calculating pooled multivariable Cox hazard ratios.¹⁶ All analyses were performed with R version 4.0.4 and all code for analyses are available online (to be posted during revisions). reliev Results Demographic and Clinical Characteristics There were 3,716 eligible adult COVID-19 positive patients without CKD, of which 1,855 (49.9%) were male. The average age was 58.6 years (SD 19.2 years). There were 696 patients that developed AKI (18.7%) and 249 (35.8%) were within three days of a new COVID-19 diagnosis. There were 347 deaths (9.3%) and 322 (92.8%) were within thirty days of a new COVID-19 diagnosis. Among the AKI group there were 192 deaths (27.6%), and among the non-AKI group there were 155 deaths (5.1%, p<0.001). Patient demographics, preexisting conditions, vital signs, and laboratory values stratified by patients with AKI and patients that died are displayed in **Table 1**.

Page 11 of 40

5

BMJ Open

1	
2	
3	
4	
5	
3 4 5 6 7 8	
7	
, R	
9	
9 10	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
21 22 23 24 25 26 27	
28 29	
29	
30	
30 31 32 33 34 35 36 37	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
53	
54	
55	
56	
57	
58	
59	

Patients with AKI and patients that died were more likely to be older, male, have 1 multiple comorbidities, and have on admission higher temperatures, lower systolic blood 2 3 pressures, higher respiratory rates, elevated white blood cell counts, lower hemoglobin and platelets, and elevated CRP, ferritin, D-dimer, and IL-6 levels. 4

Fully Adjusted Multivariable Regression 6

7 Multivariable Cox regression was performed to identify risk factors associated 8 with time to AKI and death. **Table 2** displays pooled multivariable adjusted hazard ratios. Adjusting for all other variables, older age, increased medical conditions, 9 10 increased temperature, decreased systolic blood pressure, increased white blood cells, decreased platelets, and increased CRP and D-Dimer were associated with increased 11 hazards for both AKI and death. Elevated BMI, decreased hemoglobin, and increased 12 ferritin were associated with increased hazards for AKI but not death. Black and Asian 13 race were associated with decreased hazards and increased heart rate was associated 14 with increased hazards for death but not AKI. 15

16

60

Top Risk Factor/Biomarker Selection 17

The top five variables selected for being most associated with AKI events were 18 hemoglobin, D-dimer, CRP, WBC, and male sex. The top five variables most associated 19 with death were age, CRP, platelets, WBC, and D-Dimer. **Table S1** shows model 20 coefficients and Harrell's C-statistic (survival concordance) from the simplified model 21 using just these selected variables. **Table S2** shows similar results for the fully adjusted 22

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

model. The simplified AKI Cox model had a survival C-statistic of 0.785 (95% CI, 0.769
to 0.800), while the fully adjusted AKI Cox model had a C-statistic of 0.813 (95% CI, 0.798 to 0.827). The simplified death Cox model had a survival C-statistic of 0.857 (95% CI, 0.841 to 0.874), while the fully adjusted death Cox model had a C-statistic of 0.878 (95% CI, 0.863 to 0.892).

Cox model coefficients were used to predict AKI events within 3 days and death within 30 days of a new COVID-19 diagnosis (binary outcomes). Table S1 and Table **S2** also displays AUC's for the simplified and fully adjusted coefficients respectively. For AKI in 3 days, using the simplified coefficients had an AUC of 0.787 (95% CI, 0.759 to 0.814), using the fully adjusted coefficients had an AUC of 0.820 (95% CI, 0.794 to 0.845), and the NRI was 0.041 (95% CI, 0.003 to 0.082). For death in 30 days, using the simplified coefficients had an AUC of 0.872 (95% CI, 0.854 to 0.890), the fully adjusted coefficients had an AUC of 0.893 (95% CI, 0.878 to 0.909), and the NRI was 0.010 (95% CI, -0.007 to 0.029).

16 Risk Score

Model coefficients were rounded to obtain risk score component values for easier
clinical use. Table 3 shows the risk score and internal validation results. For AKI in 3
days, the risk score had an AUC 0.785 (95% Cl, 0.758, 0.813) and a cross validation
AUC of 0.776 (95% Cl, 0.732, 0.816). For death in 30 days, the risk score had an AUC
of 0.861 (95% Cl, 0.843 to 0.878) and a cross validation AUC of 0.860 (95% Cl, 0.831,
0.886). Figure 1A plots ROC curves for using fully adjusted coefficients (from Table S2)

BMJ Open

versus using risk scores (from Table 3) in predicting AKI in 3 days and death in 30
days.
Suggested risk stratification cutoffs were obtained. Table S3 presents sensitivity,
specificity, and positive and negative likelihood ratios for all possible risk score cutoffs.
Table 4 shows suggested risk stratification cutoffs and stratified observed and
estimated event rates. Higher risk scores had higher observed and estimated AKI and
death rates. Figure 1B plots Kaplan Meier event curves of AKI and death events by
simplified risk score categories. Event rates different by risk category for AKI (p<0.001)
and death (p<0.001).
Sensitivity Analysis
We performed a competing risk regression analysis for AKI and death within 30
days. Table S4 displays the multivariable cause-specific and subdistribution hazard
ratios for AKI events. Cause-specific and subdistribution hazard ratio estimates and
confidence intervals were nearly identical. We also performed a multiple imputation
analysis by imputing missing values for respiratory rate and IL-6 to evaluate their
associations. Table S5 shows that results were similar to non-imputation results, and
increased respiratory rate and IL-6 were associated with increased hazards of AKI and
death.
Discussion
12
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 14 of 40

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

2 3	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
16	
17 10	
18 19	
20	
21	
22	
23	
24 25	
25 26	
27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38 39	
39 40	
40 41	
42	
43	
44	
45	
46 47	
47	
49	
50	
51	
52	
53 54	
54 55	
55	
57	
58	
59	
60	

1	In this retrospective study of over 3,700 adult patients without chronic kidney
2	disease diagnosed with COVID-19 through May 2020 in the Boston area, we identified
3	risk factors and biomarkers associated with AKI and death, and we developed and
4	internally validated risk scores for predicting AKI and death. We found about one in five
5	patients developed AKI and one in ten patients died. Increased age, male sex,
6	increased white blood cells, C-reactive protein and D-Dimer and decreased hemoglobin
7	and platelet levels were associated with AKI within 3 days and/or death within 30 days
8	of a new COVID-19 diagnosis. A risk score using just these variables had similar
9	internal accuracy as using all study variables. These results can assist in risk
10	stratification of COVID-19 patients without CKD.
11	Many studies have found markedly increased COVID-19 fatality rates among
12	older people. Studies from China, Spain, and Italy, and a meta-analysis of studies from
13	34 different geographical locations have all found increased case or infection fatality
14	rates among people >60 and >65 years old compared to younger populations. ^{17–20} We
15	similarly observed older age had some of the strongest associations with death. Earlier
16	studies have found various physiologic changes among elderly patients that may
17	contribute to this age-related risk, such as decreased small airway clearance,
18	decreased number of cilia and ciliated cells, and decreased upper airway size. ^{21–23}
19	Other studies have also reported worse COVID-19 outcomes among men. A
20	study of over 3,300 patients in Montefiore Medical Center found male sex was
21	associated with AKI in both COVID-19 positive and negative patients. ⁸ This study also
22	provided a more complete discussion of other animal studies and meta-analyses to date
23	that that have found associations between male sex and AKI in general. Studies of
	13
	For peer review only - http://hmiopen.hmi.com/site/about/quidelines.yhtml

Page 15 of 40

BMJ Open

COVID-19 outcomes from March 2020 in Italy and the US also reported increased
 hospitalization and intensive care unit admission rates among male patients.^{24,25} We
 similarly observed that AKI patients (60.3%) and patients that died (58.2%) were more
 likely to be male (overall 49.9%). However, after adjusting for other demographics,
 medical conditions, vital signs, and laboratory values, we found male sex was
 associated with AKI but not death.

Among laboratory values, C-reactive protein, hemoglobin, white blood cells, D-Dimer, and platelets were significantly associated with AKI and death and were included in risk scores. Although there has been debate about a standard definition for COVID-19 cytokine storm syndrome, patients with C-reactive protein may have excessive immune activation, with C-reactive protein being produced by hepatocytes in response to IL-6 or ferritin.²⁶ Decreased hemoglobin may be reflective of kidney disease with decreased erythropoietin production or directly lead to decreased oxygenation of the kidneys. A study from Korea also found a higher risk of AKI in critically ill patients with a hemoglobin <10.5 g/dL.²⁷ Elevated white blood cell counts may suggest sepsis and be associated with life-threatening organ dysfunction.²⁸ Elevated D-Dimer levels may be indicative of a pro-thrombotic state, and a retrospective study from China found that D-Dimer >2000 ng/mL was associated with increased mortality.²⁹ However D-dimer levels have also been reported to be elevated at baseline in CKD patients,³⁰ so it is possible elevated D-Dimer may only be prognostic in non-CKD patients. Low platelets may also indicate a systemic coagulopathic process that places patients at an increased risk for death.28

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	1	The biomarker IL-6 was found to be a significant risk factor in regression
	2	analyses. However, a substantial proportion of patients in our study were missing IL-6
	3	values (78.3%), so IL-6 was not considered for risk score development. Previous
)	4	studies have found IL-6 cutoffs of 80 and 86 IU/mL to have prognostic value for
<u>2</u> 3 4	5	predicting respiratory failure and death respectively. ^{31,32}
5	6	We proposed risk scores for identifying AKI within 3 days and death within 30
3	7	days of a new COVID-19 diagnosis along with suggested cutoffs. Although risk scores
)	8	still need to be externally validated, being able to identify a few key biomarkers that are
<u>)</u> }	9	widely accessible can help focus chart reviews of new COVID-19 positive patients.
 ;	10	Varying score weights further highlight biomarkers to focus on, such as hemoglobin and
2	11	male sex for AKI, age and platelets for death, and WBC, CRP, and D-Dimer for both.
,))	12	Larger scores directly correlate with worse outcomes and can help shape physician
2	13	gestalt.
, - 	14	We explored death being a competing risk for AKI events as patients with death
) 7 2	15	will not have any more creatinine measurements. Although an AKI does not exclude the
))	16	possibility of death, competing risk analyses can still be performed investigating which
2	17	event type occurs first. ¹⁵ The cause-specific hazards ratios (Cox hazard ratios) describe
} 	18	the rate of AKI events among those still alive and with no previous AKI events, while the
)) 7	19	subdistribution hazard ratios describes the overall rate of AKI events occurring before
3	20	death. In our study both cause-specific and subdistribution hazard ratios were similar.
)	21	Competing risk analyses were not performed for death events as having an AKI does
<u>/</u> }	22	not exclude death.
)		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 40

BMJ Open

	1	Limitations to our study include the following. All results are associational and no
	2	causal effects should be interpreted. Vital and signs and laboratory values were those
	3	closest to COVID-19 diagnosis, and time-varying covariates were not incorporated into
)	4	analyses. As the study was retrospective, selection bias cannot be excluded, and only
<u>)</u> }	5	events within the MGB system were recorded. Our identified risk factors and risk scores
 ;	6	are most applicable during a patient's initial COVID-19 positive test. Patients in the
; 7	7	Boston area may not be reflective of those in other healthcare systems, and the study
))	8	population included only COVID-19 positive patients without CKD. Future work may
<u>)</u>	9	further stratify AKI events by stage, investigate outpatient, hospitalized, and critically ill
} 	10	patients separately, focus on CKD patients, and validate results on a separate cohort.
) j		
3	11	We investigated AKI and death outcomes among adult COVID-19 patients
)	12	without CKD in the Boston area. We identified risk factors and developed and evaluated
<u>)</u>	13	risk assessment tools for identifying COVID-19 patients developing AKI and death.
\$ - :	14	Hemoglobin, D-Dimer, CRP, WBC, and male sex were the strongest predictive
,) ,	15	biomarkers for AKI. Age, CRP, platelets, WBC, and D-Dimer were most predictive for
3	16	death. Our study significantly contributes to epidemiological knowledge of COVID-19
)	17	outcomes and introduces simple tools to assist with rapid risk assessment.
<u>'</u> } L	18	
5	19	Acknowledgements
7	20	Contributors: None
5))	21 22	Funding statement : This work was supported by the National Institutes of Health grant number T32-GM135117 (DL).
<u>)</u> !	23	Competing interests: The authors declare no relevant competing interests.
- - - 	24 25	Authors' contributions: DL and HR drafted the manuscript. HR, PX, DW obtained the data. DL performed the analyses. DL, HR, DJV, PS, QL, and XL contributed to the
, }		16
)		For near review, only, http://bmienen.hmi.com/cite/about/cuidelines.yhtml

design of the study. All authors were involved with interpretation of the data and critical revision and final approval of the article.

Availability of data and materials: Patient data is not available, but requests for surrogate data may be made to the corresponding authors. However, code for all analyses will be available at https://github.com/lin-lab.

Patient and public involvement: Patients were not involved in planning of this project.

Research ethics approval human subjects: The Mass General Brigham Institutional β, ved this electronic hs. Review Board approved this study, and the approval number was 2020P001661. Only deidentified patient electronic health record data were used.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

2			
3	1	Ref	erences
4 5	2	1.	Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem
6	2	1.	findings of patients with COVID-19 in China. <i>Kidney International</i> . 2020;98(1):219-
7	4		227. doi:10.1016/j.kint.2020.04.003
8 9	•		
10	5	2.	Farkash EA, Wilson AM, Jentzen JM. Ultrastructural Evidence for Direct Renal
11	6		Infection with SARS-CoV-2. JASN. 2020;31(8):1683-1687.
12 13	7		doi:10.1681/ASN.2020040432
13	8	3.	Nadim MK, Forni LG, Mehta RL, et al. COVID-19-associated acute kidney injury:
15	9	0.	consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup.
16	10		Nat Rev Nephrol. Published online October 15, 2020. doi:10.1038/s41581-020-
17 18	11		00356-5
19			
20	12	4.	Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult
21 22	13		inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. <i>The Lancet</i> . 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3
22	14		Lancel. 2020,395(10229).1054-1002. doi:10.1010/30140-0730(20)30500-3
24	15	5.	Guan W, Ni Z, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in
25	16		China. N Engl J Med. 2020;382(18):1708-1720. doi:10.1056/NEJMoa2002032
26 27		~	
28	17	6.	Kolhe NV, Fluck RJ, Selby NM, Taal MW. Acute kidney injury associated with
29	18		COVID-19: A retrospective cohort study. Remuzzi G, ed. <i>PLoS Med</i> .
30 31	19		2020;17(10):e1003406. doi:10.1371/journal.pmed.1003406
32	20	7.	Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with
33	21		COVID-19. Kidney International. 2020;98(1):209-218.
34 35	22		doi:10.1016/j.kint.2020.05.006
36	22	8.	Fisher M. Neugerton, J. Bellin, E. et al. AKI in Hegpitalized Defients with and without
37	23 24	0.	Fisher M, Neugarten J, Bellin E, et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. <i>JASN</i> . 2020;31(9):2145-2157.
38	24		doi:10.1681/ASN.2020040509
39 40	_2		
41	26	9.	
42	27		Patients: An Inner City Hospital Experience and Policy Implications. <i>Am J Nephrol.</i>
43 44	28		2020;51(10):786-796. doi:10.1159/000511160
45	29	10	Chan L, Chaudhary K, Saha A, et al. AKI in Hospitalized Patients with COVID-19.
46	30	10.	JASN. 2021;32(1):151-160. doi:10.1681/ASN.2020050615
47 48			, , , ,
48 49	31	11.	Smilowitz NR, Nguy V, Aphinyanaphongs Y, et al. Multiple Biomarker Approach to
50	32		Risk Stratification in COVID-19. <i>Circulation</i> . Published online February 15,
51	33		2021:CIRCULATIONAHA.120.053311.
52 53	34		doi:10.1161/CIRCULATIONAHA.120.053311
54			
55			
56 57			
57			18
50			-

isease 1.
For Cox's ccessed
.0/topics/My.st
):647-650.
Data in the
592.
navirus ses.
lity risk for
20:m4509.
evidence of
Meyerowitz- DVID-19: r <i>J Epidemiol</i> .
obesity and 0(9):2087-
with age.
ghts into 0;32(8):1599-
al

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1 2			
3	1	12	KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Disease
4	2		Improving Global Outcomes; 2012:1-141. Accessed January 8, 2021.
5 6	3		https://linkinghub.elsevier.com/retrieve/pii/S2157171615310388
7			
8	4	13.	Hu F-C. My.stepwise.coxph, Stepwise Variable Selection Procedure For Cox's
9	5		Proportional Hazards Model And Cox's Model. R Documentation. Accessed
10	6		February 23, 2021.
11	7		https://www.rdocumentation.org/packages/My.stepwise/versions/0.1.0/topics/My.
12	8		epwise.coxph
13 14			
15	9	14.	McGee S. Simplifying likelihood ratios. <i>J Gen Intern Med</i> . 2002;17(8):647-650.
16	10		doi:10.1046/j.1525-1497.2002.10750.x
17			
18	11	15.	Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in the
19	12		Presence of Competing Risks. Circulation. 2016;133(6):601-609.
20 21	13		doi:10.1161/CIRCULATIONAHA.115.017719
21		10	Dubin DD Informan and Missing Data, Diametrika, 1076:62(2):E01.E02
23	14	10.	Rubin DB. Inference and Missing Data. <i>Biometrika</i> . 1976;63(3):581-592.
24	15	17	Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus
25	15	17.	disease 2019: a model-based analysis. The Lancet Infectious Diseases.
26	10		2020;20(6):669-677. doi:10.1016/S1473-3099(20)30243-7
27	17		2020,20(0).003-077.001.10.1010/31473-3039(20)30243-7
28 29	18	18	Pastor-Barriuso R, Pérez-Gómez B, Hernán MA, et al. Infection fatality risk for
30	19		SARS-CoV-2 in community dwelling population of Spain: nationwide
31	20		seroepidemiological study. BMJ. Published online November 27, 2020:m4509.
32	21		doi:10.1136/bmj.m4509
33			
34 35	22	19.	Signorelli C, Odone A. Age-specific COVID-19 case-fatality rate: no evidence of
36	23		changes over time. Int J Public Health. 2020;65(8):1435-1436.
37	24		doi:10.1007/s00038-020-01486-0
38			
39	25	20.	Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-
40	26		Katz G. Assessing the age specificity of infection fatality rates for COVID-19:
41 42	27		systematic review, meta-analysis, and public policy implications. Eur J Epidemiol
42 43	28		2020;35(12):1123-1138. doi:10.1007/s10654-020-00698-1
44		~	Martin OF Mathematical Branchall Decision NULThe offering for the structure of the state
45	29	21.	Martin SE, Mathur R, Marshall I, Douglas NJ. The effect of age, sex, obesity and
46	30		posture on upper airway size. European Respiratory Journal. 1997;10(9):2087-
47	31		2090. doi:10.1183/09031936.97.10092087
48	22	າາ	Svertengren M. Long term elegrange from small sinveys degreges with age
49 50	32	۲۲.	Svartengren M. Long-term clearance from small airways decreases with age.
51	33		<i>European Respiratory Journal</i> . 2005;26(4):609-615. doi:10.1183/09031936.05.00002105
52	34		001.10.1183/09031930.03.00002103
53	35	23	Perrotta F, Corbi G, Mazzeo G, et al. COVID-19 and the elderly: insights into
54	36	20.	pathogenesis and clinical decision-making. Aging Clin Exp Res. 2020;32(8):1599
55	30 37		1608. doi:10.1007/s40520-020-01631-y
56 57	57		1000. doi:10.1007/070020 020 01001 y
57 58			19
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5 6	1 2 3	24.	Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. <i>JAMA</i> . 2020;323(16):1574-1581. doi:10.1001/jama.2020.5394
7 8 9 10 11 12	4 5 6 7	25.	Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020. <i>MMWR Morb Mortal Wkly Rep</i> . 2020;69(15):458-464. doi:10.15585/mmwr.mm6915e3
13 14 15 16	8 9 10	26.	Chen LYC, Hoiland RL, Stukas S, Wellington CL, Sekhon MS. Confronting the controversy: interleukin-6 and the COVID-19 cytokine storm syndrome. <i>Eur Respir J</i> . 2020;56(4). doi:10.1183/13993003.03006-2020
17 18 19 20 21	11 12 13	27.	Han SS, Baek SH, Ahn SY, et al. Anemia Is a Risk Factor for Acute Kidney Injury and Long-Term Mortality in Critically III Patients. <i>Tohoku J Exp Med</i> . 2015;237(4):287-295. doi:10.1620/tjem.237.287
22 23 24 25	14 15 16	28.	Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID- 19): A Review. <i>JAMA</i> . 2020;324(8):782. doi:10.1001/jama.2020.12839
26 27 28 29 30	17 18 19	29.	Yao Y, Cao J, Wang Q, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. <i>J Intensive Care</i> . 2020;8. doi:10.1186/s40560-020-00466-z
31 32 33 34	20 21 22	30.	Lindner G, Funk G-C, Pfortmueller CA, et al. D-dimer to Rule Out Pulmonary Embolism in Renal Insufficiency. <i>The American Journal of Medicine</i> . 2014;127(4):343-347. doi:10.1016/j.amjmed.2013.12.003
35 36 37 38	23 24 25	31.	Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. <i>Journal of Allergy and Clinical Immunology</i> . 2020;146(1):128-136. doi:10.1016/j.jaci.2020.05.008
39 40 41 42 43	26 27 28	32.	Laguna-Goya R, Utrero-Rico A, Talayero P, et al. IL-6–based mortality risk model for hospitalized patients with COVID-19. <i>Journal of Allergy and Clinical Immunology</i> . 2020;146(4):799-807.e9. doi:10.1016/j.jaci.2020.07.009
44 45 46	29		
47 48 49 50	30		
51 52 53 54			
55 56 57			
58 59			20
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure Legends

Fig. 1 Receiver Operating Characteristics and Kaplan Meier Event Curves Using Selected Variables.

(A) Receiver operating characteristic (ROC) curves for acute kidney injury (AKI) within 3

- days and death within 30 days using fully adjusted model coefficients and developed
- risk score. Each line represents a different model's predictions with the given variables.
- HGB = Hemoglobin, CRP = C-reactive protein, WBC = white blood cell, PLT = Platelets.
 - ant c. begins at p. (B) Kaplan-Meier event curves for AKI events and death events stratified by AKI and
- death scores. Time begins at positive COVID-19 test.

