

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Predicting the risk of cancer in adults using supervised machine learning: a scoping review

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047755
Article Type:	Original research
Date Submitted by the Author:	20-Dec-2020
Complete List of Authors:	Alfayez, Asma; University College London; King Abdullah International Medical Research Center Kunz, Holger; University College London
Keywords:	Information technology < BIOTECHNOLOGY & BIOINFORMATICS, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, ONCOLOGY
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

Page 2 of 29

BMJ Open

2		
3 4	1	Predicting the risk of cancer in adults using supervised machine learning: a scoping review
5 6	2	Asma Abdullah Alfayez ^{1,2,3} , Holger Kunz ¹
7 8	3	¹ Institute of Health Informatics, University College London, London, UK
9	4	² King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
10 11	5	³ King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
12 13	6	*Corresponding author: Asma Abdullah Alfayez (asma.alfayez.17@ucl.ac.uk)
14 15	7	Word count: 4375
16 17	8	Keywords: Machine learning; cancer; prediction; scoping review; artificial intelligence
18	0	Reywords. Machine learning, carteer, prediction, scoping review, artificial intelligence
19 20	9	Competing interests: None
21		
22		
23 24		
25		
26		
27		
28		
29 30		
31		
32		
33		
34 35		
36		
37		
38		
39		
40 41		
42		
43		
44		
45 46		
40 47		
48		
49		
50		
51 52		
53		
54		
55		
56		
57 58		
58 59		
60		

1		
2 3 4	10	ABSTRACT
5 6	11	Objectives: The purpose of this scoping review is to identify existing supervised machine learning
7 8	12	(ML) approaches on the prediction of cancer in asymptomatic adults, to compare the performance of
9 10	13	ML models with each other, and to identify potential gaps in research.
11 12 13	14	Design: Scoping review using the population, concept, and context approach.
14 15	15	Search strategy: The literature was searched according to the following inclusion criteria: (i) a
16 17	16	general adult (≥18 years) population, either sex, asymptomatic (<i>population</i>); (ii) any study using ML
18 19	17	techniques to derive predictive models for future cancer risk using clinical and/or demographic and/or
20 21	18	basic laboratory data (concept); and (iii) original research articles conducted in all settings in any
21 22 23	19	region of the world (<i>context</i>).
24 25	20	Results: The search returned 627 unique articles, of which 580 articles were excluded because they
26 27	21	did not meet the inclusion criteria, were duplicates, or were related to benign neoplasm. Full-text
28 29	22	reviews were conducted for 47 articles and a final set of 10 articles were included in this scoping
30	23	review. These 10 very heterogeneous studies used ML to predict future cancer risk in asymptomatic
31 32 33	24	individuals. Nine out of 10 ML models reported either excellent or good performance.
34 35	25	Conclusions: Research gaps that must be addressed in order to deliver validated ML-based models
36 37	26	to assist clinical decision-making include: (i) establishing model generalisability through validation in
38 39	27	independent cohorts, including those from low- and middle-income countries; (ii) establishing models
40 41	28	for all cancer types; (iii) thorough comparisons of ML models with best available clinical tools to
42 43	29	ensure transparency of their potential clinical utility; and (iv) comparisons of different methods on the
44 45	30	same cohort to reveal important information about model generalisability and performance.
46	31	
47 48 49	32	ARTICLE SUMMARY
50 51	33	Strengths and limitations of this study
52 53	34	• This study used the population, concept, and context scoping review approach to explore the
54	35	machine learning techniques used to derive predictive models for future cancer risk using
55 56 57	36	basic clinical and/or demographic and/or laboratory data (concept) in asymptomatic adults
57 58 59 60	37	≥18 years (<i>population</i>) in all settings in any region of the world (<i>context</i>).

Page 4 of 29

BMJ Open

Although the ML methodologies were heterogeneous, the standard use of the area under the receiver operating characteristics curve (AUC) metric to evaluate model performance allowed comparisons of different ML techniques with each other.

This scoping review is limited to papers published in English between 2011and 2020.

INTRODUCTION

Cancer remains a leading cause of morbidity and mortality, with an estimated 1.8 million new cases and 0.6 million deaths in the US in 2019 and approximately 367,000 new cases and 165,000 cancer deaths in the UK each year between 2015 and 2017.¹² Annual death rates only modestly decreased (1.4% and 1.8% in women and men, respectively) between 2012 and 2016, despite significant research.¹ Cancer cases also continue to increase, not least due to increased life expectancy, which increases the risk of developing cancer.³

Early cancer diagnosis is associated with significantly higher survival rate and lower mortality and associated costs. Early-stage cancers require less complex treatment regimens and reduced hospital utilization, resulting in reduced healthcare costs, whereas late-stage cancers require complex multimodal management, several rounds of extremely expensive drugs over significant periods of time, and the treatment of recurrences, equating to a staggering economic burden. Therefore, the importance of early diagnosis cannot be overestimated.4-6

Survival rates significantly improve if cancer is diagnosed at stage I or II compared with later stages (stage III and IV),⁷⁸ as once the cancer has metastasised, it becomes difficult to treat with radiotherapy or surgery, leading to treatment failure and death. For example, five-year survival rates for women diagnosed with localised breast or ovarian cancer are 99% and 92% compared to 27% and 29% for metastatic disease, respectively.¹ A report by Cancer Research UK indicated that, in the UK, the ten-year survival proportions of patients with eight cancers (combined) were around 80% for stage I and stage II detection (breast, bladder, ovarian, colorectal, uterine, testicular, and cervical cancer and malignant melanoma) but only 26% for cancers detected at later stages, notably lung cancer (stage III and IV).9

BMJ Open

Globally, treatment for early-stage cancer confer significant cost-saving benefits. In the US, during the first 24 months after diagnosis, there is an increase in cancer treatment costs with stage: US\$72,000 for stage 0, US\$97,000 for stage I/II, US\$159,000 for stage III, and \$182,000 for stage IV.¹⁰ An estimate of the cost savings from early cancer diagnosis is 26 billion US dollars per annum in the US alone.¹¹ Similarly, in the UK, early diagnosis of colorectal, ovarian, and lung cancer in England alone could provide savings of over £44 million and benefit nearly 11,000 patients.¹²

Current approaches to diagnose incident cancer

One approach to the early detection of cancer is population-wide screening, which aims to find asymptomatic individuals so that they can be promptly referred for treatment. Examples include mammography for breast cancer, cervical screening for cervical cancer, and faecal occult blood testing or sigmoidoscopy for colorectal cancer.¹³ There are three examples of national screening programs in UK (bowel, breast, and cervical cancer screening programs¹⁴) and two in the US: the Colorectal Cancer Control Program (CRCCP) and the National Breast and Cervical Cancer Early Detection Program (NBCCEDP).¹⁵ However, significant proportions of individuals eligible for these programs do not participate (for example through fear or not prioritizing time to attend for screening),¹⁶ and comprehensive screening programs are costly to implement, especially in resource-poor settings or low- and middle-income countries. Other approaches include public health campaigns to encourage individuals experiencing particular symptoms such as weight loss, anorexia, and fatigue to visit their family doctors.¹⁷ However, patient help-seeking around cancer is complex, multi-staged, and often leads to long delays of weeks or even months.¹⁸ Patients find it hard to interpret and recognise symptoms, with fears of embarrassment and having a potentially fatal or painful condition contributing to long and avoidable delays in help-seeking from health professionals.^{18 19} Patients often do not seek help from health professionals for early cancer symptoms, notably from general family physicians, for many reasons including a complex mix of fear, worry, and of 'wasting' health professionals' time¹⁹ or due to the high costs of medical care, a lack of health insurance, or time constraints.²⁰

Detecting future risk of cancer by modelling data

Screening approaches represent a patient identification (or "phenotyping" problem) that aims to detect whether the individual has cancer at a particular point in time. However, the ultimate goal of cancer prediction is to determine whether an individual will develop cancer at some point in the future. A

simple approach is to stratify populations according to the presence and absence of risk factors, which have been extensively characterised for most cancer types through epidemiological studies over many decades. For example, age, gender, ethnicity, family history, and lifestyle factors are well-established risk factors for many types of cancer.²¹ The cancer prediction problem can either be regarded as a supervised learning problem where the input variables are clinical-demographic variables and the output variable is the probability of developing cancer at some point in the future or as a binary classification problem to determine whether or not a patient will develop cancer at a specific point in time.

19 103 Big data and machine learning for medical prediction models
 20

Advances in digital medicine and computational science have altered the landscape of data available for cancer risk prediction models. For example, in the data-driven healthcare era, there is an increasing amount of "big" medical data, as most individuals have had interactions with the healthcare system where data is collected in the form of electronic health records (EHRs), which are systematic collections of longitudinal patient health data collected in real time.^{22 23} Such large datasets provide powerful new opportunities to develop and refine predictive models and to explore potentially unknown predictor variables.²² Leveraging often massive amounts of data generated from large populations, much of which may be unstructured, and building optimal models requires the exploitation of advanced computational tools and supporting infrastructure. Machine learning (ML) is a branch of artificial intelligence (AI) and an extension of traditional statistical techniques that uses computational resources to detect underlying patterns in high-dimensional data, and it is increasingly being used in different areas of medicine requiring predictions.²⁴ For example, ML has successfully been used with EHR data to predict incident hypertension²⁵ and incident chronic kidney disease,²⁶ and wider popular uses of ML in medicine include the automatic interpretation of medical images such as in radiology²⁷ and histopathology²⁸ images.

51 119

A brief description of machine learning

A comprehensive description of ML models is beyond the scope of this scoping review. However, relevant ML techniques relate to the problem of learning from data samples (e.g., EHR data) rather than being pre-programmed with existing knowledge or rules. ML models can either be supervised (i.e., where the data are labelled and the algorithm uses these data to learn to predict the output) or

BMJ Open

2	
3	124
4 5	125
6 7	126
8 9	127
10	
11 12	128
13	129
14 15	130
16 17	131
18 19	132
20 21	133
22 23	134
24 25	135
26 27	136
28 29	137
30	138
31 32	
33	139
34 35	140
36 37	141
38 39	142
40	143
41 42	
43 44	144
45	145
46 47	146
48 49	147
50 51	148
52	149
53 54	
55	150
56 57	151
58 59	152
60	

unsupervised (i.e., where the data are unlabelled and the algorithm learns a structure inherent in the data).²⁹ The cancer prediction problem is therefore a supervised problem; examples are provided as inputs (or features) such as cancer risk factors like age, history, ethnicity, or blood count parameters and outputs (or labels) such as whether or not the individual subsequently develops cancer. A variety of available algorithms learn the best way to map the features to the labels by learning from the observations.^{30 31} The resulting model, ideally, will then be able to generalise the information so that it can be applied with high precision to new and unseen data.^{30 31}

Some of the main supervised ML models used in medical applications include decision trees (DTs;
and their adaptation, random forests (RFs)), support vector machines (SVMs), and artificial neural
networks (ANNs).^{30 31} DTs produce an output similar to a flow chart formed from feature nodes (risk
variables) that best discriminate between different labels (future cancer occurrence) to split the tree.³⁰
³¹ In this way, new cases can be assessed by traversing the tree based on the feature values to
determine the output for that example.^{30 31} Decision trees are easy to interpret, since users are usually
able to visualise the steps leading to a particular classification, which may be useful in a clinical
setting where experts might wish to see how a particular decision was made.^{30 31} In RFs, several trees
are built using subsets of data and features, with predictions decided based on majority voting after
the example is assessed with respect to all the constructed trees.^{30 31}

In SVMs, each feature (risk factor) is mapped into a higher-dimensional space and the hyperplane
 that optimally separates the output (future cancer occurrence) modelled.^{30 31} SVMs tend to generalise
 well to unseen data and work well with complex (multidimensional) data but can be hard to interpret.³⁰
 144 ³¹

ANNs are inspired by the neural connections in the human brain and are developed by creating
nodes (neurons) that weight certain features and produce an output value.^{30 31} By layering nodes in
between the input layer (features; cancer risk factors) and output layer (label; future cancer
occurrence) and modifying the weights during learning through a process called back-propagation,
the resulting model forms a prediction for unseen data when one of the nodes in the output layer is
positive.^{30 31} The terms "deep neural network" and "deep learning" are applied to ANNs with large
numbers of layers.^{30 31} While proving extremely powerful across a range of applications, ANNs can be
computationally very expensive and the way in which they classify (i.e., the intermediate "hidden"

2		
3 4	153	layers) is opaque, making it difficult to determine exactly how they performed the classification
5 6	154	problem. ^{30 31}
7 8 9	155	Rationale for performing a scoping review
9 10 11	156	This was a scoping review of studies using supervised ML techniques to predict the future risk of
12	157	developing cancer or specific cancers within a general asymptomatic adult (≥18 years) population
13 14	158	using clinical and/or demographic and/or basic laboratory data (e.g., complete blood counts) that are
15 16	159	likely to be readily available within the primary care setting. This approach therefore allowed to: (i)
17 18	160	identify the types of evidence available; (ii) clarify key concepts and definitions; (iii) examine how
19 20	161	research is currently being conducted; and (iv) to identify knowledge gaps. ³²
21 22 23	162	OBJECTIVES
24 25	163	The objective of this study was to perform a scoping review and to synthesize knowledge of the
26 27	164	nature and effects of current ML techniques for early cancer detection in asymptomatic adults. The
28 29	165	scoping review was guided by the following research questions:
30 31	166	(i) Which, if any, ML methods are being developed for cancer risk prediction in asymptomatic
32 33	167	individuals in the community?
34 35 36	168	(ii) How do these models perform compare to each other?
37 38	169	(iii) Which research or knowledge gaps need to be addressed in order to advance the field?
39 40	170	
41 42		
43		
44 45		
46		
47 48		
40 49		
50		
51		
52 53		
55 54		
55		
56		
57		
58 59		
60		

