

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Evaluating left atrial overload-related factors for predicting prognosis in heart failure with preserved ejection fraction

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044605
Article Type:	Original research
Date Submitted by the Author:	10-Sep-2020
Complete List of Authors:	Hoshida, Shiro; Yao Shiritsu Byoin Tachibana, Koichi; Yao Shiritsu Byoin Shinoda, Yukinori; Yao Shiritsu Byoin Minamisaka, Tomoko; Yao Shiritsu Byoin Yamada, Takahisa; Osaka General Medical Center Higuchi, Yoshiharu; Osaka Police Hospital Nakagawa, Yusuke; Kawanishi City Hospital Abe, Haruhiko; National Hospital Organization Osaka National Hospital Fuji, Hisakazu; Kobe Ekisaikai Hospital Yasumura, Yoshio; Amagasaki Chuo Hospital Hikoso, Shungo; Osaka University Hospital, Department of Cardiovascular Medicine Nakatani, Daisaku; Osaka University Hospital, Department of Cardiovascular Medicine Sakata, Yasushi; Osaka University, Department of Cardiovascular Medicine
Keywords:	Adult cardiology < CARDIOLOGY, Heart failure < CARDIOLOGY, CLINICAL PHYSIOLOGY, GERIATRIC MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Evaluating left atrial overload-related factors for predicting prognosis in heart failure with preserved ejection fraction

Short title: LA pressure overload in HFpEF prognosis

Shiro Hoshida, MD¹; Koichi Tachibana, MD¹; Yukinori Shinoda, MD¹; Tomoko Minamisaka, MD¹; Takahisa Yamada, MD²; Yoshiharu Higuchi, MD³; Yusuke Nakagawa, MD⁴; Haruhiko Abe, MD⁵; Hisakazu Fuji, MD⁶; Yoshio Yasumura, MD⁷; Shungo Hikoso, MD⁸; Daisaku Nakatani, MD⁸; Yasushi Sakata, MD⁸; on behalf of the Osaka Cardiovascular Conference Investigators

¹ Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan

² Division of Cardiology, Osaka General Medical Center, Osaka, Japan

³ Department of Cardiovascular Medicine, Osaka Police Hospital, Osaka, Japan

⁴ Division of Cardiology, Kawanishi City Hospital, Kawanishi, Japan

⁵ Department of Cardiovascular Medicine, National Hospital Organization Osaka National Hospital, Osaka, Japan

⁶ Cardiovascular Division, Kobe Ekisaikai Hospital, Kobe, Japan

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
6 7 8 9 10 11 12 13 14 15 16 17 18 19
6 7 8 9 10 11 12 13 14 15 16 17 18 19
7 8 9 10 11 12 13 14 15 16 17 18 19
9 10 11 12 13 14 15 16 17 18 19
9 10 11 12 13 14 15 16 17 18 19
9 10 11 12 13 14 15 16 17 18 19
10 11 12 13 14 15 16 17 18 19
11 12 13 14 15 16 17 18 19
12 13 14 15 16 17 18 19
12 13 14 15 16 17 18 19
13 14 15 16 17 18 19
14 15 16 17 18 19
14 15 16 17 18 19
15 16 17 18 19
16 17 18 19
17 18 19
17 18 19
18 19
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
36
37
37 38
37 38 39
37 38 39 40
37 38 39
37 38 39 40 41
37 38 39 40 41 42
37 38 39 40 41
37 38 39 40 41 42
37 38 39 40 41 42 43 44
 37 38 39 40 41 42 43 44 45
 37 38 39 40 41 42 43 44 45 46
 37 38 39 40 41 42 43 44 45
 37 38 39 40 41 42 43 44 45 46 47
 37 38 39 40 41 42 43 44 45 46 47 48
 37 38 39 40 41 42 43 44 45 46 47 48 49
 37 38 39 40 41 42 43 44 45 46 47 48 49
 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

60

⁷ Department of Cardiovascular Medicine, Amagasaki Chuo Hospital, Amagasaki, Japan ⁸ Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan

*Corresponding author: Shiro Hoshida, MD, PhD

Department of Cardiovascular Medicine, Yao Municipal Hospital

1-3-1 Ryuge-cho, Yao, Osaka 581-0069, Japan

Tel.: +81-72-922-0881, Fax: +81-72-924-4820

E-mail: shiro.hoshida@hosp-yao.osaka.jp

2659 Total word count of the manuscript:

Abstract

Objectives: The severity of diastolic dysfunction is assessed using a combination of several indices of the left atrial (LA) volume overload and LA pressure overload. We aimed to clarify which overload is more important for predicting the prognosis of patients with heart failure with preserved ejection fraction (HFpEF).

Setting: A prospective, multicenter observational registry of collaborating hospitals in the Osaka region of Japan.

Participants: We enrolled hospitalized patients with HFpEF showing a sinus rhythm (men/women, 79/113). Blood testing and transthoracic echocardiography were performed before discharge. The ratio of diastolic elastance (Ed) to arterial elastance (Ea) was used as a relative index of LA pressure overload.

Primary outcome measure: All-cause mortality and admission for heart failure were evaluated at >1 year after discharge.

Results: In a multivariate Cox regression analysis, Ed/Ea was significantly associated with all-cause mortality or admission for heart failure (p=0.019), or all-cause mortality (p=0.010), independent of age, sex, LA volume index, and the serum N-terminal probrain natriuretic peptide (NT-proBNP) level. In patients with a higher NT-proBNP level, the effect of higher Ed/Ea on prognosis was prominent (p<0.001).

Conclusions: LA pressure overload was an essential marker of prognosis in elderly patients with HFpEF showing a sinus rhythm. As an index of LA pressure overload, Ed/Ea may be suitable for predicting all-cause mortality and/or admission for HF.

Trial registration: PURSUIT HFpEF (Prospective Multicenter Observational Study of Patients with Heart Failure with Preserved Ejection Fraction) registry.

UMIN-CTR ID: UMIN000021831

Key words: diastolic function, left atrial overload, NT-proBNP

 $\mathbf{5}$

Introduction

Patients with heart failure with preserved ejection fraction (HFpEF) have an increased left atrial volume (LAV) and E/e', as shown by noninvasive echocardiographic findings [1-3]. E/e' is positively correlated with left atrial (LA) pressure or pulmonary capillary wedge pressure [4-7]. We previously reported that the LAV index (LAVI), a relative index of LAV overload, and the ratio of diastolic elastance (Ed) to arterial elastance (Ea) $[Ed/Ea = (E/e') / (0.9 \times systolic blood pressure)]$, a relative index of both LA pressure overload and left ventricular diastolic dysfunction (LVDD), are high in patients with preserved ejection fraction with and without heart failure (HF) [3, 8, 9]. In the recommendations for left ventricular (LV) diastolic evaluation using echocardiography, the severity of diastolic dysfunction (DD) is assessed using a combination of several indices, such as E/A, deceleration time, E/e', tricuspid regurgitation velocity, and LAVI [7, 10]. Evaluation of the disease severity based on these recommendations is useful for estimating the prognosis of patients with HFpEF [11]. However, these noninvasive indices are related to either LA pressure overload or LAV overload, and which overload is more important for predicting the prognosis of these patients remains unclear. In this study, we aimed to identify a clinically significant echocardiographic index of the LA pressure or volume overload for the prognosis of patients with HFpEF.