Page	23	of 40	

Variable, n (%)	AKI	Died	Total
	(n=696)	(n=347)	(n=3,716)
Age (years)			
<45	86 (12.4)	7 (2.0)	980 (26.4)
45-65	245 (35.2)	55 (15.9)	1,310 (35.3
>65	365 (52.4)	285 (82.1)	1,426 (38.4
Sex (Male)	420 (60.3)	202 (58.2)	1,855 (49.9
Race			
White	407 (58.5)	242 (69.7)	2,091 (56.3
Black	110 (15.8)	50 (14.4)	568 (15.3)
Hispanic	22 (3.2)	9 (2.6)	135 (3.6)
Asian	27 (3.9)	8 (2.3)	140 (3.8)
Other	130 (18.7)	38 (11.0)	782 (21.0)
Diabetes	197 (28.3)	87 (25.1)	727 (19.6)
Cardiovascular Disease	67 (9.6)	49 (14.1)	231 (6.2)
Hypertension	135 (19.4)	65 (18.7)	484 (13.0)
Heart Failure	39 (5.6)	38 (11.0)	134 (3.6)
Medical Conditions			
(number)			
0	397 (57.0)	189 (54.5)	2,565 (69.0
1	190 (27.3)	95 (27.4)	811 (21.8)
2	83 (11.9)	47 (13.5)	264 (7.1)
3+	26 (3.7)	16 (4.6)	76 (2.0)
Body Mass Index (kg/m ²)			
<25	165 (23.7)	115 (33.1)	833 (22.4)
25-30	229 (32.9)	110 (31.7)	1,334 (35.9
>30	302 (43.4)	122 (35.2)	1,549 (41.7
Temperature (F)			
97-100.4	423 (60.8)	201 (57.9)	2,745 (73.9
<97	35 (5.0)	22 (6.3)	190 (5.1)
>100.4	238 (34.2)	124 (35.7)	781 (21.0)
Heart Rate (beats/min)		, <u>,</u>	
60-110	576 (82.8)	274 (79.0)	3,194 (86.0
<60	61 (8.8)	30 (8.6)	275 (7.4)
>110	59 (8.5)	43 (12.4)	247 (6.6)
Systolic Blood Pressure			
(mmHg)			
90-180	635 (91.2)	305 (87.9)	3,549 (95.5
<90	48 (6.9)	35 (10.1)	117 (3.1)
>180	13 (1.9)	7 (2.0)	50 (1.3)

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

<20	245 (35.2)	92 (26.5)	1,692 (45.5)
>20	364 (52.3)	202 (58.2)	1,237 (33.3)
NA (Missing)	87 (12.5)	53 (15.3)	787 (21.2)
White Blood Cell (thousand cells/mm ³)			
3.5-11	428 (61.5)	189 (54.5)	2,942 (79.2)
<3.5	39 (5.6)	26 (7.5)	267 (7.2)
>11	229 (32.9)	132 (38.0)	507 (13.6)
Hemoglobin (g/dL)			
12+	201 (28.9)	138 (39.8)	2,250 (60.5)
10-12	204 (29.3)	88 (25.4)	883 (23.8)
<10	291 (41.8)	121 (34.9)	583 (15.7)
Platelets (per µL)			/
>100	643 (92.4)	310 (89.3)	3,600 (96.9)
<100	53 (7.6)	37 (10.7)	116 (3.1)
C-Reactive Protein (mg/L)	, <u>,</u> ,		
<50	197 (28.3)	62 (17.9)	1,706 (45.9)
50-100	149 (21.4)	63 (18.2)	1,011 (27.2)
>100	350 (50.3)	222 (64.0)	999 (26.9)
Ferritin (µg/L)			
<250	105 (15.1)	52 (15.0)	950 (25.6)
250-1000	327 (47.0)	155 (44.7)	1,894 (51.0)
>1000	264 (37.9)	140 (40.3)	872 (23.5)
D-Dimer (ng/mL)			
<1000	136 (19.5)	60 (17.3)	1,726 (46.4)
1000-2000	217 (31.2)	101 (29.1)	1,076 (29.0)
>2000	343 (49.3)	186 (53.6)	914 (24.6)
Interleukin-6 (IU/mL)	• •		
<40	121 (17.4)	26 (7.5)	438 (11.8)
40-80	68 (9.8)	33 (9.5)	137 (3.7)
>80	136 (19.5)	58 (16.7)	196 (5.3)
NA (Missing)	371 (53.3)	230 (66.3)	2,945 (79.3)

AKI = acute kidney injury

Variable	AKI	Death
Age (years)		
<45	Reference	Reference
45-65	1.71 (1.33, 2.21)	5.33 (2.42, 11.
>65	2.16 (1.66, 2.80)	23.4 (10.9, 50.1
Sex (Male)	1.51 (1.28, 1.77)	1.16 (0.92, 1.4
Race		1.10 (0.02, 1.10
White	Reference	Reference
Black	0.89 (0.72, 1.11)	0.66 (0.48, 0.92
	· · · · · · · · · · · · · · · · · · ·	
Hispanic	0.89 (0.58, 1.38)	0.62 (0.32, 1.23
Asian	0.96 (0.65, 1.43)	0.46 (0.22, 0.93
Other	1.11 (0.90, 1.37)	0.72 (0.50, 1.02
Medical Conditions (number)		
0	Reference	Reference
1	1.28 (1.07, 1.53)	1.07 (0.83, 1.38
2	1.67 (1.30, 2.13)	1.40 (1.01, 1.9
3+	1.82 (1.21, 2.75)	1.61 (0.95, 2.73
Body Mass Index (kg/m ²)		
<25	Reference	Reference
25-30	1.09 (0.89, 1.33)	0.78 (0.59, 1.02
>30	1.42 (1.17, 1.74)	0.94 (0.72, 1.22
Temperature (F)		
97-100.4	Reference	Reference
<97	1.07 (0.75, 1.51)	1.18 (0.75, 1.8
>100.4	1.59 (1.34, 1.88)	1.54 (1.22, 1.90
Heart Rate (beats/min)	1100 (110-1, 1100)	
60-110	Reference	Reference
<60	1.24 (0.95, 1.63)	0.97 (0.66, 1.43
>110	1.11 (0.85, 1.47)	1.78 (1.28, 2.48
Systolic Blood Pressure	1.11(0.05, 1.47)	1.70 (1.20, 2.40
5		
(mmHg) 90-180	Boforonco	Deference
	Reference	Reference
<90	1.90 (1.41, 2.57)	2.10 (1.45, 3.04
>180	0.96 (0.55, 1.67)	0.90 (0.42, 1.92
White Blood Cell (thousand		
cells/mm ³)		
3.5-11	Reference	Reference
<3.5	0.78 (0.55, 1.09)	1.10 (0.72, 1.68
>11	1.77 (1.49, 2.12)	2.32 (1.82, 2.9
Hemoglobin (g/dL)		
>12	Reference	Reference
10-12	2.15 (1.75, 2.64)	0.88 (0.67, 1.16
<10	3.72 (3.03, 4.57)	1.03 (0.78, 1.3

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Platelets (per µL) >100	Reference	Reference
<100	1.74 (1.30, 2.34)	2.60 (1.79, 3.77)
C-Reactive Protein (mg/L)		
<50	Reference	Reference
50-100	0.96 (0.77, 1.20)	1.46 (1.02, 2.10)
>100	1.57 (1.29, 1.91)	3.61 (2.65, 4.93)
Ferritin (µg/L)		
<250	Reference	Reference
250-1000	1.29 (1.03, 1.63)	0.91 (0.65, 1.26)
>1000	1.69 (1.31, 2.17)	1.14 (0.80, 1.62)
D-Dimer (ng/mL)		
<1000	Reference	Reference
1000-2000	1.67 (1.33, 2.09)	1.21 (0.87, 1.69)
		- ' '
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000		1.82 (1.31, 2.52)

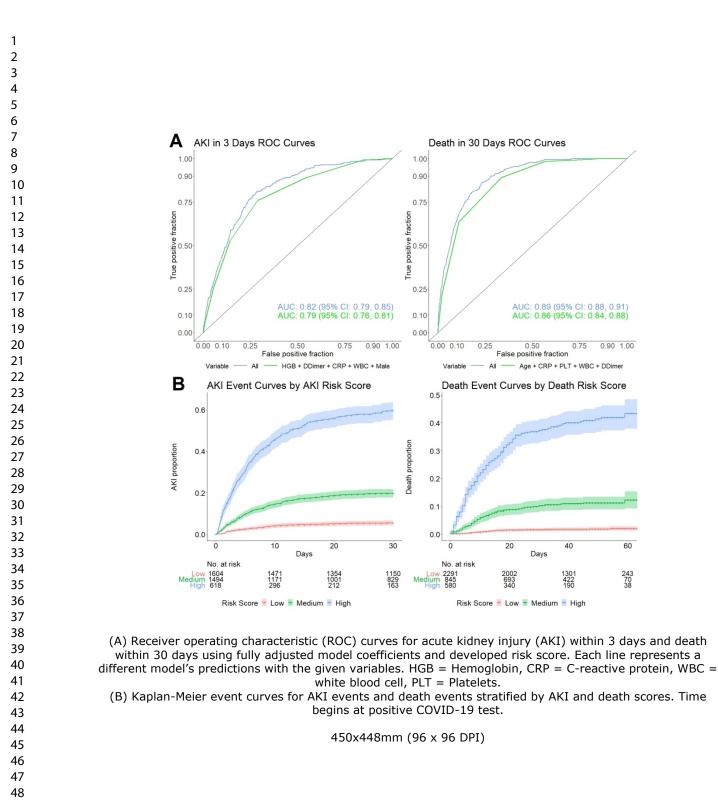
	6)	Death in 30 day	s (max 7)
	Risl	k Score	
Variable	Value	Variable	Valu
lemoglobin <10 g/dL	2	Age > 65 years	3
moglobin 10-12 g/dL	1	Age 45-65 years	2
-Dimer > 1,000 ng/mL	1	CRP > 100 mg/L	1
CRP > 100 mg/L	1	Platelets < 100 per µL	1
BC > 11,000 cells/mm ³	1	WBC > 11,000 cells/mm ³	1
ale Sex	1	D-Dimer > 2,000 ng/mL	1
0	Internal	Validation	
alidation Type	AUC (95%	Validation Type	AUC (
	intervals)		interv
Whole Data	0.785	Whole Data	0.8
(0.	.758, 0.813)		(0.843,
Cross Validation	0.776	Cross Validation	0.8
(0.	.732, 0.816)		(0.831,
Whole data validation presents confidence intervals. Internal cross validation prese percentiles).		the curve (AUC) estimates	
confidence intervals. Internal cross validation prese			
onfidence intervals. Iternal cross validation prese		IC and 95% central interval	
confidence intervals. Internal cross validation prese			
confidence intervals. Internal cross validation prese		IC and 95% central interval	
confidence intervals. Internal cross validation prese		IC and 95% central interval	
confidence intervals. Internal cross validation prese		IC and 95% central interval	
confidence intervals. Internal cross validation prese		IC and 95% central interval	
confidence intervals. Internal cross validation prese		IC and 95% central interval	
confidence intervals. Internal cross validation prese		IC and 95% central interval	
confidence intervals. Internal cross validation prese		IC and 95% central interval	
confidence intervals. Internal cross validation prese		IC and 95% central interval	

26
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http
1 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyr

)	

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright


1	Table 4. Suggested Risk Stratification Cutoffs and Observed and Estimated Event
2	Rates.

AKI Risk Score				
Risk Level	Total Score	Estimated 3	Estimated 30	
		Total AKI (%)	Day AKI (%)	Day AKI (%)
Low Risk	0-1	5.2	1.7	5.4
Moderate Risk	2-3	18.4	6.2	19.7
High Risk	4-6	54.7	21.6	59.7
Death Risk Score				
Risk Level Total Score Observed Estimated 30 Estimated 6				
		Total Death	Day Death (%)	Day Death (%)
		(%)		
Low Risk	0-3	1.7	1.6	2.0
Moderate Risk	4	10.4	10.2	12.3
High Risk	5-7	37.9	37.3	43.4

Observed percentages are from the observed data

e from Kaplan Estimated percentages are from Kaplan-Meier event curves

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

70 38

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplemental Methods – Additional Details

Statistical Analyses

Descriptive statistics and receiver operating characteristics (ROC) were calculated using R base functions. Cox proportional hazards models were fit using the "survival" package. Inspection of AKI and death Kaplan-Meier event curves stratified by each variable revealed no obvious violations of the proportional hazards assumption.

The variable selection procedure was implemented using the "My.stepwise" package. In addition to the variables included in fully adjusted Cox proportional hazards models, age >45 years, medical conditions >1, medical conditions >2, BMI > 25 kg/m², hemoglobin <12 g/dL, CRP > 500 mg/L, ferritin >250 μ g/L, and D-Dimer > 1,000 ng/mL were also included. The package "glmnet" was used to reformat data so that the variable selection procedure could be applied. The selection procedure alternates between "forward" steps of adding variables and "backwards" steps of removing variables. The significance level for entry and for staying was conservatively set at 0.15 as suggested by function details. The top 5 variables (top 6 dummy variables) were included in risk scores. Simplified risk score values were obtained by rounding model coefficients to the nearest integer.

ROC curves were created using "plotROC" and AUC values and confidence intervals were obtained from "pROC". Event curves were created using "survminer" and "mstate". Harrell's C-statistics were obtained from Cox proportional hazards model output, and net reclassification of improvement was obtained from "nricens".

BMJ Open

<text>

Competing risk analyses used the "cmprsk" package, and multiple imputation analyses used the "mice" package. The packages "ggplot2", "dplyr", "plyr", "ggfortify", and "cowplot" were used to process results and create figures. Code for replicating all analyses will be available online.

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Table S1. Coefficients from simplified Cox regression models to calculated and internal validation statistics using these coefficient linear predictions.

AKI		Death		
Simplified Model Coefficients				
Variable	Coefficient Value	Variable	Coefficient Value	
Hemoglobin <10 g/dL	1.50	Age > 65 years	3.19	
Hemoglobin 10-12 g/dL	0.85	Age 45-65 years	1.65	
D-Dimer > 1,000 ng/mL	0.76	CRP > 100 mg/L	1.21	
CRP > 100 mg/L	0.64	Platelets < 100 per µL	1.20	
WBC > 11,000 cells/mm ³	0.59	WBC > 11,000 cells/mm ³	0.87	
Male Sex	0.54	D-Dimer > 2,000 ng/mL	0.58	
Internal Validation				
Statistic	Estimate (95% CI)	Statistic	Estimate (95% CI)	
Harrell's Survival C-	0.785	Harrell's Survival C-	0.857	
Statistic (Concordance)	(0.769, 0.800)	Statistic (Concordance)	(0.841, 0.874)	
AKI in 3 Days AUC	0.787	Death in 30 Days AUC	0.872	
	(0.759, 0.814)		(0.854, 0.890)	

AKI = acute kidney injury, CRP = C-reactive protein, WBC = white blood cells, AUC = area under the curve, CI = confidence interval

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S2. Coefficients from fully adjusted Cox regression models and internal validation statistics using these coefficient linear predictions.

AKI		Death		
	Fully Adjusted M	Nodel Coefficients		
Variable	Coefficient Value	Variable	Coefficient Val	
Age 45-65 years	0.54	Age 45-65 years	1.67	
Age > 65 years	0.77	Age > 65 years	3.15	
Male Sex	0.41	Male Sex	0.14	
Race Black	-0.12	Race Black	-0.41	
Race Hispanic	-0.12	Race Hispanic	-0.47	
Race Asian	-0.04	Race Asian	-0.79	
Race Other	0.11	Race Other	-0.33	
Medical Conditions 1	0.25	Medical Conditions 1	0.07	
Medical Conditions 2	0.51	Medical Conditions 2	0.34	
Medical Conditions 3+	0.60	Medical Conditions 3+	0.48	
BMI 25-30 kg/m ²	0.08	BMI 25-30 kg/m ²	-0.25	
BMI >30 kg/m ²	0.35	BMI >30 kg/m ²	-0.06	
Temp < 97 F	0.06	Temp < 97 F	0.16	
Temp > 100.4 F	0.46	Temp > 100.4 F	0.43	
Heart rate < 60	0.00	Heart rate < 60	-0.03	
beats/min	0.22	beats/min		
Heart rate < 110	0.11	Heart rate < 110	0.58	
beats/min	0.11	beats/min		
SBP < 90 mmHg	0.64	SBP < 90 mmHg	0.74	
SBP > 180 mmHg	-0.04	SBP > 180 mmHg	-0.11	
WBC < 3,500 cells/mm ³	-0.25	WBC < 3,500 cells/mm ³	0.09	
WBC > 11,000 cells/mm ³	0.57	WBC > 11,000 cells/mm ³	0.84	
Hemoglobin <10 g/dL	0.77	Hemoglobin <10 g/dL	-0.13	
Hemoglobin 10-12 g/dL	1.31	Hemoglobin 10-12 g/dL	0.03	
Platelets < 100 per µL	0.56	Platelets < 100 per µL	0.96	
CRP 50-100 mg/L	-0.04	CRP 50-100 mg/L	0.38	
CRP > 100 mg/L	0.45	CRP > 100 mg/L	1.28	
Ferritin 250-1000 µg/L	0.26	Ferritin 250-1000 µg/L	-0.10	
Ferritin >1000 µg/L	0.52	Ferritin >1000 µg/L	0.13	
D-Dimer 1,000-2,000 ng/mL	0.51	D-Dimer 1,000-2,000 ng/mL	0.19	
D-Dimer > 2,000 ng/mL	0.75	D-Dimer > 2,000 ng/mL	0.60	
	Internal	Validation	1	

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
14 15 16 17 18 19 20
18
19
20
21
20 21 22 23 24 25 26 27 28 29
23
24
25 26 27 28 29 30
26
27
28
29
30
31
32
33 24
33 34 35
35 36
30 37
38 39
40
40 41
41
42 43
43 44
44
46
40 47
48
49

Statistic	Estimate (95% CI)	Statistic	Estimate (95% CI)
Harrell's Survival C-	0.813	Harrell's Survival C-	0.878
Statistic (Concordance)	(0.798, 0.827)	Statistic (Concordance)	(0.863, 0.892)
AKI in 3 Days AUC	0.820	Death in 30 Days AUC	0.893
	(0.794, 0.845)		(0.878, 0.909)

to occur cuica only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S3. Sensitivity, specificity, and likelihood ratios (LR) for positive and negative results of risk scores predicting acute kidney injury (AKI) within 3 days and death within 30 days of a positive COVID-19 test.

Cutoff	Sensitivity	Specificity	Positive LR	Negative LR
Simplified AKI Risk Score (max 6)				
		Rule in		
0	1.000	0.000	1.000	NA
1	0.992	0.154	1.170	0.050
2	0.892	0.455	1.640	0.240
3	0.759	0.713	2.640	0.340
4	0.526	0.860	3.750	0.550
5	0.257	0.946	4.770	0.790
6	0.068	0.989	6.400	0.940
7	0.000	1.000	NA	1.000
	Simplified	I Death Risk Sco	re (max 7)	
0	1.000	0.000	1.000	NA
1	1.000	0.156	1.190	0.000
2	0.994	0.233	1.300	0.030
3	0.984	0.433	1.740	0.040
4	0.891	0.665	2.660	0.160
5	0.637	0.890	5.760	0.410
6	0.224	0.978	10.400	0.790
7	0.019	1.000	Inf	0.980
8	0.000	1.000	NA	1.000

Cutoff denotes treating a score greater than or equal a cutoff value as a positive. Positive likelihood ratio (LR) is sensitivity / (1-specificity) Negative likelihood ratio (LR) is (1-sensitivity) / specificity Sensitivity 1 specificity 0 indicates all individuals identified as positive Sensitivity 0 specificity 1 indicates all individuals identified as negative

Approximate probability changes can be obtained by ≈0.18 * ln(LR) (McGee 2002)

Table S4. Multivariable AKI cause-specific hazard (AKI event, death censor) and AKI subdistribution hazard (AKI and death competing risks) model results.

