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10 ABSTRACT

11 Objectives: The purpose of this scoping review is to identify existing supervised machine learning 

12 (ML) approaches on the prediction of cancer in asymptomatic adults, to compare the performance of 

13 ML models with each other, and to identify potential gaps in research.  

14 Design: Scoping review using the population, concept, and context approach.

15 Search strategy: The literature was searched according to the following inclusion criteria: (i) a 

16 general adult (≥18 years) population, either sex, asymptomatic (population); (ii) any study using ML 

17 techniques to derive predictive models for future cancer risk using clinical and/or demographic and/or 

18 basic laboratory data (concept); and (iii) original research articles conducted in all settings in any 

19 region of the world (context). 

20 Results: The search returned 627 unique articles, of which 580 articles were excluded because they 

21 did not meet the inclusion criteria, were duplicates, or were related to benign neoplasm. Full-text 

22 reviews were conducted for 47 articles and a final set of 10 articles were included in this scoping 

23 review. These 10 very heterogeneous studies used ML to predict future cancer risk in asymptomatic 

24 individuals. Nine out of 10 ML models reported either excellent or good performance.

25 Conclusions: Research gaps that must be addressed in order to deliver validated ML-based models 

26 to assist clinical decision-making include: (i) establishing model generalisability through validation in 

27 independent cohorts, including those from low- and middle-income countries; (ii) establishing models 

28 for all cancer types; (iii) thorough comparisons of ML models with best available clinical tools to 

29 ensure transparency of their potential clinical utility; and (iv) comparisons of different methods on the 

30 same cohort to reveal important information about model generalisability and performance. 

31

32 ARTICLE SUMMARY

33 Strengths and limitations of this study

34  This study used the population, concept, and context scoping review approach to explore the 

35 machine learning techniques used to derive predictive models for future cancer risk using 

36 basic clinical and/or demographic and/or laboratory data (concept) in asymptomatic adults 

37 ≥18 years (population) in all settings in any region of the world (context).
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38  Although the ML methodologies were heterogeneous, the standard use of the area under the 

39 receiver operating characteristics curve (AUC) metric to evaluate model performance allowed 

40 comparisons of different ML techniques with each other. 

41  This scoping review is limited to papers published in English between 2011and 2020. 
42

43

44 INTRODUCTION

45 Cancer remains a leading cause of morbidity and mortality, with an estimated 1.8 million new cases 

46 and 0.6 million deaths in the US in 2019 and approximately 367,000 new cases and 165,000 cancer 

47 deaths in the UK each year between 2015 and 2017.1 2 Annual death rates only modestly decreased 

48 (1.4% and 1.8% in women and men, respectively) between 2012 and 2016, despite significant 

49 research.1 Cancer cases also continue to increase, not least due to increased life expectancy, which 

50 increases the risk of developing cancer.3   

51 Early cancer diagnosis is associated with significantly higher survival rate and lower mortality and 

52 associated costs. Early-stage cancers require less complex treatment regimens and reduced hospital 

53 utilization, resulting in reduced healthcare costs, whereas late-stage cancers require complex 

54 multimodal management, several rounds of extremely expensive drugs over significant periods of 

55 time, and the treatment of recurrences, equating to a staggering economic burden. Therefore, the 

56 importance of early diagnosis cannot be overestimated.4-6

57 Survival rates significantly improve if cancer is diagnosed at stage I or II compared with later stages 

58 (stage III and IV),7 8 as once the cancer has metastasised, it becomes difficult to treat with 

59 radiotherapy or surgery, leading to treatment failure and death. For example, five-year survival rates 

60 for women diagnosed with localised breast or ovarian cancer are 99% and 92% compared to 27% 

61 and 29% for metastatic disease, respectively.1 A report by Cancer Research UK indicated that, in the 

62 UK, the ten-year survival proportions of patients with eight cancers (combined) were around 80% for 

63 stage I and stage II detection (breast, bladder, ovarian, colorectal, uterine, testicular, and cervical 

64 cancer and malignant melanoma) but only 26% for cancers detected at later stages, notably lung 

65 cancer (stage III and IV).9
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66 Globally, treatment for early-stage cancer confer significant cost-saving benefits. In the US, during the 

67 first 24 months after diagnosis, there is an increase in cancer treatment costs with stage: US$72,000 

68 for stage 0, US$97,000 for stage I/II, US$159,000 for stage III, and $182,000 for stage IV.10 An 

69 estimate of the cost savings from early cancer diagnosis is 26 billion US dollars per annum in the US 

70 alone.11 Similarly, in the UK, early diagnosis of colorectal, ovarian, and lung cancer in England alone 

71 could provide savings of over £44 million and benefit nearly 11,000 patients.12 

72 Current approaches to diagnose incident cancer

73 One approach to the early detection of cancer is population-wide screening, which aims to find 

74 asymptomatic individuals so that they can be promptly referred for treatment. Examples include 

75 mammography for breast cancer, cervical screening for cervical cancer, and faecal occult blood 

76 testing or sigmoidoscopy for colorectal cancer.13 There are three examples of national screening 

77 programs in UK (bowel, breast, and cervical cancer screening programs14) and two in the US: the 

78 Colorectal Cancer Control Program (CRCCP) and the National Breast and Cervical Cancer Early 

79 Detection Program (NBCCEDP).15 However, significant proportions of individuals eligible for these 

80 programs do not participate (for example through fear or not prioritizing time to attend for screening),16 

81 and comprehensive screening programs are costly to implement, especially in resource-poor settings 

82 or low- and middle-income countries. Other approaches include public health campaigns to 

83 encourage individuals experiencing particular symptoms such as weight loss, anorexia, and fatigue to 

84 visit their family doctors.17 However, patient help-seeking around cancer is complex, multi-staged, and 

85 often leads to long delays of weeks or even months.18 Patients find it hard to interpret and recognise 

86 symptoms, with fears of embarrassment and having a potentially fatal or painful condition contributing 

87 to long and avoidable delays in help-seeking from health professionals.18 19 Patients often do not seek 

88 help from health professionals for early cancer symptoms, notably from general family physicians, for 

89 many reasons including a complex mix of fear, worry, and of ‘wasting’ health professionals’ time19 or 

90 due to the high costs of medical care, a lack of health insurance, or time constraints.20 

91 Detecting future risk of cancer by modelling data

92 Screening approaches represent a patient identification (or “phenotyping” problem) that aims to detect 

93 whether the individual has cancer at a particular point in time. However, the ultimate goal of cancer 

94 prediction is to determine whether an individual will develop cancer at some point in the future. A 
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95 simple approach is to stratify populations according to the presence and absence of risk factors, 

96 which have been extensively characterised for most cancer types through epidemiological studies 

97 over many decades. For example, age, gender, ethnicity, family history, and lifestyle factors are well-

98 established risk factors for many types of cancer.21 The cancer prediction problem can either be 

99 regarded as a supervised learning problem where the input variables are clinical-demographic 

100 variables and the output variable is the probability of developing cancer at some point in the future or 

101 as a binary classification problem to determine whether or not a patient will develop cancer at a 

102 specific point in time.

103 Big data and machine learning for medical prediction models

104 Advances in digital medicine and computational science have altered the landscape of data available 

105 for cancer risk prediction models. For example, in the data-driven healthcare era, there is an 

106 increasing amount of “big” medical data, as most individuals have had interactions with the healthcare 

107 system where data is collected in the form of electronic health records (EHRs), which are systematic 

108 collections of longitudinal patient health data collected in real time.22 23 Such large datasets provide 

109 powerful new opportunities to develop and refine predictive models and to explore potentially 

110 unknown predictor variables.22 Leveraging often massive amounts of data generated from large 

111 populations, much of which may be unstructured, and building optimal models requires the 

112 exploitation of advanced computational tools and supporting infrastructure. Machine learning (ML) is a 

113 branch of artificial intelligence (AI) and an extension of traditional statistical techniques that uses 

114 computational resources to detect underlying patterns in high-dimensional data, and it is increasingly 

115 being used in different areas of medicine requiring predictions.24 For example, ML has successfully 

116 been used with EHR data to predict incident hypertension25 and incident chronic kidney disease,26 

117 and wider popular uses of ML in medicine include the automatic interpretation of medical images such 

118 as in radiology27 and histopathology28 images.

119 A brief description of machine learning

120 A comprehensive description of ML models is beyond the scope of this scoping review. However, 

121 relevant ML techniques relate to the problem of learning from data samples (e.g., EHR data) rather 

122 than being pre-programmed with existing knowledge or rules. ML models can either be supervised 

123 (i.e., where the data are labelled and the algorithm uses these data to learn to predict the output) or 
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124 unsupervised (i.e., where the data are unlabelled and the algorithm learns a structure inherent in the 

125 data).29 The cancer prediction problem is therefore a supervised problem; examples are provided as 

126 inputs (or features) such as cancer risk factors like age, history, ethnicity, or blood count parameters 

127 and outputs (or labels) such as whether or not the individual subsequently develops cancer. A variety 

128 of available algorithms learn the best way to map the features to the labels by learning from the 

129 observations.30 31 The resulting model, ideally, will then be able to generalise the information so that it 

130 can be applied with high precision to new and unseen data.30 31 

131 Some of the main supervised ML models used in medical applications include decision trees (DTs; 

132 and their adaptation, random forests (RFs)), support vector machines (SVMs), and artificial neural 

133 networks (ANNs).30 31 DTs produce an output similar to a flow chart formed from feature nodes (risk 

134 variables) that best discriminate between different labels (future cancer occurrence) to split the tree.30 

135 31 In this way, new cases can be assessed by traversing the tree based on the feature values to 

136 determine the output for that example.30 31 Decision trees are easy to interpret, since users are usually 

137 able to visualise the steps leading to a particular classification, which may be useful in a clinical 

138 setting where experts might wish to see how a particular decision was made.30 31 In RFs, several trees 

139 are built using subsets of data and features, with predictions decided based on majority voting after 

