

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Demographic, occupational, and societal risk exposures to physical injuries in a rural community in western Kenya: a longitudinal study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053161
Article Type:	Original research
Date Submitted by the Author:	06-May-2021
Complete List of Authors:	Chweya, Reagan; Jomo Kenyatta University of Agriculture and Technology, Mambo, Susan ; Jomo Kenyatta University of Agriculture and Technology, School of Public Health Gachohi, John; Jomo Kenyatta University of Agriculture and Technology, School of Public Health ; Washington State University, Global Health Program Kenya
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

3	
4	
5	
6	
_	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36 37	
38	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
~ ~	

1	Demographic, occupational, and societal risk exposures to physical injuries in a
2	rural community in western Kenya: a longitudinal study
3	Chweya RN ^{1*} , Mambo SN ¹ , Gachohi JM ^{1,2} .
4	1: School of Public Health, Jomo Kenyatta University of Agriculture and Technology
5	2: Washington State University, Global Health Program Kenya
6	*corresponding author, email; reaganngoge@gmail.com
7	
8	
9	Abstract
10	Introduction
11	We studied factors associated with the weekly occurrence of physical injuries in a rural
12	setting in Western Kenya to determine injury-related burden and risk exposures.
13	Methods
14	We recruited and followed 390 study participants (subjects) across 92 households for 12
15	weeks. We collected data weekly on the occurrence of injuries, individual, and household-
16	level independent variables using a standard interviewer-administered questionnaire
17	adapted from the WHO survey tool for injuries. Analyses related the occurrence of injuries
18	and independent variables using a multilevel Poisson regression model at P≤0.05,
19	adjusting for age and sex.
20	Results

We documented 44 injuries, coming from 38 subjects dwelling in 30 of the 92 study households. On average each study subject and household experienced 1.2 and 1.5 episodes of injuries across the 12 study weeks. Open wounds and bruises were the most frequent injuries, commonly reported among middle-aged and young subjects at 32.2 and 7.6 episodes per 1000-person week, respectively. The common cause of injuries among young, middle-aged, and old subjects were falls, road accidents, and person-related assault or hit by an object, each at 15.2, 18.9, and 11.4 episodes per 1000-person week, respectively. Making a visit outside the local sub-county (incidence rate ratio (IRR)=2.2, 95% CI 1.5, 3.1) and domesticating an animal (IRR=0.13, 95% CI 0.02, 0.72) predicted occurrence of the injuries.

31 Conclusions

We provide evidence of a higher burden of physical injuries associated with demographic, occupational, and societal risk exposures with the most injuries resulting from falls. Further studies could better define granular characteristics constituting these factors.

36 Key words; Injury, longitudinal study, western Kenya, exposures

38 Study strength and limitation

 The strength of this study lies in its longitudinal design, which ensured the temporal evaluation of risks differentiated by demographic, occupational, and societal exposures.

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

The analytical approaches adopted in this study accounted for the correlation of repeated measures within a subject, between subjects, and households.

- This study relied on self-reported responses of injuries, which is liable to bias and validity issues though earlier studies show self-reported data collected within seven days of ill health yields relatively sound and reliable findings.
- Longitudinal studies are susceptible to loss to follow up. However, our multilevel analytical approach effectively overcame this limitations.

Introduction

Globally, injuries impose an enormous public health burden and are projected to increase by 28% by 2030¹. Most injuries resulting from occupational risk exposures attributable to road traffic injury, violence, or self-inflicted injury, and falls are among the leading causes of disease burden^{1–3}. Although injury patterns remain to be well defined across different occupational settings, mobility-related injuries significantly increase disability-adjusted life years (DALYs) among individuals aged between 15 and 49 years calling for urgent interventions particularly in developing countries⁴.

In most developing countries, data on injuries are frequently obtained from hospital records^{1,3}. However, these records are collected under inadequate record-management systems, they are not population-wide representative in absence of injury-led surveillance systems, and are widely inaccessible contributing to underestimation of sub-

Page 5 of 30

68

BMJ Open

1	
2	
3	
4	
5	
5 6	
0 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41 42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	

national injury-related burden⁵. To address these gaps, self-reported data on injuries 63 could be obtained to estimate the associated burden⁵. Moreover, longitudinally collected 64 self-reported data on injuries could causally identify and quantify risk exposures, as well 65 as answering questions on the patterns and dynamics of acquiring injuries to better inform 66 public health interventions^{3,5}. 67

Past studies have identified demographic, occupational, and societal risk exposures of 69 70 injuries in Kenya. For instance, demographic changes have contributed to rural-urban migration, therefore, increasing movements associated with rising road accidents⁶, 71 affecting persons of all age groups⁷. However, resulting injuries from occupational 72 exposures including road accidents and falls among others could cause disabilities that 73 affect economically productive persons, leading to loss of wages and productivity, or 74 impact education among adolescents⁸. Additionally, societal risk exposures including 75 unsafe environments, poor enforcement of road safety regulations, inadequate road 76 networks, and poor access to quality health care interventions, contribute to the 77 increasing number of injuries in rural settings^{7,9}. However, the current understanding of 78 injury burden in Kenya country is still limited by inadequate epidemiological data and 79 surveillance systems^{9,10}. An alternative to address this challenge could be to longitudinally 80 81 collect data on the occurrence of injuries in rural settings¹⁰, to quantify the burden and assess patterns of injury by demographic, occupational, and societal risk exposures¹¹. 82

83

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Here, we conducted a longitudinal study for 12 weeks aiming at achieving two linked aims: 1) to determine the longitudinal patterns of injuries, and (2) to determine independent variables associated with physical injuries adjusting for study participants` age and sex. Materials and Methods Study site and selection of households The study site and selection of the households is mentioned elsewhere¹² and also in text 1S. In brief, the study area was in Suna-West sub-county in Migori County, Western Kenya, with Wasweta II ward, one of the four administrative wards within the Suna-West sub-county randomly selected as the study site. To select representative households, we generated 92 random geographical points using QGIS version 3.6.1, each with Global Positioning System (GPS) coordinates that we used to identify the study households¹². This study was conducted between August and October 2019. Study design, enrollment, and longitudinal follow-up of subjects. This study adopted a prospective cohort study design. We recruited 390 subjects from

the 92 randomly sampled households and followed them weekly for 12 weeks, excluding those aged <5 years due to the unreliable reporting of their injuries. On every Friday of each week of follow up, the household head received a phone call from the principal author to inquire about any report of an injury within the study week. A report of an injury in a household member triggered a visit to characterize the injury using a standard

1 2							
3 4	104	questionnaire st	ructured in a close	ed format by a trained research assistant. We conducted			
5 6 7	105	the questionna	ire survey in the	e local "Dholuo" language to ensure reliability and			
7 8 9	106	consistency of r	esponses.				
9 10 11 12 13	107						
14 15 16	108	Longitudinal d	ata collection				
17 18 19	109	We had alread	dy obtained infor	rmation on time-invariant factors relevant to socio-			
20 21	110	demographic, s	socio-economic,	and household-level variables during the baseline			
22 23	111	survey ¹² . Briefly, these included independent variables considered as demographic,					
24 25 26 27 28 29 30 31 32	112	occupational, societal risks broadly grouped at the individual and household levels.					
	113	Demographic factors at the individual level included sex grouped into male and female					
	114	subjects, and age categorized into those aged 5-17 years, 18-54 years, and >54 years					
	115	hereinafter denoted simply as young, middle-aged, and old subjects respectively (Table					
33 34 25	116	1). Three regions arbitrarily defined the study area into the top, bottom left, and bottom					
35 36 37	117	right according	to their geographic	cal positions (Figure 1S).			
38 39 40 41	118 119	Table 1: Des recruitment.	cription of the	e time-invariant variables collected during the			
42 43 44		Factors	Variable group Level	Factor levels			
44 45 46 47 48 49 50		Demographic	Individual-level Household- level	Age in years, gender Household sample size, the income of the household head, active medical insurance, house floor type, house roof type, house wall type, source of drinking water, mode of water treatment, human waste destination, defecation location, trash disposal			
51 52 53 54		Occupational	Individual-level Household- level	Employment type, education level Domesticated animals			
55 56 57 58 59				6			

1 2						
3 4 5	120					
6 7	121	The weekly follow-up surve	ey collected time-variant data consisting of the occurrence of			
8 9	122	injuries, causes, nature, and	d severity, based on the WHO survey tool for injuries ¹³ (Table			
10 11 12	123	2). Time-variant risk factor	s included, among others, the societal risks including the			
13 14	124	presence of visible stagnan	t water within household compounds due to rain and reported			
15 16	125	illness or death among the	domesticated animals. In each week of study, we linked time-			
17 18 19	126	variant data to the time-inva	ariant data collected at baseline for each subject.			
20 21	127	Table 2: Description of the	e time-variant variables collected weekly (n=12)			
22 23		Variable group Level	Variable			
24 25		Household factors	Household size, ill domestic animals, animal death, source of drinking water, mode of water treatment, human waste			
26 27 28		Individual factors	destination, defecation location, trash disposal Visit outside the local sub-county, Injuries by severity, mechanisms, nature, and intent			
29 30		Environmental factors	Presence of stagnant water due to rain			
31 32	128					
33 34 35	129	Estimating the association between injuries and independent variables				
36 37	130	Adjusting for correlation of	responses at the subject- and household levels, we fitted			
38 39 40	131	generalized mixed effect m	odels (GLMM) with a Poisson error distribution and a log link			
41 42	132	function to examine the effe	ect of the independent variables on injuries in two steps. First,			
43 44	133	we conducted a univariable	analysis using a less-restrictive level of significance of P≤0.1			
45 46 47	134	to identify single significant risk factors. Our GLMMs were implemented in a Bayesian				
48 49	135	setting using the bglmer f	function in R software ^{14,15} . Secondly, we conducted a			
50 51	136	multivariable analysis to ide	ntify significant independent variables associated with injuries			
52 53	137	at P≤0.05. All GLMMs ac	lopted a maximum likelihood approach using Laplace			
54 55 56 57	138	approximation with flat cov	variance priors and normal fixed priors, with the household-7			
58 59		For peer review (only - http://bmiopen.bmi.com/site/about/quidelines.xhtml			

and individual- group ID included as the random effects. We examined time-invariant and time-variant risk factors described in Tables 1 and 2 respectively and included them as fixed effects in the model. In the multivariable analyses step, we forced age and gender in the models to account for their confounding characteristics. The final model was selected using the backward-stepwise selection process, whereby variables that were not contributing significantly to predicting the study outcome were successively eliminated based on low values of Akaike information criterion (AIC) and Bayesian information criterion (BIC), signifying a better-fitted model. Our 3-multilevel data structure organized as follows and fitting a multilevel Poisson model: Level 3: households, Level 2: individual household member, and Level 1: repeated weekly measures. All analysis in this study was conducted using R version 3.6.2¹⁴ Ethical review statement We sought ethical clearance for this study from AMREF Health Africa, which was approved under application number P635/2019. Subjects over 18 years of age provided their consent to participate in the study, while parental consent was sought for those aged between 5 and 17-years. Results Subject-level characteristics

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Descriptive characteristics of study subjects collected at recruitment are reported elsewhere¹². Briefly, of the 390 study subjects, 55% were female. The average age and standard deviation of study subjects were 26.5 and 19.6 years respectively, ranging from 5 to 83 years. 53% were still schooling while 84% had attained some primary education.