Variable	Cause-Specific	Subdistribution
Age (years)	•	
<45	Reference	Reference
45-65	1.71 (1.33, 2.21)	1.67 (1.31, 2.14)
>65	2.16 (1.66, 2.80)	1.92 (1.48, 2.50)
Sex (Male)	1.51 (1.28, 1.77)	1.53 (1.29, 1.81)
Race		
White	Reference	Reference
Black	0.89 (0.72, 1.11)	0.91 (0.73, 1.14)
Hispanic	0.89 (0.58, 1.38)	0.96 (0.65, 1.41)
Asian	0.96 (0.65, 1.43)	0.97 (0.67, 1.41)
Other	1.11 (0.90, 1.37)	1.13 (0.91, 1.40)
Medical Conditions (number)		
0	Reference	Reference
1	1.28 (1.07, 1.53)	1.27 (1.06, 1.53)
2	1.67 (1.30, 2.13)	1.66 (1.29, 2.12)
3+	1.82 (1.21, 2.75)	1.81 (1.18, 2.77)
Body Mass Index (kg/m ²)		
<25	Reference	Reference
25-30	1.09 (0.89, 1.33)	1.11 (0.90, 1.38)
>30	1.42 (1.17, 1.74)	1.47 (1.19, 1.81)
Temperature (F)		
97-100.4	Reference	Reference
<97	1.07 (0.75, 1.51)	1.03 (0.71, 1.48)
>100.4	1.59 (1.34, 1.88)	1.62 (1.37, 1.91)
Heart Rate (beats/min)		
60-110	Reference	Reference
<60	1.24 (0.95, 1.63)	1.30 (0.98, 1.72)
>110	1.11 (0.85, 1.47)	1.04 (0.78, 1.38)
Systolic Blood Pressure		
(mmHg)		
90-180	Reference	Reference
<90	1.90 (1.41, 2.57)	1.73 (1.28, 2.35)
>180	0.96 (0.55, 1.67)	1.00 (0.55, 1.84)
White Blood Cell (thousand		
cells/mm ³)		
3.5-11	Reference	Reference
<3.5	0.78 (0.55, 1.09)	0.79 (0.56, 1.12)
>11	1.77 (1.49, 2.12)	1.68 (1.39, 2.04)
Hemoglobin (g/dL)		
>12	Reference	Reference
10-12	2.15 (1.75, 2.64)	2.27 (1.83, 2.81)

	3.72 (3.03, 4.57)	3.94 (3.17, 4.90)
Platelets (per µL)		
>100	Reference	Reference
<100	1.74 (1.30, 2.34)	1.63 (1.19, 2.24)
C-Reactive Protein (mg/L)	\$ - F	
<50	Reference	Reference
50-100	0.96 (0.77, 1.20)	0.94 (0.76, 1.18)
>100	1.57 (1.29, 1.91)	1.48 (1.20, 1.82)
Ferritin (µg/L)		
<250	Reference	Reference
250-1000	1.29 (1.03, 1.63)	1.33 (1.05, 1.69)
>1000	1.69 (1.31, 2.17)	1.70 (1.31, 2.21)
D-Dimer (ng/mL)		
<1000	Reference	Reference
1000-2000	1.67 (1.33, 2.09)	1.70 (1.36, 2.13)
>2000	2.11 (1.68, 2.65)	2.07 (1.63, 2.63)

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

Variable	AKI	Death
Age (years)		
<45	Reference	Reference
45-65	1.58 (1.22, 2.04)	4.60 (2.07, 10.3)
>65	1.86 (1.43, 2.43)	18.3 (8.47, 39.6)
Sex (Male)	1.42 (1.20, 1.68)	1.05 (0.83, 1.33)
Race		
White	Reference	Reference
Black	0.87 (0.69, 1.08)	0.65 (0.47, 0.89)
Hispanic	0.97 (0.63, 1.50)	0.66 (0.33, 1.32)
Asian	0.92 (0.61, 1.38)	0.39 (0.19, 0.80)
Other	1.05 (0.85, 1.30)	0.67 (0.47, 0.96)
Medical Conditions (number)		
	Reference	Reference
	1.32 (1.10, 1.58)	1.07 (0.82, 1.39)
2	1.62 (1.25, 2.09)	1.33 (0.94, 1.89)
3+	1.88 (1.24, 2.87)	1.62 (0.94, 2.79)
Body Mass Index (kg/m ²)		
<25	Reference	Reference
25-30	1.10 (0.90, 1.36)	0.81 (0.61, 1.07)
>30	1.33 (1.09, 1.63)	0.86 (0.65, 1.13)
Temperature (F)		
97-100.4	Reference	Reference
<97	0.95 (0.66, 1.36)	1.11 (0.69, 1.77)
>100.4	1.40 (1.18, 1.66)	1.40 (1.09, 1.81)
Heart Rate (beats/min)		
60-110	Reference	Reference
<60	1.13 (0.86, 1.48)	0.86 (0.58, 1.30)
>110	0.98 (0.74, 1.31)	1.41 (0.95, 2.08)
Systolic Blood Pressure		
(mmHg)		
90-180	Reference	Reference
<90	1.74 (1.28, 2.37)	1.76 (1.19, 2.60)
>180	1.22 (0.68, 2.19)	1.16 (0.52, 2.55)
Respiratory Rate (per minute)		
<20	Reference	Reference
>20	1.72 (1.45, 2.03)	1.98 (1.53, 2.55)
White Blood Cell (thousand		
cells/mm ³)		
3.5-11	Reference	Reference
<3.5	0.81 (0.58, 1.15)	1.25 (0.81, 1.95)
>11	1.61 (1.34, 1.93)	1.95 (1.52, 2.51)
Hemoglobin (g/dL)		
		•

1	a	9
1		
1		
2		
3		
4		
5		
6		
7 8		
9		
1	0	
1	1	
1	2 3	
1	3	
1	4	
1	5	
1	6	
1	7	
1	7 8	
1	б с	
1	9	
2	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3	1 2	
2	3	
2	4	
כ כ	5	
	6	
3		
-	8	
	9	
	0	
4		
4		
4	-	
	4	
4		
4		
4	7	
4	8	
4	9	
5	0	
	1	
5		
5		
	4	
_	5	
	6	
5		
5	/	

60

>12	Reference	Reference
10-12	2.02 (1.64, 2.49)	0.81 (0.60, 1.09)
<10	3.31 (2.68, 4.08)	0.86 (0.65, 1.14)
Platelets (per µL)		
>100	Reference	Reference
<100	1.85 (1.37, 2.49)	2.51 (1.72, 3.68)
C-Reactive Protein (mg/L)		
<50	Reference	Reference
50-100	0.99 (0.79, 1.24)	1.60 (1.10, 2.33)
>100	1.47 (1.20, 1.80)	3.18 (2.32, 4.37)
Ferritin (µg/L)		
<250	Reference	Reference
250-1000	1.18 (0.93, 1.50)	0.77 (0.54, 1.12)
>1000	1.48 (1.14, 1.91)	0.89 (0.60, 1.32)
D-Dimer (ng/mL)		
<1000	Reference	Reference
1000-2000	1.59 (1.27, 2.00)	1.16 (0.82, 1.63)
>2000	2.03 (1.60, 2.57)	1.73 (1.23, 2.44)
Interleukin-6 (IU/mL)		
<40	Reference	Reference
40-80	1.39 (1.03, 1.86)	2.75 (1.80, 4.21)
>80	1.91 (1.50, 2.43)	3.07 (2.01, 4.69)

Pooled hazard ratios calculated using 10 different imputation datasets with imputed values for missing respiratory rate and IL-6.

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			1
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	5
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
-		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7-8
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, explain how loss to follow-up was addressed	7-8
		(<i>e</i>) Describe any sensitivity analyses	7-8
Dagulta			
Results Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
1 articipants	15	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9
Descriptive data	17	and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11- 12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12- 14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	15
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15
-		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	16
-		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Risk Assessment for Acute Kidney Injury and Death among New COVID-19 Positive Adult Patients without Chronic Kidney Disease

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053635.R1
Article Type:	Original research
Date Submitted by the Author:	06-Nov-2021
Complete List of Authors:	Li, Daniel; Harvard University T H Chan School of Public Health; Johns Hopkins School of Medicine Ren, Hui; Harvard Medical School, Department of Radiology Varelmann, Dirk J.; Brigham and Women's Hospital, Department of Anesthesiology Sarin, Pankaj; Brigham and Women's Hospital, Department of Anesthesiology Xu, Pengcheng; Harvard Medical School, Department of Radiology Wu, Dufan; Harvard Medical School, Department of Radiology Li, Quanzheng; Harvard Medical School, Department of Radiology Lin, Xihong; Harvard University T H Chan School of Public Health, Department of Biostatistics; Harvard University, Department of Statistics
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Research methods, Health informatics
Keywords:	COVID-19, EPIDEMIOLOGY, STATISTICS & RESEARCH METHODS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1

2		
3 4	1	Title Page
5	2	
6	3	Risk Assessment for Acute Kidney Injury and Death among New COVID-19
7 8	4	Positive Adult Patients without Chronic Kidney Disease: Retrospective Cohort
9	5	Study among 3 US Hospitals
10	6	
11 12	7	Short Title: AKI and Death among COVID-19 Patients without CKD
13	8	
14	9	Daniel Li, MD, MA, ^{1,2*} Hui Ren, MD, PhD, MPH ^{3*} Dirk J. Varelmann, MD, ⁴ Pankaj Sarin,
15 16	10 11	MD, ⁴ Pengcheng Xu, BS, ³ Dufan Wu, PhD, ³ Quanzheng Li, PhD, ^{3**} Xihong Lin, PhD ^{1,5,6**}
17	11	
18 19	12	*Contributed equally, co-first authorship
20 21	13	¹ Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA.
22	14	² Johns Hopkins University School of Medicine, Baltimore MD.
23 24	15	³ Department of Radiology, Massachusetts General Hospital and Harvard Medical
25	16	School, Boston MA.
26 27	17	⁴ Department of Anesthesiology, Brigham and Women's Hospital, Boston MA.
28 29	18	⁵ Department of Statistics, Harvard University, Cambridge MA.
30	19	⁶ Broad Institute of MIT and Harvard, Cambridge, MA.
31 32	20	
33	21	**Correspondence: Xihong Lin, Quanzheng Li
34 35	22	Department of Biostatistics
36 37	23	655 Huntington Ave
38	24	Building II, Room 419
39 40	25	Boston, MA 02115
41 42	26	Telephone: 617 432 2914
43	27	Fax: 617 432 5619
44 45	28	Email: xlin@hsph.harvard.edu, li.quanzheng@mgh.harvard.edu
46 47	29	
48	30	Abstract 277 words; Main Text 3,138 words; References 32; Tables 4; Figures 1;
49 50	31	Appendix Tables 5
51		
52		
53 54		
55		
56 57		
57 58		1
50		· · · · · · · · · · · · · · · · · · ·

Page 3 of 41

BMJ Open

1 2		
3 4	1	Abstract
5 6 7	2	Objective: To develop simple but clinically informative risk stratification tools using a
8 9	3	few top demographic factors and biomarkers at COVID-19 diagnosis to predict acute
10 11 12	4	kidney injury (AKI) and death.
13 14 15	5	Design: Retrospective cohort analysis, follow-up from February 1 through May 28,
16 17	6	2020.
18 19 20	7	Setting: 3 teaching hospitals, 2 urban and 1 community-based in the Boston area.
21 22 23	8	Participants: Eligible patients were at least 18 years old, tested COVID-19 positive
24 25	9	from February 1 through May 28, 2020, and had at least two serum creatinine
26 27 28	10	measurements within 30 days of a new COVID-19 diagnosis. Exclusion criteria were
29 30	11	having CKD or having a previous AKI within 3 months of a new COVID-19 diagnosis.
31 32 33	12	Main Outcomes and Measures: Time from new COVID-19 diagnosis until AKI event,
34 35 36	13	time until death event.
37 38	14	Results: Among 3,716 patients, there were 1,855 (49.9%) males and the average age
39 40	15	was 58.6 years (SD 19.2 years). Age, sex, white blood cell, hemoglobin, platelet, C-
41 42 43	16	reactive protein, and D-dimer levels were most strongly associated with AKI and/or
44 45	17	death. We created risk scores using these variables predicting AKI within 3 days and
46 47	18	death within 30 days of a new COVID-19 diagnosis. Area under the curve (AUC) for
48 49 50	19	predicting AKI within 3 days was 0.785 (95% CI, 0.758 to 0.813) and AUC for death
50 51 52	20	within 30 days was 0.861 (95% CI, 0.843 to 0.878). Hemoglobin was the most predictive
53 54	21	component for AKI, and age the most predictive for death. Predictive accuracies using
55 56 57	22	all study variables were similar to using the simplified scores.
57 58 59		2

1 2		
2 3 4	1	Conclusion: Simple risk scores using age, sex, a complete blood cell count, C-reactive
5 6	2	protein, and D-dimer were highly predictive of AKI and death and can help simplify and
7 8 9	3	better inform clinical decision making.
9 10 11 12	4	Key words: COVID-19; kidney injury; risk prediction
13 14 15	5	
16 17 18	6	Strengths and limitations of this study
19 20	7	 Various associations between patient variables and COVID-19 acute kidney
21 22 23	8	injury AKI and death have been reported, but it is unclear which variables are
24 25	9	most predictive and important to focus on.
26 27 28	10	We developed risk scores for predicting AKI and death among new COVID-19
28 29 30	11	positive patients.
31 32	12	Readily obtainable demographic, vital sign, and laboratory values were
33 34 35	13	considered evaluated.
36 37 38	14	 Findings are limited to patients without chronic kidney disease.
38 39 40	15	
41 42		
43 44 45		
43 46 47		
48 49		
50		
51 52		
53 54		
55 56		
57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 41

BMJ Open

Although respiratory failure and diffuse inflammatory lung tissue damage are key features of coronavirus disease 2019 (COVID-19), involvement of other organs such as the kidneys has been well documented. Pathologic autopsy examinations of COVID-19 kidneys have shown clusters of coronavirus-like particles in the tubular epithelium and podocytes, upregulation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme 2 and positive immunostaining with SARS-CoV-2 nucleoprotein antibodies.^{1,2} Hemodynamic instability, systemic hypoxia, abnormal coagulation, and inflammation from severe COVID-19 can also directly contribute to acute kidney injury (AKI) and induce acute tubular necrosis.³ Various epidemiologic studies from China, Europe, and the United States have investigated AKI outcomes among COVID-19 patients. Early studies in China have reported AKI incidences ranging from 0.5-15% among hospitalized and outpatient COVID-19 patients.^{4,5} One United Kingdom study found hospitalized COVID-19 patients with AKI had a 3-fold higher odds of death than those without AKI.⁶ Large US population studies of hospitalized COVID-19 patients, primarily in the New York City metropolitan area, have reported AKI incidences ranging from 27-57%, with in-hospital mortality rates ranging from 35-71% among AKI COVID-19 patients.⁷⁻¹⁰ Some of these studies have also explored variable associations with COVID-19 AKI, but none of these studies have investigated which subset of these variables are most predictive of AKI or built risk predictions models using demographic variables and biomarkers. Risk prediction tools have been investigated for COVID-19 deaths. A small

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Risk prediction tools have been investigated for COVID-19 deaths. A small
 number of a priori determined biomarkers were investigated for their associations with

Page 6 of 41

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

the risk of COVID-19 death.¹¹ However, a more data driven approach would compare
the predictive accuracies of these biomarkers to other biomarkers and variables such as
demographic factors and vital signs and build a more powerful risk prediction model
using a comprehensive set of biomarkers, demographic variables, and vital signs.
Different risk factors should also be weighted differently, and understanding the relative
importance of different variables in predicting poor outcomes will allow for more
accurate holistic patient evaluations.

In this study we developed and evaluated new risk assessment tools that can be easily implemented at the bedside or during chart reviews to predict AKI and death after a positive COVID-19 test. Our contributions include (1) identifying the top biomarkers and demographic variables that predict AKI events among COVID-19 patients, (2) investigating a greater number of potential biomarkers and risk factors in predicting death, (3) developing clinical risk assessment tools for both AKI and death using a small number of predictors, and (4) validating that these tools are nearly as predictive as using all available study variables. By understanding which subset of risk factors are most important to focus on, medical providers can more efficiently work up and risk stratify their newly diagnosed COVID-19 patients.

- - 19 Methods

20 Study Population

The Mass General Brigham (MGB) Health system serves a large diverse patient population around Boston and Eastern Massachusetts. Electronic health records from

BMJ Open

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	
21	
22	
23	
24	
22 23 24 25	
26	
26 27	
28	
20 29	
29	
30	
31	
32	
32 33 34	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5 0	
50 51	
51 52	
53	
54	
55	
56	
57	
58	
59	

60

three major hospitals in this system (Massachusetts General Hospital in Boston, 1 2 Brigham and Women's Hospital in Boston, and Newton-Wellesley Hospital in Newton) 3 were used. The Mass General Brigham Institutional Review Board approved this study. and the approval number was 2020P001661. Patients and the public were not involved 4 in the planning of this project. 5 6 We included all patients that 1) were at least 18 years old, 2) tested COVID-19 7 positive at one of the three hospitals above between February 1, 2020 through May 28, 2020, and 3) had at least 2 serum creatinine tests within 30 days of their SARS-Cov-2 8 9 PCR test. We excluded patients that 1) met the criteria of acute kidney injury within 3 months before their SARS-CoV-2 test and 2) had chronic kidney disease (CKD) 10 identified as a preexisting condition from International Classification of Disease (ICD-9 11 . Lev and ICD-10) codes (see below). 12 13 Data Collection 14 Information in electronic health records (EHR) of patients who met the inclusion 15 criteria were extracted from the enterprise data warehouse and included demographic, 16 comorbidities, clinical, laboratory, and outcome data (death). Demographic and 17 laboratory data information closest to the time of first SARS-Cov-2 PCR test were kept 18 (except for serum creatinine, multiple values were kept). Serum creatinine laboratory 19 test results and timestamps within 3 months before and 30 days after the SARS-Cov-2 20 21 polymerase chain reaction test were extracted. We categorized ethnic groups other than White, Black, Hispanic, and Asian into a single subgroup. All documented comorbidity 22

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

2	
2	
ر ۸	
4	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33 34 35 36 37	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

related medical history in MGB healthcare system enterprise data warehouse before the
first time of SARS-Cov-2 test were extracted. Preexisting conditions, including
hypertension, diabetes, cardiovascular disease, and heart failure, were classified using
their ICD-9 or ICD-10 codes.

Definitions of Outcomes

Per the Kidney Disease Improving Global Outcomes (KDIGO) criteria, AKI was
defined as a change in serum creatinine (SCr) of 0.3 mg/dl over a 48-hour period, a
50% increase in baseline creatinine in 7 days, or urine value <0.5 ml/kg/hour for 6
hours.¹² Due to difficulties obtaining accurate urine volumes from electronic health
record data, we only use serum creatinine to define AKI events. If patients had more
than 2 SCr tests in their EHR, we used all available SCr tests to define the earliest time.
Death times were directly extracted from the data warehouse.

14

5

6

15 Statistical Analyses

Continuous variables were transformed into categorical variables to improve interpretability of results and account for nonlinear associations. Counts and percentages were presented, and two proportion z-tests were used to compare the proportion of deaths among AKI and non-AKI patients. For AKI survival analyses, observations without AKI were censored after 30 days, at the time of death, or at 5/28/2020, whichever came first. For death survival analyses, observations without death were censored at 5/28/2020. Multiple multivariable Cox proportional hazards Page 9 of 41

BMJ Open

models included age, sex, race, diabetes, cardiovascular disease, hypertension, heart
failure, body mass index (BMI), temperature, heart rate, systolic blood pressure, white
blood cell count (WBC), hemoglobin, platelets, C-reactive protein (CRP), ferritin, D-and
dimer. Respiratory rate and interleukin-6 (IL-6) variables were not included in primary
analyses given missing data. However, we performed exploratory analyses imputing the
missing respiratory rate and IL-6 values (additional details are in the sensitivity analysis
section).

We next built a simplified Cox model for clinical use by using a stepwise variable selection procedure for Cox models alternating between "forward" and "backwards" steps to identify the first 5 variables to be included.¹³ Simplified Cox models were fit using only the selected 5 variables and Harrell's C-Statistics were obtained (survival outcome). Model coefficient (linear prediction) accuracy was evaluated. We evaluated area under receive operating characteristic (ROC) curves (AUC) for predicting AKI within 3 days and death within 30 days of a new COVID-19 diagnosis (binary outcome). Net reclassification improvement (NRI) of adding all remaining covariates was also calculated.

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Risk scores were obtained by rounding simplified model coefficients for easier
 clinical risk assessment use. For suggested risk score cutoffs, Kaplan-Meier event
 curves were plotted, log rank tests were performed, and sensitivities, specificities,
 positive and negative likelihood ratios were calculated. Approximate pre-test to post-test
 probability changes from likelihood ratios were calculated using the linear approximation
 proposed by McGee.¹⁴ Cutoffs for low risk were chosen so that the negative likelihood
 ratio would be ≈0.20 with a pre- to post-test probability decrease of ≈30%, while cutoffs

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

for high risk were chosen so that the positive likelihood ratio would be ≈ 5.0 with a pre- to post-test probability increase of $\approx 30\%$ and that at least 15% of patients (560) would be identified as high risk.¹⁴ We ran 1,000 internal cross validation iterations in which 70% of data were randomly assigned to training, the other 30% to testing. For each iteration, simplified Cox models were fit to the training data, coefficients were rounded to obtain risk scores, and AUC's were calculated using the predicted testing data risk scores. We performed three sensitivity analyses. First, the multivariable cause-specific and subdistribution hazard to documented AKI events within 30 days accounting for the competing risk of death was modeled.¹⁵ Second, we performed a multiple imputation analysis by creating 10 imputation datasets with imputed values for missing respiratory rate and IL-6 and then calculating pooled multivariable Cox hazard ratios.¹⁶ Third, we investigated the AKI risk score accuracy in identifying stage 2 or 3 AKI as defined in the KDIGO criteria, and we investigated the death score accuracy among patients with stage 2 or 3 AKI.¹² All analyses were performed with R version 4.0.4 and all code for analyses are available online (to be posted during revisions). Results Demographic and Clinical Characteristics There were 3,716 eligible adult COVID-19 positive patients without CKD, of which 1,855 (49.9%) were male. The average age was 58.6 years (SD 19.2 years). There were 696 patients that developed AKI (18.7%) and 249 (35.8%) were within three days of a new COVID-19 diagnosis. There were 347 deaths (9.3%) and 322 (92.8%)

were within thirty days of a new COVID-19 diagnosis. Among the AKI group there were 192 deaths (27.6%), and among the non-AKI group there were 155 deaths (5.1%, p<0.001). Patient demographics, preexisting conditions, vital signs, and laboratory values stratified by patients with AKI and patients that died are displayed in Table 1. Patients with AKI and patients that died were more likely to be older, male, have multiple comorbidities, and have on admission higher temperatures, lower systolic blood pressures, higher respiratory rates, elevated white blood cell counts, lower hemoglobin and platelets, and elevated CRP, ferritin, D-dimer, and IL-6 levels. Fully Adjusted Multivariable Regression Multivariable Cox regression was performed to identify risk factors associated with time to AKI and death. **Table 2** displays pooled multivariable adjusted hazard ratios. Adjusting for all other variables, older age, increased medical conditions, increased temperature, decreased systolic blood pressure, increased white blood cells, decreased platelets, and increased CRP and D-Dimer were associated with increased hazards for both AKI and death. Elevated BMI, decreased hemoglobin, and increased ferritin were associated with increased hazards for AKI but not death. Black and Asian race were associated with decreased hazards and increased heart rate was associated with increased hazards for death but not AKI. Top Risk Factor/Biomarker Selection

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

The top five variables selected for being most associated with AKI events were hemoglobin, D-dimer, CRP, WBC, and male sex. The top five variables most associated with death were age, CRP, platelets, WBC, and D-Dimer. Table S1 shows model coefficients and Harrell's C-statistic (survival concordance) from the simplified model using just these selected variables. **Table S2** shows similar results for the fully adjusted model. The simplified AKI Cox model had a survival C-statistic of 0.785 (95% CI, 0.769 to 0.800), while the fully adjusted AKI Cox model had a C-statistic of 0.813 (95% CI, 0.798 to 0.827). The simplified death Cox model had a survival C-statistic of 0.857 (95% CI, 0.841 to 0.874), while the fully adjusted death Cox model had a C-statistic of 0.878 (95% CI, 0.863 to 0.892). Cox model coefficients were used to predict AKI events within 3 days and death within 30 days of a new COVID-19 diagnosis (binary outcomes). Table S1 and Table **S2** also displays AUC's for the simplified and fully adjusted coefficients respectively. For AKI in 3 days, using the simplified coefficients had an AUC of 0.787 (95% CI, 0.759 to 0.814), using the fully adjusted coefficients had an AUC of 0.820 (95% CI, 0.794 to 0.845), and the NRI was 0.041 (95% CI, 0.003 to 0.082). For death in 30 days, using the simplified coefficients had an AUC of 0.872 (95% CI, 0.854 to 0.890), the fully adjusted coefficients had an AUC of 0.893 (95% CI, 0.878 to 0.909), and the NRI was 0.010 (95% CI, -0.007 to 0.029). **Risk Score**

Page 13 of 41

BMJ Open

Model coefficients were rounded to obtain risk score component values for easier clinical use. **Table 3** shows the risk score and internal validation results. For AKI in 3 days, the risk score had an AUC 0.785 (95% CI, 0.758, 0.813) and a cross validation AUC of 0.776 (95% CI, 0.732, 0.816). For death in 30 days, the risk score had an AUC of 0.861 (95% CI, 0.843 to 0.878) and a cross validation AUC of 0.860 (95% CI, 0.831, 0.886). Figure 1A plots ROC curves for using fully adjusted coefficients (from Table S2) versus using risk scores (from **Table 3**) in predicting AKI in 3 days and death in 30 days. Suggested risk stratification cutoffs were obtained. Table S3 presents sensitivity, specificity, and positive and negative likelihood ratios for all possible risk score cutoffs.
 Table 4 shows suggested risk stratification cutoffs and stratified observed and
 estimated event rates. Higher risk scores had higher observed and estimated AKI and death rates. Figure 1B plots Kaplan Meier event curves of AKI and death events by simplified risk score categories. Event rates different by risk category for AKI (p<0.001) and death (p < 0.001). Sensitivity Analysis We performed a competing risk regression analysis for AKI and death within 30 days. Table S4 displays the multivariable cause-specific and subdistribution hazard ratios for AKI events. Cause-specific and subdistribution hazard ratio estimates and confidence intervals were nearly identical. We also performed a multiple imputation analysis by imputing missing values for respiratory rate and IL-6 to evaluate their

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

associations. **Table S5** shows that results were similar to non-imputation results, and increased respiratory rate and IL-6 were associated with increased hazards of AKI and death.