1 2		
3 4	171	METHODS
5 6 7	172	Inclusion and exclusion criteria
7 8 9	173	Therefore, using the population, concept, and context approach, ³³ the inclusion criteria were: (i)
10	174	general adult (≥18 years) population, either sex, asymptomatic (<i>population</i>); (ii) any study using ML
11 12	175	techniques to derive predictive models for future cancer risk using clinical and/or demographic and/or
13 14	176	basic laboratory data carried out prior to August 7, 2020 (concept); and (iii) original research articles
15 16 17	177	conducted in all settings in any region of the world (<i>context</i>).
18 19	178	For the purposes of this study, and recognizing that 'machine learning' algorithms fall along a
20	179	continuum with statistical techniques, ³⁴ all modelling approaches were included were defined as
21 22	180	machine learning in the respective papers (such as logistic regression).
23 24	181	Exclusion criteria were any ML model used to predict future events in patients with pre-existing or
25 26	182	symptoms of cancer; ML models developed using specialised tests such as genetic profiling or
27 28	183	imaging tests not generally available in the community; unsupervised ML models; and studies not
29 30 31	184	written in English.
32 33	185	Literature search
34 35 36	186	To identify relevant studies, PubMed was searched using the search string:
37 38	187	("Cancer" Or "Cancers" OR "Oncology") AND ("Machine Learning" OR "ML" OR "Data Mining" OR
39 40	188	"Decision Support System" OR "Clinical Support System" OR "Classification" OR "Regression" OR
40 41 42	189	"Support vector machines" OR "Gaussian process" OR "Neural networks" OR "Logical learning" OR
42 43 44	190	"Bayesian network" OR "linear model") AND ("prognosis" OR "prognostic estimate" OR "predictor" OR
45	191	"prediction" OR "model" OR "diagnosis" OR "diagnostic"). This search was supplemented with manual
46 47	192	searching of the references and citations of previously published studies. All abstracts identified by
48 49	193	the initial search were screened for inclusion and checked for accuracy. For the included studies, data
50 51	194	were extracted from full papers. In instances where more information was required to determine
52 53 54	195	inclusion, the full text of the article was retrieved and assessed against the eligibility criteria.
55 56	196	Assessment metric
57 58	197	The strength of the predictive ability of the included models was assessed using AUC (area under the
59 60	198	receiver operating characteristics curve) data, a valid measure for evaluating classification

1 2		
2 3	199	algorithms, ³⁵ where an AUC of 0.90-1 = excellent, 0.80-0.89 = good, 0.70-0.79 = fair, 0.60-0.69 =
4 5	200	poor, and 0.50-0.59 = fail to describe model performance. ³⁶
6 7		
8 9	201	
10		
11 12		
13 14		
15 16		
17		
18 19		
20 21		
22 23		
24 25		
26		
27 28		
29 30		
31 32		
33 34		
35		
36 37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59		
60		

 were derived to predict prognosis or responses to therapy in patients with pre-existing cancer; and/ (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorect cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for pancreatic cancer, and one a general cancer prediction model. Two studies performed external validations of a previously developed colorectal cancer prediction model (Table 1).^{38 42} <i>Development of the risk models</i> The models developed in the studies employed a wide range of ML techniques. Two studies compared different modelling approaches on the same dataset,^{40 43} while the other eight developed inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/ studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies), or a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	2	
 Main Findings 203 Main Findings 204 Identified risk models 205 Using the search strategy, 627 initial studies were identified where 10 studies met the inclusion 206 criteria (Table 1; Figure 1).^{31 37 46} The most common reasons for exclusion of studies were: (i) mode 207 were derived to predict prognosis or responses to therapy in patients with pre-existing cancer; and/ 208 (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, 209 such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted 210 between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 211 conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorect 212 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 213 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 214 validations of a previously developed colorectal cancer prediction model (Table 1).^{38 42} 215 <i>Development of the risk models</i> 216 The models developed in the studies employed a wide range of ML techniques. Two studies 218 compared different modelling approaches on the same dataset.^{40 43} while the other eight developed 229 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 220 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), surveys (2/10 studies), o 223 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) 224 As a result of the diverse cancer types being modelled, study aims, and the available data, a range 225 different predictors, features, and/or risk factors were included the developed predictive models, 226 which can be grouped	4	RESULTS
 204 Identified hisk models 205 Using the search strategy, 627 initial studies were identified where 10 studies met the inclusion criteria (Table 1; Figure 1).^{31 37 46} The most common reasons for exclusion of studies were: (i) mode 207 were derived to predict prognosis or responses to therapy in patients with pre-existing cancer; and/ 208 (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, 209 such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducter 210 between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 211 conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorect 212 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 213 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 214 validations of a previously developed colorectal cancer prediction model (Table 1).^{39 42} 215 <i>Development of the risk models</i> 216 The models developed in the studies employed a wide range of ML techniques. Two studies 218 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) 219 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 220 inference (1/10 studies), Table 1). Data for training and testing were from medical 221 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or 222 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) 223 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) 224 A	6 203	Main Findings
Using the search strategy, 627 initial studies were identified where 10 studies met the inclusion criteria (Table 1; Figure 1). ^{31 37:40} The most common reasons for exclusion of studies were: (i) mode were derived to predict prognosis or responses to therapy in patients with pre-existing cancer; and/ (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorect cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for pancreatic cancer, and one a general cancer prediction model. Two studies performed external validations of a previously developed colorectal cancer prediction model (Table 1). ^{38 42} <i>Development of the risk models</i> the models developed in the studies employed a wide range of ML techniques. Two studies compared different modelling approaches on the same dataset. ^{40 43} while the other eight developed logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/ studies), and SVMs (1/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies), As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender cathor in the redictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following cate	8 204	Identified risk models
12 206 criteria (Table 1; Figure 1). ^{31 37-46} The most common reasons for exclusion of studies were: (i) model 13 207 were derived to predict prognosis or responses to therapy in patients with pre-existing cancer; and/ 16 208 (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, 16 208 such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted 209 such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted 201 between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 211 conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorecta 212 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 213 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 214 validations of a previously developed colorectal cancer prediction model (Table 1). ^{38 42} 213 <i>Development of the risk models</i> 214 validations of a previously developed a wide range of ML techniques. Two studies 215 <i>Development of the risk models</i> 216 The models developed in the studies employed a wide range of ML techniques. Two studies <tr< td=""><td>10 205</td><td>Using the search strategy, 627 initial studies were identified where 10 studies met the inclusion</td></tr<>	10 205	Using the search strategy, 627 initial studies were identified where 10 studies met the inclusion
14 207 were derived to predict prognosis or responses to therapy in patients with pre-existing cancer; and/ 15 208 (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, 18 209 such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducter 19 210 between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 211 conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorect 212 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 213 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 214 validations of a previously developed colorectal cancer prediction model (Table 1). ^{38 42} 212 Development of the risk models 213 The models developed in the studies employed a wide range of ML techniques. Two studies 214 validations of a previously developed. The following ML approaches were used: ANNs (8 out of 10 studies) 215 Development of the risk models 216 The models developed in the studies employed a wide range of ML techniques. Two studies 218 compared different modelling approaches on the same dataset. ^{40 43} while the other eight developed <	12 206	criteria (Table 1; Figure 1). ^{31 37-46} The most common reasons for exclusion of studies were: (i) models
 cii) the studies used features other than clinical and/or demographic and/or basic laboratory data, such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorect cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for pancreatic cancer, and one a general cancer prediction model. Two studies performed external validations of a previously developed colorectal cancer prediction model (Table 1).^{38 42} <i>Development of the risk models</i> The models developed in the studies employed a wide range of ML techniques. Two studies compared different modelling approaches on the same dataset.^{40,43} while the other eight developed logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/1 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), o represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies), o different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gendel ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	14 207	were derived to predict prognosis or responses to therapy in patients with pre-existing cancer; and/or
18 209 such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted 19 210 between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 211 conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorecta 221 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 213 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 214 validations of a previously developed colorectal cancer prediction model (Table 1). ^{38 42} 215 Development of the risk models 216 The models developed in the studies employed a wide range of ML techniques. Two studies 218 compared different modelling approaches on the same dataset, ^{40 43} while the other eight developed 32 compared different modelling approaches on the same dataset, ^{40 43} while the other eight developed 33 compared (1/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 34 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/1 34 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical 35 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or <td>200</td> <td>(ii) the studies used features other than clinical and/or demographic and/or basic laboratory data,</td>	200	(ii) the studies used features other than clinical and/or demographic and/or basic laboratory data,
 between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 2011 conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorecta 2012 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 2013 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 2014 validations of a previously developed colorectal cancer prediction model (Table 1).^{38 42} 215 Development of the risk models 216 The models developed in the studies employed a wide range of ML techniques. Two studies 2017 compared different modelling approaches on the same dataset,^{40 43} while the other eight developed 2018 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies), 219 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 220 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/1 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical 221 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or 223 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies), 224 As a result of the diverse cancer types being modelled, study aims, and the available data, a range 225 different predictors, features, and/or risk factors were included the developed predictive models, 226 which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender 227 ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise. 	200	such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted
 conducted in the USA and two in Taiwah. One model was built for breast cancer, the for coloreda cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for pancreatic cancer, and one a general cancer prediction model. Two studies performed external validations of a previously developed colorectal cancer prediction model (Table 1).^{38,42} <i>Development of the risk models</i> The models developed in the studies employed a wide range of ML techniques. Two studies compared different modelling approaches on the same dataset.^{40,43} while the other eight developed model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/4 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gendel ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	711	between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were
 212 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 213 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 214 validations of a previously developed colorectal cancer prediction model (Table 1).^{38 42} 215 Development of the risk models 216 The models developed in the studies employed a wide range of ML techniques. Two studies 217 compared different modelling approaches on the same dataset.^{40 43} while the other eight developed 218 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) 219 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 220 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/ 221 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical 222 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or 223 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies), or 224 As a result of the diverse cancer types being modelled, study aims, and the available data, a range 225 different predictors, features, and/or risk factors were included the developed predictive models, 226 which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender 227 ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 		conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorectal
 213 pancreatic cancer, and one a general cancer prediction model. Two studies performed external validations of a previously developed colorectal cancer prediction model (Table 1).^{38 42} 214 validations of a previously developed colorectal cancer prediction model (Table 1).^{38 42} 215 Development of the risk models 216 The models developed in the studies employed a wide range of ML techniques. Two studies 217 compared different modelling approaches on the same dataset,^{40 43} while the other eight developed 218 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) 219 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 220 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/4 221 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical 223 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies), or 224 As a result of the diverse cancer types being modelled, study aims, and the available data, a range 225 different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender 226 ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	²³ 212	cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for
 214 validations of a previously developed colorectal cancer prediction model (Table 1).^{38 42} 215 Development of the risk models 216 The models developed in the studies employed a wide range of ML techniques. Two studies 217 compared different modelling approaches on the same dataset,^{40 43} while the other eight developed 218 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) 219 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 210 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/10 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical 220 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or 223 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) 224 As a result of the diverse cancer types being modelled, study aims, and the available data, a range 225 different predictors, features, and/or risk factors were included the developed predictive models, 226 which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender 227 ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	²⁵ 213	pancreatic cancer, and one a general cancer prediction model. Two studies performed external
 215 Development of the risk models 216 The models developed in the studies employed a wide range of ML techniques. Two studies 217 compared different modelling approaches on the same dataset,^{40,43} while the other eight developed 218 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) 219 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 220 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/ 211 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical 222 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or 223 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) 224 As a result of the diverse cancer types being modelled, study aims, and the available data, a range 225 different predictors, features, and/or risk factors were included the developed predictive models, 226 which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender 227 ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	27 214	validations of a previously developed colorectal cancer prediction model (Table 1). ^{38 42}
The models developed in the studies employed a wide range of ML techniques. Two studies compared different modelling approaches on the same dataset, ^{40 43} while the other eight developed model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/ studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), of represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise	29 30 2 15	Development of the risk models
 compared different modelling approaches on the same dataset,^{40,43} while the other eight developed model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/ studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	32 216	The models developed in the studies employed a wide range of ML techniques. Two studies
 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies) logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/ studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), o represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	34 217	compared different modelling approaches on the same dataset, ^{40 43} while the other eight developed a
 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/ studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), o represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	36 218	model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies),
 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/4) studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), o represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	₃₈ 219	logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network
 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	220) inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/10
 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 		studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical
 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies) As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	,,,	insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or
 As a result of the diverse cancer types being modelled, study aims, and the available data, a range different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	45 223	represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies).
 different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	47	As a result of the diverse cancer types being modelled, study aims, and the available data, a range of
 which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 	49	different predictors, features, and/or risk factors were included the developed predictive models,
 ⁵³ ⁵⁴ 227 ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise 		which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender,
	53 227	ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise;
⁵⁵ 228 (3) comorbidities: e.g., diabetes mellitus, hypertension, congestive heart failure, and chronic	⁵⁵ 228	(3) comorbidities: e.g., diabetes mellitus, hypertension, congestive heart failure, and chronic
57	57 229	obstructive pulmonary disease; (4) clinical and practice data: e.g., Anatomical Therapeutic Chemical
50	⁵⁹ 230	(WHO-ATC) prescription codes and clinical encounters; and (5) laboratory tests: e.g., complete blood

- 231 count (Table 1). The models that automatically extracted features from EHR records used features
- that were not always explicitly defined in the respective articles.

tor peer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

-	adie 1. Sum	imary of stud	ies inve	stigating ML a	approaches for e	early cancer deteo	ction.		-2020-047755 on .		
	Type of cancer	Reference	Year	Country	Method	Sample	Input	Validation	Performance	Model performance	Notes
	Breast	Stark ⁴³	2019	USA	Logistic regression, Gaussian naive Bayes, decision tree, linear discriminant analysis, support vector machine, and feed-forward artificial neural network	1343 breast cancer and 63,396 non- breast cancer cases (PLCO dataset)	Age, age at menarche, age at first live birth, number of first- degree relatives who have had breast cancer, ethnicity, age at menopause, an indicator of current hormone usage, number of years of hormone usage, BMI, pack years of cigarettes smoked, years of birth control usage, number of live births, and an indicator of personal prior history of cancer	20% testing data (269 breast cancer and 12,679 non-breast cancer cases)	La 0.61 (0.58- 0=55); NB 0.59 (0:56-0.62); DT 0=51 (0.50-0.52); LDA 0.61 (0.58- 0=55); SVM 0.52 (0:48-0.55); NN 0=61 (0.57-0.64) ded from http://bmjopen.bmj.com/ on Ap	Fail - poor	At an 0.05 level, the logistic regression, linear discriminant analysis, an neural netw with the broader set inputs were significantly stronger tha the BCRAT
	Colorectal cancer	Hornbrook ³⁸	2017	USA	ColonFlag ML model	17,095 US community- based insured adults (16,195 controls, 900 cases) (insurance data)	Age, gender, and blood count panel parameters	Study was a validation of a previously derived model ⁴⁷	A C 0.80 (0.79- 0,82) 2024 by guest. P	Good	
	Colorectal	Wang ⁴⁵	2019	Taiwan	Convolutional neural network	10,185 with CRC, 47,967 controls	ICD-9-CM diagnostic codes, World Health Organization-	5-fold cross- validation	AQJC 0.92	Excellent	