Methods

Study subjects

Of 353 patients with prognostic data who were recruited from the PURSUIT HFpEF (Prospective Multicenter Observational Study of Patients with Heart Failure with Preserved Ejection Fraction) registry [3], 129 were excluded because they showed atrial fibrillation before discharge and 32 were excluded because of poor echocardiographic data. Therefore, we enrolled 192 patients showing a sinus rhythm (LV ejection fraction \geq 50%; men/women, 79/113; mean age, 80 years) at discharge during the index hospitalization for HF. The PURSUIT HFpEF registry is a prospective, multicenter observational registry in which collaborating hospitals in the Osaka region of Japan record clinical, echocardiographic, and outcome data of patients with HFpEF (UMIN-CTR ID: UMIN000021831). This registry is managed in accordance with the Declaration of Helsinki. The study protocol was approved by the ethics committee of each participating hospital, and all participants provided written informed consent.

Echocardiography and laboratory testing

BMJ Open

 $\overline{7}$

Transthoracic echocardiography was performed when patients were in a stable condition before discharge. Echocardiographic measurements were obtained according to the American Society of Echocardiography (ASE) or European Society of Echocardiography criteria during a stable sinus rhythm [10, 12]. Volumetry was standardized using the modified Simpson's method, and the index was calculated as LAV divided by the body surface area. As a marker of LA pressure overload for estimating LV diastolic function, we examined E/e' and afterload-integrated Ed/Ea $[(E/e')/(0.9 \times \text{systolic blood pressure})]$ [3, 9, 13]. As relative markers of LAV overload, we also evaluated LAVI and LA ejection fraction calculated as stroke volume (SV)/LAV [14]. The severity of LVDD was assessed according to the previous report [11]. In the first step, four parameters were used, namely, E/e', e' velocity, tricuspid regurgitation velocity, and LAVI. In the second step, E/A, E wave, E/e', tricuspid regurgitation velocity, and LAVI were used to determine DD grades 1–3 [11]. When diastolic dysfunction was not observed in the first step, patients were represented as DD grade 0. Serum N-terminal pro-brain natriuretic peptide (NT-proBNP) and albumin levels and the estimated glomerular filtration rate (eGFR) were also examined when patients were stable before discharge.

Follow-up/clinical outcome

BMJ Open

After discharge, all patients were followed up at each hospital. Survival data were obtained by dedicated coordinators and investigators through direct contact with patients, their physicians at the hospital, or in an outpatient setting, or via a telephone interview with their families or by mail. The primary endpoint of this study was the composite of all-cause mortality and hospitalization for worsening HF or all-cause mortality.

Patient and public involvement:

No patient involved.

Statistical analysis

Continuous variables are expressed as mean ± standard deviation, whereas categorical variables are presented as frequency and percentage. Differences in categorical variables between the groups were assessed using the chi-square test, and those in continuous variables were assessed using Student's t-test or Welch's t-test, as appropriate. Correlations were assessed using the Pearson or Spearman coefficient, and p-values were examined using regression analysis. Cutoff points of prognostic factors for all-cause mortality or admission for HF were evaluated using the receiver operating characteristic (ROC) curve analysis. Survival curves were estimated using the Kaplan–Meier product-

R.

limit estimator, and the groups were compared using the log-rank test and Bonferroni test. The Cox hazard ratio was evaluated in the univariate and multivariate analyses. In the multivariate analysis, age, sex, and variables that were significant in the univariate analysis were used. A p-value of < 0.05 was considered statistically significant. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).

e e.

Results

Clinical and laboratory characteristics of patients with HFpEF

During a median follow-up of 452 days, 50 patients had all-cause mortality or admission for worsening HF and 24 patients died. There were significant differences between patients with and without all-cause mortality or admission for HF in terms of age (p = 0.011), eGFR (p = 0.026), and serum NT-proBNP (p = 0.017) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension and dyslipidemia—except for diabetes mellitus—between the two groups. There were significant differences between patients with and without all-cause mortality

BMJ Open

in terms of age (p < 0.001) and serum NT-proBNP (p = 0.007) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension, dyslipidemia, and diabetes mellitus between the two groups. With respect to echocardiographic parameters, LAVI (p = 0.024), tricuspid regurgitation pressure gradient (TRPG, p < 0.001), E/e' (p = 0.001), and Ed/Ea (p = 0.019)—but not SV/LAV, E/A, LV mass index (LVMI), LV ejection fraction, or Ed—at discharge were significantly different between patients with and without all-cause mortality or admission for HF (Table 2). Although data are not shown, the deceleration time of E wave, septal e', lateral e', or tricuspid annular plane systolic excursion (TAPSE) did not differ significantly between the groups. There were significant differences in LAVI (p = 0.001), TRPG (p =0.005), E/e' (p = 0.001), Ed (p = 0.026), and Ed/Ea (p = 0.001) between patients with and without all-cause mortality (Table 2). In the correlations between the indices of LA pressure and volume overload, Ed/Ea was more modestly correlated with LAVI or SV/LAV than E/e' [correlation between E/e' and LAVI (r = 0.155, p = 0.034) or SV/LAV (r = -0.137, p=0.072); correlation between Ed/Ea and LAVI (r = 0.194, p = 0.008) or SV/LAV (r = -0.180, p = 0.017)]. E/e' (r = 0.233, p = 0.001) and Ed/Ea (r = 0.222, p = 0.017) 0.002) showed a modest positive correlation with the NT-proBNP log-transformed level, although TRPG did not correlate with the NT-proBNP log-transformed level (r = 0.147,

p = 0.060). LAVI and the NT-proBNP log transformed level were correlated more significantly (r = 0.256, p < 0.001).

Table 1. Patient characteristics

before discharge

	All	morta admiss	cause llity or sion for failure	p- value	All-c mort		p-value
	(N = 192)	- (n = 142)	+ (n = 50)	- (- vs. +)	- (n = 168)	+(n = 24)	(- vs. +)
Age, years	80.0 ± 10.0	78.9 ± 10.1	83.1 ± 9.1	0.011	79.0 ± 10.0	87.1 ± 7.2	<0.001
Male sex, n (%)	79 (41)	59 (42)	20 (40)	0.848	71 (42)	8 (33)	0.408
Body mass index	21.2 ± 4.5	21.0 ± 4.5	21.8 ± 4.3	0.300	21.3 ± 4.6	20.6 ± 3.8	0.453
Cardiothoracic ratio, %	55.4 ± 7.5	54.8 ± 7.4	57.2 ± 7.7	0.093	54.9 ± 7.3	59.1 ± 8.0	0.010
Systolic blood pressure, mmHg	122 ± 18	120 ± 17	124 ± 21	0.078	122 ± 18	120 ± 21	0.690
Diastolic blood pressure, mmHg	64 ± 12	65 ± 12	62 ± 11	0.212	64 ± 12	62 ± 10	0.404
Heart rate, bpm	69 ± 14	69 ± 14	68 ± 12	0.576	69 ± 14	70 ± 13	0.542
Chronic obstructive pulmonary disease, n (%)	11 (6)	9 (7)	2 (4)	0.796	9 (6)	2 (10)	0.906
Coronary artery disease, n (%)	41 (21)	31 (22)	10 (20)	0.785	37 (22)	4 (17)	0.739