Of the 696 patients with an AKI event, 580 had a stage 1 AKI (83.3%), 29 had
stage 2 (4.2%), and 87 had stage 3 (12.5%). Of the 117 patients with stage 2 or 3 AKI,
there were 39 deaths (33.6%). In predicting stage 2 or 3 AKI as a single composite
outcome among all 3,716 patients, the AKI risk score in **Table 3** had an AUC of 0.850
(95% CI, 0.819 to 0.881). In predicting death among the 117 patients with stage 2 or 3
AKI, the death risk score in **Table 3** had an AUC of 0.758 (95% CI, 0.671 to 0.846).

Discussion

In this retrospective study of over 3,700 adult patients without chronic kidney disease diagnosed with COVID-19 through May 2020 in the Boston area, we identified risk factors and biomarkers associated with AKI and death, and we developed and internally validated risk scores for predicting AKI and death. We found about one in five patients developed AKI and one in ten patients died. Increased age, male sex, increased white blood cells, C-reactive protein and D-Dimer and decreased hemoglobin and platelet levels were associated with AKI within 3 days and/or death within 30 days of a new COVID-19 diagnosis. A risk score using just these variables had similar internal accuracy as using all study variables. These results can assist in risk stratification of COVID-19 patients without CKD.

Page 15 of 41

BMJ Open

1	
2	
3	
4	
5	
6 7	
7	
8 9	
9 10	
10 11	
12 13	
14	
15	
16	
14 15 16 17	
18	
19	
20	
21	
22	
22 23	
24	
25 26	
26 27	
27	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Many studies have found markedly increased COVID-19 fatality rates among
2	older people. Studies from China, Spain, and Italy, and a meta-analysis of studies from
3	34 different geographical locations have all found increased case or infection fatality
4	rates among people >60 and >65 years old compared to younger populations. ^{17–20} We
5	similarly observed older age had some of the strongest associations with death. Earlier
6	studies have found various physiologic changes among elderly patients that may
7	contribute to this age-related risk, such as decreased small airway clearance,
8	decreased number of cilia and ciliated cells, and decreased upper airway size. ^{21–23}
9	Other studies have also reported worse COVID-19 outcomes among men. A
10	study of over 3,300 patients in Montefiore Medical Center found male sex was
11	associated with AKI in both COVID-19 positive and negative patients.8 This study also
12	provided a more complete discussion of other animal studies and meta-analyses to date
13	that that have found associations between male sex and AKI in general. Studies of
14	COVID-19 outcomes from March 2020 in Italy and the US also reported increased
15	hospitalization and intensive care unit admission rates among male patients. ^{24,25} We
16	similarly observed that AKI patients (60.3%) and patients that died (58.2%) were more
17	likely to be male (overall 49.9%). However, after adjusting for other demographics,
18	medical conditions, vital signs, and laboratory values, we found male sex was
19	associated with AKI but not death.
20	Among laboratory values, C-reactive protein, hemoglobin, white blood cells, D-
21	Dimer, and platelets were significantly associated with AKI and death and were included
22	in risk scores. Although there has been debate about a standard definition for COVID-
23	19 cytokine storm syndrome, patients with C-reactive protein may have excessive

14

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

immune activation, with C-reactive protein being produced by hepatocytes in response to IL-6 or ferritin.²⁶ Decreased hemoglobin may be reflective of kidney disease with decreased erythropoietin production or directly lead to decreased oxygenation of the kidneys. A study from Korea also found a higher risk of AKI in critically ill patients with a hemoglobin <10.5 g/dL.²⁷ Elevated white blood cell counts may suggest sepsis and be associated with life-threatening organ dysfunction.²⁸ Elevated D-Dimer levels may be indicative of a pro-thrombotic state, and a retrospective study from China found that D-Dimer >2000 ng/mL was associated with increased mortality.²⁹ However D-dimer levels have also been reported to be elevated at baseline in CKD patients.³⁰ so it is possible elevated D-Dimer may only be prognostic in non-CKD patients. Low platelets may also indicate a systemic coagulopathic process that places patients at an increased risk for death.28 The biomarker IL-6 was found to be a significant risk factor in regression analyses. However, a substantial proportion of patients in our study were missing IL-6 values (78.3%), so IL-6 was not considered for risk score development. IL-6 measurements were obtained at physician discretion and were likely reserved for severe cases. This may have also contributed to the missingness profile of IL-6. Previous studies have found IL-6 cutoffs of 80 and 86 IU/mL to have prognostic value for predicting respiratory failure and death respectively.^{31,32}

We proposed risk scores for identifying AKI within 3 days and death within 30 days of a new COVID-19 diagnosis along with suggested cutoffs. Although risk scores still need to be externally validated, being able to identify a few key biomarkers that are widely accessible can help focus chart reviews of new COVID-19 positive patients.

1 2		
2 3 4	1	Varying score weights further highlight biomarkers to focus on, such as hemoglobin and
5 6	2	male sex for AKI, age and platelets for death, and WBC, CRP, and D-Dimer for both.
7 8 9	3	Larger scores directly correlate with worse outcomes and can help shape physician
10 11	4	gestalt.
12 13 14	5	We explored death being a competing risk for AKI events as patients with death
15 16	6	will not have any more creatinine measurements. Although an AKI does not exclude the
17 18 19	7	possibility of death, competing risk analyses can still be performed investigating which
20 21	8	event type occurs first. ¹⁵ The cause-specific hazards ratios (Cox hazard ratios) describe
22 23	9	the rate of AKI events among those still alive and with no previous AKI events, while the
24 25	10	subdistribution hazard ratios describes the overall rate of AKI events occurring before
26 27 28	11	death. In our study both cause-specific and subdistribution hazard ratios were similar.
29 30	12	Competing risk analyses were not performed for death events as having an AKI does
31 32 33	13	not exclude death.
34 35	14	We also explored a subgroup of patients which developed stage 2 or 3 AKI. Our
36 37 38	15	AKI risk score also performed well in identifying patients who developed stage 2 or 3
39 40	16	AKI, suggesting higher risk scores also correlate with developing a higher stage AKI.
41 42	17	Among patients who developed stage 2 or 3 AKI, the death risk score AUC had a larger
43 44	18	confidence interval likely because of the smaller sample size and smaller number of
45 46 47	19	death events.
48 49 50	20	Limitations to our study include the following. All results are associational and no
51 52	21	causal effects should be interpreted. Vital and signs and laboratory values were those
53 54	22	closest to COVID-19 diagnosis, and time-varying covariates were not incorporated into
55 56 57	23	analyses. As the study was retrospective, selection bias cannot be excluded, and only
58		16
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

1	events within the MGB system were recorded. Our identified risk factors and risk scores
2	are most applicable during a patient's initial COVID-19 positive test. Results may not be
3	generalizable to more specific subgroups such as those requiring intensive care
4	admission. Patients in the Boston area may not be reflective of those in other healthcare
5	systems, and the study population included only COVID-19 positive patients without
6	CKD. The study population included patients in the first wave of COVID-19, and results
7	should be cautiously applied to subsequent waves of COVID-19 due to differences in
8	COVID-19 variants and treatment protocols. Future work may further stratify AKI events
9	by stage and time of acquisition (relative to hospital admission), investigate outpatient,
10	hospitalized, and critically ill patients separately, focus on CKD patients, validate results
11	on a separate cohort, and explore hospital specific effects.
12	We investigated AKI and death outcomes among adult COVID-19 patients
13	without CKD in the Boston area. We identified risk factors and developed and evaluated
14	risk assessment tools for identifying COVID-19 patients developing AKI and death.
15	Hemoglobin, D-Dimer, CRP, WBC, and male sex were the strongest predictive
16	biomarkers for AKI. Age, CRP, platelets, WBC, and D-Dimer were most predictive for
17	death. Our study significantly contributes to epidemiological knowledge of COVID-19
18	outcomes and introduces simple tools to assist with rapid risk assessment.
19	
20	Acknowledgements
21	Contributors: None
22 23	Funding statement : This work was supported by the National Institutes of Health grant number T32-GM135117 (DL).
24	Competing interests: The authors declare no relevant competing interests.

1		
2 3		Authors I contribution of DI and UD drafted the menuscript UD DV DW altering of the
4	1	Authors' contributions: DL and HR drafted the manuscript. HR, PX, DW obtained the
5	2	data. DL performed the analyses. DL, HR, DJV, PS, QL, and XL contributed to the
6	3	design of the study. All authors were involved with interpretation of the data and critical
7	4	revision and final approval of the article.
8 9	5	Availability of data and materials: Patient data is not available, but requests for
10	6	surrogate data may be made to the corresponding authors. However, code for all
11	7	analyses will be available at <u>https://github.com/lin-lab</u> .
12		
13 14	8	Patient and public involvement: Patients and the public were not involved in the
15	9	planning of this project.
16	10	Research ethics approval human subjects: The Mass General Brigham Institutional
17	11	Review Board approved this study, and the approval number was 2020P001661. Only
18	12	deidentified patient electronic health record data were used.
19 20	10	deidentified patient electronic health record data were used.
21	13	
22		
23		
24		
25 26		
20		
28		
29		
30		
31 32		
33		
34		
35		
36 37		
38		
39		
40		
41 42		
42		
44		
45		
46		
47 48		
48 49		
50		
51		
52		
53 54		
54 55		
56		
57		·-
58		18
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

References

- Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem 1. findings of patients with COVID-19 in China. Kidney International. 2020;98(1):219-227. doi:10.1016/j.kint.2020.04.003
- 2. Farkash EA, Wilson AM, Jentzen JM. Ultrastructural Evidence for Direct Renal Infection with SARS-CoV-2. JASN. 2020;31(8):1683-1687. doi:10.1681/ASN.2020040432
- Nadim MK, Forni LG, Mehta RL, et al. COVID-19-associated acute kidney injury: 3. consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol. Published online October 15, 2020. doi:10.1038/s41581-020-00356-5
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult 4. inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3

Guan W jie, Ni Z yi, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 5. 2019 in China. N Engl J Med. 2020;382(18):1708-1720. doi:10.1056/NEJMoa2002032

- Kolhe NV, Fluck RJ, Selby NM, Taal MW. Acute kidney injury associated with 6. COVID-19: A retrospective cohort study. Remuzzi G, ed. PLoS Med. 2020;17(10):e1003406. doi:10.1371/journal.pmed.1003406
- Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with 7. COVID-19. Kidney International. 2020;98(1):209-218. doi:10.1016/j.kint.2020.05.006
- Fisher M, Neugarten J, Bellin E, et al. AKI in Hospitalized Patients with and without 8. COVID-19: A Comparison Study. JASN. 2020;31(9):2145-2157. doi:10.1681/ASN.2020040509
- Zahid U, Ramachandran P, Spitalewitz S, et al. Acute Kidney Injury in COVID-19 9. Patients: An Inner City Hospital Experience and Policy Implications. Am J Nephrol. 2020;51(10):786-796. doi:10.1159/000511160
- 10. Chan L, Chaudhary K, Saha A, et al. AKI in Hospitalized Patients with COVID-19. JASN. 2021;32(1):151-160. doi:10.1681/ASN.2020050615
- 11. Smilowitz NR, Nguy V, Aphinyanaphongs Y, et al. Multiple Biomarker Approach to Risk Stratification in COVID-19. Circulation. Published online February 15, 2021:CIRCULATIONAHA.120.053311. doi:10.1161/CIRCULATIONAHA.120.053311

<i>njury</i> . Kidney Disease	BMJ Open:
January 8, 2021. 515310388	first publ
tion Procedure For Cox's cumentation. Accessed	ished as '
se/versions/0.1.0/topics/My.st	10.1136/b
Med. 2002;17(8):647-650.	mjopen-2(
vsis of Survival Data in the (6):601-609.)21-053635 o
976;63(3):581-592.	n 21 Fe
severity of coronavirus <i>nfectious Diseases</i> . 243-7	ebruary 2022.
I. Infection fatality risk for ain: nationwide ovember 27, 2020:m4509.	BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bn
fatality rate: no evidence of 135-1436.	m http://bmj
B, Walsh SP, Meyerowitz- lity rates for COVID-19: nplications. <i>Eur J Epidemiol</i> . 698-1	jopen.bmj.com/ on ,
ect of age, sex, obesity and <i>Journal</i> . 1997;10(9):2087-	April 19, 202
ays decreases with age.	4 by guest. F
the elderly: insights into n Exp Res. 2020;32(8):1599-	njopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright
out/guidelines.xhtml	ht.

Z			
3	1	12.	KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Disease
4	2		Improving Global Outcomes; 2012:1-141. Accessed January 8, 2021.
5			
6	3		https://linkinghub.elsevier.com/retrieve/pii/S2157171615310388
7			
8	4	13.	Hu FC. My.stepwise.coxph, Stepwise Variable Selection Procedure For Cox's
9	5		Proportional Hazards Model And Cox's Model. R Documentation. Accessed
10	6		February 23, 2021.
11	7		https://www.rdocumentation.org/packages/My.stepwise/versions/0.1.0/topics/My.st
12			
13	8		epwise.coxph
14			
15	9	14.	McGee S. Simplifying likelihood ratios. <i>J Gen Intern Med</i> . 2002;17(8):647-650.
16	10		doi:10.1046/j.1525-1497.2002.10750.x
17			
18	11	15.	Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in the
19	12		Presence of Competing Risks. Circulation. 2016;133(6):601-609.
20			
20	13		doi:10.1161/CIRCULATIONAHA.115.017719
21		4.0	
22	14	16.	Rubin DB. Inference and Missing Data. <i>Biometrika</i> . 1976;63(3):581-592.
24 25	15	17.	Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus
25	16		disease 2019: a model-based analysis. The Lancet Infectious Diseases.
26	17		2020;20(6):669-677. doi:10.1016/S1473-3099(20)30243-7
27	17		
28	10	10	Destar Parriuse D. Dároz Cámez P. Hernán MA. et al. Infection fatality risk for
29	18	10.	Pastor-Barriuso R, Pérez-Gómez B, Hernán MA, et al. Infection fatality risk for
30	19		SARS-CoV-2 in community dwelling population of Spain: nationwide
31	20		seroepidemiological study. <i>BMJ</i> . Published online November 27, 2020:m4509.
32	21		doi:10.1136/bmj.m4509
33			
34	22	19	Signorelli C, Odone A. Age-specific COVID-19 case-fatality rate: no evidence of
35	23		changes over time. Int J Public Health. 2020;65(8):1435-1436.
36			•
37	24		doi:10.1007/s00038-020-01486-0
38		~~	
39	25	20.	Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-
40	26		Katz G. Assessing the age specificity of infection fatality rates for COVID-19:
41	27		systematic review, meta-analysis, and public policy implications. Eur J Epidemiol.
42	28		2020;35(12):1123-1138. doi:10.1007/s10654-020-00698-1
43	20		2020,00(12).1120 1100. 001.10.1007/310004 020 00000 1
44	20	21	Martin SE, Mathur R, Marshall I, Douglas NJ. The effect of age, sex, obesity and
45	29	۷١.	
46	30		posture on upper airway size. European Respiratory Journal. 1997;10(9):2087-
47	31		2090. doi:10.1183/09031936.97.10092087
48			
49	32	22.	Svartengren M. Long-term clearance from small airways decreases with age.
50	33		European Respiratory Journal. 2005;26(4):609-615.
51			doi:10.1183/09031936.05.00002105
52	34		
53	~-	00	Demette E. Centri O. Marres O. et al. COV/ID 40 and the elderthy insights into
54	35	23.	Perrotta F, Corbi G, Mazzeo G, et al. COVID-19 and the elderly: insights into
55	36		pathogenesis and clinical decision-making. <i>Aging Clin Exp Res</i> . 2020;32(8):1599-
56	37		1608. doi:10.1007/s40520-020-01631-y
57			•
58			20
50 59			20
59			For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/abo

1 2			
3 4 5 6	1 2 3	24.	Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. <i>JAMA</i> . 2020;323(16):1574-1581. doi:10.1001/jama.2020.5394
7 8 9 10 11 12	4 5 6 7	25.	Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020. <i>MMWR Morb Mortal Wkly Rep</i> . 2020;69(15):458-464. doi:10.15585/mmwr.mm6915e3
13 14 15 16	8 9 10	26.	Chen LYC, Hoiland RL, Stukas S, Wellington CL, Sekhon MS. Confronting the controversy: interleukin-6 and the COVID-19 cytokine storm syndrome. <i>Eur Respir J</i> . 2020;56(4). doi:10.1183/13993003.03006-2020
17 18 19 20 21	11 12 13	27.	Han SS, Baek SH, Ahn SY, et al. Anemia Is a Risk Factor for Acute Kidney Injury and Long-Term Mortality in Critically III Patients. <i>Tohoku J Exp Med</i> . 2015;237(4):287-295. doi:10.1620/tjem.237.287
22 23 24 25	14 15 16	28.	Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID- 19): A Review. <i>JAMA</i> . 2020;324(8):782. doi:10.1001/jama.2020.12839
26 27 28 29 30	17 18 19	29.	Yao Y, Cao J, Wang Q, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. <i>J Intensive Care</i> . 2020;8. doi:10.1186/s40560-020-00466-z
31 32 33 34	20 21 22	30.	Lindner G, Funk GC, Pfortmueller CA, et al. D-dimer to Rule Out Pulmonary Embolism in Renal Insufficiency. <i>The American Journal of Medicine</i> . 2014;127(4):343-347. doi:10.1016/j.amjmed.2013.12.003
35 36 37 38	23 24 25	31.	Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. <i>Journal of Allergy and Clinical Immunology</i> . 2020;146(1):128-136. doi:10.1016/j.jaci.2020.05.008
39 40 41 42 43	26 27 28	32.	Laguna-Goya R, Utrero-Rico A, Talayero P, et al. IL-6–based mortality risk model for hospitalized patients with COVID-19. <i>Journal of Allergy and Clinical Immunology</i> . 2020;146(4):799-807.e9. doi:10.1016/j.jaci.2020.07.009
44 45 46	29		
46 47 48 49 50 51 52 53 54 55 56 57	30		
57 58 59			21
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure Legends

Fig. 1 Receiver Operating Characteristics and Kaplan Meier Event Curves Using Selected Variables.

(A) Receiver operating characteristic (ROC) curves for acute kidney injury (AKI) within 3

- days and death within 30 days using fully adjusted model coefficients and developed
- risk score. Each line represents a different model's predictions with the given variables.
- HGB = Hemoglobin, CRP = C-reactive protein, WBC = white blood cell, PLT = Platelets.
 - ent ... begins at ... (B) Kaplan-Meier event curves for AKI events and death events stratified by AKI and death scores. Time begins at positive COVID-19 test.

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1	Table 1. Characteristics of Patients with Acute Kidney Injury, Patients that Died, and All
2	Patients.

Variable, n (%)		Died	Total (n=3,716)
	(n=696)	(n=347)	(1-3,7,10)
Age (years) <45	86 (12.4)	7 (2.0)	980 (26.4)
45-65	· · · · ·	· · · ·	· /
	245 (35.2)	55 (15.9)	1,310 (35.3)
>65	365 (52.4)	285 (82.1)	1,426 (38.4)
Sex (Male)	420 (60.3)	202 (58.2)	1,855 (49.9)
Race	407 (50 5)	0.40 (00.7)	0.004 (50.0)
White	407 (58.5)	242 (69.7)	2,091 (56.3)
Black	110 (15.8)	50 (14.4)	568 (15.3)
Hispanic	22 (3.2)	9 (2.6)	135 (3.6)
Asian	27 (3.9)	8 (2.3)	140 (3.8)
Other	130 (18.7)	38 (11.0)	782 (21.0)
Diabetes	197 (28.3)	87 (25.1)	727 (19.6)
Cardiovascular Disease	67 (9.6)	49 (14.1)	231 (6.2)
Hypertension	135 (19.4)	65 (18.7)	484 (13.0)
Heart Failure	39 (5.6)	38 (11.0)	134 (3.6)
Medical Conditions			
(number)			
0	397 (57.0)	189 (54.5)	2,565 (69.0)
1	190 (27.3)	95 (27.4)	811 (21.8)
2	83 (11.9)	47 (13.5)	264 (7.1)
3+	26 (3.7)	16 (4.6)	76 (2.0)
Body Mass Index (kg/m ²)	, , ,		
<25	165 (23.7)	115 (33.1)	833 (22.4)
25-30	229 (32.9)	110 (31.7)	1,334 (35.9)
>30	302 (43.4)	122 (35.2)	1,549 (41.7)
Temperature (F)			
97-100.4	423 (60.8)	201 (57.9)	2,745 (73.9)
<97	35 (5.0)	22 (6.3)	190 (5.1)
>100.4	238 (34.2)	124 (35.7)	781 (21.0)
Heart Rate (beats/min)			
60-110	576 (82.8)	274 (79.0)	3,194 (86.0)
<60	61 (8.8)	30 (8.6)	275 (7.4)
>110	59 (8.5)	43 (12.4)	247 (6.6)
Systolic Blood Pressure	0.0)	+5 (12.+)	247 (0.0)
(mmHg)			
90-180	635 (91.2)	305 (87.9)	3,549 (95.5)
<90	48 (6.9)	35 (10.1)	
>180	13 (1.9)	· · · ·	<u> </u>
	13 (1.9)	7 (2.0)	50 (1.3)
Respiratory Rate (per			
minute)			

<20	245 (35.2)	92 (26.5)	1,692 (45
>20	364 (52.3)	202 (58.2)	1,237 (33
NA (Missing)	87 (12.5)	53 (15.3)	787 (21.2
White Blood Cell (thousand			
cells/mm ³)			
3.5-11	428 (61.5)	189 (54.5)	2,942 (79
<3.5	39 (5.6)	26 (7.5)	267 (7.2
>11	229 (32.9)	132 (38.0)	507 (13.
Hemoglobin (g/dL)			
12+	201 (28.9)	138 (39.8)	2,250 (60
10-12	204 (29.3)	88 (25.4)	883 (23.8
<10	291 (41.8)	121 (34.9)	583 (15.)
Platelets (per µL)		, , ,	
>100	643 (92.4)	310 (89.3)	3,600 (96
<100	53 (7.6)	37 (10.7)	116 (3.1
C-Reactive Protein (mg/L)			
<50	197 (28.3)	62 (17.9)	1,706 (45
50-100	149 (21.4)	63 (18.2)	1,011 (27
>100	350 (50.3)	222 (64.0)	999 (26.9
Ferritin (µg/L)		, , ,	
<250	105 (15.1)	52 (15.0)	950 (25.
250-1000	327 (47.0)	155 (44.7)	1,894 (51
>1000	264 (37.9)	140 (40.3)	872 (23.
D-Dimer (ng/mL)			
<1000	136 (19.5)	60 (17.3)	1,726 (46
1000-2000	217 (31.2)	101 (29.1)	1,076 (29
>2000	343 (49.3)	186 (53.6)	914 (24.
Interleukin-6 (IU/mL)			
<40	121 (17.4)	26 (7.5)	438 (11.
40-80	68 (9.8)	33 (9.5)	137 (3.7
>80	136 (19.5)	58 (16.7)	196 (5.3
NA (Missing)	371 (53.3)	230 (66.3)	2,945 (79

