

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

## What is the environmental impact of different strategies for the use of medical and community masks?

| lournolu                      | BMI Open                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal:                      | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                         |
| Manuscript ID                 | bmjopen-2021-049690                                                                                                                                                                                                                                                                                                                                                                                              |
| Article Type:                 | Original research                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the Author: | 29-Jan-2021                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:     | Bouchet, Alexandre; EA - Environmental action<br>Boucher, Julien; EA – environmental action; University of Applied<br>Sciences and Arts Western Switzerland<br>Schutzbach, Kevin; Center for Primary Care and Public Health<br>Senn, Nicolas; Center for Primary Care and Public Health<br>Genton, Blaise; Center for Primary Care and Public Health<br>Vernez, David; Center for Primary Care and Public Health |
| Keywords:                     | COVID-19, PUBLIC HEALTH, Health & safety < HEALTH SERVICES<br>ADMINISTRATION & MANAGEMENT                                                                                                                                                                                                                                                                                                                        |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                  |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

| 3<br>4               | 1      | What is the environmental impact of different strategies for the use                                                                                            |
|----------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7          | 2      | of medical and community masks?                                                                                                                                 |
| 8<br>9               | 3      |                                                                                                                                                                 |
| 10<br>11             | 4      | Alexandre Bouchet <sup>1</sup> , Julien Boucher <sup>1,2</sup> , Kevin Schutzbach <sup>3</sup> , Nicolas Senn <sup>3</sup> , Blaise Genton <sup>3</sup> , David |
| 12<br>13             | 5      | Vernez <sup>3</sup>                                                                                                                                             |
| 14<br>15             | 6      | <sup>1</sup> EA – environmental action, research consultancy, Lausanne, Switzerland                                                                             |
| 16<br>17             | 7<br>8 | <sup>2</sup> University of Applied Sciences and Arts Western Switzerland // HES-SO, HEIG-VD, Yverdon-les-<br>Bains, Switzerland                                 |
| 18                   | 8<br>9 | <sup>3</sup> Department of Occupational Health and Environment, Center for Primary Care and Public Health                                                       |
| 19<br>20             | 10     | (Unisanté), University of Lausanne, CH-1066 Epalinges, Switzerland                                                                                              |
| 21<br>22             | 11     |                                                                                                                                                                 |
| 23<br>24             | 12     | Corresponding author                                                                                                                                            |
| 25<br>26             | 13     | Prof. David Vernez                                                                                                                                              |
| 27                   | 14     | David.Vernez@unisante.ch                                                                                                                                        |
| 28<br>29             | 15     | Phone: 0041 21 314 74 51                                                                                                                                        |
| 30                   | 16     | ORCID: 0000-0002-3304-8727                                                                                                                                      |
| 31<br>32             | 17     |                                                                                                                                                                 |
| 33<br>34             | 18     | alexandre.bouchet@shaping-ea.com; julien.boucher@shaping-ea.com; kevin.schutzbach@chuv.ch;                                                                      |
| 35                   | 19     | nicolas.senn@unisante.ch; blaise.genton@unisante.ch; david.vernez@unisante.ch                                                                                   |
| 36<br>37<br>38       | 20     |                                                                                                                                                                 |
| 39                   | 21     |                                                                                                                                                                 |
| 40<br>41<br>42       | 22     |                                                                                                                                                                 |
| 43<br>44             | 23     | Word count: 3501 (without abstract and references)                                                                                                              |
| 45<br>46             | 24     |                                                                                                                                                                 |
| 47<br>48             | 25     |                                                                                                                                                                 |
| 49<br>50             | 26     | Keywords:                                                                                                                                                       |
| 51<br>52             | 27     | Facemask, community mask, medical mask, recycling, reuse, carbon footprint, COVID-19                                                                            |
| 53<br>54             | 28     |                                                                                                                                                                 |
| 55<br>56<br>57<br>58 | 29     |                                                                                                                                                                 |
| 59<br>60             |        | 1                                                                                                                                                               |

| 1<br>2                           |    |                                                                                                             |
|----------------------------------|----|-------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                      | 30 | Abstract                                                                                                    |
| 5<br>6                           | 31 | Introduction                                                                                                |
| 7<br>8<br>9                      | 32 | The use of protective masks, especially medical masks, increased dramatically during the COVID-19           |
| 10<br>11                         | 33 | crisis. Medical masks are made of synthetic materials, mainly polypropylene, and a majority of them         |
| 12<br>13                         | 34 | are produced in China and imported to the European market. The urgency of the need has so far               |
| 14<br>15                         | 35 | prevailed over environmental considerations.                                                                |
| 16<br>17<br>18                   | 36 | Objective                                                                                                   |
| 19<br>20                         | 37 | Assess the environmental impact of different strategies for the use of facemask                             |
| 21<br>22                         | 38 | Method                                                                                                      |
| 23<br>24<br>25                   | 39 | Different strategies for the use of medical and community masks are being investigated for their            |
| 25<br>26<br>27                   | 40 | environmental impact in this study. 8 scenarios, differentiating the typologies of masks and the modes      |
| 28<br>29<br>30<br>31<br>32<br>33 | 41 | of reuse are compared using several environmental impact indicators, mainly the Global Warming              |
|                                  | 42 | Potential (GWP100), and the plastic leakage (PL). This study attempts to provide clear                      |
|                                  | 43 | recommendations that consider both the environmental impact and the protective effectiveness of             |
| 34<br>35<br>36                   | 44 | face masks used in the community.                                                                           |
| 37<br>38                         | 45 | Results                                                                                                     |
| 39<br>40                         | 46 | The environmental impact of single-use masks is the most unfavorable, with a GWP of 0.4 -1.3 kgCO $_{ m 2}$ |
| 41<br>42                         | 47 | eq., depending on the transport scenario, and a PL of 1.8 g, for a one month protection against COVID-      |
| 43<br>44<br>45                   | 48 | 19. The use of home-made cotton masks and prolonged use of medical masks through wait-and-reuse             |
| 46<br>47                         | 49 | are the scenarios with the lowest impact.                                                                   |
| 48<br>49                         | 50 | Conclusion                                                                                                  |
| 50<br>51                         | 51 | The use of medical masks with a wait and reuse strategy seems to be the most appropriate when               |
| 52<br>53<br>54                   | 52 | considering both environmental impact and effectiveness. Our results also highlight the need to             |
| 54<br>55<br>56                   | 53 | develop procedures and the legal/operational framework to extend the use of protective equipment            |
| 57<br>58                         | 54 | during a pandemic.                                                                                          |
| 59<br>60                         |    | 2                                                                                                           |

| 3        | 55        | Strengths and limitations of this study                                                     |
|----------|-----------|---------------------------------------------------------------------------------------------|
| 4<br>5   |           |                                                                                             |
| 6        | 56        |                                                                                             |
| 7        |           |                                                                                             |
| 8<br>9   | 57        | - This study provides an environmental assessment (GWP 100, plastic leakage) for different  |
| 9<br>10  |           |                                                                                             |
| 11       | 58        | mask type and use strategies.                                                               |
| 12       |           |                                                                                             |
| 13       | 59        | - It recommends use or reuse strategies based on both performance and environmental         |
| 14       | 00        |                                                                                             |
| 15       | 60        | impacts.                                                                                    |
| 16       |           |                                                                                             |
| 17       |           |                                                                                             |
| 18<br>19 | 61        | - The transportation and end-of-life assumptions are representative of an EU context.       |
| 20       |           |                                                                                             |
| 21       | 62        | - As littering rates are poorly documented, plastic leakage in other geographic regions may |
| 22       |           |                                                                                             |
| 23       | 63        | significantly differ.                                                                       |
| 24       |           |                                                                                             |
| 25       |           |                                                                                             |
| 26       | 64        | - Masks weight and composition used in this study are taken from regular European masks     |
| 27       |           |                                                                                             |
| 28<br>29 | 65        | disregarding the variability from one manufacturer to another.                              |
| 30       |           |                                                                                             |
| 31       | 66        |                                                                                             |
| 32       |           |                                                                                             |
| 33       | <b>67</b> |                                                                                             |
| 34       | 67        |                                                                                             |
| 35       |           |                                                                                             |
| 36       |           |                                                                                             |
| 37<br>38 |           |                                                                                             |
| 30<br>39 |           |                                                                                             |
| 40       |           |                                                                                             |
| 41       |           |                                                                                             |
| 42       |           |                                                                                             |
| 43       |           |                                                                                             |
| 44       |           |                                                                                             |
| 45       |           |                                                                                             |
| 46<br>47 |           |                                                                                             |
| 47       |           |                                                                                             |
| 49       |           |                                                                                             |
| 50       |           |                                                                                             |
| 51       |           |                                                                                             |
| 52       |           |                                                                                             |
| 53       |           |                                                                                             |
| 54<br>55 |           |                                                                                             |
| 55<br>56 |           |                                                                                             |
| 50<br>57 |           |                                                                                             |
| 58       |           |                                                                                             |
| 59       |           |                                                                                             |
| 60       |           | 3                                                                                           |

| 68 | Introd | luction |
|----|--------|---------|
|    |        |         |

The COVID-19 crisis has led to dramatic changes in our daily habits. The consequences of these changes on the environment are still poorly understood. The decrease in industrial activity during confinement and the decline in intra- and inter-national mobility has led to a significant drop in CO<sub>2</sub> emissions<sup>1</sup>. An average decrease of 6.4% % in yearly CO<sub>2</sub> emissions was observed worldwide for 2020<sup>2</sup>. Positive effects have also been observed on other air pollutants, such as PM, NOx, SO<sub>2</sub> and on river pollution. However, some observations made in China, near Hubei's epicenter, show an unclear environmental picture, with a lower decrease in air pollutants than expected. This suggests that other effects, such as increased energy demand for household needs, must also be considered <sup>3</sup>. Due to the temporary nature of the confinement measures, some authors argue that the longer-term effects of the COVID-19 crisis on the environmental footprint of human activities remain highly uncertain and may offset the observed short-term environmental benefits <sup>4</sup>. In the United States, a sharp drop in jet fuel and gasoline consumption has been observed during the crisis, leading to a decrease in CO<sub>2</sub> emissions of around 15%. However, it has been estimated that in a scenario of sustainable impact on the economy, the consequences of delayed investment in green energy and traffic-related emission reduction programs alone could outweigh the short-term effects <sup>5</sup>. The evolution of some activities or consumption patterns during the COVID-19 crisis are also likely to worsen the environmental balance: development of e-commerce (increase of transport distances and packaging), high consumption of disinfection products, massive COVID-19 screening in populations (increase in medical consumables).

89 The consumption of protective equipment and most particularly facemasks has also
90 experienced a sharp increase during the crisis. To meet the growing demand, the production

of disposable masks has dramatically increased since the first pandemic wave <sup>6</sup>. By June 2020, China was producing 200 million facemasks per day, 20 times more than in February of the same year <sup>7</sup>. With the second pandemic wave, the wearing of facemasks was mandatory in closed spaces and densely populated areas in many countries. Medical masks and community masks have become essential tools in the fight against the spread of the virus. Given the wide use of facemasks, there is an urgent need to consider the environmental impact of this practice and ways to extend the life of this equipment. Several arguments can be put forward: (1) the bulk of production comes from Asia, resulting in significant use of transportation to supply regions such as Europe and the United States, (2) medical masks are intended for single use, resulting in additional waste and possible littering of used masks, and (3) medical masks and some community masks are made of plastic. Poor management of this waste can therefore contribute to the presence of macroplastics and microplastics in the environment, particularly in the Ocean<sup>8</sup>. Considering that 3% of masks could enter the environment (overall loss rate), it is estimated that up to 1.56 billions disposable masks could have entered the Ocean in 2020, which represents between 4680 and 6240 tons of plastic pollution to the marine environment<sup>9</sup>. Life cycle assessment (LCA) conducted on facemasks in United Kingdom also shows that the environmental impact of disposable masks are generally higher than recycled masks. In the absence of recycling, the production of waste in this country, as a consequence of the use of one mask each day for a year by the entire British population, was estimated at 1,24·10<sup>5</sup> tons, including 0,66·10<sup>5</sup> tons of non-recyclable contaminated plastic <sup>10</sup>. Many countries are attempting to restrict the use of single-use plastics, including restricting the use of plastic bags. The increase in plastic waste is putting pressure on the waste management system to find new strategies to deal with this change <sup>11</sup>. On the other 

| 2<br>3<br>4    | 114 |
|----------------|-----|
| 5<br>6         | 115 |
| 7<br>8<br>9    | 116 |
| 10<br>11       | 117 |
| 12<br>13<br>14 | 118 |
| 15<br>16       | 119 |
| 17<br>18<br>19 | 120 |
| 20<br>21       | 121 |
| 22<br>23       | 122 |
| 24<br>25<br>26 | 123 |
| 27<br>28       | 124 |
| 29<br>30<br>31 |     |
| 32<br>33       |     |
| 34<br>35<br>36 |     |
| 37<br>38       |     |
| 39<br>40<br>41 |     |
| 42<br>43       |     |
| 44<br>45<br>46 |     |
| 47<br>48       |     |
| 49<br>50<br>51 |     |
| 52<br>53       |     |
| 54<br>55<br>56 |     |
| 57<br>58       |     |
| 59             |     |

60

hand, there is good evidence that face masks used in the community provide protection
against Covid-19 infections <sup>12</sup>, even though effectiveness can be very different according to
the type of masks, the wearing adherence or the environmental parameters (humidity,
heat,..).

In this study, we aim to explore and compare the environmental impact of the different masks used in the community and attempt to provide clear recommendations on the best compromise between protection effectiveness and environmental impact.

#### 125 Method

 The environmental impact assessment proposed in this study is based on: (1) the construction of
scenarios of mask use in the general population, distinguishing their typology and modalities of reuse,
and (2) the analysis of these scenarios using three impact indicators, reflecting global warming, plastic
littering and ecological scarcity (UBP method).

### 15 130 Mask typology16

131 Three types of masks, intended for general public use, were considered: medical masks, community132 masks and labelled community masks.

Medical masks (or surgical masks) are originally intended for single use and designed to protect patients from possible pathogens exhaled by the medical personnel. In the context of the COVID-19 pandemic, these masks have been widely used outside of healthcare settings to protect the public by preventing pathogens from leaving the wearer and thus from being transmitted to others in the vicinity of the wearer. In Europe, medical masks must meet the requirements of EN 14683 and must comply with the Medical Products Directive (Directive 93/42/EEC). Medical masks are constituted of 3 different layers of nonwoven fabric, generally in polypropylene (referred here below as PP masks) <sup>13</sup>. A majority of them are produced in China and imported by ship in large quantities on the European market. However, during the first pandemic wave in spring 2020, due to the lack of Filtering Facepiece Respirators and medical masks, emergency shipments were made by air.

The term community mask encompasses all non-professional masks that are intended to protect the
general public from infection, essentially in reducing the emissions from the wearer (source control).
Community masks range from homemade cotton masks (referred here below as COT masks) to more
or less sophisticated textile masks. Community masks have the advantage that they can be produced
locally, either centrally in the case of commercial masks, or at home for personal use. The performance
of community masks is not subject to legal requirements, so their quality can vary greatly. In some
countries, quality labels have been proposed, allowing minimum performance requirements to be

#### **BMJ** Open

defined on a voluntary basis. This is the case, for instance, of the French AFNOR label and of the Swiss TESTEX label (referred here below as PES masks). Currently, labelled masks represent only a minority of production, probably due to higher manufacturing costs. While "common" community masks are generally made of cotton or other textiles of natural origin, labelled masks, which require greater technicality, are made of polymers, such as elastane or polyester. Community trade masks without labels were considered to come from the wider European market. For the labelled masks, the origin is more specific, since the AFNOR and TESTEX labelled masks are, to our knowledge, only produced in France and Switzerland respectively. 

159 Reuse strategy

The lack of protective means and the need to extend the life cycle of masks during the first COVID-19 wave generated numerous studies on their reuse. Although medical masks are normally intended for single use, it has been shown that certain physical treatments such as UVC, microwaves or dry heat can effectively decontaminate them without significantly altering their barrier capacity. The latter method is of particular interest for the treatment of medical masks, as it is accessible in all households. It has been shown exposure to at least 70°C for 30 min is sufficient to effectively decontaminate surgical masks or respirators <sup>14-16</sup>.

Another alternative, which has yet to be validated, is the wait & reuse strategy. The viability of the virus deposited on a surface decreases significantly after a few hours. Tests on surgical masks have shown that under ambient temperature and humidity conditions (22°C, 65% RH), a 3-log reduction in virus load was achieved after 4 to 7 days <sup>17</sup>. In a similar way to what has been proposed by the N95Decon scientific group for respirators, surgical masks could therefore be stored at room temperature for 7 days before being reused (by the same user).

The situation with community masks is more straightforward since they are designed with the intent
 of cleaning and reusing by the general public. The issue of maintaining performance is also less critical

**BMJ** Open

since there are no legal requirements for this type of mask. The strategy considered here is therefore
that of a reuse after a decontamination at home in a washing machine at 60°C. Labelled community
mask are a special situation, since maintaining their performances is conditioned by the limitation of
the number of washing cycles, to 20 and 5 washes for the AFNOR and TESTEX labels, respectively <sup>18 19</sup>.

2 179 

#### 180 Environmental Impact assessment

This study follows the methodology of life cycle assessment (LCA) and considers all the life cycle stages of the different masks including production, transport, use (decontamination) and end of life. The primary data sources used and hypothesis are referenced throughout this article. The secondary data used for impact characterization used to perform the LCA analysis are based on the Ecoinvent database (https://www.ecoinvent.org/database/database.html) unless otherwise mentioned; the functional unit (FU) chosen for the comparison of the masks is "to equip one person with a mask during a month". Several environmental impact indicators were considered:

The Global Warming Potential (GWP100) index, which expresses the impact of manufacturing,
 transporting and recycling masks in terms of greenhouse gases. GWP100 expresses the time integrated warming effect, over a 100 year period, due to the release of a given greenhouse gas
 in today's atmosphere, relative to that of carbon dioxide (in mass unit kg)<sup>20</sup>.

193-The UBP method relies on the methodological concept of ecological scarcity and expresses the194environmental impact in terms of eco-points. It encompasses for instance the water footprint of195cotton production as well as the biodiversity impact of energy production during the use phase.196However. Calculation using the UBP method has been performed and is available in Appendix197S1.

The plastic leakage (PL), which expresses the amount of plastic leaving the technosphere and
 cumulating in the natural environment. PL measures the quantity of plastic ultimately released