BMJ Open

						12		
Diabetes mellitus, n (%)	73 (38)	48 (34)	25 (50)	0.043	63 (38)	10 (42)	0.694	
Dyslipidemia, n (%)	92 (48)	65 (46)	27 (54)	0.316	83 (50)	9 (38)	0.274	
Hypertension, n (%)	169 (88)	121 (85)	48 (96)	0.077	146 (87)	23 (96)	0.355	
Laboratory data								
Hemoglobin, g/dL	11.0 ± 1.8	11.1 ± 1.8	10.5 ± 1.9	0.062	11.0 ± 1.8	10.4 ± 2.0	0.092	
Albumi n, g/dL	3.3 ± 0.5	3.4 ± 0.5	3.1 ± 0.6	<0.00 1	3.4 ± 0.5	3.0 ± 0.6	<0.001	
eGFR, mL/min/1.73 m ²	42.3 ± 22.1	44.4 ± 21.7	36.3 ± 22.6	0.026	42.6 ± 21.2	40.0 ± 28.4	0.598	
N-terminal pro- brain natriuretic peptide, pg/mL	2971 ± 8478	2096 ± 4832	5557 ± 14490	0.017	2318 ± 4902	7374 ± 19668	0.007	
Medications								
Beta-blockers, n (%)	109 (57)	82 (58)	27 (54)	0.645	98 (58)	11 (46)	0.247	
Calcium-channel blockers, n (%)	112 (58)	80 (56)	32 (64)	0.344	100 (60)	12 (50)	0.376	
Diuretics, n (%)	146 (76)	105 (74)	41 (82)	0.251	125 (74)	21 (88)	0.250	
RAAS inhibitors, n (%)	133 (69)	94 (66)	39 (78)	0.119	115 (68)	18 (75)	0.515	
Statins, n (%)	72 (38)	50 (35)	22 (44)	0.269	62 (37)	10 (42)	0.652	_

Values are mean ± standard deviation or number (%).

eGFR, estimated glomerular

filtration rate;

RAAS, renin-angiotensin-

aldosterone system

		admission	nortality or 1 for heart ure	p value	All-cause	mortality	p val
	All	-	+	(- vs +)	-	+	- (- +
LAD, mm	41.2±7.6	40.4±7.9	43.3±6.5	0.021	41.0±7.5	42.9±8.5	0.2
LAVI, mL/m ²	50.5±25.7	47.9±23.2	57.6±30.8	0.024	48.2±22.2	67.1±40.2	0.0
LVEDVI, mL/m ²	56.1±20.3	55.9±21.2	56.8±17.6	0.786	55.9±20.3	57.7±20.4	0.6
LVESVI, mL/m ²	21.8±10.8	21.8±10.9	21.8±10.7	0.993	21.6±10.5	23.5±13.3	0.4
SVI, mL/m²	34.3±12.0	34.0±12.7	35.0±10.0	0.652	34.3±12.4	34.2±9.4	0.9
SV/LAV	0.809±0.376	0.835±0.376	0.733±0.373	0.125	0.831±0.377	0.647±0.335	0.0
LVEF, %	61.4±6.8	61.3±6.7	62.0±6.8	0.502	61.5±6.7	61.0±7.2	0. 2
LVMI, g/m²	108.4±33.2	105.8±32.5	115.9±34.1	0.063	108.4±33.3	108.5±32.6	0.9
TRPG, mmHg	27.2±9.3	25.8±8.5	30.9±10.4	<0.001	26.4±9.0	32.1±10.1	0.0
E/A	1.00±0.57	1.00±0.61	1.01±0.47	0.897	1.02±0.59	0.89±0.32	0
E/e'	14.0±5.5	13.2±5.5	16.1±5.2	0.001	13.5±5.4	17.4±5.8	0.0
Ed	0.450±0.230	0.431±0.227	0.505±0.249	0.065	0.435±0.235	0.553±0.254	0.0
Ed/Ea	0.130±0.055	0.125±0.055	0.146±0.052	0.019	0.124±0.053	0.164±0.056	0.0

Table 2. Echocardiographic data before discharge

Values are mean ± standard deviation.

LAD, left atrial diameter; LAVI, left atrial volume index;

LVEDVI, left ventricular end-diastolic volume index;

LVESVI, left ventricular end-systolic volume index; SVI, stroke volume index;

SV, stroke volume; LAV, left atrial volume;

LVEF, left ventricular ejection fraction;

TRPG, tricuspid regurgitation pressure gradient; Ed diastolic elastance; Ea, arterial elastance.

Prognostic analysis

In the ROC curve analysis for the prediction of all-cause mortality or admission for HF, area under the curve of LAVI was slightly smaller than that of the NT-proBNP level, TRPG, and Ed/Ea (Table 3). The Kaplan-Meier survival analysis clearly showed that LAVI > 38 mL/m² (p = 0.036), E/e' > 13.3 (p < 0.001), and Ed/Ea > 0.121 (p = 0.003) were significant factors when the cutoff points were evaluated in the ROC curve analysis (Figure 1A). Although not shown, age > 85 years (p < 0.001), NT-proBNP level > 783 pg/mL (p < 0.001), eGFR < 39.8 mL/min/1.73 m² (p = 0.004), and TRPG > 28 mmHg (p < 0.001) were also determinant factors. The Cox hazard ratios were significant in all of these indices (Table 3). Albumin level or TAPSE was not a determinant factor (data not shown). The LVDD grade was also related to all-cause mortality or admission for HF in patients with HFpEF, as shown by the Kaplan–Meier survival curve analysis (Figure 1A) and Cox hazard analysis (hazard ratio 3.063, confidence interval 1.7-5.519, p < 0.001). In the multivariate analysis of Cox hazard ratio, Ed/Ea (p = 0.019) was significantly associated with poor outcome, independent of age, sex, eGFR, LAVI, the serum NTproBNP level and TRPG (Table 3). With respect to all-cause mortality, LAVI, Ed/Ea ratio,

and LVDD grade were all significant indices in the Kaplan–Meier survival analysis (Figure 1B). Furthermore, the Ed/Ea ratio (p = 0.010) was significantly associated with all-cause mortality independent of the serum NT-proBNP levels after adjustments in the multivariate analysis of Cox hazard ratio (Table 4). The Ed/Ea ratio was an important index in the multivariate analysis for all-cause mortality and/or admission for HF (Tables 3 and 4).