2 AKI = acute kidney injury

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
20	

59

60

1

Table 2. Multivariable Cox Regression Results

Variable	AKI	Death
Age (years)		
<45	Reference	Reference
45-65	1.71 (1.33, 2.21)	5.33 (2.42, 11.8)
>65	2.16 (1.66, 2.80)	23.4 (10.9, 50.1)
Sex (Male)	1.51 (1.28, 1.77)	1.16 (0.92, 1.45)
Race		
White	Reference	Reference
Black	0.89 (0.72, 1.11)	0.66 (0.48, 0.92)
Hispanic	0.89 (0.58, 1.38)	0.62 (0.32, 1.23)
Asian	0.96 (0.65, 1.43)	0.46 (0.22, 0.93)
Other	1.11 (0.90, 1.37)	0.72 (0.50, 1.02)
Medical Conditions (number)		
0	Reference	Reference
1	1.28 (1.07, 1.53)	1.07 (0.83, 1.38)
2	1.67 (1.30, 2.13)	1.40 (1.01, 1.95)
3+	1.82 (1.21, 2.75)	1.61 (0.95, 2.73)
Body Mass Index (kg/m ²)		
<25	Reference	Reference
25-30	1.09 (0.89, 1.33)	0.78 (0.59, 1.02)
>30	1.42 (1.17, 1.74)	0.94 (0.72, 1.22)
Temperature (F)		
97-100.4	Reference	Reference
<97	1.07 (0.75, 1.51)	1.18 (0.75, 1.85)
>100.4	1.59 (1.34, 1.88)	1.54 (1.22, 1.96)
Heart Rate (beats/min)		
60-110	Reference	Reference
<60	1.24 (0.95, 1.63)	0.97 (0.66, 1.43)
>110	1.11 (0.85, 1.47)	1.78 (1.28, 2.48)
Systolic Blood Pressure		
(mmHg)		
90-180	Reference	Reference
<90	1.90 (1.41, 2.57)	2.10 (1.45, 3.04)
>180	0.96 (0.55, 1.67)	0.90 (0.42, 1.92)
White Blood Cell (thousand		
cells/mm ³)		
3.5-11	Reference	Reference
<3.5	0.78 (0.55, 1.09)	1.10 (0.72, 1.68)
>11	1.77 (1.49, 2.12)	2.32 (1.82, 2.95)
Hemoglobin (g/dL)	<u> </u>	· · · · ·
>12	Reference	Reference
10-12	2.15 (1.75, 2.64)	0.88 (0.67, 1.16)
<10	3.72 (3.03, 4.57)	1.03 (0.78, 1.35)

2
3
4
5
6
7

Platelets (per µL) >100	Reference	Reference
<100	1.74 (1.30, 2.34)	2.60 (1.79, 3.77)
C-Reactive Protein (mg/L)		
<50	Reference	Reference
50-100	0.96 (0.77, 1.20)	1.46 (1.02, 2.10)
>100	1.57 (1.29, 1.91)	3.61 (2.65, 4.93)
Ferritin (µg/L)		
<250	Reference	Reference
250-1000	1.29 (1.03, 1.63)	0.91 (0.65, 1.26)
>1000	1.69 (1.31, 2.17)	1.14 (0.80, 1.62)
D-Dimer (ng/mL)		
<1000	Reference	Reference
1000-2000	1.67 (1.33, 2.09)	1.21 (0.87, 1.69)
1000 2000		()
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	· · · · · ·
>2000	2.11 (1.68, 2.65)	· · · · · ·
>2000	2.11 (1.68, 2.65)	· · · · · ·
>2000	2.11 (1.68, 2.65)	· · · · · ·
>2000	2.11 (1.68, 2.65)	· · · · · ·
>2000	2.11 (1.68, 2.65)	· · · · · ·
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	· · · · · ·

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

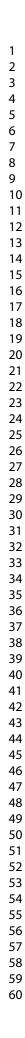
AKI in 3 days (max 6)		Death in 30 days (max 7)	
	Risl	Score	
Variable	Value	Variable	Value
Hemoglobin <10 g/dL	2	Age > 65 years	3
Hemoglobin 10-12 g/dL	1	Age 45-65 years	2
D-Dimer > 1,000 ng/mL	1	CRP > 100 mg/L	1
CRP > 100 mg/L	1	Platelets < 100 per µL	1
WBC > 11,000 cells/mm ³	1	WBC > 11,000 cells/mm ³	1
Male Sex	1	D-Dimer > 2,000 ng/mL	1
(Internal	Validation	
Validation Type	AUC (95%	Validation Type	AUC (95%
	intervals)		intervals)
Whole Data	0.785	Whole Data	0.861
	(0.758, 0.813)		(0.843, 0.878)
Cross Validation	0.776	Cross Validation	0.860
	(0.732, 0.816)		(0.831, 0.886)

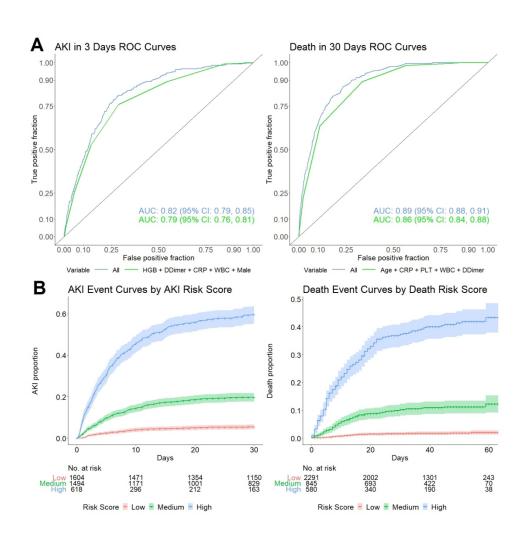
2 CRP = C-reactive protein, WBC = white blood cells.

3 Whole data validation presents area under the curve (AUC) estimates and 95%

4 confidence intervals.

Internal cross validation presents mean AUC and 95% central interval (2.5th and 97.5th
 percentiles).


-	
3	
4	
5	
6	
7	
8	
9	
-	
	0
	1
1	2
1	3
1	4
1	5
1	6
	7
	8
	9
2	0
2	1
	2
	3
	4
	5
2	
2	O


> Table 4. Suggested Risk Stratification Cutoffs and Observed and Estimated Event Rates.

		AKI Risk Score		
Risk Level	Total Score	Observed Total AKI (%)	Estimated 3 Day AKI (%)	Estimated 30 Day AKI (%)
Low Risk	0-1	5.2	1.7	5.4
Moderate Risk	2-3	18.4	6.2	19.7
High Risk	4-6	54.7	21.6	59.7
		Death Risk Score)	
Risk Level	Total Score	Observed Total Death	Estimated 30 Day Death (%)	Estimated 60 Day Death (%)
Law Diale		(%)	1.0	0.0
Low Risk	0-3	1.7	1.6	2.0
Moderate Risk	4	10.4	10.2	12.3
High Risk	5-7	37.9	37.3	43.4

Observed percentages are from the observed data

Estimated percentages are from Kaplan-Meier event curves Να_Γ

(A) Receiver operating characteristic (ROC) curves for acute kidney injury (AKI) within 3 days and death within 30 days using fully adjusted model coefficients and developed risk score. Each line represents a different model's predictions with the given variables. HGB = Hemoglobin, CRP = C-reactive protein, WBC = white blood cell, PLT = Platelets.

(B) Kaplan-Meier event curves for AKI events and death events stratified by AKI and death scores. Time begins at positive COVID-19 test.

450x448mm (96 x 96 DPI)

Supplemental Methods – Additional Details

Statistical Analyses

Descriptive statistics and receiver operating characteristics (ROC) were calculated using R base functions. Cox proportional hazards models were fit using the "survival" package. Inspection of AKI and death Kaplan-Meier event curves stratified by each variable revealed no obvious violations of the proportional hazards assumption.

The variable selection procedure was implemented using the "My.stepwise" package. In addition to the variables included in fully adjusted Cox proportional hazards models, age >45 years, medical conditions >1, medical conditions >2, BMI > 25 kg/m², hemoglobin <12 g/dL, CRP > 500 mg/L, ferritin >250 μ g/L, and D-Dimer > 1,000 ng/mL were also included. The package "glmnet" was used to reformat data so that the variable selection procedure could be applied. The selection procedure alternates between "forward" steps of adding variables and "backwards" steps of removing variables. The significance level for entry and for staying was conservatively set at 0.15 as suggested by function details. The top 5 variables (top 6 dummy variables) were included in risk scores. Simplified risk score values were obtained by rounding model coefficients to the nearest integer.

ROC curves were created using "plotROC" and AUC values and confidence intervals were obtained from "pROC". Event curves were created using "survminer" and "mstate". Harrell's C-statistics were obtained from Cox proportional hazards model output, and net reclassification of improvement was obtained from "nricens".

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Competing risk analyses used the "cmprsk" package, and multiple imputation <text> analyses used the "mice" package. The packages "ggplot2", "dplyr", "plyr", "ggfortify", and "cowplot" were used to process results and create figures. Code for replicating all analyses will be available online.

Table S1. Coefficients from simplified Cox regression models to calculated and internal validation statistics using these coefficient linear predictions.

AKI		Death		
	Simplified Model Coefficients			
Variable	Coefficient Value	Variable	Coefficient Value	
Hemoglobin <10 g/dL	1.50	Age > 65 years	3.19	
Hemoglobin 10-12 g/dL	0.85	Age 45-65 years	1.65	
D-Dimer > 1,000 ng/mL	0.76	CRP > 100 mg/L	1.21	
CRP > 100 mg/L	0.64	Platelets < 100 per µL	1.20	
WBC > 11,000 cells/mm ³	0.59	WBC > 11,000 cells/mm ³	0.87	
Male Sex	0.54	D-Dimer > 2,000 ng/mL	0.58	
	Internal V	Validation		
Statistic	Estimate (95% CI)	Statistic	Estimate (95% CI)	
Harrell's Survival C-	0.785	Harrell's Survival C-	0.857	
Statistic (Concordance)	(0.769, 0.800)	Statistic (Concordance)	(0.841, 0.874)	
AKI in 3 Days AUC	0.787	Death in 30 Days AUC	0.872	
	(0.759, 0.814)		(0.854, 0.890)	

AKI = acute kidney injury, CRP = C-reactive protein, WBC = white blood cells, AUC = area under the curve, CI = confidence interval

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S2. Coefficients from fully adjusted Cox regression models and internal validation statistics using these coefficient linear predictions.

AKI		Death		
Fully Adjusted Model Coefficients				
Variable	Coefficient Value	Variable	Coefficient Value	
Age 45-65 years	0.54	Age 45-65 years	1.67	
Age > 65 years	0.77	Age > 65 years	3.15	
Male Sex	0.41	Male Sex	0.14	
Race Black	-0.12	Race Black	-0.41	
Race Hispanic	-0.12	Race Hispanic	-0.47	
Race Asian	-0.04	Race Asian	-0.79	
Race Other	0.11	Race Other	-0.33	
Medical Conditions 1	0.25	Medical Conditions 1	0.07	
Medical Conditions 2	0.51	Medical Conditions 2	0.34	
Medical Conditions 3+	0.60	Medical Conditions 3+	0.48	
BMI 25-30 kg/m ²	0.08	BMI 25-30 kg/m ²	-0.25	
BMI >30 kg/m ²	0.35	BMI >30 kg/m ²	-0.06	
Temp < 97 F	0.06	Temp < 97 F	0.16	
Temp > 100.4 F	0.46	Temp > 100.4 F	0.43	
Heart rate < 60	0.22	Heart rate < 60	-0.03	
beats/min	0.22	beats/min	-0.03	
Heart rate < 110	0.11	Heart rate < 110	0.58	
beats/min	0.11	beats/min	0.56	
SBP < 90 mmHg	0.64	SBP < 90 mmHg	0.74	
SBP > 180 mmHg	-0.04	SBP > 180 mmHg	-0.11	
WBC < $3,500 \text{ cells/mm}^3$	-0.25	WBC < 3,500 cells/mm ³	0.09	
WBC > 11,000 cells/mm ³	0.57	WBC > 11,000 cells/mm ³	0.84	
Hemoglobin <10 g/dL	0.77	Hemoglobin <10 g/dL	-0.13	
Hemoglobin 10-12 g/dL	1.31	Hemoglobin 10-12 g/dL	0.03	
Platelets < 100 per µL	0.56	Platelets < 100 per µL	0.96	
CRP 50-100 mg/L	-0.04	CRP 50-100 mg/L	0.38	
CRP > 100 mg/L	0.45	CRP > 100 mg/L	1.28	
Ferritin 250-1000 µg/L	0.26	Ferritin 250-1000 µg/L	-0.10	
Ferritin >1000 µg/L	0.52	Ferritin >1000 µg/L	0.13	
D-Dimer 1,000-2,000	0.54	D-Dimer 1,000-2,000	0.40	
ng/mL	0.51	ng/mL	0.19	
D-Dimer > 2,000 ng/mL	0.75	D-Dimer > 2,000 ng/mL	0.60	
	Internal	Validation		

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
23
24
25
26
27
28
29
30

Statistic	Estimate (95% CI)	Statistic	Estimate (95% CI)
Harrell's Survival C-	0.813	Harrell's Survival C-	0.878
Statistic (Concordance)	(0.798, 0.827)	Statistic (Concordance)	(0.863, 0.892)
AKI in 3 Days AUC	0.820	Death in 30 Days AUC	0.893
	(0.794, 0.845)		(0.878, 0.909)

For peer terien only

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Table S3. Sensitivity, specificity, and likelihood ratios (LR) for positive and negative results of risk scores predicting acute kidney injury (AKI) within 3 days and death within 30 days of a positive COVID-19 test.

Cutoff	Sensitivity	Specificity	Positive LR	Negative LR
	Simplifie	d AKI Risk Score	e (max 6)	
		Rule in		
0	1.000	0.000	1.000	NA
1	0.992	0.154	1.170	0.050
2	0.892	0.455	1.640	0.240
3	0.759	0.713	2.640	0.340
4	0.526	0.860	3.750	0.550
5	0.257	0.946	4.770	0.790
6	0.068	0.989	6.400	0.940
7	0.000	1.000	NA	1.000
	Simplified Death Risk Score (max 7)			
0	1.000	0.000	1.000	NA
1	1.000 🚫	0.156	1.190	0.000
2	0.994	0.233	1.300	0.030
3	0.984	0.433	1.740	0.040
4	0.891	0.665	2.660	0.160
5	0.637	0.890	5.760	0.410
6	0.224	0.978	10.400	0.790
7	0.019	1.000	Inf	0.980
8	0.000	1.000	NA	1.000

Cutoff denotes treating a score greater than or equal a cutoff value as a positive. Positive likelihood ratio (LR) is sensitivity / (1-specificity) Negative likelihood ratio (LR) is (1-sensitivity) / specificity Sensitivity 1 specificity 0 indicates all individuals identified as positive Sensitivity 0 specificity 1 indicates all individuals identified as negative

Approximate probability changes can be obtained by ≈0.18 * In(LR) (McGee 2002)

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
	0
1	
1	2
1	3
	4
	5
1	6
1	7
	, 8
	9
2	0
	1
2	י ר
2	2
2	3
2	4
	5
	6
2	7
	8
	9
	0
3	1
З	2
3	
3	4
3	5
	6
3	7
3	8
ર	9
	0
4	
4	2
4	
4	
4	
4	6
4	7
4	
4	9
5	0
5	1
5	י ר
5	2
5	
5	4
5	
5	6
5	7
	8
	9
С С	
	11

Table S4. Multivariable AKI cause-specific hazard (AKI event, death censor) and AKI subdistribution hazard (AKI and death competing risks) model results.

Variable	Cause-Specific	Subdistribution
Age (years)		
<45	Reference	Reference
45-65	1.71 (1.33, 2.21)	1.67 (1.31, 2.14)
>65	2.16 (1.66, 2.80)	1.92 (1.48, 2.50)
Sex (Male)	1.51 (1.28, 1.77)	1.53 (1.29, 1.81)
Race		
White	Reference	Reference
Black	0.89 (0.72, 1.11)	0.91 (0.73, 1.14)
Hispanic	0.89 (0.58, 1.38)	0.96 (0.65, 1.41)
Asian	0.96 (0.65, 1.43)	0.97 (0.67, 1.41)
Other	1.11 (0.90, 1.37)	1.13 (0.91, 1.40)
Medical Conditions (number)		
0	Reference	Reference
1	1.28 (1.07, 1.53)	1.27 (1.06, 1.53)
2	1.67 (1.30, 2.13)	1.66 (1.29, 2.12)
3+	1.82 (1.21, 2.75)	1.81 (1.18, 2.77)
Body Mass Index (kg/m ²)		
<25	Reference	Reference
25-30	1.09 (0.89, 1.33)	1.11 (0.90, 1.38)
>30	1.42 (1.17, 1.74)	1.47 (1.19, 1.81)
Temperature (F)		
97-100.4	Reference	Reference
<97	1.07 (0.75, 1.51)	1.03 (0.71, 1.48)
>100.4	1.59 (1.34, 1.88)	1.62 (1.37, 1.91)
Heart Rate (beats/min)		
60-110	Reference	Reference
<60	1.24 (0.95, 1.63)	1.30 (0.98, 1.72)
>110	1.11 (0.85, 1.47)	1.04 (0.78, 1.38)
Systolic Blood Pressure		
(mmHg)		
90-180	Reference	Reference
<90	1.90 (1.41, 2.57)	1.73 (1.28, 2.35)
>180	0.96 (0.55, 1.67)	1.00 (0.55, 1.84)
White Blood Cell (thousand		
cells/mm ³)		
3.5-11	Reference	Reference
<3.5	0.78 (0.55, 1.09)	0.79 (0.56, 1.12)
>11	1.77 (1.49, 2.12)	1.68 (1.39, 2.04)
Hemoglobin (g/dL)		
>12	Reference	Reference
10-12	2.15 (1.75, 2.64)	2.27 (1.83, 2.81)

Reference 1.74 (1.30, 2.34) Reference 0.96 (0.77, 1.20) 1.57 (1.29, 1.91) Reference	Reference 1.63 (1.19, 2.24) Reference 0.94 (0.76, 1.18) 1.48 (1.20, 1.82)
1.74 (1.30, 2.34) Reference 0.96 (0.77, 1.20) 1.57 (1.29, 1.91)	1.63 (1.19, 2.24) Reference 0.94 (0.76, 1.18)
Reference 0.96 (0.77, 1.20) 1.57 (1.29, 1.91)	Reference 0.94 (0.76, 1.18)
0.96 (0.77, 1.20) 1.57 (1.29, 1.91)	0.94 (0.76, 1.18)
0.96 (0.77, 1.20) 1.57 (1.29, 1.91)	0.94 (0.76, 1.18)
1.57 (1.29, 1.91)	
	1.48 (1.20, 1.82)
Reference	
Reference	
	Reference
1.29 (1.03, 1.63)	1.33 (1.05, 1.69)
1.69 (1.31, 2.17)	1.70 (1.31, 2.21)
Reference	Reference
1.67 (1.33, 2.09)	1.70 (1.36, 2.13)
2.11 (1.68, 2.65)	2.07 (1.63, 2.63)
	Reference 1.67 (1.33, 2.09)

Variable	AKI	Death
Age (years)		
<45	Reference	Reference
45-65	1.58 (1.22, 2.04)	4.60 (2.07, 10.3
>65	1.86 (1.43, 2.43)	18.3 (8.47, 39.6
Sex (Male)	1.42 (1.20, 1.68)	1.05 (0.83, 1.33
Race		
White	Reference	Reference
Black	0.87 (0.69, 1.08)	0.65 (0.47, 0.89
Hispanic	0.97 (0.63, 1.50)	0.66 (0.33, 1.32
Asian	0.92 (0.61, 1.38)	0.39 (0.19, 0.80
Other	1.05 (0.85, 1.30)	0.67 (0.47, 0.96
Medical Conditions (number)		
0	Reference	Reference
1	1.32 (1.10, 1.58)	1.07 (0.82, 1.39
2	1.62 (1.25, 2.09)	1.33 (0.94, 1.89
3+	1.88 (1.24, 2.87)	1.62 (0.94, 2.79
Body Mass Index (kg/m ²)		
<25	Reference	Reference
25-30	1.10 (0.90, 1.36)	0.81 (0.61, 1.07
>30	1.33 (1.09, 1.63)	0.86 (0.65, 1.13
Temperature (F)		
97-100.4	Reference	Reference
<97	0.95 (0.66, 1.36)	1.11 (0.69, 1.77
>100.4	1.40 (1.18, 1.66)	1.40 (1.09, 1.81
Heart Rate (beats/min)	4	
60-110	Reference	Reference
<60	1.13 (0.86, 1.48) 🌔	0.86 (0.58, 1.30
>110	0.98 (0.74, 1.31)	1.41 (0.95, 2.08
Systolic Blood Pressure		
(mmHg)		
90-180	Reference	Reference
<90	1.74 (1.28, 2.37)	1.76 (1.19, 2.60
>180	1.22 (0.68, 2.19)	1.16 (0.52, 2.55
Respiratory Rate (per minute)		
<20	Reference	Reference
>20	1.72 (1.45, 2.03)	1.98 (1.53, 2.55
White Blood Cell (thousand		
cells/mm ³)		
3.5-11	Reference	Reference
<3.5	0.81 (0.58, 1.15)	1.25 (0.81, 1.95
>11	1.61 (1.34, 1.93)	1.95 (1.52, 2.51

>12	Reference	Reference
10-12	2.02 (1.64, 2.49)	0.81 (0.60, 1.09)
<10	3.31 (2.68, 4.08)	0.86 (0.65, 1.14)
Platelets (per µL)		
>100	Reference	Reference
<100	1.85 (1.37, 2.49)	2.51 (1.72, 3.68)
C-Reactive Protein (mg/L)		
<50	Reference	Reference
50-100	0.99 (0.79, 1.24)	1.60 (1.10, 2.33)
>100	1.47 (1.20, 1.80)	3.18 (2.32, 4.37)
Ferritin (µg/L)		
<250	Reference	Reference
250-1000	1.18 (0.93, 1.50)	0.77 (0.54, 1.12)
>1000	1.48 (1.14, 1.91)	0.89 (0.60, 1.32)
D-Dimer (ng/mL)		
<1000	Reference	Reference
1000-2000	1.59 (1.27, 2.00)	1.16 (0.82, 1.63)
>2000	2.03 (1.60, 2.57)	1.73 (1.23, 2.44)
Interleukin-6 (IU/mL)		
<40	Reference	Reference
40-80	1.39 (1.03, 1.86)	2.75 (1.80, 4.21)
>80	1.91 (1.50, 2.43)	3.07 (2.01, 4.69)