#### BMJ Open

| 1<br>2         |     |                                                                                                                       |
|----------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| 3<br>4         | 200 | into the ocean or into the other compartments (freshwater, soils, other terrestrial                                   |
| 5<br>6         | 201 | environments) including both microplastics and macroplastics <sup>21</sup> The littering rate used by                 |
| 7<br>8<br>9    | 202 | default for on-the-go plastic is generally ranging between 2% <sup>22 23</sup> and 12% <sup>24</sup> . A recent study |
| 9<br>10<br>11  | 203 | focusing on masks articulates a littering rate of 3% worldwide. In this study, we used a 2%                           |
| 12<br>13       | 204 | littering rate <sup>21</sup> .                                                                                        |
| 14<br>15       | 205 | The destination chosen for masks transport is Switzerland. However, shipping origin and method                        |
| 16<br>17       | 206 | vary as masks can come from Switzerland, France or China, and be transported either by truck, boat                    |
| 18<br>19<br>20 | 207 | or plane. Different assumptions are made for additional environmental burdens during the use                          |
| 21<br>22       | 208 | phase of the mask life cycle according to the decontamination method. For the decontamination in                      |
| 23<br>24       | 209 | a washing machine, we consider a household washing machine cycle running at 60°C during 1h40                          |
| 25<br>26       | 210 | with a dry load of 6 kg of clothes with an energy use of 1.8 kWh/cycle, a water use of 67.6 L/cycle                   |
| 27<br>28<br>29 | 211 | and a soap consumption of 65 g/cycle <sup>25</sup> . For the oven sterilization we assume that, based on              |
| 30<br>31       | 212 | personal measurement, an oven running at 70°C during 30 min consumes 0.345 kWh of electricity.                        |
| 32<br>33       | 213 | In the end of life stage, we assumed that all masks were incinerated after disposal. Heat and                         |
| 34<br>35       | 214 | electricity recovery efficiencies in Europe vary quite significantly between different plants, at                     |
| 36<br>37<br>38 | 215 | average values of 31% for heat and 12% for electricity <sup>26</sup> . The strategies for using the masks and the     |
| 39<br>40       | 216 | corresponding assessment parameters are summarized in Table 1.                                                        |
| 41<br>42       | 217 |                                                                                                                       |
| 43<br>44       | 218 |                                                                                                                       |
| 45<br>46<br>47 | 219 |                                                                                                                       |
| 48<br>49       |     |                                                                                                                       |
| 50<br>51       |     |                                                                                                                       |
| 52<br>53       |     |                                                                                                                       |
| 54<br>55       |     |                                                                                                                       |
| 56             |     |                                                                                                                       |
| 57<br>58       |     |                                                                                                                       |
| 59<br>60       |     | 10                                                                                                                    |
|                |     |                                                                                                                       |

|                        |                         |                                                       | ВМЈ Ор                   | en                    |                     | njopen-                             |                           |
|------------------------|-------------------------|-------------------------------------------------------|--------------------------|-----------------------|---------------------|-------------------------------------|---------------------------|
|                        |                         |                                                       |                          |                       |                     | mjopen-2021-049690                  |                           |
| Scenario               | Mask type               | Material                                              | Weight [g]               | Origin                | Transport<br>(main) | <b>ങ്-use</b><br>ന<br>ഗ             | Consumption<br>mask/month |
| PP_1                   | Medical mask            | Polypropylene (PP) /<br>Nylon /Aluminium <sup>b</sup> | 3.2 (2.5/0.5/0.2)        | China                 | Boat                | September                           | 30                        |
| PP_2                   | _                       | Polypropylene (PP) /<br>Nylon /Aluminium              | 3.2 (2.5/0.5/0.2)        | China                 | Plane               | er <b>⊉</b> 021.                    | 30                        |
| PP_3                   | _                       | Polypropylene (PP) /<br>Nylon /Aluminium              | 3.2 (2.5/0.5/0.2)        | China                 | Boat                | bot drying, 30 min.<br>⊉°C          | 3                         |
| PP_4                   | _                       | Polypropylene (PP) /<br>Nylon /Aluminium              | 3.2 (2.5/0.5/0.2)        | China                 | Boat                | Wait and reuse                      | 3 <sup>c</sup>            |
| COT_1                  | Unlabelled<br>community | Cotton (COT)                                          | 5                        | China                 | Boat                | washing machine                     | 2                         |
| COT_2                  | mask                    | Cotton (COT)                                          | 5                        | Homemade <sup>d</sup> | -                   | ∰ashing machine<br>∰°C              | 2                         |
| PES_1                  | Labelled<br>community   | Elastane / polyester<br>(PES)                         | 6.3 (0.13/6.17)          | France                | Truck               | washing machine                     | 2                         |
| PES_2                  | mask <sup>e</sup>       | Elastane / polyester<br>(PES)                         | 6.3 (0.13/6.17)          | Switzerland           | Truck               | washing machine                     | 6                         |
| <sup>a</sup> Aluminium |                         | isposed of and then replace<br>day, for 10 reuses     | ed by a user during a mo | onth (consumption     | = 30/nb. of exp     | iected reuses)<br>ອັດ<br>2024 by ອຼ |                           |

| 1                    |     |                                                                                                                       |
|----------------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4          | 229 | Results                                                                                                               |
| 5<br>6<br>7          | 230 | Global warming potential                                                                                              |
| 8<br>9               | 231 | The CO <sub>2</sub> - equivalent impact of the different scenarios of mask use is presented in Figure 1. The use of   |
| 10<br>11<br>12       | 232 | disposable masks brought by plane (scenario PP_2), as experienced during the Personal Protective                      |
| 12<br>13<br>14       | 233 | Equipment (PPE) shortage of the first pandemic wave, is by far the most detrimental with 1.3 kg/CO $_2$               |
| 15<br>16             | 234 | eq./FU. Without taking this extreme situation into account, a strong variability is observed between                  |
| 17<br>18             | 235 | the different scenarios of mask use. There is a factor of 30 between the most unfavourable scenario                   |
| 19<br>20             | 236 | (PP_1 - disposable medical mask brought by boat) and the most favourable scenario (COT_2 – Home-                      |
| 21<br>22<br>23       | 237 | made washable cotton mask). The differences observed are largely due to the absence of                                |
| 23<br>24<br>25       | 238 | manufacturing impact from the second-hand fabric as well as a very low contribution from the usage                    |
| 26<br>27             | 239 | phase in scenario COT_2. The decontamination of medical masks by heating (PP_3) is not very                           |
| 28<br>29             | 240 | advantageous, as well as the use of community masks made of polymers, as long as the number of                        |
| 30<br>31<br>32       | 241 | reuse cycles remains limited. Taking into account the discounted emissions from incineration after                    |
| 33<br>34             | 242 | disposal leads to a negative contribution of the end of life stage to the total CO <sub>2</sub> -equivalent emissions |
| 35<br>36             | 243 | in all scenarios except COT_1 and COT_2. Overall, the most advantageous scenarios are home-made                       |
| 37<br>38             | 244 | cotton masks (COT_2) and the extended use of medical masks through a wait and reuse strategy                          |
| 39<br>40             | 245 | (PP_4).                                                                                                               |
| 41<br>42<br>43       | 246 | (PP_4).                                                                                                               |
| 44<br>45             | 247 | Figure 1 about here                                                                                                   |
| 46<br>47             | 248 |                                                                                                                       |
| 48<br>49             | 249 | Results similar to those of the carbon footprint are obtained by considering a broader impact indicator,              |
| 50<br>51<br>52       | 250 | such as UBP, which integrates water consumption (see Supplementary file S1). The impact related to                    |
| 53<br>54             | 251 | use increases for all masks when recycled multiple times. The most advantageous scenarios remain                      |
| 55<br>56             | 252 | however the home-made cotton masks (COT_2) and the extended use of medical masks through a                            |
| 57<br>58<br>59<br>60 | 253 | wait and reuse strategy (PP_4). Notably, the impact of decontamination of medical masks by heating                    |

| 3<br>4         | 254 | (PP_3) is more than doubled, making it less advantageous than the single-use scenario of medical   |
|----------------|-----|----------------------------------------------------------------------------------------------------|
| 5<br>6         | 255 | masks shipped from China by boat (PP_1).                                                           |
| 7<br>8         | 256 |                                                                                                    |
| 9<br>10<br>11  | 257 | Plastic leakage (PL)                                                                               |
| 12<br>13<br>14 | 258 | The impact of the different scenarios of mask use from the point of view of plastic leakage is     |
| 14<br>15<br>16 | 259 | presented in Figure 2. Unsurprisingly, cotton masks do not generate plastic leakage. Disposable    |
| 17<br>18       | 260 | medical masks have a high PL of 1.8 g/FU. However, this impact can be reduced by a factor of 10 by |
| 19<br>20       | 261 | reuse procedures, which proportionally reduce production needs.                                    |
| 21<br>22<br>23 | 262 |                                                                                                    |
| 24<br>25<br>26 | 263 | Figure 2 about here                                                                                |
| 27<br>28<br>29 | 264 |                                                                                                    |
| 30<br>31       | 265 | Number of reuse                                                                                    |
| 32<br>33<br>34 | 266 | The number of reuses used in the scenarios is based on an estimate of current practices and        |
| 35<br>36       | 267 | recommendations. Arguably, this may change depending on usage conditions, material quality, or     |
| 37<br>38       | 268 | changes in mask labelling requirements. The effect of the number of reuses on the GWP100 is shown  |
| 39<br>40<br>41 | 269 | in figure 3. Interestingly, commercial cotton masks (COT_1) reused less than 8 times generate more |
| 41<br>42<br>43 | 270 | $CO_2$ eq than disposable medical masks shipped by boat (PP_1). Moreover, when used less than 17   |
| 44<br>45       | 271 | times commercial cotton masks (COT_1) generate more $CO_2$ eq than medical masks decontaminated    |
| 46<br>47       | 272 | through dry heating (PP_3). The increase in the number of reuse decreases the gap between the two  |
| 48<br>49       | 273 | most advantageous scenarios: home-made cotton masks (COT_2) and the recycling of medical masks     |
| 50<br>51<br>52 | 274 | through a wait and reuse strategy (PP_4).                                                          |
| 53<br>54       | 275 |                                                                                                    |
| 55<br>56<br>57 | 276 |                                                                                                    |
| 58<br>59<br>60 | 277 | Figure 3 about here                                                                                |
|                |     |                                                                                                    |

The estimation of the environmental impact carried out, shows that there are important differences

between the strategies of use of the masks. At the population level, these differences are not

negligible. We quantified how much CO<sub>2</sub>eq impact and plastic leakage would be avoided within a

boat (PP\_1) to either a wait and reuse strategy for the same masks (PP\_4) or home-made cotton

year in Switzerland if 10% of the entire population was to shift from single-use masks transported by

| 2              |     |
|----------------|-----|
| 3<br>4         | 278 |
| 5<br>6         | 279 |
| 7<br>8         | 280 |
| 9<br>10<br>11  | 281 |
| 12<br>13       | 282 |
| 14<br>15       | 283 |
| 16<br>17       | 284 |
| 18<br>19       | 285 |
| 20<br>21       | 200 |
| 22<br>23       |     |
| 24<br>25       |     |
| 26<br>27       | 286 |
| 28<br>29<br>30 | 287 |
| 30<br>31<br>32 | 288 |
| 33<br>34       | 289 |
| 35<br>36       | 290 |
| 37<br>38       | 291 |
| 39<br>40       | 292 |
| 41<br>42       |     |
| 43<br>44       | 293 |
| 45<br>46       | 294 |
| 47<br>48       | 295 |
| 49<br>50<br>51 | 296 |
| 51<br>52<br>53 | 297 |
| 53<br>54<br>55 | 298 |
| 56<br>57       | 299 |
| 58<br>59       | 300 |
| 60             |     |

#### 284 masks from old fabric (COT\_2). Results are reported in Table 2, considering a Swiss population

8'606'033 in 2019 (source: Federal Statistical Office).

Discussion

CO2eq impact avoided<br/>[t CO2 eq.]Plastic leakage avoided<br/>[t PL]shifting to PP\_44'07717shifting to COT\_24'40019

Table 2. Environmental impact of a shift from the use of disposable masks to reuse strategies in 10%
of the Swiss population.

For an impact per passenger transport by aircraft (person.km) of 0.129 kgCO<sub>2</sub>eq (source: Reffnet.ch) ) and an average 1.5L plastic bottle weight of 32.6 g<sup>27</sup>, the uptake of the wait and reuse strategy by ) for the medical masks (PP 4) by 10% of the population would be equivalent to saving  $CO_2eq$ emissions from 5'402 individual flights from Paris to New York and preventing 570'219 plastic bottles (1.5L) from being littered. Similarly, the uptake of home-made cotton masks (COT 2) by the 3 same population share would result in CO<sub>2</sub>eq emissions savings analogous to 5'830 individual air 1 travels from Paris to New York, and a plastic leakage avoided corresponding to 513'194 plastic 5 bottles (1.5L). 5 7 From the point of view of the effectiveness of their individual or collective protection, masks are not all equal. The comparison of their performance is not obvious because several parameters influence 3 their effectiveness (droplet penetration, aerosol penetration, fitting to the face, wettability...)<sup>12</sup> and 9 ) only medical masks as well as labelled community masks (e.g. AFNOR label) have minimum

301 performance requirements for some of these parameters while a high variability in performance is302 to be expected among unlabelled community masks.

The filtration efficiency of the membrane as such has been investigated by several experimental studies. Aydin et al. report filtration efficiencies for large droplets in the 100  $\mu\text{-}$  1mm range of over 98% for surgical masks and 93-98% for unlabelled community masks of different materials (cotton, polyester and silk)<sup>28</sup>. For finer particles, the performance of unlabelled community masks is however lower. In the  $10\mu$  range (PM<sub>10</sub>), Neupane et al. show a filtration efficiency of 94% for surgical masks and 63% and 84% for community masks <sup>29</sup>. Systematic reviews of the laboratory results obtained so far suggest that community masks have satisfactory filtration efficiency for large particles (e.g. > 5µm), but that they have only limited effectiveness against aerosols.

However, the overall performance of the masks is not limited to filtration efficiency alone and will be affected by leaks due to poor fitting to the face, but also by the way the masks are used. Wearing a face mask in a community logic is moreover primarily intended as a collective protection (by reducing the emission of the wearer), rather than an individual protection. This collective effectiveness is difficult to quantify due to the complexity of exposure situations and the presence of other contamination routes (e.g surface contamination). Randomized studies conducted previously on the transmission of viral infections in the community, showed that wearing a mask provided some protection in the most adherent individuals <sup>30</sup> or when mask use is accompanied by hand hygiene measures and/or education on viral infections <sup>31 32</sup>. 

The use of medical masks with a wait and reuse strategy seems to be the most appropriate when
 considering both environmental impact and effectiveness. Expectations, in terms of mask
 performance, are generally fairly limited. However, face masks contribute to collective protection by
 reducing droplet emissions and, to a lesser extent, aerosol emissions from infected wearers.
 However, the lack of minimum performance requirements for unlabelled community face masks,

| 1              |     |                                                                                                       |
|----------------|-----|-------------------------------------------------------------------------------------------------------|
| 2<br>3         |     |                                                                                                       |
| 4              | 325 | makes this contribution uncertain. Standardized masks, which offer guarantees in terms of             |
| 5<br>6<br>7    | 326 | performance and reproducibility, are therefore beneficial from this point of view.                    |
| ,<br>8<br>9    | 327 | Labelled community masks are also an interesting alternative. Their environmental performance is      |
| 10<br>11       | 328 | currently limited by the number of planned cycles of use, which requires frequent replacement. An     |
| 12<br>13<br>14 | 329 | increase in the number of use cycles covered by the label would reduce significantly their            |
| 15<br>16       | 330 | environmental impact. Overall, our results highlight the need to develop procedures and the           |
| 17<br>18       | 331 | legal/operational framework to extend the use of protective equipment during a pandemic. Such an      |
| 19<br>20<br>21 | 332 | approach would not only reduce the environmental impact of the masks, but also make the public        |
| 21<br>22<br>23 | 333 | health system more resilient in the event of equipment shortages. Last but not least, adopting a wait |
| 24<br>25       | 334 | and reuse strategy with medical masks is probably the most economical, which is important in terms    |
| 26<br>27       | 335 | of access to protective measures for people with limited financial resources <sup>33</sup> .          |
| 28<br>29<br>30 | 336 | Acknowledgments                                                                                       |
| 31<br>32       | 337 | The authors would like to thank Prof. J. Cornuz from Unisanté, for his advice and ideas in the        |
| 33<br>34<br>35 | 338 | development of this study.                                                                            |
| 36<br>37       | 339 | Competing interests                                                                                   |
| 38<br>39<br>40 | 340 | The authors declare no competing interest                                                             |
| 41<br>42       | 341 | Author contribution                                                                                   |
| 43<br>44       | 342 | JB, NS, BG and DV developed the study concept and design. AB and JB conducted the impact              |
| 45<br>46<br>47 | 343 | assessment. DV wrote the first draft of the manuscript with contributions from JB, AB and NS. All     |
| 48<br>49       | 344 | authors contributed to and have approved the final manuscript.                                        |
| 50<br>51       | 345 | Funding                                                                                               |
| 52<br>53<br>54 | 346 | The authors received no funding to perform this study.                                                |
| 55<br>56       | 347 | Patient consent for publication                                                                       |
| 57<br>58<br>59 | 348 | Not required                                                                                          |
| 60             | 349 | Data availability statement                                                                           |
|                |     |                                                                                                       |

| 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------|
| -<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350 | Detailed primary and secondary data used for this study are available upon request. |
| 5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 351 | Ethics approval                                                                     |
| 8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 352 | This study does not involve research with human subjects.                           |
| 10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 353 |                                                                                     |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>9<br>21<br>22<br>32<br>25<br>26<br>27<br>28<br>9<br>30<br>32<br>33<br>45<br>36<br>7<br>89<br>40<br>1<br>22<br>34<br>25<br>26<br>7<br>28<br>9<br>30<br>31<br>23<br>34<br>56<br>78<br>90<br>41<br>23<br>44<br>56<br>78<br>90<br>51<br>23<br>45<br>56<br>78<br>90<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>45<br>56<br>78<br>90<br>60<br>51<br>23<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>56<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57 | 354 |                                                                                     |

47

48

49

50

51

52

382

383

384

#### 355 **References**

- Le Quéré C, Jackson RB, Jones MW, et al. Temporary reduction in daily global CO2 emissions during
   the COVID-19 forced confinement. *Nature Climate Change* 2020;10(7):647-53. doi:
   10.1038/s41558-020-0797-x
- 359 2. Tollefson J. COVID curbed carbon emissions in 2020 but not by much. *Nature* 2021;589(7842):343.
   360 doi: 10.1038/d41586-021-00090-3 [published Online First: 2021/01/17]
  - 361 3. Almond D, Du X, Zhang S. Did COVID-19 improve air quality near hubei? . In: 2020 NBoER, ed.,
    362 2020.
- 4. Klemeš JJ, Fan YV, Jiang P. The energy and environmental footprints of COVID-19 fighting
  measures PPE, disinfection, supply chains. *Energy (Oxf)* 2020;211:118701-01. doi:
  10.1016/j.energy.2020.118701 [published Online First: 2020/08/27]
- 366 5. Gillingham KT, Knittel CR, Li J, et al. The Short-run and Long-run Effects of Covid-19 on Energy and
   367 the Environment. *Joule* 2020;4(7):1337-41. doi: <u>https://doi.org/10.1016/j.joule.2020.06.010</u>
  - 368 6. Fadare OO, Okoffo ED. Covid-19 face masks: A potential source of microplastic fibers in the an environment. Science of The Total Environment 2020;737:140279. doi: https://doi.org/10.1016/j.scitotenv.2020.140279
  - 371 7. Aragaw TA. Surgical face masks as a potential source for microplastic pollution in the COVID-19
     372 scenario. *Mar Pollut Bull* 2020;159:111517-17. doi: 10.1016/j.marpolbul.2020.111517
     373 [published Online First: 2020/07/25]
  - 8. Shruti VC, Pérez-Guevara F, Elizalde-Martínez I, et al. Reusable masks for COVID-19: A missing
     piece of the microplastic problem during the global health crisis. *Mar Pollut Bull* 2020;161:111777. doi: https://doi.org/10.1016/j.marpolbul.2020.111777
    - Phelps Bondaroff T, Cooke S. Masks on the Beach: The impact of COVID-19 on marine plastic pollution. Gary Stokes ed: OceansAsia, 2020.
    - Allison AL, Ambrose-Dempster E, Domenech Aparsi T, et al. The impact and effectiveness of the
       general public wearing masks to reduce the spread of pandemics in the UK: a multidisciplinary
       comparison of single-use masks versus reusable face masks: UCL Press, 2020.
      - Klemeš JJ, Fan YV, Tan RR, et al. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. *Renewable and Sustainable Energy Reviews* 2020;127:109883. doi: <u>https://doi.org/10.1016/j.rser.2020.109883</u>
    - 12. Brainard J, Jones NR, Lake IR, et al. Community use of face masks and similar barriers to prevent respiratory illness such as COVID-19: a rapid scoping review. *Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin* 2020;25(49) doi: 10.2807/1560-7917.es.2020.25.49.2000725 [published Online First: 2020/12/12]
    - 13. Chua MH, Cheng W, Goh SS, et al. Face Masks in the New COVID-19 Normal: Materials, Testing,
       and Perspectives. *Research* 2020;2020:7286735. doi: 10.34133/2020/7286735
  - 14. Liao L, Xiao W, Zhao M, et al. Can N95 Respirators Be Reused after Disinfection? How Many
     Times? ACS Nano 2020;14(5):6348-56. doi: 10.1021/acsnano.0c03597 [published Online First:
     2020/05/06]
- 43 395
   44 396
   45 397
   46 398
   15. Pascoe MJ, Robertson A, Crayford A, et al. Dry heat and microwave generated steam protocols for the rapid decontamination of respiratory personal protective equipment in response to COVID-19-related shortages. *The Journal of hospital infection* 2020 doi: 10.1016/j.jhin.2020.07.008
   46 398
   [published Online First: 2020/07/12]
  - 399 16. Ou Q, Pei C, Chan Kim S, et al. Evaluation of decontamination methods for commercial and
     400 alternative respirator and mask materials view from filtration aspect. *J Aerosol Sci* 401 2020;150:105609-09. doi: 10.1016/j.jaerosci.2020.105609 [published Online First: 2020/06/24]
    - 402 17. Chin A, Chu J, Perera M, et al. Stability of SARS-CoV-2 in different environmental conditions.
       403 *medRxiv* 2020:2020.03.15.20036673. doi: 10.1101/2020.03.15.20036673
  - 404 18. AFNOR. Masques barrières Guide d'exigences minimales, de méthodes d'essais, de confection 405 et d'usage. Paris: AFNOR SPEC S76-001 version 1.10, 2020:45.
- 405 et d'usage. Paris: AFNOR SPEC 576-001 version 1.10, 2020:45.
   406 19. TESTEX. Factsheet Community Masks Zurich: TESTEX AG; 2020 [updated January 2021.
   407 Available from: <u>https://www.testex.com/en/communitymask/</u>.
- 408
   56
   409
   409
   20. IPCC. Climate change. The Intergorvernmental Panel on Climate Change, scientific assessment;.
   Agriculture, Ecosystems & Environment. Cambridge: Cambridge University Press, 1990:339.
- 410
   411
   411
   412
   412
   413
   414
   415
   415
   416
   417
   417
   418
   419
   419
   410
   411
   411
   411
   412
   412
   413
   414
   414
   415
   415
   416
   417
   418
   418
   419
   410
   411
   411
   411
   411
   412
   412
   412
   413
   414
   414
   414
   415
   415
   416
   417
   418
   418
   419
   410
   411
   411
   411
   412
   412
   412
   412
   412
   414
   414
   415
   415
   416
   417
   418
   418
   418
   418
   419
   419
   410
   411
   411
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412
   412

413 413 22. Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. *Science* 2015;347(6223):768. doi: 10.1126/science.1260352

