

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Atrial Fibrillation and Mortality in Outpatients with Heart Failure in Tanzania: A prospective cohort study

	I
Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058200
Article Type:	Original research
Date Submitted by the Author:	09-Oct-2021
Complete List of Authors:	Chen, Yunchan; Weill Cornell Medicine Alphonce, Emmanuel; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Mujuni, Eva; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Kisigo, Godfrey A.; Weill Cornell Medicine; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Kingery, Justin R.; Weill Cornell Medicine; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Makubi, Abel; Ministry of Health Community Development Gender Elderly and Children Peck, RN; Weill Cornell Medicine; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Kalokola, Frederick; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine
Keywords:	Heart failure < CARDIOLOGY, PUBLIC HEALTH, PREVENTIVE MEDICINE, Audit < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3	1	
4	2	
5		A trial Ethnillation and Montality in Outpatiants with Heavt Failure in Tanzania. A
6	3	Atrial Fibrillation and Mortality in Outpatients with Heart Failure in Tanzania: A
7	4	prospective cohort study
8	5	
9	6	
10		
11	7	Yunchan Chen* ¹ , <u>yuc4005@med.cornell.edu</u>
12	8	Emmanuel Alphonce ^{*2} , alphonce204@gmail.com
13	9	Eva Mujuni ² , evamujuni@gmail.com
14		
15	10	Godfrey A. Kisigo ^{1,2,3} , <u>gak4002@med.cornell.edu</u>
16	11	Justin R. Kingery ^{1,2,3} , jrk9006@med.cornell.edu
17	12	Abel Makubi ⁴ , abelmakubi@gmail.com
18	13	Robert N. Peck ^{1,2,3} , <u>rnp2002@med.cornell.edu</u>
19	14	Frederick Kalokola ² , kalokola85@gmail.com
20	15	
21	16	
22		*equal contribution
23	17	requal contribution
24	18	
25	19	
26	20	
27		
28	21	¹ Weill Cornell Medicine, New York, NY, United States of America.
29	22	² Department of Internal Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania.
30	23	³ Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania.
31	24	⁴ Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma,
32	25	Tanzania
33		Tanzania
34 25	26	
35 36	27	
37	28	
38	29	
39	30	
40	31	
41	32	
42	33	
43		
44	34	
45	35	Word Count: 2855
46	36	
47		
48	37	Correspondence concerning this article should be addressed to Frederick Kalokola at
49	38	kalokola85@gmail.com
50		
51		
52		
53		
54		
55		
56		
57		
58		1
59		For poor roviow only http://bmionon.hmi.com/cita/about/cuidalines.yhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	39	Abstract
4 5	40	
6	41	Objective: In recent years, the prevalence and mortality of heart failure (HF) and other
7	42	associated cardiovascular diseases have doubled in Sub-Saharan Africa (SSA). Studies in high-
8	43	income countries indicate that HF with concurrent atrial fibrillation (AF) is linked to increased
9 10	44 45	mortality. Our objective was to determine the incidence and clinical outcomes of AF among heart failure patients in SSA.
11	45 46	heart failure patients in SSA.
12	40 47	Design: A prospective cohort study using data collected between October 2018-May 2020
13 14	48	
14	49	Setting: Outpatient clinic at a tertiary hospital in Mwanza, Tanzania
16	50	
17	51	Participants : 303 adult participants (aged \geq 18 years) with HF as defined by the ESC guidelines
18 19	52	(2016) and 100 adults with HF as defined by clinical criteria alone were enrolled into the study.
20	53	Patients with comorbid medical condition that had prognosis of <3 months (i.e. advance solid
21	54 55	tumors, advance hematological malignancies) were excluded.
22 23	55 56	Methods: Participants were screened for atrial fibrillation, and their medical history, physical
23 24	57	exams, and sociodemographic information were obtained. Multivariable logistic regression
25	58	models were used to examine factors associated with AF incidence. Cox regression models were
26	59	used to analyze 3-month mortality and its associated risk factors.
27 28	60	
29	61	Results: We enrolled 403 participants with HF (mean age 60±19 years, 234 (58%) female). The
30	62	AF prevalence was 17%. In multivariable models, factors associated with AF were low income,
31 32	63	alcohol consumption and longer duration of heart failure. At the end of the three-month follow- $120(402)(200)$ participants diad, including $440((21/70) \circ f theorem with AE. Wieher heart note$
33	64 65	up, 120/403 (30%) participants died, including 44% (31/70) of those with AF. Higher heart rate on ECG, more severe New York Heart Association HF class, rural residence and anemia were
34	66	significantly correlated with mortality.
35	67	Significantify contonated with mortanty.
36 37	68	Conclusion: Atrial fibrillation is common, underdiagnosed and associated with significant
38	69	mortality among outpatients with HF in Tanzania (HR:1.749, 95% CI:1.162-2.633, p=0.007).
39	70	Our findings additionally identify tachycardia (>110 bpm, HR:1.879, 95% CI:1.508-2.340,
40 41	71	p<0.001) as an easily measurable, high-impact physical exam finding for adverse outcomes in
41	72 72	HF patients.
43	73 74	
44	74	
45 46	76	
47	77	
48	78	
49 50	79	
51	80	
52	81 82	
53	82 83	
54 55	83 84	
56		
57		n
58 59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

3	85	
4	86	Strengths and limitations of this study
5	07	

- This study is one of the few to examine the prevalence and mortality of atrial fibrillation among outpatients with heart failure in Sub-Saharan Africa.
- This study focuses on readily accessible physical exam measures, demographics, socioeconomic and lifestyle attributes. They are inexpensive to acquire and are well adapted for risk stratification in resource limited settings.
 - As a cohort study, no causal relationships can be established between the risk factors and mortality. Questionnaire data on social and personal history are contingent on patient report accuracy. Given the limitations in medical equipment, concurrent coronary artery disease, the order in which atrial fibrillation and heart failure developed, and whether heart failure was due to non-ischemic or ischemic causes were not established.
 - All participants were recruited from a single healthcare facility, which may qualify the generalizability of the findings.)I line .

Page 5 of 28

Introduction

pharmacologic costs [5,7].

are linked to further heart failure progression [11].

BMJ Open

As global life expectancy increases, the incidence of heart failure (HF) has risen

substantially [1]. Approximately 26 million people live with heart failure worldwide [2], with

cardiovascular disease-related deaths in Africa increased two-fold, and accounted for roughly

38% of all non-communicable disease mortalities [1,4]. Within Sub-Saharan Africa (SSA),

communicable diseases are gradually overtaking infectious diseases in prevalence [1,3]. In

of the cardiology clinic visits at institutions across Africa [5]. HF has a higher one-year post-

hospital discharge mortality than all other diagnoses [6]. In addition to patient-level burden, HF

poses significant economic strain secondary to recurrent hospitalizations, lost productivity, and

diagnoses [8]. Between 1990-2010, the annual deaths caused by AF grew by 2 and 1.9 fold in

cardiometabolic risk factors, growing evidence suggests that the presence of one may precipitate

the severity of the other. Compared to sinus-rhythm, comorbid AF is associated with higher all-

cause mortality and hospitalization rates in patients with heart failure [10]. Furthermore, AF-

related atrial remodeling, altered ventricular hemodynamics and arrhythmia-induced myopathy

Despite the synergistic comorbidity of AF and HF, little is known about the prevalence of

men and women, respectively [9]. While AF and HF are known to share common

Atrial fibrillation (AF) incidence is also escalating rapidly among new cardiovascular

particular, heart failure constitutes roughly 9.4–42.5% of all hospital admissions and 25.6–30.0%

previous studies have indicated an "epidemiological transition," whereby chronic, non-

low- and middle-income countries bearing the greatest burden [1,3]. From 1990 to 2013,

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1	
2 3 4	102
5 6	103
7 8	104
9 10 11	105
12 13	106
14 15	107
16 17	108
18 19 20	109
21 22	110
23 24	111
25 26 27	112
28 29	113
30 31	114
32 33	115
34 35 36	116
37 38	117
39 40	118
41 42 43	119
44 45	120
46 47	121
48 49 50	122
50 51 52	123
53 54	124
55 56	
57 58 59	
60	

For peer review only - http://bmjopen.bmj	com/site/about/quidelines.vhtml
For peer review only - http://binjopen.binj.	.com/site/about/guidennes.xiitiin

4

atrial fibrillation among outpatients with heart failure within Sub-Saharan Africa, or its impact

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

1 2		
3 4	125	on clinical outcomes. Therefore, we conducted a prospective cohort study to elucidate the
5 6	126	prevalence, correlates and mortality associated with this patient population in Tanzania.
7 8 9	127	
) 10 11	128	Methods
12 13	129	Overview
14 15 16	130	This clinic-based prospective cohort study involved 403 patients who were enrolled in a
10 17 18	131	registry of HF. This registry was created as part of a more extensive hospital quality
19 20	132	improvement program for heart failure patients. Data collection and follow-up spanned from
21 22	133	October 2018 to May 2020.
23 24 25	134	Setting and Participants
26 27	135	The study was conducted at the outpatient clinic of Bugando Medical Center (BMC), a
28 29	136	zonal hospital for the Lake Victoria Zone in northwest Tanzania. BMC serves a population of
30 31 32	137	over 14 million with a 950-bed capacity. In each month, BMC provides care for approximately
32 33 34	138	400 patients with HF, with an average of 100 patients seen weekly. BMC is similar to other
35 36	139	facilities that provide care for heart failure in Tanzania and Uganda [12,13].
37 38	140	All patients attending the outpatient clinic with a diagnosis of heart failure were screened
39 40 41	141	between October and December of 2019. Patients \geq 18 years of age and seeking heart failure
42 43	142	care were recruited serially until the target sample size was attained ($n \ge 331$). Patients with
44 45	143	comorbid medical conditions with a prognosis of <3 months (i.e. advanced malignancy) were
46 47 48	144	excluded from the study. Of the 403 enrolled patients, 303 had the diagnosis of HF objectively
49 50	145	confirmed according to the European Society of Cardiology (ESC) 2016 guidelines [14], where
51 52	146	133 had heart failure with reduced ejection fraction (HFrEF) and 170 had heart failure with
53 54	147	preserved ejection fraction (HFpEF). For the remaining 100 patients, the diagnosis of HF was
55 56 57		
58 59		5

BMJ Open

made according to the Framingham criteria, and in the absence of another primary diagnosis responsible for volume overload [15].

150 Study Procedures

Consented participants were interviewed using a standard questionnaire that collected clinical and demographic information such as age, sex, residence, duration of heart failure, and New York Heart Association (NYHA) functional classification. Participants were also evaluated for palpitations, shortness of breath, syncope or presyncope, exercise intolerance, chest pain and fatigue. Physical examination was performed on every participant. Blood pressure measurements were taken from the right arm using an automated blood pressure monitor after subjects had rested for at least 5 minutes. Pulse rate was determined, and noted for irregularity, regularity and amplitude, then compared to the heart rate for pulse deficit.

Height was measured using a rigid ruler attached to a wall and rounded to the nearest 0.5cm. Weight was measured without shoes, with patients wearing light clothing and recorded to the nearest 500g using the DETECTO scale. Body Mass Index (BMI) was calculated using the Quetelet equation [16] and categorized using the WHO Classification Scale, with underweight BMI classified as <18.5 kg/m², normal BMI as 18.5-24.9 kg/m², overweight BMI as 25-29.9 kg/m², and obese BMI as \geq 30kg/m². Additionally, electronic medical records were reviewed to extract blood hemoglobin and serum creatinine values.

Study participants were then subjected to a resting 12-lead electrocardiography. The heart rate on ECG was recorded for all subjects. Tracings with irregular QRS Complexes and absent discrete P waves were categorized as AF, in accordance with the ESC 2016 criteria [17]. All diagnoses of atrial fibrillation were confirmed by a staff cardiologist. Patients with AF had their results communicated to the attending physician and were treated according to protocol.

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

171 Follow Up and Outcome Determination

At least three contact phone numbers were obtained at the time of enrollment, including one from the patient and two from friends and relatives. All participants were followed for a period of three months, with none lost to follow up. The research team interviewed the participants during their regularly scheduled visits on a monthly basis. Phone calls were made to those not presenting to clinic. During these interviews, information about their recent medical updates or hospitalizations were collected. If the participant could not be reached, the designated alternate contact was called to determine the patient's vital status. Mortality was ascertained via phone call to each individual family. The families confirmed the death was cardiac in origin or related to their cardiac diagnosis (HF/cardio-embolic stroke/cardio-renal syndrome). Additionally, for those who died during hospitalization, care was taken to confirm with the family member that the original admission was due to cardiac etiologies.

183 Statistical Analysis

By the difference in proportions calculation, a minimum sample size of 331 patients was needed to provide at least 80% power to detect the difference in mortality rates between patients with AF and those without (two-sided test with a 5% level of significance) [18]. Our pre-test estimation of AF prevalence was 16% [19,20]. For the secondary analyses, this sample size was expected to provide at least 10 observations (i.e., number of patients with AF or death events) per predictor in the final models to allow good estimates [21,22]. Stata 16.1 was the statistical analysis software used in this study. Unknowns were recorded as null prior to analysis. For tabulation purposes, we reported count for discrete variables, and mean/standard deviation or median/interquartile range for continuous variables. Logistic regression was used to determine which baseline features were most strongly correlated with atrial fibrillation, and Cox

Page 9 of 28

BMJ Open

22 23	202	Baseline characteristics of the patients are described in Table 1 . The cohort included 234
24 25	203	females (58.1%) and 169 males (41.9%), with a mean age of 60 ± 19 years. Nearly one-half (186,
26 27 28	204	46.2%) were overweight or obese (≥ 25 kg/m ²). Among the participants, 202 (50.1%) had health
29 30	205	insurance. One hundred and fifty-four (154, 38.2%) self-identified as low income (less than
31 32 33	206	500,000 TZS/month). Two hundred and thirty-four participants lived in rural settings (234,
33 34 35	207	58.1%) and 169 (41.9%) lived in urban environments. One hundred and nine participants (109,
36 37	208	27.1%) did not receive formal education, 214 (53.1%) completed primary school, and 80
38 39 40	209	(19.9%) obtained secondary or higher degrees. The median heart failure duration in this cohort
40 41 42	210	was four years (IQR 3-9), and 180 (44.7%) noted a family history of heart failure. The majority,
43 44	211	320 (79.4%), were diagnosed with advanced HF (III/IV NYHA class). The most predominant
45 46 47	212	comorbidity was hypertension, with 323 cases (80.2%). Ninety-seven (97, 24.1%) had
47 48 49	213	concurrent diabetes mellitus. Nearly half of the participants (189, 46.9%) reported a social
50 51	214	history positive for alcohol consumption, and 77 (19.1%) had a smoking history.
52 53	215	
54 55	216	Table 1. Social, Demographic, and Past Medical History of Enrolled PatientsPatient Data (n=403)SubclassNumber (n=403)

Sex	Female	234 (58.1%)
Age	Mean (SD)	60.2 (18.8)
Education	Informal	109 (27.1%)
	Primary	214 (53.1%)
	Secondary or Higher	80 (19.9%)
Reside	Urban	169 (41.9%)
	Rural	234 (58.1%)
Health Insurance	Yes	202 (50.1%)
Income Level	Low	154 (38.2%)
	Medium/High	249 (61.8%)
BMI Categories	Underweight	26 (6.5%)
	Normal	191 (47.4%)
	Overweight	120 (29.8%)
	Obese/Severely Obese	66 (16.4%
History of Hypertension	Yes	323 (80.2%)
Duration of Heart Failure (Years		4 (3-9)
Family History of Heart Failure	Yes	180 (44.7%)
NYHA Function Class	Ш	83 (20.6%
	ш	317 (78.7%
	IV	3 (0.7%
Diabetes Mellitus	Yes	97 (24.1%
HIV	Positive	21 (5.2%
Atrial Fibrillation	Present (ECG confirmed AF)	70 (17.4%
Alcohol	Yes	189 (46.9%
(Average Units of Alcohol/Day)	Median (IQR)	0 (0-10)
	Range	0-60
Cigarette Smoking	Yes	77 (19.1%
Echo LV EF (%)	<40	133 (33.0%
	>=40	170 (42.2%
	Unknown	100 (24.8%
Hemoglobin	Normal (>12g/dl)	175 (43.4%
	Mild Anemia (10-11.9g/dl)	188 (46.7%
	Moderate/Severe Anemia (<=9.9g/dl)	38 (9.9%
Rheumatic Heart Disease	Positive History & AF	6 (1.5%)
	Positive History & No AF	18 (4.5%)
	Negative History & AF	64 (15.8%)
	Negative History & No AF	315 (78.2%)
Creatinine Level - Median (IQR)		94 (77-169)
Ci catiline Level - Meulan (IQK)	(IQR)	122 (106-142)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	
23	
24 25	217
26 27	
28 29	218
30 31	219
32 33	220
34 35	221
36 37	222
38 39	
40 41	223
42	224
43 44	225
45 46	226
47 48	227
49 50	228
51 52	
53 54	229
55 56 57 58 59	230

Diastolic Blood Pressure - Mee	Diastolic Blood Pressure - Median (IQR)	
Pulse Rhythm	Regular	300 (74.4%)
	Irregular (diagnosed by clinical exam)	103 (25.6%)
Heart Rate (bpm) - Median (I	QR)	79 (71-91)
Pulse Deficit (bpm) - Median (IQR)	6 (3-11)
ECG Heart Rate (bpm) - Med	ian (IQR)	79 (67-94)
ECG Rhythm	Regular	304 (75.4%)
	Irregular	99 (24.6%)
Goal Directed Therapy	Beta-Blocker	254 (63.0%)
	ACE-inhibitor	188 (46.7%)
	Diuretic	300 (74.4%)
	Nitrates	39 (9.6%)
	Digitalis	58 (14.4%)
	ARB	156 (38.7%)
	Calcium Channel Blocker	48
	Vasodilator	35

218 **Prevalence of Atrial Fibrillation**

Of the 403 study participants with heart failure, 70 (17.4%) participants had atrial fibrillation 219

detected on screening electrocardiogram. Of these, 29/70 (41.4%) had previously been diagnosed 220

221 with atrial fibrillation and 41/70 (58.6%) were new diagnoses. Twenty-five percent (6/24) of

222 participants with a history RHD had atrial fibrillation (Table 1).

224 **Sociodemographic Correlates of Atrial Fibrillation**

225 In a univariable logistic regression model (Table 2), advanced age, low income, informal

226 education, alcohol consumption, and longer heart failure duration were significantly associated

227 with atrial fibrillation. In the multivariable model (**Table 3**), lower income (high income aOR

0.5, 95% CI 0.3-0.9), duration of heart failure (aOR 1.05, 95% CI 1.0-1.1), and alcohol 228

229 consumption (aOR 2.1, 95% CI 1.2-3.8) were associated with atrial fibrillation.

Screening Characteristics	Subclass	AF (%)	No AF (%)	OR (95% CI)	p- value
Sex	Male	31 (18.3)	138 (81.7)	1.000	
	Female	39 (16.7)	195 (83.3)	0.890 (0.530-1.497)	0.66
Age	Mean±Std. Dev.	66.4±19.0	58.8±18.5	1.025 (1.009-1.041)	0.002
Education	Informal	27 (24.8)	82 (75.2)	1.000	
	Formal	43 (14.6)	251 (85.4)	0.520 (0.303-0.895)	0.01
Income	Low	34 (22.1)	120 (77.9)	1.000	
	Medium/High	36 (14.5)	213 (85.5)	0.597 (0.355-1.003)	0.05
Reside	Urban	26 (15.4)	143 (84.6)	1.000	
	Rural	44 (18.8)	190 (81.2)	1.274 (0.749-2.166)	0.37
Health	Yes	31 (15.4)	171 (84.7)	1.000	
Insurance	No	39 (19.4)	162 (80.6)	0.753 (0.448-1.264)	0.28
BMI (kg/m ²)	Underweight	4 (15.4)	22 (84.6)	1.000	
	Normal	43 (22.5)	148 (77.5)	1.598 (0.522-4.889)	0.41
	Overweight	15 (12.5)	105 (87.5)	0.786 (0.238-2.595)	0.692
	Obese	8 (12.1)	58 (87.9)	0.759 (0.207-2.774)	0.67
Duration of		6.5 [3-13]	4 [2-7]	1.076 (1.034-1.076)	<0.00
Heart Failure (Years) - Median (IQR)			4.		
NYHA	I/II	9 (10.8)	74 (89.2)	1.000	
Function Class	III/IV	61 (19.1)	259 (80.9)	1.937 (0.918-4.083)	0.08
Diabetes	No	55 (18.0)	251 (82.0)	1.000	
Mellitus	Yes	15 (15.5)	82 (84.5)	0.835 (0.448-1.556)	0.5
Alcohol	No	26 (12.2)	188 (87.8)	1.000	
	Yes	44 (23.3)	145 (76.7)	2.194 (1.290-3.732)	0.004
Cigarette	No	53 (16.3)	273 (83.7)	1.000	
Smoking	Yes	17 (22.1)	60 (77.9)	1.459 (0.790-2.696)	0.22

.... -.. . . . тт

Table 3. Multivariate logistic regression of demographic factors associated with atrial fibrillation

aOR (95% CI)

p-value

0.564

0.186

0.024

0.050

0.459

Variable

(Years)

Education (Formal)

Income (Med/High)

NYHA (III/IV)

Duration of Heart Failure

Age

48
49
50
51
52
53
54
55
56
57

-
т.

1.006 (0.987-1.025)

0.659 (0.354-1.223)

0.531 (0.306-0.920)

1.049 (1.000-1.100)

1.347 (0.612-2.962)

BMJ Open

			1					
	Alcohol Consum	ption	2	2.083	(1.150-3.7	71)	0.015	
236								
237								
238 239	Clinical and Phys	ical Exam Cor	relates of Atria	al Fib	rillation			
240	Chinear and Thys				mation			
241	By univariate logis	stic regression (Fable 4), irregu	lar pu	ılse rhythn	n, higher l	baseline heart rate	,
242	and greater pulse d	leficit were linke	ed to AF preval	ence.	Conversel	ly, higher	systolic blood	
243	pressure at baselin	e was associated	d with a decreas	ed ris	k of havin	g atrial fi	brillation. With	
244	respect to physical	exam findings,	in the multivar	iate ai	nalysis (T a	able 5), ir	regular pulse rhyt	hm
245	(OR 38.0, 95% CI	15.3-94.4) and j	pulse deficit (O	R 1.1	, 95% CI 1	1.0-1.2) ar	e strongly sugges	tive
246	of AF presence.							
247								
277								
248	Table 4: Univaria	te logistic regr	ession for phys	ical e	xam corr	elates of a	atrial fibrillation	
	Screening	Subclass	AF (%)	No A	AF (%)		OR (95% CI)	p-
	Characteristics			124	[107	0.0	PE (0.074.0.00()	
	Systolic Blood Pressure -		117 [97- 134]	124	[107-	0.93	85 (0.974-0.996)	0.009
	Median (IQR)		134]	145]				
	Diastolic Blood		69 [64-82]	70 [6	67-82]	0.9	96 (0.977-1.016)	0.699
	Pressure -				4		(
	Median (IQR)							
	Pulse Rhythm	Regular	7 (2.3)	293	(97.7)		1.000	
		Irregular	63 (61.2)	40 (3	38.8)	65.925 (28.237-153.915)	<0.001
	Heart Rate		85 [74-102]	78 [1	70-89]	1.02	26 (1.013-1.040)	<0.001
	(bpm) -							
	Median (IQR)		11 510 101	5 50	01	1.0		.0.001
	Pulse Deficit		11 [10-13]	5 [3-	-8]	1.32	28 (1.233-1.431)	<0.001
	(bpm) - Median (IQR)							
49								
250 251	Table 5. Multivar fibrillation	iate logistic reg	gression for sci	eenir	ng factors	associate	d with atrial	
2.51	Variable	OR (95% CI)		p-value			
	SBP		, 0.987 (0.967-1.	007)	0.18	6		
	DBP		1.019 (0.988-1.		0.24			
	Pulse Rhythm		01 (15.292-94.		< 0.00			
(Irregular)								
			1					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Heart Rate	1.003 (0.984-1.022)	0.778
Pulse Deficit	1.110 (1.018-1.211)	0.018

Three Month Mortality

At the end of the three-month follow-up, 120 (29.8%) participants died, including 44.3% and 26.7% of those with and without AF, respectively. Among the clinical variables (**Table 6**), the factor most significantly associated with three-month mortality was higher heart rate on ECG (Hazard Ratio (HR) 1.88, 95% CI 1.508-2.340). Other noteworthy risk factors for death include atrial fibrillation (HR 1.75, 95% CI 1.162-2.633), worse heart function (III/IV) on the NYHA scale (HR 1.64, 95% CI 0.981-2.738), rural residence (HR 1.47, 95% CI 1.006-2.150), and anemia (HR 1.33, 95% CI 1.012-1.738). Conversely, higher education, higher ejection fraction $(\geq 40\%)$ and baseline systolic blood pressure within the normal range were associated with decreased hazard ratio. By multivariate analysis (Table 7), increased ECG heart rate remained significantly associated with mortality. Collinearity was noted between AF and other measures of heart failure, and the singular inclusion of AF displayed statistically significant mortality hazards when other diluting factors were omitted (Table 8). On stratified analysis, death rate increased significantly with each increment in ECG heart rate, with a three-month mortality of 21.5% for those with HR below 90 bpm, 38.6% for those between 90-110 bpm and 64.4% for patients with >110 bpm at baseline (Figure 1&2). Additional analyses comparing the AF prevalence and three-month mortality data for participants with echocardiograph confirmed heart failure (according to the ESC criteria) against those participants diagnosed based on clinical criteria alone was conducted. In the HFrEF cohort, death rate at 3-months was similar for those with AF and those without. For both HFpEF and clinical criteria diagnosis, there was a marked increase in the 3-month mortality in those with AF (Table 9).

Patient Data (n=403)	Subclass	No Death (%)	Death (%)	HR (95% CI)	P>
Sex	Female	157 (67.1)	77 (32.9)	1.304 (0.898-1.894)	0.
	Male	126 (74.6)	43 (25.4)		
Age				1.000	0.
Reside	Urban	129 (76.3)	40 (23.7)	1.471 (1.006-2.150)	0.
	Rural	154 (65.8)	80 (34.2)		
Education	Informal	68 (62.4)	41 (37.6)	0.689 (0.472-1.004)	0.
	Formal	215 (73.1)	79 (26.9)		
Income Level	Low	103 (66.9)	51 (33.1)	0.827 (0.576-1.188)	0.
	Medium/High	180 (72.3)	69 (27.7)		
Health	Yes	147 (72.8)	55 (27.2)	1.183 (0.826-1.694)	0.
Insurance	No	136 (67.7)	65 (32.3)		
BMI Categories	Underweight/Normal	148 (68.2)	69 (31.8)	0.876 (0.610-1.258)	0.
	Overweight/Obese	135 (72.6)	51 (27.4)	-	
Hypertension	Yes	227 (70.3)	96 (29.7)	0.982 (0.628-1.536)	0.
	No	56 (70.0)	24 (30.0)		
HF Duration (Years)		6		1.282 (0.767-2.141)	0
NYHA	I/II	66 (79.5)	17 (20.5)	1.639 (0.981-2.738)	0.
	III/IV	217 (67.8)	103 (32.2)		
Diabetes	Yes	70 (72.2)	27 (27.8)	0.903 (0.588-1.386)	0.
	No	213 (69.6)	93 (30.4)		
AF	Absent	244 (73.3)	89 (26.7)	1.749 (1.162-2.633)	0.
	Present	39 (55.7)	31 (44.3)		
Alcohol	Yes	132 (69.8)	57 (30.2)	1.051 (0.735-1.504)	0.
	No	151 (70.6)	63 (29.4)		
Smoking	Yes	53 (71.6)	21 (28.4)	0.964 (0.602-1.544)	0.
-	No	230 (69.9)	99 (30.1) 🗢		
Echo LV EF	<40	86 (64.7)	47 (35.3)	0.736 (0.488-1.111)	0.
(%)	>=40	126 (74.1)	44 (25.9)		
	Unknown	71 (71)	29 (29)		
Hb	Normal (>12g/dl)	131 (74.9)	44 (25.1)	1.326 (1.012-1.738)	0.
	Mild (10-11.9g/dl)	129 (68.6)	59 (31.4)		
	Moderate/Severe Anemia (<=9.9g/dl)	23 (57.5)	17 (42.5)	1	
Creatinine Level				0.996 (0.990-1.002)	0.
SBP				0.992 (0.985-1.000)	0.

DBP				0.991 (0.977-1.005)	0.195
ECG Heart				1.017 (1.012-1.023)	<0.001
Rate					
ECG HR	<90	216 (78.6)	59 (21.5)	1.879 (1.508-2.340)	<0.001
Category (bpm)	90-110	51 (61.5)	32 (38.6)		
	>110	16 (35.6)	29 (64.4)		

276 <u>Table 7. Multivariate Cox Hazard Ratio</u>

Patient Data	HR (95% CI)	p-value
Reside	1.288 (0.821-2.021)	0.271
Education	0.841 (0.535-1.322)	0.453
Income Level	0.964 (0.631-1.471)	0.863
NYHA Function	U,	
Class	1.275 (0.701-2.318)	0.426
AF	1.030 (0.629-1.687)	0.907
Echo LV EF (%)	0.910 (0.578-1.431)	0.682
ECG Heart Rate	1.015 (1.009-1.021)	<0.001
Hemoglobin	1.062 (0.760-1.485)	0.723
SBP	0.996 (0.987-1.005)	0.377

Table 8. Multivariate Cox Hazard Ratio (without collinear measures of heart failure)

Patient Data	HR (95% CI)	p-value
Reside	1.343 (0.912-1.979)	0.136
Education	0.813 (0.551-1.200)	0.297
Income Level	0.931 (0.645-1.345)	0.704
AF	1.541 (1.012-2.345)	0.044
Hemoglobin	1.217 (0.925-1.602)	0.161
SBP	0.995 (0.987-1.003)	0.23

279

280 Table 9. Stratified Analysis of HFpEF, HFrEF, Clinical Criteria Diagnosis and AF

Heart Failure Condition	AF/History of AF	N	3-Month Mortality (% of Subgroup N)
HFrEF – Echo	Yes	35	12 (34.3%)
Diagnosis	No	98	35 (35.7%)
HFpEF – Echo	Yes	27	13 (48.1%)
Diagnosis	No	143	29 (20.3%)
Clinical Criteria	Yes	8	7 (87.5%)
Alone	No	92	18 (19.6%)

281

Page 17 of 28

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2		
3 4	282	Discussion
5 6	283	In this study, we sought to elucidate the prevalence and correlations of atrial fibrillation,
7 8 9 10 11	284	as well as the significant 3-month mortality risk factors for heart failure patients in Tanzania.
	285	Atrial fibrillation was common among our cohort: nearly one out of six (17.4%) ambulatory
12 13	286	adults had AF that was evident on a screening electrocardiogram. This high prevalence is similar
14 15	287	to other reports from East Africa [19], and is likely a result of poor post-diagnosis linkage to care
16 17 18	288	[23]. Of note, patients were more likely to be symptomatic if they were alcohol consumers, more
19 20	289	elderly, or had longer heart failure duration. These are common risk factors for disruptions in
21 22	290	cardiac electrophysiology, and in particular, heavy drinking is linked to sudden-onset
23 24 25	291	supraventricular arrhythmias [24]. Unlike age and HF duration, decreasing alcohol consumption
26 27 28 29 30 31	292	is a lifestyle adjustment that patients can readily make to reduce their risk of developing AF. In
	293	addition, we found that socioeconomic factors associated with poverty, such as less education
	294	and lower monthly income, were correlated with atrial fibrillation. Previous studies [19,25] cited
32 33 34	295	these attributes as major barriers to outpatient care access, and potential contributors to poorer
35 36	296	outcomes.
37 38	297	At the end of the three-month follow-up, almost half of the patients with atrial fibrillation
39 40 41	298	died (44.3%). Participants with heart failure and concurrent AF experienced a 75% higher risk of
42 43	299	dying in the first three months after enrollment compared to those with heart failure alone. This
44 45 46 47 48	300	finding aligns with data from the Framingham Heart Study, which indicated a 1.5-1.9-fold
	301	increased mortality risk for patients with atrial fibrillation, further highlighting the need for early
49 50	302	detection and treatment [26]. Anemia, a common condition in lower-income countries, was
51 52	303	significantly linked to mortality in our study participants, a finding corroborated by other reports
53 54 55	304	from Tanzania [19]. Lower systolic blood pressure was also associated with reduced survival,

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

which was possibly a consequence of severely diminished left ventricular function [27]. Finally,
rural residence emerged as one of the significant predictors of mortality for HF outpatients. In
developing regions, wealthier populations often congregate in urban areas, leading to significant
disparities in healthcare access and physician-shortages in rural communities [28]. These barriers
contribute to delayed diagnosis of existing conditions as well as severely limited treatment
options, thus further exacerbating the disease burden.

In both univariate and multivariate models of mortality, elevated heart rate on ECG was the strongest independent predictor of death within three months [29–31]. Above the bounds of normal resting heart rate (>110 bpm), an increase of 20 beats per minute was associated with >65% increased risk of death; a finding which remained significant even after adjusting for the presence of atrial fibrillation and other possible confounders. Furthermore, nearly 40% of people with ECG heart rates between 90-110 (i.e. controlled by current guidelines) are dead at the end of the three-month study period. It is likely that higher heart rate signals heart failure exacerbation. Our data identify a heart rate of >125 beats per minute as extraordinarily high risk; therefore, this cutoff could help risk-stratify patients to appropriate care (i.e., admission vs. outpatient).

Atrial fibrillation is specifically associated with higher mortality in the participants with confirmed heart failure with preserved ejection fraction as well as those with heart failure diagnosed based on clinical criteria alone. In fact, participants with atrial fibrillation in these two groups had higher mortality than those participants with confirmed heart failure with reduced ejection fraction. One possible explanation may be that those with worsened heart function necessitate more physician visits. The greater contact with the healthcare system allows for more regular screenings, and any incidental findings to be noted and addressed in a timelier manner. Page 19 of 28

BMJ Open

Despite the growing global burden of AF, electrocardiograms are not routinely conducted in many HF clinics in low-income communities (9). Barriers to AF screening include the relative paucity of medical devices such as electrocardiograms, supplies such as electrocardiogram paper, and available specialty physicians per capita (12,13,21). Encouragingly, our data imply that physical examination findings such as irregularly irregular pulse rate and pulse deficit are highly sensitive to detect patients with atrial fibrillation. Both measures can be ascertained with only palpation and a stethoscope and remain useful in clinical environments where electrocardiogram machines are not available.

There are limitations to this study. All participants were recruited from a single healthcare facility. Therefore, the heart failure patients included in this study may have different risk profiles than patients in other geographic locations and clinics. However, our study facility follows identical standards of care and the same protocols as other East African heart failure clinics, which promotes the generalizability of the results. Some aspects of the questionnaire, such as social history, rely on patient self-report, which may suffer from recall bias. Another study limitation is that we did not assess for rate-control medication adherence. This information could have helped differentiate deaths due to AF alone from those caused by poor drug adherence. While none of the subjects had a history of coronary artery disease, the diagnosis cannot be objectively ruled out from the existing clinical data. Additionally, because the focus of this study is the presence of atrial fibrillation and heart failure, the order in which the two conditions developed, and whether heart failure was due to non-ischemic or ischemic causes were not recorded.

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Conclusions

Our data highlights the compounding morbidity and mortality of AF and HF in low- and middle-income countries. Atrial fibrillation is common, underdiagnosed and is associated with high mortality. In resource-limited settings, the presence of irregular heart rate and pulse deficit, along with affirmative responses to alcohol consumption and chronic heart failure should push atrial fibrillation forward on the differential. Heightened resting heart rate should alert physicians to possible HF-related mortality. Common predictors that emerged for both AF and death are associated with systemic impediments to healthcare access and disparities in fiscal and human resource distribution. Thus, in order to effectively alleviate cardiovascular disease burden in Tanzania and other medically underserved regions, in general, there needs to be wider availability of preventative care and targeted screening of atrial fibrillation, particularly among vulnerable populations in rural communities. Our findings also provide a reminder to clinicians in low-income countries that physical examination still matters, and that HF patients with high heart rate deserve more careful clinical scrutiny. **Figure Legends** Figure 1. Three-month mortality per categorical heart rate. Figure 2. Kaplan-Meier Curve for three-month survival of adults with heart failure **List of Abbreviations** AF Atrial Fibrillation **Blood Pressure** BP DBP **Diastolic Blood Pressure**

1 2						
2 3 4	374	EF Ejection Fraction				
5 6	375	HF Heart Failure				
7 8 9	376	HIV Human Immunodeficiency	Virus			
9 10 11	377	LV Left Ventricle				
12 13	378	SBP Systolic Blood Pressure				
14 15	379	SSA Sub-Saharan Africa				
16 17 18	380	TZS Tanzanian Shilling				
19 20	381					
21 22	382	Declarations				
23 24 25	383	Ethics approval and consent to particip	ate			
26 27	384	This study was approved by the CUHAS-BMC joint Ethics and Review Committee				
28 29	385	(CREC408/2019). All participants provided written informed consent before enrollment.				
30 31 32	386	Research was performed in accordance with the Declaration of Helsinki.				
33 34	387	Consent for publication				
35 36	388	Not applicable				
37 38 39	389	Availability of data and materials				
40 41	390	The datasets and statistical code are available	ble from the corresponding author on reasonable			
42 43	391	request.				
44 45 46	392	Competing interests				
40 47 48	393	The authors declare that they have no con	peting interests.			
49 50	394	Funding				
51 52 53	395	This study was funded by a grant from the	e Mulago Foundation (Fund Number: N/A). RNP and			
53 54 55	396	JRK were both supported by grants from	he National Institutes of Health (Fund Number:			
56 57						
58 59 60		For peer review only - http://b	2 mjopen.bmj.com/site/about/guidelines.xhtml			
00		· · · · · · · · · · · · · · · · · · ·				

K01TW010281; K23 HL152926). The funding bodies had no role in the collection, analysis, and

400 Author Contributions

401 EA & YC: study design, investigation, formal analysis, and original draft preparation, EM:

interpretation of data and in writing the manuscript.

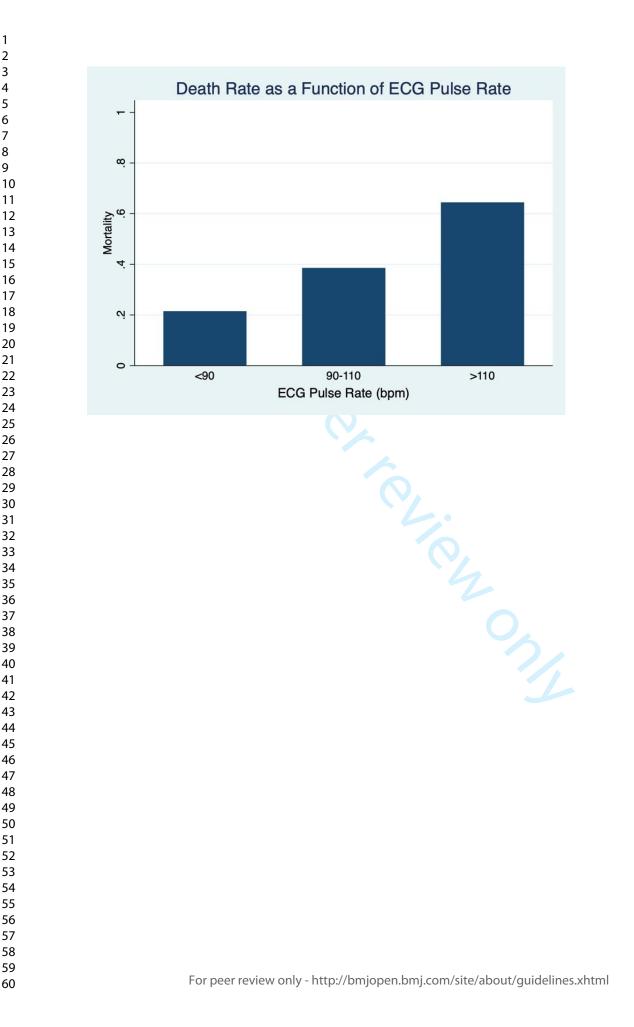
402 investigation and review & editing, AM: study design and review & editing, GAK & JRK:

403 review & editing, FK & RNP: study design, supervision, and review & editing. All authors read
404 and approved the final manuscript.

406 Acknowledgements

407 The study team is grateful for the support of administrators and health care providers at the
408 Bugando Medical Centre, and the participants who contributed to this research. We also wish to
409 acknowledge the contributions of our data collection staff, Dr. David Osima and Mr. Evarist

410 Msaki.


1 2							
3	411	References					
4	411	1	Keates AK, Mocumbi AO, Ntsekhe M, <i>et al.</i> Cardiovascular disease in Africa:				
5	412	1	epidemiological profile and challenges. <i>Nat Rev Cardiol</i> 2017; 14 :273–93.				
6	415 414		doi:10.1038/nrcardio.2017.19				
7	414 415	2	Savarese G, Lund LH. Global Public Health Burden of Heart Failure. <i>Card Fail Rev</i>				
8 9	415 416	2	2017; 3 :7–11. doi:10.15420/cfr.2016:25:2				
10	410	3	Hosseinpoor AR, Bergen N, Kunst A, <i>et al.</i> Socioeconomic inequalities in risk factors for				
11	417	3	non communicable diseases in low-income and middle-income countries: results from the				
12	418		World Health Survey. <i>BMC Public Health</i> 2012; 12 :912. doi:10.1186/1471-2458-12-912				
13	419	4	Mensah GA, Roth GA, Sampson UKA, <i>et al.</i> Mortality from cardiovascular diseases in				
14	420	4	sub-Saharan Africa, 1990-2013: a systematic analysis of data from the Global Burden of				
15 16	421		Disease Study 2013. Cardiovasc J Afr 2015; 26 :S6-10. doi:10.5830/CVJA-2015-036				
17	422	5	Agbor VN, Essouma M, Ntusi NAB, <i>et al.</i> Heart failure in sub-Saharan Africa: A				
18	423 424	5	contemporaneous systematic review and meta-analysis. <i>Int J Cardiol</i> 2018; 257 :207–15.				
19	424 425		doi:10.1016/j.ijcard.2017.12.048				
20	425	6	Kingery JR, Yango M, Wajanga B, <i>et al.</i> Heart failure, post-hospital mortality and renal				
21	420	0	function in Tanzania: A prospective cohort study. <i>Int J Cardiol</i> Published Online First:				
22	427		2017. doi:10.1016/j.ijcard.2017.05.025				
23 24	429	7	Naser N, Dilic M, Durak A, <i>et al.</i> The Impact of Risk Factors and Comorbidities on The				
25	430	/	Incidence of Atrial Fibrillation. <i>Mater Socio Medica</i> 2017; 29 :231.				
26	431		doi:10.5455/msm.2017.29.231-236				
27	431	8	Stewart S, Wilkinson D, Hansen C, <i>et al.</i> Predominance of heart failure in the Heart of				
28	432	0	Soweto Study cohort: emerging challenges for urban African communities. <i>Circulation</i>				
29	434		2008; 118 :2360–7. doi:10.1161/CIRCULATIONAHA.108.786244				
30 31	435	9	Chugh SS, Roth GA, Gillum RF, <i>et al.</i> Global Burden of Atrial Fibrillation in Developed				
32	436	,	and Developing Nations. <i>Glob Heart</i> 2014; 9 :113. doi:10.1016/j.gheart.2014.01.004				
33	437	10	Dries D, Exner D, Gersh B, <i>et al.</i> Atrial fibrillation is associated with an increased risk for				
34	438	10	mortality and heart failure progression in patients with asymptomatic and symptomatic				
35	439		left ventricular systolic dysfunction: a retrospective analysis of the SOLVD trials. J Am				
36	440		<i>Coll Cardiol</i> 1998; 32 :695–703. doi:10.1016/S0735-1097(98)00297-6				
37 38	441	11	Maisel WH, Stevenson LW. Atrial fibrillation in heart failure: epidemiology,				
30 39	442	11	pathophysiology, and rationale for therapy. Am J Cardiol 2003;91:2D-8D.				
40	443		doi:10.1016/s0002-9149(02)03373-8				
41	444	12	Peck R, Mghamba J, Vanobberghen F, <i>et al.</i> Preparedness of Tanzanian health facilities				
42	445		for outpatient primary care of hypertension and diabetes: a cross-sectional survey. <i>Lancet</i>				
43	446		<i>Glob Heal</i> 2014; 2 :e285–92. doi:10.1016/S2214-109X(14)70033-6				
44 45	447	13	Katende D, Mutungi G, Baisley K, <i>et al.</i> Readiness of Ugandan health services for the				
45 46	448	10	management of outpatients with chronic diseases. <i>Trop Med Int Health</i> 2015; 20 :1385–95.				
47	449		doi:10.1111/tmi.12560				
48	450	14	Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and				
49	451		treatment of acute and chronic heart failure. <i>Eur Heart J</i> 2016; 37 :2129–200.				
50	452		doi:10.1093/eurheartj/ehw128				
51	453	15	Mckee PA, Castelli WP, Mcnamara PM, et al. The Natural History of Congestive Heart				
52 53	454		Failure: The Framingham Study. N Engl J Med Published Online First: 1971.				
54	455		doi:10.1056/NEJM197112232852601				
55	456	16	Gadzik J. 'How much should I weigh?'Quetelet's equation, upper weight limits, and				
56		-	· · · · · · · · · · · · · · · · · · ·				
57							
58 50			2				
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				
00							

Page 24 of 28

BMJ Open

1 2			
3	457		BMI prime. <i>Conn Med</i> 2006; 70 :81–8.
4	457 458	17	Kirchhof P, Benussi S, Kotecha D, <i>et al.</i> 2016 ESC Guidelines for the management of
5	458	1 /	atrial fibrillation developed in collaboration with EACTS. <i>Eur Heart J</i> 2016; 37 :2893–962.
6	460		doi:10.1093/eurheartj/ehw210
7	400 461	18	Sańchez J. Rosner, B.: Fundamentals of Biostatistics, third edition. PWS-Kent, Boston
8 9	461	10	1990, xv, 655 pp., US \$ 14.95, ISBN 0-534-91973-1. <i>Biometrical J</i> 1993; 35 :150–150.
10	462		doi:10.1002/bimj.4710350205
11	403 464	19	Makubi A, Hage C, Lwakatare J, <i>et al.</i> Contemporary aetiology, clinical characteristics
12	464 465	19	and prognosis of adults with heart failure observed in a tertiary hospital in Tanzania: the
13	465		prospective Tanzania Heart Failure (TaHeF) study. <i>Heart</i> 2014; 100 :1235–41.
14	400 467		doi:10.1136/heartjnl-2014-305599
15 16	467	20	Agbor VN, Aminde LN, Tianyi F-L, <i>et al.</i> Atrial fibrillation among adults with heart
17	468 469	20	failure in sub-Saharan Africa - prevalence, incidence and all-cause mortality: a systematic
18	469 470		review and meta-analysis protocol. <i>BMJ Open</i> 2019; 9 :e022320. doi:10.1136/bmjopen-
19	470 471		2018-022320
20		21	Babyak MA. What You See May Not Be What You Get: A Brief, Nontechnical
21	472	21	Introduction to Overfitting in Regression-Type Models. <i>Psychosom Med</i> 2004; 66 :411–21.
22	473 474	22	Bujang MA, Sa'at N, Sidik TMITAB, <i>et al.</i> Sample Size Guidelines for Logistic
23 24	474		Regression from Observational Studies with Large Population: Emphasis on the Accuracy
24	475		Between Statistics and Parameters Based on Real Life Clinical Data. <i>Malays J Med Sci</i>
26	470		2018; 25 :122–30. doi:10.21315/mjms2018.25.4.12
27	477	22	Familoni OB, Olunuga TO, Olufemi BW. A clinical study of pattern and factors affecting
28	478 479	23	outcome in Nigerian patients with advanced heart failure. <i>Cardiovasc J Afr</i> 2007; 18 :308–
29	479		11.
30	480 481	24	Djoussé L, Levy D, Benjamin EJ, <i>et al.</i> Long-term alcohol consumption and the risk of
31 32	481	24	atrial fibrillation in the Framingham Study. <i>Am J Cardiol</i> 2004; 93 :710–3.
33	482 483		doi:10.1016/j.amjcard.2003.12.004
34	483 484	25	Maginga J, Guerrero M, Koh E, <i>et al.</i> Hypertension Control and Its Correlates Among
35	484	25	Adults Attending a Hypertension Clinic in Tanzania. J Clin Hypertens 2016; 18 :207–16.
36	485		doi:10.1111/jch.12646
37	480 487	26	Benjamin EJ, Wolf PA, D'Agostino RB, <i>et al.</i> Impact of atrial fibrillation on the risk of
38 39	487	20	death: the Framingham Heart Study. <i>Circulation</i> 1998; 98 :946–52.
40	488		doi:10.1161/01.cir.98.10.946
41	489	27	Böhm M, Young R, Jhund PS, <i>et al.</i> Systolic blood pressure, cardiovascular outcomes and
42	491	21	efficacy and safety of sacubitril/valsartan (LCZ696) in patients with chronic heart failure
43	492		and reduced ejection fraction: results from PARADIGM-HF. <i>Eur Heart J</i> 2017; 38 :1132–
44	493		43. doi:10.1093/eurheartj/ehw570
45 46	494	28	Leonard KL, Masatu MC. Variations In The Quality Of Care Accessible To Rural
40 47	495	20	Communities In Tanzania. <i>Health Aff</i> 2007; 26 :w380–92. doi:10.1377/hlthaff.26.3.w380
48	496	29	Kannel WB, Kannel C, Paffenbarger RS, <i>et al.</i> Heart rate and cardiovascular mortality:
49	497	2)	The Framingham study. Am Heart J 1987; 113 :1489–94. doi:10.1016/0002-
50	498		8703(87)90666-1
51	499	30	Fox K, Ford I, Steg PG, <i>et al.</i> Heart rate as a prognostic risk factor in patients with
52 53	500	50	coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a
53 54	500		subgroup analysis of a randomised controlled trial. <i>Lancet</i> Published Online First: 2008.
55	501		doi:10.1016/S0140-6736(08)61171-X
56	502		
57			
58			2
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			. of peer refield only integry onlyopenionly one about guidelines. And in

1 2 3 4 5 6 7	503 504 505 506	31	Kapoor JR, Heidenreich PA. Heart rate predicts mortality in patients with heart failure and preserved systolic function. <i>J Card Fail</i> Published Online First: 2010. doi:10.1016/j.cardfail.2010.04.013
8 9 10 11 12 13 14			
15 16 17 18 19 20 21			
22 23 24 25 26 27 28 29			
29 30 31 32 33 34 35 36			
37 38 39 40 41 42 43			
44 45 46 47 48 49 50			
51 52 53 54 55 56 57 58			2
58 59 60			Z ⁴ For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Analysis Time (Month) ECG_PR = 90-110 teliezonz

		BMJ Open BMJ Open 202	Page
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>co</i> Bort studies	
Section/Topic	ltem #	Recommendation 3	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4-5
Methods	1		
Study design	4	Present key elements of study design early in the paper	5-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5-8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Get diagnostic criteria, if applicable	5-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measuregnent). Describe comparability of assessment methods if there is more than one group 공	5-8
Bias	9	Describe any efforts to address potential sources of bias	18
Study size	10	Explain how the study size was arrived at	7-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which group bings were chosen and why	5-8
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) If applicable, explain how loss to follow-up was addressed	7
		(e) Describe any sensitivity analyses	-
Results			

 bmjopen-202

copyright.

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram 👶	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on Byposures and potential	8-10
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	8-10
		(c) Summarise follow-up time (eg, average and total amount)	13
Outcome data	15*	Report numbers of outcome events or summary measures over time	10-15
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precisiळ्ल्लें (eg, 95% confidence	10-15
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized $\vec{5}$	10-15
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-15
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10-15
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-13
Limitations		bm	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	16-19
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	20
		which the present article is based	

في *Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bless of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.grg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Atrial Fibrillation and Mortality in Outpatients with Heart Failure in Tanzania: A prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058200.R1
Article Type:	Original research
Date Submitted by the Author:	09-Dec-2021
Complete List of Authors:	Chen, Yunchan; Weill Cornell Medicine Alphonce, Emmanuel; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Mujuni, Eva; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Kisigo, Godfrey A.; Weill Cornell Medicine; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Kingery, Justin R.; Weill Cornell Medicine; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Makubi, Abel; Ministry of Health Community Development Gender Elderly and Children Peck, RN; Weill Cornell Medicine; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine Kalokola, Frederick; Catholic University of Health And Allied Sciences Weill Bugando School of Medicine, Department of Internal Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine, Diagnostics, General practice / Family practice, Global health, Health services research
Keywords:	Heart failure < CARDIOLOGY, PUBLIC HEALTH, PREVENTIVE MEDICINE, Audit < CARDIOLOGY, CARDIOLOGY, Cardiology < INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3	1	
4	2	
5		Atrial Ethnillation and Martality in Autnationts with Heart Failure in Tanzania. A
6	3	Atrial Fibrillation and Mortality in Outpatients with Heart Failure in Tanzania: A
7	4	prospective cohort study
8	5	
9	6	
10		
11	7	Yunchan Chen* ¹ , <u>yuc4005@med.cornell.edu</u>
12	8	Emmanuel Alphonce ^{*2} , alphonce204@gmail.com
13	9	Eva Mujuni ² , evamujuni@gmail.com
14	10	Godfrey A. Kisigo ^{1,2,3} , <u>gak4002@med.cornell.edu</u>
15		
16	11	Justin R. Kingery ^{1,2,3} , jrk9006@med.cornell.edu
17	12	Abel Makubi ⁴ , abelmakubi@gmail.com
18	13	Robert N. Peck ^{1,2,3} , <u>rnp2002@med.cornell.edu</u>
19	14	Frederick Kalokola ² , kalokola85@gmail.com
20	15	
21	16	
22	17	*equal contribution
23	18	equal contribution
24 25		
25 26	19	
26 27	20	
27	-	
29	21	¹ Weill Cornell Medicine, New York, NY, United States of America.
30	22	² Department of Internal Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania.
31	23	³ Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania.
32	24	⁴ Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma,
33	25	Tanzania
34	26	
35	27	
36		
37	28	
38	29	
39	30	
40	31	
41	32	
42	33	
43	34	
44	35	Word Count: 2855
45		word Count. 2855
46	36	
47	27	Company on domage agreeming this opticle should be addressed to Enclarich Velakele at
48	37	Correspondence concerning this article should be addressed to Frederick Kalokola at
49	38	kalokola85@gmail.com
50		
51		
52		
53		
54		
55 56		
56 57		
57 58		1
50 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	39	Abstract
4	40	
5 6	41	Objective: In recent years, the prevalence and mortality of heart failure (HF) and other
7	42	associated cardiovascular diseases have doubled in Sub-Saharan Africa (SSA). Studies in high-
8 9	43 44	income countries indicate that HF with concurrent atrial fibrillation (AF) is linked to increased mortality. Our objective was to determine the incidence and clinical outcomes of AF among
9 10	44 45	heart failure patients in SSA.
11	46	neur faiture patients in 557.
12 13	47	Design: A prospective cohort study using data collected between 10/2018-05/2020
14	48	
15	49	Setting: Outpatient clinic at a tertiary hospital in Mwanza, Tanzania
16 17	50	Deuticinents , 202 edult perticinents (acad > 19 years) with UE as defined by the ESC evidelines
17	51 52	Participants : 303 adult participants (aged \geq 18 years) with HF as defined by the ESC guidelines (2016) and 100 adults with HF as defined by clinical criteria alone were enrolled into the study.
19	53	Patients with comorbid medical condition that had prognosis of <3 months (i.e. advance solid
20 21	54	tumors, advance hematological malignancies) were excluded.
22	55	
23	56	Methods: Participants were screened for atrial fibrillation, and their medical history, physical
24 25	57	exams, and sociodemographic information were obtained. Multivariable logistic regression
26	58 59	models were used to examine factors associated with AF incidence. Cox regression models were used to analyze 3-month mortality and its associated risk factors.
27	60	
28 29	61	Results: We enrolled 403 participants with HF (mean age 60±19 years, 234 (58%) female). The
30	62	AF prevalence was 17%. In multivariable models, factors associated with AF were low income,
31	63	alcohol consumption and longer duration of heart failure. At the end of the three-month follow-
32 33	64	up, 120/403 (30%) participants died, including 44% (31/70) of those with AF. Higher heart rate
34	65 66	on ECG, more severe New York Heart Association HF class, rural residence and anemia were significantly correlated with mortality.
35	67	significantly concluded with mortanty.
36 37	68	Conclusion: Atrial fibrillation is common, underdiagnosed and associated with significant
38	69	mortality among outpatients with HF in Tanzania (HR:1.749, 95% CI:1.162-2.633, p=0.007).
39	70	Our findings additionally identify tachycardia (>110 bpm, HR:1.879, 95% CI:1.508-2.340,
40 41	71 72	p<0.001) as an easily measurable, high-impact physical exam finding for adverse outcomes in HF patients.
42	72 73	HF patients.
43 44	74	
44 45	75	
46	76	
47	77	
48 49	78 79	
50	79 80	
51 52	80 81	
52 53	82	
54	83	
55 56	84	
57		
58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

3	85	
4	86	Strengths and limitations of this study
5	07	

- This study is one of the few to examine the prevalence and mortality of atrial fibrillation among outpatients with heart failure in Sub-Saharan Africa.
- This study focuses on readily accessible physical exam measures, demographics, socioeconomic and lifestyle attributes. They are inexpensive to acquire and are well adapted for risk stratification in resource limited settings.
 - As a cohort study, no causal relationships can be established between the risk factors and mortality. Questionnaire data on social and personal history are contingent on patient report accuracy. Given the limitations in medical equipment, concurrent coronary artery disease, the order in which atrial fibrillation and heart failure developed, and whether heart failure was due to non-ischemic or ischemic causes were not established.
 - All participants were recruited from a single healthcare facility, which may qualify the generalizability of the findings.)I line .

Page 5 of 28

Introduction

pharmacologic costs [5,7].

are linked to further heart failure progression [11].

BMJ Open

As global life expectancy increases, the incidence of heart failure (HF) has risen

substantially [1]. Approximately 26 million people live with heart failure worldwide [2], with

cardiovascular disease-related deaths in Africa increased two-fold, and accounted for roughly

38% of all non-communicable disease mortalities [1,4]. Within Sub-Saharan Africa (SSA),

communicable diseases are gradually overtaking infectious diseases in prevalence [1,3]. In

of the cardiology clinic visits at institutions across Africa [5]. HF has a higher one-year post-

hospital discharge mortality than all other diagnoses [6]. In addition to patient-level burden, HF

poses significant economic strain secondary to recurrent hospitalizations, lost productivity, and

diagnoses [8]. Between 1990-2010, the annual deaths caused by AF grew by 2 and 1.9 fold in

cardiometabolic risk factors, growing evidence suggests that the presence of one may precipitate

the severity of the other. Compared to sinus-rhythm, comorbid AF is associated with higher all-

cause mortality and hospitalization rates in patients with heart failure [10]. Furthermore, AF-

related atrial remodeling, altered ventricular hemodynamics and arrhythmia-induced myopathy

Despite the synergistic comorbidity of AF and HF, little is known about the prevalence of

men and women, respectively [9]. While AF and HF are known to share common

Atrial fibrillation (AF) incidence is also escalating rapidly among new cardiovascular

particular, heart failure constitutes roughly 9.4–42.5% of all hospital admissions and 25.6–30.0%

previous studies have indicated an "epidemiological transition," whereby chronic, non-

low- and middle-income countries bearing the greatest burden [1,3]. From 1990 to 2013,

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1	
2 3 4	102
5 6	103
7 8	104
9 10 11	105
12 13	106
14 15	107
16 17	108
18 19 20	109
21 22	110
23 24	111
25 26 27	112
28 29	113
30 31	114
32 33	115
34 35 36	116
37 38	117
39 40	118
41 42 43	119
44 45	120
46 47	121
48 49 50	122
50 51 52	123
53 54	124
55 56	
57 58 59	
60	

For peer review only - http://bmjopen.bmj	com/site/about/quidelines.vhtml
For peer review only - http://binjopen.binj.	.com/site/about/guidennes.xiitiin

4

atrial fibrillation among outpatients with heart failure within Sub-Saharan Africa, or its impact

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

1 2		
3 4	125	on clinical outcomes. Therefore, we conducted a prospective cohort study to elucidate the
5 6	126	prevalence, correlates and mortality associated with this patient population in Tanzania.
7 8 9	127	
) 10 11	128	Methods
12 13	129	Overview
14 15 16	130	This clinic-based prospective cohort study involved 403 patients who were enrolled in a
10 17 18	131	registry of HF. This registry was created as part of a more extensive hospital quality
19 20	132	improvement program for heart failure patients. Data collection and follow-up spanned from
21 22	133	October 2018 to May 2020.
23 24 25	134	Setting and Participants
26 27	135	The study was conducted at the outpatient clinic of Bugando Medical Center (BMC), a
28 29	136	zonal hospital for the Lake Victoria Zone in northwest Tanzania. BMC serves a population of
30 31 32	137	over 14 million with a 950-bed capacity. In each month, BMC provides care for approximately
32 33 34	138	400 patients with HF, with an average of 100 patients seen weekly. BMC is similar to other
35 36	139	facilities that provide care for heart failure in Tanzania and Uganda [12,13].
37 38	140	All patients attending the outpatient clinic with a diagnosis of heart failure were screened
39 40 41	141	between October and December of 2019. Patients \geq 18 years of age and seeking heart failure
42 43	142	care were recruited serially until the target sample size was attained ($n \ge 331$). Patients with
44 45	143	comorbid medical conditions with a prognosis of <3 months (i.e. advanced malignancy) were
46 47 48	144	excluded from the study. Of the 403 enrolled patients, 303 had the diagnosis of HF objectively
49 50	145	confirmed according to the European Society of Cardiology (ESC) 2016 guidelines [14], where
51 52	146	133 had heart failure with reduced ejection fraction (HFrEF) and 170 had heart failure with
53 54	147	preserved ejection fraction (HFpEF). For the remaining 100 patients, the diagnosis of HF was
55 56 57		
58 59		5

BMJ Open

made according to the Framingham criteria, and in the absence of another primary diagnosis responsible for volume overload [15].

150 Study Procedures

Consented participants were interviewed using a standard questionnaire that collected clinical and demographic information such as age, sex, residence, duration of heart failure, and New York Heart Association (NYHA) functional classification. Participants were also evaluated for palpitations, shortness of breath, syncope or presyncope, exercise intolerance, chest pain and fatigue. Physical examination was performed on every participant. Blood pressure measurements were taken from the right arm using an automated blood pressure monitor after subjects had rested for at least 5 minutes. Pulse rate was determined, and noted for irregularity, regularity and amplitude, then compared to the heart rate for pulse deficit.

Height was measured using a rigid ruler attached to a wall and rounded to the nearest 0.5cm. Weight was measured without shoes, with patients wearing light clothing and recorded to the nearest 500g using the DETECTO scale. Body Mass Index (BMI) was calculated using the Quetelet equation [16] and categorized using the WHO Classification Scale, with underweight BMI classified as <18.5 kg/m², normal BMI as 18.5-24.9 kg/m², overweight BMI as 25-29.9 kg/m², and obese BMI as \geq 30kg/m². Additionally, electronic medical records were reviewed to extract blood hemoglobin and serum creatinine values.

Study participants were then subjected to a resting 12-lead electrocardiography. The heart rate on ECG was recorded for all subjects. Tracings with irregular QRS Complexes and absent discrete P waves were categorized as AF, in accordance with the ESC 2016 criteria [17]. All diagnoses of atrial fibrillation were confirmed by a staff cardiologist. Patients with AF had their results communicated to the attending physician and were treated according to protocol.

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

171 Follow Up and Outcome Determination

At least three contact phone numbers were obtained at the time of enrollment, including one from the patient and two from friends and relatives. All participants were followed for a period of three months, with none lost to follow up. The research team interviewed the participants during their regularly scheduled visits on a monthly basis. Phone calls were made to those not presenting to clinic. During these interviews, information about their recent medical updates or hospitalizations were collected. If the participant could not be reached, the designated alternate contact was called to determine the patient's vital status. Mortality was ascertained via phone call to each individual family. The families confirmed the death was cardiac in origin or related to their cardiac diagnosis (HF/cardio-embolic stroke/cardio-renal syndrome). Additionally, for those who died during hospitalization, care was taken to confirm with the family member that the original admission was due to cardiac etiologies.

183 Statistical Analysis

By the difference in proportions calculation, a minimum sample size of 331 patients was needed to provide at least 80% power to detect the difference in mortality rates between patients with AF and those without (two-sided test with a 5% level of significance) [18]. Our pre-test estimation of AF prevalence was 16% [19,20]. For the secondary analyses, this sample size was expected to provide at least 10 observations (i.e., number of patients with AF or death events) per predictor in the final models to allow good estimates [21,22]. Stata 16.1 was the statistical analysis software used in this study. Unknowns were recorded as null prior to analysis. For tabulation purposes, we reported count for discrete variables, and mean/standard deviation or median/interquartile range for continuous variables. Logistic regression was used to determine which baseline features were most strongly correlated with atrial fibrillation, and Cox

Page 9 of 28

BMJ Open

22 23	202	Baseline characteristics of the patients are described in Table 1 . The cohort included 234				
24 25	203	females (58.1%) and 169 males (41.9%), with a mean age of 60 ± 19 years. Nearly one-half (186,				
26 27 28	204	46.2%) were overweight or obese (≥ 25 kg/m ²). Among the participants, 202 (50.1%) had health				
29 30	205	insurance. One hundred and fifty-four (154, 38.2%) self-identified as low income (less than				
31 32 33	206	500,000 TZS/month). Two hundred and thirty-four participants lived in rural settings (234,				
33 34 35	207	58.1%) and 169 (41.9%) lived in urban environments. One hundred and nine participants (109, 27.1%) did not reasing formal education 214 (52.1%) completed primary school, and 80				
36 37	208	27.1%) did not receive formal education, 214 (53.1%) completed primary school, and 80 (19.9%) obtained secondary or higher degrees. The median heart failure duration in this cohort				
38 39 40	209	(19.9%) obtained secondary or higher degrees. The median heart failure duration in this cohort				
40 41 42	210	was four years (IQR 3-9), and 180 (44.7%) noted a family history of heart failure. The majority,				
43 44	211	320 (79.4%), were diagnosed with advanced HF (III/IV NYHA class). The most predominant				
45 46 47	212	comorbidity was hypertension, with 323 cases (80.2%). Ninety-seven (97, 24.1%) had				
47 48 49	213	concurrent diabetes mellitus. Nearly half of the participants (189, 46.9%) reported a social				
50 51	214	history positive for alcohol consumption, and 77 (19.1%) had a smoking history.				
52 53	215					
54 55 55216Table 1. Social, Demographic, and Past Medical History of Enrolled Patients55 55Patient Data (n=403)SubclassNumber (n=403)						

Sex	Female	234 (58.1%)	
Age	Mean (SD)	60.2 (18.8)	
Education	Informal	109 (27.1%)	
	Primary	214 (53.1%)	
	Secondary or Higher	80 (19.9%)	
Reside	Urban	169 (41.9%)	
	Rural	234 (58.1%)	
Health Insurance	Yes	202 (50.1%)	
Income Level	Low	154 (38.2%)	
	Medium/High	249 (61.8%)	
BMI Categories	Underweight	26 (6.5%)	
	Normal	191 (47.4%)	
	Overweight	120 (29.8%)	
	Obese/Severely Obese	66 (16.4%	
History of Hypertension	Yes	323 (80.2%)	
Duration of Heart Failure (Years		4 (3-9)	
Family History of Heart Failure	Yes	180 (44.7%)	
NYHA Function Class	Ш	83 (20.6%	
	ш	317 (78.7%	
	IV	3 (0.7%	
Diabetes Mellitus	Yes	97 (24.1%	
HIV	Positive	21 (5.2%	
Atrial Fibrillation	Present (ECG confirmed AF)	70 (17.4%	
Alcohol	Yes	189 (46.9%	
(Average Units of Alcohol/Day)	Median (IQR)	0 (0-10)	
	Range	0-60	
Cigarette Smoking	Yes	77 (19.1%	
Echo LV EF (%)	<40	133 (33.0%	
	>=40	170 (42.2%	
	Unknown	100 (24.8%	
Hemoglobin	Normal (>12g/dl)	175 (43.4%	
	Mild Anemia (10-11.9g/dl)	188 (46.7%	
	Moderate/Severe Anemia (<=9.9g/dl)	38 (9.9%	
Rheumatic Heart Disease	Positive History & AF	6 (1.5%)	
	Positive History & No AF	18 (4.5%)	
	Negative History & AF	64 (15.8%)	
	Negative History & No AF	315 (78.2%)	
Creatinine Level - Median (IQR)		94 (77-169)	
Ci catiline Level - Meulan (IQK)	122 (106-142)		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	
23	
24 25	217
26 27	
28 29	218
30 31	219
32 33	220
34 35	221
36 37	222
38 39	
40 41	223
42	224
43 44	225
45 46	226
47 48	227
49 50	228
51 52	
53 54	229
55 56 57 58 59	230

Diastolic Blood Pressure - Mee	70 (66-82)		
Pulse Rhythm Regular		300 (74.4%)	
	Irregular (diagnosed by clinical exam)	103 (25.6%)	
Heart Rate (bpm) - Median (IQR)		79 (71-91)	
Pulse Deficit (bpm) - Median (IQR)	6 (3-11)	
ECG Heart Rate (bpm) - Median (IQR)		79 (67-94)	
ECG Rhythm	Regular	304 (75.4%)	
	Irregular	99 (24.6%)	
Goal Directed Therapy	Beta-Blocker	254 (63.0%)	
	ACE-inhibitor	188 (46.7%)	
	Diuretic	300 (74.4%)	
	Nitrates	39 (9.6%)	
	Digitalis	58 (14.4%)	
	ARB	156 (38.7%)	
	Calcium Channel Blocker	48	
	Vasodilator	35	

218 **Prevalence of Atrial Fibrillation**

Of the 403 study participants with heart failure, 70 (17.4%) participants had atrial fibrillation 219

detected on screening electrocardiogram. Of these, 29/70 (41.4%) had previously been diagnosed 220

221 with atrial fibrillation and 41/70 (58.6%) were new diagnoses. Twenty-five percent (6/24) of

222 participants with a history RHD had atrial fibrillation (Table 1).

224 **Sociodemographic Correlates of Atrial Fibrillation**

225 In a univariable logistic regression model (Table 2), advanced age, low income, informal

226 education, alcohol consumption, and longer heart failure duration were significantly associated

227 with atrial fibrillation. In the multivariable model (**Table 3**), lower income (high income aOR

0.5, 95% CI 0.3-0.9), duration of heart failure (aOR 1.05, 95% CI 1.0-1.1), and alcohol 228

229 consumption (aOR 2.1, 95% CI 1.2-3.8) were associated with atrial fibrillation.

Screening Characteristics	Subclass	AF (%)	No AF (%)	OR (95% CI)	p- value	
Sex	Male	31 (18.3)	138 (81.7)	1.000		
	Female	39 (16.7)	195 (83.3)	0.890 (0.530-1.497)	0.66	
Age	Mean±Std. Dev.	66.4±19.0	58.8±18.5	1.025 (1.009-1.041)	0.002	
Education	Informal	27 (24.8)	82 (75.2)	1.000		
	Formal	43 (14.6)	251 (85.4)	0.520 (0.303-0.895)	0.01	
Income	Low	34 (22.1)	120 (77.9)	1.000		
	Medium/High	36 (14.5)	213 (85.5)	0.597 (0.355-1.003)	0.05	
Reside	Urban	26 (15.4)	143 (84.6)	1.000		
	Rural	44 (18.8)	190 (81.2)	1.274 (0.749-2.166)	0.37	
Health	Yes	31 (15.4)	171 (84.7)	1.000		
Insurance	No	39 (19.4)	162 (80.6)	0.753 (0.448-1.264)	0.283	
BMI (kg/m ²)	Underweight	4 (15.4)	22 (84.6)	1.000		
	Normal	43 (22.5)	148 (77.5)	1.598 (0.522-4.889)	0.41	
	Overweight	15 (12.5)	105 (87.5)	0.786 (0.238-2.595)	0.692	
	Obese	8 (12.1)	58 (87.9)	0.759 (0.207-2.774)	0.67	
Duration of		6.5 [3-13]	4 [2-7]	1.076 (1.034-1.076)	<0.00	
Heart Failure (Years) - Median (IQR)			4.			
NYHA	I/II	9 (10.8)	74 (89.2)	1.000		
Function Class	III/IV	61 (19.1)	259 (80.9)	1.937 (0.918-4.083)	0.08	
Diabetes	No	55 (18.0)	251 (82.0)	1.000		
Mellitus	Yes	15 (15.5)	82 (84.5)	0.835 (0.448-1.556)	0.5	
Alcohol	No	26 (12.2)	188 (87.8)	1.000		
	Yes	44 (23.3)	145 (76.7)	2.194 (1.290-3.732)	0.004	
Cigarette	No	53 (16.3)	273 (83.7)	1.000		
Smoking	Yes	17 (22.1)	60 (77.9)	1.459 (0.790-2.696)	0.22	

.... -.. . . . πт

Table 3. Multivariate logistic regression of demographic factors associated with atrial fibrillation

aOR (95% CI)

p-value

0.564

0.186

0.024

0.050

0.459

Variable

(Years)

Education (Formal)

Income (Med/High)

NYHA (III/IV)

Duration of Heart Failure

Age

48
49
50
51
52
53
54
55
56
57

-
т.

1.006 (0.987-1.025)

0.659 (0.354-1.223)

0.531 (0.306-0.920)

1.049 (1.000-1.100)

1.347 (0.612-2.962)

BMJ Open

			1					
	Alcohol Consum	ption	2	2.083	(1.150-3.7	71)	0.015	
236								
237								
238 239	Clinical and Phys	ical Exam Cor	relates of Atria	al Fib	rillation			
240	Chinear and Thys				mation			
241	By univariate logis	By univariate logistic regression (Table 4), irregular pulse rhythm, higher baseline heart rate,						
242	and greater pulse d	leficit were linke	ed to AF preval	ence.	Conversel	ly, higher	systolic blood	
243	pressure at baselin	e was associated	d with a decreas	ed ris	k of havin	g atrial fi	brillation. With	
244	respect to physical	exam findings,	in the multivar	iate ai	nalysis (T a	able 5), ir	regular pulse rhyt	hm
245	(OR 38.0, 95% CI	15.3-94.4) and j	pulse deficit (O	R 1.1	, 95% CI 1	1.0-1.2) ar	e strongly sugges	tive
246	of AF presence.							
247								
277								
248	Table 4: Univaria	te logistic regr	ession for phys	ical e	xam corr	elates of a	atrial fibrillation	
	Screening	Subclass	AF (%)	No A	AF (%)		OR (95% CI)	p-
	Characteristics			124	[107	0.0	PE (0.074.0.00()	
	Systolic Blood Pressure -		117 [97- 134]	124	[107-	0.93	85 (0.974-0.996)	0.009
	Median (IQR)		134]	145]				
	Diastolic Blood		69 [64-82]	70 [6	67-82]	0.9	96 (0.977-1.016)	0.699
	Pressure -				4		(
	Median (IQR)							
	Pulse Rhythm	Regular	7 (2.3)	293	(97.7)		1.000	
		Irregular	63 (61.2)	40 (3	38.8)	65.925 (28.237-153.915)	<0.001
	Heart Rate		85 [74-102]	78 [1	70-89]	1.02	26 (1.013-1.040)	<0.001
	(bpm) -							
	Median (IQR)		11 510 101	5 50	01	1.0		.0.001
	Pulse Deficit		11 [10-13]	5 [3-	-8]	1.32	28 (1.233-1.431)	<0.001
	(bpm) - Median (IQR)							
49								
250 251	Table 5. Multivar fibrillation	iate logistic reg	gression for sci	eenir	ng factors	associate	d with atrial	
2.51	Variable	OR (95% CI)		p-value			
	SBP		, 0.987 (0.967-1.	007)	0.18	6		
	DBP		1.019 (0.988-1.		0.24			
	Pulse Rhythm		01 (15.292-94.		< 0.00			
	(Irregular)							
			1					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Heart Rate	1.003 (0.984-1.022)	0.778
Pulse Deficit	1.110 (1.018-1.211)	0.018

Three Month Mortality

At the end of the three-month follow-up, 120 (29.8%) participants died, including 44.3% and 26.7% of those with and without AF, respectively. Among the clinical variables (**Table 6**), the factor most significantly associated with three-month mortality was higher heart rate on ECG (Hazard Ratio (HR) 1.88, 95% CI 1.508-2.340). Other noteworthy risk factors for death include atrial fibrillation (HR 1.75, 95% CI 1.162-2.633), worse heart function (III/IV) on the NYHA scale (HR 1.64, 95% CI 0.981-2.738), rural residence (HR 1.47, 95% CI 1.006-2.150), and anemia (HR 1.33, 95% CI 1.012-1.738). Conversely, higher education, higher ejection fraction $(\geq 40\%)$ and baseline systolic blood pressure within the normal range were associated with decreased hazard ratio. By multivariate analysis (Table 7), increased ECG heart rate remained significantly associated with mortality. Collinearity was noted between AF and other measures of heart failure, and the singular inclusion of AF displayed statistically significant mortality hazards when other diluting factors were omitted (Table 8). On stratified analysis, death rate increased significantly with each increment in ECG heart rate, with a three-month mortality of 21.5% for those with HR below 90 bpm, 38.6% for those between 90-110 bpm and 64.4% for patients with >110 bpm at baseline (Figure 1&2). Additional analyses comparing the AF prevalence and three-month mortality data for participants with echocardiograph confirmed heart failure (according to the ESC criteria) against those participants diagnosed based on clinical criteria alone was conducted. In the HFrEF cohort, death rate at 3-months was similar for those with AF and those without. For both HFpEF and clinical criteria diagnosis, there was a marked increase in the 3-month mortality in those with AF (Table 9).

Patient Data (n=403)	Subclass	No Death (%)	Death (%)	HR (95% CI)	P>
Sex	Female	157 (67.1)	77 (32.9)	1.304 (0.898-1.894)	0.
	Male	126 (74.6)	43 (25.4)		
Age				1.000	0.
Reside	Urban	129 (76.3)	40 (23.7)	1.471 (1.006-2.150)	0.
	Rural	154 (65.8)	80 (34.2)		
Education	Informal	68 (62.4)	41 (37.6)	0.689 (0.472-1.004)	0.
	Formal	215 (73.1)	79 (26.9)		
Income Level	Low	103 (66.9)	51 (33.1)	0.827 (0.576-1.188)	0.
	Medium/High	180 (72.3)	69 (27.7)		
Health	Yes	147 (72.8)	55 (27.2)	1.183 (0.826-1.694)	0.
Insurance	No	136 (67.7)	65 (32.3)		
BMI Categories	Underweight/Normal	148 (68.2)	69 (31.8)	0.876 (0.610-1.258)	0.
	Overweight/Obese	135 (72.6)	51 (27.4)	-	
Hypertension	Yes	227 (70.3)	96 (29.7)	0.982 (0.628-1.536)	0.
	No	56 (70.0)	24 (30.0)		
HF Duration (Years)		6		1.282 (0.767-2.141)	0
NYHA	I/II	66 (79.5)	17 (20.5)	1.639 (0.981-2.738)	0.
	III/IV	217 (67.8)	103 (32.2)		
Diabetes	Yes	70 (72.2)	27 (27.8)	0.903 (0.588-1.386)	0.
	No	213 (69.6)	93 (30.4)		
AF	Absent	244 (73.3)	89 (26.7)	1.749 (1.162-2.633)	0.
	Present	39 (55.7)	31 (44.3)		
Alcohol	Yes	132 (69.8)	57 (30.2)	1.051 (0.735-1.504)	0.
	No	151 (70.6)	63 (29.4)		
Smoking	Yes	53 (71.6)	21 (28.4)	0.964 (0.602-1.544)	0.
-	No	230 (69.9)	99 (30.1) 🗢		
Echo LV EF	<40	86 (64.7)	47 (35.3)	0.736 (0.488-1.111)	0.
(%)	>=40	126 (74.1)	44 (25.9)		
	Unknown	71 (71)	29 (29)		
Hb	Normal (>12g/dl)	131 (74.9)	44 (25.1)	1.326 (1.012-1.738)	0.
	Mild (10-11.9g/dl)	129 (68.6)	59 (31.4)		
	Moderate/Severe Anemia (<=9.9g/dl)	23 (57.5)	17 (42.5)	1	
Creatinine Level				0.996 (0.990-1.002)	0.
SBP				0.992 (0.985-1.000)	0.

DBP				0.991 (0.977-1.005)	0.195
ECG Heart				1.017 (1.012-1.023)	<0.001
Rate					
ECG HR	<90	216 (78.6)	59 (21.5)	1.879 (1.508-2.340)	<0.001
Category (bpm)	90-110	51 (61.5)	32 (38.6)		
	>110	16 (35.6)	29 (64.4)		

276 <u>Table 7. Multivariate Cox Hazard Ratio</u>

Patient Data	HR (95% CI)	p-value
Reside	1.288 (0.821-2.021)	0.271
Education	0.841 (0.535-1.322)	0.453
Income Level	0.964 (0.631-1.471)	0.863
NYHA Function	U,	
Class	1.275 (0.701-2.318)	0.426
AF	1.030 (0.629-1.687)	0.907
Echo LV EF (%)	0.910 (0.578-1.431)	0.682
ECG Heart Rate	1.015 (1.009-1.021)	<0.001
Hemoglobin	1.062 (0.760-1.485)	0.723
SBP	0.996 (0.987-1.005)	0.377

Table 8. Multivariate Cox Hazard Ratio (without collinear measures of heart failure)

Patient Data	HR (95% CI)	p-value
Reside	1.343 (0.912-1.979)	0.136
Education	0.813 (0.551-1.200)	0.297
Income Level	0.931 (0.645-1.345)	0.704
AF	1.541 (1.012-2.345)	0.044
Hemoglobin	1.217 (0.925-1.602)	0.161
SBP	0.995 (0.987-1.003)	0.23

279

280 Table 9. Stratified Analysis of HFpEF, HFrEF, Clinical Criteria Diagnosis and AF

Heart Failure Condition	AF/History of AF	N	3-Month Mortality (% of Subgroup N)
HFrEF – Echo	Yes	35	12 (34.3%)
Diagnosis	No	98	35 (35.7%)
HFpEF – Echo	Yes	27	13 (48.1%)
Diagnosis	No	143	29 (20.3%)
Clinical Criteria	Yes	8	7 (87.5%)
Alone	No	92	18 (19.6%)

281

Page 17 of 28

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2		
3 4	282	Discussion
5 6	283	In this study, we sought to elucidate the prevalence and correlations of atrial fibrillation,
7 8 9	284	as well as the significant 3-month mortality risk factors for heart failure patients in Tanzania.
) 10 11	285	Atrial fibrillation was common among our cohort: nearly one out of six (17.4%) ambulatory
12 13	286	adults had AF that was evident on a screening electrocardiogram. This high prevalence is similar
14 15	287	to other reports from East Africa [19], and is likely a result of poor post-diagnosis linkage to care
16 17 18	288	[23]. Of note, patients were more likely to be symptomatic if they were alcohol consumers, more
19 20	289	elderly, or had longer heart failure duration. These are common risk factors for disruptions in
21 22	290	cardiac electrophysiology, and in particular, heavy drinking is linked to sudden-onset
23 24 25	291	supraventricular arrhythmias [24]. Unlike age and HF duration, decreasing alcohol consumption
26 27	292	is a lifestyle adjustment that patients can readily make to reduce their risk of developing AF. In
28 29	293	addition, we found that socioeconomic factors associated with poverty, such as less education
30 31 32	294	and lower monthly income, were correlated with atrial fibrillation. Previous studies [19,25] cited
32 33 34	295	these attributes as major barriers to outpatient care access, and potential contributors to poorer
35 36	296	outcomes.
37 38	297	At the end of the three-month follow-up, almost half of the patients with atrial fibrillation
39 40 41	298	died (44.3%). Participants with heart failure and concurrent AF experienced a 75% higher risk of
42 43	299	dying in the first three months after enrollment compared to those with heart failure alone. This
44 45	300	finding aligns with data from the Framingham Heart Study, which indicated a 1.5-1.9-fold
46 47 48	301	increased mortality risk for patients with atrial fibrillation, further highlighting the need for early
49 50	302	detection and treatment [26]. Anemia, a common condition in lower-income countries, was
51 52	303	significantly linked to mortality in our study participants, a finding corroborated by other reports
53 54 55	304	from Tanzania [19]. Lower systolic blood pressure was also associated with reduced survival,

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

which was possibly a consequence of severely diminished left ventricular function [27]. Finally,
rural residence emerged as one of the significant predictors of mortality for HF outpatients. In
developing regions, wealthier populations often congregate in urban areas, leading to significant
disparities in healthcare access and physician-shortages in rural communities [28]. These barriers
contribute to delayed diagnosis of existing conditions as well as severely limited treatment
options, thus further exacerbating the disease burden.

In both univariate and multivariate models of mortality, elevated heart rate on ECG was the strongest independent predictor of death within three months [29–31]. Above the bounds of normal resting heart rate (>110 bpm), an increase of 20 beats per minute was associated with >65% increased risk of death; a finding which remained significant even after adjusting for the presence of atrial fibrillation and other possible confounders. Furthermore, nearly 40% of people with ECG heart rates between 90-110 (i.e. controlled by current guidelines) are dead at the end of the three-month study period. It is likely that higher heart rate signals heart failure exacerbation. Our data identify a heart rate of >125 beats per minute as extraordinarily high risk; therefore, this cutoff could help risk-stratify patients to appropriate care (i.e., admission vs. outpatient).

Atrial fibrillation is specifically associated with higher mortality in the participants with confirmed heart failure with preserved ejection fraction as well as those with heart failure diagnosed based on clinical criteria alone. In fact, participants with atrial fibrillation in these two groups had higher mortality than those participants with confirmed heart failure with reduced ejection fraction. One possible explanation may be that those with worsened heart function necessitate more physician visits. The greater contact with the healthcare system allows for more regular screenings, and any incidental findings to be noted and addressed in a timelier manner. Page 19 of 28

BMJ Open

Despite the growing global burden of AF, electrocardiograms are not routinely conducted in many HF clinics in low-income communities (9). Barriers to AF screening include the relative paucity of medical devices such as electrocardiograms, supplies such as electrocardiogram paper, and available specialty physicians per capita (12,13,21). Encouragingly, our data imply that physical examination findings such as irregularly irregular pulse rate and pulse deficit are highly sensitive to detect patients with atrial fibrillation. Both measures can be ascertained with only palpation and a stethoscope and remain useful in clinical environments where electrocardiogram machines are not available.

There are limitations to this study. All participants were recruited from a single healthcare facility. Therefore, the heart failure patients included in this study may have different risk profiles than patients in other geographic locations and clinics. However, our study facility follows identical standards of care and the same protocols as other East African heart failure clinics, which promotes the generalizability of the results. Some aspects of the questionnaire, such as social history, rely on patient self-report, which may suffer from recall bias. Another study limitation is that we did not assess for rate-control medication adherence. This information could have helped differentiate deaths due to AF alone from those caused by poor drug adherence. While none of the subjects had a history of coronary artery disease, the diagnosis cannot be objectively ruled out from the existing clinical data. Additionally, because the focus of this study is the presence of atrial fibrillation and heart failure, the order in which the two conditions developed, and whether heart failure was due to non-ischemic or ischemic causes were not recorded.

BMJ Open: first published as 10.1136/bmjopen-2021-058200 on 19 January 2022. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Conclusions

Our data highlights the compounding morbidity and mortality of AF and HF in low- and middle-income countries. Atrial fibrillation is common, underdiagnosed and is associated with high mortality. In resource-limited settings, the presence of irregular heart rate and pulse deficit, along with affirmative responses to alcohol consumption and chronic heart failure should push atrial fibrillation forward on the differential. Heightened resting heart rate should alert physicians to possible HF-related mortality. Common predictors that emerged for both AF and death are associated with systemic impediments to healthcare access and disparities in fiscal and human resource distribution. Thus, in order to effectively alleviate cardiovascular disease burden in Tanzania and other medically underserved regions, in general, there needs to be wider availability of preventative care and targeted screening of atrial fibrillation, particularly among vulnerable populations in rural communities. Our findings also provide a reminder to clinicians in low-income countries that physical examination still matters, and that HF patients with high heart rate deserve more careful clinical scrutiny. **Figure Legends** Figure 1. Three-month mortality per categorical heart rate. Figure 2. Kaplan-Meier Curve for three-month survival of adults with heart failure **List of Abbreviations** AF Atrial Fibrillation **Blood Pressure** BP DBP **Diastolic Blood Pressure**

1 2						
2 3 4	374	EF Ejection Fraction				
5 6	375	HF Heart Failure				
7 8 9	376	HIV Human Immunodeficiency	Virus			
9 10 11	377	LV Left Ventricle				
12 13	378	SBP Systolic Blood Pressure				
14 15	379	SSA Sub-Saharan Africa				
16 17 18	380	TZS Tanzanian Shilling				
19 20	381					
21 22	382	Declarations				
23 24 25	383	Ethics approval and consent to particip	ate			
26 27	384	This study was approved by the CUHAS-	BMC joint Ethics and Review Committee			
28 29	385	(CREC408/2019). All participants provided written informed consent before enrollment.				
30 31 32	386	Research was performed in accordance w	ith the Declaration of Helsinki.			
33 34	387	Consent for publication				
35 36	388	Not applicable				
37 38 39	389	Availability of data and materials				
40 41	390	The datasets and statistical code are available	ble from the corresponding author on reasonable			
42 43	391	request.				
44 45 46	392	Competing interests				
40 47 48	393	The authors declare that they have no con	peting interests.			
49 50	394	Funding				
51 52 53	395	This study was funded by a grant from the	e Mulago Foundation (Fund Number: N/A). RNP and			
53 54 55	396	JRK were both supported by grants from	he National Institutes of Health (Fund Number:			
56 57						
58 59 60		For peer review only - http://b	2 mjopen.bmj.com/site/about/guidelines.xhtml			
00		· · · · · · · · · · · · · · · · · · ·				

K01TW010281; K23 HL152926). The funding bodies had no role in the collection, analysis, and

400 Author Contributions

401 EA & YC: study design, investigation, formal analysis, and original draft preparation, EM:

interpretation of data and in writing the manuscript.

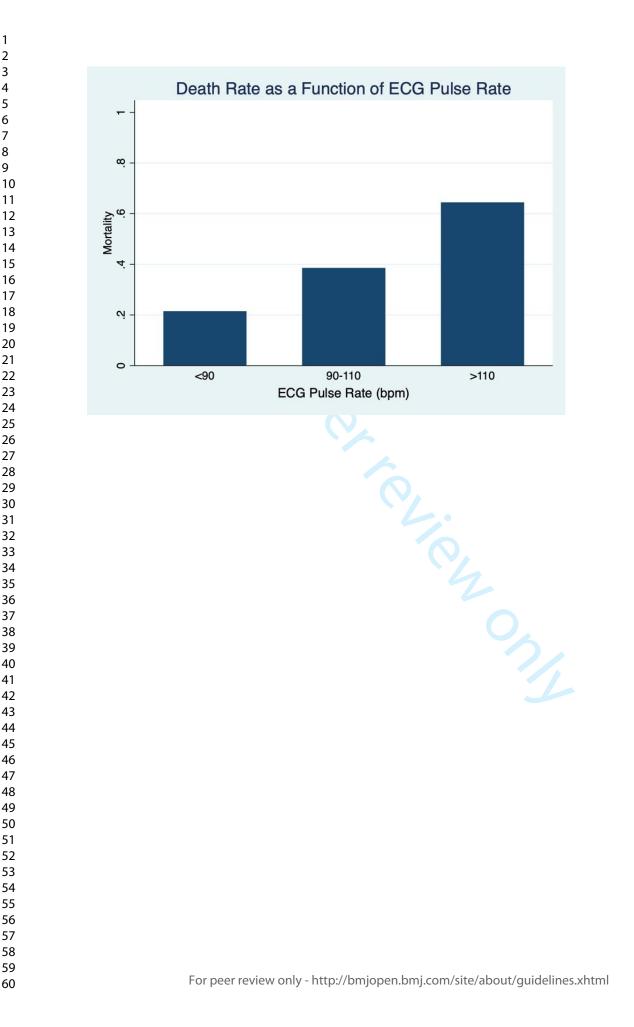
402 investigation and review & editing, AM: study design and review & editing, GAK & JRK:

403 review & editing, FK & RNP: study design, supervision, and review & editing. All authors read
404 and approved the final manuscript.

406 Acknowledgements

407 The study team is grateful for the support of administrators and health care providers at the
408 Bugando Medical Centre, and the participants who contributed to this research. We also wish to
409 acknowledge the contributions of our data collection staff, Dr. David Osima and Mr. Evarist

410 Msaki.


1 2			
3	411	Dafa	erences
4	411	1	Keates AK, Mocumbi AO, Ntsekhe M, <i>et al.</i> Cardiovascular disease in Africa:
5	412	1	epidemiological profile and challenges. <i>Nat Rev Cardiol</i> 2017; 14 :273–93.
6	415 414		doi:10.1038/nrcardio.2017.19
7	414 415	2	Savarese G, Lund LH. Global Public Health Burden of Heart Failure. <i>Card Fail Rev</i>
8 9	415 416	2	2017; 3 :7–11. doi:10.15420/cfr.2016:25:2
10	410	3	Hosseinpoor AR, Bergen N, Kunst A, <i>et al.</i> Socioeconomic inequalities in risk factors for
11	417	3	non communicable diseases in low-income and middle-income countries: results from the
12	418		World Health Survey. <i>BMC Public Health</i> 2012; 12 :912. doi:10.1186/1471-2458-12-912
13	419	4	Mensah GA, Roth GA, Sampson UKA, <i>et al.</i> Mortality from cardiovascular diseases in
14	420	4	sub-Saharan Africa, 1990-2013: a systematic analysis of data from the Global Burden of
15 16	421		Disease Study 2013. Cardiovasc J Afr 2015; 26 :S6-10. doi:10.5830/CVJA-2015-036
17	422	5	Agbor VN, Essouma M, Ntusi NAB, <i>et al.</i> Heart failure in sub-Saharan Africa: A
18	423 424	5	contemporaneous systematic review and meta-analysis. <i>Int J Cardiol</i> 2018; 257 :207–15.
19	424 425		doi:10.1016/j.ijcard.2017.12.048
20	425	6	Kingery JR, Yango M, Wajanga B, <i>et al.</i> Heart failure, post-hospital mortality and renal
21	420	0	function in Tanzania: A prospective cohort study. <i>Int J Cardiol</i> Published Online First:
22	427		2017. doi:10.1016/j.ijcard.2017.05.025
23 24	429	7	Naser N, Dilic M, Durak A, <i>et al.</i> The Impact of Risk Factors and Comorbidities on The
25	430	/	Incidence of Atrial Fibrillation. <i>Mater Socio Medica</i> 2017; 29 :231.
26	430		doi:10.5455/msm.2017.29.231-236
27	431	8	Stewart S, Wilkinson D, Hansen C, <i>et al.</i> Predominance of heart failure in the Heart of
28	432	0	Soweto Study cohort: emerging challenges for urban African communities. <i>Circulation</i>
29	434		2008; 118 :2360–7. doi:10.1161/CIRCULATIONAHA.108.786244
30 31	435	9	Chugh SS, Roth GA, Gillum RF, <i>et al.</i> Global Burden of Atrial Fibrillation in Developed
32	435)	and Developing Nations. <i>Glob Heart</i> 2014; 9 :113. doi:10.1016/j.gheart.2014.01.004
33	430	10	Dries D, Exner D, Gersh B, <i>et al.</i> Atrial fibrillation is associated with an increased risk for
34	437	10	mortality and heart failure progression in patients with asymptomatic and symptomatic
35	439		left ventricular systolic dysfunction: a retrospective analysis of the SOLVD trials. J Am
36	440		<i>Coll Cardiol</i> 1998; 32 :695–703. doi:10.1016/S0735-1097(98)00297-6
37 38	441	11	Maisel WH, Stevenson LW. Atrial fibrillation in heart failure: epidemiology,
30 39	442	11	pathophysiology, and rationale for therapy. Am J Cardiol 2003;91:2D-8D.
40	443		doi:10.1016/s0002-9149(02)03373-8
41	444	12	Peck R, Mghamba J, Vanobberghen F, <i>et al.</i> Preparedness of Tanzanian health facilities
42	445		for outpatient primary care of hypertension and diabetes: a cross-sectional survey. <i>Lancet</i>
43	446		<i>Glob Heal</i> 2014; 2 :e285–92. doi:10.1016/S2214-109X(14)70033-6
44 45	447	13	Katende D, Mutungi G, Baisley K, <i>et al.</i> Readiness of Ugandan health services for the
45 46	448	10	management of outpatients with chronic diseases. <i>Trop Med Int Health</i> 2015; 20 :1385–95.
47	449		doi:10.1111/tmi.12560
48	450	14	Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and
49	451		treatment of acute and chronic heart failure. <i>Eur Heart J</i> 2016; 37 :2129–200.
50	452		doi:10.1093/eurheartj/ehw128
51	453	15	Mckee PA, Castelli WP, Mcnamara PM, <i>et al.</i> The Natural History of Congestive Heart
52 53	454		Failure: The Framingham Study. <i>N Engl J Med</i> Published Online First: 1971.
54	455		doi:10.1056/NEJM197112232852601
55	456	16	Gadzik J. 'How much should I weigh?'Quetelet's equation, upper weight limits, and
56			······································
57			
58			2
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00			

Page 24 of 28

BMJ Open

1 2			
3	457		BMI prime. <i>Conn Med</i> 2006; 70 :81–8.
4	457 458	17	Kirchhof P, Benussi S, Kotecha D, <i>et al.</i> 2016 ESC Guidelines for the management of
5	458	1 /	atrial fibrillation developed in collaboration with EACTS. <i>Eur Heart J</i> 2016; 37 :2893–962.
6	460		doi:10.1093/eurheartj/ehw210
7	400 461	18	Sańchez J. Rosner, B.: Fundamentals of Biostatistics, third edition. PWS-Kent, Boston
8 9	461	10	1990, xv, 655 pp., US \$ 14.95, ISBN 0-534-91973-1. <i>Biometrical J</i> 1993; 35 :150–150.
10	462		doi:10.1002/bimj.4710350205
11	403 464	19	Makubi A, Hage C, Lwakatare J, <i>et al.</i> Contemporary aetiology, clinical characteristics
12	464 465	19	and prognosis of adults with heart failure observed in a tertiary hospital in Tanzania: the
13	465		prospective Tanzania Heart Failure (TaHeF) study. <i>Heart</i> 2014; 100 :1235–41.
14	400 467		doi:10.1136/heartjnl-2014-305599
15 16	467	20	Agbor VN, Aminde LN, Tianyi F-L, <i>et al.</i> Atrial fibrillation among adults with heart
17	468 469	20	failure in sub-Saharan Africa - prevalence, incidence and all-cause mortality: a systematic
18	469 470		review and meta-analysis protocol. <i>BMJ Open</i> 2019; 9 :e022320. doi:10.1136/bmjopen-
19	470 471		2018-022320
20		21	Babyak MA. What You See May Not Be What You Get: A Brief, Nontechnical
21	472	21	Introduction to Overfitting in Regression-Type Models. <i>Psychosom Med</i> 2004; 66 :411–21.
22	473 474	22	Bujang MA, Sa'at N, Sidik TMITAB, <i>et al.</i> Sample Size Guidelines for Logistic
23 24	474		Regression from Observational Studies with Large Population: Emphasis on the Accuracy
24	475		Between Statistics and Parameters Based on Real Life Clinical Data. <i>Malays J Med Sci</i>
26	470		2018; 25 :122–30. doi:10.21315/mjms2018.25.4.12
27	477	22	Familoni OB, Olunuga TO, Olufemi BW. A clinical study of pattern and factors affecting
28	478 479	23	outcome in Nigerian patients with advanced heart failure. <i>Cardiovasc J Afr</i> 2007; 18 :308–
29	479		11.
30	480 481	24	Djoussé L, Levy D, Benjamin EJ, <i>et al.</i> Long-term alcohol consumption and the risk of
31 32	481	24	atrial fibrillation in the Framingham Study. <i>Am J Cardiol</i> 2004; 93 :710–3.
33	482 483		doi:10.1016/j.amjcard.2003.12.004
34	485 484	25	Maginga J, Guerrero M, Koh E, <i>et al.</i> Hypertension Control and Its Correlates Among
35	484	25	Adults Attending a Hypertension Clinic in Tanzania. J Clin Hypertens 2016; 18 :207–16.
36	485		doi:10.1111/jch.12646
37	480 487	26	Benjamin EJ, Wolf PA, D'Agostino RB, <i>et al.</i> Impact of atrial fibrillation on the risk of
38 39	487	20	death: the Framingham Heart Study. <i>Circulation</i> 1998; 98 :946–52.
40	488		doi:10.1161/01.cir.98.10.946
41	489	27	Böhm M, Young R, Jhund PS, <i>et al.</i> Systolic blood pressure, cardiovascular outcomes and
42	490	21	efficacy and safety of sacubitril/valsartan (LCZ696) in patients with chronic heart failure
43	491		and reduced ejection fraction: results from PARADIGM-HF. <i>Eur Heart J</i> 2017; 38 :1132–
44	492		43. doi:10.1093/eurheartj/ehw570
45 46	494	28	Leonard KL, Masatu MC. Variations In The Quality Of Care Accessible To Rural
40 47	495	20	Communities In Tanzania. <i>Health Aff</i> 2007; 26 :w380–92. doi:10.1377/hlthaff.26.3.w380
48	496	29	Kannel WB, Kannel C, Paffenbarger RS, <i>et al.</i> Heart rate and cardiovascular mortality:
49	497	2)	The Framingham study. Am Heart J 1987; 113 :1489–94. doi:10.1016/0002-
50	498		8703(87)90666-1
51	499	30	Fox K, Ford I, Steg PG, <i>et al.</i> Heart rate as a prognostic risk factor in patients with
52	499 500	50	coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a
53 54	500		subgroup analysis of a randomised controlled trial. <i>Lancet</i> Published Online First: 2008.
55	501		doi:10.1016/S0140-6736(08)61171-X
56	502		MOI.10.1010/00170 0/00/0011/1-2X
57			
58			2
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			i or peer review only intep.//binjopen.onlj.com/site/about/guidennes.xittini

1 2 3 4 5 6 7	503 504 505 506	31	Kapoor JR, Heidenreich PA. Heart rate predicts mortality in patients with heart failure and preserved systolic function. <i>J Card Fail</i> Published Online First: 2010. doi:10.1016/j.cardfail.2010.04.013
8 9 10 11 12 13 14			
15 16 17 18 19 20 21			
22 23 24 25 26 27 28 29			
29 30 31 32 33 34 35 36			
37 38 39 40 41 42 43			
44 45 46 47 48 49 50			
51 52 53 54 55 56 57 58			2
58 59 60			Z ⁴ For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Analysis Time (Month) ECG_PR = 90-110 teliez ont

		BMJ Open BMJ Open 202	Page
		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>co</i> Bort studies	
Section/Topic	ltem #	Recommendation 3	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4-5
Methods	1		
Study design	4	Present key elements of study design early in the paper	5-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5-8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Get diagnostic criteria, if applicable	5-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 공	5-8
Bias	9	Describe any efforts to address potential sources of bias	18
Study size	10	Explain how the study size was arrived at	7-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which group bings were chosen and why	5-8
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) If applicable, explain how loss to follow-up was addressed	7
		(e) Describe any sensitivity analyses	-
Results			

 bmjopen-202

copyright.

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram 👶	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on Byposures and potential	8-10
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	8-10
		(c) Summarise follow-up time (eg, average and total amount)	13
Outcome data	15*	Report numbers of outcome events or summary measures over time	10-15
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precisiळ्ल्लें (eg, 95% confidence	10-15
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized $\vec{5}$	10-15
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-15
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10-15
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-13
Limitations		bm	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	16-19
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	20
		which the present article is based	

في *Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bless of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.grg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.