Pooled hazard ratios calculated using 10 different imputation datasets with imputed values for missing respiratory rate and IL-6.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	2
		abstract	2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
Buekground/Tutionale	2	reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	5
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7-8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	7-8
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, explain how loss to follow-up was addressed	7-8
		(<u>e</u>) Describe any sensitivity analyses	7-8
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	9

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
41
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<u> </u>

60

1

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	11-
		analyses	12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12- 14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	15
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	16
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Risk Assessment for Acute Kidney Injury and Death among New COVID-19 Positive Adult Patients without Chronic Kidney Disease: Retrospective Cohort Study among 3 US Hospitals

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053635.R2
Article Type:	Original research
Date Submitted by the Author:	01-Dec-2021
Complete List of Authors:	Li, Daniel; Harvard University T H Chan School of Public Health; Johns Hopkins School of Medicine Ren, Hui; Harvard Medical School, Department of Radiology Varelmann, Dirk J.; Brigham and Women's Hospital, Department of Anesthesiology Sarin, Pankaj; Brigham and Women's Hospital, Department of Anesthesiology Xu, Pengcheng; Harvard Medical School, Department of Radiology Wu, Dufan; Harvard Medical School, Department of Radiology Li, Quanzheng; Harvard Medical School, Department of Radiology Lin, Xihong; Harvard University T H Chan School of Public Health, Department of Biostatistics; Harvard University, Department of Statistics
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Research methods, Health informatics
Keywords:	COVID-19, EPIDEMIOLOGY, STATISTICS & RESEARCH METHODS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

2		
3 4	1	Title Page
5	2	
6	3	Risk Assessment for Acute Kidney Injury and Death among New COVID-19
7 8	4	Positive Adult Patients without Chronic Kidney Disease: Retrospective Cohort
9	5	Study among 3 US Hospitals
10	6	Short Title: AKI and Death among COVID-19 Patients without CKD
11 12	7 8	Short The. ART and Death among COVID-19 Patients without CRD
13		Daniel Li, MD, MA, ^{1,2*} Hui Ren, MD, PhD, MPH ^{3*} Dirk J. Varelmann, MD, ⁴ Pankaj Sarin,
14 15	9 10	MD, ⁴ Pengcheng Xu, BS, ³ Dufan Wu, PhD, ³ Quanzheng Li, PhD, ^{3**} Xihong Lin,
16	11	PhD ^{1,5,6**}
17 18		
19	12	*Contributed equally, co-first authorship
20 21	13	¹ Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA.
22	14	² Johns Hopkins University School of Medicine, Baltimore MD.
23 24 25 26 27 28 29 30 31 32	15 16	³ Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston MA.
	17	⁴ Department of Anesthesiology, Brigham and Women's Hospital, Boston MA.
	18	⁵ Department of Statistics, Harvard University, Cambridge MA.
	19	⁶ Broad Institute of MIT and Harvard, Cambridge, MA.
	20	
33	21	**Correspondence: Xihong Lin, Quanzheng Li
34 35	22	Department of Biostatistics
36 37	23	655 Huntington Ave
38	24	Building II, Room 419
39 40	25	Boston, MA 02115
41 42	26	Telephone: 617 432 2914
43 44	27	Fax: 617 432 5619
45	28	Email: xlin@hsph.harvard.edu, li.quanzheng@mgh.harvard.edu
46 47	29	
48 49 50	30 31	Abstract 277 words; Main Text 3,138 words; References 32; Tables 4; Figures 1; Appendix Tables 5
51 52 53		
54 55		
56		
57 58		1
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		

Page 3 of 42

BMJ Open

2 3 4	1	Abstract
5 6 7	2	Objective: To develop simple but clinically informative risk stratification tools using a
8 9	3	few top demographic factors and biomarkers at COVID-19 diagnosis to predict acute
10 11 12	4	kidney injury (AKI) and death.
13 14 15	5	Design: Retrospective cohort analysis, follow-up from February 1 through May 28,
16 17	6	2020.
18 19 20	7	Setting: 3 teaching hospitals, 2 urban and 1 community-based in the Boston area.
21 22 23	8	Participants: Eligible patients were at least 18 years old, tested COVID-19 positive
24 25	9	from February 1 through May 28, 2020, and had at least two serum creatinine
26 27 28	10	measurements within 30 days of a new COVID-19 diagnosis. Exclusion criteria were
29 30	11	having CKD or having a previous AKI within 3 months of a new COVID-19 diagnosis.
31 32 33	12	Main Outcomes and Measures: Time from new COVID-19 diagnosis until AKI event,
34 35 36	13	time until death event.
37 38	14	Results: Among 3,716 patients, there were 1,855 (49.9%) males and the average age
39 40	15	was 58.6 years (SD 19.2 years). Age, sex, white blood cell, hemoglobin, platelet, C-
41 42 43	16	reactive protein, and D-dimer levels were most strongly associated with AKI and/or
44 45	17	death. We created risk scores using these variables predicting AKI within 3 days and
46 47	18	death within 30 days of a new COVID-19 diagnosis. Area under the curve (AUC) for
48 49 50	19	predicting AKI within 3 days was 0.785 (95% CI, 0.758 to 0.813) and AUC for death
51 52	20	within 30 days was 0.861 (95% CI, 0.843 to 0.878). Hemoglobin was the most predictive
53 54	21	component for AKI, and age the most predictive for death. Predictive accuracies using
55 56 57	22	all study variables were similar to using the simplified scores.
58		2

2		
3 4	1	Conclusion: Simple risk scores using age, sex, a complete blood cell count, C-reactive
5 6	2	protein, and D-dimer were highly predictive of AKI and death and can help simplify and
7 8 9	3	better inform clinical decision making.
10 11	4	Key words: COVID-19; kidney injury; risk prediction
12 13 14	5	
15 16		
17 18	6	Strengths and limitations of this study
19 20 21	7	 Various associations between patient variables and COVID-19 acute kidney
22 23	8	injury AKI and death have been reported, but it is unclear which variables are
24 25	9	most predictive and important to focus on.
26 27 28	10	We developed risk scores for predicting AKI and death among new COVID-19
28 29 30	11	positive patients.
31 32	12	Readily obtainable demographic, vital sign, and laboratory values were
33 34 35	13	considered evaluated.
36 37	14	 Findings are limited to patients without chronic kidney disease.
38 39 40	15	
41 42		
43 44		
45 46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		· ·· peer renerrency interprised operating contract about galacines and in

Page 5 of 42

BMJ Open

1 Introduction	
----------------	--

Although respiratory failure and diffuse inflammatory lung tissue damage are key features of coronavirus disease 2019 (COVID-19), involvement of other organs such as the kidneys has been well documented. Pathologic autopsy examinations of COVID-19 kidneys have shown clusters of coronavirus-like particles in the tubular epithelium and podocytes, upregulation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme 2 and positive immunostaining with SARS-CoV-2 nucleoprotein antibodies.^{1,2} Hemodynamic instability, systemic hypoxia, abnormal coagulation, and inflammation from severe COVID-19 can also directly contribute to acute kidney injury (AKI) and induce acute tubular necrosis.³ Various epidemiologic studies from China, Europe, and the United States have investigated AKI outcomes among COVID-19 patients. Early studies in China have reported AKI incidences ranging from 0.5-15% among hospitalized and outpatient COVID-19 patients.^{4,5} One United Kingdom study found hospitalized COVID-19 patients with AKI had a 3-fold higher odds of death than those without AKI.⁶ Large US population studies of hospitalized COVID-19 patients, primarily in the New York City metropolitan area, have reported AKI incidences ranging from 27-57%, with in-hospital mortality rates ranging from 35-71% among AKI COVID-19 patients.⁷⁻¹⁰ Some of these studies have also explored variable associations with COVID-19 AKI, but none of these studies have investigated which subset of these variables are most predictive of AKI or built risk predictions models using demographic variables and biomarkers. Risk prediction tools have been investigated for COVID-19 deaths. A small

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

23 number of a priori determined biomarkers were investigated for their associations with

Page 6 of 42

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

the risk of COVID-19 death.¹¹ However, a more data driven approach would compare
the predictive accuracies of these biomarkers to other biomarkers and variables such as
demographic factors and vital signs and build a more powerful risk prediction model
using a comprehensive set of biomarkers, demographic variables, and vital signs.
Different risk factors should also be weighted differently, and understanding the relative
importance of different variables in predicting poor outcomes will allow for more
accurate holistic patient evaluations.

In this study we developed and evaluated new risk assessment tools that can be easily implemented at the bedside or during chart reviews to predict AKI and death after a positive COVID-19 test. Our contributions include (1) identifying the top biomarkers and demographic variables that predict AKI events among COVID-19 patients, (2) investigating a greater number of potential biomarkers and risk factors in predicting death, (3) developing clinical risk assessment tools for both AKI and death using a small number of predictors, and (4) validating that these tools are nearly as predictive as using all available study variables. By understanding which subset of risk factors are most important to focus on, medical providers can more efficiently work up and risk stratify their newly diagnosed COVID-19 patients.

- - 19 Methods

20 Study Population

The Mass General Brigham (MGB) Health system serves a large diverse patient population around Boston and Eastern Massachusetts. Electronic health records from Page 7 of 42

1

BMJ Open

1 2		
3 4	1	three major hospitals in this system (Massachusetts General Hospital in Boston,
5 6	2	Brigham and Women's Hospital in Boston, and Newton-Wellesley Hospital in Newton)
7 8 9	3	were used. The Mass General Brigham Institutional Review Board approved this study,
10 11 12	4	and the approval number was 2020P001661.
12 13 14	5	We included all patients that 1) were at least 18 years old, 2) tested COVID-19
15 16	6	positive at one of the three hospitals above between February 1, 2020 through May 28,
17 18	7	2020, and 3) had at least 2 serum creatinine tests within 30 days of their SARS-Cov-2
19 20 21	8	PCR test. We excluded patients that 1) met the criteria of acute kidney injury within 3
22 23	9	months before their SARS-CoV-2 test and 2) had chronic kidney disease (CKD)
24 25	10	identified as a preexisting condition from International Classification of Disease (ICD-9
26 27 28	11	and ICD-10) codes (see below).
29 30	12	
31 32		
33 34	13	Patient and Public Involvement
35 36 37	14	Patients and the public were not involved in the planning of this project.
38 39	15	
40 41		
42 43	16	Data Collection
44 45	17	Information in electronic health records (EHR) of patients who met the inclusion
46 47 48	18	criteria were extracted from the enterprise data warehouse and included demographic,
49 50	19	comorbidities, clinical, laboratory, and outcome data (death). Demographic and
51 52	20	laboratory data information closest to the time of first SARS-Cov-2 PCR test were kept
53 54 55	21	(except for serum creatinine, multiple values were kept). Serum creatinine laboratory
56 57		
58		6
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
4		

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

test results and timestamps within 3 months before and 30 days after the SARS-Cov-2 polymerase chain reaction test were extracted. We categorized ethnic groups other than White, Black, Hispanic, and Asian into a single subgroup. All documented comorbidity related medical history in MGB healthcare system enterprise data warehouse before the first time of SARS-Cov-2 test were extracted. Preexisting conditions, including hypertension, diabetes, cardiovascular disease, and heart failure, were classified using their ICD-9 or ICD-10 codes.

Definitions of Outcomes

Per the Kidney Disease Improving Global Outcomes (KDIGO) criteria, AKI was
defined as a change in serum creatinine (SCr) of 0.3 mg/dl over a 48-hour period, a
50% increase in baseline creatinine in 7 days, or urine value <0.5 ml/kg/hour for 6
hours.¹² Due to difficulties obtaining accurate urine volumes from electronic health
record data, we only use serum creatinine to define AKI events. If patients had more
than 2 SCr tests in their EHR, we used all available SCr tests to define the earliest time.
Death times were directly extracted from the data warehouse.

18 Statistical Analyses

19 Continuous variables were transformed into categorical variables to improve 20 interpretability of results and account for nonlinear associations. Counts and 21 percentages were presented, and two proportion z-tests were used to compare the 22 proportion of deaths among AKI and non-AKI patients. For AKI survival analyses,

observations without AKI were censored after 30 days, at the time of death, or at 5/28/2020, whichever came first. For death survival analyses, observations without death were censored at 5/28/2020. Multiple multivariable Cox proportional hazards models included age, sex, race, diabetes, cardiovascular disease, hypertension, heart failure, body mass index (BMI), temperature, heart rate, systolic blood pressure, white blood cell count (WBC), hemoglobin, platelets, C-reactive protein (CRP), ferritin, D-and dimer. Respiratory rate and interleukin-6 (IL-6) variables were not included in primary analyses given missing data. However, we performed exploratory analyses imputing the missing respiratory rate and IL-6 values (additional details are in the sensitivity analysis section).

We next built a simplified Cox model for clinical use by using a stepwise variable selection procedure for Cox models alternating between "forward" and "backwards" steps to identify the first 5 variables to be included.¹³ Simplified Cox models were fit using only the selected 5 variables and Harrell's C-Statistics were obtained (survival outcome). Model coefficient (linear prediction) accuracy was evaluated. We evaluated area under receive operating characteristic (ROC) curves (AUC) for predicting AKI within 3 days and death within 30 days of a new COVID-19 diagnosis (binary outcome). Net reclassification improvement (NRI) of adding all remaining covariates was also calculated.

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Risk scores were obtained by rounding simplified model coefficients for easier
 clinical risk assessment use. For suggested risk score cutoffs, Kaplan-Meier event
 curves were plotted, log rank tests were performed, and sensitivities, specificities,
 positive and negative likelihood ratios were calculated. Approximate pre-test to post-test

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

probability changes from likelihood ratios were calculated using the linear approximation proposed by McGee.¹⁴ Cutoffs for low risk were chosen so that the negative likelihood ratio would be ≈ 0.20 with a pre- to post-test probability decrease of $\approx 30\%$, while cutoffs for high risk were chosen so that the positive likelihood ratio would be ≈5.0 with a pre- to post-test probability increase of $\approx 30\%$ and that at least 15% of patients (560) would be identified as high risk.¹⁴ We ran 1,000 internal cross validation iterations in which 70% of data were randomly assigned to training, the other 30% to testing. For each iteration, simplified Cox models were fit to the training data, coefficients were rounded to obtain risk scores, and AUC's were calculated using the predicted testing data risk scores. We performed four sensitivity analyses. First, the multivariable cause-specific and subdistribution hazard to documented AKI events within 30 days accounting for the competing risk of death was modeled.¹⁵ Second, we performed a multiple imputation analysis by creating 10 imputation datasets with imputed values for missing respiratory rate and IL-6 and then calculating pooled multivariable Cox hazard ratios.¹⁶ Third, we investigated the AKI risk score accuracy in identifying stage 2 or 3 AKI as defined in the KDIGO criteria, and we investigated the death score accuracy among patients with stage 2 or 3 AKI.¹² Fourth, we investigated including mechanical ventilation (noninvasive and invasive) and lymphopenia defined as lymphocytes <800 cells/mm³ as covariates for modeling AKI and death events. All analyses were performed with R version 4.0.4 and all code for analyses are available online (to be posted during revisions). Results

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5	1	Demographic and Clinical Characteristics
6 7	2	There were 3,716 eligible adult COVID-19 positive patients without CKD, of
8 9	3	which 1,855 (49.9%) were male. The average age was 58.6 years (SD 19.2 years).
10 11 12	4	There were 696 patients that developed AKI (18.7%) and 249 (35.8%) were within three
12 13 14	5	days of a new COVID-19 diagnosis. There were 347 deaths (9.3%) and 322 (92.8%)
15 16	6	were within thirty days of a new COVID-19 diagnosis. Among the AKI group there were
17 18	7	192 deaths (27.6%), and among the non-AKI group there were 155 deaths (5.1%,
19 20 21	8	p<0.001). Patient demographics, preexisting conditions, vital signs, and laboratory
22 23	9	values stratified by patients with AKI and patients that died are displayed in Table 1 .
24 25	10	Patients with AKI and patients that died were more likely to be older, male, have
26 27 28	11	multiple comorbidities, and have on admission higher temperatures, lower systolic blood
29 30	12	pressures, higher respiratory rates, elevated white blood cell counts, lower hemoglobin
31 32	13	and platelets, and elevated CRP, ferritin, D-dimer, and IL-6 levels.
33 34 35	14	
36 37 38	15	Fully Adjusted Multivariable Regression
39 40 41	16	Multivariable Cox regression was performed to identify risk factors associated
42 43	17	with time to AKI and death. Table 2 displays pooled multivariable adjusted hazard
44 45	18	ratios. Adjusting for all other variables, older age, increased medical conditions,
46 47 48	19	increased temperature, decreased systolic blood pressure, increased white blood cells,
49 50	20	decreased platelets, and increased CRP and D-Dimer were associated with increased
51 52	21	hazards for both AKI and death. Elevated BMI, decreased hemoglobin, and increased
53 54 55	22	ferritin were associated with increased hazards for AKI but not death. Black and Asian
56 57 58		10
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 42

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

race were associated with decreased hazards and increased heart rate was associated
with increased hazards for death but not AKI.

4 Top Risk Factor/Biomarker Selection

The top five variables selected for being most associated with AKI events were hemoglobin, D-dimer, CRP, WBC, and male sex. The top five variables most associated with death were age, CRP, platelets, WBC, and D-Dimer. Table S1 shows model coefficients and Harrell's C-statistic (survival concordance) from the simplified model using just these selected variables. Table S2 shows similar results for the fully adjusted model. The simplified AKI Cox model had a survival C-statistic of 0.785 (95% CI, 0.769 to 0.800), while the fully adjusted AKI Cox model had a C-statistic of 0.813 (95% CI, 0.798 to 0.827). The simplified death Cox model had a survival C-statistic of 0.857 (95%) CI, 0.841 to 0.874), while the fully adjusted death Cox model had a C-statistic of 0.878 (95% CI, 0.863 to 0.892).

Cox model coefficients were used to predict AKI events within 3 days and death within 30 days of a new COVID-19 diagnosis (binary outcomes). **Table S1** and **Table S2** also displays AUC's for the simplified and fully adjusted coefficients respectively. For AKI in 3 days, using the simplified coefficients had an AUC of 0.787 (95% CI, 0.759 to 0.814), using the fully adjusted coefficients had an AUC of 0.820 (95% CI, 0.794 to 0.845), and the NRI was 0.041 (95% CI, 0.003 to 0.082). For death in 30 days, using the simplified coefficients had an AUC of 0.872 (95% CI, 0.854 to 0.890), the fully

BMJ Open

₽
5
0
pe
ž
±,
S
Ð
č
ublished as 1
ъ
e
0
S
10
õ
þ
omjopen-
g
ğ
1
20
Ň
Ē
ថ្ង
36
ŝ
0
1-2021-053635 on 2
N
21 February
φ
þ
ua
ź
N
22
2022.
σ
õ
Ę
wnlo
published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloac
wnloade
wnloaded f
wnloaded fro
aded from
aded from
aded from http
aded from
aded from http
aded from http://bmjopen.bmj.com/ on April 19,
aded from http://bmjopen.bmj.com/ on April 19,
aded from http
aded from http://bmjopen.bmj.com/ on April 19,
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prot
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prote
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prote
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prote
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prote
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prote
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Prote

adjusted coefficients had an AUC of 0.893 (95% CI, 0.878 to 0.909), and the NRI was 0.010 (95% CI, -0.007 to 0.029). Risk Score Model coefficients were rounded to obtain risk score component values for easier clinical use. **Table 3** shows the risk score and internal validation results. For AKI in 3 days, the risk score had an AUC 0.785 (95% CI, 0.758, 0.813) and a cross validation AUC of 0.776 (95% CI, 0.732, 0.816). For death in 30 days, the risk score had an AUC of 0.861 (95% CI, 0.843 to 0.878) and a cross validation AUC of 0.860 (95% CI, 0.831, 0.886). Figure 1A plots ROC curves for using fully adjusted coefficients (from Table S2) versus using risk scores (from **Table 3**) in predicting AKI in 3 days and death in 30 days. Suggested risk stratification cutoffs were obtained. **Table S3** presents sensitivity, specificity, and positive and negative likelihood ratios for all possible risk score cutoffs. **Table 4** shows suggested risk stratification cutoffs and stratified observed and estimated event rates. Higher risk scores had higher observed and estimated AKI and death rates. Figure 1B plots Kaplan Meier event curves of AKI and death events by simplified risk score categories. Event rates different by risk category for AKI (p<0.001) and death (p<0.001). Sensitivity Analysis

Page 14 of 42

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

We performed a competing risk regression analysis for AKI and death within 30 days. Table S4 displays the multivariable cause-specific and subdistribution hazard ratios for AKI events. Cause-specific and subdistribution hazard ratio estimates and confidence intervals were nearly identical. We also performed a multiple imputation analysis by imputing missing values for respiratory rate and IL-6 to evaluate their associations. **Table S5** shows that results were similar to non-imputation results, and increased respiratory rate and IL-6 were associated with increased hazards of AKI and death. Of the 696 patients with an AKI event, 580 had a stage 1 AKI (83.3%), 29 had stage 2 (4.2%), and 87 had stage 3 (12.5%). Of the 117 patients with stage 2 or 3 AKI, there were 39 deaths (33.6%). In predicting stage 2 or 3 AKI as a single composite outcome among all 3,716 patients, the AKI risk score in **Table 3** had an AUC of 0.850 (95% CI, 0.819 to 0.881). In predicting death among the 117 patients with stage 2 or 3 AKI, the death risk score in Table 3 had an AUC of 0.758 (95% CI, 0.671 to 0.846).