- 415
   415
   416
   416
   23. Boucher J, Faure F, Pompini O, et al. (Micro) plastic fluxes and stocks in Lake Geneva basin. *TrAC* 416
   Trends in Analytical Chemistry 2019;112:66-74. doi: <u>https://doi.org/10.1016/j.trac.2018.11.037</u>
- 417 417 24. ICF e. Assessment of measures to reduce marine litter from single use plastics. Luxembourg:
   8 418 European Commission, Directorate-General for Environment, 2018.
- 941925. Bourrier C. Washing Machine ETH Sustainability Summer School 2011 [Web archive]. Zurich:10420ETH; 2011 [Available from: <a href="http://webarchiv.ethz.ch/sustainability-v2/lehre/Sommerakademien/so2011/washies\_report.pdf">http://webarchiv.ethz.ch/sustainability-v2/lehre/Sommerakademien/so2011/washies\_report.pdf</a>.
- 1242226. Reimann D. CEWEP Energy Report III: Results of Specific Data for Energy, R1 Plant Efficiency13423Factor and NCV of 314 European Waste-to-Energy (WtE) Plants. Bamberg, Germany: CEWEP,14424Confederation of European Waste-to-Energy Plants, 2012.
- 1542527. Islam M, Uddin MJ, Alshehri K. Plastic Waste and Carbon Footprint Generation Due to the<br/>Consumption of Bottled Waters in Saudi Arabia. Research & Development in Material Science<br/>2018;5 doi: 10.31031/RDMS.2018.05.000604
- 428
   429
   429
   429
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
   430
- 430
   431
   431
   432
   431
   432
   431
   432
   431
   432
   431
   432
   432
   433
   434
   435
   435
   436
   436
   437
   438
   438
   439
   439
   430
   430
   431
   432
   431
   432
   431
   432
   432
   433
   434
   435
   435
   436
   437
   438
   438
   439
   439
   430
   430
   431
   432
   431
   432
   432
   432
   433
   434
   435
   435
   436
   437
   437
   438
   438
   438
   438
   439
   431
   432
   431
   432
   432
   432
   433
   434
   435
   435
   436
   437
   438
   438
   438
   438
   438
   438
   438
   438
   438
   438
   438
   438
   438
   438
   438
   439
   439
   439
   439
   431
   432
   431
   432
   432
   432
   432
   433
   434
   434
   435
   438
   448
   448
   448
   448
   448
   448
   448
   448
   448
   448
   448
   448
   448
   448
  - 433 30. MacIntyre CR, Cauchemez S, Dwyer DE, et al. Face mask use and control of respiratory virus
     434 transmission in households. *Emerging infectious diseases* 2009;15(2):233-41. doi:
     435 10.3201/eid1502.081167
    - 436 31. Aiello AE, Perez V, Coulborn RM, et al. Facemasks, hand hygiene, and influenza among young
      437 adults: a randomized intervention trial. *PloS one* 2012;7(1):e29744-e44. doi:
      438 10.1371/journal.pone.0029744 [published Online First: 2012/01/25]
- 439
   440
   440
   32. Larson EL, Ferng YH, Wong-McLoughlin J, et al. Impact of non-pharmaceutical interventions on URIs and influenza in crowded, urban households. *Public health reports (Washington, DC :* 1974) 2010;125(2):178-91. doi: 10.1177/003335491012500206 [published Online First: 2010/03/20]
  - 33. Siu JY. Health inequality experienced by the socially disadvantaged populations during the outbreak
     of COVID-19 in Hong Kong: An interaction with social inequality. *Health & social care in the community* 2020 doi: 10.1111/hsc.13214 [published Online First: 2020/10/31]

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

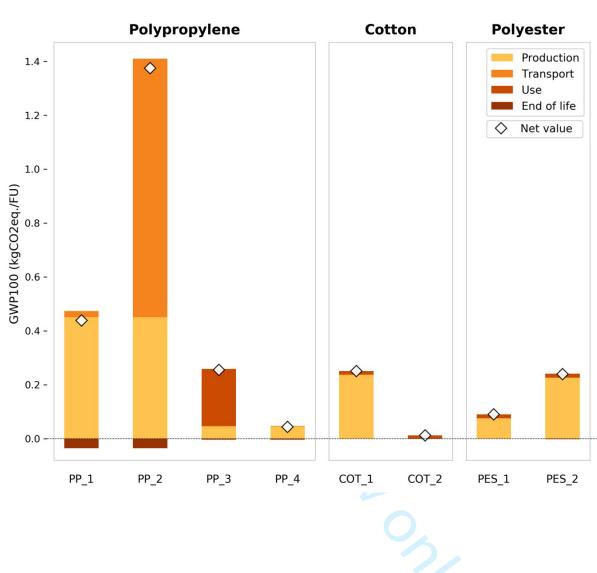
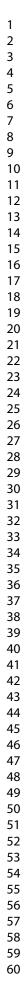




Figure 1. Footprint expressed in GWP100 (kg  $CO_2$  eq./FU) for different scenario of mask uses.



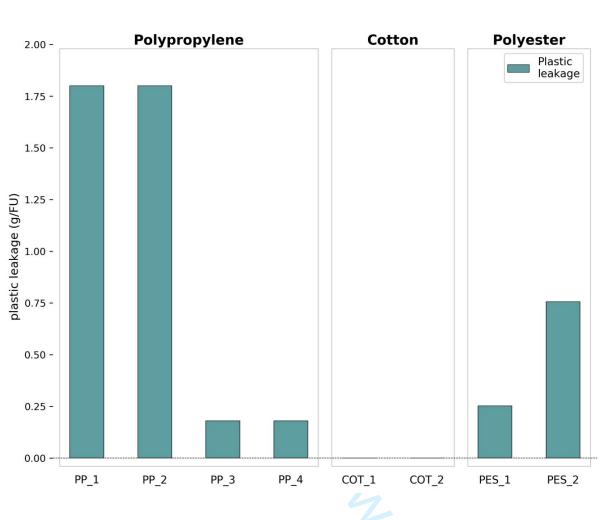



Figure 2. Footprint expressed in plastic leakage (g/FU) for different scenarios of mask uses.

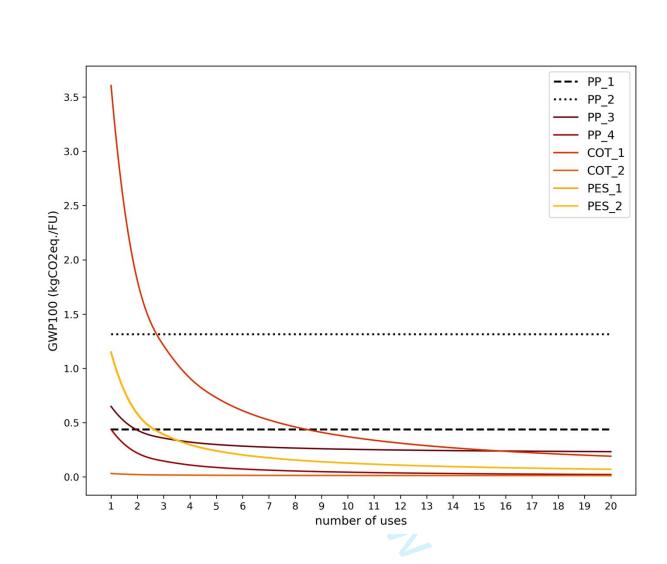
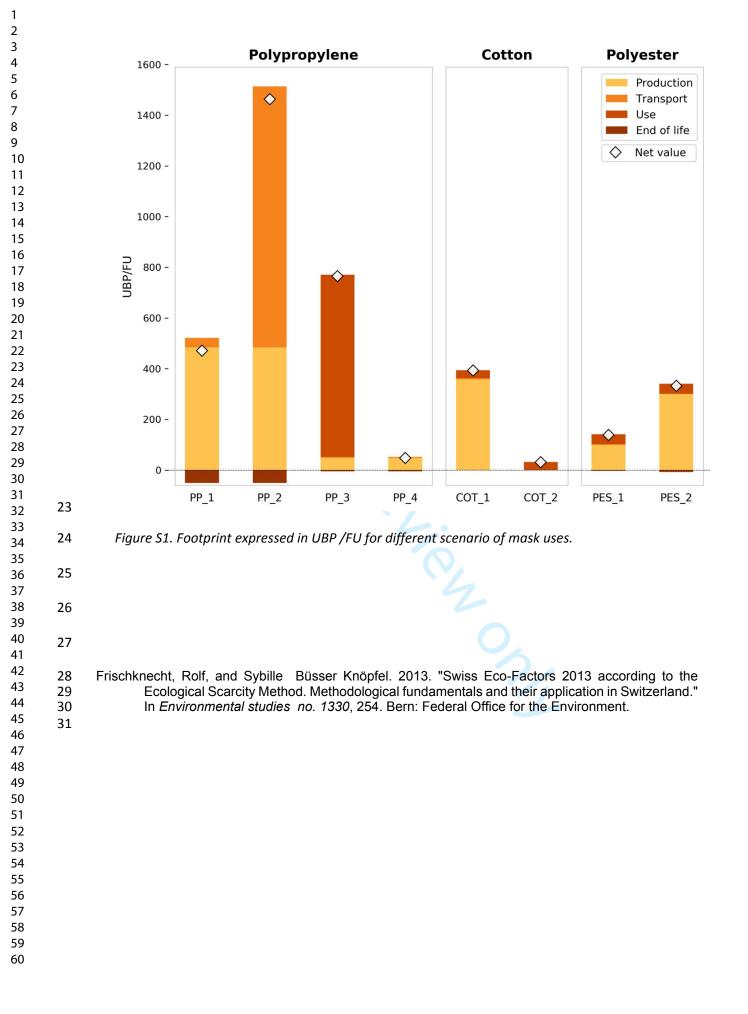



Figure 3. Footprint expressed in GWP100 (kgCO<sub>2</sub>eq./FU) for different scenarios as a function of


number of uses

| 3        |
|----------|
| 4        |
| 5        |
| 6        |
| _        |
| 7<br>8   |
| 9        |
| 9<br>10  |
|          |
|          |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19<br>20 |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31<br>32 |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
| 50       |

#### 1 Appendix S1

2 In addition to the Global Warming Potential (GWP100) index, we assessed other environmental 3 impacts with an aggregated impact metric specific to Switzerland called UBP, which is the 4 abbreviation of the German word "Umweltbelastungpunkte". The UBP method aggregates all 5 individual impacts from a standard LCA assessment into a single parameter. It is based on legally 6 defined targets for pollutant emissions and resource consumption, and measures the differences 7 between current emission values and these specific target values. The further the current status 8 is from the target, the greater the number of points assigned to an emission. For more details, 9 see Frischknecht et al. (Frischknecht and Büsser Knöpfel 2013). 10 The UBP impacts of the different scenarios of mask use are presented in Figure S1. Similarly to 11 the CO<sub>2</sub>-equivalent impacts (see Figure 1), the use of disposable masks brought by plane 12 (scenario PP\_2) results in the highest impact in terms of UBP. The largest discrepancies between 13 the global warming potential and UBP results occur in scenarios PP\_3 and COT\_1. In scenario 14 PP\_3, the UBP impact of the use phase is very large with an unfavourable contribution of the 15 electricity consumption to run the oven, while the production phase of the cotton fabric 16 increases the relative impact of cotton masks manufactured abroad (scenario COT\_1) with 17 respect to other scenarios when compared with the global warming potential results. 18 Nonetheless, the least impactful scenarios remain the home-made cotton masks (COT 2) and the extended use of medical masks through a wait and reuse strategy (PP\_4), which provides a 19 20 coherent picture when it comes to the best practices for community protection with a mask in 21 times of pandemic.

22



# **BMJ Open**

## Which strategy for using medical and community masks? A prospective analysis of their environmental impact.

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2021-049690.R1                                                                                                                                                                                                                                                                                                                                                                                           |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the Author:        | 27-Jun-2021                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:            | Bouchet, Alexandre; EA - Environmental action<br>Boucher, Julien; EA – environmental action; University of Applied<br>Sciences and Arts Western Switzerland<br>Schutzbach, Kevin; Center for Primary Care and Public Health<br>Senn, Nicolas; Center for Primary Care and Public Health<br>Genton, Blaise; Center for Primary Care and Public Health<br>Vernez, David; Center for Primary Care and Public Health |
| <b>Primary Subject<br/>Heading</b> : | Public health                                                                                                                                                                                                                                                                                                                                                                                                    |
| Secondary Subject Heading:           | Health policy                                                                                                                                                                                                                                                                                                                                                                                                    |
| Keywords:                            | COVID-19, PUBLIC HEALTH, Health & safety < HEALTH SERVICES<br>ADMINISTRATION & MANAGEMENT                                                                                                                                                                                                                                                                                                                        |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

| 2<br>3<br>4          | 1        | Which strategy for using medical and community masks? A                                                                                                                         |
|----------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7          | 2        | prospective analysis of their environmental impact.                                                                                                                             |
| 8<br>9               | 3        | Alexandre Bouchet <sup>1</sup> , Julien Boucher <sup>1,2</sup> , Kevin Schutzbach <sup>3</sup> , Nicolas Senn <sup>3</sup> , Blaise Genton <sup>3</sup> , David                 |
| 10<br>11             | 4        | Vernez <sup>3</sup>                                                                                                                                                             |
| 12<br>13             | 5        | <sup>1</sup> EA – environmental action, research consultancy, Lausanne, Switzerland                                                                                             |
| 14<br>15             | 6<br>7   | <sup>2</sup> University of Applied Sciences and Arts Western Switzerland // HES-SO, HEIG-VD, Yverdon-les-<br>Bains, Switzerland                                                 |
| 16<br>17<br>18       | 8<br>9   | <sup>3</sup> Department of Occupational Health and Environment, Center for Primary Care and Public Health<br>(Unisanté), University of Lausanne, CH-1066 Epalinges, Switzerland |
| 19<br>20             | 10       |                                                                                                                                                                                 |
| 21<br>22             | 11       | Corresponding author                                                                                                                                                            |
| 23<br>24             | 12       | Prof. David Vernez                                                                                                                                                              |
| 25<br>26             | 13       | David.Vernez@unisante.ch                                                                                                                                                        |
| 26<br>27             | 14       | Phone: 0041 21 314 74 51                                                                                                                                                        |
| 28                   | 15       | ORCID: 0000-0002-3304-8727                                                                                                                                                      |
| 29<br>30             | 16       |                                                                                                                                                                                 |
| 31                   | 17       | alexandre.bouchet@shaping-ea.com; julien.boucher@shaping-ea.com; kevin.schutzbach@chuv.ch;                                                                                      |
| 32<br>33<br>34       | 18       | nicolas.senn@unisante.ch; blaise.genton@unisante.ch; david.vernez@unisante.ch                                                                                                   |
| 35<br>36<br>37       | 19<br>20 |                                                                                                                                                                                 |
| 38<br>39             | 21       |                                                                                                                                                                                 |
| 40<br>41<br>42       | 22       | Word count: 3501 (without abstract and references)                                                                                                                              |
| 43<br>44             | 23       | Word count: 3501 (without abstract and references)                                                                                                                              |
| 45<br>46             | 24       |                                                                                                                                                                                 |
| 47<br>48             | 25       | Keywords:                                                                                                                                                                       |
| 49<br>50             | 26       | Facemask, community mask, medical mask, recycling, reuse, carbon footprint, COVID-19                                                                                            |
| 51<br>52             | 27       |                                                                                                                                                                                 |
| 53<br>54<br>55<br>56 | 28       |                                                                                                                                                                                 |
| 57<br>58<br>59       |          |                                                                                                                                                                                 |
| 60                   |          | 1                                                                                                                                                                               |

| 1<br>2         |    |                                                                                                             |
|----------------|----|-------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 29 | Abstract                                                                                                    |
| 5<br>6<br>7    | 30 | Introduction                                                                                                |
| 7<br>8<br>9    | 31 | The use of personal protective equipment, especially medical masks, increased dramatically during           |
| 10<br>11       | 32 | the COVID-19 crisis. Medical masks are made of synthetic materials, mainly polypropylene, and a             |
| 12<br>13       | 33 | majority of them are produced in China and imported to the European market. The urgency of the              |
| 14<br>15<br>16 | 34 | need has so far prevailed over environmental considerations.                                                |
| 17<br>18       | 35 | Objective                                                                                                   |
| 19<br>20       | 36 | Assess the environmental impact of different strategies for the use of facemask                             |
| 21<br>22       | 37 | Method                                                                                                      |
| 23<br>24<br>25 | 38 | A prospective analysis was conducted to assess the environmental impact of different strategies for         |
| 25<br>26<br>27 | 39 | the use of medical and community masks. 8 scenarios, differentiating the typologies of masks and the        |
| 28<br>29       | 40 | modes of reuse are compared using three environmental impact indicators: the Global Warming                 |
| 30<br>31       | 41 | Potential (GWP100), the ecological scarcity (UBP method) and the plastic leakage (PL). This study           |
| 32<br>33       | 42 | attempts to provide clear recommendations that consider both the environmental impact and the               |
| 34<br>35<br>36 | 43 | protective effectiveness of face masks used in the community.                                               |
| 37<br>38       | 44 | Results                                                                                                     |
| 39<br>40       | 45 | The environmental impact of single-use masks is the most unfavorable, with a GWP of 0.4 -1.3 kgCO $_{ m 2}$ |
| 41<br>42       | 46 | eq., depending on the transport scenario, and a PL of 1.8 g, for a one month protection against COVID-      |
| 43<br>44<br>45 | 47 | 19. The use of home-made cotton masks and prolonged use of medical masks through wait-and-reuse             |
| 46<br>47       | 48 | are the scenarios with the lowest impact.                                                                   |
| 48<br>49       | 49 | Conclusion                                                                                                  |
| 50<br>51       | 50 | The use of medical masks with a wait and reuse strategy seems to be the most appropriate when               |
| 52<br>53       | 51 | considering both environmental impact and effectiveness. Our results also highlight the need to             |
| 54<br>55<br>56 | 52 | develop procedures and the legal/operational framework to extend the use of protective equipment            |
| 50<br>57<br>58 | 53 | during a pandemic.                                                                                          |
| 59<br>60       |    | 2                                                                                                           |

| 2<br>3 54<br>4                                                                                                                                                                                                                                                                                                                                                  | Strengths and limitations of this study                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 5 55<br>6 55                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
| 7<br>8 56<br>9                                                                                                                                                                                                                                                                                                                                                  | - This study provides an environmental assessment based on three indicators (GWP 100, UBP,  |
| 10 57<br>11 57                                                                                                                                                                                                                                                                                                                                                  | plastic leakage) for different mask type and use strategies.                                |
| 12<br>13 58<br>14                                                                                                                                                                                                                                                                                                                                               | Eight mask use and reuse strategies were considered.                                        |
| 15 59<br>16                                                                                                                                                                                                                                                                                                                                                     | - The assumptions used in the life cycle assessment (transport, end of life, littering) are |
| 17<br>18 60<br>19                                                                                                                                                                                                                                                                                                                                               | based on the European context and do not necessarily apply to other regions.                |
| 20 61<br>21                                                                                                                                                                                                                                                                                                                                                     | - The weight and composition of the masks used in this study are those of typical,          |
| 22 62<br>23                                                                                                                                                                                                                                                                                                                                                     | commercially available masks, but do not represent the variability from one manufacturer to |
| 24 63<br>25 26                                                                                                                                                                                                                                                                                                                                                  | another.                                                                                    |
| 27       64         28       29         30       31         32       33         34       35         36       37         38       39         40       41         42       43         44       45         46       47         48       49         50       51         51       52         53       54         55       56         57       58         59       60 |                                                                                             |

| 65 Introduction | ۱ |
|-----------------|---|
|-----------------|---|

The decrease in industrial activity during the COVID-19 confinement and the decline in intra-and inter-national mobility has led to a significant drop in CO<sub>2</sub> emissions<sup>1</sup>. An average decrease of 6.4% % in yearly CO<sub>2</sub> emissions was observed worldwide for 2020<sup>2</sup>. Positive effects have also been observed on other air pollutants, such as PM, NOx, SO<sub>2</sub> and on river pollution<sup>3</sup>. However, some observations made in China, near Hubei's epicenter, show an unclear environmental picture, with a lower decrease in air pollutants than expected<sup>4</sup>. Due to the temporary nature of the confinement measures, some authors argue that the longer-term effects of the COVID-19 crisis on the environmental footprint of human activities remain highly uncertain and may offset the observed short-term environmental benefits <sup>5</sup>. In the United States, a sharp drop in jet fuel and gasoline consumption has been observed during the crisis, leading to a decrease in CO<sub>2</sub> emissions of around 15%. However, it has been estimated that in a scenario of sustainable impact on the economy, the consequences of delayed investment in green energy and traffic-related emission reduction programs alone could outweigh the short-term effects <sup>6</sup>. The evolution of some activities or consumption patterns during the COVID-19 crisis are also likely to worsen the environmental balance: development of e-commerce (increase of transport distances and packaging), high consumption of disinfection products, massive COVID-19 screening in populations (increase in medical consumables). 