165 Enrollment and retention of subjects

The enrollment and retention of the study subjects across the study weeks are reported elsewhere¹². Briefly, we followed 390 study subjects across the recruited 92 households weekly for 12 weeks. In total, we obtained 4261 reports covering August to October 2019 against the expected 4680 reports, yielding a response rate of 91% (Figure 1). We consistently obtained reports in each week of follow-up without missing data from 188 (48%) of the 390 study subjects (Figure 1). These 188 study subjects were members of 47 (51%) of the 92 study households. Only 15 study subjects distributed across 4 households were lost to follow up (Figure 1).

Longitudinal distribution of subjects reporting an injury.

176 Of the 4261 reports obtained, 592 (14%) described an illness eligible to be investigated 177 for injuries of which 44 (7.4%) documented an injury. Across time, injury frequencies 178 overlapped between male and female subjects (Figure 1).

Page 11 of 30

BMJ Open

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

60

In the 12 weeks of follow-up, the 44 reports came from 38 subjects constituting 10% of the entire 390 study subjects (Figure 2). Of these 38 subjects, 55% were female. Additionally, of these 38 subjects, 34% belonged to the young age category, while 50% and 16% belonged to the middle and old age categories. Each of the 38 study subjects had on average, 1.2 episodes of injuries across the 12 weeks of follow-up, yielding a mean of 17 injuries per 100 weeks (approximately two years).

186 The findings profile is summarized in a schematic diagram (Figure 2)

187 Demographic factors and nature of injuries

The nature of injuries tallied in the 44 injury reports were 64% cuts and open wounds, 20% bruises and superficial injuries, 7% dislocations, 5% animal bites, while we tallied burns and fractures in 2.3% of the reports, respectively. Of the 44 reports, females (59%) were more likely to report injuries compared to males (P>0.05). On the other hand, the distribution of the 44 reports was 34%, 52%, and 14% among young, middle-aged, and older subjects, respectively.

Table 3 shows the distribution of demographic factors and the nature of the injuries. While
cuts and wounds were the most often reported among the middle-aged subjects, bruise
were the most often reported among the young subjects (Table 3).

Table 3: Distribution of demographic factors and nature of the injury

Nature of injury	Age group	Female	Male	Injury/ 1000 subject/ week	95% CI
					10

	Cuts, c	5-17 years	4 (14%)	5 (18%)	17.0	[16.4, 49.3
	wound	18-54 years	11 (39%)	6 (21%)	32.2	[31.3, 93.6
		> 54 years	1 (4%)	1 (4%)	3.8	[3.6,10.9
	Bruises,	5-17 years	1 (11%)	3 (33%)	7.6	[7.3, 21.8
	superficial inj	ury 18-54 years >54 years	2 (22%) 2 (22%)	1 (11%) 0 (0%)	5.7 3.8	[5.4, 16.4 [3.6, 10.9
199	Dislocation, ar	nimal bites, fractures	· · · /	. ,		-
200	gender		,			eree age a
	0					
201						
202	Cause of inju	ries and occupatio	nal factors			
203	Irrespective of	age and gender, 30)%, 25%, and	23% of the	44 reports resu	ulted from fal
	·					
204	(n=13), person	related assault or h	nit by an objec	ct (n=11), ar	nd road acciden	ts arising fro
						a ha annta fua
205	venicies or mo	otorcycles (n=10) re	spectively. In	he rest 10 Ir	njuries were du	e to cuts tro
206	sharp objects	animal bites, and fir	e burns (Tab	le 4)		
200	onarp objecto,			O 1).		
207	Of the 11 repo	rts of injuries, 18 (41	1%) and 26 (5	0%) reports	came from sch	ool-aoina ar
207	Of the 44 lepo		1 /0) and 20 (3			looi-going ai
208	non-school-go	ing subjects, respec	tively. When	classified by	/ the most frequ	ently reporte
	5	5 3 7 1	,		•	5
209	injuries, falls (n=13) were more li	ikely (62%) to	be report	ed by school-g	oing subject
• • •	Deve en veleter		······················		l a a a a la mata da	10)
210	Person-related	l assault or hit by a	n object (n=1	1) and road	accidents (n=	10) were 64
211	and 80% more	likely to be reported	d by non-sch	nol agina su	biects respecti	velv
211				or going ou		very
242						
212						
213	Table 4: Distr	ibution and causes	s of iniury by	sex and a	ae.	
215						
	Cause of				Injury/ 1000	
	injury	Age group	Female	Male	subject/	
		5 17 10000	A (240/)	1 /210/ \	week	95% CI
	Falls	5-17 years 18-54 years	4 (31%) 2 (15%)	· · ·	15.2 5.7	[14.6, 43.8 [5.4, 16.4
		>54 years	2 (15%)		5.7 3.8	[3.4, 10.4

[3.6, 10.9]

[5.4, 16.4]

[10.9, 32.8]

2 (15%)

0 (0%)

2 (18%)

0 (0%)

3 (27%)

4 (36%)

3.8

5.7

11.4

>54 years

5-17 years

18-54 years

Person-related

assault or hit

59 60

52

53 54

55 56

1 2							
3		by an object	>54 years	2 (18%)	0 (0%)	3.8	[3.6, 10.9]
4 5		Road	5-17 years	0 (0%)	0 (0%)	0.0	[0.0, 0.0]
6		accidents	18-54 years >54 years	6 (60%) 0 (0%)	4 (40%) 0 (0%)	18.9 0.0	[18.3, 54.8]
7 8	214	Cuts from share	objects, animal bit		<u> </u>		[0.0, 0.0] ces across
9 10	215	age and gender		,			
11 12	216						
13							
14 15	217	Univariable an	alyses				
16							
17 18 19	218	We used univar	iable Poisson regre	ssion analysis	factoring in the	e correlatior	of responses
20 21	219	at individual ar	d household level	s. The analys	sis, assessed	the relation	ship between
22 23	220	dichotomized re	porting of an injury	(yes versus n	io) and indepe	ndent variat	oles, returning
24 25	221	two significant f	actors at P<0.1. Of	these two fac	ctors, visits out	side the loc	al sub-county
26 27	222	of residence wa	s the only significar	it factor at the	subject level (F	P<0.001). Th	ne household-
28 29 30	223	level significant	factor included ow	ning a domes	stic animal (<i>P</i> =	0.0081). Ac	lditionally, the
31 32	224	time in weeks t	reated as a risk fa	ctor turned sig	gnificant (P<0.0	001). Howe	ver, the area-
33 34	225	level variable w	as not significant (1	able 1S)			
35 36	225						
37 38	226	Multilevel Pois	son regression M	odelling			
39							
40 41 42	227	Adjusting for ag	e and sex, the mu	ltilevel Poisso	n regression n	nodel factor	ing individual,
42 43 44	228	and household	random effects retu	rned two signi	ificant factors a	it P≤0.05. T	hese included
45 46	229	making visits ou	tside the local sub-	county (P=0.0	07), domestica	ting an anin	nal (P=0.020),
47 48	230	and the study w	eek (P=0.038). The	e risk of report	ting an injury de	ecreased by	10% weekly.
49 50	231	Subjects who r	nade a visit outsid	e the local si	ub-county were	e 2-fold hig	her at risk of
51 52 53	232	reporting a phys	sical injury at any st	udy week com	pared to those	who did no	t make a visit.
54							
55 56							12
57							
58 59		_					

- 233 Subjects who domesticated animals were 87% less likely to report injuries at any study
- 234 week than those who did not domesticate animals (Table 5).

Table 5: A Random-intercept Poisson regression model analysis for injuries

Variable	Levels	IRR*	IRR (95% CI)	P-value
Week		0.90	[0.82, 0.99]	0.038
Visits outside	Yes	2.16	[1.54, 3.11]	0.007
	No	Ref.		
Domesticate animals	Yes	0.13	[0.02,0.72]	0.020
	No	Ref.		
Gender	Male	0.87	[0.37, 2.04]	0.748
	Female	Ref.		
Age		1.00	[0.99, 1.03]	0.454
Random parameter				
Variance	Household (Level 3)	0.63		
	Study participant (Level 2)	4.05		
	Residual (Level 1)	8.28		

C.

236 *IRR-incident rate ratio; AIC 464.9; BIC 515.8; Log likelihood -224.5; Deviance 448.9

238 Discussion

This study aimed to investigate factors associated with the weekly occurrence of physical injuries in a rural setting in Western Kenya. We determined the unique differences in nature, source, and risks resulting from occupational, societal, and demographic exposures associated with injuries. Injuries were more frequently reported by female subjects than males though the difference was non-significant. Moreover, the common cause of injuries among young, middle-aged, and older subjects were falls, road accidents, and person-related assault or hit by an object, respectively. We classified these causes into occupational, and societal risk exposures resulting from making visits outside

BMJ Open

the local sub-county and owning a domestic animal that independently predicted the occurrence of injuries.

Injuries were more often reported by middle-aged subjects relative to other age groups suggesting age-related differential exposures. Previous studies disproportionately link high injury frequencies among adults and communities with low education and poverty levels similar to our setting^{16,17}. Indeed, the majority (70%) of the middle-aged subjects reporting injuries had primary or no education, earning a low monthly income of >10,000KES (~100USD). The more frequent reports from female subjects that we found contrasted with findings from a cross-sectional study conducted elsewhere in Kenya¹⁸, perhaps due to more women taking up more strenuous roles in male-dominated sectors¹⁹. This finding suggested varied risk exposures between gender and their physical or social environments. People with low levels of education especially in rural settings are more likely to engage in occupations with elevated risks for injuries. Hence, there is a need for targeted public health interventions to promote home and occupational safety in rural areas¹⁷.

We documented 0.21 injuries weekly from 34% of the 87 study households that reported an illness with the majority (61%) of the injuries resulting from falls and person-related assault or hit by an object. These injuries perhaps resulted from the essential daily activities including household chores, farming, and schooling among others, which could BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

have potentially advanced the risk of physical injuries. Indeed, while previous studies associate such essential activities and occupations to the occurrence of unintentional injuries across all age groups, gaps still exist in their documentation as well their subsequent social and economic impacts in rural setting²⁰. Nonetheless, preventable injuries could be overcome by investing in home or occupation safety in rural areas²¹.

Owning a domestic animal was unexpectedly associated with an 87% reduced risk of reporting injuries, signaling the minimal exposure with injury-prone inanimate farm machines, tools, or structures in livestock farming. Indeed, the unique nature of farms where animals are raised under mixed crop-livestock systems including tethering close to homesteads¹⁹. Nevertheless, there is still a need to create awareness on occupational safe handling of domestic animals^{22,23}.