140 the example is assessed with respect to all the constructed trees.30 31 

141 In SVMs, each feature (risk factor) is mapped into a higher-dimensional space and the hyperplane 

142 that optimally separates the output (future cancer occurrence) modelled.30 31 SVMs tend to generalise 

143 well to unseen data and work well with complex (multidimensional) data but can be hard to interpret.30 

144 31

145 ANNs are inspired by the neural connections in the human brain and are developed by creating 

146 nodes (neurons) that weight certain features and produce an output value.30 31 By layering nodes in 

147 between the input layer (features; cancer risk factors) and output layer (label; future cancer 

148 occurrence) and modifying the weights during learning through a process called back-propagation, 

149 the resulting model forms a prediction for unseen data when one of the nodes in the output layer is 

150 positive.30 31 The terms “deep neural network” and “deep learning” are applied to ANNs with large 

151 numbers of layers.30 31 While proving extremely powerful across a range of applications, ANNs can be 

152 computationally very expensive and the way in which they classify (i.e., the intermediate “hidden” 
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153 layers) is opaque, making it difficult to determine exactly how they performed the classification 

154 problem.30 31

155 Rationale for performing a scoping review

156 This was a scoping review of studies using supervised ML techniques to predict the future risk of 

157 developing cancer or specific cancers within a general asymptomatic adult (≥18 years) population 

158 using clinical and/or demographic and/or basic laboratory data (e.g., complete blood counts) that are 

159 likely to be readily available within the primary care setting. This approach therefore allowed to: (i) 

160 identify the types of evidence available; (ii) clarify key concepts and definitions; (iii) examine how 

161 research is currently being conducted; and (iv) to identify knowledge gaps.32

162 OBJECTIVES

163 The objective of this study was to perform a scoping review and to synthesize knowledge of the 

164 nature and effects of current ML techniques for early cancer detection in asymptomatic adults. The 

165 scoping review was guided by the following research questions: 

166 (i) Which, if any, ML methods are being developed for cancer risk prediction in asymptomatic 

167 individuals in the community? 

168 (ii) How do these models perform compare to each other?

169 (iii) Which research or knowledge gaps need to be addressed in order to advance the field?

170
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171 METHODS

172 Inclusion and exclusion criteria

173 Therefore, using the population, concept, and context approach,33 the inclusion criteria were: (i) 

174 general adult (≥18 years) population, either sex, asymptomatic (population); (ii) any study using ML 

175 techniques to derive predictive models for future cancer risk using clinical and/or demographic and/or 

176 basic laboratory data carried out prior to August 7, 2020 (concept); and (iii) original research articles 

177 conducted in all settings in any region of the world (context). 

178 For the purposes of this study, and recognizing that ‘machine learning’ algorithms fall along a 

179 continuum with statistical techniques,34 all modelling approaches were included were defined as 

180 machine learning in the respective papers (such as logistic regression).

181 Exclusion criteria were any ML model used to predict future events in patients with pre-existing or 

182 symptoms of cancer; ML models developed using specialised tests such as genetic profiling or 

183 imaging tests not generally available in the community; unsupervised ML models; and studies not 

184 written in English.

185 Literature search

186 To identify relevant studies, PubMed was searched using the search string:

187 ("Cancer" Or "Cancers" OR "Oncology") AND ("Machine Learning" OR "ML" OR "Data Mining" OR 

188 "Decision Support System" OR "Clinical Support System" OR "Classification" OR "Regression" OR 

189 "Support vector machines" OR "Gaussian process" OR "Neural networks" OR "Logical learning" OR 

190 "Bayesian network" OR "linear model") AND ("prognosis" OR "prognostic estimate" OR "predictor" OR 

191 "prediction" OR "model" OR "diagnosis" OR "diagnostic"). This search was supplemented with manual 

192 searching of the references and citations of previously published studies. All abstracts identified by 

193 the initial search were screened for inclusion and checked for accuracy. For the included studies, data 

194 were extracted from full papers. In instances where more information was required to determine 

195 inclusion, the full text of the article was retrieved and assessed against the eligibility criteria. 

196 Assessment metric

197 The strength of the predictive ability of the included models was assessed using AUC (area under the 

198 receiver operating characteristics curve) data, a valid measure for evaluating classification 
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199 algorithms,35 where an AUC of 0.90-1 = excellent, 0.80-0.89 = good, 0.70-0.79 = fair, 0.60-0.69 = 

200 poor, and 0.50-0.59 = fail to describe model performance.36

201
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202 RESULTS 

203 Main Findings

204 Identified risk models

205 Using the search strategy, 627 initial studies were identified where 10 studies met the inclusion 

206 criteria (Table 1; Figure 1).31 37-46 The most common reasons for exclusion of studies were: (i) models 

207 were derived to predict prognosis or responses to therapy in patients with pre-existing cancer; and/or 

208 (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, 

209 such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted 

210 between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 

211 conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorectal 

212 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 

213 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 

214 validations of a previously developed colorectal cancer prediction model (Table 1).38 42 

215 Development of the risk models 

216 The models developed in the studies employed a wide range of ML techniques. Two studies 

217 compared different modelling approaches on the same dataset,40 43 while the other eight developed a 

218 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies), 

219 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 

220 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/10 

221 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical 

222 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or 

223 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies).

224 As a result of the diverse cancer types being modelled, study aims, and the available data, a range of 

225 different predictors, features, and/or risk factors were included the developed predictive models, 

226 which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender, 

227 ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise; 

228 (3) comorbidities: e.g., diabetes mellitus, hypertension, congestive heart failure, and chronic 

229 obstructive pulmonary disease; (4) clinical and practice data: e.g., Anatomical Therapeutic Chemical 

230 (WHO-ATC) prescription codes and clinical encounters; and (5) laboratory tests: e.g., complete blood 
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231 count (Table 1). The models that automatically extracted features from EHR records used features 

232 that were not always explicitly defined in the respective articles.
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233 Table 1. Summary of studies investigating ML approaches for early cancer detection. 

Type of 
cancer

Reference Year Country Method Sample Input Validation Performance Model 
performance

Notes

Breast Stark 43 2019 USA Logistic 
regression, 
Gaussian 
naive Bayes, 
decision tree, 
linear 
discriminant 
analysis, 
support 
vector 
machine, and 
feed-forward 
artificial 
neural 
network 

1343 breast 
cancer and 
63,396 non-
breast cancer 
cases (PLCO 
dataset)

Age, age at 
menarche, age at 
first live birth, 
number of first-
degree relatives 
who have had 
breast cancer, 
ethnicity, age at 
menopause, an 
indicator of current 
hormone usage, 
number of years 
of hormone 
usage, BMI, pack 
years of cigarettes 
smoked, years of 
birth control 
usage, number of 
live births, and an 
indicator of 
personal prior 
history of cancer 

20% 
testing 
data (269 
breast 
cancer and 
12,679 
non-breast 
cancer 
cases)

LR 0.61 (0.58-
0.65); NB 0.59 
(0.56-0.62); DT 
0.51 (0.50-0.52); 
LDA 0.61 (0.58-
0.65); SVM 0.52 
(0.48-0.55); NN 
0.61 (0.57-0.64)

Fail - poor At an 0.05 
level, the 
logistic 
regression, 
linear 
discriminant 
analysis, and 
neural network 
with the 
broader set of 
inputs were all 
significantly 
stronger than 
the BCRAT 

Colorectal 
cancer

Hornbrook 
38

2017 USA ColonFlag 
ML model

17,095 US 
community-
based insured 
adults (16,195 
controls, 900 
cases) 
(insurance 
data)

Age, gender, and 
blood count panel 
parameters 

Study was 
a validation 
of a 
previously 
derived 
model 47

AUC 0.80 (0.79-
0.82)

Good

Colorectal Wang 45 2019 Taiwan Convolutional 
neural 
network

10,185 with 
CRC, 47,967 
controls 

ICD-9-CM 
diagnostic codes, 
World Health 
Organization- 

5-fold 
cross-
validation

AUC 0.92 Excellent
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(insurance 
data)

Anatomical 
Therapeutic 
Chemical (WHO-
ATC) prescription 
codes

Colorectal 
cancer

Schneider 
42

2020 USA ColonFlag 
ML model

308,721 
insurance 
health plan 
members 
(insurance 
data)

Age, gender, and 
blood count panel 
parameters 

Study was 
a validation 
of a 
previously 
derived 
model 47

AUC 0.78 (95% 
CI 0.77-0.78) 

Good The algorithm’s 
accuracy 
decreased with 
the time 
interval 
between blood 
test result and 
CRC diagnosis 

General Miotto 39 2016 USA Deep neural 
network and 
random 
forests

Model training 
on 704,587, 
testing on 
76,214 (EHR 
data)

Features 
extracted from 
EHR records

Testing on 
76,214

Colorectal 
cancer AUC 
0.89, liver cancer 
0.89, prostate 
cancer 0.86

Good Outperformed 
RawFeat and 
PCA

Lung Hart 37 2018 USA Artificial 
neural 
network

1997-2015 
National 
Health 
Interview 
Survey adult 
data; 648 
cancer and 
488,418 non-
cancer cases 
(survey data)

Gender, age, BMI, 
diabetes, smoking 
status, 
emphysema, 
asthma, ethnicity, 
Hispanic ethnicity, 
hypertension, 
heart diseases, 
vigorous exercise 
habits, and history 
of stroke 

30% of 
data; 195 
lung 
cancer 
cases and 
146,524 
never 
cancer 
cases 

AUC 0.86 
(training; 95% CI 
0.85-0.88) and 
0.86 (validation; 
95% CI 0.84-
0.89) 

Good Random 
forests and 
SVM also 
applied which 
trained well 
(RF AUC of 
1.00 (95% CI 
1.00- 1.00) and 
SVM AUC of 
0.96 (95% CI 
0.95-0.97). 
However, not 
generalisable: 
AUC SVM 0.55 
(95% CI 0.51-
0.58); AUC RF 
0.81 (95% CI 
0.78-0.84).
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Melanoma Richter 40 2019 USA LR, RF, 
XGBoost