The consumption of protective equipment and most particularly facemasks has also experienced a sharp increase during the crisis<sup>7</sup> <sup>8</sup>. To meet the growing demand, the production of disposable masks has dramatically increased since the first pandemic wave <sup>9</sup>. By June 2020, China was producing 200 million facemasks per day, 20 times more than in

February of the same year <sup>10</sup>. With the second pandemic wave, the wearing of facemasks was mandatory in closed spaces and densely populated areas in many countries. Medical masks and community masks have become essential tools in the fight against the spread of the virus. Given the extensive use of facemasks, there is an urgent need to take into account the environmental impact of this practice and ways to extend the life of this equipment. Several arguments can be put forward: (1) the bulk of production comes from Asia<sup>11</sup>, resulting in significant use of transportation to supply regions such as Europe and the United States, (2) medical masks are intended for single use, resulting in additional waste and possible littering of used masks, and (3) medical masks and some community masks are made of plastic. Poor management of this waste can therefore contribute to the presence of macroplastics and microplastics in the environment, particularly in the Ocean <sup>12</sup>. Considering that 3% of masks could enter the environment (overall loss rate), it is estimated that up to 1.56 billions disposable masks could have entered the Ocean in 2020, which represents between 4680 and 6240 tons of plastic pollution to the marine environment <sup>13</sup>. Life cycle assessment (LCA) conducted on facemasks in United Kingdom also shows that the environmental impact of disposable masks are generally higher than recycled masks. In the absence of recycling, the production of waste in this country, as a consequence of the use of one mask each day for a year by the entire British population, was estimated at 124'000 tons, including 66'000 tons of non-recyclable contaminated plastic <sup>14</sup>. Many countries are attempting to restrict the use of single-use plastics, including restricting the use of plastic bags. The increase in plastic waste is putting pressure on the waste management system to find new strategies to deal with this change <sup>15</sup>. On the other hand, there is good evidence that face masks used in the community provide protection against Covid-19 infections <sup>16</sup>, even though effectiveness can be very 

BMJ Open

| 2<br>3         |     |                                                                                              |
|----------------|-----|----------------------------------------------------------------------------------------------|
| 4<br>5         | 111 | different according to the type of masks, the wearing adherence or the environmental         |
| 6<br>7         | 112 | parameters (humidity, heat,).                                                                |
| 8<br>9         | 113 | In this study, we aim to explore and compare the environmental impact of the different masks |
| 10<br>11       | 114 | used in the community and attempt to provide clear recommendations on the best               |
| 12<br>13<br>14 | 115 | compromise between protection effectiveness and environmental impact.                        |
| 15<br>16       | 116 |                                                                                              |
| 17<br>18<br>19 | 117 |                                                                                              |
| 20             | 118 |                                                                                              |
| 21<br>22       | 119 |                                                                                              |
| 23<br>24       |     |                                                                                              |
| 25<br>26       |     |                                                                                              |
| 27<br>28       |     |                                                                                              |
| 29             |     |                                                                                              |
| 30<br>31       |     |                                                                                              |
| 32<br>33       |     |                                                                                              |
| 34             |     |                                                                                              |
| 35<br>36       |     |                                                                                              |
| 37<br>38       |     |                                                                                              |
| 39             |     |                                                                                              |
| 40<br>41       |     |                                                                                              |
| 42<br>43       |     |                                                                                              |
| 44             |     |                                                                                              |
| 45<br>46       |     |                                                                                              |
| 47<br>48       |     |                                                                                              |
| 49<br>50       |     |                                                                                              |
| 51             |     |                                                                                              |
| 52<br>53       |     |                                                                                              |
| 54<br>55       |     |                                                                                              |
| 56             |     |                                                                                              |
| 57<br>58       |     |                                                                                              |
| 59<br>60       |     | 6                                                                                            |
| 00             |     | 0                                                                                            |

#### 120 Method

121 The environmental impact assessment proposed in this study is based on: (1) the construction of 122 scenarios of mask use in the general population, distinguishing their typology and modalities of reuse, 123 and (2) the analysis of these scenarios using three impact indicators, reflecting global warming, plastic 124 littering and ecological scarcity (UBP method).

#### 125 Mask typology

Three types of masks, intended for general public use, were considered: medical masks, community
masks and labelled community masks. Filtering facepiece respirators, such as N95 (US) and FFP2 (EU),
which are mainly used by healthcare professionals are not considered in this study.

Medical masks (or surgical masks) are originally intended for single use and designed to protect patients from possible pathogens exhaled by the medical personnel. In the context of the COVID-19 pandemic, these masks have been widely used outside of healthcare settings to protect the public by preventing pathogens from leaving the wearer and thus from being transmitted to others in the vicinity of the wearer. In Europe, medical masks must meet the requirements of EN 14683 and must comply with the Medical Devices Directive (EU) 2017/745. Medical masks are usually constituted of 3 different layers of nonwoven fabric, generally in polypropylene (referred here below as PP masks) <sup>17</sup>. A majority of them are produced in China and imported by ship in large quantities on the European market. However, during the first pandemic wave in spring 2020, due to the lack of Filtering Facepiece Respirators and medical masks, emergency shipments were made by air. 

139 The term community mask encompasses all non-professional masks that are intended to protect the
 140 general public from infection, essentially in reducing the emissions from the wearer (source control).
 141 Community masks range from homemade cotton masks (referred here below as COT masks) to more
 142 or less sophisticated textile masks. Community masks have the advantage that they can be produced
 143 locally, either centrally in the case of commercial masks, or at home for personal use. The performance
 144 of community masks is not subject to legal requirements, so their quality can vary greatly. In some

### **BMJ** Open

countries, quality labels have been proposed, allowing minimum performance requirements to be defined on a voluntary basis. This is the case, for instance, of the French AFNOR label and of the Swiss TESTEX label (referred here below as PES masks). Currently, labelled masks represent only a minority of production, probably due to higher manufacturing costs. While "common" community masks are generally made of cotton or other textiles of natural origin, labelled masks, which require greater technicality, are made of polymers, such as elastane or polyester. Community trade masks without labels were considered to come from the wider European market. For the labelled masks, the origin is more specific, since the AFNOR and TESTEX labelled masks are, to our knowledge, only produced in France and Switzerland respectively.

155 Reuse strategy

The lack of protective means and the need to extend the life cycle of masks during the first COVID-19 wave generated numerous studies on their reuse. Although medical masks are normally intended for single use, it has been shown that certain physical treatments such as UVC, microwaves or dry heat can effectively decontaminate them without significantly altering their barrier capacity. The latter method is of particular interest for the treatment of medical masks, as it is accessible in all households. It has been shown exposure to at least 70°C for 30 min is sufficient to effectively decontaminate surgical masks or respirators <sup>18-20</sup>.

Another alternative, which has yet to be validated, is the wait & reuse strategy. The viability of the virus deposited on a surface decreases significantly after a few hours. Tests on surgical masks have shown that under ambient temperature and humidity conditions (22°C, 65% RH), a 3-log reduction in virus load was achieved after 4 to 7 days <sup>21</sup>. In a similar way to what has been proposed by the N95Decon scientific group for respirators, surgical masks could therefore be stored at room temperature for 7 days before being reused (by the same user).

The situation with community masks is more straightforward since they are designed with the intent of cleaning and reusing by the general public. The issue of maintaining performance is also less critical since there are no legal requirements for this type of mask. The strategy considered here is therefore that of a reuse after a decontamination at home in a washing machine at 60°C. Labelled community mask are a special situation, since maintaining their performances is conditioned by the limitation of the number of washing cycles, to 20 and 5 washes for the AFNOR and TESTEX labels, respectively <sup>22</sup> <sup>23</sup>.

- 76 Environmental Impact assessment
- Figure 1 about here

This study follows the methodology of life cycle assessment (LCA) and considers all the life cycle stages of the different masks including production, transport, use (decontamination) and end of life (see Figure 1). The primary data sources used and hypothesis are referenced throughout this article. The secondary data used for impact characterization used to perform the LCA analysis are based on the Ecoinvent database (https://www.ecoinvent.org/database/database.html). A proprietary excel tool developed by the authors was used to perform the LCA based on Ecoinvent datasets. Unless otherwise mentioned; the functional unit (FU) chosen for the comparison of the masks is "to equip one person with a mask during a month". Several environmental impact indicators were considered:

- The Global Warming Potential (GWP100) index, which expresses the impact of manufacturing,
- 190 transporting and recycling masks in terms of greenhouse gases. GWP100 expresses the time-
- 191 integrated warming effect, over a 100 year period, due to the release of a given greenhouse gas
- in today's atmosphere, relative to that of carbon dioxide (in mass unit kg)<sup>24</sup>.

Page 11 of 27

# BMJ Open

| 1              |     |                                                                                                                       |
|----------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 193 | - The UBP method relies on the methodological concept of ecological scarcity and expresses the                        |
| 5<br>6         | 194 | environmental impact in terms of eco-points. It encompasses for instance the water footprint of                       |
| 7<br>8         | 195 | cotton production as well as the biodiversity impact of energy production during the use phase.                       |
| 9<br>10<br>11  | 196 | However. Calculation using the UBP method has been performed and is available in Appendix                             |
| 12<br>13       | 197 | S1.                                                                                                                   |
| 14<br>15       | 198 | - The plastic leakage (PL), which expresses the amount of plastic leaving the technosphere and                        |
| 16<br>17       | 199 | cumulating in the natural environment. PL measures the quantity of plastic ultimately released                        |
| 18<br>19<br>20 | 200 | into the ocean or into the other compartments (freshwater, soils, other terrestrial                                   |
| 20<br>21<br>22 | 201 | environments) including both microplastics and macroplastics <sup>25</sup> Leakage is a result of both loss           |
| 23<br>24       | 202 | and release and can be simply described by the following equation:                                                    |
| 25<br>26       | 203 | Leakage = Waste $\cdot$ Loss rate $\cdot$ Release rate (with Loss rate = mismanaged rate +                            |
| 27<br>28<br>29 | 204 | littering rate )                                                                                                      |
| 30<br>31       | 205 | In the case of Switzerland, the only loss occurring is related to littering since the mismanaged                      |
| 32<br>33       | 206 | rate is equal to 0%. The littering rate will then be assimilated to the leakage rate as we are here                   |
| 34<br>35       | 207 | assessing the release rate to all environmental compartments at once. The littering rate used by                      |
| 36<br>37<br>38 | 208 | default for on-the-go plastic is generally ranging between 2% <sup>26 27</sup> and 12% <sup>28</sup> . A recent study |
| 39<br>40       | 209 | focusing on masks articulates a littering rate of 3% worldwide. In this study, we used a 2%                           |
| 41<br>42       | 210 | littering rate <sup>25</sup> .                                                                                        |
| 43<br>44       | 211 | The destination chosen for masks transport is Switzerland. However, shipping origin and method                        |
| 45<br>46<br>47 | 212 | vary as masks can come from Switzerland, France or China, and be transported either by truck, boat                    |
| 48<br>49       | 213 | or plane. Different assumptions are made for additional environmental burdens during the use                          |
| 50<br>51       | 214 | phase of the mask life cycle according to the decontamination method. For the decontamination in                      |
| 52<br>53       | 215 | a washing machine, we consider a household washing machine cycle running at 60°C during 1h40                          |
| 54<br>55       | 216 | with a dry load of 6 kg of clothes with an energy use of 1.8 kWh/cycle, a water use of 67.6 L/cycle                   |
| 56<br>57<br>58 | 217 | and a soap consumption of 65 g/cycle <sup>29</sup> . We have allocated the energy, water and soap used to             |
| 59<br>60       |     | 10                                                                                                                    |
|                |     |                                                                                                                       |

| 4        |  |
|----------|--|
| 5        |  |
| 6        |  |
| 7        |  |
| /        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 14       |  |
| 15       |  |
| 16<br>17 |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 36<br>37 |  |
| 57       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
|          |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
|          |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 58<br>59 |  |
| 27       |  |

230

233

234

1 2 3

218 wash a mask based on the ratio between the weight of the mask and the total dry load of clothes 219 assumed when running one cycle. These consumptions features have then been scaled up to 220 represent the functional unit chosen for the study. For the oven sterilization we assume that, based 221 on personal measurement, an oven running at 70°C during 30 min consumes 0.345 kWh of 222 electricity. As the oven utilization is exclusively dedicated to sterilizing masks, we had to make an 223 assumption on the number of masks being sterilized at once. We assumed that a batch of 5 masks 224 were sterilized for each oven utilization, hence an energy consumption of 0.069 kWh per mask 225 sterilized. In the end of life stage, we assumed that all masks were incinerated after disposal. Heat and 226

227 electricity recovery efficiencies in Europe vary quite significantly between different plants, at average values of 31% for heat and 12% for electricity <sup>30</sup>. The strategies for using the masks and the 228 arizeo 229 corresponding assessment parameters are summarized in Table 1.

Patient and public involvement 231

232 No patient involved.

| ge 13 of 27                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                       | BMJ Op                   | en                    |                     | mjopen-20                      |                                        |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|--------------------------|-----------------------|---------------------|--------------------------------|----------------------------------------|
| 235                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                       |                          |                       |                     | mjopen-2021-049690 .           |                                        |
|                                                      | Scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mask type             | Material                                              | Weight [g]               | Origin                | Transport<br>(main) | <b>ങ്-use</b><br>റ<br>ഗ        | Consumption<br>mask/month <sup>a</sup> |
|                                                      | PP_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Medical mask          | Polypropylene (PP) /<br>Nylon /Aluminium <sup>b</sup> | 3.2 (2.5/0.5/0.2)        | China                 | Boat                | Septembe                       | 30                                     |
|                                                      | PP_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                     | Polypropylene (PP) /<br>Nylon /Aluminium              | 3.2 (2.5/0.5/0.2)        | China                 | Plane               | er 29021.                      | 30                                     |
|                                                      | PP_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                     | Polypropylene (PP) /<br>Nylon /Aluminium              | 3.2 (2.5/0.5/0.2)        | China                 | Boat                | bot drying, 30 min.<br>⋥⁰℃     | 3                                      |
|                                                      | PP_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                     | Polypropylene (PP) /<br>Nylon /Aluminium              | 3.2 (2.5/0.5/0.2)        | China                 | Boat                | Wait and reuse                 | 3 <sup>c</sup>                         |
|                                                      | COT_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unlabelled community  | Cotton (COT)                                          | 5                        | China                 | Boat                | washing machine                | 2                                      |
|                                                      | COT_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mask                  | Cotton (COT)                                          | 5                        | Homemade <sup>d</sup> | -                   | washing machine                | 2                                      |
|                                                      | PES_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Labelled<br>community | Elastane / polyester<br>(PES)                         | 6.3 (0.13/6.17)          | France                | Truck               | ୍ରୁ<br>ଔଧୁashing machine<br>ଇଂ | 2                                      |
|                                                      | PES_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mask <sup>e</sup>     | Elastane / polyester<br>(PES)                         | 6.3 (0.13/6.17)          | Switzerland           | Truck               | washing machine                | 6                                      |
| 236<br>237<br>238<br>239<br>240<br>241<br>242<br>243 | <ul> <li><sup>a</sup> Number of worn-out masks disposed of and then replaced by a user during a month (consumption = 30/nb. of expected reuses)</li> <li><sup>a</sup> Aluminium nose strip</li> <li><sup>c</sup> One mask is used each weekday, for 10 reuses</li> <li><sup>d</sup> made from old cloth/fabric</li> <li><sup>e</sup> Considering the French quality label AFNOR (scenario PES_1) and the Swiss quality label Testex (scenario PES_2)</li> <li><i>Table 1. Summary of Mask typology and uses scenarios</i></li> </ul> |                       |                                                       |                          |                       |                     |                                |                                        |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | For peer review o                                     | only - http://bmjopen.bn | nj.com/site/about/    | ′guidelines.xhtml   |                                |                                        |

### Results **Global warming potential** The $CO_2$ - equivalent impact of the different scenarios of mask use is presented in Figure 2. The use of disposable masks brought by plane (scenario PP\_2), as experienced during the Personal Protective Equipment (PPE) shortage of the first pandemic wave, is by far the most detrimental with 1.3 kg/CO<sub>2</sub> eq./FU. Without taking this extreme situation into account, a strong variability is observed between the different scenarios of mask use. There is a factor of 30 between the most unfavourable scenario (PP\_1 - disposable medical mask brought by boat) and the most favourable scenario (COT\_2 – Home-made washable cotton mask). The differences observed are largely due to the absence of manufacturing impact from the second-hand fabric as well as a very low contribution from the usage phase in scenario COT\_2. The decontamination of medical masks by heating (PP\_3) is not very advantageous, as well as the use of community masks made of polymers, as long as the number of reuse cycles remains limited. Taking into account the discounted emissions from incineration after disposal leads to a negative contribution of the end of life stage to the total CO<sub>2</sub>-equivalent emissions in all scenarios except COT\_1 and COT\_2. The use of labelled community mask (PES\_1 and PES\_2) has an intermediate environmental impact, the use of AFNOR masks (French label) being more advantageous than the TESTEX mask (Swiss label). The difference between the two is mainly due to the different number of reuses recommended between the two labels. Overall, the most advantageous scenarios are home-made cotton masks (COT\_2) and the extended use of medical masks through a wait and reuse strategy (PP 4). Figure 2 about here Results similar to those of the carbon footprint are obtained by considering a broader impact indicator, such as UBP, which integrates water consumption (see Supplementary file S1). The impact related to use increases for all masks when recycled multiple times. The most advantageous scenarios remain

### **BMJ** Open

| 3<br>4         | 270 |
|----------------|-----|
| 5<br>6         | 271 |
| 7<br>8         | 272 |
| 9<br>10<br>11  | 273 |
| 12<br>13       | 274 |
| 14<br>15       | 275 |
| 16<br>17       | 276 |
| 18<br>19       | 277 |
| 20<br>21<br>22 | 278 |
| 23<br>24       | 279 |
| 25<br>26       | 280 |
| 27<br>28       |     |
| 29<br>30<br>31 | 281 |
| 32<br>33       | 282 |
| 34<br>35       | 283 |
| 36<br>37       | 284 |
| 38<br>39<br>40 | 285 |
| 41<br>42       | 286 |
| 43<br>44       | 287 |
| 45<br>46<br>47 | 288 |
| 48<br>49       | 289 |
| 50<br>51       | 290 |
| 52<br>53       | 291 |
| 54<br>55<br>56 | 292 |
| 57<br>58       | 293 |
| 59             | 204 |

however the home-made cotton masks (COT\_2) and the extended use of medical masks through a
wait and reuse strategy (PP\_4). Notably, the impact of decontamination of medical masks by heating
(PP\_3) is more than doubled, making it less advantageous than the single-use scenario of medical
masks shipped from China by boat (PP\_1).

275 Plastic leakage (PL)

The impact of the different scenarios of mask use from the point of view of plastic leakage is
presented in Figure 3. Unsurprisingly, cotton masks do not generate plastic leakage. Disposable
medical masks have a high PL of 1.8 g/FU. However, this impact can be reduced by a factor of 10 by
reuse procedures, which proportionally reduce production needs.

Figure 3 about here

### 282 Number of reuse

The number of reuses used in the scenarios is based on an estimate of current practices and recommendations. Arguably, this may change depending on usage conditions, material quality, or changes in mask labelling requirements. The effect of the number of reuses on the GWP100 is shown in figure 4. Interestingly, commercial cotton masks (COT\_1) reused less than 8 times generate more CO<sub>2</sub>eq than disposable medical masks shipped by boat (PP\_1). Moreover, when used less than 17 times commercial cotton masks (COT\_1) generate more CO<sub>2</sub>eq than medical masks decontaminated through dry heating (PP\_3). The increase in the number of reuse decreases the gap between the two most advantageous scenarios: home-made cotton masks (COT\_2) and the recycling of medical masks through a wait and reuse strategy (PP\_4). The curves for scenarios PES\_1 and PES\_2 are overlapping in Figure 4 since the composition of EMPA and AFNOR masks has been assumed identical. The only slight difference between these scenarios, although not significant enough to distinguish both curves on the graph, stems from the distinct origins of the masks.

| 1              |     |                                                                                                                   |  |
|----------------|-----|-------------------------------------------------------------------------------------------------------------------|--|
| 2<br>3<br>4    | 295 |                                                                                                                   |  |
| 5<br>6<br>7    | 296 |                                                                                                                   |  |
| 8<br>9         | 297 | Figure 4 about here                                                                                               |  |
| 10<br>11<br>12 | 298 |                                                                                                                   |  |
| 13<br>14<br>15 | 299 | Discussion                                                                                                        |  |
| 16<br>17       | 300 | Consistent with what has been highlighted by other authors, our results show that switching from                  |  |
| 18<br>19<br>20 | 301 | single-use to reusable masks can significantly reduce plastic leakage and climate change impact <sup>14</sup> .   |  |
| 20<br>21<br>22 | 302 | However, analysis of the different scenarios shows considerable variation between reuse strategies,               |  |
| 23<br>24       | 303 | mainly due to the impact of production and recycling. A footprint reduction (GWP100 or UBP) of                    |  |
| 25<br>26<br>27 | 304 | 50% to 90% can be achieved by switching from a single-use medical mask to a reusable solution. For                |  |
| 27<br>28<br>29 | 305 | plastic leakage, this reduction can be from 60% to 100%. At the population level, these differences               |  |
| 30<br>31       | 306 | are not negligible. We quantified how much CO <sub>2</sub> eq impact and plastic leakage would be avoided         |  |
| 32<br>33       | 307 | within a year in Switzerland if 10% of the entire population was to shift from single-use masks                   |  |
| 34<br>35<br>36 | 308 | transported by boat (PP_1) to either a wait and reuse strategy for the same masks (PP_4) or home-                 |  |
| 37<br>38       | 309 | made cotton masks from old fabric (COT_2). Results are reported in Table 2, considering a Swiss                   |  |
| 39<br>40       | 310 | population 8'606'033 in 2019 (source: Federal Statistical Office).                                                |  |
| 41<br>42       |     | CO <sub>2</sub> eq impact avoided Plastic leakage avoided<br>[t CO <sub>2</sub> eq.] [t PL]                       |  |
| 43<br>44       |     | shifting to PP_4 4'077 17                                                                                         |  |
| 44<br>45       |     | shifting to COT_2 4'400 19                                                                                        |  |
| 46             | 311 |                                                                                                                   |  |
| 47             |     |                                                                                                                   |  |
| 48<br>49       | 312 | Table 2. Environmental impact of a shift from the use of disposable masks to reuse strategies in 10%              |  |
| 50<br>51<br>52 | 313 | of the Swiss population.                                                                                          |  |
| 53<br>54       | 314 | For an impact per passenger transport by aircraft (person.km) of 0.129 kgCO $_2$ eq (source: Reffnet.ch)          |  |
| 55<br>56<br>57 | 315 | and an average 1.5L plastic bottle weight of 32.6 g <sup>31</sup> , the uptake of the wait and reuse strategy for |  |
| 57<br>58<br>59 | 316 | the medical masks (PP_4) by 10% of the population would be equivalent to saving $CO_2$ eq emissions               |  |
| 60             | 317 | from 5'402 individual flights from Paris to New York, and preventing 513'194 plastic bottles (1.5L)               |  |

from being littered. Similarly, the uptake of home-made cotton masks (COT\_2) by the same population share would result in CO<sub>2</sub>eg emissions savings analogous to 5'830 individual air travels from Paris to New York, and a plastic leakage avoided corresponding to 570'219 plastic bottles (1.5L).