Under the societal exposure of injuries, subjects making visits outside the sub-county of residence were 2-fold higher at risk of reporting injuries perhaps due to increased use of motorcycles as a mode of transport^{24,25}. Motorcycles are beginning to be a frequent cause of injuries in Kenya arising from crashes due to varied factors²⁶. Indeed, all motorcycle and vehicle-related injuries were most frequent among subjects aged between 18 and 54 years compared to other age categories since this group is generally more active and productive while seeking livelihoods. Previous studies associate adults aged above >18 years with risky behaviors such as drunk riding, failing to wear a helmet while riding, riding

1 2		
2 3 4	289	excess passengers, and speeding among others ^{26,27} . For these reasons, road safety
5 6 7	290	interventions should be instituted to reduce related injuries ²⁸ .
8 9	291	
10 11 12	292	Conclusion
12 13 14	293	The study established the existence of occurrences of physical injuries in a rural setting.
15 16	294	Subjects who made a visit outside the sub-county of residence were more likely to report
17 18 19	295	injuries relative to those who did not. Further, subjects within households domesticating
20 21	296	animals were less likely to report injuries relative to those who did not domesticate
22 23	297	animals. These findings suggest that tackling increasing risk exposures in rural western
24 25 26	298	Kenya, using targeted public health interventions could effectively reduce injuries across
27 28	299	all age groups.
29 30	300	
31 32 33	301	1. Conflict of interest
34 35	302	None of the authors have any relationship or received any financial support from any
36 37	303	individual or an organization that could inappropriately influence the goal of this paper.
38 39 40	304	
41 42	305	2. Acknowledgment
43 44	306	We are grateful to Duncan Ogutu and Phillip Misiani, for their support in the community
45 46	307	and the participation of household members of the Wasweta II ward.
47 48 49	308	
50 51	309	3. Funding
52 53	310	No financial support was received for the research, authorship, or publication.
54 55 56	311	
50 57 58		16
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

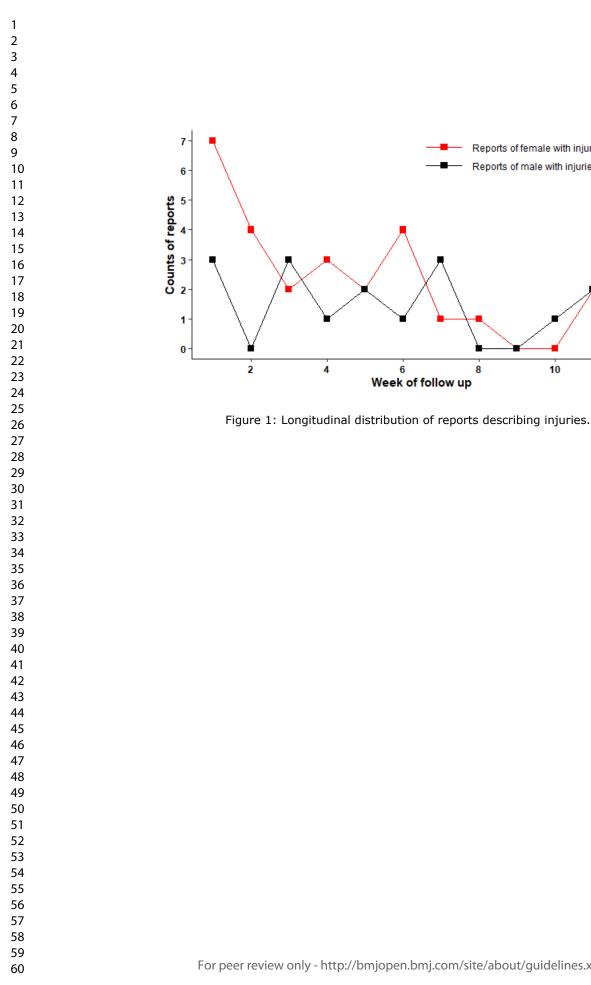
2 3 4 5	312	What is already known on the subject?				
6 7 8	313	 Injuries are among the leading cause of disability worldwide, with a higher 				
8 9 10	314	burden in developing countries.				
11 12	315	• Due to limited data, few studies have examined the injury-related burden				
13 14 15	316	and risk exposures in rural settings in developing countries.				
15 16 17 18 19	317	What this study adds				
20 21	318	Mobility out of subjects residence location predicted the weekly occurrence				
22 23 24	319	of injuries in western Kenya.				
25 26	320	• Falls, road accidents, and person-related assault or hit by an object was the				
27 28	321	common cause of weekly injuries across all age groups in western Kenya.				
29 30 31	322	Longitudinal quantification of the weekly occurrence of injuries by sex and				
32 33	323	age				
34 35 36	324					
37 38 39 40	325	References				
41 42	326	1. Diamond, M. B. <i>et al.</i> Prevalence and risk factor for injury in sub-Saharan Africa:				
43 44 45	327	A multicountry study. Inj. Prev. 24, 272–278 (2018).				
46 47	328	2. Onywera, V. O. & Blanchard, C. Accidentes de carretera: ¿La tercera causa de				
48 49 50	329	'enfermedad' en el África subsahariana? Global Health Promotion vol. 20 52–55				
51 52	330	(2013).				
53 54 55 56 57	331	3. Garcia, P. J. Global burden of injuries: it is time to understand the data in order to				
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

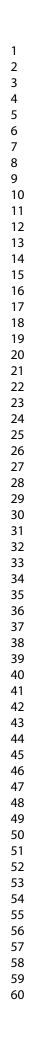
1 2			
3 4	332		intervene. <i>Inj. Prev.</i> 26 , i1–i2 (2020).
5 6 7	333	4.	Pant, P. R. et al. Burden of injuries in Nepal, 1990-2017: Findings from the Global
8 9 10 11 12 13 14	334		Burden of Disease Study 2017. Inj. Prev. 0, 1–10 (2019).
	335	5.	Bhalla, K. et al. Data Sources for Improving Estimates of the Global Burden of
	336		Injuries: Call for Contributors. PLOS Med. 6, e1000001 (2009).
15 16 17	337	6.	Gathecha, G. K. et al. Prevalence and predictors of injuries in Kenya: Findings
18 19 20	338		from the national STEPs survey 11 Medical and Health Sciences 1117 Public
21 22	339		Health and Health Services. BMC Public Health 18, 1222 (2018).
23 24 25	340	7.	Gathecha, G. K., Githinji, W. M. & Maina, A. K. Demographic profile and pattern of
26 27 28 29 30 31 32 33 34 35 36 37	341		fatal injuries in Nairobi, Kenya, January-June 2014. BMC Public Health 17 , 1–7
	342		(2017).
	343	8.	Bachani, A. M. et al. Adolescent and Young Adult Injuries in Developing
	344		Economies: A Comparative Analysis from Oman and Kenya. Ann. Glob. Heal. 83,
	345		791–802 (2017).
38 39 40	346	9.	Janeway, H., O'Reilly, G., Schmachtenberg, F., Kharva, N. & Wachira, B.
41 42	347		Characterizing injury at a tertiary referral hospital in Kenya. PLoS One 14,
43 44 45	348		e0220179 (2019).
46 47 48	349	10.	Botchey, I. M. et al. Epidemiology and outcomes of injuries in Kenya: A multisite
48 49 50	350		surveillance study. Surg. (United States) 162, S45–S53 (2017).
51 52 53	351	11.	Haagsma, J. A. et al. The global burden of injury: Incidence, mortality, disability-
54 55	352		adjusted life years and time trends from the global burden of disease study 2013.
56 57 58			18
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

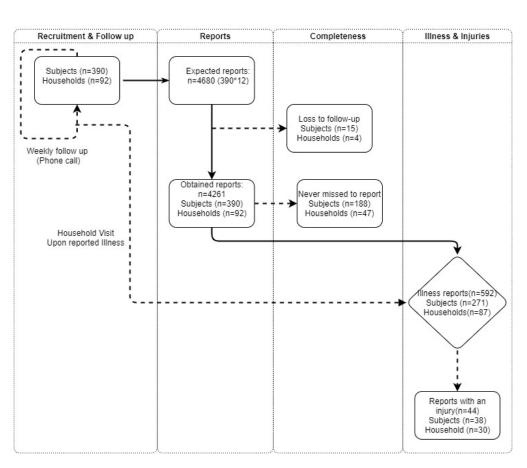
2 3	353		Inj. Prev. 22 , 3–18 (2016).
4 5	000		
6 7	354	12.	Chweya, R. N., Mambo, S. N. & Gachohi, J. M. The occurrence of self-reported
8 9	355		illnesses and their analyses into influenza-like and gastrointestinal syndromes in a
10 11	356		rural community in Western Kenya, 2019. Int. J. Community Med. Public Heal. 8,
12 13 14	357		1–9 (2021).
15 16 17	358	13.	Sethi D et al. GUIDELINES FOR CONDUCTING COMMUNITY SURVEYS ON
18 19 20	359		INJURIES AND VIOLENCE. www.inis.ie (2004).
21 22	360	14.	R Core Team. R: A language and environment for statistical computing.
23 24 25	361		https://www.r-project.org/ (2019).
26 27	362	15.	Vincent Dorie, A. et al. Package 'blme' Title Bayesian Linear Mixed-Effects
28 29 30	363		Models Description Maximum a posteriori estimation for linear and generalized
31 32	364		linear mixed-effects models in a Bayesian setting. Extends 'lme4' by. (2016).
33 34 35	365	16.	Gielen, A. C., McDonald, E. M. & Shields, W. Unintentional Home Injuries Across
36 37	366		the Life Span: Problems and Solutions. Annu. Rev. Public Health 36, 231–253
38 39 40	367		(2015).
41 42	368	17.	Ferrante, P., Marinaccio, A. & lavicoli, S. Home injuries in Italy: Patterns of injury
43 44 45	369		and the most exposed people. Int. J. Inj. Contr. Saf. Promot. 20, 36-41 (2013).
46 47 48	370	18.	Gathecha, G. K. et al. Prevalence and predictors of injuries in Kenya: findings
49 50	371		from the national STEPs survey. BMC Public Health 18, 1222 (2018).
51 52 53	372	19.	Abdalla, S., Apramian, S. S., Cantley, L. F. & Cullen, M. R. Occupation and Risk
54 55 56	373		for Injuries. in Disease Control Priorities, Third Edition (Volume 7): Injury
57 58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2				
2 3 4	374		Prevention and Environmental Health 97–132 (The World Bank, 2017).	
5 6 7	375		doi:10.1596/978-1-4648-0522-6_ch6.	
8 9	376	20.	Odero, W., Polsky, S., Urbane, D., Carel, R. & Tierney, W. M. Characteristics of	
10 11 12	377		injuries presenting to a rural health centre in western Kenya. East Afr. Med. J. 84	4,
12 13 14	378		367–373 (2007).	
15 16 17	379	21.	Tayeb, S. El, Abdalla, S., Mørkve, O., Heuch, I. & Van den Bergh, G. Injuries in	
18 19	380		Khartoum state, the Sudan: A household survey of incidence and risk factors. In	t.
20 21 22	381		J. Inj. Contr. Saf. Promot. 21 , 144–153 (2014).	
23 24	382	22.	Langley, R. L. Animal-related fatalities in the United States - An update.	
25 26 27	383		Wilderness Environ. Med. 16, 67–74 (2005).	
28 29	384	23.	Weaver, J. L. et al. Danger on the Farm: A Comparison of Agricultural and	
30 31 32	385		Animal-Related Injuries. Am. Surg. 83, 507–511 (2017).	
33 34 35	386	24.	Lin, MR., Chang, SH., Huang, W., Hwang, HF. & Pai, L. Factors associated	
36 37	387		with severity of motorcycle injuries among young adult riders. Ann. Emerg. Med.	'
38 39 40	388		41 , 783–791 (2003).	
41 42	389	25.	Solagberu, B. A. et al. Motorcycle injuries in a developing country and the	
43 44	390		vulnerability of riders, passengers, and pedestrians. Inj. Prev. 12, 266–268	
45 46 47	391		(2006).	
48 49 50	392	26.	Ngari, P. M., Gachohi, J. & Ngure, P. K. PREVALENCE AND FACTORS	
51 52	393		ASSOCIATED WITH COMMERCIAL MOTORCYCLE ACCIDENTS IN EMBU	
53 54	394		COUNTY, KENYA. Journal of Health, Medicine and Nursing vol. 5 www.iprjb.org]
55 56 57				20
58 59				
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2		
3 4 5	395	(2020).
6 7	396	27. Al-Aamri, A. K., Padmadas, S. S., Zhang, L. C. & Al-Maniri, A. A. Disentangling
8 9	397	age-gender interactions associated with risks of fatal and non-fatal road traffic
10 11 12	398	injuries in the Sultanate of Oman. BMJ Glob. Heal. 2, e000394 (2017).
13 14	399	28. Lin, MR. & Kraus, J. F. A review of risk factors and patterns of motorcycle
15 16 17	400	injuries. Accid. Anal. Prev. 41 , 710–722 (2009).
18 19 20	401	
21 22 23	402	Figure legend
24 25 26	403	Figure 1: Longitudinal distribution of reports describing injuries.
27 28	404	Figure 2:Schematic diagram showing the flow of the profile of the descriptive
29 30	405	findings.
31 32 33	406	tindings.
34 35		
36 37 38		
39 40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57 58		2
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