4,061,172 
patients, 
10,129 with 
melanoma 
(EHR data)

Features 
extracted from 
EHR records

5-fold 
cross-
validation

AUC LR 0.76; 
AUC RF 0.69; 
AUC XGBoost 
0.80

Poor - Good Smaller 
amounts of 
data improved 
the AUCs

Non-
melanoma 
skin 
cancer

Roffman 41 2018 USA Artificial 
neural 
network

1997–2015 
NHIS adult 
survey data, 
2,056 NMSC 
and 460,574 
non-cancer 
cases (survey 
data)

Gender, age, BMI, 
diabetes, smoking 
status, 
emphysema, 
asthma, ethnicity, 
Hispanic ethnicity, 
hypertension, 
heart diseases, 
vigorous exercise 
habits, and history 
of stroke 

30% for 
validation 
(752 
NMSC 
cases and 
138,172 
never 
cancer 
cases) 

AUC values of 
0.81 (training, 
95% CI 0.80–
0.82) and 0.81 
(validation, 95% 
CI 0.79–0.82)

Good

Non-
melanoma 
skin 
cancer

Wang 44 2019 Taiwan Convolutional 
neural 
network

1829 patients 
with 
nonmelanoma 
skin cancer 
as their first 
diagnosed 
cancer and 
7665 random 
controls 
(insurance 
data)

Age, sex, ICD-9-
CM diagnostic 
codes, World 
Health 
Organization- 
Anatomical 
Therapeutic 
Chemical (WHO-
ATC) prescription 
codes, and the 
total numbers of 
clinical encounters 

5-fold 
cross-
validation

AUC 0.89 (0.87-
0.91)

Good

Pancreatic Zhao 44 2011 USA Bayesian 
network 
inference

98 cases and 
14,971 
controls (EHR 
data)

Demographics, 
lifestyle, 
symptoms, co-
morbidities, and 
lab test results (20 
variables)

Null 0.91 (0.87-0.95) Excellent
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234 Abbreviations: AUC, area under the curve; BMI, body mass index; LR, logistic regression; NB, Gaussian naive Bayes; DT, decision tree; LDA, linear 

235 discriminant analysis; SVM, support vector machine; ANN artificial neural network; RF, random forest; NMSC, non-melanoma skin cancer; ML, machine 

236 learning.

237
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238 Discrimination of the risk models

239 All studies provided AUC values as an assessment of model performance. The majority of models 

240 (7/10)31 37-42 44 showed “good” performance, two had “excellent” performance,45 46  and one “failed”.43 

241 The two models showing excellent performance were the Bayesian network inference model 

242 developed by Zhao et al.,46 which used 20 demographic, lifestyle, symptom, co-morbidity, and lab test 

243 results to predict the risk of pancreatic cancer with an AUC of 0.91, and the CRC predictive model 

244 developed by Wang et al.,45 which used a CNN learning on 1929 features (1099 ICD-9 codes and 830 

245 ATC codes). The models that “failed” were the range of models (logistic regression, Gaussian naive 

246 Bayes, DT, LDA, SVM, and feed-forward ANN) developed by Stark et al.43; however, as discussed 

247 below, although these models only had AUCs between 0.51 and 0.61, two of the models compared 

248 favourably with the BRCAT clinical risk tool. 

249 Comparison of the risk models with existing predictive algorithms

250 Stark et al.43 compared their ML models with an existing clinical prediction tool, the Breast Cancer 

251 Risk Prediction Tool (BCRAT; https://bcrisktool.cancer.gov/). The BCRAT tools is an implementation 

252 of the Gail model,48 which is a statistical model that estimates five-year breast cancer risk in women 

253 without a personal history of breast cancer and without known mutations in high-risk breast cancer 

254 genes such as BRCA1 and BRCA2. In the Gail model, patients self-report their current age, age at 

255 menarche, age at first live birth, number of first-degree relatives who have had breast cancer, 

256 ethnicity, and number of previous breast biopsies, variables which are weighted within the model by 

257 logistic regression.48 In addition, BCRAT uses data on a personal history of atypical hyperplasia, 

258 where available. Although the AUC values for the models (logistic regression (LR), naïve Bayes, DTs, 

259 linear discriminant analysis (LDA), SVM, and an ANN) tested using a broader set of features than 

260 BCRAT were only between 0.51 (DT) and 0.61 (LR, LDA, and ANN), four of the six models (LR, NB, 

261 LDA, and ANN) outperformed BCRAT (AUC 0.56). Other metrics were also used to assess model 

262 performance (sensitivity, specificity, and precision), which were comparable between the ML 

263 algorithms and the BCRAT, and both BCRAT and the ML models had low precision (~2%). 

264 Furthermore, when comparing the different ML models, LR and LDA produced higher AUCs than the 

265 ANN model, despite the potential for ANNs to better model noisy data and complex non-linear 

266 functions.49 The authors suggested that this might have been due to the limited amount of available 

267 training data or the selection of hyperparameters.43 It was observed that (i) the derived ML models 
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268 using an extended and set of features available in primary care can deliver improvements on current 

269 clinical algorithms; (ii) that adding additional features has a greater impact on improving model 

270 performance (i.e., higher AUC) rather than simply using more complex models; and (iii) that AUC 

271 values must be interpreted in the context of existing methods, such as existing, clinically-used risk 

272 prediction models such as the BCRAT or Gail model, rather than in isolation. 

273 In a systematic review of 52 colorectal cancer models predicting future risk of disease in 

274 asymptomatic individuals,50 37 models reported AUC values, which ranged from 0.65 and 0.75. These 

275 included five models that used routine data exclusively and did not include questionnaires or genetic 

276 biomarkers. In comparison, the AUC values for ColonFlag,38 42 an ML model that uses age, gender, 

277 and complete blood count (CBC) features to predict the future occurrence of colorectal cancer up to 

278 12 months prior to diagnosis, were 0.78-0.82.  

279 In another systematic review involving 25 risk prediction models for lung cancer that used only 

280 epidemiological parameters as input (i.e., no laboratory parameters),51 AUCs ranged between 0.57 

281 and 0.86, which compares to an AUC of 0.86 (in both training and validation cohorts) for the ANN 

282 model developed by Hart et al.37 In their systematic review of 25 melanoma risk prediction models,52 

283 Usher-Smith et al. showed in a summary ROC curve that most models had similar discrimination of 

284 0.76, which compares to the highest AUC of 0.80 achieved using XGBoost ML by Richter et al.40

285

286 DISCUSSION

287

288 Strengths and limitations of existing ML approaches

289 The studies reviewed highlight that several different techniques have successfully been used to 

290 develop models with generally very good discriminative performance. Other strengths of the studies 

291 are the demonstration of how ML can be applied to large-scale insurance and EHR data containing 

292 hundreds or thousands of features in order to build predictive models. 

293 However, the above survey also highlights a number of gaps in the application of ML to predicting the 

294 risk of future cancer in asymptomatic individuals. These can be divided into those relating to: (i) study 

295 populations; (ii) model types and comparisons; and (iii) model validation and comparisons.
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296 Study populations 

297 To date, ML techniques have only been applied to or validated in datasets from developed countries, 

298 representing a fraction of the overall global population and their dietary and lifestyle factors. Given 

299 that the aetiology of cancer, risk factors, and genetics differ in different populations,53 models 

300 developed in populations in high-income countries may not be generalisable to those from low- and 

301 middle-income countries (LMICs). The development and validation of models in LMICs could have 

302 two advantages: first, it would determine the generalizability (and therefore utility) of that model in 

303 other populations, better serving the needs of individuals in LMICs; second, disparities between 

304 models developed in different geographical settings could provide valuable new information about 

305 factors contributing to cancer risk. Generalizing risk prediction models is likely to be challenging, since 

306 resource-poor countries often do not have the necessary infrastructure nor the epidemiological 

307 research capabilities of institutions in high-income countries.

308 Furthermore, current ML models predict the  risk of a limited number of cancer types. Although breast, 

309 colorectal, and lung cancer are the three most common cancers and therefore account for a large 

310 proportion of overall cancer burden, it is still important to detect all cancers early. This is especially 

311 true for those cancers that are usually silent (asymptomatic) for long periods of time, present late with 

312 advanced-stage disease, and for which there are currently no screening programs in place, such as 

313 ovarian and pancreatic cancer. Predicting future risk of these cancers could allow closer monitoring of 

314 at-risk individuals. 

315 Model types and comparisons

316 A wide variety of ML methodologies have been applied and, despite being applied to the same 

317 research problem, this scoping review has not identified a single ’best’ method. Two issues arose in 

318 studies that compared different ML approaches on the same datasets. First, although different models 

319 had similar AUCs during training, not all models generalised well to validation datasets; robust model 

320 validation is therefore important to ensure model validity (see below). Second, although in general it is 

321 assumed that larger amounts of training data improve model performance,54 Richter et al.40 found that 

322 equivalent or even better model performance was achievable using reduced datasets (hundreds of 

323 thousands vs. millions of datapoints). This might be due to high levels of homogeneity in the “no 

324 cancer” class, resulting in fewer instances being required to produce a generalisable model, or as a 
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325 result of overfitting. The requirement for less data for the cancer prediction problem could make ML 

326 techniques more accessible to researchers without extensive computing infrastructure and allow 

327 smaller datasets to be leveraged for model construction.

328 Model validation and comparisons

329 With the exception of the two studies evaluating a previously defined algorithm for colorectal cancer, 

330 no other study used external validation datasets to assess model generalizability, instead opting for 

331 either a single holdout validation sample or 5-fold cross-validation. While useful for assessing 

332 overfitting,55 these approaches do not account for population bias in the training dataset nor 

333 differences in other target populations. Studies seeking to develop ML models should  seek to 

334 validate models in independent populations, recognizing that an advantage of an ‘ungeneralisable’ 

335 model might be insights into cancer risk in other populations. Furthermore, since physicians may code 

336 diseases in EHRs differently over time (for instance, due to altered management or incentives), even 

337 initially generalisable models may need re-validation over time 23 56.

338

339 Implications for clinical practice

340 The ML models described in this scoping review generally show very good performance. So, are any 

341 of these models ready for clinical use? The ColonFlag model38 42 is an example has recently been 

342 implemented at Barts Health NHS Trust57 to identify patients at particularly high risk of CRC, 

343 particularly as clinicians struggle to prioritise patients in the backlog created by the COVID-19 

344 pandemic. The ColonFlag model is the only model identified in this scoping review that has 

345 undergone extensive external validation in independent datasets. 

346 New ML models need to be contextualised with currently available best clinical practice in order to 

347 fully evaluate their potential clinical value. Comparing the relatively poor AUC values of the Stark et 

348 al.43 models with BCRAT revealed that they in fact outperformed it in many cases. In their comparison 

349 of their ANN with screening methods for lung cancer such as low-dose CT, chest X-ray, and sputum 

350 cytology, Hart et al.37 noted that (according to sensitivity and specificity) it outperformed most of the 

351 other available non-invasive methods. Thorough side-by-side comparisons of newly developed 

352 models with other prediction tools would be helpful in establishing future clinical utility.
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353

354 Unanswered questions and future research 

355 Although the few models that are currently available are methodologically diverse, rarely validated in 

356 independent datasets to ensure generalisability, and do not cover all cancer types. Even if ML 

357 techniques offer only small improvements in cancer detection rates, these improvements are likely to 

358 be of high clinical significance given the large size of the global population with or at high risk of 

359 cancer and the high mortality and costs associated with late cancer diagnoses.

360 However, the scoping review identifies a number of research gaps that will need to be addressed in 

361 order to deliver validated ML-based models to assist clinical decision-making. Firstly, future studies 

362 must take steps to establish model generalisability through validation in independent cohorts, 

363 including those from LMICs. Although the latter may be challenging, it could be argued that even 

364 negative generalisability studies might provide an opportunity to learn more about cancer risk factors 

365 in different populations. Secondly, the scoping review fails to establish which ML approach best suits 

366 the cancer prediction problem but does show that, where possible, side-by-side comparisons of 

367 different methods can reveal important information about generalisability as well as performance and 

368 that these comparisons are desirable whenever possible. Thirdly, many important cancer types, 

369 particularly ‘silent killers’ like ovarian cancer, have currently not been the subject of ML modelling 

370 approaches; ML could provide an important, low-cost, non-invasive method to identify individuals at 

371 high risk of clinically silent cancers that require closer monitoring. Furthermore, it might not 

372 necessarily be true that more data equals improved model performance, which might broaden 

373 accessibility of model development to a wider range of clinicians and epidemiologists. Finally, ML 

374 models need to be compared to best available clinical tools so that their potential clinical utility is 

375 transparent.

376

377 CONCLUSIONS

378 In conclusion, this scoping review highlights that the application of ML to cancer prediction is a 

379 nascent field, with the majority of the few available studies published in the last two years. 

380 Nevertheless, most of ML model performance appears to be good which makes them reliable 
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381 approach. We hope that the identified research gaps focus future research efforts to deliver validated 

382 ML-based models to assist and improve clinical decision-making. 
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Figure 1. PRISMA flowchart depicting the search strategy. 
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Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for 
Scoping Reviews (PRISMA-ScR) Checklist

SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE #

TITLE
Title 1 Identify the report as a scoping review. 1

ABSTRACT

Structured 
summary 2

Provide a structured summary that includes (as 
applicable): background, objectives, eligibility criteria, 
sources of evidence, charting methods, results, and 
conclusions that relate to the review questions and 
objectives.

2

INTRODUCTION

Rationale 3

Describe the rationale for the review in the context of 
what is already known. Explain why the review 
questions/objectives lend themselves to a scoping 
review approach.

7

Objectives 4

Provide an explicit statement of the questions and 
objectives being addressed with reference to their key 
elements (e.g., population or participants, concepts, 
and context) or other relevant key elements used to 
conceptualize the review questions and/or objectives.

7

METHODS

Protocol and 
registration 5

Indicate whether a review protocol exists; state if and 
where it can be accessed (e.g., a Web address); and if 
available, provide registration information, including 
the registration number.

NA

Eligibility criteria 6

Specify characteristics of the sources of evidence 
used as eligibility criteria (e.g., years considered, 
language, and publication status), and provide a 
rationale.

8

Information 
sources* 7

Describe all information sources in the search (e.g., 
databases with dates of coverage and contact with 
authors to identify additional sources), as well as the 
date the most recent search was executed.

8

Search 8
Present the full electronic search strategy for at least 1 
database, including any limits used, such that it could 
be repeated.

8

Selection of 
sources of 
evidence†

9
State the process for selecting sources of evidence 
(i.e., screening and eligibility) included in the scoping 
review.

8 and 10

Data charting 
process‡ 10

Describe the methods of charting data from the 
included sources of evidence (e.g., calibrated forms or 
forms that have been tested by the team before their 
use, and whether data charting was done 
independently or in duplicate) and any processes for 
obtaining and confirming data from investigators.

NA

Data items 11 List and define all variables for which data were 
sought and any assumptions and simplifications made.

12, 13, and 
14

Critical appraisal of 
individual sources 
of evidence§

12

If done, provide a rationale for conducting a critical 
appraisal of included sources of evidence; describe 
the methods used and how this information was used 
in any data synthesis (if appropriate).

NA
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE #

Synthesis of 
results 13 Describe the methods of handling and summarizing 

the data that were charted. 8 and 9

RESULTS

Selection of 
sources of 
evidence

14

Give numbers of sources of evidence screened, 
assessed for eligibility, and included in the review, with 
reasons for exclusions at each stage, ideally using a 
flow diagram.

10

Characteristics of 
sources of 
evidence

15 For each source of evidence, present characteristics 
for which data were charted and provide the citations.

12, 13, and 
14

Critical appraisal 
within sources of 
evidence

16 If done, present data on critical appraisal of included 
sources of evidence (see item 12). NA

Results of 
individual sources 
of evidence

17
For each included source of evidence, present the 
relevant data that were charted that relate to the 
review questions and objectives.

12,13 , and 
14

Synthesis of 
results 18 Summarize and/or present the charting results as they 

relate to the review questions and objectives.
10,11, 16, 
and 17

DISCUSSION

Summary of 
evidence 19

Summarize the main results (including an overview of 
concepts, themes, and types of evidence available), 
link to the review questions and objectives, and 
consider the relevance to key groups.

17-20

Limitations 20 Discuss the limitations of the scoping review process. 17

Conclusions 21
Provide a general interpretation of the results with 
respect to the review questions and objectives, as well 
as potential implications and/or next steps.

20-21

FUNDING

Funding 22

Describe sources of funding for the included sources 
of evidence, as well as sources of funding for the 
scoping review. Describe the role of the funders of the 
scoping review.

21

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews.
* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media 
platforms, and Web sites.
† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., 
quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping 
review as opposed to only studies. This is not to be confused with information sources (see first footnote).
‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the 
process of data extraction in a scoping review as data charting.
§ The process of systematically examining research evidence to assess its validity, results, and relevance before 
using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable 
to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used 
in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews 
(PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.
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1 ABSTRACT

2 Objectives: The purpose of this scoping review is to: (i) identify existing supervised machine learning 

3 (ML) approaches on the prediction of cancer in asymptomatic adults; (ii) to compare the performance 

4 of ML models with each other, and (iii) to identify potential gaps in research.  

5 Design: Scoping review using the population, concept, and context approach.

6 Search strategy: PubMed search engine was used from inception through to November 10, 2020 to 

7 identify literature meeting following inclusion criteria: (i) a general adult (≥18 years) population, either 

8 sex, asymptomatic (population); (ii) any study using ML techniques to derive predictive models for 

9 future cancer risk using clinical and/or demographic and/or basic laboratory data (concept); and (iii) 

10 original research articles conducted in all settings in any region of the world (context). 

11 Results: The search returned 627 unique articles, of which 580 articles were excluded because they 

12 did not meet the inclusion criteria, were duplicates, or were related to benign neoplasm. Full-text 

13 reviews were conducted for 47 articles and a final set of 10 articles were included in this scoping 

14 review. These 10 very heterogeneous studies used ML to predict future cancer risk in asymptomatic 

15 individuals. All studies reported area under the receiver operating characteristics curve (AUC) values 

16 as metrics of model performance, but no study reported measures of model calibration.

17 Conclusions: Research gaps that must be addressed in order to deliver validated ML-based models 

18 to assist clinical decision-making include: (i) establishing model generalisability through validation in 

19 independent cohorts, including those from low- and middle-income countries; (ii) establishing models 

20 for all cancer types; (iii) thorough comparisons of ML models with best available clinical tools to 

21 ensure transparency of their potential clinical utility; (iv) reporting of model calibration performance; 

22 and (v) comparisons of different methods on the same cohort to reveal important information about 

23 model generalisability and performance. 

24

25

26 ARTICLE SUMMARY

27 Strengths and limitations of this study
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28  This study used a recognised scoping review approach (population, concept, and context) to 

29 explore the machine learning techniques used to derive predictive models for future cancer 

30 risk.

31  Identified studies were not subjected to comprehensive qualitative assessments.

32  Only ten studies were identified, making it difficult to draw firm conclusions about their relative 

33 performance.

34  AUC values alone do not allow for meaningful comparisons of models as they have been 

35 trained and evaluated on different datasets under different circumstances and conditions.

36  This scoping review is limited to papers published in English until 2020 and only the PubMed 

37 search engine was used.