Table 3. Analytical data of prognostic factors for all-cause mortality or admission for heart failure

in patients with heart failure with preserved ejection fraction

				6.	Cox haza	rd analysis	5	
	ROC anal			Univariat	e]	Multivaria	te
	Cutoff point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value
Age	85	0.628	2.855	1.634–4. 99	< 0.001	1.254	0.646–2. 433	0.502
Sex	-	-	0.965	0.547–1. 701	0.903	1.532	0.772–3. 038	0.221
NT- proBNP	783	0.695	3.432	1.652–7. 133	<0.001	2.73	1.173–6. 358	0.019
eGFR	39.8	0.631	0.464	0.261–0. 824	0.008	0.61	0.315- 1.179	0.141
LAVI	38	0.607	2.225	1.134–4. 366	0.02	1.08	0.497–2. 345	0.844
TRPG	28	0.662	2.722	1.552–4. 775	< 0.001	2.082	1.079–4. 018	0.028

Ed/Ea	0.121	0.637	2.424	4 1.337–4. 394	0.003	2.182	1.135–4. 194	0.019
ROC, rec interval;	eiver ope	rating ch	aracteristi	c; AUC, area	under the	curve; Cl	, confidence	
NT-proBI filtration		minal pr	o-brain na	triuretic pept	ide; eGFR,	estimate	d glomerular	
LAVI, lef	t atrial vo	olume ind	lex; TRPG	, tricuspid re	gurgitation	pressure	gradient;	
Ed, diasto	olic elasta	nce; Ea, a	arterial ela	istance.				
Table 4. A	Analytical	data of 1	orognostic	factors for al	I-cause mo	rtality		
	•			served ejectio		•		
p=			pro-	or the species				
					Cox hazaı	rd analysi	is	
	ROC anal		<u>6</u>	Univariate	Cox hazaı	rd analys	is Multivariat	e
			Ratio	Univariate 95% CI	Cox hazar p-value	rd analys Ratio		e <i>p-valu</i>
Age	anal Cutoff	ysis					Multivariat	
0	anal Cutoff point	ysis AUC		95% CI	p-value	Ratio	Multivariat 95% CI	p-valu
Age Sex NT- proBNP	anal Cutoff point	ysis AUC	6.512	95% CI 2.696–15.73	p-value < 0.001	Ratio 3.082	Multivariat 95% CI 1.171–8.110	p-valu 0.022
Sex NT-	anal Cutoff point 85 -	ysis AUC 0.757 -	6.512 0.739 4.488	95% CI 2.696–15.73 0.315–1.732	p-value < 0.001 0.487	Ratio 3.082 1.735	Multivariat 95% CI 1.171–8.110 0.647–4.652	p-valu 0.022 0.273
Sex NT- proBNP	anal Cutoff point 85 - 794	ysis AUC 0.757 - 0.703	6.512 0.739 4.488	95% CI 2.696–15.73 0.315–1.732 1.523–13.22	p-value < 0.001 0.487 0.006	Ratio 3.082 1.735 1.777	Multivariat 95% CI 1.171–8.110 0.647–4.652 0.552–5.719	p-valu 0.022 0.273 0.334

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; NT-proBNP, N-terminal pro-brain natriuretic peptide; TRPG, tricuspid regurgitation pressure gradient;

Ed, diastolic elastance; Ea, arterial elastance.

In the Kaplan-Meier survival curve analysis for all-cause mortality with a stratified

examination using the NT-proBNP level and Ed/Ea, patients with a combination of NT-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

proBNP level > 794 pg/mL and Ed/Ea > 0.163 showed higher all-cause mortality (logrank test p < 0.001). In patients with a higher NT-proBNP level, the effect of higher Ed/Ea on all-cause mortality was significant (Bonferroni test, p < 0.001). Although the patients with NT-proBNP level > 783 pg/mL and Ed/Ea > 0.121 exhibited higher all-cause mortality or admission for HF in the Kaplan-Meier survival curve analysis (logrank test p < 0.001), the effect of higher Ed/Ea on all-cause mortality or admission for HF was not significant in patients with a higher NT-proBNP level (Bonferroni test, p = 0.202).

Discussion

In the present study, LA pressure overload, rather than LAV overload, was found to be a more useful marker of prognosis in patients with HFpEF. Our findings can help determine which single index of LA pressure overload is the most suitable for predicting prognosis. Especially in patients with a higher NT-proBNP level, a higher Ed/Ea was associated with poor prognosis.

The heterogeneity of the cardiac structure in patients with HFpEF is well known [15-17]. Notably, there were no significant differences in the deceleration time of E wave and E/A in patients with and without all-cause mortality and/or admission for HF. The LA structure and function most closely reflect hemodynamic stress and remodeling in HFpEF

BMJ Open

[18]. The E/e' ratio was reported to be a significant prognostic factor in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial [19] and in a systematic review [20]. However, there are many important differences between our study and the TOPCAT trial: (1) the TOPCAT trial was an intervention study; (2) subjects in our study were 10 years older; (3) the inclusion criteria were different (i.e., stable outpatients in the TOPCAT trial versus hospitalized patients with HFpEF in our study; patients with atrial fibrillation were included in the TOPCAT trial but excluded from our study); and (4) essential factors for prognosis, such as serum NT-proBNP and albumin levels, were included in the analysis of the Cox hazard ratio in our study.

As a single index of LA pressure overload among noninvasive echocardiographic findings, Ed/Ea may be more suitable for predicting all-cause mortality and/or admission for HF. E/e' is known to be the best-fit index for LA pressure among echocardiographic indices in HFpEF [20]. Ed/Ea = $(E/e') / (0.9 \times \text{systolic blood pressure})$ is the LA pressure relative to systemic pressure and may show the ratio of preload to afterload pressure of the left ventricle. Thus, the Ed/Ea ratio may be an index that reflects the whole left-sided heart function including the atrio-ventriculo-arterial interaction under a preserved LV ejection fraction. This issue may be related to the fact that Ed/Ea was an independent

BMJ Open

 determinant factor for prognosis. Furthermore, patients with a higher NT-proBNP level and higher Ed/Ea had the poorest prognosis. The N-terminal pro-brain natriuretic peptide (NT-proBNP) level has been shown to be a powerful prognostic factor in HFpEF [21]. Although NT-proBNP reflects cardiac morphology and function [22], it remains uncertain whether the NT-proBNP levels solely reflect cardiac processes or whether it also has a role independent of cardiac remodeling. Several recent papers reported that NT-proBNP may be an additional marker of extracardiac vascular diseases [23, 24]. At least a part of the association of NT-proBNP with mortality is independent of measures of cardiac remodeling [25]. In combination with NT-proBNP level, the significance of higher Ed/Ea for the evaluation of prognosis was obvious in elderly patients with HFpEF. Among the indices of LAV overload, LAVI, but not SV/LAV, significantly differed between patients with and without all-cause mortality or admission for HF. As the areas under the curve of LAVI and SV/LAV in the ROC curve analysis were small and no significant findings were observed in the multivariate analysis of Cox hazard ratio for allcause mortality and/or admission for HF in patients with HFpEF, we conclude that LAVI and SV/LAV are not suitable factors for predicting prognosis. LAVI is an indicator of long-term elevation of LV filling pressure, and an enlarged LAVI may be a secondary phenomenon. Even in patients without all-cause mortality or admission for HF, the mean

BMJ Open

LAVI was 47.9 mL/m², which was considerably higher than the criterion for LVDD (> 34 mL/m^2).