The environmental impact assessment conducted in this study has several limitations. Data on mask composition, transport and end of life are from the European context. The transposition of these results to other regions, in particular regions with a higher production capacity of medical masks and less reliance on imports, would lead to a modification of the GWP100 and UBP impact. Furthermore, in the absence of precise market distribution data, mask composition and production data were based on typical examples and scenarios rather than statistical data. In practice, there is some variability in manufacturing and shipping arrangements due to different suppliers. From the point of view of the effectiveness of their individual or collective protection, masks are not all equal. The comparison of their performance is not obvious because several parameters influence their effectiveness (droplet penetration, aerosol penetration, fitting to the face, wettability...)<sup>16</sup> and only medical masks as well as labelled community masks (e.g. AFNOR label) have minimum performance requirements for some of these parameters while a high variability in performance is to be expected among unlabelled community masks. We performed an uncertainty analysis based on low and high values for the littering rate (ranging from 0.2% to 12%, with the medium value being set at 2%). We have observed that the plastic leakage results would be changing proportionally to the leakage rate factor between the medium value and the low or high value, but that the climate change or UBP impact results would deviate from the medium case by around 1% or below. No other uncertainty analysis was undertaken for this study.

The filtration efficiency of the membrane as such has been investigated by several experimental studies. Aydin et al. report filtration efficiencies for large droplets in the 100  $\mu$ - 1mm range of over 98% for surgical masks and 93-98% for unlabelled community masks of different materials (cotton, polyester and silk)<sup>32</sup>. For finer particles, the performance of unlabelled community masks is however

lower. In the  $10\mu$  range (PM<sub>10</sub>), Neupane et al. show a filtration efficiency of 94% for surgical masks and 63% and 84% for community masks <sup>33</sup>. Systematic reviews of the laboratory results obtained so far suggest that community masks have satisfactory filtration efficiency for large particles (e.g. > 5µm), but that they have only limited effectiveness against aerosols. However, the overall performance of the masks is not limited to filtration efficiency alone and will be affected by leaks due to poor fitting to the face, but also by the way the masks are used. Wearing a face mask in a community logic is moreover primarily intended as a collective protection (by reducing the emission of the wearer), rather than an individual protection. This collective effectiveness is difficult to quantify due to the complexity of exposure situations and the presence of other contamination routes (e.g surface contamination). Randomized studies conducted previously on the transmission of viral infections in the community, showed that wearing a mask provided some protection in the most adherent individuals <sup>34</sup> or when mask use is accompanied by hand hygiene measures and/or education on viral infections <sup>35 36</sup>. The use of medical masks with a wait and reuse strategy seems to be the most appropriate when considering both environmental impact and effectiveness. Expectations, in terms of mask performance, are generally fairly limited. However, face masks contribute to collective protection by reducing droplet emissions and, to a lesser extent, aerosol emissions from infected wearers. However, the lack of minimum performance requirements for unlabelled community face masks, makes this contribution uncertain. Standardized masks, which offer guarantees in terms of performance and reproducibility, are therefore beneficial from this point of view. Labelled community masks are also an interesting alternative. Their environmental performance is currently limited by the number of planned cycles of use, which requires frequent replacement. An increase in the number of use cycles covered by the label would reduce significantly their environmental impact. The future use of materials that are less polluting than plastic materials for the manufacture of masks could be an alternative to reduce the environmental cost of their 

### **BMJ** Open

| 3        |  |
|----------|--|
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| ,<br>8   |  |
| 9        |  |
|          |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 22       |  |
| 23<br>24 |  |
| 24<br>25 |  |
|          |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 42<br>43 |  |
| 43<br>44 |  |
|          |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 50<br>59 |  |
| 59<br>60 |  |
| 1111     |  |

369 manufacture and plastic leakage. For community masks, this adjustment is relatively simple because 370 many of them are made of cotton and some manufacturers also offer masks made of recycled 371 plastic. For medical masks, a more important effort is necessary because it requires the complete 372 accreditation of the mask according to EN14683. Overall, our results highlight the need to develop 373 procedures and the legal/operational framework to extend the use of protective equipment during a 374 pandemic. Such an approach would not only reduce the environmental impact of the masks, but also 375 make the public health system more resilient in the event of equipment shortages. The scale of the 376 uptake of the reuse strategies suggested in the study by the population will depend on the interest 377 of the government to endorse such practices for community masks and on the efficiency of public 378 awareness campaign. Last but not least, adopting a wait and reuse strategy with medical masks is probably the most economical, which is important in terms of access to protective measures for 379 people with limited financial resources <sup>37</sup>. 380

381 Acknowledgments

382 The authors would like to thank Prof. J. Cornuz from Unisanté, for his advice and ideas in the

383 development of this study.

384 Competing interests

385 The authors declare no competing interest

386 Author contribution

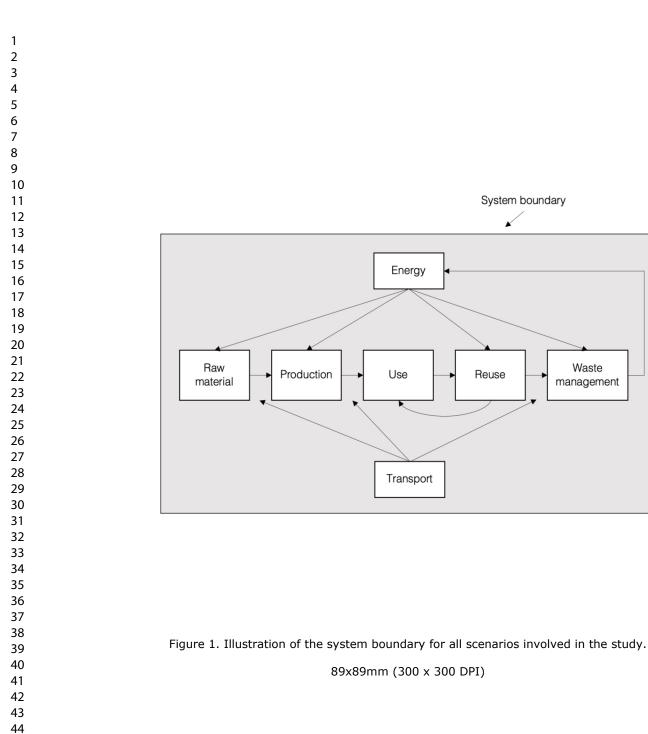
387 JB, NS, BG, KS and DV developed the study concept and design. KS and DV conducted the literature

388 review. AB and JB conducted the impact assessment and data analysis. All authors contributed to the

- data interpretation. DV wrote the first draft of the manuscript with contributions from JB, AB and
- <sup>2</sup> 390 NS. All authors contributed to and have approved the final manuscript.

391 **Funding** 

7 392 The authors received no funding to perform this study.


### 393 **Patient consent for publication**

| 1<br>2                                                                                                                                                                                                                                          |     |                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------|
| 3<br>4                                                                                                                                                                                                                                          | 394 | Not required                                                                        |
| 5<br>6                                                                                                                                                                                                                                          | 395 | Data availability statement                                                         |
| 7<br>8<br>9                                                                                                                                                                                                                                     | 396 | Detailed primary and secondary data used for this study are available upon request. |
| 10<br>11                                                                                                                                                                                                                                        | 397 | Ethics approval                                                                     |
| 12<br>13<br>14                                                                                                                                                                                                                                  | 398 | This study does not involve research with human subjects.                           |
| 15<br>16                                                                                                                                                                                                                                        | 399 |                                                                                     |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>32<br>4<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>22<br>33<br>34<br>35<br>36<br>37<br>8<br>39<br>40<br>41<br>42<br>34<br>45<br>46<br>47<br>48<br>9<br>50<br>51<br>25<br>34<br>55<br>67<br>89<br>60 | 400 |                                                                                     |

### References

- 1. Le Quéré C, Jackson RB, Jones MW, et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change 2020;10(7):647-53. doi: 10.1038/s41558-020-0797-x
- 2. Tollefson J. COVID curbed carbon emissions in 2020 - but not by much. Nature 2021;589(7842):343. doi: 10.1038/d41586-021-00090-3 [published Online First: 2021/01/17]
  - 3. Patel PP, Mondal S, Ghosh KG. Some respite for India's dirtiest river? Examining the Yamuna's water quality at Delhi during the COVID-19 lockdown period. Science of The Total Environment 2020;744:140851. doi: https://doi.org/10.1016/j.scitotenv.2020.140851
    - 4. Almond D, Du X, Zhang S. Did COVID-19 improve air quality near hubei? . In: 2020 NBoER, ed., 2020.
  - 5. Klemeš JJ, Fan YV, Jiang P. The energy and environmental footprints of COVID-19 fighting measures - PPE, disinfection, supply chains. Energy (Oxf) 2020;211:118701-01. doi: 10.1016/j.energy.2020.118701 [published Online First: 2020/08/27]
  - 6. Gillingham KT, Knittel CR, Li J, et al. The Short-run and Long-run Effects of Covid-19 on Energy and the Environment. Joule 2020;4(7):1337-41. doi: https://doi.org/10.1016/j.joule.2020.06.010
    - 7. Benson NU, Bassey DE, Palanisami T. COVID pollution: impact of COVID-19 pandemic on global plastic footprint. Heliyon 2021;7(2):e06343. doi: waste https://doi.org/10.1016/j.heliyon.2021.e06343
    - 8. Patrício Silva AL, Prata JC, Walker TR, et al. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal 2021;405:126683. doi: https://doi.org/10.1016/j.cej.2020.126683
    - 9. Fadare OO, Okoffo ED. Covid-19 face masks: A potential source of microplastic fibers in the environment. Science of The Total Environment 2020;737:140279. doi: https://doi.org/10.1016/j.scitotenv.2020.140279
    - 10. Aragaw TA. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar Pollut Bull 2020;159:111517-17. doi: 10.1016/j.marpolbul.2020.111517 [published Online First: 2020/07/25]
    - 11. Eurostat. Which country imported the most face masks? : EU Commission; 2021 [Available from: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20201006-12021.
    - 12. Shruti VC, Pérez-Guevara F, Elizalde-Martínez I, et al. Reusable masks for COVID-19: A missing piece of the microplastic problem during the global health crisis. Mar Pollut Bull 2020;161:111777. doi: https://doi.org/10.1016/j.marpolbul.2020.111777
    - 13. Phelps Bondaroff T, Cooke S. Masks on the Beach: The impact of COVID-19 on marine plastic pollution. Garv Stokes ed: OceansAsia. 2020.
    - 14. Allison AL, Ambrose-Dempster E, Domenech Aparsi T, et al. The impact and effectiveness of the general public wearing masks to reduce the spread of pandemics in the UK: a multidisciplinary comparison of single-use masks versus reusable face masks: UCL Press, 2020.
    - 15. Klemeš JJ, Fan YV, Tan RR, et al. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews 2020;127:109883. doi: https://doi.org/10.1016/j.rser.2020.109883
  - 16. Brainard J, Jones NR, Lake IR, et al. Community use of face masks and similar barriers to prevent respiratory illness such as COVID-19: a rapid scoping review. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2020;25(49) doi: 10.2807/1560-7917.es.2020.25.49.2000725 [published Online First: 2020/12/12]
- 17. Chua MH, Cheng W, Goh SS, et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research 2020;2020:7286735. doi: 10.34133/2020/7286735
  - 18. Liao L, Xiao W, Zhao M, et al. Can N95 Respirators Be Reused after Disinfection? How Many Times? ACS Nano 2020;14(5):6348-56. doi: 10.1021/acsnano.0c03597 [published Online First: 2020/05/06]
- 19. Pascoe MJ, Robertson A, Crayford A, et al. Dry heat and microwave generated steam protocols for the rapid decontamination of respiratory personal protective equipment in response to COVID-19-related shortages. The Journal of hospital infection 2020 doi: 10.1016/j.jhin.2020.07.008 [published Online First: 2020/07/12]
- 20. Ou Q, Pei C, Chan Kim S, et al. Evaluation of decontamination methods for commercial and alternative respirator and mask materials - view from filtration aspect. J Aerosol Sci 2020;150:105609-09. doi: 10.1016/j.jaerosci.2020.105609 [published Online First: 2020/06/24]

21. Chin A, Chu J, Perera M, et al. Stability of SARS-CoV-2 in different environmental conditions. medRxiv 2020:2020.03.15.20036673. doi: 10.1101/2020.03.15.20036673 22. AFNOR. Masques barrières - Guide d'exigences minimales, de méthodes d'essais, de confection et d'usage. Paris: AFNOR SPEC S76-001 version 1.10, 2020:45. 23. TESTEX. Factsheet - Community Masks Zurich: TESTEX AG; 2020 [updated January 2021. Available from: <u>https://www.testex.com/en/communitymask/</u>. 24. IPCC. Climate change. The Intergorvernmental Panel on Climate Change, scientific assessment;. Agriculture, Ecosystems & Environment. Cambridge: Cambridge University Press, 1990:339. 25. Boucher J, Billard G, Simeone E, et al. The marine plastic footprint : towards a science-based metric for measuring marine plastic leakage and increasing the materiality and circularity of plastic. Gland, Switzerland: IUCN, Global Marine and Polar Programme, 2020:70. 26. Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. Science 2015;347(6223):768. doi: 10.1126/science.1260352 27. Boucher J. Faure F. Pompini O. et al. (Micro) plastic fluxes and stocks in Lake Geneva basin. TrAC Trends in Analytical Chemistry 2019;112:66-74. doi: https://doi.org/10.1016/j.trac.2018.11.037 28. ICF e. Assessment of measures to reduce marine litter from single use plastics. Luxembourg: European Commission, Directorate-General for Environment, 2018. 29. Bourrier C. Washing Machine - ETH Sustainability Summer School 2011 [Web archive]. Zurich: ETH; [Available from: http://webarchiv.ethz.ch/sustainability-v2/lehre/Sommerakademien/so2011/washies report.pdf. 30. Reimann D. CEWEP Energy Report III: Results of Specific Data for Energy, R1 Plant Efficiency Factor and NCV of 314 European Waste-to-Energy (WtE) Plants. Bamberg, Germany: CEWEP, Confederation of European Waste-to-Energy Plants, 2012. 31. Islam M, Uddin MJ, Alshehri K. Plastic Waste and Carbon Footprint Generation Due to the Consumption of Bottled Waters in Saudi Arabia. Research & Development in Material Science 2018;5 doi: 10.31031/RDMS.2018.05.000604 32. Aydin O, Emon B, Cheng S, et al. Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study. Extreme Mechanics Letters 2020;40:100924. doi: 10.1016/j.eml.2020.100924 [published Online First: 2020/08/25] 33. Neupane BB, Mainali S, Sharma A, et al. Optical microscopic study of surface morphology and filtering efficiency of face masks. PeerJ 2019;7:e7142-e42. doi: 10.7717/peerj.7142 34. MacIntyre CR, Cauchemez S, Dwyer DE, et al. Face mask use and control of respiratory virus transmission in households. Emerging infectious diseases 2009;15(2):233-41. doi: 10.3201/eid1502.081167 35. Aiello AE, Perez V, Coulborn RM, et al. Facemasks, hand hygiene, and influenza among young adults: randomized intervention trial. PloS one 2012;7(1):e29744-e44. а doi: 10.1371/journal.pone.0029744 [published Online First: 2012/01/25] 36. Larson EL, Ferng YH, Wong-McLoughlin J, et al. Impact of non-pharmaceutical interventions on URIs and influenza in crowded, urban households. Public health reports (Washington, DC : 1974) 2010;125(2):178-91. doi: 10.1177/003335491012500206 [published Online First: 2010/03/20] 37. Siu JY. Health inequality experienced by the socially disadvantaged populations during the outbreak of COVID-19 in Hong Kong: An interaction with social inequality. Health & social care in the community 2020 doi: 10.1111/hsc.13214 [published Online First: 2020/10/31] 



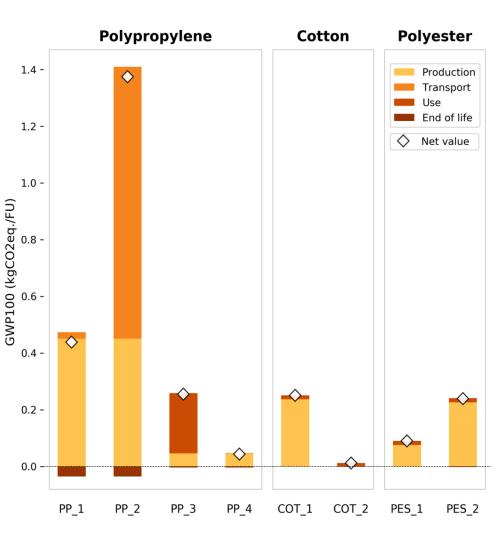
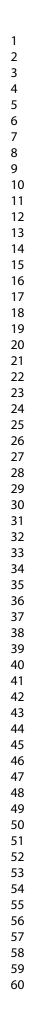




Figure 2. Footprint expressed in GWP100 (kg CO2 eq./FU) for different scenario of mask uses.

89x89mm (300 x 300 DPI)



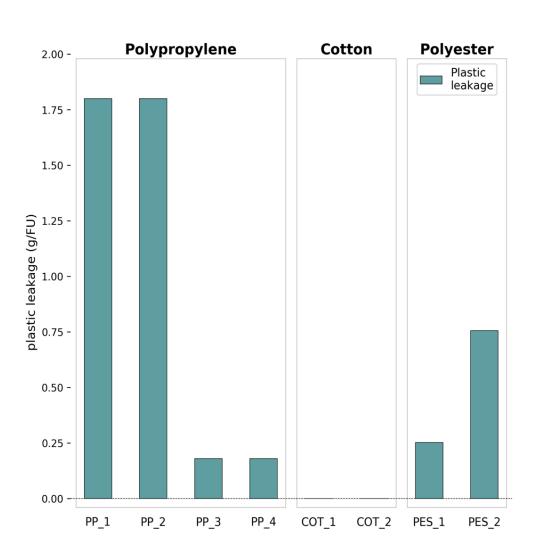



Figure 3. Footprint expressed in plastic leakage (g/FU) for different scenarios of mask uses.

89x89mm (300 x 300 DPI)

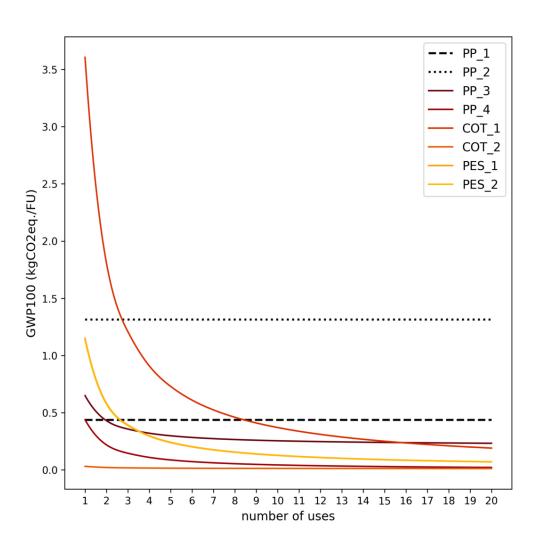



Figure 4. Footprint expressed in GWP100 (kgCO2eq./FU) for different scenarios as a function of number of uses.

89x89mm (300 x 300 DPI)

### Appendix S1

In addition to the Global Warming Potential (GWP100) index, we assessed other environmental impacts with an aggregated impact metric specific to Switzerland called UBP, which is the abbreviation of the German word "Umweltbelastungpunkte". The UBP method aggregates all individual impacts from a standard LCA assessment into a single parameter. It is based on legally defined targets for pollutant emissions and resource consumption, and measures the differences between current emission values and these specific target values. The further the current status is from the target, the greater the number of points assigned to an emission. For more details, see Frischknecht et al. (Frischknecht and Büsser Knöpfel 2013).

The UBP impacts of the different scenarios of mask use are presented in Figure S1. Similarly to the CO<sub>2</sub>-equivalent impacts (see Figure 1), the use of disposable masks brought by plane (scenario PP\_2) results in the highest impact in terms of UBP. The largest discrepancies between the global warming potential and UBP results occur in scenarios PP\_3 and COT\_1. In scenario PP\_3, the UBP impact of the use phase is very large with an unfavourable contribution of the electricity consumption to run the oven, while the production phase of the cotton fabric increases the relative impact of cotton masks manufactured abroad (scenario COT\_1) with respect to other scenarios when compared with the global warming potential results. Nonetheless, the least impactful scenarios remain the home-made cotton masks (COT\_2) and the extended use of medical masks through a wait and reuse strategy (PP\_4), which provides a coherent picture when it comes to the best practices for community protection with a mask in times of pandemic.

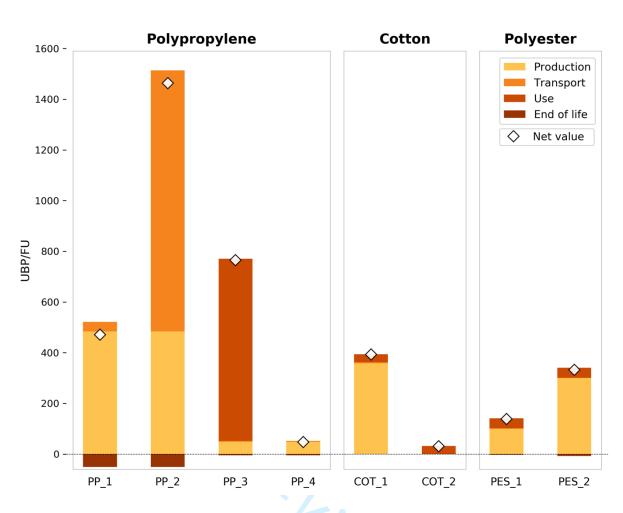



Figure S1. Footprint expressed in UBP /FU for different scenario of mask uses.