38

39

40 INTRODUCTION

41 Cancer remains a leading cause of morbidity and mortality, with an estimated 1.8 million new cases 

42 and 0.6 million deaths in the US in 2019 and approximately 367,000 new cases and 165,000 cancer 

43 deaths in the UK each year between 2015 and 2017.1 2 Annual death rates only modestly decreased 

44 (1.4% and 1.8% in women and men, respectively) between 2012 and 2016, despite significant 

45 research.1 Cancer cases also continue to increase, not least due to increased life expectancy, which 

46 increases the risk of developing cancer.3   

47 Early cancer diagnosis is associated with significantly higher survival rate and lower mortality and 

48 associated costs. Early-stage cancers require less complex treatment regimens and reduced hospital 

49 utilization, resulting in reduced healthcare costs, whereas late-stage cancers require complex 

50 multimodal management, several rounds of extremely expensive drugs over significant periods of 

51 time, and the treatment of recurrences, equating to a staggering economic burden. Therefore, the 

52 importance of early diagnosis cannot be overestimated.4-6 Treating cancer early has significant cost-

53 saving benefits. In the US, during the first 24 months after diagnosis, there is an increase in cancer 

54 treatment costs with stage: US$72,000 for stage 0, US$97,000 for stage I/II, US$159,000 for stage III, 

55 and $182,000 for stage IV.7 An estimate of the cost savings from early cancer diagnosis is 26 billion 

56 US dollars per annum in the US alone.8 Similarly, in the UK, early diagnosis of colorectal, ovarian, 
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57 and lung cancer in England alone could provide savings of over £44 million and benefit nearly 11,000 

58 patients.9 

59 Survival rates significantly improve if cancer is diagnosed at stage I or II compared with later stages 

60 (stage III and IV),10 11 as once the cancer has metastasised, it becomes difficult to treat with 

61 radiotherapy or surgery, leading to treatment failure and death. For example, five-year survival rates 

62 for women diagnosed with localised breast or ovarian cancer are 99% and 92% compared to 27% 

63 and 29% for metastatic disease, respectively.1 A report by Cancer Research UK indicated that, in the 

64 UK, the ten-year survival proportions of patients with eight cancers (combined) were around 80% for 

65 stage I and stage II detection (breast, bladder, ovarian, colorectal, uterine, testicular, and cervical 

66 cancer and malignant melanoma) but only 26% for cancers detected at later stages, notably lung 

67 cancer (stage III and IV).12

68 Current approaches to diagnose incident cancer

69 One approach to the early detection of cancer is population-wide screening, which aims to find 

70 asymptomatic individuals so that they can be promptly referred for treatment. Examples include 

71 mammography for breast cancer, cervical screening for cervical cancer, and faecal occult blood 

72 testing or sigmoidoscopy for colorectal cancer.13 There are three examples of national screening 

73 programs in UK (bowel, breast, and cervical cancer screening programs14) and two in the US: the 

74 Colorectal Cancer Control Program (CRCCP) and the National Breast and Cervical Cancer Early 

75 Detection Program (NBCCEDP).15 However, significant proportions of individuals eligible for these 

76 programs do not participate (for example through fear or not prioritizing time to attend for screening),16 

77 and comprehensive screening programs are costly to implement, especially in resource-poor settings 

78 or low- and middle-income countries. Other approaches include public health campaigns to 

79 encourage individuals experiencing particular symptoms such as weight loss, anorexia, and fatigue to 

80 visit their family doctors.17 However, patient help-seeking around cancer is complex, multi-staged, and 

81 often leads to long delays of weeks or even months.18 Patients find it hard to interpret and recognise 

82 symptoms, with fears of embarrassment and having a potentially fatal or painful condition contributing 

83 to long and avoidable delays in help-seeking from health professionals.18 19 Patients often do not seek 

84 help from health professionals for early cancer symptoms, notably from general family physicians, for 
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85 many reasons including a complex mix of fear, worry, and of ‘wasting’ health professionals’ time19 or 

86 due to the high costs of medical care, a lack of health insurance, or time constraints.20 

87 Detecting future risk of cancer by modelling data

88 Screening approaches represent a patient identification (or “phenotyping” problem) that aims to detect 

89 whether the individual has cancer at a particular point in time. However, the ultimate goal of cancer 

90 prediction is to determine whether an individual will develop cancer at some point in the future. A 

91 simple approach is to stratify populations according to the presence and absence of risk factors, 

92 which have been extensively characterised for most cancer types through epidemiological studies 

93 over many decades. For example, age, gender, ethnicity, family history, and lifestyle factors are well-

94 established risk factors for many types of cancer.21 The cancer prediction problem can either be 

95 regarded as a regression problem, where the input variables are clinical-demographic variables and 

96 the output variable is the probability of developing cancer at some point in the future, or as a binary 

97 classification problem to determine whether or not a patient will develop cancer at a specific point in 

98 time.

99 Big data and machine learning for medical prediction models

100 Advances in digital medicine and computational science have altered the landscape of data available 

101 for cancer risk prediction models. For example, in the data-driven healthcare era, there is an 

102 increasing amount of “big” medical data, as most individuals have had interactions with the healthcare 

103 system where data is collected in the form of electronic health records (EHRs), which are systematic 

104 collections of longitudinal patient health data collected in real time.22 23 Such large datasets provide 

105 powerful new opportunities to develop and refine predictive models and to explore potentially 

106 unknown predictor variables.22 Leveraging often massive amounts of data generated from large 

107 populations, much of which may be unstructured, and building optimal models requires the 

108 exploitation of advanced computational tools and supporting infrastructure. Machine learning (ML) is a 

109 branch of artificial intelligence (AI) and an extension of traditional statistical techniques that uses 

110 computational resources to detect underlying patterns in high-dimensional data, and it is increasingly 

111 being used in different areas of medicine requiring predictions.24 For example, ML has successfully 

112 been used with EHR data to predict incident hypertension25 and incident chronic kidney disease,26 
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113 and wider popular uses of ML in medicine include the automatic interpretation of medical images such 

114 as in radiology27 and histopathology28 images.

115 A brief description of machine learning

116 A comprehensive description of ML models is beyond the scope of this scoping review. However, 

117 relevant ML techniques relate to the problem of learning from data samples (e.g., EHR data) rather 

118 than being pre-programmed with existing knowledge or rules. ML models can either be supervised 

119 (i.e., where the data are labelled and the algorithm uses these data to learn to predict the output) or 

120 unsupervised (i.e., where the data are unlabelled and the algorithm learns a structure inherent in the 

121 data).29 The cancer prediction problem is therefore a supervised problem; examples are provided as 

122 inputs (or features) such as cancer risk factors like age, history, ethnicity, or blood count parameters 

123 and outputs (or labels) such as whether or not the individual subsequently develops cancer. A variety 

124 of available algorithms learn the best way to map the features to the labels by learning from the 

125 observations.30 31 The resulting model, ideally, will then be able to generalise the information so that it 

126 can be applied with high precision to new and unseen data.30 31 

127 Some of the main supervised ML models used in medical applications include decision trees (DTs; 

128 and their adaptation, random forests (RFs)), support vector machines (SVMs), and artificial neural 

129 networks (ANNs).30 31 DTs produce an output similar to a flow chart formed from feature nodes (risk 

130 variables) that best discriminate between different labels (future cancer occurrence) to split the tree.30 

131 31 In this way, new cases can be assessed by traversing the tree based on the feature values to 

132 determine the output for that example.30 31 Decision trees are easy to interpret, since users are usually 

133 able to visualise the steps leading to a particular classification, which may be useful in a clinical 

134 setting where experts might wish to see how a particular decision was made.30 31 In RFs, several trees 

135 are built using subsets of data and features, with predictions decided based on majority voting after 

136 the example is assessed with respect to all the constructed trees.30 31 

137 In SVMs, each feature (risk factor) is mapped into a higher-dimensional space and the hyperplane 

138 that optimally separates the output (future cancer occurrence) modelled.30 31 SVMs tend to generalise 

139 well to unseen data and work well with complex (multidimensional) data but can be hard to interpret.30 

140 31
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141 ANNs are inspired by the neural connections in the human brain and are developed by creating 

142 nodes (neurons) that weight certain features and produce an output value.30 31 By layering nodes in 

143 between the input layer (features; cancer risk factors) and output layer (label; future cancer 

144 occurrence) and modifying the weights during learning through a process called back-propagation, 

145 the resulting model forms a prediction for unseen data when one of the nodes in the output layer is 

146 positive.30 31 The terms “deep neural network” and “deep learning” are applied to ANNs with large 

147 numbers of layers.30 31 While proving extremely powerful across a range of applications, ANNs can be 

148 computationally very expensive and the way in which they classify (i.e., the intermediate “hidden” 

149 layers) is opaque, making it difficult to determine exactly how they performed the classification 

150 problem.30 31

151 Rationale for performing a scoping review

152 Machine learning remains a relatively recent field, so it is unclear exactly to what extent advances 

153 have impacted specific healthcare domains. There are currently no extended systematic reviews or 

154 scoping reviews on the application of ML to cancer risk prediction in asymptomatic individuals. This 

155 prompted us to perform a scoping review of studies using supervised ML techniques to predict the 

156 future risk of developing cancer or specific cancers within a general asymptomatic adult (≥18 years) 

157 population using clinical and/or demographic and/or basic laboratory data (e.g., complete blood 

158 counts) that are likely to be readily available within the primary care setting. This approach therefore 

159 allowed to: (i) identify the types of evidence available; (ii) clarify key concepts and definitions; (iii) 

160 examine how research is currently being conducted; and (iv) to identify knowledge gaps.32

161 OBJECTIVES

162 The objective of this study was to perform a scoping review and to synthesize knowledge of the 

163 nature and effects of current ML techniques for early cancer detection in asymptomatic adults. The 

164 scoping review was guided by the following research questions: 

165 (i) Which, if any, ML methods are being developed for cancer risk prediction in asymptomatic 

166 individuals in the community? 

167 (ii) How do these models perform compare to each other?

168 (iii) Which research or knowledge gaps need to be addressed in order to advance the field?
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170 METHODS

171 Inclusion and exclusion criteria

172 We used the population, concept, and context approach33 with the following inclusion criteria: (i) 

173 general adult (≥18 years) population, either sex, asymptomatic (population); (ii) any study using ML 

174 techniques to derive predictive models for future cancer risk using clinical and/or demographic and/or 

175 basic laboratory data carried out prior to August 7, 2020 (concept); and (iii) original research articles 

176 conducted in all settings in any region of the world (context). 