Of the 696 patients with an AKI event, 207 (29.7%) had lymphopenia with lymphocytes <800 cells/mm³ and 328 (47.1%) had received mechanical ventilation. Of the 347 patients with a death event, 150 (43.2%) had lymphopenia and 124 (35.7%) had received mechanical ventilation. Of all 3,716 patients, 690 (18.6%) had lymphopenia and 449 (12.1%) had received mechanical ventilation. For AKI in 3 days, the fully adjusted coefficients in the primary analyses had an AUC of 0.820 (95% CI, 0.794 to 0.845) while additionally adding lymphopenia and mechanical ventilation only increased the AUC to 0.838 (95% CI, 0.814, 0.861). For death in 30 days, the fully adjusted coefficients had an AUC of 0.893 (95% CI, 0.878 to 0.909), while additionally

BMJ Open

BMJ Open: first p	
ublished as 1	
Ĕ	
21-053635 on 21	
ebruary 2022.	
wnloaded from http://	-
ttp://bmjopen.bmj	
.com/ on April 19	
, 2024 by guest. I	
rotected by copyri	
q	

:	adding lymphopenia and mechanical ventilation only increased the AUC to 0.906 (95%
:	2 CI, 0.893 to 0.920).
:	3
	Discussion
!	In this retrospective study of over 3,700 adult patients without chronic kidney
	disease diagnosed with COVID-19 through May 2020 in the Boston area, we identified
	risk factors and biomarkers associated with AKI and death, and we developed and
:	internally validated risk scores for predicting AKI and death. We found about one in five
9	patients developed AKI and one in ten patients died. Increased age, male sex,
1	increased white blood cells, C-reactive protein and D-Dimer and decreased hemoglobin
1	and platelet levels were associated with AKI within 3 days and/or death within 30 days
1	of a new COVID-19 diagnosis. A risk score using just these variables had similar
1	internal accuracy as using all study variables. These results can assist in risk
14	stratification of COVID-19 patients without CKD.
1	Many studies have found markedly increased COVID-19 fatality rates among
1	older people. Studies from China, Spain, and Italy, and a meta-analysis of studies from
1	34 different geographical locations have all found increased case or infection fatality
13	rates among people >60 and >65 years old compared to younger populations. ^{17–20} We
1	similarly observed older age had some of the strongest associations with death. Earlier
2	studies have found various physiologic changes among elderly patients that may
2	contribute to this age-related risk, such as decreased small airway clearance,
2	decreased number of cilia and ciliated cells, and decreased upper airway size. ^{21–23}
	14

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Other studies have also reported worse COVID-19 outcomes among men. A study of over 3,300 patients in Montefiore Medical Center found male sex was associated with AKI in both COVID-19 positive and negative patients.⁸ This study also provided a more complete discussion of other animal studies and meta-analyses to date that that have found associations between male sex and AKI in general. Studies of COVID-19 outcomes from March 2020 in Italy and the US also reported increased hospitalization and intensive care unit admission rates among male patients.^{24,25} We similarly observed that AKI patients (60.3%) and patients that died (58.2%) were more likely to be male (overall 49.9%). However, after adjusting for other demographics, medical conditions, vital signs, and laboratory values, we found male sex was associated with AKI but not death. Among laboratory values, C-reactive protein, hemoglobin, white blood cells, D-Dimer, and platelets were significantly associated with AKI and death and were included in risk scores. Although there has been debate about a standard definition for COVID-19 cytokine storm syndrome, patients with C-reactive protein may have excessive immune activation, with C-reactive protein being produced by hepatocytes in response to IL-6 or ferritin.²⁶ Decreased hemoglobin may be reflective of kidney disease with decreased erythropoietin production or directly lead to decreased oxygenation of the kidneys. A study from Korea also found a higher risk of AKI in critically ill patients with a hemoglobin <10.5 g/dL.²⁷ Elevated white blood cell counts may suggest sepsis and be associated with life-threatening organ dysfunction.²⁸ Elevated D-Dimer levels may be indicative of a pro-thrombotic state, and a retrospective study from China found that D-

BMJ Open

1	have also been reported to be elevated at baseline in CKD patients, ³⁰ so it is possible
2	elevated D-Dimer may only be prognostic in non-CKD patients. Low platelets may also
3	indicate a systemic coagulopathic process that places patients at an increased risk for
4	death. ²⁸
5	The biomarker IL-6 was found to be a significant risk factor in regression
6	analyses. However, a substantial proportion of patients in our study were missing IL-6
7	values (78.3%), so IL-6 was not considered for risk score development. IL-6
8	measurements were obtained at physician discretion and were likely reserved for
9	severe cases. This may have also contributed to the missingness profile of IL-6.
10	Previous studies have found IL-6 cutoffs of 80 and 86 IU/mL to have prognostic value
11	for predicting respiratory failure and death respectively. ^{31,32}
12	We proposed risk scores for identifying AKI within 3 days and death within 30
	days of a new COVID-19 diagnosis along with suggested cutoffs. Although risk scores
14	still need to be externally validated, being able to identify a few key biomarkers that are
15	widely accessible can help focus chart reviews of new COVID-19 positive patients.
16	Varying score weights further highlight biomarkers to focus on, such as hemoglobin and
17	male sex for AKI, age and platelets for death, and WBC, CRP, and D-Dimer for both.
18	Larger scores directly correlate with worse outcomes and can help shape physician
19	gestalt.
20	We explored death being a competing risk for AKI events as patients with death
20	We explored dealth being a competing lisk for AKI events as patients with dealth
21	will not have any more creatinine measurements. Although an AKI does not exclude the
22	possibility of death, competing risk analyses can still be performed investigating which
23	event type occurs first. ¹⁵ The cause-specific hazards ratios (Cox hazard ratios) describe
	16
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

the rate of AKI events among those still alive and with no previous AKI events, while the
subdistribution hazard ratios describes the overall rate of AKI events occurring before
death. In our study both cause-specific and subdistribution hazard ratios were similar.
Competing risk analyses were not performed for death events as having an AKI does
not exclude death.

6 We looked at a subgroup of patients which developed stage 2 or 3 AKI. Our AKI 7 risk score also performed well in identifying patients who developed stage 2 or 3 AKI, 8 suggesting higher risk scores also correlate with developing a higher stage AKI. Among 9 patients who developed stage 2 or 3 AKI, the death risk score AUC had a larger 10 confidence interval likely because of the smaller sample size and smaller number of 11 death events.

We explored including lymphopenia and mechanical ventilation as variables in analyses. Lymphopenia has been found to be associated with greater COVID-19 disease severity and poorer outcomes,³³ and hypoxemia requiring mechanical ventilation may affect kidney perfusion and also lead to poorer outcomes. We found that additionally including lymphopenia and mechanical ventilation to our study variables only led to small improvements in AUC in predicting AKI and death events. Nonetheless, we expect that patients who score high on our risk scores but also have lymphopenia and/or require mechanical ventilation will be at even greater risk of AKI and death events. Future work can further investigate including these variables into risk scores.

Limitations to our study include the following. All results are associational and no causal effects should be interpreted. Vital and signs and laboratory values were those

closest to COVID-19 diagnosis, and time-varying covariates were not incorporated into analyses. As the study was retrospective, selection bias cannot be excluded, and only events within the MGB system were recorded. Our identified risk factors and risk scores are most applicable during a patient's initial COVID-19 positive test. Results may not be generalizable to more specific subgroups such as those requiring intensive care admission. Patients in the Boston area may not be reflective of those in other healthcare systems, and the study population included only COVID-19 positive patients without CKD. The study population included patients in the first wave of COVID-19, and results should be cautiously applied to subsequent waves of COVID-19 due to differences in COVID-19 variants and treatment protocols. Future work may further stratify AKI events by stage and time of acquisition (relative to hospital admission), investigate outpatient, hospitalized, and critically ill patients separately, focus on CKD patients, validate results on a separate cohort, explore hospital specific effects, and include medication use such as renin-angiotensin-aldosterone system inhibitors. We investigated AKI and death outcomes among adult COVID-19 patients without CKD in the Boston area. We identified risk factors and developed and evaluated risk assessment tools for identifying COVID-19 patients developing AKI and death. Hemoglobin, D-Dimer, CRP, WBC, and male sex were the strongest predictive biomarkers for AKI. Age, CRP, platelets, WBC, and D-Dimer were most predictive for death. Our study significantly contributes to epidemiological knowledge of COVID-19 outcomes and introduces simple tools to assist with rapid risk assessment. Acknowledgements

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Contributors: None

Funding statement: This work was supported by the National Institutes of Health grant number T32-GM135117 (DL).

Competing interests: The authors declare no relevant competing interests.

Authors' contributions: DL and HR drafted the manuscript. HR, PX, DW obtained the

data. DL performed the analyses. DL, HR, DJV, PS, QL, and XL contributed to the

design of the study. All authors were involved with interpretation of the data and critical revision and final approval of the article.

Availability of data and materials: Patient data is not available, but requests for surrogate data may be made to the corresponding authors. However, code for all analyses will be available at https://github.com/lin-lab.

Patient and public involvement: Patients and the public were not involved in the planning of this project.

Research ethics approval human subjects: The Mass General Brigham Institutional Review Board approved this study, and the approval number was 2020P001661. Only

deidentified patient electronic health record data were used.

1 2					
2 3 4	1	References			
5	2	1.	Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem		
6	3		findings of patients with COVID-19 in China. Kidney International. 2020;98(1):219-		
7 8	4		227. doi:10.1016/j.kint.2020.04.003		
9	_	2	Forkeen FA Wilson AM Jantzen IM Ultreetructurel Evidence for Direct Denel		
10	5 6	2.	Farkash EA, Wilson AM, Jentzen JM. Ultrastructural Evidence for Direct Renal Infection with SARS-CoV-2. JASN. 2020;31(8):1683-1687.		
11 12	7		doi:10.1681/ASN.2020040432		
13					
14	8	3.	Nadim MK, Forni LG, Mehta RL, et al. COVID-19-associated acute kidney injury:		
15 16	9		consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup.		
17	10		Nat Rev Nephrol. Published online October 15, 2020. doi:10.1038/s41581-020-		
18	11		00356-5		
19 20	12	4.	Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult		
20	13		inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The		
22	14		Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3		
23 24	4 5	F	Guan W jie, Ni Z yi, Hu Y, et al. Clinical Characteristics of Coronavirus Disease		
25	15 16	5.	2019 in China. <i>N Engl J Med</i> . 2020;382(18):1708-1720.		
26	10		doi:10.1056/NEJMoa2002032		
27 28	17				
20	18	6.	Kolhe NV, Fluck RJ, Selby NM, Taal MW. Acute kidney injury associated with		
30	19		COVID-19: A retrospective cohort study. Remuzzi G, ed. PLoS Med.		
31	20		2020;17(10):e1003406. doi:10.1371/journal.pmed.1003406		
32 33	21	7.	Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with		
34	22		COVID-19. Kidney International. 2020;98(1):209-218.		
35	23		doi:10.1016/j.kint.2020.05.006		
36 37		•			
38	24	8.	Fisher M, Neugarten J, Bellin E, et al. AKI in Hospitalized Patients with and without		
39	25 26		COVID-19: A Comparison Study. <i>JASN</i> . 2020;31(9):2145-2157. doi:10.1681/ASN.2020040509		
40 41	20		doi: 10: 100 //ASN:2020040303		
42	27	9.	Zahid U, Ramachandran P, Spitalewitz S, et al. Acute Kidney Injury in COVID-19		
43	28		Patients: An Inner City Hospital Experience and Policy Implications. Am J Nephrol.		
44 45	29		2020;51(10):786-796. doi:10.1159/000511160		
46	30	10	Chan L, Chaudhary K, Saha A, et al. AKI in Hospitalized Patients with COVID-19.		
47	30 31	10.	JASN. 2021;32(1):151-160. doi:10.1681/ASN.2020050615		
48 49	71				
49 50	32	11.	Smilowitz NR, Nguy V, Aphinyanaphongs Y, et al. Multiple Biomarker Approach to		
51	33		Risk Stratification in COVID-19. Circulation. Published online February 15,		
52	34		2021:CIRCULATIONAHA.120.053311.		
53 54	35		doi:10.1161/CIRCULATIONAHA.120.053311		
55					
56					
57 58			20		
59					
60			For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml		

BMJ Open

2			
3 4 5 6	1 2 3	12.	KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Disease Improving Global Outcomes; 2012:1-141. Accessed January 8, 2021. https://linkinghub.elsevier.com/retrieve/pii/S2157171615310388
7			
8	4	13.	Hu FC. My.stepwise.coxph, Stepwise Variable Selection Procedure For Cox's
9	5		Proportional Hazards Model And Cox's Model. R Documentation. Accessed
10	6		February 23, 2021.
11	7		https://www.rdocumentation.org/packages/My.stepwise/versions/0.1.0/topics/My.st
12 13	8		epwise.coxph
13 14			
15	9	14.	McGee S. Simplifying likelihood ratios. <i>J Gen Intern Med</i> . 2002;17(8):647-650.
16	10		doi:10.1046/j.1525-1497.2002.10750.x
17		45	Austin DC, Les DC, Fine, ID, Introduction to the Analysis of Currical Data in the
18	11	15.	Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in the
19 20	12		Presence of Competing Risks. <i>Circulation</i> . 2016;133(6):601-609.
20 21	13		doi:10.1161/CIRCULATIONAHA.115.017719
22	14	16	Rubin DB. Inference and Missing Data. <i>Biometrika</i> . 1976;63(3):581-592.
23	14	10.	
24	15	17.	Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus
25	16		disease 2019: a model-based analysis. The Lancet Infectious Diseases.
26 27	17		2020;20(6):669-677. doi:10.1016/S1473-3099(20)30243-7
28			
29	18	18.	Pastor-Barriuso R, Pérez-Gómez B, Hernán MA, et al. Infection fatality risk for
30	19		SARS-CoV-2 in community dwelling population of Spain: nationwide
31	20		seroepidemiological study. BMJ. Published online November 27, 2020:m4509.
32	21		doi:10.1136/bmj.m4509
33			
34 35	22	19.	Signorelli C, Odone A. Age-specific COVID-19 case-fatality rate: no evidence of
36	23		changes over time. Int J Public Health. 2020;65(8):1435-1436.
37	24		doi:10.1007/s00038-020-01486-0
38			
39	25	20.	Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-
40	26		Katz G. Assessing the age specificity of infection fatality rates for COVID-19:
41 42	27		systematic review, meta-analysis, and public policy implications. <i>Eur J Epidemiol</i> .
42 43	28		2020;35(12):1123-1138. doi:10.1007/s10654-020-00698-1
44	20	04	Martin CE Mathur D. Marchall I. Davalas NJ, The effect of any sharity and
45	29	ΖΊ.	Martin SE, Mathur R, Marshall I, Douglas NJ. The effect of age, sex, obesity and
46	30		posture on upper airway size. <i>European Respiratory Journal</i> . 1997;10(9):2087-
47	31		2090. doi:10.1183/09031936.97.10092087
48 49	32	22.	Svartengren M. Long-term clearance from small airways decreases with age.
49 50	33	22.	European Respiratory Journal. 2005;26(4):609-615.
51	33 34		doi:10.1183/09031936.05.00002105
52	54		001.10.1103/03031300.03.00002103
53	35	23.	Perrotta F, Corbi G, Mazzeo G, et al. COVID-19 and the elderly: insights into
54	36	_0.	pathogenesis and clinical decision-making. Aging Clin Exp Res. 2020;32(8):1599-
55 56	37		1608. doi:10.1007/s40520-020-01631-y
56 57			
58			21
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4	1	24.	Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of
5 6	2 3		1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. <i>JAMA</i> . 2020;323(16):1574-1581. doi:10.1001/jama.2020.5394
7 8	4	25.	Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of
9 10	5 6		Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020. <i>MMWR Morb Mortal Wkly Rep</i> .
11 12	7		2020;69(15):458-464. doi:10.15585/mmwr.mm6915e3
13 14	8	26.	Chen LYC, Hoiland RL, Stukas S, Wellington CL, Sekhon MS. Confronting the
15 16	9 10		controversy: interleukin-6 and the COVID-19 cytokine storm syndrome. <i>Eur Respir</i> J. 2020;56(4). doi:10.1183/13993003.03006-2020
17 18	11	27.	Han SS, Baek SH, Ahn SY, et al. Anemia Is a Risk Factor for Acute Kidney Injury
19 20 21	12 13		and Long-Term Mortality in Critically III Patients. <i>Tohoku J Exp Med</i> . 2015;237(4):287-295. doi:10.1620/tjem.237.287
22 23	14	28.	Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology,
23 24 25	15 16		Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID- 19): A Review. <i>JAMA</i> . 2020;324(8):782. doi:10.1001/jama.2020.12839
26 27	17	29.	Yao Y, Cao J, Wang Q, et al. D-dimer as a biomarker for disease severity and
28 29	18 10		mortality in COVID-19 patients: a case control study. <i>J Intensive Care</i> . 2020;8. doi:10.1186/s40560-020-00466-z
30	19		
31 32	20 21	30.	Lindner G, Funk GC, Pfortmueller CA, et al. D-dimer to Rule Out Pulmonary Embolism in Renal Insufficiency. <i>The American Journal of Medicine</i> .
33 34	22		2014;127(4):343-347. doi:10.1016/j.amjmed.2013.12.003
35 36	23	31.	Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-6 and CRP predict the
37 38 39	24 25		need for mechanical ventilation in COVID-19. <i>Journal of Allergy and Clinical Immunology</i> . 2020;146(1):128-136. doi:10.1016/j.jaci.2020.05.008
40	26	32.	Laguna-Goya R, Utrero-Rico A, Talayero P, et al. IL-6-based mortality risk model
41 42 43	27 28		for hospitalized patients with COVID-19. <i>Journal of Allergy and Clinical Immunology</i> . 2020;146(4):799-807.e9. doi:10.1016/j.jaci.2020.07.009
44 45	29	33.	Huang I, Pranata R. Lymphopenia in severe coronavirus disease-2019 (COVID-
46 47	30 31		19): systematic review and meta-analysis. <i>J Intensive Care</i> . 2020;8(1):36. doi:10.1186/s40560-020-00453-4
48 49	32		
50	52		
51 52	33		
53 54			
55 56			
57 58			22
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure Legends

Fig. 1 Receiver Operating Characteristics and Kaplan Meier Event Curves Using Selected Variables.

(A) Receiver operating characteristic (ROC) curves for acute kidney injury (AKI) within 3

- days and death within 30 days using fully adjusted model coefficients and developed
- risk score. Each line represents a different model's predictions with the given variables.
- HGB = Hemoglobin, CRP = C-reactive protein, WBC = white blood cell, PLT = Platelets.
 - ant μ begins at μ (B) Kaplan-Meier event curves for AKI events and death events stratified by AKI and
- death scores. Time begins at positive COVID-19 test.

Variable, n (%)	AKI	Died	Total
	(n=696)	(n=347)	(n=3,716
Age (years)			
<45	86 (12.4)	7 (2.0)	980 (26.4
45-65	245 (35.2)	55 (15.9)	1,310 (35.
>65	365 (52.4)	285 (82.1)	1,426 (38.
Sex (Male)	420 (60.3)	202 (58.2)	1,855 (49.
Race			
White	407 (58.5)	242 (69.7)	2,091 (56.
Black	110 (15.8)	50 (14.4)	568 (15.3
Hispanic	22 (3.2)	9 (2.6)	135 (3.6
Asian	27 (3.9)	8 (2.3)	140 (3.8
Other	130 (18.7)	38 (11.0)	782 (21.0
Diabetes <	197 (28.3)	87 (25.1)	727 (19.6
Cardiovascular Disease	67 (9.6)	49 (14.1)	231 (6.2
Hypertension	135 (19.4)	65 (18.7)	484 (13.0
Heart Failure	39 (5.6)	38 (11.0)	134 (3.6
Medical Conditions			X
(number)			
0	397 (57.0)	189 (54.5)	2,565 (69.
1	190 (27.3)	95 (27.4)	811 (21.8
2	83 (11.9)	47 (13.5)	264 (7.1
3+	26 (3.7)	16 (4.6)	76 (2.0)
Body Mass Index (kg/m ²)			- (-)
<25	165 (23.7)	115 (33.1)	833 (22.4
25-30	229 (32.9)	110 (31.7)	1,334 (35.
>30	302 (43.4)	122 (35.2)	1,549 (41.
Temperature (F)			.,
97-100.4	423 (60.8)	201 (57.9)	2,745 (73.
<97	35 (5.0)	22 (6.3)	190 (5.1
>100.4	238 (34.2)	124 (35.7)	781 (21.0
Heart Rate (beats/min)			
60-110	576 (82.8)	274 (79.0)	3,194 (86
<60	61 (8.8)	30 (8.6)	275 (7.4
>110	59 (8.5)	43 (12.4)	247 (6.6
Systolic Blood Pressure			247 (0.0
(mmHg)			
90-180	635 (91.2)	305 (87.9)	3,549 (95
<90	48 (6.9)	35 (10.1)	<u> </u>
>180	13 (1.9)	7 (2.0)	50 (1.3)
Respiratory Rate (per	10 (1.9)	1 (2.0)	

minute)

<20	245 (35.2)	92 (26.5)	1,692 (45.5)
>20	364 (52.3)	202 (58.2)	1,237 (33.3)
NA (Missing)	87 (12.5)	53 (15.3)	787 (21.2)
White Blood Cell (thousand cells/mm ³)			
3.5-11	428 (61.5)	189 (54.5)	2,942 (79.2)
<3.5	39 (5.6)	26 (7.5)	267 (7.2)
>11	229 (32.9)	132 (38.0)	507 (13.6)
Hemoglobin (g/dL)			
12+	201 (28.9)	138 (39.8)	2,250 (60.5)
10-12	204 (29.3)	88 (25.4)	883 (23.8)
<10	291 (41.8)	121 (34.9)	583 (15.7)
Platelets (per µL)			/
>100	643 (92.4)	310 (89.3)	3,600 (96.9)
<100	53 (7.6)	37 (10.7)	116 (3.1)
C-Reactive Protein (mg/L)	, <u>,</u> ,		
<50	197 (28.3)	62 (17.9)	1,706 (45.9)
50-100	149 (21.4)	63 (18.2)	1,011 (27.2)
>100	350 (50.3)	222 (64.0)	999 (26.9)
Ferritin (µg/L)			
<250	105 (15.1)	52 (15.0)	950 (25.6)
250-1000	327 (47.0)	155 (44.7)	1,894 (51.0)
>1000	264 (37.9)	140 (40.3)	872 (23.5)
D-Dimer (ng/mL)			
<1000	136 (19.5)	60 (17.3)	1,726 (46.4)
1000-2000	217 (31.2)	101 (29.1)	1,076 (29.0)
>2000	343 (49.3)	186 (53.6)	914 (24.6)
Interleukin-6 (IU/mL)	• •		
<40	121 (17.4)	26 (7.5)	438 (11.8)
40-80	68 (9.8)	33 (9.5)	137 (3.7)
>80	136 (19.5)	58 (16.7)	196 (5.3)
NA (Missing)	371 (53.3)	230 (66.3)	2,945 (79.3)