Frischknecht, Rolf, and Sybille Büsser Knöpfel. 2013. "Swiss Eco-Factors 2013 according to the Ecological Scarcity Method. Methodological fundamentals and their application in Switzerland." In *Environmental studies no. 1330*, 254. Bern: Federal Office for the Environment.

# **BMJ Open**

# Which strategy for using medical and community masks? A prospective analysis of their environmental impact.

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2021-049690.R2                                                                                                                                                                                                                                                                                                                                                                                           |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the Author:        | 11-Aug-2021                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:            | Bouchet, Alexandre; EA - Environmental action<br>Boucher, Julien; EA – environmental action; University of Applied<br>Sciences and Arts Western Switzerland<br>Schutzbach, Kevin; Center for Primary Care and Public Health<br>Senn, Nicolas; Center for Primary Care and Public Health<br>Genton, Blaise; Center for Primary Care and Public Health<br>Vernez, David; Center for Primary Care and Public Health |
| <b>Primary Subject<br/>Heading</b> : | Public health                                                                                                                                                                                                                                                                                                                                                                                                    |
| Secondary Subject Heading:           | Health policy                                                                                                                                                                                                                                                                                                                                                                                                    |
| Keywords:                            | COVID-19, PUBLIC HEALTH, Health & safety < HEALTH SERVICES<br>ADMINISTRATION & MANAGEMENT                                                                                                                                                                                                                                                                                                                        |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

| 2<br>3                                                                                                                                                                                                                                                                                         |        | Multiple structures from units and and an environmental solution of                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5                                                                                                                                                                                                                                                                                         | 1      | Which strategy for using medical and community masks? A                                                                                                                      |
| 6<br>7                                                                                                                                                                                                                                                                                         | 2      | prospective analysis of their environmental impact.                                                                                                                          |
| 8<br>9                                                                                                                                                                                                                                                                                         | 3      | Alexandre Bouchet <sup>1</sup> , Julien Boucher <sup>1,2</sup> , Kevin Schutzbach <sup>3</sup> , Nicolas Senn <sup>3</sup> , Blaise Genton <sup>3</sup> , David              |
| 10<br>11                                                                                                                                                                                                                                                                                       | 4      | Vernez <sup>3</sup>                                                                                                                                                          |
| 12<br>13                                                                                                                                                                                                                                                                                       | 5      | <sup>1</sup> EA – environmental action, research consultancy, Lausanne, Switzerland                                                                                          |
| 14<br>15                                                                                                                                                                                                                                                                                       | 6<br>7 | <sup>2</sup> University of Applied Sciences and Arts Western Switzerland // HES-SO, HEIG-VD, Yverdon-les-<br>Bains, Switzerland                                              |
| <ol> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>30</li> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> </ol> | 8<br>9 | <sup>3</sup> Department of Occupational Health and Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, CH-1066 Epalinges, Switzerland |
|                                                                                                                                                                                                                                                                                                | 10     |                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                | 11     | Corresponding author                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                | 12     | Prof. David Vernez                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                | 13     | David.Vernez@unisante.ch                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                | 14     | Phone: 0041 21 314 74 51                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                | 15     | ORCID: 0000-0002-3304-8727                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                | 16     |                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                | 17     | alexandre.bouchet@shaping-ea.com; julien.boucher@shaping-ea.com; kevin.schutzbach@chuv.ch;                                                                                   |
|                                                                                                                                                                                                                                                                                                | 18     | nicolas.senn@unisante.ch; blaise.genton@unisante.ch; david.vernez@unisante.ch                                                                                                |
|                                                                                                                                                                                                                                                                                                | 19     |                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                | 20     |                                                                                                                                                                              |
| 39<br>40                                                                                                                                                                                                                                                                                       | 21     |                                                                                                                                                                              |
| 40<br>41<br>42                                                                                                                                                                                                                                                                                 | 22     | Word count: 3501 (without abstract and references)                                                                                                                           |
| 43<br>44                                                                                                                                                                                                                                                                                       | 23     |                                                                                                                                                                              |
| 45<br>46                                                                                                                                                                                                                                                                                       | 24     |                                                                                                                                                                              |
| 47<br>48                                                                                                                                                                                                                                                                                       | 25     | Keywords:                                                                                                                                                                    |
| 49<br>50                                                                                                                                                                                                                                                                                       | 26     | Facemask, community mask, medical mask, recycling, reuse, carbon footprint, COVID-19                                                                                         |
| 51<br>52                                                                                                                                                                                                                                                                                       | 27     |                                                                                                                                                                              |
| 53<br>54<br>55                                                                                                                                                                                                                                                                                 | 28     |                                                                                                                                                                              |
| 56<br>57<br>58                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                              |
| 59<br>60                                                                                                                                                                                                                                                                                       |        | 1                                                                                                                                                                            |

| 1<br>2         |    |                                                                                                             |
|----------------|----|-------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 29 | Abstract                                                                                                    |
| 5<br>6<br>7    | 30 | Introduction                                                                                                |
| 7<br>8<br>9    | 31 | The use of personal protective equipment, especially medical masks, increased dramatically during           |
| 10<br>11       | 32 | the COVID-19 crisis. Medical masks are made of synthetic materials, mainly polypropylene, and a             |
| 12<br>13       | 33 | majority of them are produced in China and imported to the European market. The urgency of the              |
| 14<br>15<br>16 | 34 | need has so far prevailed over environmental considerations.                                                |
| 17<br>18       | 35 | Objective                                                                                                   |
| 19<br>20       | 36 | Assess the environmental impact of different strategies for the use of facemask                             |
| 21<br>22       | 37 | Method                                                                                                      |
| 23<br>24<br>25 | 38 | A prospective analysis was conducted to assess the environmental impact of different strategies for         |
| 25<br>26<br>27 | 39 | the use of medical and community masks. 8 scenarios, differentiating the typologies of masks and the        |
| 28<br>29       | 40 | modes of reuse are compared using three environmental impact indicators: the Global Warming                 |
| 30<br>31       | 41 | Potential (GWP100), the ecological scarcity (UBP method) and the plastic leakage (PL). This study           |
| 32<br>33       | 42 | attempts to provide clear recommendations that consider both the environmental impact and the               |
| 34<br>35<br>36 | 43 | protective effectiveness of face masks used in the community.                                               |
| 37<br>38       | 44 | Results                                                                                                     |
| 39<br>40       | 45 | The environmental impact of single-use masks is the most unfavorable, with a GWP of 0.4 -1.3 kgCO $_{ m 2}$ |
| 41<br>42       | 46 | eq., depending on the transport scenario, and a PL of 1.8 g, for a one month protection against COVID-      |
| 43<br>44<br>45 | 47 | 19. The use of home-made cotton masks and prolonged use of medical masks through wait-and-reuse             |
| 46<br>47       | 48 | are the scenarios with the lowest impact.                                                                   |
| 48<br>49       | 49 | Conclusion                                                                                                  |
| 50<br>51       | 50 | The use of medical masks with a wait and reuse strategy seems to be the most appropriate when               |
| 52<br>53       | 51 | considering both environmental impact and effectiveness. Our results also highlight the need to             |
| 54<br>55<br>56 | 52 | develop procedures and the legal/operational framework to extend the use of protective equipment            |
| 50<br>57<br>58 | 53 | during a pandemic.                                                                                          |
| 59<br>60       |    | 2                                                                                                           |

| Strengths and limitations of this study                                                     |
|---------------------------------------------------------------------------------------------|
|                                                                                             |
| - This study provides an environmental assessment based on three indicators (GWP 100, UBP,  |
| plastic leakage) for different mask type and use strategies.                                |
| Eight mask use and reuse strategies were considered.                                        |
| - The assumptions used in the life cycle assessment (transport, end of life, littering) are |
| based on the European context and do not necessarily apply to other regions.                |
| - The weight and composition of the masks used in this study are those of typical,          |
| commercially available masks, but do not represent the variability from one manufacturer to |
| another.                                                                                    |
|                                                                                             |
|                                                                                             |

| 65 | Introduction |
|----|--------------|
| 05 | meroduction  |

The decrease in industrial activity during the COVID-19 confinement and the decline in intra-and inter-national mobility has led to a significant drop in CO<sub>2</sub> emissions<sup>1</sup>. An average decrease of 6.4% in yearly CO<sub>2</sub> emissions was observed worldwide for 2020<sup>2</sup>. Positive effects have also been observed on other air pollutants, such as PM, NOx, SO<sub>2</sub> and on river pollution<sup>3</sup>. However, some observations made in China, near Hubei's epicenter, show an unclear environmental picture, with a lower decrease in air pollutants than expected<sup>4</sup>. Due to the temporary nature of the confinement measures, some authors argue that the longer-term effects of the COVID-19 crisis on the environmental footprint of human activities remain highly uncertain and may offset the observed short-term environmental benefits <sup>5</sup>. In the United States, a sharp drop in jet fuel and gasoline consumption has been observed during the crisis, leading to a decrease in CO<sub>2</sub> emissions of around 15%. However, it has been estimated that in a scenario of sustainable impact on the economy, the consequences of delayed investment in green energy and traffic-related emission reduction programs alone could outweigh the short-term effects <sup>6</sup>. The evolution of some activities or consumption patterns during the COVID-19 crisis are also likely to worsen the environmental balance: development of e-commerce (increase of transport distances and packaging), high consumption of disinfection products, massive COVID-19 screening in populations (increase in medical consumables). 

The consumption of protective equipment and most particularly facemasks has also experienced a sharp increase during the crisis<sup>7</sup> <sup>8</sup>. To meet the growing demand, the production of disposable masks has dramatically increased since the first pandemic wave <sup>9</sup>. By June 2020, China was producing 200 million facemasks per day, 20 times more than in

February of the same year <sup>10</sup>. With the second pandemic wave, the wearing of facemasks was mandatory in closed spaces and densely populated areas in many countries. Medical masks and community masks have become essential tools in the fight against the spread of the virus. Given the extensive use of facemasks, there is an urgent need to take into account the environmental impact of this practice and ways to extend the life of this equipment. Several arguments can be put forward: (1) the bulk of production comes from Asia<sup>11</sup>, resulting in significant use of transportation to supply regions such as Europe and the United States, (2) medical masks are intended for single use, resulting in additional waste and possible littering of used masks, and (3) medical masks and some community masks are made of plastic. Poor management of this waste can therefore contribute to the presence of macroplastics and microplastics in the environment, particularly in the Ocean <sup>12</sup>. Considering that 3% of masks could enter the environment (overall loss rate), it is estimated that up to 1.56 billions disposable masks could have entered the Ocean in 2020, which represents between 4680 and 6240 tons of plastic pollution to the marine environment <sup>13</sup>. Life cycle assessment (LCA) conducted on facemasks in United Kingdom also shows that the environmental impact of disposable masks are generally higher than recycled masks. In the absence of recycling, the production of waste in this country, as a consequence of the use of one mask each day for a year by the entire British population, was estimated at 124'000 tons, including 66'000 tons of non-recyclable contaminated plastic <sup>14</sup>. Many countries are attempting to restrict the use of single-use plastics, including restricting the use of plastic bags. The increase in plastic waste is putting pressure on the waste management system to find new strategies to deal with this change <sup>15</sup>. On the other hand, there is good evidence that face masks used in the community provide protection against Covid-19 infections <sup>16</sup>, even though effectiveness can be very 

**BMJ** Open

| 3<br>4         | 111        |
|----------------|------------|
| 5<br>6         | 112        |
| 7<br>8<br>9    | 113        |
| 10<br>11       | 114        |
| 12<br>13       | 115        |
| 14<br>15<br>16 | 116        |
| 17<br>18       | 117        |
| 19<br>20       | 110        |
| 21<br>22       | 118<br>119 |
| 23<br>24       |            |
| 25<br>26       |            |
| 27             |            |
| 28<br>29       |            |
| 30             |            |
| 31<br>32       |            |
| 33             |            |
| 34<br>35       |            |
| 36             |            |
| 37<br>38       |            |
| 39             |            |
| 40<br>41       |            |
| 42             |            |
| 43<br>44       |            |
| 45             |            |
| 46<br>47       |            |
| 48             |            |
| 49<br>50       |            |
| 51             |            |
| 52<br>53       |            |
| 53<br>54       |            |
| 55             |            |
| 56<br>57       |            |
| 58             |            |

 different according to the type of masks, the wearing adherence or the environmental parameters (e.g. humidity and heat).

In this study, we aim to explore and compare the environmental impact of the different masks used in the community and attempt to provide clear recommendations on the best .tio compromise between protection effectiveness and environmental impact.

### 120 Method

The environmental impact assessment proposed in this study is based on: (1) the construction of scenarios of mask use in the general population, distinguishing their typology and modalities of reuse, and (2) the analysis of these scenarios using three impact indicators, reflecting global warming, plastic littering and ecological scarcity (UBP method).

### 125 Mask typology

Three types of masks, intended for general public use, were considered: medical masks, community
masks and labelled community masks. Filtering facepiece respirators, such as N95 (US) and FFP2 (EU),
which are mainly used by healthcare professionals are not considered in this study.

Medical masks (or surgical masks) are originally intended for single use and designed to protect patients from possible pathogens exhaled by the medical personnel. In the context of the COVID-19 pandemic, these masks have been widely used outside of healthcare settings to protect the public by preventing pathogens from leaving the wearer and thus from being transmitted to others in the vicinity of the wearer. In Europe, medical masks must meet the requirements of EN 14683 and must comply with the Medical Devices Directive (EU) 2017/745. Medical masks are usually constituted of 3 different layers of nonwoven fabric, generally in polypropylene (referred here below as PP masks) <sup>17</sup>. A majority of them are produced in China and imported by ship in large quantities on the European market. However, during the first pandemic wave in spring 2020, due to the lack of Filtering Facepiece Respirators and medical masks, emergency shipments were made by air. 

The term community mask encompasses all non-professional masks that are intended to protect the general public from infection, essentially in reducing the emissions from the wearer (source control). Community masks range from homemade cotton masks (referred here below as COT masks) to more or less sophisticated textile masks. Community masks have the advantage that they can be produced locally, either centrally in the case of commercial masks, or at home for personal use. The performance of community masks is not subject to legal requirements, so their quality can vary greatly. In some 

### **BMJ** Open

countries, quality labels have been proposed, allowing minimum performance requirements to be defined on a voluntary basis. This is the case, for instance, of the French AFNOR label and of the Swiss TESTEX label (referred here below as PES masks). Currently, labelled masks represent only a minority of production, probably due to higher manufacturing costs. While "common" community masks are generally made of cotton or other textiles of natural origin, labelled masks, which require greater technicality, are made of polymers, such as elastane or polyester. Community trade masks without labels were considered to come from the wider European market. For the labelled masks, the origin is more specific, since the AFNOR and TESTEX labelled masks are, to our knowledge, only produced in France and Switzerland respectively.

155 Reuse strategy

The lack of protective means and the need to extend the life cycle of masks during the first COVID-19 wave generated numerous studies on their reuse. Although medical masks are normally intended for single use, it has been shown that certain physical treatments such as UVC, microwaves or dry heat can effectively decontaminate them without significantly altering their barrier capacity. The latter method is of particular interest for the treatment of medical masks, as it is accessible in all households. It has been shown exposure to at least 70°C for 30 min is sufficient to effectively decontaminate surgical masks or respirators <sup>18-20</sup>.

Another alternative, which has yet to be validated, is the wait & reuse strategy. The viability of the virus deposited on a surface decreases significantly after a few hours. Tests on surgical masks have shown that under ambient temperature and humidity conditions (22°C, 65% RH), a 3-log reduction in virus load was achieved after 4 to 7 days <sup>21</sup>. In a similar way to what has been proposed by the N95Decon scientific group for respirators, surgical masks could therefore be stored at room temperature for 7 days before being reused (by the same user).

| 2              |     |
|----------------|-----|
| -<br>3<br>4    | 169 |
| 5<br>6         | 170 |
| 7<br>8         | 171 |
| 9<br>10        | 172 |
| 11<br>12       | 173 |
| 13<br>14<br>15 | 174 |
| 15<br>16<br>17 | 175 |
| 17             |     |
| 19<br>20       | 176 |
| 21<br>22       | 177 |
| 23<br>24       | 178 |
| 25<br>26       | 179 |
| 27<br>28       | 180 |
| 29<br>30<br>31 | 181 |
| 32<br>33       | 182 |
| 34             |     |
| 35<br>36       | 183 |
| 37<br>38       | 184 |
| 39<br>40       | 185 |
| 41<br>42       | 186 |
| 43<br>44       | 187 |
| 45<br>46       | 188 |
| 47             |     |
| 48<br>49       | 189 |
| 50<br>51       | 190 |
| 52<br>53       | 191 |
| 54             | 192 |
| 55<br>56       | 192 |
| 57             |     |
| 58<br>59       |     |

60

1

The situation with community masks is more straightforward since they are designed with the intent of cleaning and reusing by the general public. The issue of maintaining performance is also less critical since there are no legal requirements for this type of mask. The strategy considered here is therefore that of a reuse after a decontamination at home in a washing machine at 60°C. Labelled community mask are a special situation, since maintaining their performances is conditioned by the limitation of the number of washing cycles, to 20 and 5 washes for the AFNOR and TESTEX labels, respectively <sup>22</sup>23.

- 76 Environmental Impact assessment
- Figure 1 about here

This study follows the methodology of life cycle assessment (LCA) and considers all the life cycle stages 0 1 of the different masks including production, transport, use (decontamination) and end of life (see 2 Figure 1). The primary data sources used and hypothesis are referenced throughout this article. The 3 secondary data used for impact characterization used to perform the LCA analysis are based on the 4 Ecoinvent database (https://www.ecoinvent.org/database/database.html). A proprietary excel tool developed by the authors was used to perform the LCA based on Ecoinvent datasets. Unless otherwise 5 6 mentioned; the functional unit (FU) chosen for the comparison of the masks is "to equip one person 7 with a mask during a month". Several environmental impact indicators were considered:

- 189 The Global Warming Potential (GWP100) index, which expresses the impact of manufacturing,
- 190 transporting and recycling masks in terms of greenhouse gases. GWP100 expresses the time-
- 191 integrated warming effect, over a 100 year period, due to the release of a given greenhouse gas
- in today's atmosphere, relative to that of carbon dioxide (in mass unit kg)<sup>24</sup>.

Page 11 of 28

1 2

# BMJ Open

| 2<br>3<br>4    | 193 | - The UBP method relies on the methodological concept of ecological scarcity and expresses the                            |
|----------------|-----|---------------------------------------------------------------------------------------------------------------------------|
| 5<br>6         | 194 | environmental impact in terms of eco-points. It encompasses for instance the water footprint of                           |
| 7<br>8         | 195 | cotton production as well as the biodiversity impact of energy production during the use phase.                           |
| 9<br>10<br>11  | 196 | However. Calculation using the UBP method has been performed and is available in Appendix                                 |
| 12<br>13       | 197 | S1.                                                                                                                       |
| 14<br>15       | 198 | - The plastic leakage (PL), which expresses the amount of plastic leaving the technosphere and                            |
| 16<br>17       | 199 | cumulating in the natural environment. PL measures the quantity of plastic ultimately released                            |
| 18<br>19       | 200 | into the ocean or into the other compartments (freshwater, soils, other terrestrial                                       |
| 20<br>21<br>22 | 201 | environments) including both microplastics and macroplastics <sup>25</sup> . Plastic leakage is a result of               |
| 23<br>24       | 202 | both loss and release and can be simply described by the following equation:                                              |
| 25<br>26       | 203 | Plastic leakage mass = Plastic waste mass $\cdot$ Leakage rate (with Leakage rate = Loss                                  |
| 27<br>28       | 204 | rate . Release rate, and Loss rate = mismanaged rate + littering rate)                                                    |
| 29<br>30<br>31 | 205 | In the case of Switzerland, the only loss occurring is related to littering since the mismanaged                          |
| 32<br>33       | 206 | rate is equal to 0%. The littering rate will then be assimilated to the leakage rate as we are here                       |
| 34<br>35       | 207 | assessing the release rate of a low residual value item to all environmental compartments at                              |
| 36<br>37       | 208 | once, hence equal to 100%. The littering rate used by default for on-the-go plastic is generally                          |
| 38<br>39<br>40 | 209 | ranging between 2% <sup>26 27</sup> and 12% <sup>28</sup> . A recent study focusing on masks articulates a littering rate |
| 40<br>41<br>42 | 210 | of 3% worldwide. We used a 2% littering rate $^{25}$ , yielding a leakage rate of 2% to all                               |
| 43<br>44       | 211 | compartments of the environment for the scope of this study.                                                              |
| 45<br>46       | 212 | The destination chosen for masks transport is Switzerland. However, shipping origin and method                            |
| 47<br>48<br>49 | 213 | vary as masks can come from Switzerland, France or China, and be transported either by truck, boat                        |
| 50<br>51       | 214 | or plane. Different assumptions are made for additional environmental burdens during the use                              |
| 52<br>53       | 215 | phase of the mask life cycle according to the decontamination method. For the decontamination in                          |
| 54<br>55       | 216 | a washing machine, we consider a household washing machine cycle running at 60°C during 1h40                              |
| 56<br>57<br>58 | 217 | with a dry load of 6 kg of clothes with an energy use of 1.8 kWh/cycle, a water use of 67.6 L/cycle                       |
| 58<br>59<br>60 |     | 10                                                                                                                        |
|                |     | _•                                                                                                                        |

| 4                                                                                                                                            | 218        | and a soap consumption of 65 g/cycle <sup>29</sup> . We have allocated the energy, water and soap used to         |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------|
| 5<br>6                                                                                                                                       | 219        | wash a mask based on the ratio between the weight of the mask and the total dry load of clothes                   |
| 7<br>8<br>9                                                                                                                                  | 220        | assumed when running one cycle. These consumptions features have then been scaled up to                           |
| 9<br>10<br>11                                                                                                                                | 221        | represent the functional unit chosen for the study. For the oven sterilization we assume that, based              |
| 12<br>13                                                                                                                                     | 222        | on personal measurement, an oven running at 70°C during 30 min consumes 0.345 kWh of                              |
| 14<br>15                                                                                                                                     | 223        | electricity. As the oven utilization is exclusively dedicated to sterilizing masks, we had to make an             |
| 16<br>17<br>18                                                                                                                               | 224        | assumption on the number of masks being sterilized at once. We assumed that a batch of 5 masks                    |
| 19<br>20                                                                                                                                     | 225        | were sterilized for each oven utilization, hence an energy consumption of 0.069 kWh per mask                      |
| 21<br>22                                                                                                                                     | 226        | sterilized.                                                                                                       |
| 23<br>24                                                                                                                                     | 227        | In the end of life stage, we assumed that all masks were incinerated after disposal. Heat and                     |
| 25<br>26<br>27                                                                                                                               | 228        | electricity recovery efficiencies in Europe vary quite significantly between different plants, at                 |
| 28<br>29                                                                                                                                     | 229        | average values of 31% for heat and 12% for electricity <sup>30</sup> . The strategies for using the masks and the |
| 30<br>31                                                                                                                                     | 230        | corresponding assessment parameters are summarized in Table 1.                                                    |
| 32<br>33                                                                                                                                     | 231        |                                                                                                                   |
|                                                                                                                                              |            |                                                                                                                   |
| 34<br>35<br>36                                                                                                                               | 232        | Patient and public involvement                                                                                    |
| 35<br>36<br>37<br>38                                                                                                                         | 232<br>233 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40                                                                                                             |            | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                 | 233        | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                     | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                               | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                     | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                             | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                       | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                 | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                                           | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52                                     | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                                           | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                               | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56             | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57       | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | 233<br>234 | Patient and public involvement No patient involved.                                                               |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57       | 233<br>234 | Patient and public involvement No patient involved.                                                               |

1 2

| 13 of 28                                                    |                                                                                                      |                                                                               |                                                                                                                 | BMJ Op                     | en                    |                     | mjopen-2021-049690              |                           |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|---------------------|---------------------------------|---------------------------|
| 236                                                         |                                                                                                      |                                                                               |                                                                                                                 |                            |                       |                     | 21-049690                       |                           |
|                                                             | Scenario                                                                                             | Mask type                                                                     | Material                                                                                                        | Weight [g]                 | Origin                | Transport<br>(main) | <b>ങ്-use</b><br>ന<br>ഗ         | Consumption<br>mask/month |
|                                                             | PP_1                                                                                                 | Medical mask                                                                  | Polypropylene (PP) /<br>Nylon /Aluminium <sup>b</sup>                                                           | 3.2 (2.5/0.5/0.2)          | China                 | Boat                | Seppember 202                   | 30                        |
|                                                             | PP_2                                                                                                 | _                                                                             | Polypropylene (PP) /<br>Nylon /Aluminium                                                                        | 3.2 (2.5/0.5/0.2)          | China                 | Plane               | ∋r <mark>2</mark> 0021.         | 30                        |
|                                                             | PP_3                                                                                                 | _                                                                             | Polypropylene (PP) /<br>Nylon /Aluminium                                                                        | 3.2 (2.5/0.5/0.2)          | China                 | Boat                | 岐ot drying, 30 min.<br>君°C      | 3                         |
|                                                             | PP_4                                                                                                 | _                                                                             | Polypropylene (PP) /<br>Nylon /Aluminium                                                                        | 3.2 (2.5/0.5/0.2)          | China                 | Boat                | Wait and reuse                  | 3c                        |
|                                                             | COT_1                                                                                                | Unlabelled community                                                          | Cotton (COT)                                                                                                    | 5                          | China                 | Boat                | မှု<br>Washing machine<br>စြာ°C | 2                         |
|                                                             | COT_2                                                                                                | mask                                                                          | Cotton (COT)                                                                                                    | 5                          | Homemade <sup>d</sup> | -                   | washing machine                 | 2                         |
|                                                             | PES_1                                                                                                | Labelled<br>community                                                         | Elastane / polyester<br>(PES)                                                                                   | 6.3 (0.13/6.17)            | France                | Truck               | washing machine                 | 2                         |
|                                                             | PES_2                                                                                                | mask <sup>e</sup>                                                             | Elastane / polyester<br>(PES)                                                                                   | 6.3 (0.13/6.17)            | Switzerland           | Truck               | washing machine                 | 6                         |
| 237<br>238<br>239<br>240<br>241<br>242<br>243<br>243<br>244 | <sup>a</sup> Aluminiun<br><sup>c</sup> One mask<br><sup>d</sup> made fron<br><sup>e</sup> Considerir | n nose strip<br>is used each week<br>n old cloth/fabric<br>ng the French qual | lisposed of and then replace<br>day, for 10 reuses<br>ity label AFNOR (scenario Pl<br>pology and uses scenarios |                            |                       | 2                   | 8, 2024 by guest.               |                           |
| 277                                                         | Tuble 1. Jul                                                                                         | nnary of wask typ                                                             | bology and uses seenanos                                                                                        | 12                         |                       |                     | ected by                        |                           |
|                                                             |                                                                                                      |                                                                               |                                                                                                                 | 12                         |                       |                     | Protected by copyright          |                           |
|                                                             |                                                                                                      |                                                                               | For peer review                                                                                                 | v only - http://bmjopen.bn | nj.com/site/about/    | guidelines.xhtm     |                                 |                           |

### Results **Global warming potential** The $CO_2$ - equivalent impact of the different scenarios of mask use is presented in Figure 2. The use of disposable masks brought by plane (scenario PP\_2), as experienced during the Personal Protective Equipment (PPE) shortage of the first pandemic wave, is by far the most detrimental with $1.3 \text{ kg/CO}_2$ eq./FU. Without taking this extreme situation into account, a strong variability is observed between the different scenarios of mask use. There is a factor of 30 between the most unfavourable scenario (PP\_1 - disposable medical mask brought by boat) and the most favourable scenario (COT\_2 – Home-made washable cotton mask). The differences observed are largely due to the absence of manufacturing impact from the second-hand fabric as well as a very low contribution from the usage phase in scenario COT\_2. The decontamination of medical masks by heating (PP\_3) is not very advantageous, as well as the use of community masks made of polymers, as long as the number of reuse cycles remains limited. Taking into account the discounted emissions from incineration after disposal leads to a negative contribution of the end of life stage to the total CO<sub>2</sub>-equivalent emissions in all scenarios except COT\_1 and COT\_2. The use of labelled community mask (PES\_1 and PES\_2) has an intermediate environmental impact, the use of AFNOR masks (French label) being more advantageous than the TESTEX mask (Swiss label). The difference between the two is mainly due to the different number of reuses recommended between the two labels. Overall, the most advantageous scenarios are home-made cotton masks (COT\_2) and the extended use of medical masks through a wait and reuse strategy (PP 4). Figure 2 about here Results similar to those of the carbon footprint are obtained by considering a broader impact indicator, such as UBP, which integrates water consumption (see Supplementary file S1). The impact related to use increases for all masks when recycled multiple times. The most advantageous scenarios remain

| 2<br>3<br>4                                                                                                                                        | 271                                                                       | however the home-                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6                                                                                                                                             | 272                                                                       | wait and reuse strat                                                                                                                                                                                                                         |
| 7<br>8                                                                                                                                             | 273                                                                       | (PP_3) is more than                                                                                                                                                                                                                          |
| 9<br>10<br>11                                                                                                                                      | 274                                                                       | masks shipped from                                                                                                                                                                                                                           |
| 12<br>13                                                                                                                                           | 275                                                                       |                                                                                                                                                                                                                                              |
| 14<br>15                                                                                                                                           | 276                                                                       | Plastic leakage (PL)                                                                                                                                                                                                                         |
| 16<br>17<br>18                                                                                                                                     | 277                                                                       | The impact of the di                                                                                                                                                                                                                         |
| 19<br>20                                                                                                                                           | 278                                                                       | presented in Figure                                                                                                                                                                                                                          |
| 21<br>22                                                                                                                                           | 279                                                                       | medical masks have                                                                                                                                                                                                                           |
| 23<br>24<br>25                                                                                                                                     | 280                                                                       | reuse procedures, w                                                                                                                                                                                                                          |
| 26<br>27                                                                                                                                           | 281                                                                       |                                                                                                                                                                                                                                              |
| 28<br>29<br>30                                                                                                                                     | 282                                                                       |                                                                                                                                                                                                                                              |
| 31                                                                                                                                                 |                                                                           |                                                                                                                                                                                                                                              |
| 32<br>33                                                                                                                                           | 283                                                                       | Number of reuse                                                                                                                                                                                                                              |
| 32<br>33<br>34<br>35                                                                                                                               | 283<br>284                                                                | <b>Number of reuse</b><br>The number of reu                                                                                                                                                                                                  |
| 32<br>33<br>34                                                                                                                                     |                                                                           |                                                                                                                                                                                                                                              |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                 | 284                                                                       | The number of reu                                                                                                                                                                                                                            |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                     | 284<br>285                                                                | The number of reur recommendations.                                                                                                                                                                                                          |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                           | 284<br>285<br>286                                                         | The number of reurecommendations.                                                                                                                                                                                                            |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                       | 284<br>285<br>286<br>287                                                  | The number of reu<br>recommendations.<br>changes in mask lab<br>in figure 4. Interesti                                                                                                                                                       |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                           | 284<br>285<br>286<br>287<br>288                                           | The number of reu<br>recommendations.<br>changes in mask lab<br>in figure 4. Interesti<br>CO <sub>2</sub> eq than disposa                                                                                                                    |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                               | 284<br>285<br>286<br>287<br>288<br>289                                    | The number of real<br>recommendations.<br>changes in mask lab<br>in figure 4. Interesti<br>CO <sub>2</sub> eq than disposa<br>times commercial co                                                                                            |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54             | 284<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>291<br>292        | The number of real<br>recommendations.<br>changes in mask lab<br>in figure 4. Interesti<br>CO <sub>2</sub> eq than disposa<br>times commercial co<br>through dry heating<br>most advantageous<br>through a wait and                          |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56 | 284<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>291<br>292<br>293 | The number of real<br>recommendations.<br>changes in mask lab<br>in figure 4. Interesti<br>CO <sub>2</sub> eq than disposa<br>times commercial co<br>through dry heating<br>most advantageous<br>through a wait and<br>in Figure 4 since the |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55       | 284<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>291<br>292        | The number of real<br>recommendations.<br>changes in mask lab<br>in figure 4. Interesti<br>CO <sub>2</sub> eq than disposa<br>times commercial co<br>through dry heating<br>most advantageous<br>through a wait and                          |

60

owever the home-made cotton masks (COT\_2) and the extended use of medical masks through a vait and reuse strategy (PP\_4). Notably, the impact of decontamination of medical masks by heating PP\_3) is more than doubled, making it less advantageous than the single-use scenario of medical nasks shipped from China by boat (PP 1).

he impact of the different scenarios of mask use from the point of view of plastic leakage is

resented in Figure 3. Unsurprisingly, cotton masks do not generate plastic leakage. Disposable nedical masks have a high PL of 1.8 g/FU. However, this impact can be reduced by a factor of 10 by euse procedures, which proportionally reduce production needs.

Figure 3 about here

### Number of reuse

he number of reuses used in the scenarios is based on an estimate of current practices and ecommendations. Arguably, this may change depending on usage conditions, material quality, or hanges in mask labelling requirements. The effect of the number of reuses on the GWP100 is shown n figure 4. Interestingly, commercial cotton masks (COT\_1) reused less than 8 times generate more  $CO_2$ eq than disposable medical masks shipped by boat (PP\_1). Moreover, when used less than 17 imes commercial cotton masks (COT\_1) generate more CO<sub>2</sub>eq than medical masks decontaminated hrough dry heating (PP 3). The increase in the number of reuse decreases the gap between the two nost advantageous scenarios: home-made cotton masks (COT\_2) and the recycling of medical masks hrough a wait and reuse strategy (PP\_4). The curves for scenarios PES\_1 and PES\_2 are overlapping n Figure 4 since the composition of EMPA and AFNOR masks has been assumed identical. The only light difference between these scenarios, although not significant enough to distinguish both curves on the graph, stems from the distinct origins of the masks. 295

| 1<br>2                                               |     |                                                                                                                   |                                                                                                     |  |  |  |  |
|------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| 2<br>3<br>4<br>5                                     | 296 | 6                                                                                                                 |                                                                                                     |  |  |  |  |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 297 | 7                                                                                                                 |                                                                                                     |  |  |  |  |
|                                                      | 298 | Figure 4 about here                                                                                               |                                                                                                     |  |  |  |  |
|                                                      | 299 | 9                                                                                                                 |                                                                                                     |  |  |  |  |
|                                                      | 300 | Discussion                                                                                                        |                                                                                                     |  |  |  |  |
| 16<br>17                                             | 301 | Consistent with what has been highlighted by other authors, our results show that switching from                  |                                                                                                     |  |  |  |  |
| 18<br>19<br>20                                       | 302 | single-use to reusable masks can significantly reduce plastic leakage and climate change impact <sup>14</sup> .   |                                                                                                     |  |  |  |  |
| 20<br>21<br>22                                       | 303 | However, analysis of the different scenarios shows considerable variation between reuse strategies,               |                                                                                                     |  |  |  |  |
| 23<br>24                                             | 304 | mainly due to the impact of production and recycling. A footprint reduction (GWP100 or UBP) of                    |                                                                                                     |  |  |  |  |
| 25<br>26                                             | 305 | 50% to 90% can be achieved by switching from a single-use medical mask to a reusable solution. For                |                                                                                                     |  |  |  |  |
| 27<br>28<br>29                                       | 306 | plastic leakage, this reduction can be from 60% to 100%. At the population level, these differences               |                                                                                                     |  |  |  |  |
| 30<br>31                                             | 307 | are not negligible. We quantified how much CO2eq impact and plastic leakage would be avoided                      |                                                                                                     |  |  |  |  |
| 32<br>33                                             | 308 | within a year in Switzerland if 10% of the entire population was to shift from single-use masks                   |                                                                                                     |  |  |  |  |
| 34<br>35<br>36                                       | 309 | transported by boat (PP_1) to either a wait and reuse strategy for the same masks (PP_4) or home-                 |                                                                                                     |  |  |  |  |
| 37<br>38                                             | 310 | made cotton masks from old fabric (COT_2). Results are reported in Table 2, considering a Swiss                   |                                                                                                     |  |  |  |  |
| 39<br>40                                             | 311 | population 8'606'033 in 2019 (source: Federal Statistical Office).                                                |                                                                                                     |  |  |  |  |
| 41<br>42                                             |     | CO <sub>2</sub> eq impact avoided<br>[t CO <sub>2</sub> eq.]                                                      | Plastic leakage avoided<br>[t PL]                                                                   |  |  |  |  |
| 43                                                   |     | shifting to PP_4 4'077                                                                                            | 17                                                                                                  |  |  |  |  |
| 44<br>45                                             |     | shifting to COT_2 4'400                                                                                           | 19                                                                                                  |  |  |  |  |
| 45<br>46                                             | 312 |                                                                                                                   |                                                                                                     |  |  |  |  |
| 47                                                   |     | _                                                                                                                 |                                                                                                     |  |  |  |  |
| 48<br>49                                             | 313 | Table 2. Environmental impact of a shift from the use of disposable masks to reuse strategies in 10%              |                                                                                                     |  |  |  |  |
| 50<br>51<br>52                                       | 314 | 4 of the Swiss population.                                                                                        |                                                                                                     |  |  |  |  |
| 53<br>54                                             | 315 | For an impact per passenger transport by aircraft (person.km) of 0.129 kgCO $_2$ eq (source: Reffnet.ch)          |                                                                                                     |  |  |  |  |
| 55<br>56<br>57                                       | 316 | and an average 1.5L plastic bottle weight of 32.6 g <sup>31</sup> , the uptake of the wait and reuse strategy for |                                                                                                     |  |  |  |  |
| 57<br>58<br>59                                       | 317 | 7 the medical masks (PP_4) by 10% of the population would be e                                                    | the medical masks (PP_4) by 10% of the population would be equivalent to saving $CO_2$ eq emissions |  |  |  |  |
| 60                                                   | 318 | from 5'402 individual flights from Paris to New York, and preve                                                   | nting 513'194 plastic bottles (1.5L)                                                                |  |  |  |  |

from being littered. Similarly, the uptake of home-made cotton masks (COT\_2) by the same population share would result in CO<sub>2</sub>eg emissions savings analogous to 5'830 individual air travels from Paris to New York, and a plastic leakage avoided corresponding to 570'219 plastic bottles (1.5L).

The environmental impact assessment conducted in this study has several limitations. Data on mask composition, transport and end of life are from the European context. The transposition of these results to other regions, in particular regions with a higher production capacity of medical masks and less reliance on imports, would lead to a modification of the GWP100 and UBP impact. Furthermore, in the absence of precise market distribution data, mask composition and production data were based on typical examples and scenarios rather than statistical data. In practice, there is some variability in manufacturing and shipping arrangements due to different suppliers. From the point of view of the effectiveness of their individual or collective protection, masks are not all equal. The comparison of their performance is not obvious because several parameters influence their effectiveness (droplet penetration, aerosol penetration, fitting to the face, wettability...)<sup>16</sup> and only medical masks as well as labelled community masks (e.g. AFNOR label) have minimum performance requirements for some of these parameters while a high variability in performance is to be expected among unlabelled community masks. We performed an uncertainty analysis based on low and high values for the littering rate (ranging from 0.2% to 12%, with the medium value being set at 2%). We have observed that the plastic leakage results would be changing proportionally to the leakage rate factor between the medium value and the low or high value, but that the climate change or UBP impact results would deviate from the medium case by around 1% or below. No other uncertainty analysis was undertaken for this study.

The filtration efficiency of the membrane as such has been investigated by several experimental studies. Aydin et al. report filtration efficiencies for large droplets in the 100  $\mu$ - 1mm range of over 98% for surgical masks and 93-98% for unlabelled community masks of different materials (cotton, polyester and silk)<sup>32</sup>. For finer particles, the performance of unlabelled community masks is however

lower. In the  $10\mu$  range (PM<sub>10</sub>), Neupane et al. show a filtration efficiency of 94% for surgical masks and 63% and 84% for community masks <sup>33</sup>. Systematic reviews of the laboratory results obtained so far suggest that community masks have satisfactory filtration efficiency for large particles (e.g. > 5µm), but that they have only limited effectiveness against aerosols. However, the overall performance of the masks is not limited to filtration efficiency alone and will be affected by leaks due to poor fitting to the face, but also by the way the masks are used. Wearing a face mask in a community logic is moreover primarily intended as a collective protection (by reducing the emission of the wearer), rather than an individual protection. This collective effectiveness is difficult to quantify due to the complexity of exposure situations and the presence of other contamination routes (e.g surface contamination). Randomized studies conducted previously on the transmission of viral infections in the community, showed that wearing a mask provided some protection in the most adherent individuals <sup>34</sup> or when mask use is accompanied by hand hygiene measures and/or education on viral infections <sup>35 36</sup>. The choice of the most appropriate strategy must consider both environmental impact and effectiveness. In terms of mask performance, expectations are generally quite limited from a community protection perspective. To some extent, all masks contribute to community protection by reducing droplet emissions and, to a lesser extent, aerosol emissions from infected wearers. In the absence of minimum performance requirements, this protection is highly uncertain for unlabeled community face masks. Standardized masks, such as medical masks, which offer guarantees in terms of performance and reproducibility, are therefore more advantageous from this point of view. Labelled community masks are also an interesting alternative. Their environmental performance is currently limited by the number of planned cycles of use, which requires frequent replacement. An increase in the number of use cycles covered by the label would reduce significantly their environmental impact. The future use of materials that are less polluting than plastic materials for the manufacture of masks could be an alternative to reduce the environmental cost of their manufacture and plastic leakage. For community masks, this adjustment is relatively simple because many of them are made of cotton and some manufacturers also offer masks made of recycled

## **BMJ** Open

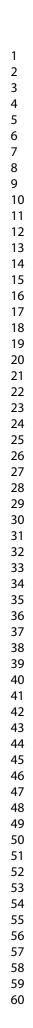
plastic. For medical masks, a more important effort is necessary because it requires the complete accreditation of the mask according to EN14683. The scale of the uptake of the reuse strategies suggested in the study by the population will depend on the interest of the government to endorse such practices for community masks and on the efficiency of public awareness campaign. Last but not least, adopting a wait and reuse strategy with medical masks is probably the most economical, which is important in terms of access to protective measures for people with limited financial resources <sup>37</sup>.

## 379 Conclusion

The use of medical masks with a wait-and-reuse strategy appears to be the most appropriate, as it is a good compromise between environmental impact and protective efficacy and is accessible in economic terms. Labeled community masks are also an interesting alternative, with an increase in the number of use cycles. Overall, our results highlight the need to develop procedures and the legal/operational framework to extend the use of protective equipment during a pandemic. Such an approach would not only reduce the environmental impact of the masks, but also make the public health system more resilient in the event of equipment shortages. They also highlight the need to explore the use of materials that are less polluting than plastics to make the filter material.