8


Reports of female with injuries


10

12

Reports of male with injuries

258x226mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

<section-header>1 1. Figures S1

Figure 1: Map of the study area. Left: A map of Kenya sub-counties showing the location (arrow) of Suna West subcounty. Middle: a map of Suna West sub-county showing the location of our specific study area, Wasweta II ward (black polygon). Right: a map of Wasweta II ward showing the location of randomly sampled households (black points). The red circle in the middle of the study site is the geospatially computed mean centre of household locations. The purple and brown large circles are centrographic standard distance and standard deviational ellipse of household locations, respectively. The study area was arbitrarily divided into three regions (top, bottom left and bottom right). The scale applies to Wasweta II ward only.

Bottom left region

- ⁴² 43 13 Source: (Chweya et al., 2021)
- 45 14
 - **Reference**

 Chweya, R. N., Mambo, S. N., & Gachohi, J. M. (2021). The occurrence of selfreported illnesses and their analyses into influenza-like and gastrointestinal syndromes in a rural community in Western Kenya, 2019. *International Journal Of Community Medicine And Public Health*, 8(5), 1–9. https://doi.org/10.18203/2394-6040.ijcmph20211390

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Risk factor	Factor levels	Inju	P-values	
		Present (%)	Absent (%)	
Gender	Female	26 (59)	2275 (54)	0.713
	Male	18 (41)	1942 (46)	
Employment type	Non-school going ¹	26 (59)	1993 (47)	0.193
	School going	18 (41)́	2224 (53)	
Education level	Post-primary	9 (20)	640 (16) ́	0.860
type	Primary	35 (80)	3343 (84)	
Household				
Household	0-10,000	35 (80)	3456 (82)	0.932
income	>10,000 ²	9 (20)	761 (18)	
Insurance cover	Yes	10 (23)	728 (17)	0.648
	No	34 (77)	3489 (83)	••••
Floor-type	Cement floor	11 (25)	620 (15)	0.458
	Earth floor	33 (75)	3597 (85)	0.100
Wall type	Brick wall	8 (18)	549 (13)	0.634
Wan type	Mud wall	36 (82)	3668 (87)	0.004
Roofing type	Iron/aluminum sheets	44 (100)	4107 (97)	0.749
Rooming type	Thatch roofing	0 (0)	110 (3)	0.749
Drinking water	Other sources ²		3045 (72)	0.121
Drinking water source	River	24 (55)	· · /	0.121
		20 (46)	1172 (28)	0 500
Treating drinking	Yes	37 (84)	3418 (81)	0.599
water	No Filtration on deconstation	7 (16)	799 (19)	0 4 0 4
Water treatment	Filtration or decantation	17 (46)	1263 (38)	0.131
method	Chlorine or boiling	20 (54)	2099 (62)	0.400
Waste destination	Pit latrine	40 (91)	3906 (93)	0.493
	Open defecation	4 (9)	311 (7)	
Trash disposal	Garbage pit	30 (68)	3158 (75)	0.518
	Garden disposal	14 (32)	1059 (25)	
Domesticate	Yes	40 (91)	4091 (97)	0.008
animal	No	4 (9)	126 (3)	
No. of animal	0	4 (9)	126 (3)	0.086
species ³	1	1 (2)	303 (7)	
	2 3	3 (7)	518 (12)	
		18 (41)	1113 (27)	
	4	15 (34)	1305 (31)	
	5	3 (7)	600 (14)	
	6	0 (0)	252 (6)	
III animal	Yes	9 (22)	700 (17)	0.371
	No	31 (78)	3391 (83)	
Animal death	Yes	3 (9)	211 (5)	0.411
	No	29 (91)	3526 (95)	
Visible stagnant	Yes	6 (14)	531 (13)	0.716
water	No	38 (86)	3686 (87)	

Table S1: Distribution and analyses of reports of injuries by risk factors across the follow-up period

BMJ Open

Visits outside	Yes	11 (25)	241 (5)	<0.000
study site	No	33 (75)	3976 (95)	
Region ⁴	Тор	15 (34)	1423 (34)	0.942
-	Bottom right	14 (32)	1123 (26)	
	Bottom left	15 (34)	1671 (40)	

Consist of a study participant with formal or informal employment;²Other sources consist of springs, wells, municipal water, and rainwater; ³Consist of the generated regions of the study site;⁴Consist of domesticated animals, cattle, sheep, goats, poultry, dogs, and cats

tor beer teriew only

1 Text S1

2 Study site and selection of households

The study site and selection of the households is mentioned elsewhere¹. In brief, the study area was in Suna-West sub-county in Migori County, Western Kenya, with Wasweta II ward, one of the four administrative wards within the Suna-West sub-county randomly selected as the study site. To select representative households, we generated 92 random geographical points using QGIS version 3.6.1, each with Global Positioning System (GPS) coordinates within the study site. These coordinates were collected using the ODK Collect[®] application² on a smartphone. We tracked each of these points on the ground to identify the nearest household to each of these points and approached them for recruitment. Subsequently, we requested the household heads of these households on whether they could allow members of their households to participate in the study before obtaining written informed consent. A map of the household points was generated using R studio version 3.5.3³, to visualize their spatial distribution and to easily identify the households during follow-up visits. The Average Nearest-Neighbour index (ANNI) determined the extent of the random distribution of the sampled households^{4,5}. This study was conducted between August and October 2019.

- 45 18

References

- Chweya, R. N., Mambo, S. N. & Gachohi, J. M. The occurrence of self-reported illnesses and their analyses into influenza-like and gastrointestinal syndromes in a rural community in Western Kenya, 2019. *Int. J. Community Med. Public Heal.* 8, 1–9 (2021).
- 25 2. Hartung, C. et al. Open Data Kit: Tools to Build Information Services for

1 2			
3 4	26		Developing Regions. (2010).
5 6 7	27 28	3.	RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. (2015).
, 8 9 10	29 30	4.	Jacques, G. M. A k NEAREST NEIGHBOUR TEST FOR SPACE–TIME INTERACTION. <i>Stat. Med.</i> 15 , 1935–1949 (1996).
11 12 13	31 32	5.	Wilson, R. & Din, A. Calculating Varying Scales of Clustering Among Locations. Cityscape: A Journal of Policy Development and Research vol. 20 (2018).
$\begin{array}{c} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 546\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$	33		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			i or peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1, 2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	2-4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
U		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	N/A
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6,7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6,7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7,8
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7,8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	7,8
		(c) Explain how missing data were addressed	2
		(d) If applicable, explain how loss to follow-up was addressed	7,8
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	8
	10	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	10
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9,
- compare and		and information on exposures and potential confounders	10,
			11 9
		(b) Indicate number of participants with missing data for each variable of interest	9
		(c) Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Report numbers of outcome events or summary measures over time	9,10

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	12,1
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	12,1
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	9-11
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	2,3
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15,
		multiplicity of analyses, results from similar studies, and other relevant evidence	16
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	N/A
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Demographic, occupational, and societal risk exposures to physical injuries in a rural community in western Kenya: a 12-week longitudinal study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053161.R1
Article Type:	Original research
Date Submitted by the Author:	03-Aug-2021
Complete List of Authors:	Chweya, Reagan; Jomo Kenyatta University of Agriculture and Technology, Mambo, Susan ; Jomo Kenyatta University of Agriculture and Technology, School of Public Health Gachohi, John; Jomo Kenyatta University of Agriculture and Technology, School of Public Health ; Washington State University, Global Health Program Kenya
Primary Subject Heading :	Public health
Secondary Subject Heading:	Public health, Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

2	
3	
4	
5	
6	
7	
8	
9	
3 4 5 6 7 8 9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
20	
30	
 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 48	
40 49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Demographic, occupational, and societal risk exposures to physical injuries in a
2	rural community in western Kenya: a 12-week longitudinal study
3	Chweya RN ^{1*} , Mambo SN ¹ , Gachohi JM ^{1,2} .
4	1: School of Public Health, Jomo Kenyatta University of Agriculture and Technology
5	2: Washington State University, Global Health Program Kenya
6	*Corresponding author, email; reaganngoge@gmail.com
7	
8	Abstract
9	Objective: We studied factors associated with the weekly occurrence of physical injuries
10	in a rural setting to determine injury-related burden and risk exposures.
11	Design: Prospective cohort study.
12	Setting: Suna-West sub-county, Migori County, Western Kenya.
13	Participants: 390 study participants (subjects) cluster sampled from 92 households,
14	recruited, and followed for 12 weeks, between August and October 2019.
15	Methods: We collected data weekly on occurrence of injuries, individual, and household-
16	level independent variables using a standard interviewer-administered questionnaire
17	adapted from the World Health Organization (WHO) survey tool for injuries. Analyses
18	related occurrence of injuries and independent variables using a multilevel Poisson
19	regression model at P≤0.05, adjusting for age and sex.
20	Outcome measures: Quantifying injury burden and patterns by demographic,
21	occupational, and societal risk exposures.

Page 3 of 30

BMJ Open

Results: We documented 44 injuries, coming from 38 subjects dwelling in 30 of the 92 study households. On average each study subject and household experienced 1.2 and 1.5 episodes of injuries across the 12 study weeks. Open wounds and bruises were the most frequent injuries, commonly reported among middle-aged (18-54 years) and young (5-17 years) subjects at 32.2 and 7.6 episodes per 1000-person week, respectively. The common cause of injuries among young, middle-aged, and old subjects (>54 years) were falls, road accidents, and person-related assault or hit by an object, each at 15.2, 18.9, and 11.4 episodes per 1000-person week, respectively. Subjects not domesticating animals (incidence rate ratio (IRR)=7.6 95% CI 1.4, 41.7) and those making a visit outside the local sub-county of residence (IRR=2.2, 95% CI 1.5, 3.1) were at higher risk of reporting injuries.

Conclusions: We provide evidence of a higher burden of physical injuries associated with demographic, occupational, and societal risk exposures with the most injuries resulting from falls. Further studies could better define granular characteristics constituting these factors.

Study strength and limitation

- We evaluated temporal risks of injuries by demographic, occupational, and societal exposures.
- We analytically controlled for the correlation of injury responses across time, between subjects, and households.

Self-reports of injuries are prone to bias, however, when collected within seven days yielded reliable findings, with the weekly decrease suggesting response fatigue.

Our multilevel analytical approach overcame the effect of loss to follow up.

Injuries may vary by time of year/season, however, the short study period meant a possibility of a fairly small number of injuries and not capturing all cases.

Introduction

Globally, injuries impose an enormous public health burden and are projected to increase by 28% by 2030¹. Most injuries resulting from occupational risk exposures attributable to road traffic injury, violence, or self-inflicted injury, and falls are among the leading causes of disease burden in sub-Saharan Africa¹⁻³. Although injury patterns remain to be well defined across different occupational settings, mobility-related injuries significantly increase disability-adjusted life years (DALYs) among individuals aged between 15 and 49 years calling for urgent interventions particularly in developing countries⁴.

In most developing countries, data on injuries are frequently obtained from hospital records^{1,3}. However, these records are collected under inadequate record-management systems, they are not population-wide representative in absence of injury-led surveillance systems, and are widely inaccessible contributing to underestimation of sub-national injury-related burden⁵. To address these gaps, self-reported data on injuries

Page 5 of 30

BMJ Open

2	
3 4	64
5 6	65
7 8	66
9 10 11	67
12 13 14 15	68
16 17	69
18 19 20	70
21 22	71
23 24	72
25 26 27	73
28 29	74
30 31	75
32 33 34	76
35 36	77
37 38	78
39 40 41	79
42 43	80
44 45	81
46 47 48	82
49 50 51	83
52 53 54	
55	
56 57	
58 59	
52	

could be obtained to estimate the associated burden⁵. Moreover, longitudinally collected 64 self-reported data on injuries could causally identify and quantify risk exposures, as well 65 as answering questions on the patterns and dynamics of acquiring injuries to better inform 66 public health interventions^{3,5}. 67

69 Past studies have identified demographic, occupational, and societal risk exposures of 70 injuries in Kenya. For instance, demographic changes have contributed to rural-urban 71 migration, therefore, increasing movements associated with rising road accidents⁶, affecting persons of all age groups⁷. However, resulting injuries from occupational 72 exposures including road accidents and falls among others could cause disabilities that 73 affect economically productive persons, leading to loss of wages and productivity, or 74 impact education among adolescents⁸. Additionally, societal risk exposures including 75 unsafe environments, poor enforcement of road safety regulations, inadequate road 76 networks, and poor access to quality health care interventions, contribute to the 77 increasing number of injuries in rural settings^{7,9}. However, the current understanding of 78 injury burden in Kenya is still limited by inadequate epidemiological data and surveillance 79 systems^{9,10}. An alternative to address this challenge could be to longitudinally collect data 80 on the occurrence of injuries in rural settings¹⁰, to quantify the burden, and assess 81 82 patterns of injury by demographic, occupational, and societal risk exposures¹¹.

BMJ Open

Here, we conducted a longitudinal study for 12 weeks aiming at achieving two linked aims: 1) to determine the longitudinal patterns of injuries, and (2) to determine independent variables associated with physical injuries adjusting for study participants` age and sex. **Materials and Methods** Sample size determination The present study is part of a broader study looking into influenza-like-, gastrointestinal illnesses and injuries in a rural setting¹². In brief, 390 study subjects were cluster sampled from 92 households determined using the formula adapted from the Multiple Indicator Cluster Survey Manual, 2005¹³, as follows; $\frac{[4 (0.5)(0.5)(1.5)(1.1)]}{[(0.12 * 0.5)^2 * 5]} = 92$ households. In the numerator, 4 denoted a factor to achieve the 95% level of confidence, (0.5)(0.5) denoted the binomial distribution in occurrence of injuries that would give a maximum variability in the target population¹⁴. 1.5 denoted the design effect estimated as 1 + (average)household size - 1) * ICC. We used an ICC of 0.125 to correspond with the ICC calculated for cluster sizes ranging between 2 and 50¹⁵. 1.1 was a factor that raised the sample size by 10% to account for nonresponse. In the denominator, 0.12*0.5 denoted the margin of error tolerated at the 95% confidence level, and 5 denoted the average household size in the study site. Study site and selection of households The study site and selection of the households is mentioned elsewhere¹². In brief, the study area was in Suna-West sub-county in Migori County, Western Kenya, with Wasweta For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 30

BMJ Open

II ward, one of the four administrative wards within the Suna-West sub-county randomly selected as the study site. The estimated population size in the study site is 42,244, with a population density of about 450 persons per sq Km¹⁶. Additionally, the main economic activities in the area include agriculture and some commercial activities including running small shops, mechanics, furniture works, tailoring, among others. To select representative households, we generated 92 random geographical points using QGIS version 3.6.1, each with Global Positioning System (GPS) coordinates that we used to identify the study households¹². These coordinates were collected using the ODK Collect[®] application¹⁷ on a smartphone. We tracked each of these points on the ground to identify the nearest household to each of these points and approached them for recruitment. Subsequently, we requested the household heads of these households on whether they could allow members of their households to participate in the study before obtaining written informed consent. A map of the household points was generated using R version 3.6.2¹⁸, to visualize their spatial distribution and to easily identify the households during follow-up household visits. The Average Nearest-Neighbour index (ANNI) determined the extent of the random distribution of the sampled households^{19,20}. This study was conducted between August and October 2019, where August marked the end of cold season, September a hot and dry season and October the beginning of short rains.

- - Study design, enrollment, and longitudinal follow-up of subjects.

This study adopted a prospective cohort study design. 390 subjects from the 92 randomly sampled households were recruited and followed weekly for 12 weeks, excluding those

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

aged below 5 years due to the unreliable reporting of their injuries. Subjects aged above 18 years provided their consent to participate in the study, while parental consent and subject assent were sought for those aged between 5 and 17-years. On every Friday of each week of follow up the household heads received a phone call from the principal author to inquire about any report of an injury within the study week. A report of an injury in a household member triggered a household visit to characterize the injury to the specific person injured using a standard questionnaire structured in a closed format by a trained research assistant. Injuries among subjects aged below the age of 18 years were characterized in presence of parents or guardians. We conducted the questionnaire survey in the local "Dholuo" language to ensure reliability and consistency of responses.

138 Longitudinal data collection

We had already obtained information on time-invariant factors relevant to sociodemographic, socio-economic, and household-level variables during the baseline survey¹². Briefly, these included independent variables considered as demographic, occupational, societal risks broadly grouped at the individual and household levels. Demographic factors at the individual level included sex grouped into male and female subjects, and age categorized into those aged 5-17 years, 18-54 years, and >54 years hereinafter denoted simply as young, middle-aged, and old subjects respectively (Table 1). Three regions arbitrarily defined the study area into the top, bottom left, and bottom right according to their geographical positions (Figure 1S).

148	Table 1: Description of the time-invariant variables collected during the recruitment
149	of study subjects.

	Factors	Variable group Level	Factor levels	
	Demographic	Individual-level Household-level	Age in years, gender Household sample size, the income of the household head, active medical insurance, house floor type, house roof type, house wall type, source of drinking water, mode of water treatment, human waste destination, defecation location, trash	
	Occupational	Individual-level Household-level	disposal Employment type, education level Domesticated animals including cattle, sheep, goats, poultry, dogs, and cats.	
150		6	gente, penter j, ange, and enter	
151	The weekly foll	ow-up survey colled	cted time-variant data consisting of the occurrence of	
152	injuries, causes, nature, and severity, based on the World Health Organization (WHO)			
153	survey tool for	injuries ²¹ (Table 2	2). Time-variant risk factors include, among others,	
154	societal risks including the presence of visible stagnant water within household			
155	compounds due to rain and domesticating animals. In each week of study, we linked time-			
156	variant data to the time-invariant data collected at baseline for each subject. When a			
157	response was not obtained from any of the household heads during the follow-up weeks,			
158	a visit was mad	de to the household	ls, to obtain the specific data within the week and to	
159	also motivate p	articipant retention.		

Table 2: Description of the time-variant variables collected weekly (n=12)

Variable group Level	Variable
Household factors	Household size, ill domestic animals, animal death, source
	of drinking water, mode of water treatment, human waste
	destination, defecation location, trash disposal
Individual factors	Visit outside the local sub-county, Injuries by severity,
	mechanisms, nature, and intent
Environmental factors	Presence of stagnant water due to rain
	-
	8

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

162 Estimating the association between injuries and independent variables

Adjusting for correlation of responses at the subject- and household levels, we fitted generalized mixed effect models (GLMM) with a Poisson error distribution and a log link function to examine the effect of the independent variables on injuries in two steps. First, we conducted a multilevel univariable analysis using a less-restrictive level of significance of P<0.1 to identify single significant risk factors. Secondly, we conducted a multilevel multivariable analysis to identify significant independent variables associated with injuries at P<0.05. All GLMMs adopted a maximum likelihood approach using Laplace approximation with flat covariance priors and normal fixed priors, with the householdand individual- group ID included as the random effects. To account for model uncertainty the GLMMs were implemented in a Bayesian setting using the balmer function in R software^{18,22}. We examined time-invariant and time-variant risk factors described in Tables 1 and 2 respectively and included them as fixed effects in the model. In the multivariable analyses step, we forced age and gender in the models to account for their confounding characteristics. The final model was selected using the backward-stepwise selection process, whereby variables not contributing significantly to predicting the occurrence of injuries were eliminated based on low values of Akaike information criterion (AIC) and Bayesian information criterion (BIC), signifying a better-fitted model.

6 180

We fitted a multilevel Poisson model based on our 3-multilevel data structure organized
as Level 3: households, Level 2: individual household member, and Level 1: repeated
weekly measures. All analysis in this study was conducted using R version 3.6.2¹⁸.

1		
2 3 4	184	
5	185	Ethical review statement
7 8 9	186	We sought ethical clearance for this study from AMREF Health Africa Ethics and Scientific
9 10 11	187	Review Committee, approved under application number P635/2019.
12 13	188	
14 15 16	189	Patient and public involvement
16 17 18	190	Patients and the public were not involved in the design, conduct of the study, and
19 20	191	determining the outcome measures. Additionally, patients and the public were not
21 22	192	involved in deciding the reporting tools, analysis, and dissemination of study findings.
23 24 25	193	
26 27	194	Results
28 29		
30 31 32	195	Subject-level characteristics
33 34	196	Descriptive characteristics of study subjects collected at recruitment are reported
35 36	197	elsewhere ¹² . Briefly, of the 390 study subjects, 55% were female. The average age and
37 38	198	standard deviation of study subjects were 26.5 and 19.6 years respectively, ranging from
39 40 41	199	5 to 83 years. About 53% were still schooling while 84% had attained some primary
41 42 43	200	education. Of the 47% non-schooling subjects, 46% and 1% engaged in informal and
44 45	201	formal occupations, respectively.
46 47	202	Enrollment and retention of subjects
48 49 50	202	
51 52	203	The enrollment of the study subjects across the study weeks is reported elsewhere ¹² .
53 54	204	Briefly, we followed 390 study subjects across the recruited 92 households weekly for 12
55 56		10
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

1		
2 3	205	weeks. In total, we obtained 4261 reports covering August to October 2019 against the
4 5	206	expected 4680 reports, yielding a response rate of 91% (Figure 1). We consistently
6 7 8	207	obtained reports in each week of follow-up without missing data from 188 (48%) of the
9	207	
10 11	208	390 study subjects (Figure 1). These 188 study subjects were members of 47 (51%) of
12 13	209	the 92 study households. Only 15 study subjects distributed across 4 households were
14 15	210	lost to follow-up due to other reasons including opting out of the study, however, they did
16 17 18	211	not differ from those who remained in the study (Figure 1).
19 20 21	212	The findings profile is summarized in a schematic diagram (Figure 1).
22 23 24	213	
25 26		
27 28	214	Longitudinal distribution of subjects reporting an injury.
29		
30 31	215	Of the 4261 reports obtained, 592 (14%) described an illness eligible to be investigated
32 33	216	for injuries of which 44 (7.4%) documented an injury. Across time, injury frequencies
34 35 36	217	overlapped between male and female subjects (Figure 2).
37 38 39	218	In the 12 weeks of follow-up, the 44 reports came from 38 subjects constituting 10% of
40 41	219	the entire 390 study subjects (Figure 1). Of these 38 subjects, 55% were female.
42 43	220	Additionally, of these 38 subjects, 34% belonged to the young age category, while 50%
44 45 46	221	and 16% belonged to the middle and old age categories. Each of the 38 study subjects
47 48	222	had on average, 1.2 episodes of injuries across the 12 weeks of follow-up, yielding a
49 50	223	mean of 17 injuries per 100 weeks (approximately two years).
51 52	224	
53 54	224	
55 56		11
57 58		

59

60

225	Demographic factors and nature of	injuries
225	Beinegraphie lactors and hatare of	ingunes

The nature of injuries tallied in the 44 injury reports were 64% cuts and open wounds, 20% bruises and superficial injuries, 7% dislocations, 5% animal bites, while we tallied burns and fractures in 2.3% of the reports, respectively. Of the 44 reports, females (59%) were more likely to report injuries compared to males (P>0.05). On the other hand, the distribution of the 44 reports was 34%, 52%, and 14% among young, middle-aged, and older subjects, respectively.

Table 3 shows the distribution of demographic factors and the nature of the injuries. While cuts and wounds were the most often reported among the middle-aged subjects, bruises were the most often reported among the young subjects (Table 3).

Table 3: Distribution of demographic factors and nature of the injury

Nature of injury	Age group	Female	Male	Injury/ 1000	
······	(years)	(%)	(%)	subjects/ week	95% CI
Cuta anon	5-17	4 (14)	5 (18)	17.0	16.4, 49.3
Cuts, open wound	18-54	11 (39)	6 (21)	32.2	31.3, 93.6
	> 54	1 (4)	1 (4)	3.8	3.6,10.9
Bruises, superficial injury	5-17	1 (11)	3 (33)	7.6	7.3, 21.8
	18-54	2 (22)	1 (11)	5.7	5.4, 16.4
	>54	2 (22)	0 (0)	3.8	3.6, 10.9

Other nature of injuries included dislocation, animal bites, fractures, and burns each having ≤ 3 occurrences across age and gender.

Cause of injuries and occupational factors

Irrespective of age and gender, 30%, 25%, and 23% of the 44 reports resulted from falls (n=13), person-related assault or hit by an object (n=11), and road accidents arising from vehicles or motorcycles (n=10) respectively. The remaining 10 injuries were due to cuts from sharp objects, animal bites, and fire burns (Table 4).

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open

Of the 44 reports of injuries, 18 (41%) and 26 (59%) reports came from school-going and non-school-going subjects, respectively. When classified by the most frequently reported injuries, falls (n=13) were more likely (62%) to be reported by school-going subjects. Person-related assault or hit by an object (n=11) and road accidents (n=10) were 64% and 80% more likely to be reported by non-school going subjects, respectively.

250 Table 4: Distribution and causes of injury by sex and age.

Cause of injury	Age group (years)	Female (%)	Male (%)	Injury/ 1000 subjects/ week	95% CI
	5-17	4 (31)	4 (31)	15.2	14.6, 43
Falls	18-54	2 (15)	1 (8)	5.7	5.4, 16
	>54	2 (15)	0 (0)	3.8	3.6, 10
Person-related	5-17	0 (0)	3 (27)	5.7	5.4, 16
assault or hit	18-54	2 (18)	4 (36)	11.4	10.9, 32
by an object	>54	2 (18)	0 (0)	3.8	3.6, 10
Pood	5-17	0 (0)	0 (0)	0.0	0.0, 0
Road	18-54	6 (60)	4 (40)	18.9	18.3, 54
accidents	>54	0 (0)	0 (0)	0.0	0.0, 0

Other causes of injuries included cuts from sharp objects, animal bites, and fire burns
 each having ≤3 occurrences across age and gender.

6 253 Univariable analyses

We used a multilevel univariable Poisson regression analysis factoring in the correlation of responses at individual and household levels. The analysis, assessed the relationship between dichotomized reporting of an injury (yes versus no) and independent variables, returning three significant factors at P<0.1. Of these three factors, visits outside the local sub-county of residence was the only significant factor at the subject level (P<0.001). The household-level significant factor included the keeping of a domestic animal (*P*=0.0081).

Additionally, time in weeks treated as a risk factor significantly (P<0.001) predicted the occurrence of injuries while the area-level variable was not significant (Table 1S).

263 Multilevel Poisson regression Modelling

Adjusting for age and sex, the multilevel Poisson regression model factoring individual, and household random effects returned three significant factors at P≤0.05. These included making visits outside the local sub-county (P=0.007), domesticating an animal (P=0.020), and the study week (P= 0.038). The risk of reporting an injury decreased by 10% weekly. Subjects who made a visit outside the local sub-county were 2-fold higher at risk of reporting a physical injury at any study week compared to those who did not make a visit. Subjects not domesticating animals were eight times higher at risk of reporting injuries at any study week compared to those domesticating animals (Table 5).

Table 5: A Random-intercept Poisson regression model analysis for injuries

Yes No Yes	0.90 2.16 <i>Ref.</i> <i>Ref.</i>	0.82, 0.99 1.54, 3.11	0.038 0.007
No Yes	Ref.	1.54, 3.11	0.007
Yes		-	
	Ref.		
No		-	
No	7.59	1.38, 41.7	0.020
Male	0.87	0.37, 2.04	0.748
Female	Ref.	-	
	1.00	0.99, 1.03	0.454
Household (Level 3)	0.63		
Study participant (Level 2)	4.05		
Residual (Level 1)	8.28		
fidence interval; AIC 464.9; BIC 515.8;	Log likelihood	l -224.5; Deviance 44	18.9.
			14
			-
	Female Household (Level 3) Study participant (Level 2) Residual (Level 1)	FemaleRef.1.00Household (Level 3)0.63Study participant (Level 2)4.05Residual (Level 1)8.28	Female Ref. - 1.00 0.99, 1.03 Household (Level 3) 0.63 Study participant (Level 2) 4.05

276 Discussion

This study aimed to investigate factors associated with the weekly occurrence of physical injuries in a rural setting in Western Kenya. We determined the unique differences in nature, source, and risks resulting from occupational, societal, and demographic exposures associated with injuries. Injuries were more frequently reported by female subjects than males though the difference was non-significant. Moreover, the common cause of injuries among young, middle-aged, and older subjects were falls, road accidents, and person-related assault or hit by an object, respectively. We classified these causes into occupational, and societal risk exposures resulting from making visits outside the local sub-county and not owning a domestic animal that independently predicted the occurrence of injuries.

Injuries were more often reported by middle-aged subjects relative to other age groups suggesting age-related differential exposures. Previous studies disproportionately link high injury frequencies among adults and communities with low education and poverty levels similar to our setting^{23,24}. Indeed, the majority (70%) of the middle-aged subjects reporting injuries had primary or no education, earning a low monthly income of >10,000KES (~100USD). The more frequent reports from female subjects that we found contrasted with findings from a cross-sectional study conducted elsewhere in Kenya²⁵. perhaps due to more women taking up more strenuous roles in male-dominated sectors²⁶. This finding suggested varied risk exposures between gender and their physical or social environments. People with low levels of education especially in rural settings are more

BMJ Open

1		
2		
3		
4		
5		
6		
7		
8		
9		
1	0	
	1	
1		
1		
1		
1		
1		
1		
1		
1		
-222222222222	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	/	
2 2	ð A	
2 ว	9 0	
з 3	1	
3	2	
3	2 3	
	4	
	5	
3		
3		
3	/ 0	
_	9	
4		
4		
4		
4		
4		
4		
4		
4		
4		
4		
5		
5	1	
5	2	
5	3	
5	4	
5		
5		
5		
5	8	

likely to engage in occupations with elevated risks for injuries. Hence, there is a need for
 targeted public health interventions to promote home and occupational safety in rural
 areas²⁴.