AKI = acute kidney injury

57

58 59

Variable	AKI	Death
Age (years)		
<45	Reference	Reference
45-65	1.71 (1.33, 2.21)	5.33 (2.42, 11.8
>65	2.16 (1.66, 2.80)	23.4 (10.9, 50.1
Sex (Male)	1.51 (1.28, 1.77)	1.16 (0.92, 1.45
Race		1.10 (0.02, 1.10
White	Reference	Reference
Black	0.89 (0.72, 1.11)	0.66 (0.48, 0.92
	· · · · · · · · · · · · · · · · · · ·	• · · ·
	0.89 (0.58, 1.38)	0.62 (0.32, 1.23
Asian	0.96 (0.65, 1.43)	0.46 (0.22, 0.93
Other	1.11 (0.90, 1.37)	0.72 (0.50, 1.02
Medical Conditions (number)		
0	Reference	Reference
1	1.28 (1.07, 1.53)	1.07 (0.83, 1.38
2	1.67 (1.30, 2.13)	1.40 (1.01, 1.9
3+	1.82 (1.21, 2.75)	1.61 (0.95, 2.73
Body Mass Index (kg/m ²)		
<25	Reference	Reference
25-30	1.09 (0.89, 1.33)	0.78 (0.59, 1.02
>30	1.42 (1.17, 1.74)	0.94 (0.72, 1.22
Temperature (F)		
97-100.4	Reference	Reference
<97	1.07 (0.75, 1.51)	1.18 (0.75, 1.85
>100.4	1.59 (1.34, 1.88)	1.54 (1.22, 1.96
Heart Rate (beats/min)		,,
60-110	Reference	Reference
<60	1.24 (0.95, 1.63)	0.97 (0.66, 1.43
>110	1.11 (0.85, 1.47)	1.78 (1.28, 2.48
Systolic Blood Pressure	1.11 (0.00, 1.47)	1170 (1120, 2140
(mmHg)		
90-180	Reference	Reference
<90	1.90 (1.41, 2.57)	2.10 (1.45, 3.04
>180	0.96 (0.55, 1.67)	0.90 (0.42, 1.92
	0.90 (0.55, 1.07)	0.90 (0.42, 1.92
White Blood Cell (thousand		
cells/mm ³)	Deference	Deference
3.5-11	Reference	Reference
<3.5	0.78 (0.55, 1.09)	1.10 (0.72, 1.68
>11	1.77 (1.49, 2.12)	2.32 (1.82, 2.9
Hemoglobin (g/dL)		
>12	Reference	Reference
10-12	2.15 (1.75, 2.64)	0.88 (0.67, 1.16
<10	3.72 (3.03, 4.57)	1.03 (0.78, 1.35

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Platelets (per μL) >100	Reference	Reference
<100	1.74 (1.30, 2.34)	2.60 (1.79, 3.77)
C-Reactive Protein (mg/L)		2.00 (1.10, 0.11)
<50	Reference	Reference
50-100	0.96 (0.77, 1.20)	1.46 (1.02, 2.10)
>100	1.57 (1.29, 1.91)	3.61 (2.65, 4.93)
Ferritin (µg/L)		
<250	Reference	Reference
250-1000	1.29 (1.03, 1.63)	0.91 (0.65, 1.26)
>1000	1.69 (1.31, 2.17)	1.14 (0.80, 1.62)
D-Dimer (ng/mL)		
<1000	Reference	Reference
1000-2000	1.67 (1.33, 2.09)	1.21 (0.87, 1.69)
1000-2000		
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)
>2000	2.11 (1.68, 2.65)	1.82 (1.31, 2.52)

1 2 3	1	Та
4 5	T	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		Vi H H C W M
21 22 23		W
24 25 26		С
27 28 29 30 31 32 33 4 35 36 37 38 39 40 41 42 43 44 50 51 52 53 4 55 56 57 58 59	2 3 4 5 6 7	C W cc In pe

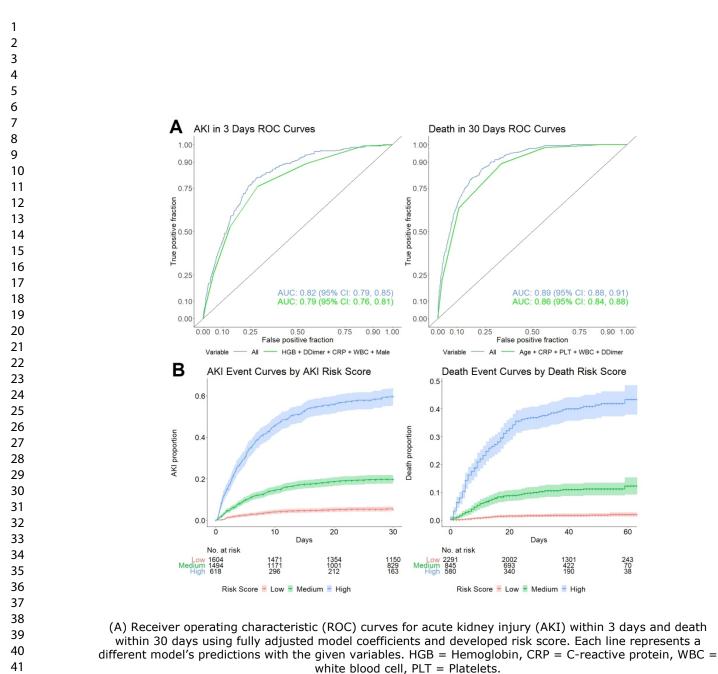
1 **Table 3.** Risk Score and Internal Validation Results.

AKI in 3 days	(max 6)	Death in 30 days (max 7)				
Risk Score						
Variable	Value	Variable	Value			
Hemoglobin <10 g/dL	2	Age > 65 years	3			
Hemoglobin 10-12 g/dL	1	Age 45-65 years	2			
D-Dimer > 1,000 ng/mL	1	CRP > 100 mg/L	1			
CRP > 100 mg/L	1	Platelets < 100 per µL	1			
WBC > 11,000 cells/mm ³	1	WBC > 11,000 cells/mm ³	1			
Male Sex	1	D-Dimer > 2,000 ng/mL	1			
(Internal	Validation				
Validation Type	AUC (95%	Validation Type	AUC (95%			
	intervals)		intervals)			
Whole Data	0.785	Whole Data	0.861			
	(0.758, 0.813)		(0.843, 0.878)			
Cross Validation	0.776	Cross Validation	0.860			
	(0.732, 0.816)		(0.831, 0.886)			
CRP = C-reactive protein Whole data validation pr		od cells. the curve (AUC) estimates	and 95%			

4 confidence intervals.

Internal cross validation presents mean AUC and 95% central interval (2.5th and 97.5th
 percentiles).

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright


1	Table 4. Suggested Risk Stratification Cutoffs and Observed and Estimated Event
2	Rates.

AKI Risk Score						
Risk Level	Total Score	Observed	Estimated 3	Estimated 30		
		Total AKI (%)	Day AKI (%)	Day AKI (%)		
Low Risk	0-1	5.2	1.7	5.4		
Moderate Risk	2-3	18.4	6.2	19.7		
High Risk	4-6	54.7	21.6	59.7		
		Death Risk Score	Э			
Risk Level	Total Score	Observed	Estimated 30	Estimated 60		
		Total Death	Day Death (%)	Day Death (%)		
		(%)				
Low Risk	0-3	1.7	1.6	2.0		
Moderate Risk	4	10.4	10.2	12.3		
High Risk	5-7	37.9	37.3	43.4		

Observed percentages are from the observed data

are from Kapıan Estimated percentages are from Kaplan-Meier event curves

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(B) Kaplan-Meier event curves for AKI events and death events stratified by AKI and death scores. Time begins at positive COVID-19 test.

450x448mm (96 x 96 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Supplemental Methods – Additional Details

Statistical Analyses

Descriptive statistics and receiver operating characteristics (ROC) were calculated using R base functions. Cox proportional hazards models were fit using the "survival" package. Inspection of AKI and death Kaplan-Meier event curves stratified by each variable revealed no obvious violations of the proportional hazards assumption.

The variable selection procedure was implemented using the "My.stepwise" package. In addition to the variables included in fully adjusted Cox proportional hazards models, age >45 years, medical conditions >1, medical conditions >2, BMI > 25 kg/m², hemoglobin <12 g/dL, CRP > 500 mg/L, ferritin >250 μ g/L, and D-Dimer > 1,000 ng/mL were also included. The package "glmnet" was used to reformat data so that the variable selection procedure could be applied. The selection procedure alternates between "forward" steps of adding variables and "backwards" steps of removing variables. The significance level for entry and for staying was conservatively set at 0.15 as suggested by function details. The top 5 variables (top 6 dummy variables) were included in risk scores. Simplified risk score values were obtained by rounding model coefficients to the nearest integer.

ROC curves were created using "plotROC" and AUC values and confidence intervals were obtained from "pROC". Event curves were created using "survminer" and "mstate". Harrell's C-statistics were obtained from Cox proportional hazards model output, and net reclassification of improvement was obtained from "nricens".

BMJ Open

Competing risk analyses used the "cmprsk" package, and multiple imputation analyses used the "mice" package. The packages "ggplot2", "dplyr", "plyr", "ggfortify", and "cowplot" were used to process results and create figures. Code for replicating all analyses will be available online.

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Table S1. Coefficients fr validation statistics using	•	egression models to calcune near predictions.	lated and internal
AKI		Death	1
	Simplified Mo	del Coefficients	
Variable	Coefficient Value	Variable	Coefficient Value
Hemoglobin <10 g/dL	1.50	Age > 65 years	3.19
Hemoglobin 10-12 g/dL	0.85	Age 45-65 years	1.65
D-Dimer > 1,000 ng/mL	0.76	CRP > 100 mg/L	1.21
CRP > 100 mg/L	0.64	Platelets < 100 per µL	1.20
WBC > 11,000 cells/mm ³	0.59	WBC > 11,000 cells/mm ³	0.87
Male Sex	0.54	D-Dimer > 2,000 ng/mL	0.58
	Internal V	Validation	
Statistic	Estimate (95% CI)	Statistic	Estimate (95% CI)
Harrell's Survival C-	0.785	Harrell's Survival C-	0.857

Statistic (Concordance)

AKI in 3 Days AUC

AKI = acute kidney injury, CRP = C-reactive protein, WBC = white blood cells, AUC = area under the curve, CI = confidence interval Va

(0.769, 0.800)

0.787

(0.759, 0.814)

Statistic (Concordance)

Death in 30 Days AUC

(0.841, 0.874)

0.872

(0.854, 0.890)

Table S2. Coefficients from fully adjusted Cox regression models and internal validation statistics using these coefficient linear predictions.

AKI		Death			
Fully Adjusted Model Coefficients					
Variable	Coefficient Value	Variable	Coefficient Value		
Age 45-65 years	0.54	Age 45-65 years	1.67		
Age > 65 years	0.77	Age > 65 years	3.15		
Male Sex	0.41	Male Sex	0.14		
Race Black	-0.12	Race Black	-0.41		
Race Hispanic	-0.12	Race Hispanic	-0.47		
Race Asian	-0.04	Race Asian	-0.79		
Race Other	0.11	Race Other	-0.33		
Medical Conditions 1	0.25	Medical Conditions 1	0.07		
Medical Conditions 2	0.51	Medical Conditions 2	0.34		
Medical Conditions 3+	0.60	Medical Conditions 3+	0.48		
BMI 25-30 kg/m ²	0.08	BMI 25-30 kg/m ²	-0.25		
BMI >30 kg/m ²	0.35	BMI >30 kg/m ²	-0.06		
Temp < 97 F	0.06	Temp < 97 F	0.16		
Temp > 100.4 F	0.46	Temp > 100.4 F	0.43		
Heart rate < 60	0.22	Heart rate < 60	0.00		
beats/min		beats/min	-0.03		
Heart rate < 110	0.44	Heart rate < 110	0.50		
beats/min	0.11	beats/min	0.58		
SBP < 90 mmHg	0.64	SBP < 90 mmHg	0.74		
SBP > 180 mmHg	-0.04	SBP > 180 mmHg	-0.11		
WBC < 3,500 cells/mm ³	-0.25	WBC < 3,500 cells/mm ³	0.09		
WBC > 11,000 cells/mm ³	0.57	WBC > 11,000 cells/mm ³	0.84		
Hemoglobin <10 g/dL	0.77	Hemoglobin <10 g/dL	-0.13		
Hemoglobin 10-12 g/dL	1.31	Hemoglobin 10-12 g/dL	0.03		
Platelets < 100 per µL	0.56	Platelets < 100 per µL	0.96		
CRP 50-100 mg/L	-0.04	CRP 50-100 mg/L	0.38		
CRP > 100 mg/L	0.45	CRP > 100 mg/L	1.28		
Ferritin 250-1000 µg/L	0.26	Ferritin 250-1000 µg/L	-0.10		
Ferritin >1000 µg/L	0.52	Ferritin >1000 µg/L	0.13		
D-Dimer 1,000-2,000		D-Dimer 1,000-2,000			
ng/mL	0.51	ng/mL	0.19		
D-Dimer > 2,000 ng/mL	0.75	D-Dimer > 2,000 ng/mL	0.60		
		Validation			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20 27
27
20 29
30
31
32
32 33
33 34
34 35
35 36
30 37
3/
38
39
40
41
42
43
44
45
46
47
48
49
50

Statistic	Estimate (95% CI)	Statistic	Estimate (95% CI)
Harrell's Survival C-	0.813	Harrell's Survival C-	0.878
Statistic (Concordance)	(0.798, 0.827)	Statistic (Concordance)	(0.863, 0.892)
AKI in 3 Days AUC	0.820	Death in 30 Days AUC	0.893
	(0.794, 0.845)		(0.878, 0.909)

to occur cuica only

Table S3. Sensitivity, specificity, and likelihood ratios (LR) for positive and negative results of risk scores predicting acute kidney injury (AKI) within 3 days and death within 30 days of a positive COVID-19 test.

Cutoff	Sensitivity	Specificity	Positive LR	Negative LR			
	Simplified AKI Risk Score (max 6)						
	Rule in						
0	1.000	0.000	1.000	NA			
1	0.992	0.154	1.170	0.050			
2	0.892	0.455	1.640	0.240			
3	0.759	0.713	2.640	0.340			
4	0.526	0.860	3.750	0.550			
5	0.257	0.946	4.770	0.790			
6	0.068	0.989	6.400	0.940			
7	0.000	1.000	NA	1.000			
	Simplified	Death Risk Sco	re (max 7)				
0	1.000	0.000	1.000	NA			
1	1.000 🚫	0.156	1.190	0.000			
2	0.994	0.233	1.300	0.030			
3	0.984	0.433	1.740	0.040			
4	0.891	0.665	2.660	0.160			
5	0.637	0.890	5.760	0.410			
6	0.224	0.978	10.400	0.790			
7	0.019	1.000	Inf	0.980			
8	0.000	1.000	NA	1.000			

Cutoff denotes treating a score greater than or equal a cutoff value as a positive. Positive likelihood ratio (LR) is sensitivity / (1-specificity) Negative likelihood ratio (LR) is (1-sensitivity) / specificity Sensitivity 1 specificity 0 indicates all individuals identified as positive Sensitivity 0 specificity 1 indicates all individuals identified as negative

Approximate probability changes can be obtained by ≈0.18 * In(LR) (McGee 2002)

Table S4. Multivariable AKI cause-specific hazard (AKI event, death censor) and AKI subdistribution hazard (AKI and death competing risks) model results.

Variable	Cause-Specific	Subdistribution
Age (years)	•	
<45	Reference	Reference
45-65	1.71 (1.33, 2.21)	1.67 (1.31, 2.14)
>65	2.16 (1.66, 2.80)	1.92 (1.48, 2.50)
Sex (Male)	1.51 (1.28, 1.77)	1.53 (1.29, 1.81)
Race		
White	Reference	Reference
Black	0.89 (0.72, 1.11)	0.91 (0.73, 1.14)
Hispanic	0.89 (0.58, 1.38)	0.96 (0.65, 1.41)
Asian	0.96 (0.65, 1.43)	0.97 (0.67, 1.41)
Other	1.11 (0.90, 1.37)	1.13 (0.91, 1.40)
Medical Conditions (number)		
0	Reference	Reference
1	1.28 (1.07, 1.53)	1.27 (1.06, 1.53)
2	1.67 (1.30, 2.13)	1.66 (1.29, 2.12)
3+	1.82 (1.21, 2.75)	1.81 (1.18, 2.77)
Body Mass Index (kg/m ²)	, , , , , , , , , , , , , , , , , , , ,	
<25	Reference	Reference
25-30	1.09 (0.89, 1.33)	1.11 (0.90, 1.38)
>30	1.42 (1.17, 1.74)	1.47 (1.19, 1.81)
Temperature (F)		
97-100.4	Reference	Reference
<97	1.07 (0.75, 1.51)	1.03 (0.71, 1.48)
>100.4	1.59 (1.34, 1.88)	1.62 (1.37, 1.91)
Heart Rate (beats/min)		
60-110	Reference	Reference
<60	1.24 (0.95, 1.63)	1.30 (0.98, 1.72)
>110	1.11 (0.85, 1.47)	1.04 (0.78, 1.38)
Systolic Blood Pressure		
(mmHg)		
90-180	Reference	Reference
<90	1.90 (1.41, 2.57)	1.73 (1.28, 2.35)
>180	0.96 (0.55, 1.67)	1.00 (0.55, 1.84)
White Blood Cell (thousand		
cells/mm ³)		
3.5-11	Reference	Reference
<3.5	0.78 (0.55, 1.09)	0.79 (0.56, 1.12)
>11	1.77 (1.49, 2.12)	1.68 (1.39, 2.04)
Hemoglobin (g/dL)		
>12	Reference	Reference
10-12	2.15 (1.75, 2.64)	2.27 (1.83, 2.81)

<10	3.72 (3.03, 4.57)	3.94 (3.17, 4.90)
Platelets (per µL)		
>100	Reference	Reference
<100	1.74 (1.30, 2.34)	1.63 (1.19, 2.24)
C-Reactive Protein (mg/L)		
<50	Reference	Reference
50-100	0.96 (0.77, 1.20)	0.94 (0.76, 1.18)
>100	1.57 (1.29, 1.91)	1.48 (1.20, 1.82)
Ferritin (µg/L)		
<250	Reference	Reference
250-1000	1.29 (1.03, 1.63)	1.33 (1.05, 1.69)
>1000	1.69 (1.31, 2.17)	1.70 (1.31, 2.21)
D-Dimer (ng/mL)		
<1000	Reference	Reference
1000-2000	1.67 (1.33, 2.09)	1.70 (1.36, 2.13)
>2000	2.11 (1.68, 2.65)	2.07 (1.63, 2.63)
	2.11 (1.68, 2.65)	

BMJ Open: first published as 10.1136/bmjopen-2021-053635 on 21 February 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Variable	AKI	Death
Age (years)		
<45	Reference	Reference
45-65	1.58 (1.22, 2.04)	4.60 (2.07, 10.3)
>65	1.86 (1.43, 2.43)	18.3 (8.47, 39.6)
Sex (Male)	1.42 (1.20, 1.68)	1.05 (0.83, 1.33)
Race		
White	Reference	Reference
Black	0.87 (0.69, 1.08)	0.65 (0.47, 0.89)
Hispanic	0.97 (0.63, 1.50)	0.66 (0.33, 1.32)
Asian	0.92 (0.61, 1.38)	0.39 (0.19, 0.80)
Other	1.05 (0.85, 1.30)	0.67 (0.47, 0.96)
Medical Conditions (number)		
0	Reference	Reference
1	1.32 (1.10, 1.58)	1.07 (0.82, 1.39)
2	1.62 (1.25, 2.09)	1.33 (0.94, 1.89)
3+	1.88 (1.24, 2.87)	1.62 (0.94, 2.79)
Body Mass Index (kg/m ²)		
<25	Reference	Reference
25-30	1.10 (0.90, 1.36)	0.81 (0.61, 1.07)
>30	1.33 (1.09, 1.63)	0.86 (0.65, 1.13)
Temperature (F)		
97-100.4	Reference	Reference
<97	0.95 (0.66, 1.36)	1.11 (0.69, 1.77)
>100.4	1.40 (1.18, 1.66)	1.40 (1.09, 1.81)
Heart Rate (beats/min)		
60-110	Reference	Reference
<60	1.13 (0.86, 1.48)	0.86 (0.58, 1.30)
>110	0.98 (0.74, 1.31)	1.41 (0.95, 2.08)
Systolic Blood Pressure		
(mmHg)		
90-180	Reference	Reference
<90	1.74 (1.28, 2.37)	1.76 (1.19, 2.60)
>180	1.22 (0.68, 2.19)	1.16 (0.52, 2.55)
Respiratory Rate (per minute)		
<20	Reference	Reference
>20	1.72 (1.45, 2.03)	1.98 (1.53, 2.55)
White Blood Cell (thousand		
cells/mm ³)		
3.5-11	Reference	Reference
<3.5	0.81 (0.58, 1.15)	1.25 (0.81, 1.95)
>11	1.61 (1.34, 1.93)	1.95 (1.52, 2.51)
Hemoglobin (g/dL)		

P	a
123456789	
1 1 1 1 1 1	2 3 4 5 7 8
2 2 2 2 2 2 2 2 2	901234567
2 3 3 3 3 3 3 3 3	3 4 5
3 3 3 4	8 9 1 2 3
4 4 4 4	5 6 7
	2 3 4 5 6 7

60

>12	Reference	Reference
10-12	2.02 (1.64, 2.49)	0.81 (0.60, 1.09)
<10	3.31 (2.68, 4.08)	0.86 (0.65, 1.14)
Platelets (per µL)		
>100	Reference	Reference
<100	1.85 (1.37, 2.49)	2.51 (1.72, 3.68)
C-Reactive Protein (mg/L)		
<50	Reference	Reference
50-100	0.99 (0.79, 1.24)	1.60 (1.10, 2.33)
>100	1.47 (1.20, 1.80)	3.18 (2.32, 4.37)
Ferritin (µg/L)		
<250	Reference	Reference
250-1000	1.18 (0.93, 1.50)	0.77 (0.54, 1.12)
>1000	1.48 (1.14, 1.91)	0.89 (0.60, 1.32)
D-Dimer (ng/mL)		
<1000	Reference	Reference
1000-2000	1.59 (1.27, 2.00)	1.16 (0.82, 1.63)
>2000	2.03 (1.60, 2.57)	1.73 (1.23, 2.44)
Interleukin-6 (IU/mL)	2	
<40	Reference	Reference
40-80	1.39 (1.03, 1.86)	2.75 (1.80, 4.21)
>80	1.91 (1.50, 2.43)	3.07 (2.01, 4.69)

Pooled hazard ratios calculated using 10 different imputation datasets with imputed values for missing respiratory rate and IL-6.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	5
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7-8
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, explain how loss to follow-up was addressed	7-8
		(e) Describe any sensitivity analyses	7-8
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
- w. w p withs	10	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
	15*	Report numbers of outcome events or summary measures over time	9

BMJ Open

16	() Circums directed estimates and iConstituting and for a day of instant destination and their	10
10	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10
	(b) Report category boundaries when continuous variables were categorized	
	(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11- 12
18	Summarise key results with reference to study objectives	12- 14
19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15
20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15
21	Discuss the generalisability (external validity) of the study results	15
on		·
22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	16
-	18 19 20 21 Dn	 and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 18 Summarise key results with reference to study objectives 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 21 Discuss the generalisability (external validity) of the study results 22 Give the source of funding and the role of the funders for the present study and, if

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml