

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Analysis of the Influence of hypothyroidism on Liver Function Before Radioiodine Therapy among Patients with Differentiated Thyroid Cancer

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045562
Article Type:	Original research
Date Submitted by the Author:	22-Oct-2020
Complete List of Authors:	Ji, yanhui; Tianjin Medical University General Hospital, zheng, wei Meng, Zhaowei; Tianjin Medical University General Hospital wu, cailai tan, jian; Tianjin Medical University General Hospital Wang, Renfei; Tianjin Medical University General Hospital, Nuclear Medicine
Keywords:	Thyroid disease < DIABETES & ENDOCRINOLOGY, Endocrine tumours < ONCOLOGY, Head & neck surgery < OTOLARYNGOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Analysis of the Influence of Hypothyroidism on Liver Function Before Radioiodine
Therapy among Patients with Differentiated Thyroid Cancer
Yanhui Ji¹, Zhaowei Meng¹, Wei Zheng¹, Cailan Wu², Jian Tan¹, Renfei Wang^{1*}
1 Department of Nuclear Medicine, Tianjin Medical University General Hospital,
Tianjin, 300052, China.

2 Tianjin Fourth Central Hospital, Tianjin, 300140, China.

Correspondence: Renfei Wang, Email: Roslyn_en@163.com.

Abstract

 Purpose The present study aimed to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). Methods We recruited 996 patients (314 males, 682 females; age, 45.07±12.98 years) who were postoperative of DTC. and divided them into two groups: one with hepatic dysfunction and one without. We compared changes in baseline data and traced liver function levels and other metabolic profiles between the groups. *Result* Overall, 31.6% of patients had hepatic dysfunction. Higher aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) was the most common abnormality (the prevalence rate was 47.5%). The percentages of mild and moderate hepatic dysfunction were 80.0% and 20.0%, respectively. Univariate analyses demonstrated that the most prominent risk factors for hepatic dysfunction (odds ratio [OR]=0.324-3.171, P<0.01) were male sex with levothyroxine discontinuation and free triiodothyronine $(FT_3) < 2.01 \text{ pmol/L}$, free thyroxine $(FT_4) < 4.78 \text{ pmol/L}$, thyroid-stimulating hormone (TSH)>78.195 μ IU/mL, total cholesterol (TC)>5.17 mmol/L, triglycerides (TG)>1.71 mmol/L and more than 21 days of THW. Multivariate analyses demonstrated that for males, FT₄<3.80 pmol/L and TG \geq 1.28 mmol/L were the most prominent risk factors. Patients with moderate hepatic dysfunction should be treated with hepatoprotective drugs. Conclusions Patients with minor hepatic dysfunction and ortholiposis are more likely to recover normal liver function. For males, FT₄ and TG levels tended to be associated with hepatic dysfunction, and the prognosis of hepatic dysfunction was closely related to the level of TG.

 Strengths and limitations of this study:

Strengths: 1.in this study, we found that hepatic dysfunction is more likely to occur in male patients and patients with a THW time greater than 21 days, FT₃<2.01 pmol/L, FT₄<4.78 pmol/L, TSH>78.195 μ IU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L. And lipid-lowering therapy is particularly important for DTC patients with hepatic dysfunction before ¹³¹I therapy. 2.The results of this study may help nuclear physicians to make clinical treatment strategies of DTC patients.

Limitations: 1. since this was an uncontrolled retrospective study, the DTC patients involved in our study had hepatic dysfunction induced by hypothyroidism. Patients with liver diseases (such as autoimmune liver disease or viral hepatitis) or biliary tract diseases were excluded. However, corresponding testing was not universally performed to exclude these patients. 2. Additionally, we selected cases with complete data to perform our retrospective analysis. The exclusion of a few patients who were lost to follow-up might result in potential bias. 3.We could not collect LDL cholesterol measurements. For these reasons, further rigorous prospective studies are needed to confirm these preliminary findings.

Keywords: thyroid cancer, ¹³¹I, high-dose radioiodine therapy, hepatic dysfunction, risk factors

1. Introduction

Radioiodine (RAI) therapy is a very important procedure to ablate normal thyroid remnant tissues and microscopic deposits of differentiated thyroid carcinoma after thyroidectomy ^[1, 2]. As reported, RAI therapy was able to reduce the number of locoregional recurrences and to increase overall survival^[3] ^[4]. In order to stimulate I¹³¹ uptake into the normal thyroid remnants and metastatic tissues of thyroid carcinoma when DTC patient undergoes RAI therapy, an elevated thyroid-stimulating hormone (thyrotropin, TSH) level is essential^[5, 6]. The classic method of preparation for RAI therapy is thyroid hormone withdrawal (THW). It usually results in some physical or psychological side effects associated with hypothyroidism^[7], such as general edema, constipation, and depression. Evidence indicates that hypothyroidism may affect liver function or structure directly^[8, 9]. Therefore, identification of factors resulting in hepatic dysfunction n is crucial. In the present study, we collected clinical data from 996 patients with differentiated thyroid cancer (DTC) to investigate risk factors for patients with hepatic dysfunction using a retrospective approach.

2. Materials and methods

2.1. Ethics statement

This study is a retrospective clinical study summarizing and analyzing a large amount of clinical data. The ethics committee of Tianjin Medical University General Hospital waived the need to obtain written informed consent from all patients. All clinical data used in this study were analyzed anonymously.

2.2. Patients and Public Involvement

The study included 996 patients (314 males, 682 females; age, 45.07±12.98 years)

BMJ Open

who had undergone RAI therapy at our department from January 2012 to March 2018. The patients underwent complete or partial thyroidectomy performed by various surgeons. The patients agreed to receive RAI therapy and were informed about the traditional preparation method, THW. We used hepatitis virus markers, abdominal ultrasonography, echocardiography, and autoantibody and immunoglobulin subtype determination for patients with hepatic dysfunction to exclude other apparent causes of liver damage. Other causes included viral hepatitis, liver cirrhosis or biliary tract disease, chronic cardiac dysfunction and autoimmune liver disease^[10].

2.3. Data collection and grouping

All RAI therapy regimens were conducted by the same nuclear medicine department following a standard protocol (2015 American Thyroid Association Management Guidelines). Data were recorded, including patient age (named X_1), sex (X_2), the time between surgery and ¹³¹I therapy (X_3) , the time of THW (X_4) , the presence or absence of metastases (X_5) , the presence of absence of Hashimoto's thyroiditis (X_6) , serum free triiodothyronine (FT₃) (X_7), free thyroxine (FT₄) (X_8), TSH (X_9), thyroglobulin (Tg) (X_{10}) , antithyroglobulin antibody (TgAb) (X_{11}) , total cholesterol (TC) (X_{12}) , and triglycerides (TG) (X_{13}) . Meanwhile, liver function test results including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total-value bilirubin (TBIL), and direct bilirubin (DBIL) were also collected. Hepatic dysfunction was diagnosed in accordance with the following criteria: ALT, AST or GGT<3 times the upper limit of normal (ULN), ALP<2 times the ULN and/or TBIL and DBIL<2.5 times the ULN were defined as mild hepatic dysfunction; 3 times the ULN <ALT or AST<20 times the ULN, 3 times the ULN< GGT<10 times the ULN, 2 times the ULN<ALP<5 times the ULN and/or 2.5 times the ULN <TBIL, and DBIL<5 time the ULN were defined as moderate hepatic dysfunction; and ALT or AST ≥ 20 times the ULN, GGT ≥ 10 times the ULN, ALP \geq 5 times the ULN and/or TBIL and DBIL \geq 5 times the ULN were defined as severe hepatic dysfunction^[10].

2.4. Parameter assessments

Thyroid function tests were measured by chemiluminescence immunoassays (ADVIA

CENTAUR XP SIEMENS AG). Tg and TgAb were detected by the Immulite system (Immulite 2000 SIEMENS AG). Liver function indices were measured by colorimetry (Hitachi C7600 Japan). TC and TG levels were checked using an auto-analyzer enzymatically (Hitachi Model 7170 analyzer; Hitachi, Ltd., Tokyo, Japan). The dosage range of ¹³¹I therapy was 3.7-7.4 GBq.

2.5. Patient follow-up

We measured the serum levels of thyroid parameters, serum lipids, and liver function indices of the 996 patients at 1, 2, 3, and 4 months after ¹³¹I therapy to evaluate liver function.

2.6. Statistical analysis

A chi square test was used to analyze differences between ratios. To identify risk factors for hepatic dysfunction, we used a bivariate logistic regression model (univariate analysis) and stepwise logistic regression (multivariate analysis) with a variables withp< 0.05, and values <0.05 were considered statistically significant. The odds ratio(OR) was used to evaluate the risk factor. Statistical analysis was performed using SPSS (Statistical Package for Social Sciences) for Windows, version 20 (SPSS, Chicago, IL).

3. Results

3.1. Clinical features of hepatic dysfunction

Overall, 31.6% (315/996) of patients with DTC had hepatic dysfunction. Most patients with hepatic dysfunction had no obvious clinical symptoms except for abnormal liver function indices. The most common abnormality was elevated ALT and (or) AST, with a prevalence of 47.5%. The prevalence rates of mild, moderate, and severe hepatic dysfunction were 80.0% (252/315), 20.0% (63/315), and 0% (0/315), respectively.

3.2. Risk factors for hepatic dysfunction in DTC patients

In this paper, a binary logistic regression model was established two screen for relevant factors of hepatic dysfunction, and single-factor analysis and binary multivariate logistic regression analysis were performed. Patient characteristics were compared using bivariate logistic univariate regression analysis between the 2 groups (Table 1). The results showed that for male patients, the THW time, FT₃<2.01 pmol/L,

 $FT_4 < 4.78 \text{ pmol/L}, TSH > 78.195 \mu IU/mL, TC>5.17 \text{ mmol/L}, and TG>1.71 \text{ mmol/L} were closely associated with hepatic dysfunction (odds ratio [OR]: 0.324-3.171, all P<0.01).$

Furthermore, we used multivariate logistic regression analysis to screen for relevant factors. In our study, we suggested the following assignments for independent variables: $X_1=1$ for age ≤ 45 years and $X_1=2$ for age >45 years; $X_2=1$ for male sex and $X_2=2$ for female sex; $X_3=1$ if the time between total thyroidectomy and ¹³¹I therapy was less than 3 months and $X_3=2$ if the time between total thyroidectomy and ¹³¹I therapy was more than 3 months; $X_4=1, 2$, and 3 if the THW time was shorter than 3 weeks, 3-4 weeks, and longer than 4 weeks, respectively; $X_5=1$ for the presence of metastases and $X_5=2$ for the absence of metastases; $X_6=1$ for the presence of Hashimoto's thyroiditis and $X_6=2$ for the absence of Hashimoto's thyroiditis; $X_7=1, 2$, 3, and 4 for FT₃ levels lower than 1.60 pmol/L, 1.60-2.01 pmol/L, 2.01-2.37 pmol/L, and higher than 2.37 pmol/L, respectively; $X_8=1, 2, 3$, and 4 for FT₄ levels lower than 3.80 pmol/L, 3.80-4.78 pmol/L, 4.78-5.79 pmol/L, and higher than 5.79 pmol/L, respectively; $X_9=1$, 2, 3, and 4 for TSH levels lower than 57.01 μ IU/mL, 57.01-78.20 μ IU/mL, 78.20-101.84 μ IU/mL, and higher than 101.84 μ IU/mL, respectively; X₁₀=1, 2, 3, and 4 for Tg levels lower than 0.50 ng/mL, 0.50-2.64 ng/mL, 2.64-9.18 ng/mL, and higher than 9.18 ng/mL, respectively; $X_{11}=1$ for TgAb levels lower than 40 IU/mL and $X_{11}=2$ for TgAb levels higher than 40 IU/mL; $X_{12}=1, 2, 3$, and 4 for TC levels lower than 5.46 mmol/L, 5.46-6.27 mmol/L, 6.27-7.22 mmol/L, and higher than 6.27 mmol/L, respectively; and $X_{13}=1, 2, 3$, and 4 for TG levels lower than 1.28 mmol/L, 1.28-1.85 mmol/L, 1.85-2.76 mmol/L, and higher than 2.76 mmol/L, respectively. Resultant variable: Y=1 for patients with hepatic dysfunction, and Y=0 for patients without hepatic dysfunction. Forward stepwise regression analysis rejecting trends ultimately revealed that male sex, FT₄<3.80 pmol/L and TG≥1.28 mmol/L were independent risk factors predicting hepatic dysfunction in patients with DTC (Table 2).

3.3. Outcomes of hepatic dysfunction after ¹³¹I therapy

The outcomes of hepatic dysfunction of varying degrees after ¹³¹I therapy are

BMJ Open

displayed in Table 3. The remission rate of patients at 1 month after ¹³¹I therapy was 86.34% (272/315). Liver function test results returned to normal in 90.07% (227/252) of patients with mild hepatic dysfunction 1 month after ¹³¹I therapy. Moreover, the remission rate among patients with moderate and severe hepatic dysfunction was 71.43% (45/63). Additionally, the remission rate of mild hepatic dysfunction was higher than that of moderate dysfunction (P<0.001).

Remission of hepatic dysfunction at 1 month after 131 I therapy is shown in Table 4. The liver function tests of 252 patients with mild hepatic dysfunction were evaluated at 1 month after 131 I therapy, the results of which returned to normal in 94.34% (50/53) of patients who were given hepatoprotective treatment (the treated group). Moreover, we found that the remission rate among patients in the untreated group was 88.94% (177/199). No remarkable difference in the remission rate was observed between the two groups (P=0.184).

63 patients with moderate hepatic dysfunction were treated with hepatoprotective therapy, and the remission rates among patients at 1 month, 2 months, and 3 months after ¹³¹I therapy were 55.6% (35/63), 36.5% (23/63), and 7.9% (5/63) respectively. The time until liver function returned to normal in patients with moderate hepatic dysfunction was 1.8 months.

3.4. The correlation between serum TG and the remission rate of hepatic

dysfunction in patients with DTC

A total of 559 patients had elevated serum TG before ¹³¹I therapy, including 189 patients with hepatic dysfunction. All patients were divided into 2 subgroups based on their serum TG levels 1 month after ¹³¹I therapy, subgroup 1: subjects with a normal TG level (141 patients), and subgroup 2: subjects with elevated TG (48 patients). Liver function tests results returned to normal in 92.90% (131/141) of the patients in subgroup 1. Moreover, the remission rate of the patients in subgroup 2 was 75% (36/48) (χ^2 =5.382, P=0.02).

4. Discussion

• A complex relationship between the thyroid gland and the liver exists in both healthy and disease states[11]. Malik' s research showed that thyroid dysfunction may affect liver function, [8]. A relationship has been suggested to exist between nonalcoholic fatty liver disease (NAFLD) and thyroid dysfunction[12]. Several studies conducted in some countries worldwide showed the relationship between levels of thyroid hormones and the incidence of NAFLD was inverse [13]. In clinical practice, we have found that hepatic dysfunction in DTC patients is common, and most of these patients have no obvious symptoms. The mechanism may be related to the following factors[11, 14]: (1) hypothyroidism may have features similar to those

of liver disease (pseudo-liver disease; such as myalgias, fatigue and muscle cramps in the presence of elevated aspartate aminotransferase from myopathy, coma; (2) hypothyroidism may interact liver structure or function directly; in experimental hypothyroidism, with the decrease of the activity of bilirubin UDP-glucuronyltransferase, bilirubin excretion is reduced; (3) hypothyroidism is related to cholestatic jaundice due to decreased bilirubin and bile excretion^[15]; and (4) severe hypothyroidism is known to cause increased permeability of the vascular endothelium[16].

Our study demonstrated that 31.6% of DTC patients suffered from different degrees of hepatic dysfunction. All of these patients had mild or moderate liver injury. Additionally, an increase in ALT or AST was the most common abnormal indicator, and the prevalence was 47.5%. The findings are different from previous research data from Gokmen's group whose research showed that hypertriglyceridemia and a higher FT_3/FT_4 ratio are independent risk factors for NAFLD, however, hypothyroidism is not related to the condition directly [17]. However, their research subjects were patients with hypothyroidism, where hypothyroidism was defined only by a TSH level $\geq 4.1 \text{ mIU/L}$, and FT_3 and FT_4 levels were not included. The FT_3 and FT_4 levels of some patients were normal.

To explore the risk factors of hepatic dysfunction for DTC patients, we analyzed 13 related factors, such as age and sex, and found that male sex, a THW time greater than 21 days, $FT_3 < 2.01 \text{ pmol/L}$, $FT_4 < 4.78 \text{ pmol/L}$, $TSH > 78.195 \mu IU/mL$, TC > 5.17 mmol/L, and TG > 1.71 mmol/L were risk factors for hepatic dysfunction in the univariate analysis (all P<0.01). Additionally, we found that male sex, $FT_4 < 3.80 \text{ pmol/L}$ and $TG \ge 1.28 \text{ mmol/L}$ were more closely associated with hepatic dysfunction in DTC patients in the multivariate logistic regression analysis (P<0.01). No studies related to our study on the risk factors of hepatic dysfunction for DTC patients were found.

In this study, we found that the remission rate of patients with mild hepatic dysfunction was significantly higher than that of patients with moderate hepatic dysfunction at 1 month after ¹³¹I therapy. Additionally, the remission rate among patients with mild hepatic dysfunction was not significantly different between the treated group and the untreated group. We also found that the FT₄ level is associated with hepatic dysfunction, with more severe hypothyroidism corresponding to a greater impact on liver function. Patients with mild hepatic dysfunction may not be treated with hepatoprotective drugs because the remission rate of hepatic dysfunction at 1 month after ¹³¹I therapy was not significantly different between the treated group and the untreated group. Recent studies revealed that with no liver damage, hepatic dysfunction associated with hypothyroidism can be reversed over several weeks with thyroxine replacement [18, 19].

Additionally, liver is the vital organ for cholesterol metabolism, thyroid hormones play an important role in hepatic lipid metabolism[8, 13]. Thyroid hormones increase the activity of lipid-lowering liver enzymes which can lead to a reduction in low-density lipoprotein levels [20]. Serum lipids also play an important role in liver function[19], which coincided with the results of our study. In our study,

hepatic function indices returned to normal at 1 month after ¹³¹I therapy in 86.34% of the patients, the remission rate in patients with normal TG levels was significantly higher than that in the elevated TG group, and the time until liver dysfunction returned to normal in the patients suffering from hyperlipidemia and hepatic dysfunction was longer than that in the patients suffering from only hyperlipidemia. In other words, lipid-lowering therapy was very important for patients with hepatic dysfunction.

Conclusions

Hepatic dysfunction is more likely to occur in male patients and patients with a THW time greater than 21 days, FT₃<2.01 pmol/L, FT₄<4.78 pmol/L, TSH>78.195 μ IU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L. Additionally, lipid-lowering therapy is particularly important for DTC patients with hepatic dysfunction before ¹³¹I therapy. For DTC patients with hepatic dysfunction combined with dyslipidemia, lipid-lowering therapy is recommended, which is expected to shorten the remission time of hepatic dysfunction.

Acknowledgments: Study conception and design: Yanhui Ji, Jian Tan and Zhaowei Meng; Acquisition of the data: Yajing He and Wei Zheng; Analysis and interpretation of the data: Guizhi Zhang and Canlan Wu; Drafting of the manuscript: Yanhui Ji and Renfei Wang; Critical revision of the manuscript: Jian Tan and RenFei Wang. Thanks for the patient advisers.

Contribution to the Field Statement: An elevated TSH level is essential to stimulate ¹³¹I uptake when patient with DTC undergoesRAI therapy. A number of patients suffer from general edema, constipation and so on, before RAI therapy with THW. Evidence reveals that hypothyroidism may have a direct effect on liver structure or function. We retrospectively collected clinical data from 996 patients with DTC to investigate risk factors of hepatic dysfunction in these patients. Patients with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering normal liver function. For males, FT_4 and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG.

References

- Robbins RJ, Larson SM, Sinha N, Shaha A, Divgi C, Pentlow KS, Ghossein R, Tuttle RM: A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med 2002, 43(11):1482-1488. PubMed:
- Greenspan BS: Radioiodine Treatment of Well-Differentiated Thyroid Cancer: Balancing Risks and Benefits. J Clin Oncol 2018, 36(18):1785-1787. PubMed:29698105, DOI: 10.1200/JCO.2018.78.6384.
- 3. Choudhury PS, Gupta M: Differentiated thyroid cancer theranostics: radioiodine and beyond. *Br J Radiol* 2018:20180136. PubMed: 30260232; DOI: 10.1259/bjr.20180136.
- 4. Mazzaferri EL, Kloos RT: Clinical review **128:** Current approaches to primary therapy for papillary and follicular thyroid cancer. *J Clin Endocrinol Metab* 2001, **86**(4):1447-1463.

	PubMed: 11297567; DOI: 10.1210/jcem.86.4.7407.
5.	Han YH, Lim ST, Yun KN, Yim SK, Kim DW, Jeong HJ, Sohn MH: Comparison of the
	Influence on the Liver Function Between Thyroid Hormone Withdrawal and rh-TSH
	Before High-Dose Radioiodine Therapy in Patients with Well-Differentiated Thyroid
	Cancer. Nucl Med Mol Imaging 2012, 46(2):89-94. PubMed:24900040; DOI:
	10.1007/s13139-012-0132-1.
6.	Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F,
	Randolph GW, Sawka AM, Schlumberger M et al: 2015 American Thyroid Association
	Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated
	Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid
	Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26(1):1-133.
	PubMed:26462967; DOI: 10.1089/thy.2015.0020.
7.	Tuttle RM, Brokhin M, Omry G, Martorella AJ, Larson SM, Grewal RK, Fleisher M, Robbins RJ:
	Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term
	clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl
	<i>Med</i> 2008, 49 (5):764-770. PubMed: 18413378; DOI: 10.2967/jnumed.107.049072.
8.	Malik R, Hodgson H: The relationship between the thyroid gland and the liver. QJM 2002,
	95 (9):559-569. PubMed: 12205333; DOI: 10.1093/qjmed/95.9.559.
9.	Feisa SV, Chopei IV: Subclinical hypothyroidism in patients with non-alcoholic fatty liver
	disease at the background of carbohydrate metabolism disorders. Wiad Lek 2018, 71(2 pt
	1):261-264. PubMed:29729151.
10.	Wang R, Tan J, Zhang G, Zheng W, Li C: Risk factors of hepatic dysfunction in patients
	with Graves' hyperthyroidism and the efficacy of 131iodine treatment. Medicine
	(Baltimore) 2017, 96 (5):e6035. PubMed: 28151911; DOI: 10.1097/MD.000000000006035.
11.	Thobe N, Pilger P, Jones MP: Primary hypothyroidism masquerading as hepatic: case
	report and review of the literature. Postgrad Med J 2000, 76(897):424-426. PubMed:
	10878207; DOI: 10.1136/pmj.76.897.424. PubMed: 10878207; DOI: 10.1136/pmj.76.897.424.
12.	Chung GE, Kim D, Kim W, Yim JY, Park MJ, Kim YJ, Yoon JH, Lee HS: Non-alcoholic fatty
	liver disease across the spectrum of hypothyroidism. J Hepatol 2012,
	57 (1):150-156.PubMed: 22425701; DOI: 10.1016/j.jhep.2012.02.027.
13.	Sinha RA, Singh BK, Yen PM: Direct effects of thyroid hormones on hepatic lipid
	metabolism. Nat Rev Endocrinol 2018, 14(5):259-269. PubMed:30260232; DOI:
	10.1259/bjr.20180136.
14.	Kinney EL, Wright RJ, Caldwell JW: Value of clinical features for distinguishing myxedema
	ascites from other forms of ascites. Comput Biol Med 1989, 19(1):55-59. PubMed:
	2917461; DOI: 10.1016/0010-4825(89)90035-8.
15.	Inkinen J, Sand J, Nordback I: Association between common bile duct stones and treated
	hypothyroidism. Hepatogastroenterology 2000, 47(34):919-921. PubMed:11020248.
16.	Baker A, Kaplan M, Wolfe H: Central congestive fibrosis of the liver in myxedema ascites.
	Ann Intern Med 1972, 77 (6):927-929. PubMed: 4644170; DOI:
	10.7326/0003-4819-77-6-927.
17.	Gokmen FY, Ahbab S, Ataoglu HE, Turker BC, Cetin F, Turker F, Mamac RY, Yenigun M:
	FT3/FT4 ratio predicts non-alcoholic fatty liver disease independent of metabolic

71(4):221-225.PubMed: 27166773; DOI: 10.6061/clinics/2016(04)08.
18. Khemichian S, Fong TL: Hepatic dysfunction in hyperthyroidism. *Gastroenterol Hepatol (N Y)* 2011, 7(5):337-339. PubMed:21857837.
19. Fabbrini E, Magkos F, Patterson BW, Mittendorfer B, Klein S: Subclinical hypothyroidism and hyperthyroidism have opposite effects on hepatic very-low-density lipoprotein-triglyceride kinetics. J Clin Endocrinol Metab 2012, 97(3):E414-418. PubMed: 22238397; DOI: 10.1210/jc.2011-2777.

 Ness GC, Lopez D: Transcriptional regulation of rat hepatic low-density lipoprotein receptor and cholesterol 7 alpha hydroxylase by thyroid hormone. *Arch Biochem Biophys* 1995, 323(2):404-408. PubMed: 7487105; DOI: 10.1006/abbi.1995.0061.

Table 1 Bivariate logistic univariate regression of the factors for DTC patients with hepatic dysfunction

Relevant factors		With hepatic	Without hepatic	B value	OR	95%CI	Р
		dysfunction	dysfunction		value		
		(n[%])	(n[%])				
Age	≤45	350(68.50%)	161(31.50%)	-1.011	1	0.744-1.321	0.93
	>45	331(68.25%)	154(31.75%)		1.011		
Sex	Male	158(50.97%)	152(49.03%)	-1.127	1	0.244-0.430	0.00
	Female	523(76.24%)	163(23.76%)		0.324		
the time between	\leq 3 months	560(68.20%)	261(31.80%)	0.043	1	0.734-1.486	0.81
thyroidectomy and ¹³¹ I	>3 months	121(69.14%)	54(30.86%)		1.044		
therapy							
Thyroid hormone	\leq 21 days	372(72.51%)	141(27.49%)	0.396	1	0.517-0.892	0.00
withdrawal time	>21 days	309(63.98%)	174(36.02%)		1.486		
Metastases	Negative	152(72.38%)	58(27.62%)	-0.242	1	0.561-1.100	0.16
	Positive	529(67.30%)	257(32.70%)		0.785		
Hashimoto's thyroiditis	Negative	595(67.85%)	282(32.15%)	-0.211	1	0.529-1.239	0.33
	Positive	86(72.27%)	33(27.73%)		0.810		
FT ₃	<2.01*	316(63.71%)	180(36.29%)	0.432	1	1.177-2.016	0.00
	≥2.01	365(73.00%)	135(27.00%)		1.540		
FT_4	<4.78*	280(56.34%)	217(43.66%)	1.154	1	2.389-4.209	0.00
	≥4.78	401(80.36%)	98(19.64%)		3.171		
TSH	<78.195*	365(73.29%)	133(26.71%)	-0.458	1	0.483-0. 828	0.00
	≥78.195	316(63.45%)	182(36.55%)		0.633		
Tg	<2.635*	346(69.48%)	152(30.52%)	-0.185	1	0.609-1.134	0.24
	≥2.635	335(67.27%)	163(32.73%)		0.831		

TgAb	<u><</u> 4	40 [△] 527(6	6.96%) 260(33.04%)	0.381	1	0.979-1.930	0.06
	>2	40 154(7	3.68%) 55(2	6.32%)		1.374		
TC	\leq	5.17^ 129(7	5.44%) 42(2	4.56%)	0.758	1	1.615-2.822	0.0
	>	5.17 552(6	6.90%) 273(33.10%)		2.135		
TG	<u><</u>]	1.71△ 336(7	7.42%) 98(2	2.58%)	-0.418	1	0.451-0.960	0.0
	>]	1.71 344(6	1.54%) 215(38.46%)		0.658		
	CI=confidence	interval, OR=odd	ls ratio, *median; 4	Dupper limit o	f the normal	value		
	Table 2 Biv	ariate logistic mu	ıltivariate regressi	on analysis o	f the factors	for DTC pa	atients with hepatic	
	dysfunction							
Causal v	variable B	Standard	error Wald	df	Р	EXP (B)	95%CI	
Causal v	variable B -0.9			df 1	P 0.000	EXP (B) 0.393	95%CI 0.290-0.534	
	-0.9							
X ₂	-0.9	33 0.156	35.703	1	0.000			
X ₂ X ₈ (FT ₄)	-0.9	33 0.15647 0.193	5 35.703 62.291	1 3	0.000 0.000	0.393	0.290-0.534	
X ₂ X ₈ (FT ₄) X ₈ (2)	-0.9) -0.3	33 0.156 47 0.193 53 0.200	5 35.703 62.291 3.249	1 3 1	0.000 0.000 0.071	0.393	0.290-0.534	
X ₂ X ₈ (FT ₄) X ₈ (2) X ₈ (3)	-0.9) -0.3 -0.8	33 0.156 47 0.193 53 0.200	5 35.703 62.291 3.249 18.146	1 3 1 1	0.000 0.000 0.071 0.000	0.393 0.707 0.426	0.290-0.534 0.485-1.031 0.288-0.631	
X ₂ X ₈ (FT ₄) X ₈ (2) X ₈ (3) X ₈ (4)	-0.9) -0.3 -0.8	33 0.156 47 0.193 53 0.200 89 0.239	5 35.703 62.291 3.249 18.146 55.817 15.195	1 3 1 1 1	0.000 0.000 0.071 0.000 0.000	0.393 0.707 0.426	0.290-0.534 0.485-1.031 0.288-0.631	
X ₂ X ₈ (FT ₄) X ₈ (2) X ₈ (2) X ₈ (3) X ₈ (4) X ₁₃	-0.9) -0.3 -0.8 -1.7	33 0.156 47 0.193 53 0.200 89 0.239 25 0.225	5 35.703 62.291 3.249 18.146 55.817 15.195 2.072	1 3 1 1 1 3	0.000 0.000 0.071 0.000 0.000 0.002	0.393 0.707 0.426 0.167	0.290-0.534 0.485-1.031 0.288-0.631 0.105-0.267	

Table 3 Outcomes of hepatic dysfunction of varying degrees after 1 month of ¹³¹I therapy

0.487

0.829

0.484

0.270

-0.188

Constant

Degree	n	Outcomes (n	[%])
Degree	n	Remission	Nonremission
Mild	252	227 (90.07%)	25 (9.93%)
Moderate	63	45 (71.43%)	18 (28.57%)
χ^2			14.873
р			0.000

Table 4 Remission of hepatic dysfunction among patients given different treatments at 1 month after ¹³¹I therapy

Group	n	Outcomes (n[%])
Group	n	Remission	Nonremission
Treatment	53	50 (94.34%)	3 (5.66%)

1 2 3 4 5 6 7 8 9	No treatment χ^2	199	177 (88.94%)	22 (11.06%) 1.765	
6 7					
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 <				0.184	

BMJ Open

BMJ Open

Analysis of the Influence of Hypothyroidism on Liver Function Before Radioiodine Therapy among Patients with Differentiated Thyroid Cancer

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045562.R1
Article Type:	Original research
Date Submitted by the Author:	31-May-2021
Complete List of Authors:	Ji, yanhui; Tianjin Medical University General Hospital, zheng, wei Meng, Zhaowei; Tianjin Medical University General Hospital wu, cailan tan, jian; Tianjin Medical University General Hospital Wang, Renfei; Tianjin Medical University General Hospital, Nuclear Medicine
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Gastroenterology and hepatology, Pharmacology and therapeutics
Keywords:	Thyroid disease < DIABETES & ENDOCRINOLOGY, Endocrine tumours < ONCOLOGY, Head & neck surgery < OTOLARYNGOLOGY, Endocrine tumours < DIABETES & ENDOCRINOLOGY, Diabetes & endocrinology < INTERNAL MEDICINE, MEDICAL EDUCATION & TRAINING

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Title page:

Analysis of the Influence of Hypothyroidism on Liver Function Before Radioiodine

Therapy among Patients with Differentiated Thyroid Cancer

Running title: The Influence of hypothyroidism on the Liver Function in Patients with Differentiated Thyroid Cancer Yan-hui Ji¹, Wei Zheng¹, Zhaowei Meng¹, Cailan Wu², Jian Tan¹, Ren-fei Wang¹*

Department of Nuclear Medicine, Tianjin Medical University General Hospital *Corresponding Author: Ren-fei Wang, PHD, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping district, Tianjin,300052, P.R. China, E-mail:Roslyn_en@163.com

Yan-hui Ji, Zhaowei Meng, Wei Zheng, Jian Tan, Ren-fei Wang: Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China.

Cailan Wu: Department of Nuclear Medicine, Tianjin Fouth Hospital, Tianjin, China.

Key words: thyroid cancer, ¹³¹I, radioiodine therapy, hepatic dysfunction, risk factors. **Conts:4364**

Analysis of the Influence of Hypothyroidism on Liver Function Before Radioiodine Therapy among Patients with Differentiated Thyroid CancerAbstract *Purpose* The present study aimed to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). Methods We recruited 996 patients (314 males, 682 females; age, 45.07 ± 12.98 years) who were postoperative of DTC, and divided them into two groups: one with hepatic dysfunction and one without. We compared changes in baseline data and traced liver function levels and other metabolic profiles between the groups. **Result** Overall, 31.6% of patients had hepatic dysfunction. Higher aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) was the most common abnormality (the prevalence rate was 47.5%). The percentages of mild and moderate hepatic dysfunction were 80.0% and 20.0%, respectively. Univariate analyses demonstrated that the most prominent risk factors for hepatic dysfunction (odds ratio [OR]=0.324-3.171, P<0.01) were male sex with levothyroxine discontinuation and free triiodothyronine $(FT_3) \le 2.01 \text{ pmol/L}$, free thyroxine (FT₄)<4.78 pmol/L, thyroid-stimulating hormone (TSH)>78.195 µIU/mL, total cholesterol (TC)>5.17 mmol/L, triglycerides (TG)>1.71 mmol/L and more than 21 days of thyroid hormone withdrawal (THW). Multivariate analyses demonstrated that

BMJ Open

for males, $FT_4 < 3.80 \text{ pmol/L}$ and $TG \ge 1.28 \text{ mmol/L}$ were the most prominent risk factors. *Conclusions* Patients with minor hepatic dysfunction and ortholiposis are more likely to recover normal liver function. Patients with moderate hepatic dysfunction should be treated with hepatoprotective drugs.For males, FT_4 and TG levels tended to be associated with hepatic dysfunction, and the prognosis of hepatic dysfunction was closely related to the level of TG.

Strengths and limitations of this study:

Strengths: 1.in this study, we found that hepatic dysfunction is more likely to occur in male patients and patients with a THW time greater than 21 days, FT₃<2.01 pmol/L, FT₄<4.78 pmol/L, TSH>78.195 μ IU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L. And lipid-lowering therapy is particularly important for DTC patients with hepatic dysfunction before ¹³¹I therapy. 2.The results of this study may help nuclear physicians to make clinical treatment strategies of DTC patients.

Limitations: 1. Since this was an uncontrolled retrospective study, the DTC patients involved in our study had hepatic dysfunction induced by hypothyroidism. Patients with liver diseases (such as autoimmune liver disease or viral hepatitis) or biliary tract diseases were excluded. However, corresponding testing was not universally performed to exclude these patients. 2. Additionally, we selected cases with complete data to perform our retrospective analysis. The exclusion of a few patients who were lost to follow-up might result in potential bias. 3.We could not collect LDL cholesterol measurements. Obesity is a very important metabolic risk factor that contributes to liver and thyroid dysfunction. It would be very helpful if we analysis of the influence of overweight and/or obese on hypothyroidism and Liver Function. For these reasons, further rigorous prospective studies are needed to confirm these preliminary findings.

Keywords: thyroid cancer, ¹³¹I, high-dose radioiodine therapy, hepatic dysfunction, risk factors

1. Introduction

Radioiodine (RAI) therapy is a very important procedure to ablate normal thyroid remnant tissues and microscopic deposits of differentiated thyroid carcinoma (DTC) after thyroidectomy ^[1, 2]. As reported, RAI therapy was able to reduce the number of locoregional recurrences and to increase overall survival of the American Thyroid Association(ATA) intermediate-risk and high risk DTC patients ^{[3] [4].} In order to stimulate I¹³¹ uptake into the normal thyroid remnants and metastatic tissues of thyroid carcinoma when DTC patient undergoes RAI therapy, an elevated thyroid-stimulating hormone (thyrotropin, TSH) level is essential^[5, 6]. The classic method of preparation for RAI therapy is thyroid hormone withdrawal (THW). It usually results in some physical or psychological side effects associated with hypothyroidism^[7], such as general edema, constipation, and depression. Evidence indicates that hypothyroidism may affect liver function or structure directly^[8, 9].

Therefore, identification of factors resulting in hepatic dysfunction is crucial. In the present study, we collected clinical data from 996 patients with DTC to investigate risk factors for patients with hepatic dysfunction using a retrospective approach.

2. Materials and methods

2.1. Ethics statement

This study is a retrospective clinical study summarizing and analyzing a large amount of clinical data. The ethics committee of Tianjin Medical University General Hospital waived the need to obtain written informed consent from all patients. All clinical data used in this study were analyzed anonymously.

2.2. Patients and Public Involvement

The study included 996 patients (314 males, 682 females; age, 45.07±12.98 years) who had undergone RAI therapy at our department from January 2012 to March 2018. The patients underwent complete or partial thyroidectomy performed by various surgeons. The patients agreed to receive RAI therapy and were informed about the traditional preparation method, THW. We used hepatitis virus markers, abdominal ultrasonography, echocardiography, and autoantibody and immunoglobulin subtype determination for patients with hepatic dysfunction to exclude other apparent causes of liver damage. Other causes included viral hepatitis, liver cirrhosis or biliary tract disease, chronic cardiac dysfunction and autoimmune liver disease,

liver steatosis, hyperlipoidemia, etc^[10].

2.3. Data collection and grouping

All RAI therapy regimens were conducted by the same nuclear medicine department following a standard protocol (2015 American Thyroid Association Management Guidelines). Data were recorded, including patient age (named X₁), sex (X₂), the time between surgery and ¹³¹I therapy (X₃), the time of THW (X₄), the presence or absence of metastases (lymph node metastasis or lung metastases), (X₅), the presence of absence of Hashimoto's thyroiditis (X₆), serum free triiodothyronine (FT₃) (X₇), free thyroxine (FT₄) (X₈), TSH (X₉), thyroglobulin (Tg) (X₁₀), antithyroglobulin antibody (TgAb) (X₁₁), total cholesterol (TC) (X₁₂), and triglycerides (TG) (X₁₃). Meanwhile, liver function test results including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total-value bilirubin (TBIL), and direct bilirubin (DBIL) were also collected. Hepatic dysfunction was diagnosed in accordance with the following criteria: the upper limit of normal (ULN) <ALT, AST or GGT<3 times ULN, the ULN<ALP<2 times the ULN and/or TBIL and the ULN<DBIL<2.5 times the ULN were defined as

 mild hepatic dysfunction; 3 times the ULN <ALT or AST<20 times the ULN, 3 times the ULN< GGT<10 times the ULN, 2 times the ULN<ALP<5 times the ULN and/or 2.5 times the ULN <TBIL, and DBIL<5 time the ULN were defined as moderate hepatic dysfunction; and ALT or AST \geq 20 times the ULN, GGT \geq 10 times the ULN, ALP \geq 5 times the ULN and/or TBIL and DBIL \geq 5 times the ULN were defined as severe hepatic dysfunction^[10].

2.4. Parameter assessments

Thyroid function tests were measured by chemiluminescence immunoassays (ADVIA CENTAUR XP SIEMENS AG). Tg and TgAb were detected by the Immulite system (Immulite 2000 SIEMENS AG). Liver function indices were measured by colorimetry (Hitachi C7600 Japan). TC and TG levels were checked using an auto-analyzer enzymatically (Hitachi Model 7170 analyzer; Hitachi, Ltd., Tokyo, Japan). The dosage range of ¹³¹I therapy was 3.7-7.4 GBq.

2.5. Patient follow-up

We measured the serum levels of thyroid parameters, serum lipids, and liver function indices of the 996 patients at 1, 2, 3, and 4 months after ¹³¹I therapy to evaluate liver function.

2.6. Statistical analysis

A chi square test was used to analyze differences between ratios. To identify risk factors for hepatic dysfunction, we used a bivariate logistic regression model (univariate analysis) and stepwise logistic regression (multivariate analysis) with a variables withp< 0.05, and values <0.05 were considered statistically significant. The odds ratio(OR) was used to evaluate the risk factor. Statistical analysis was performed using SPSS (Statistical Package for Social Sciences) for Windows, version 20 (SPSS, Chicago, IL).

3. Results

3.1. Clinical features of hepatic dysfunction

Overall, 31.6% (315/996) of patients with DTC had hepatic dysfunction. Most patients with hepatic dysfunction had no obvious clinical symptoms except for abnormal liver function indices. The most common abnormality was elevated ALT and (or) AST, with a prevalence of 47.5%. The prevalence rates of mild, moderate, and severe hepatic dysfunction were 80.0% (252/315), 20.0% (63/315), and 0% (0/315), respectively.

3.2. Risk factors for hepatic dysfunction in DTC patients

In this paper, a binary logistic regression model was established for relevant factors of hepatic dysfunction, and single-factor analysis and binary multivariate logistic regression analysis were performed. Patient characteristics were compared using bivariate logistic univariate regression analysis between the 2 groups (Table 1). In the metastase group, the number of patients with hepatic dysfunction and lymph node metastasis or lung metastases were 508 and 21 respectively; and the number of patients without hepatic dysfunction were 245 (with lymph node metastasis) and 12 (with lung metastases) respectively. The results showed that for male patients, the THW time, FT_3 <2.01 pmol/L, FT_4 <4.78 pmol/L, TSH >78.195 µIU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L were closely associated with hepatic dysfunction (odds ratio [OR]: 0.324-3.171, all P<0.01).

Furthermore, we used multivariate logistic regression analysis to screen for relevant factors. In our study, we suggested the following assignments for independent variables: $X_1=1$ for age ≤ 45 years and $X_1=2$ for age >45 years; $X_2=1$ for male sex and $X_2=2$ for female sex; $X_3=1$ if the time between total thyroidectomy and ¹³¹I therapy was less than 3 months and $X_3=2$ if the time between total thyroidectomy and ¹³¹I therapy was more than 3 months; $X_4=1, 2$, and 3 if the THW time was shorter than 3 weeks, 3-4 weeks, and longer than 4 weeks, respectively; $X_5=1$ for the presence of metastases and $X_5=2$ for the absence of metastases; $X_6=1$ for the presence of Hashimoto's thyroiditis and $X_6=2$ for the absence of Hashimoto's thyroiditis; $X_7=1, 2$, 3, and 4 for FT₃ levels lower than 1.60 pmol/L, 1.60-2.01 pmol/L, 2.01-2.37 pmol/L, and higher than 2.37 pmol/L, respectively; X₈=1, 2, 3, and 4 for FT₄ levels lower than 3.80 pmol/L, 3.80-4.78 pmol/L, 4.78-5.79 pmol/L, and higher than 5.79 pmol/L, respectively; $X_9=1$, 2, 3, and 4 for TSH levels lower than 57.01 μ IU/mL, 57.01-78.20 μ IU/mL, 78.20-101.84 μ IU/mL, and higher than 101.84 μ IU/mL, respectively; X₁₀=1, 2, 3, and 4 for Tg levels lower than 0.50 ng/mL, 0.50-2.64 ng/mL, 2.64-9.18 ng/mL, and higher than 9.18 ng/mL, respectively; $X_{11}=1$ for TgAb levels lower than 40 IU/mL and $X_{11}=2$ for TgAb levels higher than 40 IU/mL; $X_{12}=1, 2, 3$, and 4 for TC levels lower than 5.46 mmol/L, 5.46-6.27 mmol/L, 6.27-7.22 mmol/L, and higher

than 6.27 mmol/L, respectively; and $X_{13}=1, 2, 3$, and 4 for TG levels lower than 1.28 mmol/L, 1.28-1.85 mmol/L, 1.85-2.76 mmol/L, and higher than 2.76 mmol/L, respectively. Resultant variable: Y=1 for patients with hepatic dysfunction, and Y=0 for patients without hepatic dysfunction. Forward stepwise regression analysis rejecting trends ultimately revealed that male sex, $FT_4 < 3.80$ pmol/L and TG \geq 1.28 mmol/L were independent risk factors predicting hepatic dysfunction in patients with DTC (Table 2).

3.3. Outcomes of hepatic dysfunction after ¹³¹I therapy

The outcomes of hepatic dysfunction of varying degrees after ¹³¹I therapy are displayed in Table 3. The remission rate of patients at 1 month after ¹³¹I therapy was 86.34% (272/315). Liver function test results returned to normal in 90.07% (227/252) of patients with mild hepatic dysfunction 1 month after ¹³¹I therapy. Moreover, the remission rate among patients with moderate and severe hepatic dysfunction was 71.43% (45/63). Additionally, the remission rate of mild hepatic dysfunction was higher than that of moderate dysfunction (P<0.001).

Remission of hepatic dysfunction at 1 month after ¹³¹I therapy is shown in Table 4. The liver function tests of 252 patients with mild hepatic dysfunction were evaluated at 1 month after ¹³¹I therapy, the results of which returned to normal in 94.34% (50/53) of patients who were given hepatoprotective treatment [oral bicyclol tablets, Bicyclol 25 mg/tablet, Beijing Union Pharmaceutical Factory, Beijing, China, at a total daily dose of 75mg (25mg three times daily), the treated group]. Moreover, we found that the remission rate among patients in the untreated group was 88.94% (177/199). No remarkable difference in the remission rate was observed between the two groups (P=0.184).

63 patients with moderate hepatic dysfunction were treated with hepatoprotective therapy [oral bicyclol tablets, at a total daily dose of 150mg (50mg three times daily)], and the remission rates among patients at 1 month, 2 months, and 3 months after ¹³¹I therapy were 55.6% (35/63), 36.5% (23/63), and 7.9% (5/63) respectively. The time until liver function returned to normal in patients with moderate hepatic dysfunction was 1.8 months.

3.4. The correlation between serum TG and the remission rate of hepatic dysfunction in patients with DTC

A total of 559 patients had elevated serum TG before ¹³¹I therapy, including 189 patients with hepatic dysfunction(76 males,113 females). All patients were divided into 2 subgroups based on their serum TG levels 1 month after ¹³¹I therapy, subgroup 1: subjects with a normal TG level (141 patients), and subgroup 2: subjects with elevated TG (48 patients). Liver function tests results returned to normal in 92.90% (131/141) of the patients in subgroup 1. Moreover, the remission rate of the patients in subgroup 2 was 75% (36/48) (χ^2 =5.382, P=0.02). **4. Discussion**

A complex relationship between the thyroid gland and the liver exists in both healthy and disease states[11]. Maliks research showed that thyroid dysfunction may affect liver function, [8]. A relationship has been suggested to exist between nonalcoholic fatty liver disease (NAFLD) and thyroid dysfunction[12]. Several studies conducted in some countries worldwide showed the relationship between levels of thyroid hormones and the incidence of NAFLD was inverse [13]. In clinical practice, we have found that hepatic dysfunction in DTC patients is common, and most of these patients have no obvious symptoms. The mechanism may be related to the following factors[11, 14]: (1) hypothyroidism may have features similar to those of liver disease (pseudo-liver disease; such as myalgias, fatigue and muscle cramps in the presence of elevated aspartate aminotransferase from myopathy, coma; (2) hypothyroidism may interact liver structure or function directly; in experimental hypothyroidism, with the decrease of the activity of bilirubin UDP-glucuronyltransferase, bilirubin excretion is reduced; (3) hypothyroidism is related to cholestatic jaundice due to decreased bilirubin and bile excretion^[15]; and (4) severe hypothyroidism is known to cause increased permeability of the vascular endothelium[16].

Our study demonstrated that 31.6% of DTC patients suffered from different degrees of hepatic dysfunction. All of these patients had mild or moderate liver injury. Additionally, an increase in ALT or AST was the most common abnormal indicator, and the prevalence was 47.5%. The findings are different from previous research data from Gokmen's group whose research showed that hypertriglyceridemia and a higher FT_3/FT_4 ratio are independent risk factors for NAFLD, however, hypothyroidism is not related to the condition directly [17]. However, their research subjects were patients with hypothyroidism, where hypothyroidism was defined only by a TSH level $\geq 4.1 \text{ mIU/L}$, and FT_3 and FT_4 levels were not included. The FT_3 and FT_4 levels of some patients were normal.

To explore the risk factors of hepatic dysfunction for DTC patients, we analyzed 13 related factors, such as age and sex, and found that male sex, a THW time greater than 21 days, $FT_3 < 2.01 \text{ pmol/L}$, $FT_4 < 4.78 \text{ pmol/L}$, $TSH > 78.195 \mu IU/mL$, TC > 5.17 mmol/L, and TG > 1.71 mmol/L were risk factors for hepatic dysfunction in the univariate analysis (all P<0.01). Additionally, we found that male sex, $FT_4 < 3.80 \text{ pmol/L}$ and $TG \ge 1.28 \text{ mmol/L}$ were more closely associated with hepatic dysfunction in DTC patients in the multivariate logistic regression analysis (P<0.01). No studies related to our study on the risk factors of hepatic dysfunction for DTC patients were found.

In this study, we found that the remission rate of patients with mild hepatic

 dysfunction was significantly higher than that of patients with moderate hepatic dysfunction at 1 month after ¹³¹I therapy. Additionally, the remission rate among patients with mild hepatic dysfunction was not significantly different between the treated group and the untreated group. We also found that the FT_4 level is associated with hepatic dysfunction, with more severe hypothyroidism corresponding to a greater impact on liver function. Patients with mild hepatic dysfunction may not be treated with hepatoprotective drugs because the remission rate of hepatic dysfunction at 1 month after ¹³¹I therapy was not significantly different between the treated group and the untreated group. Recent studies revealed that with no liver damage, hepatic dysfunction associated with hypothyroidism can be reversed over several weeks with thyroxine replacement [18, 19].

Additionally, liver is the vital organ for cholesterol metabolism, thyroid hormones play an important role in hepatic lipid metabolism[8, 13]. Thyroid hormones increase the activity of lipid-lowering liver enzymes which can lead to a reduction in low-density lipoprotein levels [20]. Serum lipids also play an important role in liver function[19], which coincided with the results of our study. In our study, hepatic function indices returned to normal at 1 month after ¹³¹I therapy in 86.34% of the patients, the remission rate in patients with normal TG levels was significantly higher than that in the elevated TG group, and the time until liver dysfunction returned to normal in the patients suffering from hyperlipidemia and hepatic dysfunction was longer than that in the patients suffering from only hyperlipidemia. In other words, lipid-lowering therapy was very important for patients with hepatic dysfunction.

Conclusions

Hepatic dysfunction is more likely to occur in male patients and patients with a THW time greater than 21 days, FT₃<2.01 pmol/L, FT₄<4.78 pmol/L, TSH>78.195 μ IU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L. Additionally, lipid-lowering therapy is particularly important for DTC patients with hepatic dysfunction before ¹³¹I therapy. For DTC patients with hepatic dysfunction combined with dyslipidemia, lipid-lowering therapy is recommended, which is expected to shorten the remission time of hepatic dysfunction.

Contribution to the Field Statement: An elevated TSH level is essential to stimulate ¹³¹I uptake when patient with DTC undergoesRAI therapy. A number of patients suffer from general edema, constipation and so on, before RAI therapy with THW. Evidence reveals that hypothyroidism may have a direct effect on liver structure or function. We retrospectively collected clinical data from 996 patients with DTC to investigate risk factors of hepatic dysfunction in these patients. Patients with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering normal liver function. For males, FT_4 and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG.

Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu

assisted with data acquisition. Yanhui Ji , Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Competing interests

There are no competing interests for any author

Funding

 This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610)

Data sharing statement

The datasets used during the present study are available from the corresponding author upon reasonable request.

Ethical Approval statement

The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants' legal guardian/next of kin.

References

- Robbins RJ, Larson SM, Sinha N, Shaha A, Divgi C, Pentlow KS, Ghossein R, Tuttle RM: A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med 2002, 43(11):1482-1488. PubMed:
- Greenspan BS: Radioiodine Treatment of Well-Differentiated Thyroid Cancer: Balancing Risks and Benefits. J Clin Oncol 2018, 36(18):1785-1787. PubMed:29698105, DOI: 10.1200/JCO.2018.78.6384.
- 3. Choudhury PS, Gupta M: Differentiated thyroid cancer theranostics: radioiodine and beyond. *Br J Radiol* 2018:20180136. PubMed: 30260232; DOI: 10.1259/bjr.20180136.
- 4. Mazzaferri EL, Kloos RT: Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. *J Clin Endocrinol Metab* 2001, 86(4):1447-1463. *PubMed:* 11297567; DOI: 10.1210/jcem.86.4.7407.
- Han YH, Lim ST, Yun KN, Yim SK, Kim DW, Jeong HJ, Sohn MH: Comparison of the Influence on the Liver Function Between Thyroid Hormone Withdrawal and rh-TSH Before High-Dose Radioiodine Therapy in Patients with Well-Differentiated Thyroid Cancer. Nucl Med Mol Imaging 2012, 46(2):89-94. PubMed:24900040; DOI: 10.1007/s13139-012-0132-1.
- Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M *et al*: 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. *Thyroid* 2016, 26(1):1-133. PubMed:26462967; DOI: 10.1089/thy.2015.0020.
- 7. Tuttle RM, Brokhin M, Omry G, Martorella AJ, Larson SM, Grewal RK, Fleisher M, Robbins RJ:

BMJ Open

2		
3		Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term
4 5		clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl
5 6		<i>.</i> <i>Med</i> 2008, 49 (5):764-770. PubMed: 18413378; DOI: 10.2967/jnumed.107.049072.
7	8.	Malik R, Hodgson H: The relationship between the thyroid gland and the liver. <i>QJM</i> 2002,
8	о.	
9	0	95 (9):559-569. PubMed: 12205333; DOI: 10.1093/qjmed/95.9.559.
10	9.	Feisa SV, Chopei IV: Subclinical hypothyroidism in patients with non-alcoholic fatty liver
11 12		disease at the background of carbohydrate metabolism disorders. Wiad Lek 2018, 71(2 pt
13		1):261-264. PubMed:29729151.
14	10.	Wang R, Tan J, Zhang G, Zheng W, Li C: Risk factors of hepatic dysfunction in patients
15		with Graves' hyperthyroidism and the efficacy of 131iodine treatment. Medicine
16		(Baltimore) 2017, 96(5):e6035. PubMed: 28151911; DOI: 10.1097/MD.0000000000006035.
17 18	11.	Thobe N, Pilger P, Jones MP: Primary hypothyroidism masquerading as hepatic: case
18		report and review of the literature. <i>Postgrad Med J</i> 2000, 76 (897):424-426. PubMed:
20		10878207; DOI: 10.1136/pmj.76.897.424. PubMed: 10878207; DOI: 10.1136/pmj.76.897.424.
21	12.	Chung GE, Kim D, Kim W, Yim JY, Park MJ, Kim YJ, Yoon JH, Lee HS: Non-alcoholic fatty
22	12.	
23		liver disease across the spectrum of hypothyroidism. J Hepatol 2012,
24 25		57 (1):150-156.PubMed: 22425701; DOI: 10.1016/j.jhep.2012.02.027.
26	13.	Sinha RA, Singh BK, Yen PM: Direct effects of thyroid hormones on hepatic lipid
27		metabolism. Nat Rev Endocrinol 2018, 14(5):259-269. PubMed:30260232; DOI:
28		10.1259/bjr.20180136.
29	14.	Kinney EL, Wright RJ, Caldwell JW: Value of clinical features for distinguishing myxedema
30 31		ascites from other forms of ascites. Comput Biol Med 1989, 19(1):55-59. PubMed:
32		2917461; DOI: 10.1016/0010-4825(89)90035-8.
33	15.	Inkinen J, Sand J, Nordback I: Association between common bile duct stones and treated
34	15.	hypothyroidism. Hepatogastroenterology 2000, 47 (34):919-921. PubMed:11020248.
35	10	
36 37	16.	Baker A, Kaplan M, Wolfe H: Central congestive fibrosis of the liver in myxedema ascites.
38		Ann Intern Med 1972, 77 (6):927-929. PubMed: 4644170; DOI:
39		10.7326/0003-4819-77-6-927.
40	17.	Gokmen FY, Ahbab S, Ataoglu HE, Turker BC, Cetin F, Turker F, Mamac RY, Yenigun M:
41		FT3/FT4 ratio predicts non-alcoholic fatty liver disease independent of metabolic
42 42		parameters in patients with euthyroidism and hypothyroidism. Clinics (Sao Paulo) 2016,
43 44		71(4):221-225.PubMed: 27166773; DOI: 10.6061/clinics/2016(04)08.
45	18.	Khemichian S, Fong TL: Hepatic dysfunction in hyperthyroidism. Gastroenterol Hepatol (N Y)
46		2011, 7 (5):337-339. PubMed:21857837.
47	19.	Fabbrini E, Magkos F, Patterson BW, Mittendorfer B, Klein S: Subclinical hypothyroidism and
48	19.	hyperthyroidism have opposite effects on hepatic very-low-density lipoprotein-triglyceride
49 50		
50		kinetics. J Clin Endocrinol Metab 2012, 97(3):E414-418. PubMed: 22238397; DOI:
52		10.1210/jc.2011-2777.
53	20.	Ness GC, Lopez D: Transcriptional regulation of rat hepatic low-density lipoprotein
54		receptor and cholesterol 7 alpha hydroxylase by thyroid hormone. Arch Biochem
55 56		Biophys 1995, 323(2):404-408. PubMed: 7487105; DOI: 10.1006/abbi.1995.0061.
57		
58	Tab	le 1 Bivariate logistic univariate regression of the factors for DTC patients with hepatic dysfunction
59 60	Relevant factors	With hepatic Without hepatic B value OR 95%CI P
00		mai nepare maior nepare 5 tane OK 757001 1

.

BMJ Open

Page	12	of	12
------	----	----	----

		dysfunction	dysfunction		value		
		(n[%])	(n[%])				
Age	≤45	350(68.50%)	161(31.50%)	-1.011	1	0.744-1.321	0.934
	>45	331(68.25%)	154(31.75%)		1.011		
Sex	Male	158(50.97%)	152(49.03%)	-1.127	1	0.244-0.430	0.000
	Female	523(76.24%)	163(23.76%)		0.324		
the time between	\leq 3 months	560(68.20%)	261(31.80%)	0.043	1	0.734-1.486	0.810
thyroidectomy and ¹³¹ I	>3 months	121(69.14%)	54(30.86%)		1.044		
therapy							
Thyroid hormone	≤21 days	372(72.51%)	141(27.49%)	0.396	1	0.517-0.892	0.005
withdrawal time	>21 days	309(63.98%)	174(36.02%)		1.486		
Metastases	Negative	152(72.38%)	58(27.62%)	-0.242	1	0.561-1.100	0.160
	Positive	529(67.30%)	257(32.70%)		0.785		
Hashimoto's thyroiditis	Negative	595(67.85%)	282(32.15%)	-0.211	1	0.529-1.239	0.331
	Positive	86(72.27%)	33(27.73%)		0.810		
FT ₃	<2.01*	316(63.71%)	180(36.29%)	0.432	1	1.177-2.016	0.002
	≥2.01	365(73.00%)	135(27.00%)		1.540		
FT ₄	<4.78*	280(56.34%)	217(43.66%)	1.154	1	2.389-4.209	0.000
	≥4.78	401(80.36%)	98(19.64%)		3.171		
TSH	<78.195*	365(73.29%)	133(26.71%)	-0.458	1	0.483-0. 828	0.001
	≥78.195	316(63.45%)	182(36.55%)		0.633		
Tg	<2.635*	346(69.48%)	152(30.52%)	-0.185	1	0.609-1.134	0.244
	≥2.635	335(67.27%)	163(32.73%)		0.831		
TgAb	≤40 [△]	527(66.96%)	260(33.04%)	0.381	1	0.979-1.930	0.067
	>40	154(73.68%)	55(26.32%)		1.374		
ТС	≤5.17 [△]	129(75.44%)	42(24.56%)	0.758	1	1.615-2.822	0.000
	>5.17	552(66.90%)	273(33.10%)		2.135		
TG	≤1.71△	336(77.42%)	98(22.58%)	-0.418	1	0.451-0.960	0.03
	>1.71	344(61.54%)	215(38.46%)		0.658		
CI=confide	nce interval,	OR=odds ratio,	*median; [^] Upper limi	t of the norma	al value		
Table 2	Bivariate log	gistic multivaria	te regression analysis	of the factor	rs for DTC p	patients with hepati	c
dysfunction	l						
Causal variable	B S	tandard error	Wald df	Р	EXP (B)	95%CI	

 BMJ Open

$X_8 \left(FT_4\right)$			62.291	3	0.000		
X ₈ (2)	-0.347	0.193	3.249	1	0.071	0.707	0.485-1.031
X ₈ (3)	-0.853	0.200	18.146	1	0.000	0.426	0.288-0.631
$X_{8}(4)$	-1.789	0.239	55.817	1	0.000	0.167	0.105-0.267
X ₁₃			15.195	3	0.002		
X ₁₃ (2)	0.325	0.225	2.072	1	0.150	1.383	0.889-2.152
X ₁₃ (3)	0.643	0.223	8.313	1	0.004	1.901	1.228-2.943
X ₁₃ (4)	0.787	0.219	12.784	1	0.000	2.197	1.429-3.376
Constant	-0.188	0.270	0.484	1	0.487	0.829	

Table 3 Outcomes of hepatic dysfunction of varying degrees after 1 month of ¹³¹I therapy

Degree	n	Outcomes (n[%])	
Degree		Remission	Nonremission
Mild	252	227 (90.07%)	25 (9.93%)
Moderate	63	45 (71.43%)	18 (28.57%)
χ^2		14.873	
р			0.000

Table 4 Remission of hepatic dysfunction among patients given different treatments at 1 month after ¹³¹I therapy

Group	n	Outcomes (n[%])	
Group	11	Remission	Nonremission
Treatment	53	50 (94.34%)	3 (5.66%)
No treatment	199	177 (88.94%)	22 (11.06%)
χ^2		1.765	
р		(0.184

BMJ Open

A Retrospective Study of The Influence of Hypothyroidism on Liver Function Before Radioiodine Therapy in China: A Comparison Analysis based on Patients with Differentiated Thyroid Cancer

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045562.R2
Article Type:	Original research
Date Submitted by the Author:	20-Oct-2021
Complete List of Authors:	Ji, yanhui; Tianjin Medical University General Hospital, zheng, wei; Tianjin Medical University General Hospital Meng, Zhaowei; Tianjin Medical University General Hospital wu, cailan; Tianjin Fourth Central Hospital, Nuclear Medicine tan, jian; Tianjin Medical University General Hospital Wang, Renfei; Tianjin Medical University General Hospital, Nuclear Medicine
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Gastroenterology and hepatology, Pharmacology and therapeutics
Keywords:	Endocrine tumours < ONCOLOGY, Head & neck surgery < OTOLARYNGOLOGY, NUCLEAR MEDICINE, Thyroid disease < DIABETES & ENDOCRINOLOGY
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

1 Title page:

- 2 A Retrospective Study of The Influence of Hypothyroidism on Liver Function Before
- 3 Radioiodine Therapy in China: A Comparison Analysis based on Patients with
- 4 Differentiated Thyroid Cancer
- 5 Running title: The Influence of hypothyroidism on the Liver Function in Patients with
- 6 Differentiated Thyroid Cancer
- 7 Yan-hui Ji¹, Wei Zheng¹, Zhaowei Meng¹, cailan wu², Jian Tan¹, Ren-fei Wang¹*
- 8 Department of Nuclear Medicine, Tianjin Medical University General Hospital
- 9 *Corresponding Author: Ren-fei Wang, PHD, Department of Nuclear Medicine,
- 10 Tianjin Medical University General Hospital, Anshan Road 154, Heping district,
- 11 Tianjin,300052, P.R. China, E-mail:Roslyn_en@163.com
- Yan-hui Ji, Zhaowei Meng, Wei Zheng, Jian Tan, Ren-fei Wang: Department of Nuclear
 Medicine, Tianjin Medical University General Hospital, Tianjin, China.
 - 14 Cailan Wu: Department of Nuclear Medicine, Tianjin Fouth Hospital, Tianjin, China.
 - Key words: Endocrine tumours ; Head & neck surgery ; Nuclear Medicine; Thyroid
 disease
 - 17 Word count:3070
 - 18 Abstract
 - *Purpose* The present study aimed to investigate the risk factors for hepatic
 - 20 dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid
 - cancer (DTC). *Methods* We recruited 996 patients (314 males, 682 females; age,
 - 45.07±12.98 years) who were postoperative of DTC, and divided them into two
 - 23 groups: one with hepatic dysfunction and one without. We compared changes in
 - baseline data and traced liver function levels and other metabolic profiles between the
- 25 groups. *Result* Overall, 31.6% of patients had hepatic dysfunction. Higher aspartate
- 26 aminotransferase (AST) and/or alanine aminotransferase (ALT) was the most
- common abnormality (the prevalence rate was 47.5%). The percentages of mild and
- moderate hepatic dysfunction were 80.0% and 20.0%, respectively. Univariate
- analyses demonstrated that the most prominent risk factors for hepatic dysfunction
- 30 (odds ratio [OR]=0.324-3.171, P<0.01) were male sex with levothyroxine
- 31 discontinuation and free triiodothyronine $(FT_3) \le 2.01 \text{ pmol/L}$, free thyroxine
- 32 (FT₄)<4.78 pmol/L, thyroid-stimulating hormone (TSH)>78.195 μ IU/mL, total
- cholesterol (TC)>5.17 mmol/L, triglycerides (TG)>1.71 mmol/L and more than 21
- 34 days of thyroid hormone withdrawal (THW). Multivariate analyses demonstrated that
- for males, $FT_4 < 3.80 \text{ pmol/L}$ and $TG \ge 1.28 \text{ mmol/L}$ were the most prominent risk

BMJ Open

3 4	36	factors. Conclusions Patients with minor hepatic dysfunction and ortholiposis are
5 6	37	more likely to recover normal liver function. Patients with moderate hepatic
7 8	38	dysfunction should be treated with hepatoprotective drugs.For males, FT ₄ and TG
9 10	39	levels tended to be associated with hepatic dysfunction, and the prognosis of hepatic
11 12	40	dysfunction was closely related to the level of TG.
13	41	Strengths and limitations of this study:
14	42	Strengths: The results of this study may help nuclear physicians to make clinical
15 16	43	treatment strategies of DTC patients.
17	44	Limitations: performed to exclude these patients.
18	45	1. We selected cases with complete data to perform our retrospective analysis, the
19		
20	46	exclusion of a few patients who were lost to follow-up might result in potential bias.
21	47	2.We could not collect LDL cholesterol measurements.
22	48	3.Obesity is a important metabolic risk factorof liver and thyroid dysfunction, and it
23 24	49	would be helpful if we analysis of the influence of it in our study
25	50	For these reasons, further rigorous prospective studies are needed to confirm these
26	51	preliminary findings.
27	52	Keywords: thyroid cancer, ¹³¹ I, high-dose radioiodine therapy, hepatic dysfunction,
28		
29	53	risk factors
30 31	54	1. Introduction
32	55	Radioiodine (RAI) therapy is a very important procedure to ablate normal thyroid
33	56	remnant tissues and microscopic deposits of differentiated thyroid carcinoma (DTC)
34	57	after thyroidectomy ¹ . As reported, RAI therapy was able to reduce the number of
35	58	locoregional recurrences and to increase overall survival of the American Thyroid
36	59	Association(ATA) intermediate-risk and high risk DTC patients ^{2 3.} In order to
37	60	stimulate I ¹³¹ uptake into the normal thyroid remnants and metastatic tissues of
38 39		
40	61	thyroid carcinoma when DTC patient undergoes RAI therapy, an elevated
41	62	thyroid-stimulating hormone (thyrotropin, TSH) level is essential ⁴ . The classic method
42	63	of preparation for RAI therapy is thyroid hormone withdrawal (THW). It usually
43	64	results in some physical or psychological side effects associated with hypothyroidism ⁵ ,
44	65	such as general edema, constipation, and depression. Evidence indicates that
45	66	hypothyroidism may affect liver function or structure directly ⁶ . Therefore,
46 47	67	identification of factors resulting in hepatic dysfunction is crucial. In the present study,
48	68	we collected clinical data from 996 patients with DTC to investigate risk factors for
49		•
50	69	patients with hepatic dysfunction using a retrospective approach.
51	70	2. Materials and methods
52		
53 54	71	2.1. Ethics statement
55	72	This study is a retrospective clinical study summarizing and analyzing a large amount
56	12	This study is a recospective enhicar study summarizing and analyzing a large amount
57	73	of clinical data. The ethics committee of Tianjin Medical University General Hospital
58		
59	74	waived the need to obtain written informed consent from all patients. All clinical data
60		
		2

> used in this study were analyzed anonymously.

- 2.2. Participants or Criteria selection
- The study included 996 patients (314 males, 682 females; age, 45.07±12.98 years)
- who had undergone RAI therapy at our department from January 2012 to March 2018.
- The patients underwent complete or partial thyroidectomy performed by various
- surgeons. The patients agreed to receive RAI therapy and were informed about the
- traditional preparation method, THW. We used hepatitis virus markers, abdominal
- ultrasonography, echocardiography, and autoantibody and immunoglobulin subtype
- determination for patients with hepatic dysfunction to exclude other apparent causes
 - of liver damage. Other causes included viral hepatitis, liver cirrhosis or biliary tract
 - disease, chronic cardiac dysfunction and autoimmune liver disease,
 - liver steatosis, hyperlipoidemia, etc⁷.
- **2.3. Data collection and grouping**

All RAI therapy regimens were conducted by the same nuclear medicine department following a standard protocol (2015 American Thyroid Association Management Guidelines). Data were recorded, including patient age (named X_1), sex (X_2), the time between surgery and ¹³¹I therapy (X_3) , the time of THW (X_4) , the presence or absence of metastases (lymph node metastasis or lung metastases), (X_5) , the presence of absence of Hashimoto's thyroiditis (X_6) , serum free triiodothyronine (FT_3) (X_7) , free thyroxine (FT_4) (X_8) , TSH (X_9) , thyroglobulin (Tg) (X_{10}) , antithyroglobulin antibody (TgAb) (X_{11}) , total cholesterol (TC) (X_{12}) , and triglycerides (TG) (X_{13}) . Meanwhile, liver function test results including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total-value bilirubin (TBIL), and direct bilirubin (DBIL) were also collected. Hepatic dysfunction was diagnosed in accordance with the following criteria: the upper limit of normal (ULN) <ALT, AST or GGT<3 times ULN, the ULN<ALP<2 times the ULN and/or TBIL and the ULN<DBIL<2.5 times the ULN were defined as mild hepatic dysfunction; 3 times the ULN <ALT or AST<20 times the ULN, 3 times the ULN< GGT<10 times the ULN, 2 times the ULN<ALP<5 times the ULN and/or 2.5 times the ULN <TBIL, and DBIL<5 time the ULN were defined as moderate hepatic dysfunction; and ALT or AST ≥ 20 times the ULN, GGT ≥ 10 times the ULN, ALP \geq 5 times the ULN and/or TBIL and DBIL \geq 5 times the ULN were defined as severe hepatic dysfunction⁷. 2.4. Parameter assessments

Thyroid function tests were measured by chemiluminescence immunoassays (ADVIA

CENTAUR XP SIEMENS AG). Tg and TgAb were detected by the Immulite system

BMJ Open

2				
3 4	111	(Immulite 2000 SIEMENS AG). Liver function indices were measured by colorimetry		
5 6	112	(Hitachi C7600 Japan). TC and TG levels were checked using an auto-analyzer		
7 8	113	enzymatically (Hitachi Model 7170 analyzer; Hitachi, Ltd., Tokyo, Japan). The		
9 10	114	dosage range of ¹³¹ I therapy was 3.7-7.4 GBq.		
11 12	115	2.5. Patient follow-up		
13	116	We measured the serum levels of thyroid parameters, serum lipids, and liver function		
14	117	indices of the 996 patients at 1, 2, 3, and 4 months after ¹³¹ I therapy to evaluate liver		
15 16	118	function.		
17 18	119	2.6. Statistical analysis		
19 20	120	A chi square test was used to analyze differences between ratios. To identify risk		
21 22	121	factors for hepatic dysfunction, we used a bivariate logistic regression model		
23 24	122	(univariate analysis) and stepwise logistic regression (multivariate analysis) with a		
25 26	123	variables with $p < 0.05$, and values < 0.05 were considered statistically significant. The		
27 28	124	odds ratio(OR) was used to evaluate the risk factor. Statistical analysis was performed		
29 30	125	using SPSS (Statistical Package for Social Sciences) for Windows, version 20 (SPSS,		
31 32	126	Chicago, IL).		
32 33 34	127	3. Results		
35	128	3.1. Clinical features of hepatic dysfunction		
36 37	129	Overall, 31.6% (315/996) of patients with DTC had hepatic dysfunction. Most		
38 39	130	patients with hepatic dysfunction had no obvious clinical symptoms except for		
40 41	131	abnormal liver function indices. The most common abnormality was elevated ALT		
42 43	132	and (or) AST, with a prevalence of 47.5%. The prevalence rates of mild, moderate,		
44 45	133	and severe hepatic dysfunction were 80.0% (252/315), 20.0% (63/315), and 0%		
46 47	134	(0/315), respectively.		
48	135	3.2. Risk factors for hepatic dysfunction in DTC patients		
49 50	136	In this paper, a binary logistic regression model was established for relevant factors of		
51 52	137	hepatic dysfunction, and single-factor analysis and binary multivariate logistic		
53 54	138	regression analysis were performed. Patient characteristics were compared using		
55 56 57	139	bivariate logistic univariate regression analysis between the 2 groups (Table 1). In the		
57 58	140	metastase group, the number of patients with hepatic dysfunction and lymph node		
59 60	141	metastasis or lung metastases were 508 and 21 respectively; and the number of		
		4		

BMJ Open

Page 6 of 16

1 2		
3 4	142	patien
5 6	143	(with
7 8	144	THW
9 10	145	mmol
11 12	146	(odds
13 14	147	Fur
15 16	148	factor
17 18	149	variat
19 20	150	X ₂ =2
21 22	151	was le
23 24	152	therap
25 26	153	weeks
27 28	154	metas
29 30	155	Hashi
30 31 32	156	3, and
33	157	and hi
34 35	158	3.80 p
36 37	159	respec
38 39	160	μIU/n
40 41	161	2, 3, a
42 43	162	and hi
44 45	163	IU/ml
46 47	164	levels
48 49	165	than 6
50 51	166	mmol
52 53	167	respec
54 55	168	for pa
56 57	169	rejecti
58 59	170	mmol
60	171	DTC

142	patients without hepatic dysfunction were 245 (with lymph node metastasis) and 12
143	(with lung metastases) respectively. The results showed that for male patients, the
144	THW time, FT ₃ <2.01 pmol/L, FT ₄ <4.78 pmol/L, TSH >78.195 µIU/mL, TC>5.17
145	mmol/L, and TG>1.71 mmol/L were closely associated with hepatic dysfunction
146	(odds ratio [OR]: 0.324-3.171, all P<0.01).
147	Furthermore, we used multivariate logistic regression analysis to screen for relevant
148	factors. In our study, we suggested the following assignments for independent
149	variables: $X_1=1$ for age ≤ 45 years and $X_1=2$ for age >45 years; $X_2=1$ for male sex and
150	$X_2=2$ for female sex; $X_3=1$ if the time between total thyroidectomy and ¹³¹ I therapy
151	was less than 3 months and $X_3=2$ if the time between total thyroidectomy and ^{131}I
152	therapy was more than 3 months; $X_4=1, 2$, and 3 if the THW time was shorter than 3
153	weeks, 3-4 weeks, and longer than 4 weeks, respectively; $X_5=1$ for the presence of
154	metastases and $X_5=2$ for the absence of metastases; $X_6=1$ for the presence of
155	Hashimoto's thyroiditis and $X_6=2$ for the absence of Hashimoto's thyroiditis; $X_7=1, 2$,
156	3, and 4 for FT ₃ levels lower than 1.60 pmol/L, 1.60-2.01 pmol/L, 2.01-2.37 pmol/L,
157	and higher than 2.37 pmol/L, respectively; $X_8=1$, 2, 3, and 4 for FT ₄ levels lower than
158	3.80 pmol/L, 3.80-4.78 pmol/L, 4.78-5.79 pmol/L, and higher than 5.79 pmol/L,
159	respectively; $X_9=1$, 2, 3, and 4 for TSH levels lower than 57.01 μ IU/mL, 57.01-78.20
160	μ IU/mL, 78.20-101.84 μ IU/mL, and higher than 101.84 μ IU/mL, respectively; X ₁₀ =1,
161	2, 3, and 4 for Tg levels lower than 0.50 ng/mL, 0.50-2.64 ng/mL, 2.64-9.18 ng/mL,
162	and higher than 9.18 ng/mL, respectively; X_{11} =1 for TgAb levels lower than 40
163	IU/mL and $X_{11}=2$ for TgAb levels higher than 40 IU/mL; $X_{12}=1, 2, 3$, and 4 for TC
164	levels lower than 5.46 mmol/L, 5.46-6.27 mmol/L, 6.27-7.22 mmol/L, and higher
165	than 6.27 mmol/L, respectively; and X_{13} =1, 2, 3, and 4 for TG levels lower than 1.28
166	mmol/L, 1.28-1.85 mmol/L, 1.85-2.76 mmol/L, and higher than 2.76 mmol/L,
167	respectively. Resultant variable: Y=1 for patients with hepatic dysfunction, and Y=0
168	for patients without hepatic dysfunction. Forward stepwise regression analysis
169	rejecting trends ultimately revealed that male sex, $FT_4 < 3.80 \text{ pmol/L}$ and $TG \ge 1.28$
170	mmol/L were independent risk factors predicting hepatic dysfunction in patients with
171	DTC (Table 2).
	1

BMJ Open

2	
3	
4	
5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
16 17 18	
10	
19	
20	
21	
21 22 23	
23	
24	
25	
26	
27	
28	
20	
30	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
42 43	
45 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

3.3. Outcomes of hepatic dysfunction after ¹³¹I therapy

The outcomes of hepatic dysfunction of varying degrees after ¹³¹I therapy are
displayed in Table 3. The remission rate of patients at 1 month after ¹³¹I therapy was
86.34% (272/315). Liver function test results returned to normal in 90.07% (227/252)
of patients with mild hepatic dysfunction 1 month after ¹³¹I therapy. Moreover, the
remission rate among patients with moderate and severe hepatic dysfunction was
71.43% (45/63). Additionally, the remission rate of mild hepatic dysfunction was
higher than that of moderate dysfunction (P<0.001).

Remission of hepatic dysfunction at 1 month after ¹³¹I therapy is shown in Table 4. 180 The liver function tests of 252 patients with mild hepatic dysfunction were evaluated 181 at 1 month after 131 I therapy, the results of which returned to normal in 94.34% (50/53) 182 of patients who were given hepatoprotective treatment [oral bicyclol tablets, Bicyclol 183 25 mg/tablet, Beijing Union Pharmaceutical Factory, Beijing, China, at a total daily 184 dose of 75mg (25mg three times daily), the treated group]. Moreover, we found that 185 the remission rate among patients in the untreated group was 88.94% (177/199). No 186 remarkable difference in the remission rate was observed between the two groups 187 (P=0.184). 188

63 patients with moderate hepatic dysfunction were treated with hepatoprotective
therapy [oral bicyclol tablets, at a total daily dose of 150mg (50mg three times daily)],
and the remission rates among patients at 1 month, 2 months, and 3 months after ¹³¹I
therapy were 55.6% (35/63), 36.5% (23/63), and 7.9% (5/63) respectively. The time
until liver function returned to normal in patients with moderate hepatic dysfunction
was 1.8 months.

195 **3.4.** The correlation between serum TG and the remission rate of hepatic

196 dysfunction in patients with DTC

A total of 559 patients (218 males, 341 femails) had elevated serum TG before ¹³¹I 197 therapy, including 189 patients with hepatic dysfunction(76 males, 113 females). All 198 patients were divided into 2 subgroups based on their serum TG levels 1 month after 199 ¹³¹I therapy, subgroup 1: subjects with a normal TG level (141 patients), and subgroup 200 2: subjects with elevated TG (48 patients). Liver function tests results returned to 201 normal in 92.90% (131/141) of the patients in subgroup 1. Moreover, the remission 202 rate of the patients in subgroup 2 was 75% (36/48) (γ^2 =5.382, P=0.02). 203 4. Discussion 204

A complex relationship between the thyroid gland and the liver exists in both
 healthy and disease states⁸. Maliks research showed that thyroid dysfunction may

affect liver function, ⁹. A relationship has been suggested to exist between nonalcoholic fatty liver disease (NAFLD) and thyroid dysfunction¹⁰. Several studies conducted in some countries worldwide showed the relationship between levels of thyroid hormones and the incidence of NAFLD was inverse¹¹. In clinical practice, we have found that hepatic dysfunction in DTC patients is common, and most of these patients have no obvious symptoms. The mechanism may be related to the following factors¹²: (1) hypothyroidism may have features similar to those of liver disease (pseudo-liver disease; such as myalgias, fatigue and muscle cramps in the presence of elevated aspartate aminotransferase from myopathy, coma; (2) hypothyroidism may interact liver structure or function directly; in experimental hypothyroidism, with the decrease of the activity of bilirubin UDP-glucuronyltransferase, bilirubin excretion is reduced; (3) hypothyroidism is related to cholestatic jaundice due to decreased bilirubin and bile excretion¹³; and (4) severe hypothyroidism is known to cause increased permeability of the vascular endothelium¹⁴.

Our study demonstrated that 31.6% of DTC patients suffered from different degrees of hepatic dysfunction. All of these patients had mild or moderate liver injury. Additionally, an increase in ALT or AST was the most common abnormal indicator, and the prevalence was 47.5%. The findings are different from previous research data from Gokmen's group whose research showed that hypertriglyceridemia and a higher FT₃/FT₄ ratio are independent risk factors for NAFLD, however, hypothyroidism is not related to the condition directly ¹⁵. However, their research subjects were patients with hypothyroidism, where hypothyroidism was defined only by a TSH level ≥ 4.1 mIU/L, and FT₃ and FT₄ levels were not included. The FT₃ and FT₄ levels of some patients were normal.

To explore the risk factors of hepatic dysfunction for DTC patients, we analyzed 13 related factors, such as age and sex, and found that male sex, a THW time greater than 21 days, FT₃<2.01 pmol/L, FT₄<4.78 pmol/L, TSH>78.195 µIU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L were risk factors for hepatic dysfunction in the univariate analysis (all P<0.01). Additionally, we found that male sex, $FT_4 < 3.80$ pmol/L and TG≥1.28 mmol/L were more closely associated with hepatic dysfunction in DTC patients in the multivariate logistic regression analysis (P<0.01). No studies related to our study on the risk factors of hepatic dysfunction for DTC patients were found.

In this study, we found that the remission rate of patients with mild hepatic dysfunction was significantly higher than that of patients with moderate hepatic dysfunction at 1 month after ¹³¹I therapy. Additionally, the remission rate among patients with mild hepatic dysfunction was not significantly different between the treated group and the untreated group. We also found that the FT₄ level is associated with hepatic dysfunction, with more severe hypothyroidism corresponding to a greater impact on liver function. Patients with mild hepatic dysfunction may not be treated with hepatoprotective drugs because the remission rate of hepatic dysfunction at 1 month after ¹³¹I therapy was not significantly different between the treated group and the untreated group. Recent studies revealed that with no liver damage, hepatic dysfunction associated with hypothyroidism can be reversed over several weeks with

1		
2		
3 4	251	thyroxine replacement ¹⁶ .
5	252	Additionally, liver is the vital organ for cholesterol metabolism, thyroid
6 7	253	hormones play an important role in hepatic lipid metabolism ¹⁷ . Thyroid hormones
8	254	increase the activity of lipid-lowering liver enzymes which can lead to a reduction in
9	255	low-density lipoprotein levels ¹⁸ . Serum lipids also play an important role in liver
10 11	256	function ¹⁹ , which coincided with the results of our study. In our study, hepatic function indiaga returned to normal at 1 month after ¹³ therapy in 86.249 / of the
12	257 258	function indices returned to normal at 1 month after ¹³¹ I therapy in 86.34% of the patients, the remission rate in patients with normal TG levels was significantly higher
13	258 259	than that in the elevated TG group, and the time until liver dysfunction returned to
14 15	255	normal in the patients suffering from hyperlipidemia and hepatic dysfunction was
16	261	longer than that in the patients suffering from only hyperlipidemia. In other words,
17	262	lipid-lowering therapy(statins or fenofibrate) was very important for patients with
18 19	263	hepatic dysfunction.
20	264	Obesity is a important metabolic risk factor of liver and thyroid dysfunction, and it
21 22	265	would be helpful if we analysis of the influence of it in our study. For these reasons,
22	266	further rigorous prospective studies are needed to confirm these preliminary findings.
24	267	Conclusions
25 26	268	Hepatic dysfunction is more likely to occur in male patients and patients with a
27	269	THW time greater than 21 days, FT ₃ <2.01 pmol/L, FT ₄ <4.78 pmol/L, TSH>78.195
28	270	µIU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L. Additionally, lipid-lowering
29 30	271	therapy is particularly important for DTC patients with hepatic dysfunction before ¹³¹ I
31	272	therapy. For DTC patients with hepatic dysfunction combined with dyslipidemia,
32	273	lipid-lowering therapy is recommended, which is expected to shorten the remission
33 34	274	time of hepatic dysfunction.
35	275	Contribution to the Field Statement: An elevated TSH level is essential to stimulate
36 37	276	¹³¹ I uptake when patient with DTC undergoes RAI therapy. A number of patients
38	277	suffer from general edema, constipation and so on, before RAI therapy with THW.
39	278	Evidence reveals that hypothyroidism may have a direct effect on liver structure or
40 41	279	function. We retrospectively collected clinical data from 996 patients with DTC to
42	280	investigate risk factors of hepatic dysfunction in these patients. Patients with mild
43	281	hepatic dysfunction and ortholiposis were found to have a higher likelihood of
44 45	282	recovering normal liver function. For males, FT_4 and TG levels were more closely
46	282	related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely
47 48		
40 49	284	associated with the level of TG.
50	285	Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the
51 52	286	conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu
53	287	assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang
54	288	conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei
55 56	289	Meng critically revised the manuscript. All authors read and approved the final
57	290	manuscript and agree to be accountable for all aspects of the research in ensuring that
58 50	291	the accuracy or integrity of any part of the work are appropriately investigated and
59 60	292	resolved.Competing interests
	232	8

1		
2 3		
4	293	There are no competing interests for any author
5	294	Funding
6 7	295	This study was sponsored by the Natural Science Foundation of Tianjin City(Grant
8	296	No.20JCQNJC01610)
9	297	Data sharing statement
10 11	298	All data relevant to the study included in the article are uploaded as supplementary
12	299	information
13	300	Ethical Approval statement
14 15	301	The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin
15 16	302	Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in
17	303	this study was provided by the participants' legal guardian/next of kin.
18	304	References
19 20	305	[dataset]1. Robbins RJ, Larson SM, Sinha N, Shaha A, Divgi C, Pentlow KS, Ghossein R, Tuttle RM: A
20	306	retrospective review of the effectiveness of recombinant human TSH as a preparation for
22	307	radioiodine thyroid remnant ablation. J Nucl Med 2002, 43(11):1482-1488. PubMed:
23	308	12411552
24 25	309	[dataset]2. Greenspan BS: Radioiodine Treatment of Well-Differentiated Thyroid Cancer:
26	310	Balancing Risks and Benefits. J Clin Oncol 2018, 36(18):1785-1787. PubMed:29698105, DOI:
27	311	10.1200/JCO.2018.78.6384.
28 29	312	[dataset]3. Choudhury PS, Gupta M: Differentiated thyroid cancer theranostics: radioiodine and
30	313	beyond. Br J Radiol 2018:20180136. PubMed: 30260232; DOI: 10.1259/bjr.20180136.
31	314	[dataset]4. Mazzaferri EL, Kloos RT: Clinical review 128: Current approaches to primary therapy
32 33	315	for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001, 86 (4):1447-1463.
33 34	316	PubMed: 11297567; DOI: 10.1210/jcem.86.4.7407.
35	317	[dataset]5. Han YH, Lim ST, Yun KN, Yim SK, Kim DW, Jeong HJ, Sohn MH: Comparison of the
36	318	Influence on the Liver Function Between Thyroid Hormone Withdrawal and rh-TSH Before
37 38	319	High-Dose Radioiodine Therapy in Patients with Well-Differentiated Thyroid Cancer. Nucl
39	320	Med Mol Imaging 2012, 46 (2):89-94. PubMed:24900040; DOI: 10.1007/s13139-012-0132-1.
40	321	[dataset]6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F,
41 42	322	Randolph GW, Sawka AM, Schlumberger M <i>et al</i> : 2015 American Thyroid Association
43	323	Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated
44	324	Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid
45 46	325	Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26(1):1-133. PubMed:26462967;
40 47	326	DOI: 10.1089/thy.2015.0020.
48	327	[dataset]7. Tuttle RM, Brokhin M, Omry G, Martorella AJ, Larson SM, Grewal RK, Fleisher M,
49 50	328	Robbins RJ: Recombinant human TSH-assisted radioactive iodine remnant ablation
50 51	329	achieves short-term clinical recurrence rates similar to those of traditional thyroid
52	330	, hormone withdrawal. J Nucl Med 2008, 49 (5):764-770. PubMed: 18413378; DOI:
53	331	10.2967/jnumed.107.049072.
54 55	332	[dataset]8. Malik R, Hodgson H: The relationship between the thyroid gland and the liver. QJM 2002,
56	333	95 (9):559-569. PubMed: 12205333; DOI: 10.1093/gjmed/95.9.559.
57	334	[dataset]9. Feisa SV, Chopei IV: Subclinical hypothyroidism in patients with non-alcoholic fatty liver
58 59	335	disease at the background of carbohydrate metabolism disorders. Wiad Lek 2018, 71(2 pt
60	336	1):261-264. PubMed:29729151.
		9

Page 11 of 16

337	[dataset]10.	Wang R	, Tan J, Zhang G, Zł	neng W, Li C: Risk	factors of	hepatic d	ysfunction in		
338	patients with Graves' hyperthyroidism and the efficacy of 131iodine treatment. Medicine								
339	(Baltim	ore) 2017,	96 (5):e6035. PubN	/led: 28151911; [OOI: 10.109 ⁻	7/MD.0000	000000006035.		
340	[dataset]11.	Thobe N	I, Pilger P, Jones M	IP: Primary hypot	hyroidism:	masquer	ading as hepatic:		
341	case re	port and r	eview of the litera	ture . Postgrad M	ed J 2000,	76 (897):4	24-426. PubMed:		
342	108782	207; DOI: 10	0.1136/pmj.76.897.4	24. PubMed: 108	78207; DO	I: 10.1136/	′pmj.76.897.424.		
343	[dataset]12.	Chung G	6E, Kim D, Kim W, Y	'im JY, Park MJ, K	im YJ, Yoo	n JH, Lee H	HS: Non-alcoholic		
344	fatty li	ver disease	across the spectr	um of hypothyro	idism. J He	patol 201	2,		
345	57 (1):1	50-156.Pul	bMed: 22425701;	DOI: 10.1016/j.jhep	0.2012.02.02	27.			
346	[dataset]13.	Sinha R/	A, Singh BK, Yen PN	A: Direct effects	of thyroid	hormones	s on hepatic lipid		
347	metab	olism. Nat	Rev Endocrinol 201	18, 14 (5):259-269	. PubMed:	30260232	; DOI:		
348	10.1259)/bjr.201801	36.						
349	[dataset]14.	Kinney I	EL, Wright RJ, Cald	well JW: Value of	clinical fea	atures for	distinguishing		
350	myxed	ema ascite	s from other form	s of ascites. Com	out Biol Me	ed 1989, 1	. 9 (1):55-59.		
351	PubMe	d: 291746:	1; DOI: 10.1016/001	.0-4825(89)90035-	8.				
352	[dataset]15.	Inkinen .	J, Sand J, Nordback	1: Association bet	ween comr	non bile d	uct stones and		
353	trea		yroidism . Hepatog						
354	[dataset]16.		, Kaplan M, Wolfe				iver in myxedema	a	
355			n Med 1972, 77 (6):	927-929. PubMe	d: 4644170); DOI:			
356	10.7326	6/0003-4819							
357	[dataset]17.		n FY, Ahbab S, Atac	-			-	n	
358			predicts non-alcol			-			
359	param	eters in pat	tients with euthyr	oidism and hypot	thyroidism	. Clinics (S	5ao Paulo) 2016,		
360			bMed: 27166773;						
361	[dataset]18.		ian S, Fong TL: Hep	-		r oidism . G	astroenterol		
362	-		.011, 7 (5):337-339.						
363			E, Magkos F, Patter						
364		•	n and hyperthyroid	••		•			
365	-	-	glyceride kinetics. J		etab 2012,	97 (3):E414	4-418. PubMed:		
366		-	: 10.1210/jc.2011-2			5			
367	[dataset]20.		C, Lopez D: Transcr				-		
368	• •	•	tor and cholester						
369	Bioche	m Biophys	1995, 323 (2):40	04-408. PubMed:	7487105; [DOI: 10.100	06/abbi.1995.0061.		
370									
371									
372	Table 1 Biv	ariate logisti	c univariate regression	n of the factors for D	TC patients	with hepati	c dysfunction		
Relevant	factors		With hepatic	Without hepatic	B value	OR	95%CI	Р	
			dysfunction	dysfunction		value			
			(n[%])	(n[%])					
Age		≤45	350(68.50%)	161(31.50%)	-1.011	1	0.744-1.321	0.934	
		>45	331(68.25%)	154(31.75%)		1.011			
Sex		Male	158(50.97%)	152(49.03%)	-1.127	1	0.244-0.430	0.000	
				10					

TC			≤5.17 [△] >5.17	129(75.44%) 552(66.90%)	42(24.56%) 273(33.10%)	0.758	1 2.135	1.615-2.822	0.0
			>40	154(73.68%)	55(26.32%)		1.374		
TgAb			≥2.635 ≤40 [△]	335(67.27%) 527(66.96%)	163(32.73%) 260(33.04%)	0.381	0.831 1	0.979-1.930	0.0
Tg			<2.635*	346(69.48%)	152(30.52%)	-0.185	1	0.609-1.134	0.24
			≥78.195	316(63.45%)	182(36.55%)		0.633		
TSH			≥4.78 <78.195*	365(73.29%)	133(26.71%)	-0.458	1	0.483-0. 828	0.0
FT ₄			<4.78* ≥4.78	280(56.34%) 401(80.36%)	217(43.66%) 98(19.64%)	1.154	1 3.171	2.389-4.209	0.0
FT			≥2.01	365(73.00%)	135(27.00%)	1 1 5 4	1.540	2 200 4 200	0.0
FT3			<2.01*	316(63.71%)	180(36.29%)	0.432	1	1.177-2.016	0.0
			Positive	86(72.27%)	33(27.73%)		0.810		
Hashii	moto's thy	vroiditis	Negative	595(67.85%)	282(32.15%)	-0.211	1	0.529-1.239	0.3
			Positive	529(67.30%)	257(32.70%)		0.785		
Metas			Negative	152(72.38%)	58(27.62%)	-0.242	1	0.561-1.100	0.1
2	rawal time		\geq 21 days	309(63.98%)	174(36.02%)	0.570	1.486	0.017 0.092	0.0
therap Thyro		hormone	≤21 days	372(72.51%)	141(27.49%)	0.396	1	0.517-0.892	0.0
thyroi	dectomy	and ¹³¹ I	>3 months	121(69.14%)	54(30.86%)		1.044		
the	time	between	\leq 3 months	560(68.20%)	261(31.80%)	0.043	1	0.734-1.486	0.8

 X_2

 $X_8 (FT_4)$

 $X_{8}\left(2
ight)$

 $X_{8}(3)$

 $X_{8}(4)$

 X_{13}

-0.933

-0.347

-0.853

-1.789

0.156

0.193

0.200

0.239

35.703

62.291

3.249

18.146

55.817

15.195

0.000

0.000

0.071

0.000

0.000

0.002

0.393

0.707

0.426

0.167

0.290-0.534

0.485-1.031

0.288-0.631

0.105-0.267

BMJ Open

X ₁₃ (2)	0.325	0.225	2.072	1	0.150	1.383	0.889-2.152
X ₁₃ (3)	0.643	0.223	8.313	1	0.004	1.901	1.228-2.943
X ₁₃ (4)	0.787	0.219	12.784	1	0.000	2.197	1.429-3.376
Constant	-0.188 0	.270	0.484	1	0.487	0.829	
376							
377	Table 3 Outcom	es of hepa	tic dysfunction	of varying	degrees afte	er 1 month of	¹³¹ I therapy
	Deerree		_	С	utcomes (n	[%])	
	Degree		n	Ren	nission	Nonremis	sion
	Mild		252	227 (90.07%)	25 (9.9	93%)
	Moderate		63	45 (71.43%)	18 (28	.57%)
	χ^2					14.873	
	р	6				0.000	
378 Table 4 F	Remission of hepatic dy	ysfunction	among patients	given diff	erent treatm	ents at 1 mor	th after ¹³¹ I thera
379							
	Crewe		~~	Outcomes (n[%])			
	Group		n		Remission	Nonre	mission
	Treatment		53	50 (9	4.34%)	3 (5.60	5%)
	No treatment		199	177	(88.94%)	22 (11	.06%)
	χ^2					1.765	
	р				4	0.184	
380							
380 381							

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract "Influence of Hypothyroidism on Liver Function Before Radioiodine Therapy" in title indicated the study's design
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
		The purpose "The present study aimed to investigate the risk factors for hepatic
		dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid
		cancer (DTC)." In line 19-21, on page 1 of revised manuscript(main document)
		provide what was done;
		Patients with minor hepatic dysfunction and ortholiposis are more likely to recover
		normal liver function. Patients with moderate hepatic dysfunction should be treated
		with hepatoprotective drugs. For males, FT_4 and TG levels tended to be associated
		with hepatic dysfunction, and the prognosis of hepatic dysfunction was closely relate
		to the level of TG." in Line 36-40 on page 2 of revised manuscript(main document)
		provide what was we found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		"When DTC patient undergoes RAI therapy, an elevated thyroid-stimulating hormon
		(thyrotropin, TSH) level is essential, Evidence indicates that hypothyroidism may
		affect liver function or structure directly. Therefore, identification of factors resulting
		in hepatic dysfunction is crucial" is line63-68 on page 2 of revised manuscript(mai
		document)
Objectives	3	State specific objectives, including any prespecified hypotheses
		The objective is "to investigate risk factors for patients with hepatic dysfunction
		using a retrospective approach" in line 68-69 on page 2 of revised manuscript(main
Methods		document)
Study design	4	Present key elements of study design early in the paper
		The key elements of study design is how to determine the "Participants or Criteria
		selection", it was showed in line 77-86 on page 3 of revised manuscript(main
		document)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection
		It was showed in line 88-107 on page 3 and 116-118 on page 4 of revised
D		manuscript(main document)
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of cas ascertainment and control selection. Give the rationale for the choice of cases and
		controls
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of
		cross sectional stany - Give the engloting entering, and the sources and methods of

		(b) Cohort study—For matched studies, give matching criteria and number of expose
		and unexposed
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
		It was showed in 129-203 on page 3-4 of revised manuscript(main document)
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there i
		more than one group
		It was showed in 109-114on page 3-4 of revised manuscript(main document)
Bias	9	Describe any efforts to address potential sources of bias
		It was showed in 264-266 on page 8 of revised manuscript(main document)
Study size	10	Explain how the study size was arrived at
	10	It was showed in 77-80 on page 3of revised manuscript(main document)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
		It was showed in 88-107 on page 3of revised manuscript(main document)
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how nots to follow up was addressed
		addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of
		sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
		It was showed in 120-126 on page 4 of revised manuscript(main document)
Continued on next page		i nas showed in 120 120 on page i or tevised manuscripi(main document)
Continued on next page		

2 3	
4	
5	
6	
7	
8 9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
25 26	
20 27	
28	
29	
30	
31 32	
33	
34	
35	
36 37	
37 38	
39	
40	
41	
42 43	
44	
45	
46	
47 48	
40 49	
50	
51	
52	
53 54	
55	
56	
57	
58 50	
59 60	
00	

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
Participants	13*	examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		It was showed in 128-203 on page4-6 of revised manuscript(main document)
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure
		Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningfu
		time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
		In line 231-239 on page 7 of revised manuscript(main document)
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias
		In line 41-51 on page 2 and in line 264-266 on page 8 of revised manuscript(main document
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicit
		of analyses, results from similar studies, and other relevant evidence in line 221-263 on page 7 and 8 of revised manuscript(main document)
Generalisability	21	Discuss the generalisability (external validity) of the study results in line 275-284 on page 8 of revised manuscript(main document)
Other information	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely

BMJ Open

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

.en

A Retrospective Study of The Influence of Hypothyroidism on Liver Function Before Radioiodine Therapy in China: A Comparison Analysis based on Patients with Differentiated Thyroid Cancer

	I
Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045562.R3
Article Type:	Original research
Date Submitted by the Author:	19-Dec-2021
Complete List of Authors:	Ji, yanhui; Tianjin Medical University General Hospital, zheng, wei; Tianjin Medical University General Hospital Meng, Zhaowei; Tianjin Medical University General Hospital wu, cailan; Tianjin Fourth Central Hospital, Nuclear Medicine tan, jian; Tianjin Medical University General Hospital Wang, Renfei; Tianjin Medical University General Hospital, Nuclear Medicine
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Gastroenterology and hepatology, Pharmacology and therapeutics
Keywords:	Endocrine tumours < ONCOLOGY, Head & neck surgery < OTOLARYNGOLOGY, NUCLEAR MEDICINE, Thyroid disease < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1 2	
∠ 3	
4	
5	
6	
7	
8	
9 10	
10	
11	
12	
13	
13 14 15 16 17	
15 16	
17	
18	
18 19	
20	
21	
19 20 21 22 23 24 25 26 27 28 29 30 31	
23	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34 35 36 37	
35	
36	
37	
38	
39 40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
54	
55	
56	
57	
58	
59	
60	

	1	Title page:
	2	A Retrospective Study of The Influence of Hypothyroidism on Liver Function Before
	3	Radioiodine Therapy in China: A Comparison Analysis based on Patients with
	4	Differentiated Thyroid Cancer
	5	Running title: The Influence of hypothyroidism on the Liver Function in Patients with
	6	Differentiated Thyroid Cancer
	7	Yan-hui Ji ¹ , Wei Zheng ¹ , Zhaowei Meng ¹ , cailan wu ² , Jian Tan ¹ , Ren-fei Wang ¹ *
	8	Department of Nuclear Medicine, Tianjin Medical University General Hospital
	9	*Corresponding Author: Ren-fei Wang, PHD, Department of Nuclear Medicine,
1	10	Tianjin Medical University General Hospital, Anshan Road 154, Heping district,
1	11	Tianjin,300052, P.R. China, E-mail:Roslyn_en@163.com
1	12	Yan-hui Ji, Zhaowei Meng, Wei Zheng, Jian Tan, Ren-fei Wang: Department of Nuclear
1	13	Medicine, Tianjin Medical University General Hospital, Tianjin, China.
1	14	Cailan Wu: Department of Nuclear Medicine, Tianjin Fouth Hospital, Tianjin, China.
1	15	Key words: Endocrine tumours ; Head & neck surgery ; Nuclear Medicine; Thyroid
1	16	disease
1	17	Word count:3256
	17 18	disease Word count:3256 Abstract
1		Word count:3256 Abstract Purpose The aim of present study is to investigate the risk factors for hepatic
1	18	4
1 1 2	18 19	<i>Purpose</i> The aim of present study is to investigate the risk factors for hepatic
1 1 2 2	18 19 20	<i>Purpose</i> The aim of present study is to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid
1 1 2 2 2	18 19 20 21	<i>Purpose</i> The aim of present study is to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). <i>Methods</i> 996 patients (314 males, 682 females; ageof 45.07±12.98
1 1 2 2 2 2	18 19 20 21 22	Purpose The aim of present study is to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). Methods 996 patients (314 males, 682 females; ageof 45.07±12.98 years) with postoperative of DTC were recruited and divided into two groups
	18 19 20 21 22 23	Purpose The aim of present study is to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). Methods 996 patients (314 males, 682 females; ageof 45.07±12.98 years) with postoperative of DTC were recruited and divided into two groups including patients with and without hepatic dysfunction. The changes in baseline
	18 19 20 21 22 23 24	<i>Purpose</i> The aim of present study is to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). <i>Methods</i> 996 patients (314 males, 682 females; ageof 45.07±12.98 years) with postoperative of DTC were recruited and divided into two groups including patients with and without hepatic dysfunction. The changes in baseline data and traced liver function levels together with other metabolic profiles were
	18 19 20 21 22 23 24 25	<i>Purpose</i> The aim of present study is to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). <i>Methods</i> 996 patients (314 males, 682 females; ageof 45.07±12.98 years) with postoperative of DTC were recruited and divided into two groups including patients with and without hepatic dysfunction. The changes in baseline data and traced liver function levels together with other metabolic profiles were compared between the two groups. <i>Result</i> Overall, 31.6% of patients had hepatic
	18 19 20 21 22 23 24 25 26	<i>Purpose</i> The aim of present study is to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). <i>Methods</i> 996 patients (314 males, 682 females; ageof 45.07±12.98 years) with postoperative of DTC were recruited and divided into two groups including patients with and without hepatic dysfunction. The changes in baseline data and traced liver function levels together with other metabolic profiles were compared between the two groups. <i>Result</i> Overall, 31.6% of patients had hepatic dysfunction. Higher aspartate aminotransferase (AST) and/or alanine
	18 19 20 21 22 23 24 25 26 27	<i>Purpose</i> The aim of present study is to investigate the risk factors for hepatic dysfunction before radioiodine (RAI) therapy in patients with differentiated thyroid cancer (DTC). <i>Methods</i> 996 patients (314 males, 682 females; ageof 45.07±12.98 years) with postoperative of DTC were recruited and divided into two groups including patients with and without hepatic dysfunction. The changes in baseline data and traced liver function levels together with other metabolic profiles were compared between the two groups. <i>Result</i> Overall, 31.6% of patients had hepatic dysfunction. Higher aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) was the most common abnormality (the prevalence rate was

factors for hepatic dysfunction (odds ratio [OR]=0.324-3.171, P<0.01) were male sex 30

Page 3 of 14

1

BMJ Open

2	
3	
1	
4	
5	
4 5 6 7	
7	
8 9	
9	
10	
11	
12 13 14 15 16 17	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
20 21 22 23 24 25 26 27 28 29 30 31	
20	
31	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

31	with levothyroxine discontinuation and free triiodothyronine (FT ₃) \leq 2.01 pmol/L, free
32	thyroxine (FT ₄)<4.78 pmol/L, thyroid-stimulating hormone (TSH)>78.195 μ IU/mL,
33	total cholesterol (TC)>5.17 mmol/L , triglycerides (TG)>1.71 mmol/L and more than
34	21 days of thyroid hormone withdrawal (THW) . Multivariate analyses demonstrated
35	that for males, $FT_4 < 3.80 \text{ pmol/L}$ and $TG \ge 1.28 \text{ mmol/L}$ were the most prominent risk
36	factors Conclusions Patients with minor hepatic dysfunction and ortholiposis are
37	more likely to recover to normal liver function. Patients with moderate hepatic
38	dysfunction should be treated with hepatoprotective drugs. For males, FT ₄ and TG
39	levels tended to be associated with hepatic dysfunction, and the prognosis of hepatic
40	dysfunction was closely related to the level of TG.
41	Strengths and limitations of this study:
42	Strengths: The results of this study may help nuclear physicians to make clinical
43	treatment strategies of DTC patients.
44	Limitations: 1. We selected cases with complete data to perform our retrospective
45	analysis, however, the exclusion of a few patients who were lost to follow-up might
46	result in potential bias.
47	2.We could not collect the result of LDL cholesterol measurements.
48	3.Obesity is an important metabolic risk factorof liver and thyroid dysfunction, and
49	it would be helpful if we could perform analysis of the influence of it in our study.
50	For these reasons, further rigorous prospective studies are needed to confirm these
51	preliminary findings.
52	Keywords: thyroid cancer, ¹³¹ I, high-dose radioiodine therapy, hepatic dysfunction,
53	risk factors
54	1. Introduction
55	Radioiodine (RAI) therapy is a very important procedure to ablate normal thyroid
56	remnant tissues and microscopic deposits of differentiated thyroid carcinoma (DTC)
57	after thyroidectomy ¹ . As reported, RAI therapy was able to reduce the number of
58	locoregional recurrences and to increase overall survival of the American Thyroid
59	Association(ATA) intermediate-risk and high risk DTC patients ^{2 3.} In order to
60	stimulate ¹³¹ I uptake into the normal thyroid remnants and metastatic tissues of
61	thyroid carcinoma for DTC patients undergo RAI therapy, an elevated
62	thyroid-stimulating hormone (thyrotropin, TSH) level is essential ⁴ . The classic
63	method of preparation for RAI therapy is thyroid hormone withdrawal (THW).
64	However, the application of THWusually results in some physical or psychological
65	side effects associated with hypothyroidism ⁵ , such as general edema, constipation,
66	and depression. Evidences indicate that hypothyroidism may affect liver function or
67	structure directly ⁶ . Therefore, the identification of factors that may causing hepatic
68	dysfunction is rather crucial. In the present study, we collected clinical data from 996
69	patients with DTC to investigate the risk factors for patients with hepatic dysfunction

70 undergoing a retrospective approach.

2. Materials and methods

2.1. Ethics statement

This study is a retrospective clinical study summarizing and analyzing a large amount of clinical data. The ethics committee of Tianjin Medical University General Hospital waived the need to obtain written informed consent from all patients. All clinical data used in this study were analyzed anonymously.

- **2.2.** Participants or Criteria selection
- The study included 996 patients (314 males, 682 females; age of 45.07±12.98 years)

who had undergone RAI therapy at our department from January 2012 to March 2018.

80 The patients had undergone complete or partial thyroidectomy performed by various

81 surgeons. The patients agreed to receive RAI therapy and were informed about the

traditional preparation method, THW. We used hepatitis virus markers, abdominal

83 ultrasonography, echocardiography, and autoantibody and immunoglobulin subtype

- 84 determination for patients with hepatic dysfunction to exclude other apparent causes
- of liver damage. Other possible causes included viral hepatitis, liver cirrhosis or
- 86 biliary tract disease, chronic cardiac dysfunction and autoimmune liver disease,
- 87 liver steatosis and hyperlipoidemia, etc⁷.
- 88 2.3. Patient and Public Involvement statement

89 This was an uncontrolled retrospective study, patients of this study had underg
90 one RAI therapy at our department, and we recorded and analyzed the data in
91 order to investigate the risk factors for patients with hepatic dysfunction.

2.4. Data collection and groupingAll RAI therapy regimens were conducted b y the same nuclear medicine department following a standard protocol (2015 A merican Thyroid Association Management Guidelines). Relevant data were recor ded during the RAI therapy, including patient age (named X_1), sex (X_2), the ti me between surgery and ¹³¹I therapy (X_3) , the time of THW (X_4) , the presence or absence of metastases (lymph node metastasis or lung metastases), (X₅), the p resence of absence of Hashimoto's thyroiditis (X_6) , serum free triiodothyronine (FT₃) (X₇), free thyroxine (FT₄) (X₈), TSH (X₉), thyroglobulin (Tg) (X₁₀), antit hyroglobulin antibody (TgAb) (X_{11}) , total cholesterol (TC) (X_{12}) , and triglycerid es (TG) (X_{13}) . Meanwhile, liver function test results including aspartate aminotr ansferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), g amma-glutamyl transferase (GGT), total-value bilirubin (TBIL), and direct biliru

 bin (DBIL) were also collected. Hepatic dysfunction was diagnosed in accordan ce with the following criteria: the upper limit of normal (ULN) <ALT, AST o r GGT<3 times ULN, the ULN<ALP<2 times the ULN and/or TBIL and the ULN<DBIL<2.5 times the ULN were defined as mild hepatic dysfunction; 3 ti mes the ULN <ALT or AST<20 times the ULN, 3 times the ULN< GGT<10 times the ULN, 2 times the ULN<ALP<5 times the ULN and/or 2.5 times the ULN <TBIL, and DBIL<5 time the ULN were defined as moderate hepatic dy sfunction; and ALT or AST \geq 20 times the ULN, GGT \geq 10 times the ULN, AL $P \ge 5$ times the ULN and/or TBIL and DBIL ≥ 5 times the ULN were defined a s severe hepatic dysfunction⁷.

- **2. 5. Parameter assessments**
- 115 Thyroid function tests were measured by chemiluminescence immunoassays (ADVIA
- 116 CENTAUR XP SIEMENS AG). Tg and TgAb were detected by the Immulite system
- 117 (Immulite 2000 SIEMENS AG). Liver function indices were measured by colorimetry
- 118 (Hitachi C7600 Japan). TC and TG levels were checked using an auto-analyzer
- 119 enzymatically (Hitachi Model 7170 analyzer; Hitachi, Ltd., Tokyo, Japan). The
- dosage range of 131 I therapy was 3.7-7.4 GBq.
- **2.6. Patient follow-up**

We measured the serum levels of thyroid parameters, serum lipids, and liver function indices of the 996 patients at 1, 2, 3, and 4 months after ¹³¹I therapy to evaluate their liver function.

- **2.7. Statistical analysis**
- 126 A chi square test was used to analyze the differences between ratios. To identify risk
- 127 factors for hepatic dysfunction, we used a bivariate logistic regression model
- 128 (univariate analysis) and stepwise logistic regression (multivariate analysis) with a
- 129 variable with p < 0.05, and values < 0.05 were considered statistically significant. The
- 130 odds ratio (OR) was used to evaluate the risk factor. Statistical analysis was
- 49 131 performed using SPSS (Statistical Package for Social Sciences) for Windows, version
- 51 132 20 (SPSS, Chicago, IL).
 - **3. Results**
 - **3.1. Clinical features of hepatic dysfunction**
 - 135 Overall, 31.6% (315/996) of patients with DTC had hepatic dysfunction. Most
 - 136 patients with hepatic dysfunction had no obvious clinical symptoms except for

abnormal liver function indices. The most common abnormality was elevated ALT and (or) AST, with a prevalence of 47.5%. The prevalence rates of mild, moderate, and severe hepatic dysfunction were 80.0% (252/315), 20.0% (63/315), and 0% (0/315), respectively. **3.2.** Risk factors for hepatic dysfunction in DTC patients In this paper, a binary logistic regression model was established for relevant factors of hepatic dysfunction. Single-factor analysis and binary multivariate logistic regression analysis were performed as well. Patient characteristics were compared using bivariate logistic univariate regression analysis between the 2 groups (Table 1). In the metastase group, the number of patients with hepatic dysfunction and lymph node metastasis or lung metastases were 508 and 21 respectively; and the number of patients without hepatic dysfunction were 245 (with lymph node metastasis) and 12 (with lung metastases) respectively. The results showed that for male patients, the THW time, FT₃<2.01 pmol/L, FT₄<4.78 pmol/L, TSH >78.195 µIU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L were closely associated with hepatic dysfunction (odds ratio [OR]: 0.324-3.171, all P<0.01). Furthermore, the multivariate logistic regression analysis were applied to screen the relevant risk factors. In our study, we suggested the following assignments for independent variables: $X_1=1$ for age ≤ 45 years and $X_1=2$ for age >45 years; $X_2=1$ for male sex and $X_2=2$ for female sex; $X_3=1$ if the time between total thyroidectomy and ¹³¹I therapy was less than 3 months and $X_3=2$ if the time between total thyroidectomy and ¹³¹I therapy was more than 3 months; $X_4=1, 2$, and 3 if the THW time was shorter than 3 weeks, 3-4 weeks, and longer than 4 weeks, respectively; $X_5=1$ for the presence of metastases and $X_5=2$ for the absence of metastases; $X_6=1$ for the presence of Hashimoto's thyroiditis and $X_6=2$ for the absence of Hashimoto's thyroiditis; $X_7=1$, 2, 3, and 4 for FT₃ levels lower than 1.60 pmol/L, 1.60-2.01 pmol/L, 2.01-2.37 pmol/L, and higher than 2.37 pmol/L, respectively; $X_8=1, 2, 3$, and 4 for FT₄ levels lower than 3.80 pmol/L, 3.80-4.78 pmol/L, 4.78-5.79 pmol/L, and higher than 5.79 pmol/L, respectively; $X_9=1, 2, 3$, and 4 for TSH levels lower than 57.01 μ IU/mL, 57.01-78.20 µIU/mL, 78.20-101.84 µIU/mL, and higher than 101.84 µIU/mL,

Page 7 of 14

1

BMJ Open

2		
3 4	167	respectively; X_{10} =1, 2, 3, and 4 for Tg levels lower than 0.50 ng/mL, 0.50-2.64 ng/mL,
5 6	168	2.64-9.18 ng/mL, and higher than 9.18 ng/mL, respectively; X_{11} =1 for TgAb levels
7 8	169	lower than 40 IU/mL and $X_{11}=2$ for TgAb levels higher than 40 IU/mL; $X_{12}=1, 2, 3$,
9 10	170	and 4 for TC levels lower than 5.46 mmol/L, 5.46-6.27 mmol/L, 6.27-7.22 mmol/L,
11 12	171	and higher than 6.27 mmol/L, respectively; and $X_{13}=1, 2, 3$, and 4 for TG levels lower
13 14	172	than 1.28 mmol/L, 1.28-1.85 mmol/L, 1.85-2.76 mmol/L, and higher than 2.76
15 16	173	mmol/L, respectively. Resultant variable: Y=1 for patients with hepatic dysfunction,
17 18	174	and Y=0 for patients without hepatic dysfunction. Forward stepwise regression
19 20	175	analysis rejecting trends ultimately revealed that male sex, $FT_4 < 3.80 \text{ pmol/L}$ and
21 22	176	TG≥1.28 mmol/L were independent risk factors to predict hepatic dysfunction in
23 24	177	patients with DTC (Table 2).
25 26	178	3.3. Outcomes of hepatic dysfunction after ¹³¹ I therapy
27 28	179	The outcomes of hepatic dysfunction of varying degrees after ¹³¹ I therapy are
29	180	displayed in Table 3. The remission rate of patients at 1 month after ¹³¹ I therapy was
30 31	181	86.34% (272/315). Liver function test results revealed that 90.07% (227/252) of
32 33	182	patients with mild hepatic dysfunction returned to normal 1 month after ¹³¹ I therapy.
34 35	183	Moreover, the remission rate among patients with moderate and severe hepatic
36 37	184	dysfunction was 71.43% (45/63). Additionally, the remission rate of mild hepatic
38 39	185	dysfunction was higher than that of moderate dysfunction (P<0.001).
40 41	186	The remission of hepatic dysfunction at 1 month after ¹³¹ I therapy is shown in
42 43	187	Table 4. The liver function tests of 252 patients with mild hepatic dysfunction were
44	188	evaluated at 1 month after ¹³¹ I therapy, Results showed that the liver function of
45 46	189	94.34% (50/53) of patients who were given hepatoprotective treatment [oral bicyclol
47 48	190	tablets, Bicyclol 25 mg/tablet, Beijing Union Pharmaceutical Factory, Beijing, China,
49	191	at a total daily dose of 75mg (25mg three times daily), the treated group] returned to
50 51	192	normal after 1 month after ¹³¹ I therapy. Moreover, the remission rate among patients
52 53	193	in the untreated group was found to be 88.94% (177/199). However no remarkable
54	194	difference in the remission rate was observed between the two groups (P=0.184).
55 56	195	Other 63 patients with moderate hepatic dysfunction were treated with
57 58	196	hepatoprotective therapy [oral bicyclol tablets, at a total daily dose of 150mg (50mg
59 60	197	three times daily)], and the remission rates among patients at 1 month, 2 months, and

3 months after ¹³¹I therapy were 55.56% (35/63), 36.5% (23/63), and 7.94% (5/63)

 respectively. The aveage time for liver function returned to normal level in patients with moderate hepatic dysfunction was 1.8 months. 3.4. The correlation between serum TG and the remission rate of hepatic dysfunction in patients with DTC The number of patients with hyperlipidemia, hyperlipidemia with hepatic dysfunction, and dyslipidemia (hypercholesterolemia + hypertriglyceridemia) were 564, 278 and 244 respectively. A total of 559 patients (218 males, 341 femails) had elevated serum TG before ¹³¹I therapy, including 189 patients with hepatic dysfunction (76 males, 113 females). All patients were divided into 2 subgroups based on their serum TG levels 1 month after ¹³¹I therapy subgroup 1 includes subjects with a normal TG level (141 patients) and subgroup 2 includes subjects with elevated TG (48 patients, 21 femails, 27mails). In subgroup 2, 15 males and 10 femails were treated with statins or fenofibrate for lipid-lowering therapy . The percentage of patients with liver function returned to normal was 92.90% (131/141) in subgroup 1. Moreover, the remission rate of the patients in subgroup 2 was 75.00% (36/48) (χ^2 =5.382, P=0.02). In subgroup 2, the remission rate of the patients with lipid-lowering therapy was 84.00%(21/25) and 65.21%(15/23). 4. Discussion A complex relationship between the thyroid gland and the liver exists in both

healthy and disease states⁸. Maliks research showed that thyroid dysfunction may affect liver function ⁹. It is suggested that a relationship may exists between nonalcoholic fatty liver disease (NAFLD) and thyroid dysfunction¹⁰. Several studies conducted in some countries worldwide showed that the relationship between levels of thyroid hormones and the incidence of NAFLD was inverse¹¹. In clinical practice, we have found that hepatic dysfunction in DTC patients is common, and most of these patients have no obvious symptoms. The mechanism may be related to the following factors¹²: (1) hypothyroidism may have features similar to those of liver diseases (pseudo-liver disease; such as myalgias, fatigue and muscle cramps in the presence of elevated aspartate aminotransferase from myopathy, coma); (2) hypothyroidism may

Page 9 of 14

1

BMJ Open

1 2	
3	
4 5	
6	
7 8	
9	
10 11	
12	
13	
13 14 15	
16 17	
17 18	
18 19	
20 21	
22	
23 24	
24 25	
26 27	
28	
29 30	
31	
32	
33 34	
34 35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
40 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 59	
60	

interact with liver structure or function directly, for example, bilirubin excretion is
reduced in experimental hypothyroidism with the decrease of the activity of bilirubin
UDP-glucuronyltransferase; (3) hypothyroidism is related to cholestatic jaundice due
to decreased bilirubin and bile excretion¹³; and (4) severe hypothyroidism is known to
cause increased permeability of the vascular endothelium¹⁴.
Our study demonstrated that 31.6% of DTC patients suffered from different
degrees of hepatic dysfunction. All of these patients had mild or moderate liver injury.

Additionally, an increase in ALT or AST was the most common abnormal indicator, 235 and the prevalence was 47.5%. The findings are different from previous research data 236 from Gokmen's group whose research showed that hypertriglyceridemia and a higher 237 FT₃/FT₄ ratio are independent risk factors for NAFLD, however, hypothyroidism is 238 not related to the condition directly ¹⁵. However, their research subjects were patients 239 with hypothyroidism, where hypothyroidism was defined only by a TSH level ≥ 4.1 240 mIU/L, and FT₃ and FT₄ levels were not included. The FT₃ and FT₄ levels of some 241 patients were normal. 242

243 To explore the risk factors of hepatic dysfunction for DTC patients, we analyzed 13 related factors, and found that male sex, a THW time greater than 21 days, 244 FT₃<2.01 pmol/L, FT₄<4.78 pmol/L, TSH>78.195 µIU/mL, TC>5.17 mmol/L, and 245 TG>1.71 mmol/L were responsible risk factors for hepatic dysfunction in the 246 univariate analysis (all P<0.01). Additionally, we found that male sex, $FT_4 < 3.80$ 247 pmol/L and TG≥1.28 mmol/L were closely associated with hepatic dysfunction in 248 DTC patients in the multivariate logistic regression analysis (P < 0.01). No other 249 studies related to our study on the risk factors of hepatic dysfunction for DTC patients 250 were found. 251

In this study, we found that the remission rate of patients with mild hepatic dysfunction was significantly higher than that of patients with moderate hepatic dysfunction at 1 month after ¹³¹I therapy. Additionally, no significant differences can be found on the remission rate among patients with mild hepatic dysfunction between the treated and untreated groups. It was also found that the FT₄ level is highly associated with hepatic dysfunction, with more severe hypothyroidism corresponding

to a greater impact on liver function. Patients with mild hepatic dysfunction may not
be treated with hepatoprotective drugs because the remission rate of hepatic
dysfunction at 1 month after ¹³¹I therapy was not significantly different between the
treated and untreated groups. Recent studies revealed that with no liver damage,
hepatic dysfunction associated with hypothyroidism can be reversed over several
weeks with thyroxine replacement ¹⁶.

Additionally, liver is the vital organ for cholesterol metabolism and thyroid hormones, which plays an important role in hepatic lipid metabolism¹⁷. Thyroid hormones can increase the activity of lipid-lowering liver enzymes which can cause a reduction in low-density lipoprotein levels ¹⁸. As reported, serum lipids also play an important role in liver function¹⁹, which coincided with the results of our study. In our study, hepatic function indices returned to normal at 1 month after ¹³¹I therapy in 86.34% of the patients, the remission rate in patients with normal TG levels was significantly higher than that in the elevated TG group. In addition, the time until liver dysfunction returned to normal level in the patients suffering from hyperlipidemia and hepatic dysfunction was longer than that of the patients suffering from onlyhepatic dysfunction. In other words, lipid-lowering therapy (statins or fenofibrate) was very important for patients with hepatic dysfunction. Obesity is an important metabolic risk factor of liver and thyroid dysfunction, and it would be helpful if we could analysis of the influence of it in our study. However, due to the limitations, this part of analysis was not included in the current paper. For this reason, further rigorous prospective studies are needed to confirm these preliminary findings.

281 Conclusions

Hepatic dysfunction is more likely to occur in male patients and patients with a THW time greater than 21 days, $FT_3 < 2.01 \text{ pmol/L}$, $FT_4 < 4.78 \text{ pmol/L}$, TSH > 78.195µIU/mL, TC>5.17 mmol/L, and TG>1.71 mmol/L. Additionally, lipid-lowering therapy is particularly important for DTC patients with hepatic dysfunction before ¹³¹I therapy. For DTC patients with hepatic dysfunction combined with dyslipidemia, lipid-lowering therapy is recommended, which is expected to shorten the remission

Page 11 of 14

1

BMJ Open

 ¹³¹I uptake when patient with DTC undergoes RAI therapy. A number of patients suffer from general edema, constipation and so on, before RAI therapy with THW. Evidence reveals that hypothyroidism may have a direct effect on liver structure or function. We retrospectively collected clinical data from 996 patients with DTC to investigate the relevant risk factors of hepatic dysfunction in these patients. Patients with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering to normal liver function. For males, FT4 and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University Gener		
 ¹³¹I uptake when patient with DTC undergoes RAI therapy. A number of patients suffer from general edema, constipation and so on, before RAI therapy with THW. Evidence reveals that hypothyroidism may have a direct effect on liver structure or function. We retrospectively collected clinical data from 996 patients with DTC to investigate the relevant risk factors of hepatic dysfunction in these patients. Patients with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering to normal liver function. For males, FT₄ and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hosp	288	time of hepatic dysfunction.
 suffer from general edema, constipation and so on, before RAI therapy with THW. Evidence reveals that hypothyroidism may have a direct effect on liver structure or function. We retrospectively collected clinical data from 996 patients with DTC to investigate the relevant risk factors of hepatic dysfunction in these patients. Patients with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering to normal liver function. For males, FT₄ and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participants 	289	Contribution to the Field Statement: An elevated TSH level is essential to stimulate
 Evidence reveals that hypothyroidism may have a direct effect on liver structure or function. We retrospectively collected clinical data from 996 patients with DTC to investigate the relevant risk factors of hepatic dysfunction in these patients. Patients with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering to normal liver function. For males, FT₄ and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji , Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). 	290	¹³¹ I uptake when patient with DTC undergoes RAI therapy. A number of patients
 function. We retrospectively collected clinical data from 996 patients with DTC to investigate the relevant risk factors of hepatic dysfunction in these patients. Patients with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering to normal liver function. For males, FT₄ and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	291	suffer from general edema, constipation and so on, before RAI therapy with THW.
 investigate the relevant risk factors of hepatic dysfunction in these patients. Patients with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering to normal liver function. For males, FT₄ and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement. Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participants were reviewed and approved by the participants 	292	Evidence reveals that hypothyroidism may have a direct effect on liver structure or
 with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood of recovering to normal liver function. For males, FT₄ and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	293	function. We retrospectively collected clinical data from 996 patients with DTC to
 of recovering to normal liver function. For males, FT₄ and TG levels were more closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	294	investigate the relevant risk factors of hepatic dysfunction in these patients. Patients
 closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji , Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	295	with mild hepatic dysfunction and ortholiposis were found to have a higher likelihood
 closely associated with the level of TG. Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji , Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	296	of recovering to normal liver function. For males, FT ₄ and TG levels were more
 Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji , Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	297	closely related to hepatic dysfunction, and the prognosis of hepatic dysfunction was
 conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu assisted with data acquisition. Yanhui Ji , Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	298	closely associated with the level of TG.
 assisted with data acquisition. Yanhui Ji , Zhaowei Meng, and Renfei Wang conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	299	Contributorship Statement: Yanhui Ji and Renfei Wang contributed to the
 conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	300	conception and design of the study. Yanhui Ji, Wei Zheng, Jian Tan, and Cailan Wu
 Meng critically revised the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	301	assisted with data acquisition. Yanhui Ji, Zhaowei Meng, and Renfei Wang
 manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	302	conducted the statistical analyses and drafted the manuscript. Jian Tan, Zhaowei
 the accuracy or integrity of any part of the work are appropriately investigated and resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	303	Meng critically revised the manuscript. All authors read and approved the final
 resolved. Thanks all the patients of this syudy. Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	304	manuscript and agree to be accountable for all aspects of the research in ensuring that
 Competing interests There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	305	the accuracy or integrity of any part of the work are appropriately investigated and
 There are no competing interests for any author Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	306	resolved. Thanks all the patients of this syudy.
 Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	307	Competing interests
 Funding This study was sponsored by the Natural Science Foundation of Tianjin City(Grant No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	308	There are no competing interests for any author
 No.20JCQNJC01610) Data sharing statement All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	309	Funding
 312 Data sharing statement 313 All data relevant to the study included in the article are uploaded as supplementary 314 informationEthical Approval statement 315 The studies involving human participants were reviewed and approved by Ethical 316 Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). 317 Written informed consent to participate in this study was provided by the participants 	310	This study was sponsored by the Natural Science Foundation of Tianjin City(Grant
 All data relevant to the study included in the article are uploaded as supplementary informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	311	No.20JCQNJC01610)
 informationEthical Approval statement The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	312	Data sharing statement
 The studies involving human participants were reviewed and approved by Ethical Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	313	All data relevant to the study included in the article are uploaded as supplementary
 Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001). Written informed consent to participate in this study was provided by the participants 	314	informationEthical Approval statement
317 Written informed consent to participate in this study was provided by the participants	315	The studies involving human participants were reviewed and approved by Ethical
	316	Committee of Tianjin Medical University General Hospital (NO. IRB2020-WZ-001).
	317	Written informed consent to participate in this study was provided by the participants' 10

3 4	318	legal guardian/next of kin.
5 6	319	References
7	320	1. Robbins RJ, Larson SM, Sinha N, Shaha A, Divgi C, Pentlow KS, Ghossein R, Tuttle RM: A
8	321	retrospective review of the effectiveness of recombinant human TSH as a preparation for
9 10	322	radioiodine thyroid remnant ablation. J Nucl Med 2002, 43 (11):1482-1488. PubMed:
10	323	12411552
12	324	2. Greenspan BS: Radioiodine Treatment of Well-Differentiated Thyroid Cancer: Balancing
13	325	Risks and Benefits . <i>J Clin Oncol</i> 2018, 36 (18):1785-1787. PubMed:29698105, DOI:
14 15	326	10.1200/JCO.2018.78.6384.
16		
17	327	3. Choudhury PS, Gupta M: Differentiated thyroid cancer theranostics: radioiodine and
18	328	beyond. Br J Radiol 2018:20180136. PubMed: 30260232; DOI: 10.1259/bjr.20180136.
19 20	329	4. Mazzaferri EL, Kloos RT: Clinical review 128: Current approaches to primary therapy for
20	330	papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001, 86(4):1447-1463.
22	331	PubMed: 11297567; DOI: 10.1210/jcem.86.4.7407.
23	332	5. Han YH, Lim ST, Yun KN, Yim SK, Kim DW, Jeong HJ, Sohn MH: Comparison of the
24	333	Influence on the Liver Function Between Thyroid Hormone Withdrawal and rh-TSH
25 26	334	Before High-Dose Radioiodine Therapy in Patients with Well-Differentiated Thyroid
27	335	Cancer. Nucl Med Mol Imaging 2012, 46(2):89-94. PubMed:24900040; DOI:
28	336	10.1007/s13139-012-0132-1.
29	337	6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F,
30 31	338	Randolph GW, Sawka AM, Schlumberger M et al: 2015 American Thyroid Association
32	339	Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated
33	340	Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid
34	341	Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26 (1):1-133.
35	342	PubMed:26462967; DOI: 10.1089/thy.2015.0020.
36 37	343	7. Tuttle RM, Brokhin M, Omry G, Martorella AJ, Larson SM, Grewal RK, Fleisher M, Robbins RJ:
38		
39	344	Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term
40	345	clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl
41 42	346	<i>Med</i> 2008, 49 (5):764-770. PubMed: 18413378; DOI: 10.2967/jnumed.107.049072.
43	347	8. Malik R, Hodgson H: The relationship between the thyroid gland and the liver . <i>QJM</i> 2002,
44	348	95 (9):559-569. PubMed: 12205333; DOI: 10.1093/qjmed/95.9.559.
45	349	9. Feisa SV, Chopei IV: Subclinical hypothyroidism in patients with non-alcoholic fatty liver
46	350	disease at the background of carbohydrate metabolism disorders. Wiad Lek 2018, 71(2 $ m pt$
47 48	351	1):261-264. PubMed:29729151.
49	352	10. Wang R, Tan J, Zhang G, Zheng W, Li C: Risk factors of hepatic dysfunction in patients
50	353	with Graves' hyperthyroidism and the efficacy of 131iodine treatment. Medicine
51	354	(Baltimore) 2017, 96(5):e6035. PubMed: 28151911; DOI: 10.1097/MD.0000000000006035.
52 53	355	11. Thobe N, Pilger P, Jones MP: Primary hypothyroidism masquerading as hepatic: case
54	356	report and review of the literature. <i>Postgrad Med J</i> 2000, 76 (897):424-426. PubMed:
55	357	10878207; DOI: 10.1136/pmj.76.897.424. PubMed: 10878207; DOI: 10.1136/pmj.76.897.424.
56	358	12. Chung GE, Kim D, Kim W, Yim JY, Park MJ, Kim YJ, Yoon JH, Lee HS: Non-alcoholic fatty
57 58	359	liver disease across the spectrum of hypothyroidism. J Hepatol 2012,
58 59		
60	360	57 (1):150-156.PubMed: 22425701; DOI: 10.1016/j.jhep.2012.02.027.

361	13. Sinha	a RA, Singh B	K, Yen PM: Direc t	t effects of thyro	id hormon	es on hep	atic lipid	
362	meta	abolism. Nat	Rev Endocrinol 2	018, 14 (5):259-26	69. PubMe	d:3026023	32; DOI:	
363	10.12	59/bjr.201801	.36.					
364	14. Kinne	ey EL, Wright	RJ, Caldwell JW:	Value of clinical	features fo	or disting	uishing myxedema	1
365	ascit	es from othe	r forms of ascite	s . Comput Biol M	led 1989, 1	9 (1):55-59	9. PubMed:	
366	2917	461; DOI: 10.	1016/0010-4825(8	39)90035-8.				
367				ciation between c				
368		-		erology 2000, 47 (3	-			
369		-		-			nyxedema ascites.	
370				29. PubMed: 464	4170; DOI:			
371		26/0003-4819			с. т			
372			-	Turker BC, Cetin I			-	
373 374		-		lic fatty liver disc vroidism and hyp	-		(Sao Paulo) 2016,	
374 375	•	-		; DOI: 10.6061/cli	•		1500 F 0010/ 2010,	
375	•			-	-		nterol Hepatol (N Y)	
377			39. PubMed:21857		linyroidisin			
378				W, Mittendorfer B	3. Klein S: S	ubclinical	hypothyroidism	
379		-		te effects on hepa				
380				Clin Endocrinol Me	-	-	-418. PubMed:	
381	-		0.1210/jc.2011-27					
382								
383	Table 1 Biv	ariate logistic u	nivariate regression	of the factors for D	TC patients	with hepatic	e dysfunction	
Relevant	factors		With hepatic	Without hepatic	B value	OR	95%CI	Р
			dysfunction	dysfunction		value		
			(n[%])	(n[%])	2			
Age		<u>≤</u> 45	350(68.50%)	161(31.50%)	-1.011	1	0.744-1.321	0.9
		>45	331(68.25%)	154(31.75%)		1.011		
Sex		Male	158(50.97%)	152(49.03%)	-1.127	1	0.244-0.430	0.0
		Female	523(76.24%)	163(23.76%)		0.324		
the ti	me betweer	$\leq 3 \text{ months}$	560(68.20%)	261(31.80%)	0.043	1	0.734-1.486	0.8
thyroidect	comy and ¹³¹	I >3 months	121(69.14%)	54(30.86%)		1.044		
therapy								
Thyroid	hormone	e ≤21 days	372(72.51%)	141(27.49%)	0.396	1	0.517-0.892	0.0
	normoni							0.0
withdrawa		>21 days	309(63.98%)	174(36.02%)		1.486		0.0
Metastase	al time	>21 days Negative	309(63.98%) 152(72.38%)	174(36.02%) 58(27.62%)	-0.242	1.486 1	0.561-1.100	
	al time	-	. ,		-0.242		0.561-1.100	
Metastase	al time	Negative	152(72.38%)	58(27.62%)	-0.242	1	0.561-1.100	0.1
Metastase	al time s	Negative Positive	152(72.38%) 529(67.30%)	58(27.62%) 257(32.70%)		1 0.785		0.10

FT_3		<2.01*	316(63.71%)) 180(36	.29%)	0.432	1	1.177-2.016	0.002
		≥2.01	365(73.00%)) 135(27	.00%)		1.540		
FT_4		<4.78*	280(56.34%)) 217(43	.66%)	1.154	1	2.389-4.209	0.000
		≥4.78	401(80.36%)) 98(19.6	54%)		3.171		
TSH		<78.195	* 365(73.29%)) 133(26	.71%)	-0.458	1	0.483-0. 828	0.001
		≥78.195	316(63.45%)) 182(36	.55%)		0.633		
Tg		<2.635*	346(69.48%)) 152(30	.52%)	-0.185	1	0.609-1.134	0.244
		≥2.635	335(67.27%)) 163(32	.73%)		0.831		
TgAb		≤40^	527(66.96%)) 260(33	.04%)	0.381	1	0.979-1.930	0.067
		>40	154(73.68%)	55(26.3	32%)		1.374		
TC		≤5.17△	129(75.44%)) 42(24.5	56%)	0.758	1	1.615-2.822	0.000
		>5.17	552(66.90%)) 273(33	.10%)		2.135		
TG		≤1.71∆	336(77.42%)) 98(22.5	58%)	-0.418	1	0.451-0.960	0.03
		>1.71	344(61.54%)	215(38	.46%)		0.658		
384	CI=confi	dence interv	al, OR=odds ratio	, *median ; △U	pper limit o	f the normal	value		
385	Table 2	Bivariate	logistic multivari	ate regression	analysis o	f the factors	s for DTC p	atients with hepatic	
386	dysfuncti	ion		C C					_
Causa	l variable	В	Standard error	Wald	df	Р	EXP (B)	95%CI	
X ₂		-0.933	0.156	35.703	1	0.000	0.393	0.290-0.534	r
X ₈ (F	Γ ₄)			62.291	3	0.000			
X ₈ (2))	-0.347	0.193	3.249	1	0.071	0.707	0.485-1.031	
$X_{8}(3)$)	-0.853	0.200	18.146	1	0.000	0.426	0.288-0.631	
//						0.000		0 10 5 0 5 (5	

388

 $X_{8}(4)$

 $X_{13}(2)$

 $X_{13}(3)$

 $X_{13}(4)$

Constant

 X_{13}

-1.789

0.325

0.643

0.787

-0.188

0.239

0.225

0.223

0.219

0.270

41 42

43 44

45 46

47

48 49

50 51

52 53

58 59 60

Table 3 Outcomes of hepatic dysfunction of varying degrees after 1 month of ¹³¹I therapy

Degree	n	Outcomes (n	[%])
Degree	n	Remission	Nonremission
Mild	252	227 (90.07%)	25 (9.93%)

55.817

15.195

2.072

8.313

12.784

0.484

1

3

1

1

1

1

0.000

0.002

0.150

0.004

0.000

0.487

0.167

1.383

1.901

2.197

0.829

0.105-0.267

0.889-2.152

1.228-2.943

1.429-3.376

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

18 (28.57%) 14.873 0.000 atments at 1 month after ¹¹ (n[%]) on Nonremission 3 (5.66%)
14.873 0.000 atments at 1 month after ¹² (n[%]) on Nonremission
atments at 1 month after ¹² (n[%]) on Nonremission
(n[%]) on Nonremission
on Nonremission
on Nonremission
3 (5.66%)
b) 22 (11.06%)
1.765
0.184