302 We documented a fairly small number of 0.21 injuries weekly from 34% of the 87 study 303 households that reported an illness, with the majority (61%) of such injuries resulting from 304 falls and person-related assault or hit by an object. While injuries due to person-related 305 assault could have resulted from violence or abuse, among other causes, that this study did not focus on, those from falls resulted from essential daily activities including 306 household chores, farming, and schooling among others, which could have potentially 307 308 advanced the risk of physical injuries. Indeed, although earlier studies associate the essential daily activities and occupations with the occurrence of unintentional injuries and 309 physical violence or abuse with intentional injuries across all age groups, gaps still exist 310 in their documentation and subsequent social or economic impacts in rural settings²⁷. 311 Nonetheless, preventable injuries could be overcome by investing in-home or 312 occupational safety in rural areas²⁸. 313

314

59

60

Subjects not domesticating animals were at eight times higher risk of reporting injuries compared to those domesticating animals. Indeed, those domesticating animals were likely to use them particularly cattle, for draught power compared to those not domesticating and therefore likely to use risky hand tools or outdated machinery during

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

farming or in any other activities. Such tools and machines increased the likelihood of injuries, as also identified in cross-sectional studies conducted in Nepal and Ethiopia^{29,30}. On the other hand, the reduced risk (1/8) of reporting injuries among subjects domesticating animals signals the minimal exposure to injury-prone inanimate machines or tools in livestock farming or transportation. Nevertheless, there is still a need to create awareness on occupational safe handling of domestic animals^{31,32}.

Under the societal exposure of injuries, subjects making visits outside the sub-county of residence were 2-fold higher at risk of reporting injuries perhaps due to increased use of motorcycles as a mode of transport^{33,34}. Motorcycles are beginning to be a frequent cause of injuries in Kenya arising from crashes due to varied factors³⁵. Indeed, all motorcvcle and vehicle-related injuries were most frequent among subjects aged between 18 and 54 years compared to other age categories since this group is generally more active and productive while seeking livelihoods. Previous studies associate adults aged above >18 years with risky behaviors such as drunk riding, failing to wear a helmet while riding, riding excess with passengers, and speeding among others^{35,36}. For these reasons, road safety interventions including enforcement of mandatory use of helmets, driver training, and age-restricted motorcycle ownership and licensure could be instituted to reduce related injuries in similar rural settings³⁷.

338 Conclusion

The study established the existence of occurrences of physical injuries in a rural setting.
 Subjects who made a visit outside the sub-county of residence were more likely to report

Page 19 of 30

BMJ Open

1 2		
2 3 4	341	inju
5 6	342	mor
7 8 9	343	sug
) 10 11	344	pub
12 13	345	
14 15 16	346	
17 18	347	Non
19 20	348	indiv
21 22	349	2
23 24 25	350	We
26 27	351	com
28 29	352	:
30 31 32	353	RN,
33 34	354	sign
35 36	355	with
37 38 39	356	cont
40 41	357	4
42 43 44	358	No f
45 46	359	į
47 48	360	All c
49 50 51	361	info
52 53	362	avai
54 55 56 57 58 59	363	

ries relative to those who did not. Further, subjects not domesticating animals were e likely to report injuries relative to those domesticating animals. These findings gest that tackling increasing risk exposures in rural western Kenya, using targeted lic health interventions could effectively reduce injuries across all age groups.

1. Conflict of interest

e of the authors have any relationship or received any financial support from any vidual or an organization that could inappropriately influence the goal of this paper.

2. Acknowledgment

would like to acknowledge Duncan Ogutu and Phillip Misiani, for their support in the munity and the participation of study participants in taking part in this study.

3. Contributors

SM, and JG conceived and designed the study protocol. RN and JG contributed ificantly to the recruitment and data collection processes. Data analysis was planned RN, and JG, with the analysis performed by RN and reviewed by JG. All authors tributed significantly to developing the manuscript.

4. Funding

financial support was received for the research, authorship, or publication.

60

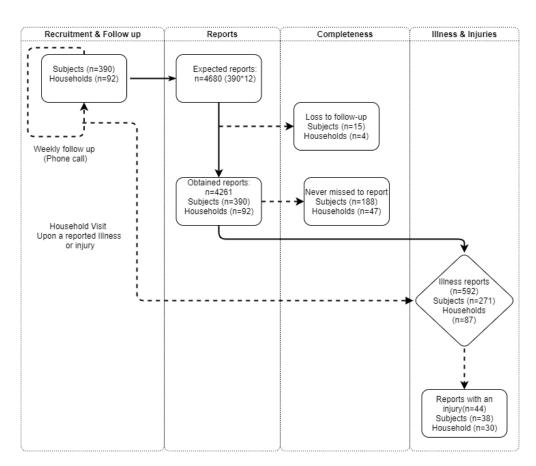
5. Data availability statement

data relevant to the study are included in the article or uploaded as supplementary rmation. The authors confirm that the data supporting the findings of this study are ilable within the article and its supplementary materials.

1 2 3	364	Refe	erences
4 5 6	365	1.	Diamond, M. B. et al. Prevalence and risk factor for injury in sub-Saharan Africa: a
7 8		1.	
9 10	366		multicountry study. <i>Inj. Prev.</i> 24 , 272–278 (2018).
11 12	367	2.	Onywera, V. O. & Blanchard, C. Road accidents: a third burden of 'disease' in
13 14 15	368		sub-Saharan Africa. Glob. Health Promot. 20, 52–55 (2013).
16 17	369	3.	Garcia, P. J. Global burden of injuries: it is time to understand the data in order to
18 19	370		intervene. <i>Inj. Prev.</i> 26 , i1–i2 (2020).
20 21	570		
22 23	371	4.	Pant, P. R. et al. Burden of injuries in Nepal, 1990-2017: Findings from the Global
24 25	372		Burden of Disease Study 2017. <i>Inj. Prev.</i> 0 , 1–10 (2019).
26 27	373	5.	Bhalla, K. et al. Data Sources for Improving Estimates of the Global Burden of
28 29	374		Injuries: Call for Contributors. <i>PLOS Med.</i> 6 , e1000001 (2009).
30 31	571		
32 33 34	375	6.	Gathecha, G. K. et al. Prevalence and predictors of injuries in Kenya: Findings
35 36	376		from the national STEPs survey 11 Medical and Health Sciences 1117 Public
37 38	377		Health and Health Services. BMC Public Health 18, 1222 (2018).
39 40	378	7.	Gathecha, G. K., Githinji, W. M. & Maina, A. K. Demographic profile and pattern of
41 42	379		fatal injuries in Nairobi, Kenya, January-June 2014. BMC Public Health 17 , 1–7
43 44			
45 46	380		(2017).
47 48 49	381	8.	Bachani, A. M. et al. Adolescent and Young Adult Injuries in Developing
50 51	382		Economies: A Comparative Analysis from Oman and Kenya. Ann. Glob. Heal. 83,
52 53	383		791–802 (2017).
54 55			
56 57			19
58 59			
60			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

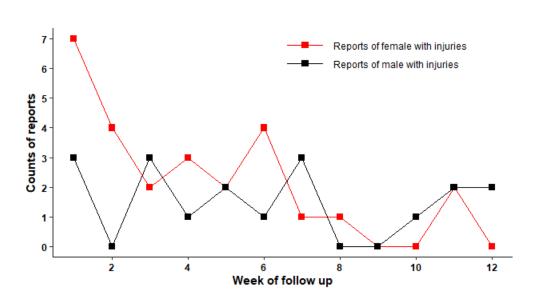

1 2				
3 4	384	9.	Janeway, H., O'Reilly, G., Schmachtenberg, F., Kharva, N. & Wachira, B.	
5 6	385		Characterizing injury at a tertiary referral hospital in Kenya. PLoS One 14,	
7 8 9	386		e0220179 (2019).	
10 11	387	10.	Botchey, I. M. et al. Epidemiology and outcomes of injuries in Kenya: A multisite	¢
12 13 14	388		surveillance study. Surg. (United States) 162, S45–S53 (2017).	
15 16 17	389	11.	James, S. L. <i>et al.</i> Global injury morbidity and mortality from 1990 to 2017:	
18 19	390		Results from the global burden of disease study 2017. Inj. Prev. 26, I96–I114	
20 21 22	391		(2020).	
23 24	392	12.	Chweya, R. N., Mambo, S. N. & Gachohi, J. M. The occurrence of self-reported	
25 26 27	393		illnesses and their analyses into influenza-like and gastrointestinal syndromes ir	۱a
27 28 29	394		rural community in Western Kenya, 2019. Int. J. Community Med. Public Heal. 8	3,
30 31 32	395		1–9 (2021).	
33 34	396	13.	UNICEF. DESIGNING AND SELECTING THE SAMPLE.	
35 36 27	397		http://mics.unicef.org/files?job=W1siZiIsIjIwMTUvMDQvMDIvMDgvMDAvMTkvC)D
37 38 39	398		EwL01JQ1MzX0NoYXB0ZXJfNF9fX0Rlc2lnbmluZ19hbmRfU2VsZWN0aW5nX3	3R
40 41 42	399		oZV9TYW1wbGVfMDYwMjE5LnBkZiJdXQ&sha=3d97a05358bb0e37 (2005).	
43 44	400	14.	Kasiulevičius, V., Šapoka, V. & Filipavičiūtė, R. Sample size calculation in	
45 46 47	401		epidemiological studies. <i>Gerontologija</i> 7 , 225–231 (2006).	
48 49 50	402	15.	Lai, M. H. C. & Kwok, O. M. Examining the rule of thumb of not using multilevel	
50 51 52	403		modeling: The 'design effect smaller than two' rule. J. Exp. Educ. 83, 423–438	
52 53 54	404		(2015).	
55 56				20
57 58 59				

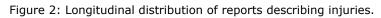
3 4	405	16.	KNBS. Distribution of Population by Administrative Units. 2019 Kenya Population
5 6 7	406		and Housing Census vol. II (2019).
8 9	407	17.	Hartung, C. et al. Open Data Kit: Tools to Build Information Services for
10 11 12	408		Developing Regions. (2010).
13 14 15	409	18.	R Core Team. R: A language and environment for statistical computing.
16 17	410		https://www.r-project.org/ (2019).
18 19 20	411	19.	Jacques, G. M. A k NEAREST NEIGHBOUR TEST FOR SPACE-TIME
21 22	412		INTERACTION. Stat. Med. 15, 1935–1949 (1996).
23 24 25	413	20.	Wilson, R. & Din, A. Calculating Varying Scales of Clustering Among Locations.
26 27 28	414		Cityscape: A Journal of Policy Development and Research vol. 20 (2018).
29 30	415	21.	Sethi D et al. GUIDELINES FOR CONDUCTING COMMUNITY SURVEYS ON
31 32 33	416		INJURIES AND VIOLENCE. www.inis.ie (2004).
34 35	417	22.	Vincent Dorie, A. et al. Package 'blme' Title Bayesian Linear Mixed-Effects
36 37 38	418		Models Description Maximum a posteriori estimation for linear and generalized
39 40	419		linear mixed-effects models in a Bayesian setting. Extends 'Ime4' by. (2016).
41 42 43	420	23.	Gielen, A. C., McDonald, E. M. & Shields, W. Unintentional Home Injuries Across
44 45	421		the Life Span: Problems and Solutions. Annu. Rev. Public Health 36, 231–253
46 47 48	422		(2015).
49 50 51	423	24.	Ferrante, P., Marinaccio, A. & lavicoli, S. Home injuries in Italy: Patterns of injury
52 53	424		and the most exposed people. Int. J. Inj. Contr. Saf. Promot. 20, 36-41 (2013).
54 55 56			21
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3		05	
4	425	25.	Gathecha, G. K. et al. Prevalence and predictors of injuries in Kenya: findings
5 6 7	426		from the national STEPs survey. BMC Public Health 18, 1222 (2018).
8 9 10	427	26.	Abdalla, S., Apramian, S. S., Cantley, L. F. & Cullen, M. R. Occupation and Risk
10 11 12	428		for Injuries. in Disease Control Priorities, Third Edition (Volume 7): Injury
13 14	429		Prevention and Environmental Health 97–132 (The World Bank, 2017).
15 16 17	430		doi:10.1596/978-1-4648-0522-6_ch6.
18 19	431	27.	Odero, W., Polsky, S., Urbane, D., Carel, R. & Tierney, W. M. Characteristics of
20 21 22	432		injuries presenting to a rural health centre in western Kenya. East Afr. Med. J. 84,
23 24 25	433		367–373 (2007).
26 27	434	28.	Tayeb, S. El, Abdalla, S., Mørkve, O., Heuch, I. & Van den Bergh, G. Injuries in
28 29	435		Khartoum state, the Sudan: A household survey of incidence and risk factors. Int.
30 31 32	436		J. Inj. Contr. Saf. Promot. 21 , 144–153 (2014).
33 34	437	29.	Yiha, O. & Kumie, A. Assessment of occupational injuries in Tendaho Agricultural
35 36 37	438		Development S.C, Afar Regional State. <i>Ethiop. J. Heal. Dev.</i> 24 , 167–174 (2010).
38 39 40	439	30.	Bhattarai, D. et al. Work-related injuries among farmers: a cross-sectional study
41 42 43	440		from rural Nepal. J. Occup. Med. Toxicol. 11, 1–7 (2016).
44 45	441	31.	Langley, R. L. Animal-related fatalities in the United States - An update.
46 47 48	442		Wilderness Environ. Med. 16, 67–74 (2005).
49 50	443	32.	Weaver, J. L. et al. Danger on the Farm: A Comparison of Agricultural and
51 52 53	444		Animal-Related Injuries. Am. Surg. 83, 507–511 (2017).
54 55 56 57 58	445	33.	Lin, MR., Chang, SH., Huang, W., Hwang, HF. & Pai, L. Factors associated 22
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2 3	446		with severity of motorcycle injuries among young adult riders. Ann. Emerg. Med.
4 5			
6 7	447		41 , 783–791 (2003).
8 9	448	34.	Solagberu, B. A. et al. Motorcycle injuries in a developing country and the
10 11 12	449		vulnerability of riders, passengers, and pedestrians. Inj. Prev. 12, 266–268
12 13 14	450		(2006).
15 16 17	451	35.	Ngari, P. M., Gachohi, J. & Ngure, P. K. PREVALENCE AND FACTORS
18 19	452		ASSOCIATED WITH COMMERCIAL MOTORCYCLE ACCIDENTS IN EMBU
20 21	453		COUNTY, KENYA. Journal of Health, Medicine and Nursing vol. 5 www.iprjb.org
22 23 24	454		(2020).
25 26 27	455	36.	Al-Aamri, A. K., Padmadas, S. S., Zhang, L. C. & Al-Maniri, A. A. Disentangling
28 29	456		age-gender interactions associated with risks of fatal and non-fatal road traffic
30 31 32	457		injuries in the Sultanate of Oman. <i>BMJ Glob. Heal.</i> 2 , e000394 (2017).
33 34	458	37.	Lin, MR. & Kraus, J. F. A review of risk factors and patterns of motorcycle
35 36 27	459		injuries. <i>Accid. Anal. Prev.</i> 41 , 710–722 (2009).
37 38 39 40	460		
41 42 43	461	Figu	re legend
44 45	462	Figu	re 1:Schematic diagram showing the flow of the profile of the descriptive
46 47 48	463	findi	ngs.
49 50 51 52 53	464	Figu	re 2: Longitudinal distribution of reports describing injuries.
54 55 56 57 58 50			2
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml




258x226mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-053161 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

417x244mm (38 x 38 DPI)

1. Figures 1S

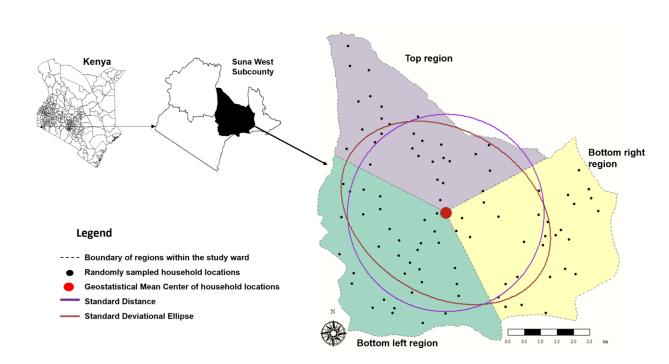


Figure 1S: Map of the study area. Left: A map of Kenya sub-counties showing the location (arrow) of Suna West sub-county. Middle: a map of Suna West sub-county showing the location of our specific study area, Wasweta II ward (black polygon). Right: a map of Wasweta II ward showing the location of randomly sampled households (black points). The red circle in the middle of the study site is the geospatially computed mean centre of household locations. The purple and brown large circles are centrographic standard distance and standard deviational ellipse of household locations, respectively. The study area was arbitrarily divided into three regions (top, bottom left and bottom right). The scale applies to Wasweta II ward only.

Source: (Chweya et al., 2021)

Reference

 Chweya, R. N., Mambo, S. N., & Gachohi, J. M. (2021). The occurrence of selfreported illnesses and their analyses into influenza-like and gastrointestinal syndromes in a rural community in Western Kenya, 2019. *International Journal Of Community Medicine And Public Health*, 8(5), 1–9. https://doi.org/10.18203/2394-6040.ijcmph20211390

Risk factor	Factor levels	Inju	ury	P-values
		Present (%)	Absent (%)	
Gender	Female	26 (59)	2275 (54)	0.713
	Male	18 (41)	1942 (46)	
Employment type	Non-school going ¹	26 (59)	1993 (47)	0.193
	School going	18 (41)	2224 (53)	
Education level	Post-primary	9 (20)	640 (16)	0.860
type	Primary	35 (80)	3343 (84)	
Household		ζ,	()	
Household	0-10,000	35 (80)	3456 (82)	0.932
income	>10,000 ²	9 (20)	761 (18)	
Insurance cover	Yes	10 (23)	728 (17)	0.648
	No	34 (77)	3489 (83)	
Floor-type	Cement floor	11 (25)	620 (15)	0.458
	Earth floor	33 (75)	3597 (85)	
Wall type	Brick wall	8 (18)	549 (13)	0.634
	Mud wall	36 (82)	3668 (87)	
Roofing type	Iron/aluminum sheets	44 (100)	4107 (97)	0.749
	Thatch roofing	0 (0)	110 (3)	011 10
Drinking water	Other sources ²	24 (55)	3045 (72)	0.121
source	River	20 (46)	1172 (28)	0.121
Treating drinking	Yes	37 (84)	3418 (81)	0.599
water	No	7 (16)	799 (19)	0.000
Water treatment	Filtration or decantation	17 (46)	1263 (38)	0.131
method	Chlorine or boiling	20 (54)	2099 (62)	0.101
Waste destination	Pit latrine	40 (91)	3906 (93)	0.493
	Open defecation	4 (9)	311 (7)	0.400
Trash disposal	Garbage pit	30 (68)	3158 (75)	0.518
	Garden disposal	14 (32)	1059 (25)	0.010
Domesticate	Yes	40 (91)	4091 (97)	0.008
animal	No	4 (9)	126 (3)	0.000
No. of animal	0	4 (9)	126 (3)	0.086
species ³	1	1 (2)	303 (7)	0.000
species	2	3 (7)	518 (12)	
	3	18 (41)	· · ·	
	4	· · /	1113 (27)	
		15 (34)	1305 (31)	
	5 6	3 (7)	600 (14)	
		0 (0)	252 (6)	0.074
III animal	Yes	9 (22)	700 (17)	0.371
	No	31 (78)	3391 (83)	0.444
Animal death	Yes	3 (9)	211 (5)	0.411
	No	29 (91)	3526 (95)	0 740
Visible stagnant	Yes	6 (14)	531 (13)	0.716
water	No	38 (86)	3686 (87)	

Table 1S: Distribution and analyses of reports of injuries by risk factors across the follow-up period

1 2					
3	Visits outside	Yes	11 (25)	2/1 (5)	-0.000
4			11 (25)	241 (5)	<0.000
5	study site	No	33 (75)	3976 (95)	0.040
6	Region ⁴	Тор	15 (34)	1423 (34)	0.942
7		Bottom right	14 (32)	1123 (26)	
8		Bottom left	15 (34)	1671 (40)	
9		icipant with formal or informal employ			
10		and rainwater; ³ Consist of domesticat		ittle, sheep, goat	s, poultry,
11	dogs, and cats; Consis	t of the generated regions of the study	/ SITE		
12 13					
13					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26 27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39 40					
40 41					
42					
43					
44					

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1
		abstract	1.2
		(b) Provide in the abstract an informative and balanced summary of what was	1, 2
		done and what was found	
Introduction	2		3-4
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	1, 5, 6, 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	1, 5, 6,
C		recruitment, exposure, follow-up, and data collection	7, 8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6,7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	N/A
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7, 8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7, 8, 9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	5, 6, 7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7,8,9
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	$\begin{vmatrix} 2, 3, 8, \\ 9 \end{vmatrix}$
		(c) Explain how missing data were addressed	2,3
		(d) If applicable, explain how loss to follow-up was addressed	3
		(<i>e</i>) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	10,11
1 articipants	15	potentially eligible, examined for eligibility, confirmed eligible, included in	
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	11
		(c) Consider use of a flow diagram	11
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	11, 12,
Descriptive data	17	and information on exposures and potential confounders	13
		(b) Indicate number of participants with missing data for each variable of	11
		interest	
			10.11
		(c) Summarise follow-up time (eg, average and total amount)	10,11

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			-
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	9,13
		their precision (eg, 95% confidence interval). Make clear which confounders were	14
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	13,14
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	14
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	14,15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	2,3
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14, 1
		multiplicity of analyses, results from similar studies, and other relevant evidence	16, 1
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information	n		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	N/A
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.