390 Acknowledgments

- 391 The authors would like to thank Prof. J. Cornuz from Unisanté, for his advice and ideas in the392 development of this study.
- 3 393 **Competing interests**
- 394 The authors declare no competing interest
- 8 395 Author contribution


| 2              |     |                                                                                                     |
|----------------|-----|-----------------------------------------------------------------------------------------------------|
| 3<br>4         | 396 | JB, NS, BG, KS and DV developed the study concept and design. KS and DV conducted the literature    |
| -<br>5<br>6    | 397 | review. AB and JB conducted the impact assessment and data analysis. All authors contributed to the |
| 7<br>8         | 398 | data interpretation. DV wrote the first draft of the manuscript with contributions from JB, AB and  |
| 9<br>10<br>11  | 399 | NS. All authors contributed to and have approved the final manuscript.                              |
| 12<br>13       | 400 | Funding                                                                                             |
| 14<br>15<br>16 | 401 | The authors received no funding to perform this study.                                              |
| 10<br>17<br>18 | 402 | Patient consent for publication                                                                     |
| 19<br>20<br>21 | 403 | Not required                                                                                        |
| 21<br>22<br>23 | 404 | Data availability statement                                                                         |
| 24<br>25       | 405 | Detailed primary and secondary data used for this study are available upon request.                 |
| 26<br>27<br>28 | 406 | Ethics approval                                                                                     |
| 29<br>30       | 407 | This study does not involve research with human subjects.                                           |
| 31<br>32<br>33 | 408 |                                                                                                     |
| 34<br>35       | 409 |                                                                                                     |
| 36<br>37<br>38 |     |                                                                                                     |
| 39<br>40       |     |                                                                                                     |
| 41<br>42       |     |                                                                                                     |
| 43<br>44       |     |                                                                                                     |
| 45             |     |                                                                                                     |
| 46<br>47       |     |                                                                                                     |
| 47<br>48       |     |                                                                                                     |
| 49             |     |                                                                                                     |
| 50             |     |                                                                                                     |
| 51             |     |                                                                                                     |
| 52<br>53       |     |                                                                                                     |
| 55<br>54       |     |                                                                                                     |
| 55             |     |                                                                                                     |
| 56             |     |                                                                                                     |
| 57             |     |                                                                                                     |
| 58<br>59       |     |                                                                                                     |
| 60             |     |                                                                                                     |

#### References

- 1. Le Quéré C, Jackson RB, Jones MW, et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change 2020;10(7):647-53. doi: 10.1038/s41558-020-0797-x
- 2. Tollefson J. COVID curbed carbon emissions in 2020 - but not by much. Nature 2021;589(7842):343. doi: 10.1038/d41586-021-00090-3 [published Online First: 2021/01/17]
  - 3. Patel PP, Mondal S, Ghosh KG. Some respite for India's dirtiest river? Examining the Yamuna's water quality at Delhi during the COVID-19 lockdown period. Science of The Total Environment 2020;744:140851. doi: https://doi.org/10.1016/j.scitotenv.2020.140851
    - 4. Almond D, Du X, Zhang S. Did COVID-19 improve air quality near hubei? . In: 2020 NBoER, ed., 2020.
  - 5. Klemeš JJ, Fan YV, Jiang P. The energy and environmental footprints of COVID-19 fighting measures - PPE, disinfection, supply chains. Energy (Oxf) 2020;211:118701-01. doi: 10.1016/j.energy.2020.118701 [published Online First: 2020/08/27]
- 6. Gillingham KT, Knittel CR, Li J, et al. The Short-run and Long-run Effects of Covid-19 on Energy and the Environment. Joule 2020;4(7):1337-41. doi: https://doi.org/10.1016/j.joule.2020.06.010
  - 7. Benson NU, Bassey DE, Palanisami T. COVID pollution: impact of COVID-19 pandemic on global plastic footprint. Heliyon 2021;7(2):e06343. doi: waste https://doi.org/10.1016/j.heliyon.2021.e06343
  - 8. Patrício Silva AL, Prata JC, Walker TR, et al. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal 2021;405:126683. doi: https://doi.org/10.1016/j.cej.2020.126683
    - 9. Fadare OO, Okoffo ED. Covid-19 face masks: A potential source of microplastic fibers in the environment. Science of The Total Environment 2020;737:140279. doi: https://doi.org/10.1016/j.scitotenv.2020.140279
    - 10. Aragaw TA. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar Pollut Bull 2020;159:111517-17. doi: 10.1016/j.marpolbul.2020.111517 [published Online First: 2020/07/25]
    - 11. Eurostat. Which country imported the most face masks? : EU Commission; 2021 [Available from: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20201006-12021.
    - 12. Shruti VC, Pérez-Guevara F, Elizalde-Martínez I, et al. Reusable masks for COVID-19: A missing piece of the microplastic problem during the global health crisis. Mar Pollut Bull 2020;161:111777. doi: https://doi.org/10.1016/j.marpolbul.2020.111777
    - 13. Phelps Bondaroff T, Cooke S. Masks on the Beach: The impact of COVID-19 on marine plastic pollution. Garv Stokes ed: OceansAsia. 2020.
    - 14. Allison AL, Ambrose-Dempster E, Domenech Aparsi T, et al. The impact and effectiveness of the general public wearing masks to reduce the spread of pandemics in the UK: a multidisciplinary comparison of single-use masks versus reusable face masks: UCL Press, 2020.
    - 15. Klemeš JJ, Fan YV, Tan RR, et al. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews 2020;127:109883. doi: https://doi.org/10.1016/j.rser.2020.109883
  - 16. Brainard J, Jones NR, Lake IR, et al. Community use of face masks and similar barriers to prevent respiratory illness such as COVID-19: a rapid scoping review. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2020;25(49) doi: 10.2807/1560-7917.es.2020.25.49.2000725 [published Online First: 2020/12/12]
- 17. Chua MH, Cheng W, Goh SS, et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research 2020;2020:7286735. doi: 10.34133/2020/7286735
  - 18. Liao L, Xiao W, Zhao M, et al. Can N95 Respirators Be Reused after Disinfection? How Many Times? ACS Nano 2020;14(5):6348-56. doi: 10.1021/acsnano.0c03597 [published Online First: 2020/05/06]
- 19. Pascoe MJ, Robertson A, Crayford A, et al. Dry heat and microwave generated steam protocols for the rapid decontamination of respiratory personal protective equipment in response to COVID-19-related shortages. The Journal of hospital infection 2020 doi: 10.1016/j.jhin.2020.07.008 [published Online First: 2020/07/12]
- 20. Ou Q, Pei C, Chan Kim S, et al. Evaluation of decontamination methods for commercial and alternative respirator and mask materials - view from filtration aspect. J Aerosol Sci 2020;150:105609-09. doi: 10.1016/j.jaerosci.2020.105609 [published Online First: 2020/06/24]

| 3        | 468   | 21. Chin A, Chu J, Perera M, et al. Stability of SARS-CoV-2 in different environmental conditions.            |
|----------|-------|---------------------------------------------------------------------------------------------------------------|
| 4        | 469   | medRxiv 2020:2020.03.15.20036673. doi: 10.1101/2020.03.15.20036673                                            |
| 5        | 470   | 22. AFNOR. Masques barrières - Guide d'exigences minimales, de méthodes d'essais, de confection               |
| 6        | 471   | et d'usage. Paris: AFNOR SPEC S76-001 version 1.10, 2020:45.                                                  |
| 7        | 472   | 23. TESTEX. Factsheet - Community Masks Zurich: TESTEX AG; 2020 [updated January 2021.                        |
| 8        | 473   | Available from: https://www.testex.com/en/communitymask/.                                                     |
| 9        | 474   | 24. IPCC. Climate change. The Intergorvernmental Panel on Climate Change, scientific assessment;.             |
| 10       | 475   | Agriculture, Ecosystems & Environment. Cambridge: Cambridge University Press, 1990:339.                       |
| 11       | 476   | 25. Boucher J, Billard G, Simeone E, et al. The marine plastic footprint : towards a science-based metric     |
|          | 477   | for measuring marine plastic leakage and increasing the materiality and circularity of plastic.               |
| 12       | 478   | Gland, Switzerland: IUCN, Global Marine and Polar Programme, 2020:70.                                         |
| 13       | 479   | 26. Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. Science              |
| 14       | 480   | 2015;347(6223):768. doi: 10.1126/science.1260352                                                              |
| 15       |       |                                                                                                               |
| 16       | 481   | 27. Boucher J, Faure F, Pompini O, et al. (Micro) plastic fluxes and stocks in Lake Geneva basin. <i>TrAC</i> |
| 17       | 482   | Trends in Analytical Chemistry 2019;112:66-74. doi: <u>https://doi.org/10.1016/j.trac.2018.11.037</u>         |
| 18       | 483   | 28. ICF e. Assessment of measures to reduce marine litter from single use plastics. Luxembourg:               |
| 19       | 484   | European Commission, Directorate-General for Environment, 2018.                                               |
| 20       | 485   | 29. Bourrier C. Washing Machine - ETH Sustainability Summer School 2011 [Web archive]. Zurich:                |
| 21       | 486   | ETH; 2011 [Available from: <u>http://webarchiv.ethz.ch/sustainability-</u>                                    |
| 22       | 487   | v2/lehre/Sommerakademien/so2011/washies_report.pdf.                                                           |
|          | 488   | 30. Reimann D. CEWEP Energy Report III: Results of Specific Data for Energy, R1 Plant Efficiency              |
| 23       | 489   | Factor and NCV of 314 European Waste-to-Energy (WtE) Plants. Bamberg, Germany: CEWEP,                         |
| 24       | 490   | Confederation of European Waste-to-Energy Plants, 2012.                                                       |
| 25       | 491   | 31. Islam M, Uddin MJ, Alshehri K. Plastic Waste and Carbon Footprint Generation Due to the                   |
| 26       | 492   | Consumption of Bottled Waters in Saudi Arabia. Research & Development in Material Science                     |
| 27       | 493   | 2018;5 doi: 10.31031/RDMS.2018.05.000604                                                                      |
| 28       | 494   | 32. Aydin O, Emon B, Cheng S, et al. Performance of fabrics for home-made masks against the spread            |
| 29       | 495   | of COVID-19 through droplets: A quantitative mechanistic study. Extreme Mechanics Letters                     |
| 30       | 496   | 2020;40:100924. doi: 10.1016/j.eml.2020.100924 [published Online First: 2020/08/25]                           |
| 31       | 497   | 33. Neupane BB, Mainali S, Sharma A, et al. Optical microscopic study of surface morphology and               |
| 32       | 498   | filtering efficiency of face masks. <i>PeerJ</i> 2019;7:e7142-e42. doi: 10.7717/peerj.7142                    |
| 33       | 499   | 34. MacIntyre CR, Cauchemez S, Dwyer DE, et al. Face mask use and control of respiratory virus                |
| 34       | 500   | transmission in households. <i>Emerging infectious diseases</i> 2009;15(2):233-41. doi:                       |
|          | 501   | 10.3201/eid1502.081167                                                                                        |
| 35       | 502   | 35. Aiello AE, Perez V, Coulborn RM, et al. Facemasks, hand hygiene, and influenza among young                |
| 36       | 502   | adults: a randomized intervention trial. <i>PloS one</i> 2012;7(1):e29744-e44. doi:                           |
| 37       | 503   | 10.1371/journal.pone.0029744 [published Online First: 2012/01/25]                                             |
| 38       | 505   | 36. Larson EL, Ferng YH, Wong-McLoughlin J, et al. Impact of non-pharmaceutical interventions on              |
| 39       | 505   | URIs and influenza in crowded, urban households. <i>Public health reports (Washington, DC :</i>               |
| 40       | 500   | 1974) 2010;125(2):178-91. doi: 10.1177/003335491012500206 [published Online First:                            |
| 41       |       |                                                                                                               |
| 42       | 508   |                                                                                                               |
| 43       | 509   | 37. Siu JY. Health inequality experienced by the socially disadvantaged populations during the outbreak       |
| 44       | 510   | of COVID-19 in Hong Kong: An interaction with social inequality. Health & social care in the                  |
| 45       | 511   | community 2020 doi: 10.1111/hsc.13214 [published Online First: 2020/10/31]                                    |
| 46       | 512   |                                                                                                               |
| 47       | F10   | Figure 1. Illustration of the system houndary for all secondrise involved in the study                        |
|          | 513   | Figure 1. Illustration of the system boundary for all scenarios involved in the study.                        |
| 48       | 514   |                                                                                                               |
| 49       | 514   |                                                                                                               |
| 50       | 515   | Figure 2. Footprint expressed in GWP100 (kg CO2 eq./FU) for different scenario of mask uses.                  |
| 51       |       |                                                                                                               |
| 52       | 516   |                                                                                                               |
| 53       | - 4 - |                                                                                                               |
| 54       | 517   | Figure 3. Footprint expressed in plastic leakage (g/FU) for different scenarios of mask uses.                 |
| 55       | 518   |                                                                                                               |
| 55<br>56 | 210   |                                                                                                               |
| 50<br>57 | 519   | Figure 4. Footprint expressed in GWP100 (kgCO2eq./FU) for different scenarios as a function of                |
|          | 520   | number of uses.                                                                                               |
| 58       | 520   |                                                                                                               |
| 59       | 521   |                                                                                                               |
| 60       |       |                                                                                                               |
|          |       |                                                                                                               |

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>2<br>3<br>4<br>5<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>3<br>4<br>5<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>2<br>5<br>5<br>7<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 522 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| 52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |  |  |



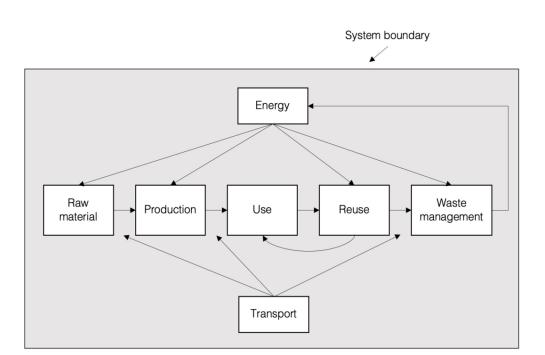
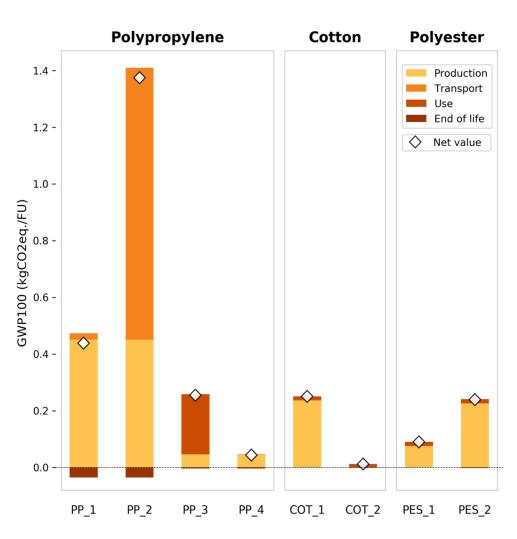
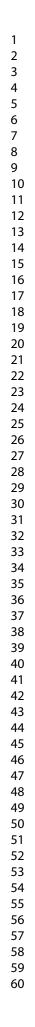



Figure 1. Illustration of the system boundary for all scenarios involved in the study.

89x89mm (300 x 300 DPI)





Figure 2. Footprint expressed in GWP100 (kg CO2 eq./FU) for different scenario of mask uses.

89x89mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-049690 on 6 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2021-049690 on 6 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

**BMJ** Open



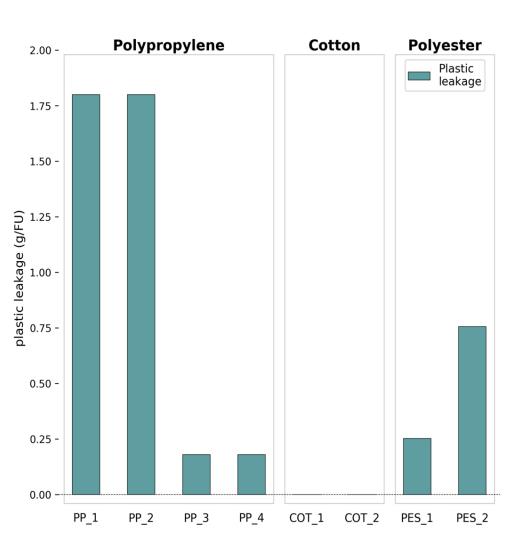
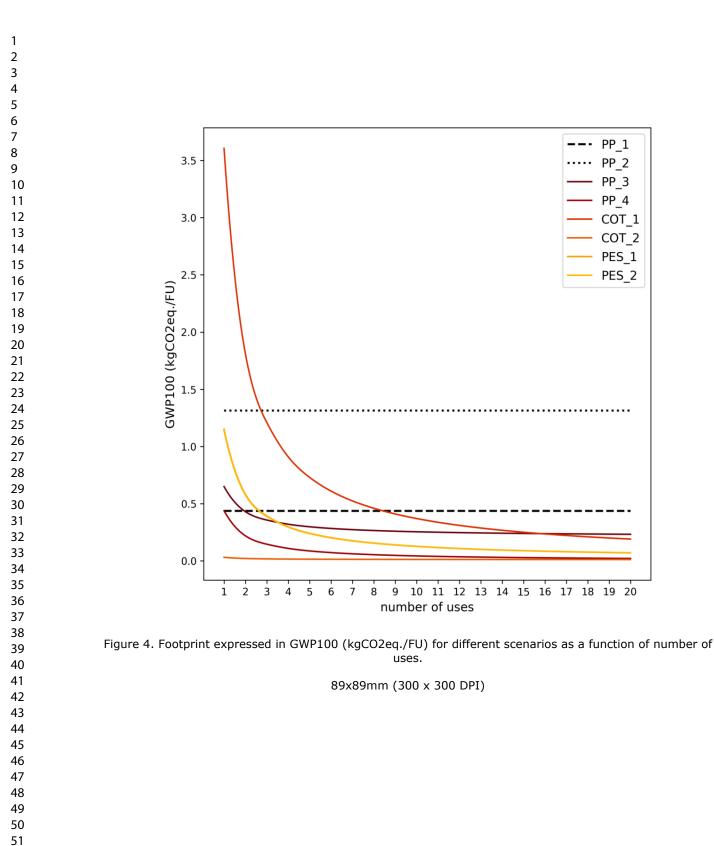



Figure 3. Footprint expressed in plastic leakage (g/FU) for different scenarios of mask uses.

89x89mm (300 x 300 DPI)

PP\_2

PP 3


PP 4

COT\_1

COT 2

PES 1

PES\_2



59 60

# **Appendix S1**

In addition to the Global Warming Potential (GWP100) index, we assessed other environmental impacts with an aggregated impact metric specific to Switzerland called UBP, which is the abbreviation of the German word "Umweltbelastungpunkte". The UBP method aggregates all individual impacts from a standard LCA assessment into a single parameter. It is based on legally defined targets for pollutant emissions and resource consumption, and measures the differences between current emission values and these specific target values. The further the current status is from the target, the greater the number of points assigned to an emission. For more details, see Frischknecht et al. (Frischknecht and Büsser Knöpfel 2013).

The UBP impacts of the different scenarios of mask use are presented in Figure S1. Similarly to the CO<sub>2</sub>-equivalent impacts (see Figure 1), the use of disposable masks brought by plane (scenario PP\_2) results in the highest impact in terms of UBP. The largest discrepancies between the global warming potential and UBP results occur in scenarios PP\_3 and COT\_1. In scenario PP\_3, the UBP impact of the use phase is very large with an unfavourable contribution of the electricity consumption to run the oven, while the production phase of the cotton fabric increases the relative impact of cotton masks manufactured abroad (scenario COT\_1) with respect to other scenarios when compared with the global warming potential results. Nonetheless, the least impactful scenarios remain the home-made cotton masks (COT\_2) and the extended use of medical masks through a wait and reuse strategy (PP\_4), which provides a coherent picture when it comes to the best practices for community protection with a mask in times of pandemic.

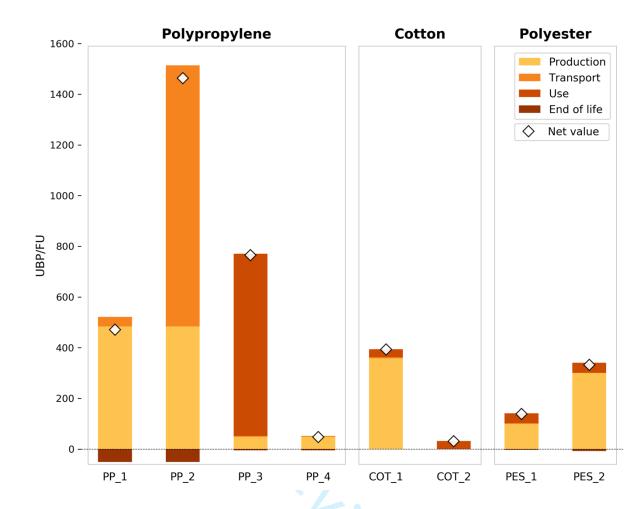



Figure S1. Footprint expressed in UBP /FU for different scenario of mask uses.

Frischknecht, Rolf, and Sybille Büsser Knöpfel. 2013. "Swiss Eco-Factors 2013 according to the Ecological Scarcity Method. Methodological fundamentals and their application in Switzerland." In *Environmental studies no. 1330*, 254. Bern: Federal Office for the Environment.