LV Ed is expressed as $(E/e^{\circ}) / SV [26]$ or $(E/e^{\circ}) / LV$ end-diastolic volume [27]. Ea was calculated as $(0.9 \times systolic blood pressure)/SV [26]$. Although Ed and Ea were reported to be negatively correlated in younger patients with hypertension [28], both indices were higher in elderly women than in men under stable conditions [26, 27]. Elevated Ed in elderly women could be an epiphenomenon because of the associated increase in Ea. We previously reported that Ed/Ea is an index of the LV diastolic function relative to afterload and can be calculated as $(E/e^{\circ}) / (0.9 \times systolic blood pressure)$ when Ed is $(E/e^{\circ}) / SV [8,$ 9]. Accordingly, Ed/Ea was not directly related to parameters of cardiac volume, such asLAV and SV. We recently reported a larger LAV and higher E/e^o and Ed/Ea in elderlywomen with preserved ejection fraction regardless of the HF status [3, 8, 9]. Ed/Ea is anovel afterload-integrated parameter for LV diastolic function that may be useful as aseverity index for all-cause mortality in elderly patients with HFpEF.

Limitations

Further studies are required to investigate differences in the clinical significance of Ed/Ea for prognosis between younger patients with normal renal function and moderate-to-

severe LV hypertrophy and elderly patients (mean age, 80 years) with renal dysfunction (mean eGFR, 42.3 mL/min/1.73 m²) and mild LV hypertrophy (mean LVMI, 108.4 g/m²) included in our study. We could not discuss echocardiographic parameters in patients with atrial fibrillation. The role of the right side of the heart in prognosis, as possibly reflected in the involvement of TRPG, remains unclear, although TAPSE was not a determinant factor for prognosis in this study. We examined all-cause mortality rather than cardiac death because the determination of cardiac death can be difficult in elderly erevi patients.

Conclusions

LA pressure overload, rather than LAV overload, is a useful marker of prognosis in elderly patients with HFpEF showing a sinus rhythm. As an index for LA pressure overload among noninvasive echocardiographic findings, Ed/Ea provides additional prognostic information to serum NT-proBNP level for predicting all-cause mortality.

Acknowledgments:

The Osaka CardioVascular Conference-Heart Failure Investigators

BMJ Open

Chair: Yasushi Sakata, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan Secretariats: Shungo Hikoso (Chief), Daisaku Nakatani, Hiroya Mizuno, Shinichiro Suna, Katsuki Okada, Tomoharu Dohi, Takayuki Kojima, Akihiro Sunaga, Hirota Kida, Oeun Bolrathanak, and Sugako Mitsuoka, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.

Investigators:

Shunsuke Tamaki, Masatake Fukunami, and Takahisa Yamada, Osaka General Medical Center, Osaka, Japan; Takaharu Hayashi and Yoshiharu Higuchi, Osaka Police Hospital, Osaka, Japan; Masaharu Masuda, Mitsutoshi Asai, and Toshiaki Mano, Kansai Rosai Hospital, Amagasaki, Japan; Hisakazu Fuji, Kobe Ekisaikai Hospital, Kobe, Japan; Daisaku Masuda, Yoshihiro Takeda, Yoshiyuki Nagai, and Shizuya Yamashita, Rinku General Medical Center, Izumisano, Japan; Masami Sairyo, Yusuke Nakagawa, and Shuichi Nozaki, Kawanishi City Hospital, Kawanishi, Japan; Haruhiko Abe, Yasunori Ueda, Masaaki Uematsu, and Yukihiro Koretsune, National Hospital Organization Osaka National Hospital, Osaka, Japan; Kunihiko Nagai, Ikeda Municipal Hospital, Ikeda, Japan; Masamichi Yano, Masami Nishino, and Jun Tanouchi, Osaka Rosai Hospital,

Sakai, Japan; Yoh Arita and Shinji Hasegawa, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan; Takamaru Ishizu, Minoru Ichikawa, and Yuzuru Takano Higashiosaka City Medical Center, Higashiosaka, Japan; Eisai Rin, Kawachi General Hospital, Higashiosaka, Japan; Tetsuya Watanabe and Shiro Hoshida, Yao Municipal Hospital, Yao, Japan; Masahiro Izumi, Kinki Central Hospital, Itami, Japan; Hiroyoshi Yamamoto and Hiroyasu Kato, Japan Community Health Care Organization, Osaka Minato Central Hospital, Osaka, Japan; Kazuhiro Nakatani and Hisatoyo Hiraoka, Sumitomo Hospital, Osaka, Japan; Mayu Nishio and Keiji Hirooka, Saiseikai Senri Hospital, Suita, Japan; Takahiro Yoshimura and Yoshinori Yasuoka, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan; Akihiro Tani, Kano General Hospital, Osaka, Japan; Yasushi Okumoto and Hideharu Akagi, Kinan Hospital, Tanabe, Japan; Yasunaka Makino, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan; Toshinari Ohnishi and Katsuomi Iwakura, Sakurabashi Watanabe Hospital, Osaka, Japan; Nagahiro Nishikawa and Yoshiyuki Kijima, Japan Community Health Care Organization, Hoshigaoka Medical Center, Hirakata, Japan; Takashi Kitao and Hideyuki Kanai, Minoh City Hospital, Minoh, Japan; Wataru Shioyama and Masashi Fujita, Osaka International Cancer Institute, Osaka, Japan; Koichiro Harada, Suita Municipal Hospital, Suita, Japan; Masahiro Kumada and

BMJ Open

Osamu Nakagawa, Toyonaka Municipal Hospital, Toyonaka, Japan; Ryo Araki and Takayuki Yamada, Otemae Hospital, Osaka, Japan; Akito Nakagawa and Yoshio Yasumura, Amagasaki Chuo Hospital, Amagasaki, Japan; Fusako Sera, Kei Nakamoto, Hidetaka Kioka, Tomohito Ohtani, Katsuki Okada, Hiroya Mizuno, Tomoharu Dohi, Takayuki Kojima, Hirota Kida, Akihiro Sunaga, Oeun Bolrathanak, Shinichiro Suna, Daisaku Nakatani, Shungo Hikoso, Toshihiro Takeda, Yasushi Matsumura, and Yasushi Sakata, Osaka University Graduate School of Medicine, Suita, Japan.

Contributorship statement:

Conception and design of the study, acquisition of, and/or analysis and interpretation of data: SH, KT, YS, TM, YH, YN, HA, HF.
 Discuss on the planning, drafting the article and/or revising it critically for important

(2) Discuss on the planning, drafting the article and/or revising it critically for importan intellectual content: SH, TY, YY, SH, DN, YS.

(3) Final approval of the version to be submitted: all authors.

Competing interests:

None.

Sources of Funding:

Roche Diagnostics

FUJIFILM Toyama Chemical

Data sharing statement:

Yes.

References

[1] Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressure. J Am Coll Cardiol 1997;30:1527-1533.

[2] Geske SR, Soralia P, Nishimura RA, Ommen SR. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy:
Correlation with direct left atrial pressure measurement at cardiac catheterization.
Circulation 2007;116:2702-2708.

[3] Hoshida S, Watanabe T, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Ueno K, Suna S, Nakatani D, Hikoso S, Yamada T, Yasumura Y, Fuji H, Sakata Y and on behalf of PURSUIT HFpEF Investigators. Sex-related differences in left ventricular diastolic function and arterial elastance during admission in patients with heart failure

 with preserved ejection fraction: The PURSUIT HFpEF study. Clin Cardiol 2018;41:1529-1536. doi:10.1002/clc.23073.

[4] Santos M, Rivero J, McCullough SD, West E, Opotowski AR, Waxman AB, Systorom DM, Shah AM. E/e' ratio in patients with unexaplained dyspnea. Lack of accuracy in estimating left ventricular filling pressure. Circ Heart Fail 2015;8:749-756.