177 For the purposes of this study, and recognizing that ‘machine learning’ algorithms fall along a 

178 continuum with statistical techniques,34 all modelling approaches were included were defined as 

179 machine learning in the respective papers (such as logistic regression).

180 Exclusion criteria were any ML model used to predict future events in patients with pre-existing or 

181 symptoms of cancer; ML models developed using specialised tests such as genetic profiling or 

182 imaging tests not generally available in the community; unsupervised ML models; and studies not 

183 written in English.

184 Literature search

185 To identify relevant studies, the PubMed database was searched from inception through to November 

186 10, 2020 using the search string: ("Cancer" Or "Cancers" OR "Oncology") AND ("Machine Learning" 

187 OR "ML" OR "Data Mining" OR "Decision Support System" OR "Clinical Support System" OR 

188 "Classification" OR "Regression" OR "Support vector machines" OR "Gaussian process" OR "Neural 

189 networks" OR "Logical learning" OR "Bayesian network" OR "linear model") AND ("prognosis" OR 

190 "prognostic estimate" OR "predictor" OR "prediction" OR "model" OR "diagnosis" OR "diagnostic"). 

191 This search was supplemented with manual searching of the references and citations of previously 

192 published studies. All abstracts identified by the initial search were screened for inclusion and 

193 checked for accuracy. For the included studies, data were extracted from full papers. In instances 

194 where more information was required to determine inclusion, the full text of the article was retrieved 

195 and assessed against the eligibility criteria. 

196 Study assessment
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197 The quality of the included studies was assessed using the Newcastle Ottawa Scale (NOS) for 

198 observational studies included in the review.35 The strength of the predictive ability of the included 

199 models was assessed using AUC (area under the receiver operating characteristics curve) data, a 

200 valid measure for evaluating classification algorithms and one that has been used to compare 

201 different algorithms in other meta-analyses.36 37

202 Patient and public involvement 

203 This study was not explicitly informed by patient priorities, experiences, and preferences, although the 

204 application of predictive models to assess cancer risk would have a direct bearing on identifying those 

205 most at risk and implementing investigations in a timely manner. No patients were involved in the 

206 design or conduct of the study and since this was a scoping review of the literature, there were no 

207 study participants.
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208 RESULTS 

209 Main Findings

210 Identified risk models

211 Using the search strategy, 627 initial studies were identified where 10 studies met the inclusion 

212 criteria (Table 1; Figure 1).31 38-47 The most common reasons for exclusion of studies were: (i) models 

213 were derived to predict outcomes or responses to therapy in patients with pre-existing cancer; and/or 

214 (ii) the studies used features other than clinical and/or demographic and/or basic laboratory data, 

215 such as genetic biomarkers. All studies were retrospective cohort or case-control studies conducted 

216 between 2011 and 2020, with 8 out of 10 studies completed in the last two years. Eight studies were 

217 conducted in the USA and two in Taiwan. One model was built for breast cancer, three for colorectal 

218 cancer, one for lung cancer, one for melanoma, two for non-melanoma skin cancer, one for 

219 pancreatic cancer, and one a general cancer prediction model. Two studies performed external 

220 validations of a previously developed colorectal cancer prediction model (Table 1).39 43 In terms of 

221 quality assessment, four studies were graded as “good” quality by the NOS,39 43 44 46 while six studies 

222 were graded as “poor”, in all cases due to comparability of cohorts on the basis of the design or 

223 analysis adequately controlling for confounders.31 38 40 42 45 47

224 Development of the risk models 

225 The models developed in the studies employed a wide range of ML techniques. Two studies 

226 compared different modelling approaches on the same dataset,41 44 while the other eight developed a 

227 model using a single approach. The following ML approaches were used: ANNs (8 out of 10 studies), 

228 logistic regression (2/10 studies), Gaussian naïve Bayes (1 out of 10 studies), Bayesian network 

229 inference (1/10 studies), DTs (1/10 studies) and RFs (2/10 studies), linear discriminant analysis (1/10 

230 studies), and SVMs (1/10 studies) (Table 1). Data for training and testing were from medical 

231 insurance databases (4/10 studies), EHR data repositories (3/10 studies), surveys (2/10 studies), or 

232 represented a retrospective analysis of prospectively collected data from a clinical trial (1/10 studies).

233 As a result of the diverse cancer types being modelled, study aims, and the available data, a range of 

234 different predictors, features, and/or risk factors were included the developed predictive models, 

235 which can be grouped into the following categories: (1) patient demographic data: e.g., age, gender, 

236 ethnicity, family history; (2) social and lifestyle data: e.g., cigarette smoking and intensity of exercise; 
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237 (3) comorbidities: e.g., diabetes mellitus, hypertension, congestive heart failure, and chronic 

238 obstructive pulmonary disease; (4) clinical and practice data: e.g., Anatomical Therapeutic Chemical 

239 (WHO-ATC) prescription codes and clinical encounters; and (5) laboratory tests: e.g., complete blood 

240 count (Table 1). The models that automatically extracted features from EHR records used features 

241 that were not always explicitly defined in the respective articles.
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242 Table 1. Summary of studies investigating ML approaches for early cancer detection. 

Type of 
cancer

Reference Year Country Method Sample Input Validation Performance NOS Notes

Breast Stark 44 2019 USA Logistic 
regression, 
Gaussian 
naive Bayes, 
decision tree, 
linear 
discriminant 
analysis, 
support 
vector 
machine, and 
feed-forward 
artificial 
neural 
network 

1343 breast 
cancer and 
63,396 non-
breast cancer 
cases (PLCO 
dataset)

Age, age at 
menarche, age at 
first live birth, 
number of first-
degree relatives 
who have had 
breast cancer, 
ethnicity, age at 
menopause, an 
indicator of current 
hormone usage, 
number of years 
of hormone 
usage, BMI, pack 
years of cigarettes 
smoked, years of 
birth control 
usage, number of 
live births, and an 
indicator of 
personal prior 
history of cancer 

20% 
testing 
data (269 
breast 
cancer and 
12,679 
non-breast 
cancer 
cases)

LR 0.61 (0.58-
0.65); NB 0.59 
(0.56-0.62); DT 
0.51 (0.50-0.52); 
LDA 0.61 (0.58-
0.65); SVM 0.52 
(0.48-0.55); NN 
0.61 (0.57-0.64)

9 (Good) At an 0.05 
level, the 
logistic 
regression, 
linear 
discriminant 
analysis, and 
neural network 
with the 
broader set of 
inputs were all 
significantly 
stronger than 
the BCRAT 

Colorectal 
cancer

Hornbrook 
39

2017 USA ColonFlag 
ML model

17,095 US 
community-
based insured 
adults (16,195 
controls, 900 
cases) 
(insurance 
data)

Age, gender, and 
blood count panel 
parameters 

Study was 
a validation 
of a 
previously 
derived 
model 48

AUC 0.80 (0.79-
0.82)

7 (Good)

Colorectal Wang 46 2019 Taiwan Convolutional 
neural 
network

10,185 with 
CRC, 47,967 
controls 

ICD-9-CM 
diagnostic codes, 
World Health 
Organization- 

5-fold 
cross-
validation

AUC 0.92 7 (Good)
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(insurance 
data)

Anatomical 
Therapeutic 
Chemical (WHO-
ATC) prescription 
codes

Colorectal 
cancer

Schneider 
43

2020 USA ColonFlag 
ML model

308,721 
insurance 
health plan 
members 
(insurance 
data)

Age, gender, and 
blood count panel 
parameters 

Study was 
a validation 
of a 
previously 
derived 
model 48

AUC 0.78 (95% 
CI 0.77-0.78) 

8 (Good) The algorithm’s 
accuracy 
decreased with 
the time 
interval 
between blood 
test result and 
CRC diagnosis 

General Miotto 40 2016 USA Deep neural 
network and 
random 
forests

Model training 
on 704,587, 
testing on 
76,214 (EHR 
data)

Features 
extracted from 
EHR records

Testing on 
76,214

Colorectal 
cancer AUC 
0.89, liver cancer 
0.89, prostate 
cancer 0.86

6 (Poor) Outperformed 
RawFeat and 
PCA

Lung Hart 38 2018 USA Artificial 
neural 
network

1997-2015 
National 
Health 
Interview 
Survey adult 
data; 648 
cancer and 
488,418 non-
cancer cases 
(survey data)

Gender, age, BMI, 
diabetes, smoking 
status, 
emphysema, 
asthma, ethnicity, 
Hispanic ethnicity, 
hypertension, 
heart diseases, 
vigorous exercise 
habits, and history 
of stroke 

30% of 
data; 195 
lung 
cancer 
cases and 
146,524 
never 
cancer 
cases 

AUC 0.86 
(training; 95% CI 
0.85-0.88) and 
0.86 (validation; 
95% CI 0.84-
0.89) 

6 (Poor) Random 
forests and 
SVM also 
applied which 
trained well 
(RF AUC of 
1.00 (95% CI 
1.00- 1.00) and 
SVM AUC of 
0.96 (95% CI 
0.95-0.97). 
However, not 
generalisable: 
AUC SVM 0.55 
(95% CI 0.51-
0.58); AUC RF 
0.81 (95% CI 
0.78-0.84).
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Melanoma Richter 41 2019 USA LR, RF, 
XGBoost

4,061,172 
patients, 
10,129 with 
melanoma 
(EHR data)

Features 
extracted from 
EHR records

5-fold 
cross-
validation

AUC LR 0.76; 
AUC RF 0.69; 
AUC XGBoost 
0.80

7 (Poor) Smaller 
amounts of 
data improved 
the AUCs

Non-
melanoma 
skin 
cancer

Roffman 42 2018 USA Artificial 
neural 
network

1997–2015 
NHIS adult 
survey data, 
2,056 NMSC 
and 460,574 
non-cancer 
cases (survey 
data)

Gender, age, BMI, 
diabetes, smoking 
status, 
emphysema, 
asthma, ethnicity, 
Hispanic ethnicity, 
hypertension, 
heart diseases, 
vigorous exercise 
habits, and history 
of stroke 

30% for 
validation 
(752 
NMSC 
cases and 
138,172 
never 
cancer 
cases) 

AUC values of 
0.81 (training, 
95% CI 0.80–
0.82) and 0.81 
(validation, 95% 
CI 0.79–0.82)

6 (Poor)

Non-
melanoma 
skin 
cancer

Wang 45 2019 Taiwan Convolutional 
neural 
network

1829 patients 
with 
nonmelanoma 
skin cancer 
as their first 
diagnosed 
cancer and 
7665 random 
controls 
(insurance 
data)

Age, sex, ICD-9-
CM diagnostic 
codes, World 
Health 
Organization- 
Anatomical 
Therapeutic 
Chemical (WHO-
ATC) prescription 
codes, and the 
total numbers of 
clinical encounters 

5-fold 
cross-
validation

AUC 0.89 (0.87-
0.91)

6 (Poor)

Pancreatic Zhao 47 2011 USA Bayesian 
network 
inference

98 cases and 
14,971 
controls (EHR 
data)

Demographics, 
lifestyle, 
symptoms, co-
morbidities, and 
lab test results (20 
variables)

Null 0.91 (0.87-0.95) 4 (Poor)
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243 Abbreviations: ANN artificial neural network; AUC, area under the curve; BMI, body mass index; LR, logistic regression; NB, Gaussian naive Bayes; DT, 

244 decision tree; LDA, linear discriminant analysis; ML, machine learning; NMSC, non-melanoma skin cancer; NOS, Newcastle Ottawa Scale; RF, random 

245 forest; SVM, support vector machine.

246
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247 Discrimination and calibration of the risk models

248 All studies provided AUC values as an assessment of model performance. Calibration (i.e., whether 

249 the risk estimates were accurate), was not assessed in any study. Two models with particularly high 

250 AUC values were the Bayesian network inference model developed by Zhao et al.,47 which used 20 

251 demographic, lifestyle, symptom, co-morbidity, and lab test results to predict the risk of pancreatic 

252 cancer with an AUC of 0.91, and the CRC predictive model developed by Wang et al.,46 which used a 

253 CNN learning on 1929 features (1099 ICD-9 codes and 830 ATC codes). Models with particularly low 

254 AUC values were the range of models (logistic regression, Gaussian naive Bayes, DT, LDA, SVM, 

255 and feed-forward ANN) developed by Stark et al.44; however, as discussed below, although these 

256 models only had AUCs between 0.51 and 0.61, two of the models compared favourably with the 

257 BRCAT clinical risk tool.

258 Comparison of the risk models with existing predictive algorithms

259 Hundreds of risk prediction models have been published in the literature for every cancer type, and 

260 some of these are already used in clinical practice. It is therefore important to understand whether the 

261 performance of the newer ML-based cancer risk models is comparable to that of existing predictive 

262 algorithms. We therefore specifically examined whether the studies compared their ML algorithms 

263 with existing algorithms or, if not, how model performance as described by AUCs compared with other 

264 published data, despite the limitations of this approach (see below).

265 Stark et al.44 compared their ML models with an existing clinical prediction tool, the Breast Cancer 

266 Risk Prediction Tool (BCRAT; https://bcrisktool.cancer.gov/). The BCRAT tools is an implementation 

267 of the Gail model,49 which is a statistical model that estimates five-year breast cancer risk in women 

268 without a personal history of breast cancer and without known mutations in high-risk breast cancer 

269 genes such as BRCA1 and BRCA2. In the Gail model, patients self-report their current age, age at 

270 menarche, age at first live birth, number of first-degree relatives who have had breast cancer, 

271 ethnicity, and number of previous breast biopsies, variables which are weighted within the model by 

272 logistic regression.49 In addition, BCRAT uses data on a personal history of atypical hyperplasia, 

273 where available. Although the AUC values for the models (logistic regression (LR), naïve Bayes, DTs, 

274 linear discriminant analysis (LDA), SVM, and an ANN) tested using a broader set of features than 

275 BCRAT were only between 0.51 (DT) and 0.61 (LR, LDA, and ANN), four of the six models (LR, NB, 

276 LDA, and ANN) outperformed BCRAT (AUC 0.56). Other metrics were also used to assess model 
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277 performance (sensitivity, specificity, and precision), which were comparable between the ML 

278 algorithms and the BCRAT, and both BCRAT and the ML models had low precision (~2%). 

279 Furthermore, when comparing the different ML models, LR and LDA produced higher AUCs than the 

280 ANN model, despite the potential for ANNs to better model noisy data and complex non-linear 

281 functions.50 The authors suggested that this might have been due to the limited amount of available 

282 training data or the selection of hyperparameters.44 It was observed that (i) the derived ML models 

283 using an extended and set of features available in primary care can deliver improvements on current 

284 clinical algorithms; (ii) that adding additional features has a greater impact on improving model 

285 performance (i.e., higher AUC) rather than simply using more complex models; and (iii) that AUC 

286 values must be interpreted in the context of existing methods, such as existing, clinically-used risk 

287 prediction models such as the BCRAT or Gail model, rather than in isolation. 

288 In a systematic review of 52 colorectal cancer models predicting future risk of disease in 

289 asymptomatic individuals,51 37 models reported AUC values, which ranged from 0.65 and 0.75. These 

290 included five models that used routine data exclusively and did not include questionnaires or genetic 

291 biomarkers. In comparison, the AUC values for ColonFlag,39 43 an ML model that uses age, gender, 

292 and complete blood count (CBC) features to predict the future occurrence of colorectal cancer up to 

293 12 months prior to diagnosis, were 0.78-0.82.  

294 In another systematic review involving 25 risk prediction models for lung cancer that used only 

295 epidemiological parameters as input (i.e., no laboratory parameters),52 AUCs ranged between 0.57 

296 and 0.86, which compares to an AUC of 0.86 (in both training and validation cohorts) for the ANN 

297 model developed by Hart et al.38 In their systematic review of 25 melanoma risk prediction models,53 

298 Usher-Smith et al. showed in a summary ROC curve that most models had similar discrimination of 

299 0.76, which compares to the highest AUC of 0.80 achieved using XGBoost ML by Richter et al.41

300

301 DISCUSSION

302 Strengths and limitations of existing ML approaches

303 The reviewed studies reviewed highlight that several different techniques have successfully been 

304 used to develop models and that ML can be applied to large-scale insurance and EHR data 

305 containing hundreds or thousands of features in order to build predictive models. However, the survey 
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306 also highlights a number of gaps in the application of ML to predicting the risk of future cancer in 

307 asymptomatic individuals. These can be divided into those relating to: (i) study populations; (ii) model 

308 types and comparisons; and (iii) model validation, comparisons, and calibration.

309 Study populations 

310 To date, ML techniques have only been applied to or validated in datasets from developed countries, 

311 representing a fraction of the overall global population and their dietary and lifestyle factors. Given 

312 that the aetiology of cancer, risk factors, and genetics differ in different populations,54 models 

313 developed in populations in high-income countries may not be generalisable to those from low- and 

314 middle-income countries (LMICs). The development and validation of models in LMICs could have 

315 two advantages: first, it would determine the generalizability (and therefore utility) of that model in 

316 other populations, better serving the needs of individuals in LMICs; second, disparities between 

317 models developed in different geographical settings could provide valuable new information about 

318 factors contributing to cancer risk. Generalizing risk prediction models is likely to be challenging, since 

319 resource-poor countries often do not have the necessary infrastructure nor the epidemiological 

320 research capabilities of institutions in high-income countries.

321 Furthermore, current ML models predict the  risk of a limited number of cancer types. Although breast, 

322 colorectal, and lung cancer are the three most common cancers and therefore account for a large 

323 proportion of overall cancer burden, it is still important to detect all cancers early. This is especially 

324 true for those cancers that are usually silent (asymptomatic) for long periods of time, present late with 

325 advanced-stage disease, and for which there are currently no screening programs in place, such as 

326 ovarian and pancreatic cancer. Predicting future risk of these cancers could allow closer monitoring of 

327 at-risk individuals. 

328 Model types and comparisons

329 A wide variety of ML methodologies have been applied and, despite being applied to the same 

330 research problem, this scoping review has not identified a single ’best’ method. Two issues arose in 

331 studies that compared different ML approaches on the same datasets. First, although different models 

332 had similar AUCs during training, not all models generalised well to validation datasets; robust model 

333 validation is therefore important to ensure model validity (see below). Second, although in general it is 

334 assumed that larger amounts of training data improve model performance,55 Richter et al.41 found that 
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335 equivalent or even better model performance was achievable using reduced datasets (hundreds of 

336 thousands vs. millions of datapoints). This might be due to high levels of homogeneity in the “no 

337 cancer” class, resulting in fewer instances being required to produce a generalisable model, or as a 

338 result of overfitting. Although the requirement for less data for the cancer prediction problem could 

339 make ML techniques more accessible to researchers without extensive computing infrastructure and 

340 allow smaller datasets to be leveraged for model construction, ML requires over ten-times the amount 

341 of data per variable for stable discrimination compared with traditional approaches such as logistic 

342 regression.55 Instead of regarding data requirements as “too high” or “too low”, it might be better to 

343 consider how much data is required for a particular predictive context. Riley et al.56 recently provided 

344 an implementation of how to calculate the sample size required to develop specific clinical prediction 

345 models, which will help researchers prospectively plan their in silico experiments and avoid using 

346 datasets that are too small for the total number of participants or outcome events.

347

348 Model validation, comparisons, and performance evaluation

349 With the exception of the two studies evaluating a previously defined algorithm for colorectal cancer, 

350 no other study used external validation datasets to assess model generalizability, instead opting for 

351 either a single holdout validation sample or 5-fold cross-validation. While useful for assessing 

352 overfitting,57 these approaches do not account for population bias in the training dataset nor 

353 differences in other target populations. Studies seeking to develop ML models should seek to validate 

354 models in independent populations, recognizing that an advantage of an ‘ungeneralisable’ model 

355 might be insights into cancer risk in other populations. Furthermore, since physicians may code 

356 diseases in EHRs differently over time (for instance, due to altered management or incentives), even 

357 initially generalisable models may need re-validation over time.23 58

358 Discrimination (i.e., the ability to distinguish a patient with a high(er) risk of developing cancer from 

359 one with a low(er) risk of developing cancer) was measured in every study using the AUC, as is 

360 common in the field. However, discrimination is not the only metric of model performance.59 Another 

361 important measure of model performance, particularly for the clinical setting, is calibration; that is, 

362 establishing that the risk estimates are accurate.60 In this setting, this means that the model should 

363 not unduly over- or underestimate the risk that a patient will develop cancer; to do so would mean that 
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364 a patient might be subjected to investigations and the associated worry of their likelihood of 

365 developing cancer (overestimated risk), or, conversely, under-investigated and falsely reassured in 

366 the case of underestimated risk. Therefore, a highly discriminatory but poorly calibrated model is likely 

367 to have poor clinical utility. 

368 None of the studies reviewed here performed calibration analysis, which is not uncommon in this field. 

369 Indeed, in their systematic review of 71 studies using ML for clinical prediction for a wide variety of 

370 clinical purposes, Christodoulou et al. reported that 79% of studies failed to address the calibration 

371 problem.37 Therefore, caution must be applied when interpreting and comparing the performance of 

372 current ML models based on AUC alone, since is an incomplete measure of performance that must 

373 be considered together with methodological aspects such overfitting, measurement error, and 

374 population heterogeneity that might influence the estimation of predictive performance.37 60 

375

376 Implications for clinical practice

377 The ML models described in this scoping review generally show high AUC values. So, are any of 

378 these models ready for clinical use? The ColonFlag model39 43 is an example has recently been 

379 implemented at Barts Health NHS Trust61 to identify patients at particularly high risk of CRC, 

380 particularly as clinicians struggle to prioritise patients in the backlog created by the COVID-19 

381 pandemic. The ColonFlag model is the only model identified in this scoping review that has 

382 undergone extensive external validation in independent datasets. 

383 New ML models need to be contextualised with currently available best clinical practice in order to 

384 fully evaluate their potential clinical value. Comparing the relatively poor AUC values of the Stark et 

385 al.44 models with BCRAT revealed that they in fact outperformed it in many cases. In their comparison 

386 of their ANN with screening methods for lung cancer such as low-dose CT, chest X-ray, and sputum 

387 cytology, Hart et al.38 noted that (according to sensitivity and specificity) it outperformed most of the 

388 other available non-invasive methods. Thorough side-by-side comparisons of newly developed 

389 models with other prediction tools would be helpful in establishing future clinical utility.

390 Finally, this scoping review highlights that model performance should not be evaluated solely on the 

391 basis of AUC values but also in terms of other importance performance metrics such as calibration, 
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392 without which a model might inaccurately assess risk and therefore prompt inappropriate 

393 management.

394

395 Unanswered questions and future research 

396 The few models that are currently available are methodologically diverse, rarely validated in 

397 independent datasets to ensure generalisability, and do not cover all cancer types. Even if ML 

398 techniques offer only small improvements in cancer detection rates, these improvements are likely to 

399 be of high clinical significance given the large size of the global population with or at high risk of 

400 cancer and the high mortality and costs associated with late cancer diagnoses.

401 However, the scoping review identifies a number of research gaps that will need to be addressed in 

402 order to deliver validated ML-based models to assist clinical decision-making. Firstly, future studies 

403 must take steps to establish model generalisability through validation in independent cohorts, 

404 including those from LMICs. Although the latter may be challenging, it could be argued that even 

405 negative generalisability studies might provide an opportunity to learn more about cancer risk factors 

406 in different populations. Secondly, the scoping review fails to establish which ML approach best suits 

407 the cancer prediction problem but does show that, where possible, side-by-side comparisons of 

408 different methods can reveal important information about generalisability as well as performance and 

409 that these comparisons are desirable whenever possible. Thirdly, many important cancer types, 

410 particularly ‘silent killers’ like ovarian cancer, have currently not been the subject of ML modelling 

411 approaches; ML could provide an important, low-cost, non-invasive method to identify individuals at 

412 high risk of clinically silent cancers that require closer monitoring. Fourthly, progress has been made 

413 in defining approaches to tailor sample sizes to the specific setting of interest to minimise overfitting 

414 and targeting precise estimates of key parameters, and these principles must be applied when testing 

415 and validating models to ensure robust model performance. Finally, ML models need to be compared 

416 to best available clinical tools so that their potential clinical utility is transparent. 

417

418 Limitations of this study
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419 Our study has a number of limitations. First, despite recognising the need for a scoping review due to 

420 the paucity of literature on the topic, we were only able to identify ten papers meeting the inclusion 

421 criteria. It is therefore difficult to draw definitive conclusions about the performance of these models. 

422 Furthermore, although AUC values provide an indication of how discriminative the models are, they 

423 do not allow for meaningful comparisons of models trained and evaluated on different datasets. Six 

424 out of ten studies were defined as poor quality due to a lack of controlling for confounders in the study 

425 design, which may have introduced significant bias. Finally, we only search the PubMed database 

426 and articles published in English, so some papers in other languages or in databases for non-medical 

427 disciplines may have been missed.

428

429 CONCLUSIONS

430 This scoping review highlights that applying ML to cancer prediction is a promising field provided that 

431 the identified issues such as generalisability, validation and clinical applicability, model calibration, 

432 and dataset selection are addressed in future studies. We hope that the identified research gaps 

433 focus future research efforts to deliver validated ML-based models to assist and improve clinical 

434 decision-making

435
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613 FIGURE LEGEND

614 Figure 1. PRISMA flowchart depicting the search strategy.
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Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for 
Scoping Reviews (PRISMA-ScR) Checklist 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE # 

TITLE 
Title 1 Identify the report as a scoping review. 1 

ABSTRACT 

Structured 
summary 2 

Provide a structured summary that includes (as 
applicable): background, objectives, eligibility criteria, 
sources of evidence, charting methods, results, and 
conclusions that relate to the review questions and 
objectives. 

2 and 3 

INTRODUCTION 

Rationale 3 
Describe the rationale for the review in the context of 
what is already known. Explain why the review 
questions/objectives lend themselves to a scoping 
review approach. 

7 

Objectives 4 

Provide an explicit statement of the questions and 
objectives being addressed with reference to their key 
elements (e.g., population or participants, concepts, 
and context) or other relevant key elements used to 
conceptualize the review questions and/or objectives. 

7 

METHODS 

Protocol and 
registration 5 

Indicate whether a review protocol exists; state if and 
where it can be accessed (e.g., a Web address); and if 
available, provide registration information, including 
the registration number. 

NA 

Eligibility criteria 6 

Specify characteristics of the sources of evidence 
used as eligibility criteria (e.g., years considered, 
language, and publication status), and provide a 
rationale. 

9 

Information 
sources* 7 

Describe all information sources in the search (e.g., 
databases with dates of coverage and contact with 
authors to identify additional sources), as well as the 
date the most recent search was executed. 

9 

Search 8 
Present the full electronic search strategy for at least 1 
database, including any limits used, such that it could 
be repeated. 

9 

Selection of 
sources of 
evidence† 

9 
State the process for selecting sources of evidence 
(i.e., screening and eligibility) included in the scoping 
review. 

9  

Data charting 
process‡ 10 

Describe the methods of charting data from the 
included sources of evidence (e.g., calibrated forms or 
forms that have been tested by the team before their 
use, and whether data charting was done 
independently or in duplicate) and any processes for 
obtaining and confirming data from investigators. 

13, 14, 15, 
and 16 

Data items 11 List and define all variables for which data were 
sought and any assumptions and simplifications made. 

13, 14, 15, 
and 16 

Critical appraisal of 
individual sources 
of evidence§ 

12 

If done, provide a rationale for conducting a critical 
appraisal of included sources of evidence; describe 
the methods used and how this information was used 
in any data synthesis (if appropriate). 

NA 
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE # 

Synthesis of 
results 13 Describe the methods of handling and summarizing 

the data that were charted. 9 and 10 

RESULTS 
Selection of 
sources of 
evidence 

14 

Give numbers of sources of evidence screened, 
assessed for eligibility, and included in the review, with 
reasons for exclusions at each stage, ideally using a 
flow diagram. 

11 

Characteristics of 
sources of 
evidence 

15 For each source of evidence, present characteristics 
for which data were charted and provide the citations. 

13, 14, 15, 
and 16 

Critical appraisal 
within sources of 
evidence 

16 If done, present data on critical appraisal of included 
sources of evidence (see item 12). NA 

Results of 
individual sources 
of evidence 

17 
For each included source of evidence, present the 
relevant data that were charted that relate to the 
review questions and objectives. 

13, 14, 15, 
and 16 

Synthesis of 
results 18 Summarize and/or present the charting results as they 

relate to the review questions and objectives. 
11,12, 17, 
and 18 

DISCUSSION 

Summary of 
evidence 19 

Summarize the main results (including an overview of 
concepts, themes, and types of evidence available), 
link to the review questions and objectives, and 
consider the relevance to key groups. 

18, 19, 20, 
21, and 22  

Limitations 20 Discuss the limitations of the scoping review process. 22 and 23 

Conclusions 21 
Provide a general interpretation of the results with 
respect to the review questions and objectives, as well 
as potential implications and/or next steps. 

23 

FUNDING 

Funding 22 

Describe sources of funding for the included sources 
of evidence, as well as sources of funding for the 
scoping review. Describe the role of the funders of the 
scoping review. 

23 and 24 

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews. 
* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media 
platforms, and Web sites. 
† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., 
quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping 
review as opposed to only studies. This is not to be confused with information sources (see first footnote). 
‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the 
process of data extraction in a scoping review as data charting. 
§ The process of systematically examining research evidence to assess its validity, results, and relevance before 
using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable 
to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used 
in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document). 
 
 

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews 
(PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850. 
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