					BMJ O	pen		mjopen-2020-047	Page 14 of	
					(insurance data)	Anatomical Therapeutic Chemical (WHO- ATC) prescription codes		755 on 14 Sep		
Colorectal cancer	Schneider 42	2020	USA	ColonFlag ML model	308,721 insurance health plan members (insurance data)	Age, gender, and blood count panel parameters	Study was a validation of a previously derived model ⁴⁷	ABJC 0.78 (95% Cor 0.77-0.78) 2022: Downloaded	Good	The algorithm's accuracy decreased with the time interval between blood test result and CRC diagnosis
General	Miotto ³⁹	2016	USA	Deep neural network and random forests	Model training on 704,587, testing on 76,214 (EHR data)	Features extracted from EHR records	Testing on 76,214	Colorectal cancer AUC 039, liver cancer 039, prostate cancer 0.86	Good	Outperformed RawFeat and PCA
Lung	Hart ³⁷	2018	USA	Artificial neural network	1997-2015 National Health Interview Survey adult data; 648 cancer and 488,418 non- cancer cases (survey data)	Gender, age, BMI, diabetes, smoking status, emphysema, asthma, ethnicity, Hispanic ethnicity, hypertension, heart diseases, vigorous exercise habits, and history of stroke	30% of data; 195 lung cancer cases and 146,524 never cancer cases	ABJC 0.86 (training; 95% CI 035-0.88) and 0.86 (validation; 95% CI 0.84- 039) April 20, 2024 by guest. Protected by copyright.	Good	Random forests and SVM also applied which trained well (RF AUC of 1.00 (95% CI 1.00- 1.00) and SVM AUC of 0.96 (95% CI 0.95-0.97). However, not generalisable: AUC SVM 0.55 (95% CI 0.51- 0.58); AUC RF 0.81 (95% CI 0.78-0.84).

Page 15 of 29

Melanoma	Richter ⁴⁰	2019	USA	LR, RF, XGBoost	4,061,172 patients, 10,129 with melanoma (EHR data)	Features extracted from EHR records	5-fold cross- validation	AgiC LR 0.76; AgiC RF 0.69; AgiC XGBoost 0歳0	Poor - Good	Smaller amounts of data improved the AUCs
Non- melanoma skin cancer	Roffman ⁴¹	2018	USA	Artificial neural network	1997–2015 NHIS adult survey data, 2,056 NMSC and 460,574 non-cancer cases (survey data)	Gender, age, BMI, diabetes, smoking status, emphysema, asthma, ethnicity, Hispanic ethnicity, hypertension, heart diseases, vigorous exercise habits, and history of stroke	30% for validation (752 NMSC cases and 138,172 never cancer cases)	ADC values of ADC values of 0 0 1 (training, 9 % CI 0.80– 0 2) and 0.81 (validation, 95% CI 0.79–0.82) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Good	
Non- melanoma skin cancer	Wang 44	2019	Taiwan	Convolutional neural network	1829 patients with nonmelanoma skin cancer as their first diagnosed cancer and 7665 random controls (insurance data)	Age, sex, ICD-9- CM diagnostic codes, World Health Organization- Anatomical Therapeutic Chemical (WHO- ATC) prescription codes, and the total numbers of clinical encounters	5-fold cross- validation	Abp Abp 0 jopen.bmj.com/ on April 20, 202	Good	
Pancreatic	Zhao 44	2011	USA	Bayesian network inference	98 cases and 14,971 controls (EHR data)	Demographics, lifestyle, symptoms, co- morbidities, and lab test results (20 variables)	Null	24 0591 (0.87-0.95) 2009 guest. Protected by copyright	Excellent	

Page 16 of 29

		BMJ Open 2020-047
1		2020-0
2 3	234	Abbreviations: AUC, area under the curve; BMI, body mass index; LR, logistic regression; NB, Gaussian naive Bayes DT, decision tree; LDA, linear
4 5	235	ع discriminant analysis; SVM, support vector machine; ANN artificial neural network; RF, random forest; NMSC, non-melanoma skin cancer; ML, machine
6 7	236	learning.
8 9 10 11 12 13 14 15 16	237	discriminant analysis; SVM, support vector machine; ANN artificial neural network; RF, random forest; NMSC, non-me anoma skin cancer; ML, machine learning.
17 18 19 20 21 22 23		from http://bmjopen.br
24 25 26 27 28 29 30 31		nj.com/ on April 20, 202
32 33 34 35 36 37		4 by guest. Prote
38 39 40 41 42		cted by copyrigh
43 44 45		다 peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Discrimination of the risk models All studies provided AUC values as an assessment of model performance. The majority of models (7/10)^{31 37-42 44} showed "good" performance, two had "excellent" performance,^{45 46} and one "failed".⁴³ The two models showing excellent performance were the Bayesian network inference model developed by Zhao et al.,⁴⁶ which used 20 demographic, lifestyle, symptom, co-morbidity, and lab test results to predict the risk of pancreatic cancer with an AUC of 0.91, and the CRC predictive model developed by Wang et al.,⁴⁵ which used a CNN learning on 1929 features (1099 ICD-9 codes and 830 ATC codes). The models that "failed" were the range of models (logistic regression, Gaussian naive Bayes, DT, LDA, SVM, and feed-forward ANN) developed by Stark et al.⁴³; however, as discussed below, although these models only had AUCs between 0.51 and 0.61, two of the models compared favourably with the BRCAT clinical risk tool. Comparison of the risk models with existing predictive algorithms Stark et al.⁴³ compared their ML models with an existing clinical prediction tool, the Breast Cancer Risk Prediction Tool (BCRAT; https://bcrisktool.cancer.gov/). The BCRAT tools is an implementation of the Gail model,⁴⁸ which is a statistical model that estimates five-year breast cancer risk in women without a personal history of breast cancer and without known mutations in high-risk breast cancer genes such as BRCA1 and BRCA2. In the Gail model, patients self-report their current age, age at menarche, age at first live birth, number of first-degree relatives who have had breast cancer, ethnicity, and number of previous breast biopsies, variables which are weighted within the model by logistic regression.⁴⁸ In addition, BCRAT uses data on a personal history of atypical hyperplasia. where available. Although the AUC values for the models (logistic regression (LR), naïve Bayes, DTs, linear discriminant analysis (LDA), SVM, and an ANN) tested using a broader set of features than BCRAT were only between 0.51 (DT) and 0.61 (LR, LDA, and ANN), four of the six models (LR, NB, LDA, and ANN) outperformed BCRAT (AUC 0.56). Other metrics were also used to assess model performance (sensitivity, specificity, and precision), which were comparable between the ML algorithms and the BCRAT, and both BCRAT and the ML models had low precision (~2%). Furthermore, when comparing the different ML models, LR and LDA produced higher AUCs than the ANN model, despite the potential for ANNs to better model noisy data and complex non-linear functions.⁴⁹ The authors suggested that this might have been due to the limited amount of available training data or the selection of hyperparameters.⁴³ It was observed that (i) the derived ML models

Page 18 of 29

BMJ Open

2		
3 4	268	using an extended and set of features available in primary care can deliver improvements on current
5 6	269	clinical algorithms; (ii) that adding additional features has a greater impact on improving model
7 8	270	performance (i.e., higher AUC) rather than simply using more complex models; and (iii) that AUC
9	271	values must be interpreted in the context of existing methods, such as existing, clinically-used risk
10 11 12	272	prediction models such as the BCRAT or Gail model, rather than in isolation.
13 14	273	In a systematic review of 52 colorectal cancer models predicting future risk of disease in
15 16	274	asymptomatic individuals, ⁵⁰ 37 models reported AUC values, which ranged from 0.65 and 0.75. These
17 18	275	included five models that used routine data exclusively and did not include questionnaires or genetic
19	276	biomarkers. In comparison, the AUC values for ColonFlag, ^{38 42} an ML model that uses age, gender,
20 21	277	and complete blood count (CBC) features to predict the future occurrence of colorectal cancer up to
22 23	278	12 months prior to diagnosis, were 0.78-0.82.
24 25	279	In another systematic review involving 25 risk prediction models for lung cancer that used only
26 27	280	epidemiological parameters as input (i.e., no laboratory parameters), ⁵¹ AUCs ranged between 0.57
28 29	281	and 0.86, which compares to an AUC of 0.86 (in both training and validation cohorts) for the ANN
30 31	282	model developed by Hart et al. ³⁷ In their systematic review of 25 melanoma risk prediction models, ⁵²
32 33	283	Usher-Smith et al. showed in a summary ROC curve that most models had similar discrimination of
34 35	284	0.76, which compares to the highest AUC of 0.80 achieved using XGBoost ML by Richter et al. ⁴⁰
36 37 38	285	
39 40	286	DISCUSSION
41 42	287	DISCUSSION Strengths and limitations of existing ML approaches
43 44 45	288	Strengths and limitations of existing ML approaches
46 47	289	The studies reviewed highlight that several different techniques have successfully been used to
48 49	290	develop models with generally very good discriminative performance. Other strengths of the studies
50 51	291	are the demonstration of how ML can be applied to large-scale insurance and EHR data containing
52 53 54	292	hundreds or thousands of features in order to build predictive models.
55	293	However, the above survey also highlights a number of gaps in the application of ML to predicting the
56 57	294	risk of future cancer in asymptomatic individuals. These can be divided into those relating to: (i) study
58 59 60	295	populations; (ii) model types and comparisons; and (iii) model validation and comparisons.

BMJ Open

296 Study populations

To date, ML techniques have only been applied to or validated in datasets from developed countries, representing a fraction of the overall global population and their dietary and lifestyle factors. Given that the aetiology of cancer, risk factors, and genetics differ in different populations,⁵³ models developed in populations in high-income countries may not be generalisable to those from low- and middle-income countries (LMICs). The development and validation of models in LMICs could have two advantages: first, it would determine the generalizability (and therefore utility) of that model in other populations, better serving the needs of individuals in LMICs; second, disparities between models developed in different geographical settings could provide valuable new information about factors contributing to cancer risk. Generalizing risk prediction models is likely to be challenging, since resource-poor countries often do not have the necessary infrastructure nor the epidemiological research capabilities of institutions in high-income countries.

Furthermore, current ML models predict the risk of a limited number of cancer types. Although breast, colorectal, and lung cancer are the three most common cancers and therefore account for a large proportion of overall cancer burden, it is still important to detect all cancers early. This is especially true for those cancers that are usually silent (asymptomatic) for long periods of time, present late with advanced-stage disease, and for which there are currently no screening programs in place, such as ovarian and pancreatic cancer. Predicting future risk of these cancers could allow closer monitoring of at-risk individuals.

315 Model types and comparisons

A wide variety of ML methodologies have been applied and, despite being applied to the same research problem, this scoping review has not identified a single 'best' method. Two issues arose in studies that compared different ML approaches on the same datasets. First, although different models had similar AUCs during training, not all models generalised well to validation datasets; robust model validation is therefore important to ensure model validity (see below). Second, although in general it is assumed that larger amounts of training data improve model performance,⁵⁴ Richter et al.⁴⁰ found that equivalent or even better model performance was achievable using reduced datasets (hundreds of thousands vs. millions of datapoints). This might be due to high levels of homogeneity in the "no cancer" class, resulting in fewer instances being required to produce a generalisable model, or as a

result of overfitting. The requirement for less data for the cancer prediction problem could make ML techniques more accessible to researchers without extensive computing infrastructure and allow smaller datasets to be leveraged for model construction. Model validation and comparisons With the exception of the two studies evaluating a previously defined algorithm for colorectal cancer. no other study used external validation datasets to assess model generalizability, instead opting for either a single holdout validation sample or 5-fold cross-validation. While useful for assessing overfitting,⁵⁵ these approaches do not account for population bias in the training dataset nor differences in other target populations. Studies seeking to develop ML models should seek to validate models in independent populations, recognizing that an advantage of an 'ungeneralisable' model might be insights into cancer risk in other populations. Furthermore, since physicians may code diseases in EHRs differently over time (for instance, due to altered management or incentives), even initially generalisable models may need re-validation over time ^{23 56}. Implications for clinical practice The ML models described in this scoping review generally show very good performance. So, are any of these models ready for clinical use? The ColonFlag model^{38 42} is an example has recently been implemented at Barts Health NHS Trust⁵⁷ to identify patients at particularly high risk of CRC, particularly as clinicians struggle to prioritise patients in the backlog created by the COVID-19 pandemic. The ColonFlag model is the only model identified in this scoping review that has undergone extensive external validation in independent datasets. New ML models need to be contextualised with currently available best clinical practice in order to fully evaluate their potential clinical value. Comparing the relatively poor AUC values of the Stark et al.⁴³ models with BCRAT revealed that they in fact outperformed it in many cases. In their comparison of their ANN with screening methods for lung cancer such as low-dose CT, chest X-ray, and sputum cytology, Hart et al.³⁷ noted that (according to sensitivity and specificity) it outperformed most of the other available non-invasive methods. Thorough side-by-side comparisons of newly developed models with other prediction tools would be helpful in establishing future clinical utility.

1 2		
2 3 4	353	
5 6	354	Unanswered questions and future research
7 8	355	Although the few models that are currently available are methodologically diverse, rarely validated in
9 10	356	independent datasets to ensure generalisability, and do not cover all cancer types. Even if ML
11 12	357	techniques offer only small improvements in cancer detection rates, these improvements are likely to
13 14	358	be of high clinical significance given the large size of the global population with or at high risk of
15 16 17	359	cancer and the high mortality and costs associated with late cancer diagnoses.
18 19	360	However, the scoping review identifies a number of research gaps that will need to be addressed in
20 21	361	order to deliver validated ML-based models to assist clinical decision-making. Firstly, future studies
22	362	must take steps to establish model generalisability through validation in independent cohorts,
23 24	363	including those from LMICs. Although the latter may be challenging, it could be argued that even
25 26	364	negative generalisability studies might provide an opportunity to learn more about cancer risk factors
27 28	365	in different populations. Secondly, the scoping review fails to establish which ML approach best suits
29 30	366	the cancer prediction problem but does show that, where possible, side-by-side comparisons of
31 32	367	different methods can reveal important information about generalisability as well as performance and
33 34	368	that these comparisons are desirable whenever possible. Thirdly, many important cancer types,
35 36	369	particularly 'silent killers' like ovarian cancer, have currently not been the subject of ML modelling
37 38	370	approaches; ML could provide an important, low-cost, non-invasive method to identify individuals at
39 40	371	high risk of clinically silent cancers that require closer monitoring. Furthermore, it might not
41 42	372	necessarily be true that more data equals improved model performance, which might broaden
43 44	373	accessibility of model development to a wider range of clinicians and epidemiologists. Finally, ML
45	374	models need to be compared to best available clinical tools so that their potential clinical utility is
46 47	375	transparent.
48 49 50	376	
51 52	377	CONCLUSIONS
53 54 55	378	In conclusion, this scoping review highlights that the application of ML to cancer prediction is a
56	379	nascent field, with the majority of the few available studies published in the last two years.
57 58 59 60	380	Nevertheless, most of ML model performance appears to be good which makes them reliable
		20

1 2 3 4		
3	381	approach. We hope that the identified research gaps focus future research efforts to deliver validated
4 5 6	382	ML-based models to assist and improve clinical decision-making.
7	383	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	384	Acknowledgment
12	385	The authors would like to thank Dr. Alvina Lai, for her feedback in this scoping review.
14	386	
	387	Contributorship statement
	388	Author AA defined the research question of the scoping review, conducted the literature search, and
	389	summarised the findings. Author HK provided academic guidance as domain expert in machine
	390	learning for healthcare and revised the draft of the manuscript.
	391	
25 26	392	Competing interests
27 28	393	Non competing interests
29 30	394	
31	395	Funding
32 33	396	No funding received
34 35	397	
36 37	398	Competing interests Non competing interests Funding No funding received Data sharing statement
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 	398	Only public published papers were used. No confidential data

2 3 4 5 6 7 8 9	400	REFERENCES
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	401	1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69(1):7-34. doi:
	402	10.3322/caac.21551
	403	2. Cancer Research UK. Cancer Statistics for the UK 2020 [Available from:
	404	https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk.
14 15	405	3. Cancer Research UK. Why are cancer rates increasing? 2014 [Available from:
	406	https://scienceblog.cancerresearchuk.org/2015/02/04/why-are-cancer-rates-increasing/.
	407	4. World Health Organization. Early detection of cancer 2016 [Available from:
19	408	https://www.who.int/cancer/detection/en/.
20 21	409	5. World Health Organization. Early cancer diagnosis saves lives, cuts treatment costs 2017
22 23	410	[Available from: https://www.who.int/news-room/detail/03-02-2017-early-cancer-diagnosis-
24 25	411	saves-lives-cuts-treatment-costs.
26 27 28 29	412	6. Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor
	413	DNA. Sci Transl Med 2017;9(403) doi: 10.1126/scitranslmed.aan2415
30 31	414	7. Bannister N, Broggio J. Cancer survival by stage at diagnosis for England (experimental statistics):
32 33 34	415	adults diagnosed 2012, 2013 and 2014 and followed up to 2015. Produced in collaboration
	416	with Public Health England 2016
36	417	8. Canary Foundation. Early Detection Facts and Figures Early Detection Works. California2019.
34 35 36 37 38 39 40 41 42 43 44 45	418	9. Cancer Research UK. Why is early diagnosis important? 2018 [Available from:
	419	https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-
	420	important.
44	421	10. Blumen H, Fitch K, Polkus V. Comparison of Treatment Costs for Breast Cancer, by Tumor Stage
46	422	and Type of Service. Am Health Drug Benefits 2016;9(1):23-32.
47 48	423	11. Kakushadze Z, Raghubanshi R, Yu W. Estimating cost savings from early cancer diagnosis. Data
49 50	424	2017;2(3):30.
51 52	425	12. Cancer Research UK. Saving lives, averting costs 2014 [Available from:
53 54	426	https://www.cancerresearchuk.org/sites/default/files/saving_lives_averting_costs.pdf.
55 56	427	13. Weller DP, Campbell C. Uptake in cancer screening programmes: a priority in cancer control. Br J
57 58 59 60	428	<i>Cancer</i> 2009;101 Suppl 2:S55-9. doi: 10.1038/sj.bjc.6605391

Page 24 of 29

1		
2 3	429	14. Cancer Research UK. About cancer screeing 2020 [Available from:
4 5	430	https://www.cancerresearchuk.org/about-cancer/screening.
6 7	431	15. Smith RA, Andrews KS, Brooks D, et al. Cancer screening in the United States, 2019: A review of
8 9	432	current American Cancer Society guidelines and current issues in cancer screening. CA
10 11	433	Cancer J Clin 2019;69(3):184-210. doi: 10.3322/caac.21557
12 13	434	16. Joseph DA, King JB, Dowling NF, et al. Vital signs: colorectal cancer screening test use—United
14 15	435	States, 2018. Morbidity and Mortality Weekly Report 2020;69(10):253.
16 17	436	17. Power E, Wardle J. Change in public awareness of symptoms and perceived barriers to seeing a
18 19	437	doctor following Be Clear on Cancer campaigns in England. British Journal of Cancer
20 21	438	2015;112(1):S22-S26.
22 23	439	18. Smith LK, Pope C, Botha JL. Patients' help-seeking experiences and delay in cancer
24 25	440	presentation: a qualitative synthesis. Lancet 2005;366(9488):825-31. doi: 10.1016/S0140-
26 27	441	6736(05)67030-4
28 29	442	19. Balasooriya-Smeekens C, Walter FM, Scott S. The role of emotions in time to presentation for
30 31	443	symptoms suggestive of cancer: a systematic literature review of quantitative studies.
32 33	444	Psychooncology 2015;24(12):1594-604. doi: 10.1002/pon.3833
34	445	20. Taber JM, Leyva B, Persoskie A. Why do people avoid medical care? A qualitative study using
35 36	446	national data. <i>J Gen Intern Med</i> 2015;30(3):290-7. doi: 10.1007/s11606-014-3089-1
37 38	447	21. American Cancer Society. Lifetime risk of developing or dying from cancer. 2014
39 40	448	22. Goldstein BA, Navar AM, Pencina MJ, et al. Opportunities and challenges in developing risk
41 42	449	prediction models with electronic health records data: a systematic review. J Am Med Inform
43 44	450	Assoc 2017;24(1):198-208. doi: 10.1093/jamia/ocw042
45 46	451	23. Rose S. Machine Learning for Prediction in Electronic Health Data. JAMA Netw Open
47 48	452	2018;1(4):e181404. doi: 10.1001/jamanetworkopen.2018.1404
49 50	453	24. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med 2019;380(14):1347-
51 52	454	58. doi: 10.1056/NEJMra1814259
53 54	455	25. Ye C, Fu T, Hao S, et al. Prediction of Incident Hypertension Within the Next Year: Prospective
55 56	456	Study Using Statewide Electronic Health Records and Machine Learning. J Med Internet Res
57 58 59	457	2018;20(1):e22. doi: 10.2196/jmir.9268
60		

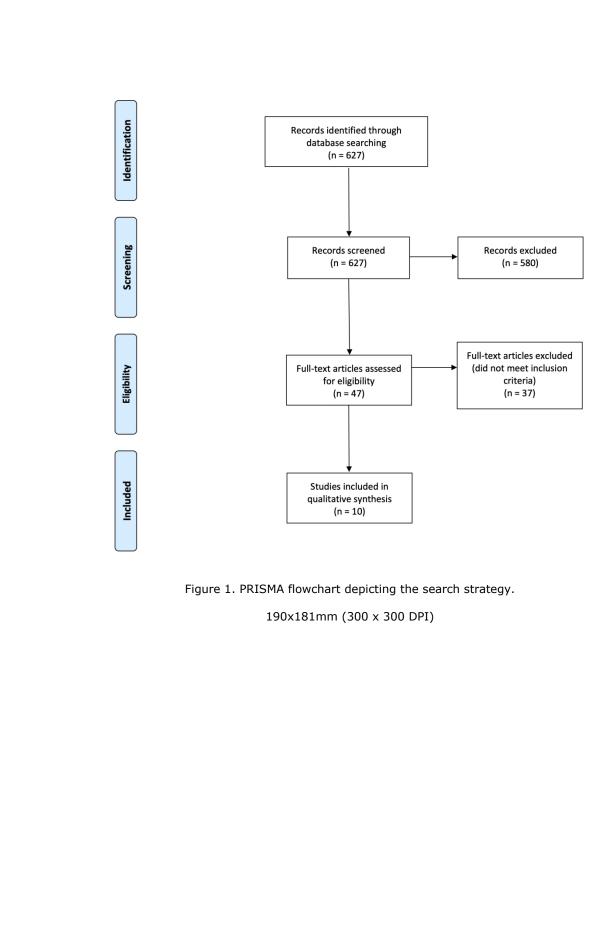
Page 25 of 29

1		
2 3	458	26. Hao S, Fu T, Wu Q, et al. Estimating One-Year Risk of Incident Chronic Kidney Disease:
4 5	459	Retrospective Development and Validation Study Using Electronic Medical Record Data From
6 7	460	the State of Maine. JMIR Med Inform 2017;5(3):e21. doi: 10.2196/medinform.7954
8 9	461	27. Martin Noguerol T, Paulano-Godino F, Martin-Valdivia MT, et al. Strengths, Weaknesses,
10 11	462	Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning
12 13	463	Applications in Radiology. J Am Coll Radiol 2019;16(9 Pt B):1239-47. doi:
14 15	464	10.1016/j.jacr.2019.05.047
16 17	465	28. Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology - new tools for
18 19	466	diagnosis and precision oncology. Nat Rev Clin Oncol 2019;16(11):703-15. doi:
20 21	467	10.1038/s41571-019-0252-y
22 23	468	29. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference,
24 25	469	and prediction: Springer Science & Business Media 2009.
26 27	470	30. Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis
28	471	and prediction. Comput Struct Biotechnol J 2015;13:8-17. doi: 10.1016/j.csbj.2014.11.005
29 30	472	31. Richter AN, Khoshgoftaar TM. A review of statistical and machine learning methods for modeling
31 32	473	cancer risk using structured clinical data. Artif Intell Med 2018;90:1-14. doi:
33 34	474	10.1016/j.artmed.2018.06.002
35 36	475	32. Munn Z, Peters MDJ, Stern C, et al. Systematic review or scoping review? Guidance for authors
37 38	476	when choosing between a systematic or scoping review approach. BMC Med Res Methodol
39 40	477	2018;18(1):143. doi: 10.1186/s12874-018-0611-x
41 42	478	33. Peters MD. In no uncertain terms: the importance of a defined objective in scoping reviews. JBI
43 44	479	Database System Rev Implement Rep 2016;14(2):1-4. doi: 10.11124/jbisrir-2016-2838
45 46	480	34. Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA 2018;319(13):1317-
47 48	481	18. doi: 10.1001/jama.2017.18391
49 50	482	35. Waegeman W, De Baets B, Boullart L. ROC analysis in ordinal regression learning. Pattern
51 52	483	Recognition Letters 2008;29(1):1-9.
53 54	484	36. Tape GE. The Area Under an ROC Curve 2019 [Available from:
55 56	485	http://gim.unmc.edu/dxtests/roc3.htm.
57 58	486	37. Hart GR, Roffman DA, Decker R, et al. A multi-parameterized artificial neural network for lung
58 59 60	487	cancer risk prediction. PLoS One 2018;13(10):e0205264. doi: 10.1371/journal.pone.0205264
00		

2 3 4	488	38. Hornbrook MC, Goshen R, Choman E, et al. Early Colorectal Cancer Detected by Machine
5	489	Learning Model Using Gender, Age, and Complete Blood Count Data. Dig Dis Sci
6 7	490	2017;62(10):2719-27. doi: 10.1007/s10620-017-4722-8
8 9	491	39. Miotto R, Li L, Kidd BA, et al. Deep Patient: An Unsupervised Representation to Predict the Future
10 11	492	of Patients from the Electronic Health Records. Sci Rep 2016;6:26094. doi:
12 13	493	10.1038/srep26094
14 15	494	40. Richter AN, Khoshgoftaar TM. Efficient learning from big data for cancer risk modeling: A case
16 17	495	study with melanoma. Comput Biol Med 2019;110:29-39. doi:
18 19	496	10.1016/j.compbiomed.2019.04.039
20 21	497	41. Roffman D, Hart G, Girardi M, et al. Predicting non-melanoma skin cancer via a multi-
22 23	498	parameterized artificial neural network. Sci Rep 2018;8(1):1701. doi: 10.1038/s41598-018-
24 25	499	19907-9
26 27	500	42. Schneider J, Layefsky E, Udaltsova N, et al. Validation of an Algorithm to Identify Patients at Risk
28 29	501	for Colorectal Cancer Based on Laboratory Test and Demographic Data in Diverse,
30	502	Community-Based Population. Clin Gastroenterol Hepatol 2020 doi:
31 32	503	10.1016/j.cgh.2020.04.054
33 34	504	43. Stark GF, Hart GR, Nartowt BJ, et al. Predicting breast cancer risk using personal health data and
35 36	505	machine learning models. PLoS One 2019;14(12):e0226765. doi:
37 38	506	10.1371/journal.pone.0226765
39 40	507	44. Wang HH, Wang YH, Liang CW, et al. Assessment of Deep Learning Using Nonimaging
41 42	508	Information and Sequential Medical Records to Develop a Prediction Model for
43 44	509	Nonmelanoma Skin Cancer. JAMA Dermatol 2019 doi: 10.1001/jamadermatol.2019.2335
45 46	510	45. Wang YH, Nguyen PA, Islam MM, et al. Development of Deep Learning Algorithm for Detection of
47 48	511	Colorectal Cancer in EHR Data. Stud Health Technol Inform 2019;264:438-41. doi:
49 50	512	10.3233/SHTI190259
51 52	513	46. Zhao D, Weng C. Combining PubMed knowledge and EHR data to develop a weighted bayesian
53 54	514	network for pancreatic cancer prediction. J Biomed Inform 2011;44(5):859-68. doi:
55	515	10.1016/j.jbi.2011.05.004
56 57	516	47. Kinar Y, Kalkstein N, Akiva P, et al. Development and validation of a predictive model for
58 59	517	detection of colorectal cancer in primary care by analysis of complete blood counts: a
60		

Page 27 of 29

1 2		
3	518	binational retrospective study. J Am Med Inform Assoc 2016;23(5):879-90. doi:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	519	10.1093/jamia/ocv195
7	520	48. Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast
9	521	cancer for white females who are being examined annually. J Natl Cancer Inst
11	522	1989;81(24):1879-86. doi: 10.1093/jnci/81.24.1879
13	523	49. Lorena AC, Jacintho LF, Siqueira MF, et al. Comparing machine learning classifiers in potential
15	524	distribution modelling. Expert Systems with Applications 2011;38(5):5268-75.
17	525	50. Usher-Smith JA, Walter FM, Emery JD, et al. Risk Prediction Models for Colorectal Cancer: A
	526	Systematic Review. Cancer Prev Res (Phila) 2016;9(1):13-26. doi: 10.1158/1940-
20 21	527	6207.CAPR-15-0274
22 23	528	51. Gray EP, Teare MD, Stevens J, et al. Risk Prediction Models for Lung Cancer: A Systematic
24 25 26 27	529	Review. Clin Lung Cancer 2016;17(2):95-106. doi: 10.1016/j.cllc.2015.11.007
	530	52. Usher-Smith JA, Emery J, Kassianos AP, et al. Risk prediction models for melanoma: a
28 29	531	systematic review. Cancer Epidemiol Biomarkers Prev 2014;23(8):1450-63. doi:
30	532	10.1158/1055-9965.EPI-14-0295
33 34 35 36 37 38 39 40	533	53. Rastogi T, Hildesheim A, Sinha R. Opportunities for cancer epidemiology in developing countries.
	534	Nat Rev Cancer 2004;4(11):909-17. doi: 10.1038/nrc1475
	535	54. van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a
	536	simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014;14:137.
	537	doi: 10.1186/1471-2288-14-137
41 42	538	55. A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai; 1995.
43 44	539	Montreal, Canada.
45 46	540	56. Bergquist SL, Brooks GA, Keating NL, et al. Classifying Lung Cancer Severity with Ensemble
47 48	541	Machine Learning in Health Care Claims Data. Proc Mach Learn Res 2017;68:25-38.
49 50	542	57. Downing M. Barts Health using AI to prioritise care for colon cancer patients 2020 [Available from:
51 52	543	https://www.bartshealth.nhs.uk/news/barts-health-using-ai-to-prioritise-care-for-high-risk-
53 54	544	colon-cancer-patients-8867].
55 56	545	
57 58	546	FIGURE LEGEND
58 59 60	547	Figure 1. PRISMA flowchart depicting the search strategy.



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT			I
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	7
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	7
METHODS			1
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	NA
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	8
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	8
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	8
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	8 and 10
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	NA
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	12, 13, and 14
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	NA

St. Michael's

BMJ Open: first published as 10.1136/bmjopen-2020-047755 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	8 and 9
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	10
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	12, 13, and 14
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	NA
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	12,13 , and 14
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	10,11, 16, and 17
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	17-20
Limitations	20	Discuss the limitations of the scoping review process.	17
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	20-21
UNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	21

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where *sources of evidence* (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).
 The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the

[‡] The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

BMJ Open

Predicting the risk of cancer in adults using supervised machine learning: a scoping review

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047755.R1
Article Type:	Original research
Date Submitted by the Author:	22-Aug-2021
Complete List of Authors:	Alfayez, Asma; University College London; King Abdullah International Medical Research Center Kunz, Holger; University College London Lai, Alvina; University College London
Primary Subject Heading :	Health informatics
Secondary Subject Heading:	Oncology
Keywords:	Information technology < BIOTECHNOLOGY & BIOINFORMATICS, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, ONCOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Predicting the risk of cancer in adults using supervised machine learning: a scoping review

Asma Abdullah Alfayez^{1,2,3}, Holger Kunz¹, Alvina Grace Lai¹

¹Institute of Health Informatics, University College London, London, UK

²King Abdullah International Medical Research Center, Riyadh, Saudi Arabia

³King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

*Corresponding author: Asma Abdullah Alfayez (asma.alfayez.17@ucl.ac.uk); Alvina Grace Lai

(alvina.lai@ucl.ac.uk)

Word count: 5158

Keywords: Machine learning; cancer; prediction; scoping review; artificial intelligence

Competing interests: None

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24 25	
25	
26 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 ABSTRACT

Objectives: The purpose of this scoping review is to: (i) identify existing supervised machine learning
 (ML) approaches on the prediction of cancer in asymptomatic adults; (ii) to compare the performance
 of ML models with each other, and (iii) to identify potential gaps in research.

5 **Design:** Scoping review using the population, concept, and context approach.

6 Search strategy: PubMed search engine was used from inception through to November 10, 2020 to
7 identify literature meeting following inclusion criteria: (i) a general adult (≥18 years) population, either
8 sex, asymptomatic (*population*); (ii) any study using ML techniques to derive predictive models for
9 future cancer risk using clinical and/or demographic and/or basic laboratory data (*concept*); and (iii)
10 original research articles conducted in all settings in any region of the world (*context*).

Results: The search returned 627 unique articles, of which 580 articles were excluded because they did not meet the inclusion criteria, were duplicates, or were related to benign neoplasm. Full-text reviews were conducted for 47 articles and a final set of 10 articles were included in this scoping review. These 10 very heterogeneous studies used ML to predict future cancer risk in asymptomatic individuals. All studies reported area under the receiver operating characteristics curve (AUC) values as metrics of model performance, but no study reported measures of model calibration.

Conclusions: Research gaps that must be addressed in order to deliver validated ML-based models
to assist clinical decision-making include: (i) establishing model generalisability through validation in
independent cohorts, including those from low- and middle-income countries; (ii) establishing models
for all cancer types; (iii) thorough comparisons of ML models with best available clinical tools to
ensure transparency of their potential clinical utility; (iv) reporting of model calibration performance;
and (v) comparisons of different methods on the same cohort to reveal important information about
model generalisability and performance.

26 ARTICLE SUMMARY

24

25

27 Strengths and limitations of this study

This study used a recognised scoping review approach (population, concept, and context) to

explore the machine learning techniques used to derive predictive models for future cancer risk. Identified studies were not subjected to comprehensive qualitative assessments. Only ten studies were identified, making it difficult to draw firm conclusions about their relative performance. AUC values alone do not allow for meaningful comparisons of models as they have been trained and evaluated on different datasets under different circumstances and conditions. This scoping review is limited to papers published in English until 2020 and only the PubMed search engine was used. INTRODUCTION Cancer remains a leading cause of morbidity and mortality, with an estimated 1.8 million new cases and 0.6 million deaths in the US in 2019 and approximately 367,000 new cases and 165,000 cancer deaths in the UK each year between 2015 and 2017.¹² Annual death rates only modestly decreased (1.4% and 1.8% in women and men, respectively) between 2012 and 2016, despite significant research.¹ Cancer cases also continue to increase, not least due to increased life expectancy, which increases the risk of developing cancer.³ Early cancer diagnosis is associated with significantly higher survival rate and lower mortality and associated costs. Early-stage cancers require less complex treatment regimens and reduced hospital utilization, resulting in reduced healthcare costs, whereas late-stage cancers require complex multimodal management, several rounds of extremely expensive drugs over significant periods of time, and the treatment of recurrences, equating to a staggering economic burden. Therefore, the importance of early diagnosis cannot be overestimated.⁴⁻⁶ Treating cancer early has significant cost-saving benefits. In the US, during the first 24 months after diagnosis, there is an increase in cancer treatment costs with stage: US\$72,000 for stage 0, US\$97,000 for stage I/II, US\$159,000 for stage III. and \$182,000 for stage IV.⁷ An estimate of the cost savings from early cancer diagnosis is 26 billion US dollars per annum in the US alone.⁸ Similarly, in the UK, early diagnosis of colorectal, ovarian,

BMJ Open

 and lung cancer in England alone could provide savings of over £44 million and benefit nearly 11,000
 patients.⁹

Survival rates significantly improve if cancer is diagnosed at stage I or II compared with later stages (stage III and IV),^{10 11} as once the cancer has metastasised, it becomes difficult to treat with radiotherapy or surgery, leading to treatment failure and death. For example, five-year survival rates for women diagnosed with localised breast or ovarian cancer are 99% and 92% compared to 27% and 29% for metastatic disease, respectively.¹ A report by Cancer Research UK indicated that, in the UK, the ten-year survival proportions of patients with eight cancers (combined) were around 80% for stage I and stage II detection (breast, bladder, ovarian, colorectal, uterine, testicular, and cervical cancer and malignant melanoma) but only 26% for cancers detected at later stages, notably lung cancer (stage III and IV).12

68 Current approaches to diagnose incident cancer

One approach to the early detection of cancer is population-wide screening, which aims to find asymptomatic individuals so that they can be promptly referred for treatment. Examples include mammography for breast cancer, cervical screening for cervical cancer, and faecal occult blood testing or sigmoidoscopy for colorectal cancer.¹³ There are three examples of national screening programs in UK (bowel, breast, and cervical cancer screening programs¹⁴) and two in the US: the Colorectal Cancer Control Program (CRCCP) and the National Breast and Cervical Cancer Early Detection Program (NBCCEDP).¹⁵ However, significant proportions of individuals eligible for these programs do not participate (for example through fear or not prioritizing time to attend for screening).¹⁶ and comprehensive screening programs are costly to implement, especially in resource-poor settings or low- and middle-income countries. Other approaches include public health campaigns to encourage individuals experiencing particular symptoms such as weight loss, anorexia, and fatigue to visit their family doctors.¹⁷ However, patient help-seeking around cancer is complex, multi-staged, and often leads to long delays of weeks or even months.¹⁸ Patients find it hard to interpret and recognise symptoms, with fears of embarrassment and having a potentially fatal or painful condition contributing to long and avoidable delays in help-seeking from health professionals.^{18 19} Patients often do not seek help from health professionals for early cancer symptoms, notably from general family physicians, for

85 many reasons including a complex mix of fear, worry, and of 'wasting' health professionals' time¹⁹ or
86 due to the high costs of medical care, a lack of health insurance, or time constraints.²⁰

87 Detecting future risk of cancer by modelling data

Screening approaches represent a patient identification (or "phenotyping" problem) that aims to detect whether the individual has cancer at a particular point in time. However, the ultimate goal of cancer prediction is to determine whether an individual will develop cancer at some point in the future. A simple approach is to stratify populations according to the presence and absence of risk factors, which have been extensively characterised for most cancer types through epidemiological studies over many decades. For example, age, gender, ethnicity, family history, and lifestyle factors are well-established risk factors for many types of cancer.²¹ The cancer prediction problem can either be regarded as a regression problem, where the input variables are clinical-demographic variables and the output variable is the probability of developing cancer at some point in the future, or as a binary classification problem to determine whether or not a patient will develop cancer at a specific point in time.

99 Big data and machine learning for medical prediction models

Advances in digital medicine and computational science have altered the landscape of data available for cancer risk prediction models. For example, in the data-driven healthcare era, there is an increasing amount of "big" medical data, as most individuals have had interactions with the healthcare system where data is collected in the form of electronic health records (EHRs), which are systematic collections of longitudinal patient health data collected in real time.^{22,23} Such large datasets provide powerful new opportunities to develop and refine predictive models and to explore potentially unknown predictor variables.²² Leveraging often massive amounts of data generated from large populations, much of which may be unstructured, and building optimal models requires the exploitation of advanced computational tools and supporting infrastructure. Machine learning (ML) is a branch of artificial intelligence (AI) and an extension of traditional statistical techniques that uses computational resources to detect underlying patterns in high-dimensional data, and it is increasingly being used in different areas of medicine requiring predictions.²⁴ For example, ML has successfully been used with EHR data to predict incident hypertension²⁵ and incident chronic kidney disease,²⁶

Page 7 of 33

 BMJ Open

and wider popular uses of ML in medicine include the automatic interpretation of medical images such
as in radiology²⁷ and histopathology²⁸ images.

115 A brief description of machine learning

A comprehensive description of ML models is beyond the scope of this scoping review. However, relevant ML techniques relate to the problem of *learning* from data samples (e.g., EHR data) rather than being pre-programmed with existing knowledge or rules. ML models can either be supervised (i.e., where the data are labelled and the algorithm uses these data to learn to predict the output) or unsupervised (i.e., where the data are unlabelled and the algorithm learns a structure inherent in the data).²⁹ The cancer prediction problem is therefore a supervised problem; examples are provided as inputs (or features) such as cancer risk factors like age, history, ethnicity, or blood count parameters and outputs (or labels) such as whether or not the individual subsequently develops cancer. A variety of available algorithms learn the best way to map the features to the labels by learning from the observations.^{30 31} The resulting model, ideally, will then be able to generalise the information so that it can be applied with high precision to new and unseen data.^{30 31}

Some of the main supervised ML models used in medical applications include decision trees (DTs: and their adaptation, random forests (RFs)), support vector machines (SVMs), and artificial neural networks (ANNs).^{30 31} DTs produce an output similar to a flow chart formed from feature nodes (risk variables) that best discriminate between different labels (future cancer occurrence) to split the tree.³⁰ ³¹ In this way, new cases can be assessed by traversing the tree based on the feature values to determine the output for that example.^{30 31} Decision trees are easy to interpret, since users are usually able to visualise the steps leading to a particular classification, which may be useful in a clinical setting where experts might wish to see how a particular decision was made.^{30 31} In RFs, several trees are built using subsets of data and features, with predictions decided based on majority voting after the example is assessed with respect to all the constructed trees.^{30 31} In SVMs, each feature (risk factor) is mapped into a higher-dimensional space and the hyperplane that optimally separates the output (future cancer occurrence) modelled.^{30 31} SVMs tend to generalise

⁵⁵ 139 well to unseen data and work well with complex (multidimensional) data but can be hard to interpret.³⁰

ANNs are inspired by the neural connections in the human brain and are developed by creating nodes (neurons) that weight certain features and produce an output value.^{30 31} By layering nodes in between the input layer (features; cancer risk factors) and output layer (label; future cancer occurrence) and modifying the weights during learning through a process called back-propagation, the resulting model forms a prediction for unseen data when one of the nodes in the output layer is positive.^{30 31} The terms "deep neural network" and "deep learning" are applied to ANNs with large numbers of layers.^{30 31} While proving extremely powerful across a range of applications, ANNs can be computationally very expensive and the way in which they classify (i.e., the intermediate "hidden" layers) is opaque, making it difficult to determine exactly how they performed the classification problem.^{30 31}

Rationale for performing a scoping review

Machine learning remains a relatively recent field, so it is unclear exactly to what extent advances have impacted specific healthcare domains. There are currently no extended systematic reviews or scoping reviews on the application of ML to cancer risk prediction in asymptomatic individuals. This prompted us to perform a scoping review of studies using supervised ML techniques to predict the future risk of developing cancer or specific cancers within a general asymptomatic adult (≥18 years) population using clinical and/or demographic and/or basic laboratory data (e.g., complete blood counts) that are likely to be readily available within the primary care setting. This approach therefore allowed to: (i) identify the types of evidence available; (ii) clarify key concepts and definitions; (iii) examine how research is currently being conducted; and (iv) to identify knowledge gaps.³²

OBJECTIVES

The objective of this study was to perform a scoping review and to synthesize knowledge of the nature and effects of current ML techniques for early cancer detection in asymptomatic adults. The scoping review was guided by the following research questions:

- (i) Which, if any, ML methods are being developed for cancer risk prediction in asymptomatic
- individuals in the community?
- (ii) How do these models perform compare to each other?
- (iii) Which research or knowledge gaps need to be addressed in order to advance the field?

1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 21 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 8 9 40 41	169				
37					

METHODS

Inclusion and exclusion criteria

We used the population, concept, and context approach³³ with the following inclusion criteria: (i) general adult (≥18 years) population, either sex, asymptomatic (population); (ii) any study using ML techniques to derive predictive models for future cancer risk using clinical and/or demographic and/or basic laboratory data carried out prior to August 7, 2020 (concept); and (iii) original research articles conducted in all settings in any region of the world (context).

For the purposes of this study, and recognizing that 'machine learning' algorithms fall along a continuum with statistical techniques,³⁴ all modelling approaches were included were defined as machine learning in the respective papers (such as logistic regression).

Exclusion criteria were any ML model used to predict future events in patients with pre-existing or symptoms of cancer; ML models developed using specialised tests such as genetic profiling or imaging tests not generally available in the community; unsupervised ML models; and studies not written in English.

Literature search

To identify relevant studies, the PubMed database was searched from inception through to November 10, 2020 using the search string: ("Cancer" Or "Cancers" OR "Oncology") AND ("Machine Learning" OR "ML" OR "Data Mining" OR "Decision Support System" OR "Clinical Support System" OR "Classification" OR "Regression" OR "Support vector machines" OR "Gaussian process" OR "Neural networks" OR "Logical learning" OR "Bayesian network" OR "linear model") AND ("prognosis" OR "prognostic estimate" OR "predictor" OR "prediction" OR "model" OR "diagnosis" OR "diagnostic"). This search was supplemented with manual searching of the references and citations of previously published studies. All abstracts identified by the initial search were screened for inclusion and checked for accuracy. For the included studies, data were extracted from full papers. In instances where more information was required to determine inclusion, the full text of the article was retrieved and assessed against the eligibility criteria.

Study assessment

BMJ Open

The quality of the included studies was assessed using the Newcastle Ottawa Scale (NOS) for observational studies included in the review.³⁵ The strength of the predictive ability of the included models was assessed using AUC (area under the receiver operating characteristics curve) data, a valid measure for evaluating classification algorithms and one that has been used to compare different algorithms in other meta-analyses.^{36 37}

Patient and public involvement

This study was not explicitly informed by patient priorities, experiences, and preferences, although the application of predictive models to assess cancer risk would have a direct bearing on identifying those most at risk and implementing investigations in a timely manner. No patients were involved in the design or conduct of the study and since this was a scoping review of the literature, there were no or cure on t

study participants.

RESULTS Main Findings

Identified risk models

Using the search strategy, 627 initial studies were identified where 10 studies met the inclusion criteria (Table 1; Figure 1).^{31 38-47} The most common reasons for exclusion of studies were: (i) models were derived to predict outcomes or responses to therapy in patients with pre-existing cancer; and/or (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorectal cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for pancreatic cancer, and one a general cancer prediction model. Two studies performed external validations of a previously developed colorectal cancer prediction model (Table 1).^{39 43} In terms of quality assessment, four studies were graded as "good" quality by the NOS, 39 43 44 46 while six studies were graded as "poor", in all cases due to comparability of cohorts on the basis of the design or analysis adequately controlling for confounders.^{31 38 40 42 45 47}

Development of the risk models

The models developed in the studies employed a wide range of ML techniques. Two studies compared different modelling approaches on the same dataset,⁴¹⁴⁴ while the other eight developed a model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies), logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/10 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies). As a result of the diverse cancer types being modelled, study aims, and the available data, a range of different predictors, features, and/or risk factors were included the developed predictive models, which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender, ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise;

1 2		
3	237	(3) comorbidities: e.g., diabetes mellitus, hypertension, congestive heart failure, and chronic
4 5	238	obstructive pulmonary disease; (4) clinical and practice data: e.g., Anatomical Therapeutic Chemical
6 7	239	(WHO-ATC) prescription codes and clinical encounters; and (5) laboratory tests: e.g., complete blood
8 9	240	count (Table 1). The models that automatically extracted features from EHR records used features
10 11	241	that were not always explicitly defined in the respective articles.
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
45 46 47		
47 48 49		
50		
51 52		
53 54		
55 56		
57 58		
59 60		

Table 1. Summary of studies investigating ML approaches for early cancer detection.

ä ble 1. Sur	nmary of stud	ies inve	stigating ML a	approaches for e	BMJ O			mjopen-2020-047755 on		Pag
Type of cancer	Reference	Year	Country	Method	Sample	Input	Validation	Performance	NOS	Notes
Breast	Stark ⁴⁴	2019	USA	Logistic regression, Gaussian naive Bayes, decision tree, linear discriminant analysis, support vector machine, and feed-forward artificial neural network	1343 breast cancer and 63,396 non- breast cancer cases (PLCO dataset)	Age, age at menarche, age at first live birth, number of first- degree relatives who have had breast cancer, ethnicity, age at menopause, an indicator of current hormone usage, number of years of hormone usage, BMI, pack years of cigarettes smoked, years of birth control usage, number of live births, and an indicator of personal prior history of cancer	20% testing data (269 breast cancer and 12,679 non-breast cancer cases)	Large 0.61 (0.58- 0=55); NB 0.59 (0:56-0.62); DT 0=51 (0.50-0.52); LDA 0.61 (0.58- 0=55); SVM 0.52 (0:48-0.55); NN 0=61 (0.57-0.64) ded from http://bmjopen.bmj.com/ on Ap	9 (Good)	At an 0.05 level, the logistic regression, linear discriminant analysis, and neural netwo with the broader set of inputs were a significantly stronger than the BCRAT
Colorectal cancer	Hornbrook ³⁹	2017	USA	ColonFlag ML model	17,095 US community- based insured adults (16,195 controls, 900 cases) (insurance data)	Age, gender, and blood count panel parameters	Study was a validation of a previously derived model ⁴⁸	A C 0.80 (0.79- 09 20 2024 by guest.	7 (Good)	
Colorectal	Wang ⁴⁶	2019	Taiwan	Convolutional neural network	10,185 with CRC, 47,967 controls	ICD-9-CM diagnostic codes, World Health Organization-	5-fold cross- validation	P Rected by copyright	7 (Good)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 33

					BMJ O	pen		mjopen-2020-047		
					(insurance data)	Anatomical Therapeutic Chemical (WHO- ATC) prescription codes		755 on 14 Sep		
Colorecta cancer	I Schneider 43	2020	USA	ColonFlag ML model	308,721 insurance health plan members (insurance data)	Age, gender, and blood count panel parameters	Study was a validation of a previously derived model ⁴⁸	ABJC 0.78 (95% CB 0.77-0.78) 202 1. Downloaded	8 (Good)	The algorithm accuracy decreased w the time interval between bloc test result an CRC diagnos
General	Miotto ⁴⁰	2016	USA	Deep neural network and random forests	Model training on 704,587, testing on 76,214 (EHR data)	Features extracted from EHR records	Testing on 76,214	Collorectal cancer AUC 039, liver cancer 039, prostate cancer 0.86	6 (Poor)	Outperforme RawFeat and PCA
Lung	Hart ³⁸	2018	USA	Artificial neural network	1997-2015 National Health Interview Survey adult data; 648 cancer and 488,418 non- cancer cases (survey data)	Gender, age, BMI, diabetes, smoking status, emphysema, asthma, ethnicity, Hispanic ethnicity, hypertension, heart diseases, vigorous exercise habits, and history of stroke	30% of data; 195 lung cancer cases and 146,524 never cancer cases	AUC 0.86 (training; 95% CI 035-0.88) and 036 (validation; 9% CI 0.84- 039) April 20, 2024 by guest. Protected by copyright	6 (Poor)	Random forests and SVM also applied which trained well (RF AUC of 1.00 (95% C 1.00- 1.00) a SVM AUC of 0.96 (95% C 0.95-0.97). However, no generalisable AUC SVM 0. (95% CI 0.51 0.58); AUC F 0.81 (95% C 0.78-0.84).

	D: 1 (44	0010			4 004 470			mjopen-2020-04777		
Melanoma	Richter ⁴¹	2019	USA	LR, RF, XGBoost	4,061,172 patients, 10,129 with melanoma (EHR data)	Features extracted from EHR records	5-fold cross- validation	AgiC LR 0.76; AgiC RF 0.69; AgiC XGBoost 0.80	7 (Poor)	Smaller amounts of data improved the AUCs
Non- melanoma skin cancer	Roffman ⁴²	2018	USA	Artificial neural network	1997–2015 NHIS adult survey data, 2,056 NMSC and 460,574 non-cancer cases (survey data)	Gender, age, BMI, diabetes, smoking status, emphysema, asthma, ethnicity, Hispanic ethnicity, hypertension, heart diseases, vigorous exercise habits, and history of stroke	30% for validation (752 NMSC cases and 138,172 never cancer cases)	ADC values of 0 ≥ 1 (training, 9 ≥% CI 0.80– 0 ≥ 2) and 0.81 (validation, 95% CE 0.79–0.82)	6 (Poor)	
Non- melanoma skin cancer	Wang ⁴⁵	2019	Taiwan	Convolutional neural network	1829 patients with nonmelanoma skin cancer as their first diagnosed cancer and 7665 random controls (insurance data)	Age, sex, ICD-9- CM diagnostic codes, World Health Organization- Anatomical Therapeutic Chemical (WHO- ATC) prescription codes, and the total numbers of clinical encounters	5-fold cross- validation	AUC 0.89 (0.87- 0.201) 0.201) 0.201 0.201 0.201 0.202	6 (Poor)	
Pancreatic	Zhao 47	2011	USA	Bayesian network inference	98 cases and 14,971 controls (EHR data)	Demographics, lifestyle, symptoms, co- morbidities, and lab test results (20 variables)	Null	0.87-0.95) 0 y guest. Protected by copyright	4 (Poor)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	17 of 33	BMJ Open
1 2 3	243	BMJ Open Abbreviations: ANN artificial neural network; AUC, area under the curve; BMI, body mass index; LR, logistic regression; NB, Gaussian naive Bayes; D
4		0
5 6	244	decision tree; LDA, linear discriminant analysis; ML, machine learning; NMSC, non-melanoma skin cancer; NOS, New astle Ottawa Scale; RF, random
7 8	245	forest; SVM, support vector machine.
 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 	246	decision tree; LDA, linear discriminant analysis; ML, machine learning; NMSC, non-melanoma skin cancer; NOS, Newesstle Otlawa Scale; RF, random forest; SVM, support vector machine.
35 36		ा त्र
37		
38 39		
40 41		Sp Sp
41 42		
43 44 45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml ₹

Discrimination and calibration of the risk models All studies provided AUC values as an assessment of model performance. Calibration (i.e., whether the risk estimates were accurate), was not assessed in any study. Two models with particularly high AUC values were the Bayesian network inference model developed by Zhao et al.,⁴⁷ which used 20 demographic, lifestyle, symptom, co-morbidity, and lab test results to predict the risk of pancreatic cancer with an AUC of 0.91, and the CRC predictive model developed by Wang et al.,⁴⁶ which used a CNN learning on 1929 features (1099 ICD-9 codes and 830 ATC codes). Models with particularly low AUC values were the range of models (logistic regression, Gaussian naive Bayes, DT, LDA, SVM, and feed-forward ANN) developed by Stark et al.44; however, as discussed below, although these models only had AUCs between 0.51 and 0.61, two of the models compared favourably with the BRCAT clinical risk tool. Comparison of the risk models with existing predictive algorithms Hundreds of risk prediction models have been published in the literature for every cancer type, and some of these are already used in clinical practice. It is therefore important to understand whether the performance of the newer ML-based cancer risk models is comparable to that of existing predictive algorithms. We therefore specifically examined whether the studies compared their ML algorithms with existing algorithms or, if not, how model performance as described by AUCs compared with other published data, despite the limitations of this approach (see below). Stark et al.⁴⁴ compared their ML models with an existing clinical prediction tool, the Breast Cancer Risk Prediction Tool (BCRAT; https://bcrisktool.cancer.gov/). The BCRAT tools is an implementation of the Gail model,⁴⁹ which is a statistical model that estimates five-year breast cancer risk in women without a personal history of breast cancer and without known mutations in high-risk breast cancer genes such as BRCA1 and BRCA2. In the Gail model, patients self-report their current age, age at menarche, age at first live birth, number of first-degree relatives who have had breast cancer, ethnicity, and number of previous breast biopsies, variables which are weighted within the model by logistic regression.⁴⁹ In addition, BCRAT uses data on a personal history of atypical hyperplasia, where available. Although the AUC values for the models (logistic regression (LR), naïve Bayes, DTs, linear discriminant analysis (LDA), SVM, and an ANN) tested using a broader set of features than BCRAT were only between 0.51 (DT) and 0.61 (LR, LDA, and ANN), four of the six models (LR, NB, LDA, and ANN) outperformed BCRAT (AUC 0.56). Other metrics were also used to assess model

3 4	277	performance (sensitivity, specificity, and precision), which were comparable between the ML
5 6	278	algorithms and the BCRAT, and both BCRAT and the ML models had low precision (~2%).
7	279	Furthermore, when comparing the different ML models, LR and LDA produced higher AUCs than the
8 9	280	ANN model, despite the potential for ANNs to better model noisy data and complex non-linear
10 11	281	functions. ⁵⁰ The authors suggested that this might have been due to the limited amount of available
12 13	282	training data or the selection of hyperparameters.44 It was observed that (i) the derived ML models
14 15	283	using an extended and set of features available in primary care can deliver improvements on current
16 17	284	clinical algorithms; (ii) that adding additional features has a greater impact on improving model
18 19	285	performance (i.e., higher AUC) rather than simply using more complex models; and (iii) that AUC
20 21	286	values must be interpreted in the context of existing methods, such as existing, clinically-used risk
22 23	287	prediction models such as the BCRAT or Gail model, rather than in isolation.
24 25	288	In a systematic review of 52 colorectal cancer models predicting future risk of disease in
26 27	289	asymptomatic individuals, ⁵¹ 37 models reported AUC values, which ranged from 0.65 and 0.75. These
28 29	290	included five models that used routine data exclusively and did not include questionnaires or genetic
30 31	291	biomarkers. In comparison, the AUC values for ColonFlag, ^{39 43} an ML model that uses age, gender,
32 33	292	and complete blood count (CBC) features to predict the future occurrence of colorectal cancer up to
34 35	293	12 months prior to diagnosis, were 0.78-0.82.
36 37	294	In another systematic review involving 25 risk prediction models for lung cancer that used only
38 39	295	epidemiological parameters as input (i.e., no laboratory parameters), ⁵² AUCs ranged between 0.57
40 41	296	and 0.86, which compares to an AUC of 0.86 (in both training and validation cohorts) for the ANN
42 43	297	model developed by Hart et al. ³⁸ In their systematic review of 25 melanoma risk prediction models, ⁵³
44 45	298	Usher-Smith et al. showed in a summary ROC curve that most models had similar discrimination of
46	299	0.76, which compares to the highest AUC of 0.80 achieved using XGBoost ML by Richter et al. ⁴¹
47 48	300	
49 50		
51 52	301	DISCUSSION
53 54 55	302	Strengths and limitations of existing ML approaches
56	303	The reviewed studies reviewed highlight that several different techniques have successfully been
57 58	304	used to develop models and that ML can be applied to large-scale insurance and EHR data
59 60	305	containing hundreds or thousands of features in order to build predictive models. However, the survey

also highlights a number of gaps in the application of ML to predicting the risk of future cancer in
asymptomatic individuals. These can be divided into those relating to: (i) study populations; (ii) model
types and comparisons; and (iii) model validation, comparisons, and calibration.

309 Study populations

To date, ML techniques have only been applied to or validated in datasets from developed countries, representing a fraction of the overall global population and their dietary and lifestyle factors. Given that the aetiology of cancer, risk factors, and genetics differ in different populations,⁵⁴ models developed in populations in high-income countries may not be generalisable to those from low- and middle-income countries (LMICs). The development and validation of models in LMICs could have two advantages: first, it would determine the generalizability (and therefore utility) of that model in other populations, better serving the needs of individuals in LMICs; second, disparities between models developed in different geographical settings could provide valuable new information about factors contributing to cancer risk. Generalizing risk prediction models is likely to be challenging, since resource-poor countries often do not have the necessary infrastructure nor the epidemiological research capabilities of institutions in high-income countries.

Furthermore, current ML models predict the risk of a limited number of cancer types. Although breast, colorectal, and lung cancer are the three most common cancers and therefore account for a large proportion of overall cancer burden, it is still important to detect all cancers early. This is especially true for those cancers that are usually silent (asymptomatic) for long periods of time, present late with advanced-stage disease, and for which there are currently no screening programs in place, such as ovarian and pancreatic cancer. Predicting future risk of these cancers could allow closer monitoring of at-risk individuals.

47 328 Model types and comparisons
48

A wide variety of ML methodologies have been applied and, despite being applied to the same research problem, this scoping review has not identified a single 'best' method. Two issues arose in studies that compared different ML approaches on the same datasets. First, although different models had similar AUCs during training, not all models generalised well to validation datasets; robust model validation is therefore important to ensure model validity (see below). Second, although in general it is assumed that larger amounts of training data improve model performance,⁵⁵ Richter et al.⁴¹ found that

equivalent or even better model performance was achievable using reduced datasets (hundreds of thousands vs. millions of datapoints). This might be due to high levels of homogeneity in the "no cancer" class, resulting in fewer instances being required to produce a generalisable model, or as a result of overfitting. Although the requirement for less data for the cancer prediction problem could make ML techniques more accessible to researchers without extensive computing infrastructure and allow smaller datasets to be leveraged for model construction, ML requires over ten-times the amount of data per variable for stable discrimination compared with traditional approaches such as logistic regression.⁵⁵ Instead of regarding data requirements as "too high" or "too low", it might be better to consider how much data is required for a particular predictive context. Riley et al.⁵⁶ recently provided an implementation of how to calculate the sample size required to develop specific clinical prediction models, which will help researchers prospectively plan their in silico experiments and avoid using datasets that are too small for the total number of participants or outcome events.

348 Model validation, comparisons, and performance evaluation

With the exception of the two studies evaluating a previously defined algorithm for colorectal cancer, no other study used external validation datasets to assess model generalizability, instead opting for either a single holdout validation sample or 5-fold cross-validation. While useful for assessing overfitting,⁵⁷ these approaches do not account for population bias in the training dataset nor differences in other target populations. Studies seeking to develop ML models should seek to validate models in independent populations, recognizing that an advantage of an 'ungeneralisable' model might be insights into cancer risk in other populations. Furthermore, since physicians may code diseases in EHRs differently over time (for instance, due to altered management or incentives), even initially generalisable models may need re-validation over time.^{23 58}

Discrimination (i.e., the ability to distinguish a patient with a high(er) risk of developing cancer from one with a low(er) risk of developing cancer) was measured in every study using the AUC, as is common in the field. However, discrimination is not the only metric of model performance.⁵⁹ Another important measure of model performance, particularly for the clinical setting, is calibration; that is, establishing that the risk estimates are accurate.⁶⁰ In this setting, this means that the model should not unduly over- or underestimate the risk that a patient will develop cancer; to do so would mean that

> a patient might be subjected to investigations and the associated worry of their likelihood of developing cancer (overestimated risk), or, conversely, under-investigated and falsely reassured in the case of underestimated risk. Therefore, a highly discriminatory but poorly calibrated model is likely to have poor clinical utility.

None of the studies reviewed here performed calibration analysis, which is not uncommon in this field. Indeed, in their systematic review of 71 studies using ML for clinical prediction for a wide variety of clinical purposes, Christodoulou et al. reported that 79% of studies failed to address the calibration problem.³⁷ Therefore, caution must be applied when interpreting and comparing the performance of current ML models based on AUC alone, since is an incomplete measure of performance that must be considered together with methodological aspects such overfitting, measurement error, and population heterogeneity that might influence the estimation of predictive performance.^{37 60}

Implications for clinical practice

The ML models described in this scoping review generally show high AUC values. So, are any of these models ready for clinical use? The ColonFlag model^{39 43} is an example has recently been implemented at Barts Health NHS Trust⁶¹ to identify patients at particularly high risk of CRC, particularly as clinicians struggle to prioritise patients in the backlog created by the COVID-19 pandemic. The ColonFlag model is the only model identified in this scoping review that has undergone extensive external validation in independent datasets.

New ML models need to be contextualised with currently available best clinical practice in order to fully evaluate their potential clinical value. Comparing the relatively poor AUC values of the Stark et al.⁴⁴ models with BCRAT revealed that they in fact outperformed it in many cases. In their comparison of their ANN with screening methods for lung cancer such as low-dose CT, chest X-ray, and sputum cytology, Hart et al.³⁸ noted that (according to sensitivity and specificity) it outperformed most of the other available non-invasive methods. Thorough side-by-side comparisons of newly developed models with other prediction tools would be helpful in establishing future clinical utility.

Finally, this scoping review highlights that model performance should not be evaluated solely on the basis of AUC values but also in terms of other importance performance metrics such as calibration,

3 4	392	without which a model might inaccurately assess risk and therefore prompt inappropriate
4 5 6	393	management.
7 8	394	
9 10 11	395	Unanswered questions and future research
12 13	396	The few models that are currently available are methodologically diverse, rarely validated in
14 15	397	independent datasets to ensure generalisability, and do not cover all cancer types. Even if ML
16 17	398	techniques offer only small improvements in cancer detection rates, these improvements are likely to
17 18 19	399	be of high clinical significance given the large size of the global population with or at high risk of
20 21	400	cancer and the high mortality and costs associated with late cancer diagnoses.
22 23	401	However, the scoping review identifies a number of research gaps that will need to be addressed in
24 25	402	order to deliver validated ML-based models to assist clinical decision-making. Firstly, future studies
26 27	403	must take steps to establish model generalisability through validation in independent cohorts,
28 29	404	including those from LMICs. Although the latter may be challenging, it could be argued that even
30 31	405	negative generalisability studies might provide an opportunity to learn more about cancer risk factors
32 33	406	in different populations. Secondly, the scoping review fails to establish which ML approach best suits
34	407	the cancer prediction problem but does show that, where possible, side-by-side comparisons of
35 36	408	different methods can reveal important information about generalisability as well as performance and
37 38 20	409	that these comparisons are desirable whenever possible. Thirdly, many important cancer types,
39 40	410	particularly 'silent killers' like ovarian cancer, have currently not been the subject of ML modelling
41 42	411	approaches; ML could provide an important, low-cost, non-invasive method to identify individuals at
43 44	412	high risk of clinically silent cancers that require closer monitoring. Fourthly, progress has been made
45 46	413	in defining approaches to tailor sample sizes to the specific setting of interest to minimise overfitting
47 48	414	and targeting precise estimates of key parameters, and these principles must be applied when testing
49 50	415	and validating models to ensure robust model performance. Finally, ML models need to be compared
50 51 52	416	to best available clinical tools so that their potential clinical utility is transparent.
53 54	417	
55 56 57 58 59 60	418	Limitations of this study

Our study has a number of limitations. First, despite recognising the need for a scoping review due to the paucity of literature on the topic, we were only able to identify ten papers meeting the inclusion criteria. It is therefore difficult to draw definitive conclusions about the performance of these models. Furthermore, although AUC values provide an indication of how discriminative the models are, they do not allow for meaningful comparisons of models trained and evaluated on different datasets. Six out of ten studies were defined as poor quality due to a lack of controlling for confounders in the study design, which may have introduced significant bias. Finally, we only search the PubMed database and articles published in English, so some papers in other languages or in databases for non-medical disciplines may have been missed. CONCLUSIONS This scoping review highlights that applying ML to cancer prediction is a promising field provided that the identified issues such as generalisability, validation and clinical applicability, model calibration, and dataset selection are addressed in future studies. We hope that the identified research gaps focus future research efforts to deliver validated ML-based models to assist and improve clinical decision-making **Contributorship statement** AAA defined the research question of the scoping review, conducted the literature search, and summarised the findings. HK and AGL supervised the research. All authors drafted and revised the manuscript. **Competing interests** No competing interests. Funding

2		
3 4	448	AGL is supported by funding from the Wellcome Trust (204841/Z/16/Z), National Institute for Health
5	449	Research (NIHR) University College London Hospitals Biomedical Research Centre
6 7	450	(BRC714/HI/RW/101440), NIHR Great Ormond Street Hospital Biomedical Research Centre
8 9	451	(19RX02).
10 11	452	Data sharing statement
12 13	453	Only public published papers were used.
14 15	454	Ethics Approval
$\begin{array}{c} 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$	455	Ethics Appiroval Not Applicable. This study does not involve human participants nor animal subjects
59 60		

1 2		
2 3 4	456	REFERENCES
5 6	457	1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69(1):7-34. doi:
7 8	458	10.3322/caac.21551
9 10	459	2. Cancer Research UK. Cancer Statistics for the UK 2020 [Available from:
11 12	460	https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk].
13 14	461	3. Cancer Research UK. Why are cancer rates increasing? 2014 [Available from:
14 15 16	462	https://scienceblog.cancerresearchuk.org/2015/02/04/why-are-cancer-rates-increasing/].
17 18	463	4. World Health Organization. Early detection of cancer 2016 [Available from:
19 20	464	https://www.who.int/cancer/detection/en/].
21	465	5. World Health Organization. Early cancer diagnosis saves lives, cuts treatment costs 2017
22 23	466	[Available from: https://www.who.int/news-room/detail/03-02-2017-early-cancer-diagnosis-
24 25	467	saves-lives-cuts-treatment-costs].
26 27	468	6. Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor
28 29 30 31	469	DNA. Sci Transl Med 2017;9(403) doi: 10.1126/scitranslmed.aan2415
	470	7. Blumen H, Fitch K, Polkus V. Comparison of Treatment Costs for Breast Cancer, by Tumor Stage
32 33	471	and Type of Service. Am Health Drug Benefits 2016;9(1):23-32.
34 35	472	8. Kakushadze Z, Raghubanshi R, Yu W. Estimating cost savings from early cancer diagnosis. Data
36 37	473	2017;2(3):30.
38 39	474	9. Cancer Research UK. Saving lives, averting costs 2014 [Available from:
40 41	475	https://www.cancerresearchuk.org/sites/default/files/saving_lives_averting_costs.pdf].
42 43	476	10. Bannister N, Broggio J. Cancer survival by stage at diagnosis for England (experimental
44	477	statistics): adults diagnosed 2012, 2013 and 2014 and followed up to 2015. Produced in
45 46	478	collaboration with Public Health England 2016
47 48	479	11. Canary Foundation. Early Detection Facts and Figures Early Detection Works. California2019.
49 50	480	12. Cancer Research UK. Why is early diagnosis important? 2018 [Available from:
51 52	481	https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-
53 54	482	important].
55 56	483	13. Weller DP, Campbell C. Uptake in cancer screening programmes: a priority in cancer control. Br J
57 58 59 60	484	<i>Cancer</i> 2009;101 Suppl 2:S55-9. doi: 10.1038/sj.bjc.6605391

1		
2 3	485	14. Cancer Research UK. About cancer screeing 2020 [Available from:
4 5	486	https://www.cancerresearchuk.org/about-cancer/screening].
6 7	487	15. Smith RA, Andrews KS, Brooks D, et al. Cancer screening in the United States, 2019: A review of
8 9	488	current American Cancer Society guidelines and current issues in cancer screening. CA
10 11	489	Cancer J Clin 2019;69(3):184-210. doi: 10.3322/caac.21557
12 13	490	16. Joseph DA, King JB, Dowling NF, et al. Vital signs: colorectal cancer screening test use—United
14 15	491	States, 2018. Morbidity and Mortality Weekly Report 2020;69(10):253.
16 17	492	17. Power E, Wardle J. Change in public awareness of symptoms and perceived barriers to seeing a
18 19	493	doctor following Be Clear on Cancer campaigns in England. British Journal of Cancer
20 21	494	2015;112(1):S22-S26.
22 23	495	18. Smith LK, Pope C, Botha JL. Patients' help-seeking experiences and delay in cancer
24 25	496	presentation: a qualitative synthesis. Lancet 2005;366(9488):825-31. doi: 10.1016/S0140-
26 27	497	6736(05)67030-4
28 29	498	19. Balasooriya-Smeekens C, Walter FM, Scott S. The role of emotions in time to presentation for
30 31	499	symptoms suggestive of cancer: a systematic literature review of quantitative studies.
32 33	500	Psychooncology 2015;24(12):1594-604. doi: 10.1002/pon.3833
34 35	501	20. Taber JM, Leyva B, Persoskie A. Why do people avoid medical care? A qualitative study using
36	502	national data. J Gen Intern Med 2015;30(3):290-7. doi: 10.1007/s11606-014-3089-1
37 38	503	21. American Cancer Society. Lifetime risk of developing or dying from cancer. 2014
39 40	504	22. Goldstein BA, Navar AM, Pencina MJ, et al. Opportunities and challenges in developing risk
41 42	505	prediction models with electronic health records data: a systematic review. J Am Med Inform
43 44	506	Assoc 2017;24(1):198-208. doi: 10.1093/jamia/ocw042
45 46	507	23. Rose S. Machine Learning for Prediction in Electronic Health Data. JAMA Netw Open
47 48	508	2018;1(4):e181404. doi: 10.1001/jamanetworkopen.2018.1404
49 50	509	24. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med 2019;380(14):1347-
51 52	510	58. doi: 10.1056/NEJMra1814259
53 54	511	25. Ye C, Fu T, Hao S, et al. Prediction of Incident Hypertension Within the Next Year: Prospective
55 56	512	Study Using Statewide Electronic Health Records and Machine Learning. J Med Internet Res
57 58	513	2018;20(1):e22. doi: 10.2196/jmir.9268
59 60		
55		

1		
2 3 4 5 6 7 8 9 10 11 12 13	514	26. Hao S, Fu T, Wu Q, et al. Estimating One-Year Risk of Incident Chronic Kidney Disease:
	515	Retrospective Development and Validation Study Using Electronic Medical Record Data From
	516	the State of Maine. JMIR Med Inform 2017;5(3):e21. doi: 10.2196/medinform.7954
	517	27. Martin Noguerol T, Paulano-Godino F, Martin-Valdivia MT, et al. Strengths, Weaknesses,
	518	Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning
	519	Applications in Radiology. J Am Coll Radiol 2019;16(9 Pt B):1239-47. doi:
14 15	520	10.1016/j.jacr.2019.05.047
16 17	521	28. Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology - new tools for
18 19	522	diagnosis and precision oncology. Nat Rev Clin Oncol 2019;16(11):703-15. doi:
20 21	523	10.1038/s41571-019-0252-y
22 23	524	29. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference,
23 24 25	525	and prediction: Springer Science & Business Media 2009.
26 27	526	30. Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	527	and prediction. Comput Struct Biotechnol J 2015;13:8-17. doi: 10.1016/j.csbj.2014.11.005
	528	31. Richter AN, Khoshgoftaar TM. A review of statistical and machine learning methods for modeling
	529	cancer risk using structured clinical data. Artif Intell Med 2018;90:1-14. doi:
	530	10.1016/j.artmed.2018.06.002
	531	32. Munn Z, Peters MDJ, Stern C, et al. Systematic review or scoping review? Guidance for authors
	532	when choosing between a systematic or scoping review approach. BMC Med Res Methodol
	533	2018;18(1):143. doi: 10.1186/s12874-018-0611-x
	534	33. Peters MD. In no uncertain terms: the importance of a defined objective in scoping reviews. JBI
	535	Database System Rev Implement Rep 2016;14(2):1-4. doi: 10.11124/jbisrir-2016-2838
45 46	536	34. Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA 2018;319(13):1317-
47 48	537	18. doi: 10.1001/jama.2017.18391
49 50	538	35. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of
51 52	539	nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25(9):603-5. doi:
53 54 55 56	540	10.1007/s10654-010-9491-z
	541	36. Waegeman W, De Baets B, Boullart L. ROC analysis in ordinal regression learning. Pattern
57 58	542	Recognition Letters 2008;29(1):1-9.
59 60		
00		

Page 29 of 33

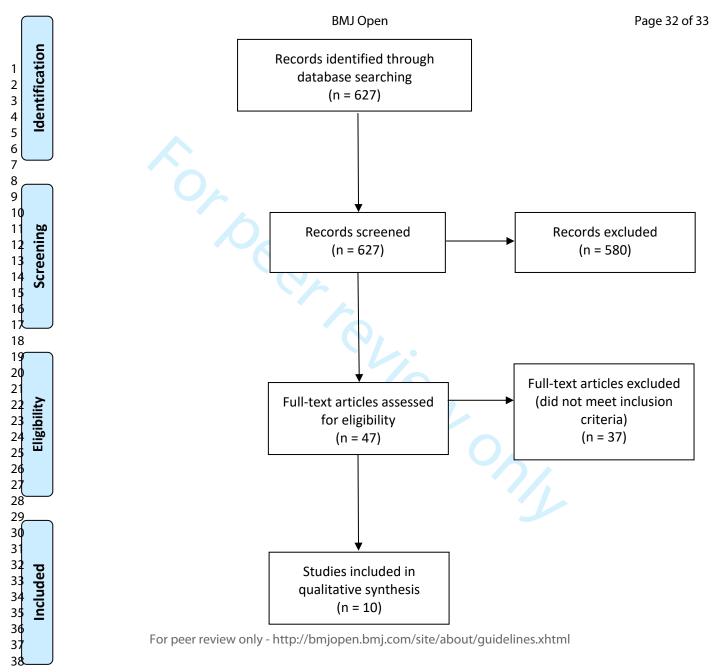
1		
2 3 4 5 6 7 8	543	37. Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of
	544	machine learning over logistic regression for clinical prediction models. J Clin Epidemiol
	545	2019;110:12-22. doi: 10.1016/j.jclinepi.2019.02.004
9	546	38. Hart GR, Roffman DA, Decker R, et al. A multi-parameterized artificial neural network for lung
5 6 7 8	547	cancer risk prediction. PLoS One 2018;13(10):e0205264. doi: 10.1371/journal.pone.0205264
13	548	39. Hornbrook MC, Goshen R, Choman E, et al. Early Colorectal Cancer Detected by Machine
15	549	Learning Model Using Gender, Age, and Complete Blood Count Data. Dig Dis Sci
17	550	2017;62(10):2719-27. doi: 10.1007/s10620-017-4722-8
	551	40. Miotto R, Li L, Kidd BA, et al. Deep Patient: An Unsupervised Representation to Predict the Future
	552	of Patients from the Electronic Health Records. Sci Rep 2016;6:26094. doi:
22	553	10.1038/srep26094
	554	41. Richter AN, Khoshgoftaar TM. Efficient learning from big data for cancer risk modeling: A case
	555	study with melanoma. Comput Biol Med 2019;110:29-39. doi:
	556	10.1016/j.compbiomed.2019.04.039
30 31	557	42. Roffman D, Hart G, Girardi M, et al. Predicting non-melanoma skin cancer via a multi-
32 33 34 35 36 37 38	558	parameterized artificial neural network. Sci Rep 2018;8(1):1701. doi: 10.1038/s41598-018-
	559	19907-9
	560	43. Schneider J, Layefsky E, Udaltsova N, et al. Validation of an Algorithm to Identify Patients at Risk
	561	for Colorectal Cancer Based on Laboratory Test and Demographic Data in Diverse,
39 40	562	Community-Based Population. Clin Gastroenterol Hepatol 2020 doi:
41 42	563	10.1016/j.cgh.2020.04.054
43 44	564	44. Stark GF, Hart GR, Nartowt BJ, et al. Predicting breast cancer risk using personal health data and
45 46	565	machine learning models. PLoS One 2019;14(12):e0226765. doi:
47 48	566	10.1371/journal.pone.0226765
49 50	567	45. Wang HH, Wang YH, Liang CW, et al. Assessment of Deep Learning Using Nonimaging
51 52	568	Information and Sequential Medical Records to Develop a Prediction Model for
52 53 54 55 56	569	Nonmelanoma Skin Cancer. JAMA Dermatol 2019 doi: 10.1001/jamadermatol.2019.2335
	570	46. Wang YH, Nguyen PA, Islam MM, et al. Development of Deep Learning Algorithm for Detection of
57 58	571	Colorectal Cancer in EHR Data. Stud Health Technol Inform 2019;264:438-41. doi:
59	572	10.3233/SHTI190259
60		

Page 30 of 33

BMJ Open

1 2		
3 4	573	47. Zhao D, Weng C. Combining PubMed knowledge and EHR data to develop a weighted bayesian
5 6	574	network for pancreatic cancer prediction. <i>J Biomed Inform</i> 2011;44(5):859-68. doi:
7 8	575	10.1016/j.jbi.2011.05.004
9 10	576	48. Kinar Y, Kalkstein N, Akiva P, et al. Development and validation of a predictive model for
11	577	detection of colorectal cancer in primary care by analysis of complete blood counts: a
12 13	578	binational retrospective study. J Am Med Inform Assoc 2016;23(5):879-90. doi:
14 15	579	10.1093/jamia/ocv195
16 17	580	49. Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast
18 19	581	cancer for white females who are being examined annually. J Natl Cancer Inst
20 21	582	1989;81(24):1879-86. doi: 10.1093/jnci/81.24.1879
22 23	583	50. Lorena AC, Jacintho LF, Siqueira MF, et al. Comparing machine learning classifiers in potential
24 25	584	distribution modelling. Expert Systems with Applications 2011;38(5):5268-75.
25 26 27	585	51. Usher-Smith JA, Walter FM, Emery JD, et al. Risk Prediction Models for Colorectal Cancer: A
28 29	586	Systematic Review. Cancer Prev Res (Phila) 2016;9(1):13-26. doi: 10.1158/1940-
30 31	587	6207.CAPR-15-0274
32	588	52. Gray EP, Teare MD, Stevens J, et al. Risk Prediction Models for Lung Cancer: A Systematic
33 34	589	Review. Clin Lung Cancer 2016;17(2):95-106. doi: 10.1016/j.cllc.2015.11.007
35 36	590	53. Usher-Smith JA, Emery J, Kassianos AP, et al. Risk prediction models for melanoma: a
37 38	591	systematic review. Cancer Epidemiol Biomarkers Prev 2014;23(8):1450-63. doi:
39 40	592	10.1158/1055-9965.EPI-14-0295
41 42	593	54. Rastogi T, Hildesheim A, Sinha R. Opportunities for cancer epidemiology in developing countries.
43 44	594	Nat Rev Cancer 2004;4(11):909-17. doi: 10.1038/nrc1475
45 46	595	55. van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a
47 48	596	simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014;14:137.
48 49 50	597	doi: 10.1186/1471-2288-14-137
51 52	598	56. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical
53 54	599	prediction model. BMJ 2020;368:m441. doi: 10.1136/bmj.m441
55	600	57. A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai; 1995.
56 57	601	Montreal, Canada.
58 59		
60		

1 2		
2 3 4	602	58. Bergquist SL, Brooks GA, Keating NL, et al. Classifying Lung Cancer Severity with Ensemble
5 6	603	Machine Learning in Health Care Claims Data. Proc Mach Learn Res 2017;68:25-38.
7	604	59. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a
8 9	605	framework for traditional and novel measures. Epidemiology 2010;21(1):128-38. doi:
10 11	606	10.1097/EDE.0b013e3181c30fb2
12 13	607	60. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive
14 15	608	analytics. BMC Med 2019;17(1):230. doi: 10.1186/s12916-019-1466-7
16 17	609	61. Downing M. Barts Health using AI to prioritise care for colon cancer patients 2020 [Available from:
18 19	610	https://www.bartshealth.nhs.uk/news/barts-health-using-ai-to-prioritise-care-for-high-risk-
20 21	611	colon-cancer-patients-8867 accessed 2/11/2020].
22 23	612	
24 25	613	FIGURE LEGEND
26		
28	614	Figure 1. PRISMA flowchart depicting the search strategy.
27 28 29 30 31 32 33	615	
34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		



Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT	1		
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2 and 3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	7
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	7
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	NA
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	9
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	9
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	9
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	9
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	13, 14, 15, and 16
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	13, 14, 15, and 16
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	NA

St. Michael's

BMJ Open: first published as 10.1136/bmjopen-2020-047755 on 14 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	9 and 10
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	11
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	13, 14, 15, and 16
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	NA
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	13, 14, 15, and 16
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	11,12, 17, and 18
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	18, 19, 20, 21, and 22
Limitations	20	Discuss the limitations of the scoping review process.	22 and 23
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	23
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	23 and 24

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

+ A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with information sources (see first footnote).

± The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