[5] Sharifov OF, Schiros CG, Aban I, Denney TS Jr, Gupta H. Diagnostic accuracy of tissue Doppler index E/e' for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: A systematic review and metaanalysis. J Am Heart Assoc 2016;5:e002530 doi: 10.1161.

[6] Obokata M, Kane G, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction. A simultaneous invasive-echocardiographic study. Circulation 2017;135:825-838.

[7] Andersen OS, Smiseth OA, Dokainish H, Abudiab MM, Schutt RC, Kumar A, SatoK, Harb S, Gude E, Remme EW, Andreassen AK, Ha J-W, Xu J, Klein AI, Nagueh SF.

Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol 2017;69:1932-1948.

[8] Hoshida S, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Watanabe T. Age- and sexrelated differences in diastolic function and cardiac dimensions in a hypertensive population. ESC Heart Fail 2016;3:270-277.

[9] Hoshida S, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Watanabe T. Fluctuation of dynamic diastolic function relative to static cardiac structure - New insights into the underlying mechanism of heart failure with preserved ejection fraction in elderly patients. Circ J 2017;81:755-758.

[10] Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino PN, Oh JK, Popescu BA, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016;29:277-314.

[11] Sanchis L, Andrea R, Falces C, Poyatos S, Vidal B, Sitges M. Differential clinical implications of current recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocariogr 2018;31:1203-1208.

[12] Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.

[13] Minamisaka T, Watanabe T, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Ueno K, Inoue S, Mine K, Hoshida S. Transient manifestation of left ventricular diastolic dysfunction following ablation in patients with paroxysmal atrial fibrillation. Clin Cardiol 2018;41:978-984. doi: 10.1002/clc.22990.

[14] Hoshida S, Watanabe T, Shinoda Y, Minamisaka T, Fukuoka H, Inui H, Ueno K,
Yamada T, Uematsu M, Yasumura Y, Nakatani D, Suna S, Hikoso S, Higuchi Y, Sakata
Y, on behalf of the Osaka CardioVascular Conference (OCVC) Investigators.
Considerable scatter in the relationship between left atrial volume and pressure in heart
failure with preserved left ventricular ejection fraction. Sci Rep. 2020;10:90. doi:
10.1038/s41598-019-56581-x.

[15] Persson H, Lonn E, Edner M, Baruch I, Lang CC, Morton JJ, Ostergren J, McKelvie RS; Investigators of the CHARM Echocardiographic Substudy-CHARMES. Diastolic dysfunction in heart failure with preserved systolic function: need for objective evidence: results from the CHARM Echocardiographic Substudy-CHARMES. J Am Coll Cardiol 2007;49:687-694.

[16] Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baich CF, Massie BM, Carson PE: I-RESERVE Investigators. Prevalence and significance alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 2011;124:2491-2501.

BMJ Open

[17] Shah AM, Shah SJ, Anand IS, Sweitzer NK, O'meara E, Heitner JF, Sopko G, Li G, Assmann SF, McKinlay SM, Pitt B, Pfeffer MA, Solomon SD, for the TOPCAT Investigators. Cardiac structure and function in heart failure with preserved ejection fraction. Baseline findings from the schocardiographic study of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail 2014;7:104-115.

[18] Abbasi SA, Shah RV, McNulty SE, Hernandez AF, Semigran MJ, Lewis GD, Jerosch-Herold M, Kim RJ, Redfield MM, Kwong RY. Left atrial structure and function in heart failure with preserved ejection fraction: A RELAX substudy. PLosOne 2016 doi: 10.1371/journal.pone.0164914.

[19] Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O'Meara E, Desai AS, Heitner JF, Li G, Fang J, Rouleau J, Zile MR, Markov V, Ryabov V, Reis G, Assmann SF, McKinlay SM, Pitt B, Pfeffer MA, Solomon SD. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circ Heart Fail 2014;7:740-751. doi:

10.1161/CIRCHEARTFAILURE.114.001583.

[20] Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 2018; 20:1303-1311.

BMJ Open

[21] Kang SH, Park JJ, Choi DJ, Yoon C-H, Oh H-Y, Kang S-M, Yoo B-S, Jeon E-S, Kim J-J, Cho M-C, Chae SC, Ryu K-H, Oh B-H, KorHF Registry. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 2015;101:1881-1888.

[22] Luchner A, Burnett JC Jr, Jougasaki M, Hense HW, Heid IM, Muders F, Riegger GA, Schunkert H. Evaluation of brain natriuretic peptide as marker of left ventricular dysfunction and hypertrophy in the population. J Hypertens 2000;18:1121-1128.

[23] Kara K, Lehmann N, Nuemann T, Kälsch H, Möhlenkamp S, Dykun I, Broecker-

BMJ Open

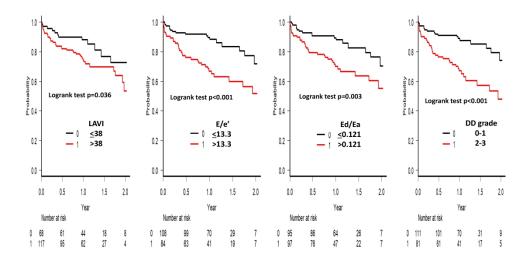
Preuss M, Pundt N, Moebus S, Jöckel K-H, Erbel R, Mahabadi AA. NT-proBNP is superior to BNP for predicting first cardiovascular events in the general population: The Heinz Nixdorf Recall Studt. Int J Cardiol 2015;183:155-161.

[24] Portegies MI, Kavousi M, Leening MJ, Bos MJ, van den Meiracker AH, Hofman A, Franco OH, Koudstaal PJ, Ikram MA. N-terminal pro-B-type natriuretic peptide and the risk of stroke and transient ischaemic attack: the Rotterdam Study. Eur J Neurol 2015;22:695-701.

[25] Dietl A, Stark K, Zimmermann ME, Meisinger C, Schunkert H, Birner C, Maier LS, Peters A, Heid IM, Luchner A. NTproBNP predicts cardiovascular death in the general population independent of left ventricular mass and function: Insights from a large population-based study with longterm follow-up. PLoS One 2016 DOI: 10.1371/journal.pone.0164060.

[26] Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and genderrelated ventricular–vascular stiffening. A community-based study. Circulation 2005;112: 2254-2262.

[27] Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, Claggett B, Zile MR, Kraigher-Krainer E, Pieske B, Voors AA, Packer M, Bransford T, Lefkowitz M, McMurray JJV, Solomon SD, PARAMOUNT Investigators. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 2014;16:535-542.


[28] Mottram PM, Haluska, Leano R, Carlier S, Case C, Marwick TH. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005,91:1551-1556.

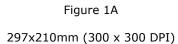
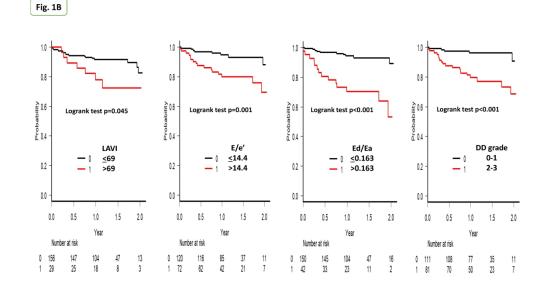
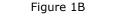

Legends

Figure 1. Kaplan–Meier survival curve analysis of patients with heart failure with preserved ejection fraction. (**A**) Left atrial volume index (LAVI) > 38 mL/m², E/e' > 13.3, ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.121, and left ventricular diastolic dysfunction (DD) grade (0–1 vs. 2–3) were significant factors for all-cause mortality or admission for heart failure. (**B**) LAVI > 69 mL/m², E/e' > 14.4, Ed/Ea > 0.163, and DD grade (0–1 vs. 2–3) were also significant factors for all-cause mortality. Criteria for left ventricular DD grade were adopted from the study by Nagueh et al. [10]. The Ed/Ea ratio was calculated as (E/e')/(0.9 × systolic blood pressure) [3, 8].


BMJ Open: first published as 10.1136/bmjopen-2020-044605 on 30 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.





BMJ Open: first published as 10.1136/bmjopen-2020-044605 on 30 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3-4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5,6
Methods			•
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
r	-	participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7, 8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7, 8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8,9
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8,9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8,9
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	8
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9-11
r · · · · · · · · · · · · · · ·	-	and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	11
		(c) Summarise follow-up time (eg, average and total amount)	9
Outcome data	15*	Report numbers of outcome events or summary measures over time	11-
			12

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	1
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	1
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	1
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11 10
Generalisability	21	Discuss the generalisability (external validity) of the study results	1 1
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

BMJ Open

Significance of left atrial pressure overload for prognosis in heart failure with preserved ejection fraction

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044605.R1
Article Type:	Original research
Date Submitted by the Author:	12-Feb-2021
Complete List of Authors:	Hoshida, Shiro; Yao Shiritsu Byoin Tachibana, Koichi; Yao Shiritsu Byoin Shinoda, Yukinori; Yao Shiritsu Byoin Minamisaka, Tomoko; Yao Shiritsu Byoin Yamada, Takahisa; Osaka General Medical Center Higuchi, Yoshiharu; Osaka Police Hospital Nakagawa, Yusuke; Kawanishi City Hospital Abe, Haruhiko; National Hospital Organization Osaka National Hospital Fuji, Hisakazu; Kobe Ekisaikai Hospital Yasumura, Yoshio; Amagasaki Chuo Hospital Hikoso, Shungo; Osaka University Hospital, Department of Cardiovascular Medicine Nakatani, Daisaku; Osaka University Hospital, Department of Cardiovascular Medicine Sakata, Yasushi; Osaka University, Department of Cardiovascular Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Geriatric medicine, Epidemiology
Keywords:	Adult cardiology < CARDIOLOGY, Heart failure < CARDIOLOGY, CLINICAL PHYSIOLOGY, GERIATRIC MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Significance of left atrial pressure overload for prognosis in heart failure with

preserved ejection fraction

Short title: LA pressure overload in HFpEF prognosis

Shiro Hoshida, MD¹; Koichi Tachibana, MD¹; Yukinori Shinoda, MD¹; Tomoko Minamisaka, MD¹; Takahisa Yamada, MD²; Yoshiharu Higuchi, MD³; Yusuke Nakagawa, MD⁴; Haruhiko Abe, MD⁵; Hisakazu Fuji, MD⁶; Yoshio Yasumura, MD⁷; Shungo Hikoso, MD⁸; Daisaku Nakatani, MD⁸; Yasushi Sakata, MD⁸; on behalf of the Osaka Cardiovascular Conference Investigators

¹Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan

² Division of Cardiology, Osaka General Medical Center, Osaka, Japan

³ Department of Cardiovascular Medicine, Osaka Police Hospital, Osaka, Japan

⁴ Division of Cardiology, Kawanishi City Hospital, Kawanishi, Japan

⁵ Department of Cardiovascular Medicine, National Hospital Organization Osaka National Hospital, Osaka, Japan

⁶ Cardiovascular Division, Kobe Ekisaikai Hospital, Kobe, Japan

BMJ Open

⁷ Department of Cardiovascular Medicine, Amagasaki Chuo Hospital, Amagasaki, Japan ⁸ Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan

*Corresponding author: Shiro Hoshida, MD, PhD

Department of Cardiovascular Medicine, Yao Municipal Hospital

1-3-1 Ryuge-cho, Yao, Osaka 581-0069, Japan

Tel.: +81-72-922-0881, Fax: +81-72-924-4820

Total word count of the manuscript: 3649

Abstract

Objectives: The severity of diastolic dysfunction is assessed using a combination of several indices of the left atrial (LA) volume overload and LA pressure overload. We aimed to clarify which overload is more associated with prognosis in patients with heart failure with preserved ejection fraction (HFpEF).

Setting: A prospective, multicenter observational registry of collaborating hospitals in the Osaka region of Japan.

Participants: We enrolled hospitalized patients with HFpEF showing a sinus rhythm (men/women, 79/113). Blood testing and transthoracic echocardiography were performed before discharge. The ratio of diastolic elastance (Ed) to arterial elastance (Ea) was used as a relative index of LA pressure overload.

Primary outcome measure: All-cause mortality and admission for heart failure were evaluated at >1 year after discharge.

Results: In a multivariate Cox regression analysis, Ed/Ea was significantly associated with all-cause mortality or admission for heart failure (p=0.019), or all-cause mortality (p=0.010), independent of age, sex, LA volume index, and the serum N-terminal probrain natriuretic peptide (NT-proBNP) level. In patients with a higher NT-proBNP level, the effect of higher Ed/Ea on prognosis was prominent (p<0.001).

Conclusions: LA pressure overload was significantly associated with prognosis in elderly patients with HFpEF showing a sinus rhythm. As an index of LA pressure overload, Ed/Ea may be suitable for predicting all-cause mortality and/or admission for HF.

Strengths and limitations

The severity of diastolic dysfunction is assessed by a combination of several indices of left atrial (LA) volume and pressure overload.

The ratio of diastolic elastance (Ed) and arterial elastance (Ea), i.e. Ed/Ea, is a novel index of LA pressure overload.

Ed/Ea ratio and LA volume index are high in patients with HFpEF.

It remains to be seen which LA overload is more associated with prognosis in elderly

patients with HFpEF.

The limitation is a small sample size.

Trial registration: PURSUIT HFpEF (Prospective Multicenter Observational Study of

Patients with Heart Failure with Preserved Ejection Fraction) registry.

UMIN-CTR ID: UMIN000021831

Key words: diastolic function, left atrial overload, NT-proBNP

$\mathbf{5}$

Introduction

Patients with heart failure with preserved ejection fraction (HFpEF) have an increased left atrial volume (LAV) and E/e', as shown by noninvasive echocardiographic findings [1-3]. E/e' is positively correlated with left atrial (LA) pressure or pulmonary capillary wedge pressure [4-7]. We previously reported that the LAV index (LAVI), a relative index of LAV overload, and the ratio of diastolic elastance (Ed) to arterial elastance (Ea) $[Ed/Ea = (E/e') / (0.9 \times systolic blood pressure)]$, a relative index of both LA pressure overload and left ventricular diastolic dysfunction (LVDD), are high in elderly patients with preserved ejection fraction with and without heart failure (HF) [3, 8, 9]. In the recommendations for left ventricular (LV) diastolic evaluation using echocardiography, the severity of diastolic dysfunction (DD) is assessed using a combination of several indices, such as E/A, deceleration time, E/e', tricuspid regurgitation velocity, and LAVI [7, 10]. Evaluation of the disease severity based on these recommendations is useful for estimating the prognosis of patients with HFpEF [11]. However, these noninvasive indices are related to either LA pressure overload or LAV overload, and which overload is more associated with the prognosis of these patients remains unclear. In this study, we aimed to identify a clinically significant echocardiographic index of the LA pressure or volume overload for the prognosis of patients with HFpEF.

Methods

Study subjects

Of 353 patients with prognostic data who were recruited from the PURSUIT HFpEF (Prospective Multicenter Observational Study of Patients with Heart Failure with Preserved Ejection Fraction) registry [3,12], 129 were excluded because they showed atrial fibrillation before discharge and 32 were excluded because of poor echocardiographic data. Therefore, we enrolled 192 patients showing a sinus rhythm (LV ejection fraction \geq 50%; men/women, 79/113; mean age, 80 years) at discharge during the index hospitalization with acute decompensated heart failure; patients were enrolled based on the Framingham criteria, and if they met the criteria of left ventricular ejection fraction (LVEF) \geq 50% on transthoracic echocardiography (TTE) and N-terminal probrain natriuretic peptide (NT-proBNP) ≥400 pg/mL on admission. We excluded patients with severe aortic stenosis, aortic regurgitation, mitral stenosis or mitral regurgitation due to structural changes in valves detected by TTE on admission. The PURSUIT HFpEF registry is a prospective, multicenter observational registry in which collaborating hospitals in the Osaka region of Japan record clinical, echocardiographic, and outcome

 $\overline{7}$

data of patients with HFpEF (UMIN-CTR ID: UMIN000021831). This registry is managed in accordance with the Declaration of Helsinki. The study protocol was approved by the ethics committee of each participating hospital, and all participants provided written informed consent.

Echocardiography and laboratory testing

Transthoracic echocardiography was performed when patients were in a stable condition before discharge. Echocardiographic measurements were obtained according to the American Society of Echocardiography (ASE) or European Society of Echocardiography criteria during a stable sinus rhythm [10, 13]. Volumetry was standardized using the modified Simpson's method, and the index was calculated as LAV divided by the body surface area. As a marker of LA pressure overload for estimating LV diastolic function, we examined E/e' and afterload-integrated Ed/Ea [(E/e')/(0.9 × systolic blood pressure)] [3, 9, 14]. As relative markers of LAV overload, we also evaluated LAVI and LA ejection fraction calculated as stroke volume (SV)/LAV [15]. The severity of LVDD was assessed according to the previous report [11]. In the first step, four parameters were used, namely, E/e', e' velocity, tricuspid regurgitation velocity, and LAVI. In the second step, E/A, E wave, E/e', tricuspid regurgitation velocity, and LAVI were used to determine DD grades

 1–3 [11]. When diastolic dysfunction was not observed in the first step, patients were represented as DD grade 0. Serum N-terminal pro-brain natriuretic peptide (NT-proBNP) and albumin levels and the estimated glomerular filtration rate (eGFR) were also examined when patients were stable before discharge.

Follow-up/clinical outcome

After discharge, all patients were followed up at each hospital. Survival data were obtained by dedicated coordinators and investigators through direct contact with patients, their physicians at the hospital, or in an outpatient setting, or via a telephone interview with their families or by mail. Data collection was performed using an electronic data capture system integrated into electronic medical records developed at the Osaka University [16]. In-hospital data were entered into the system and were transferred to the data collection center via a secure internet connection for processing and analysis. The primary endpoints of this study were both the composite of all-cause mortality and hospitalization for worsening HF, and all-cause mortality.

Patient and public involvement:

No patient involved.

Statistical analysis

Continuous variables are expressed as mean \pm standard deviation, whereas categorical variables are presented as frequency and percentage. Differences in categorical variables between the groups were assessed using the chi-square test, and those in continuous variables were assessed using Student's t-test or Welch's t-test, as appropriate. Correlations were assessed using the Pearson or Spearman coefficient, and p-values were examined using regression analysis. Cutoff points of prognostic factors for all-cause mortality or admission for HF were evaluated using the receiver operating characteristic (ROC) curve analysis. Survival curves were estimated using the Kaplan-Meier productlimit estimator, and the groups were compared using the log-rank test and Bonferroni test. The Cox hazard ratio was evaluated in the univariate and multivariate analyses. In the multivariate analysis, age, sex, and variables that were significant in the univariate analysis were used. A p-value of < 0.05 was considered statistically significant. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).

Results

Clinical and laboratory characteristics of patients with HFpEF

During a median follow-up of 452 days, 50 patients had all-cause mortality or admission for worsening HF and 24 patients died. There were significant differences between patients with and without all-cause mortality or admission for HF in terms of age (p = 0.011), eGFR (p = 0.026), and serum NT-proBNP (p = 0.017) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension and dyslipidemia—except for diabetes mellitus—between the two groups. There were significant differences between patients with and without all-cause mortality in terms of age (p < 0.001) and serum NT-proBNP (p = 0.007) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension, dyslipidemia, and diabetes mellitus between the two groups. With respect to echocardiographic parameters, LAVI (p = 0.024), tricuspid regurgitation pressure gradient (TRPG, p < 0.001), E/e' (p = 0.001), and Ed/Ea (p = 0.019)—but not SV/LAV, LV mass index (LVMI), LV ejection fraction, E/A, the deceleration time of E wave, septal e', lateral e', or Ed-at discharge were significantly different between patients with and without all-cause mortality or admission for HF (Table 2). There were significant

differences in LAVI (p = 0.001), TRPG (p = 0.005), E/e' (p = 0.001), Ed (p = 0.026), and Ed/Ea (p = 0.001) between patients with and without all-cause mortality (Table 2). In the correlations between the indices of LA pressure and volume overload, Ed/Ea was more modestly correlated with LAVI or SV/LAV than E/e' [correlation between E/e' and LAVI (r = 0.155, p = 0.034) or SV/LAV (r = -0.137, p=0.072); correlation between Ed/Ea and LAVI (r = 0.194, p = 0.008) or SV/LAV (r = -0.180, p = 0.017)]. E/e' (r = 0.233, p = 0.001) and Ed/Ea (r = 0.222, p = 0.002) showed a modest positive correlation with the NT-proBNP log-transformed level, although TRPG did not correlate with the NT-proBNP log-transformed level (r = 0.147, p = 0.060). LAVI and the NT-proBNP log transformed level (r = 0.147, p = 0.060). LAVI and the NT-proBNP log

	All	morta admiss	cause llity or sion for failure	p- value	All-c mort		p-value
	(N = 192)	- (n = 142)	+ (n = 50)	(- vs. +)	- (n = 168)	+ (n = 24)	(- vs. +)
	80.0 ±	$78.9 \pm$	83.1 ±	<u> </u>	$79.0 \pm$	$\frac{24}{87.1 \pm}$	
Age, years	80.0 ± 10.0	78.9 ± 10.1	83.1 ± 9.1	0.011	10.0 ±	87.1 ± 7.2	<0.001
Male sex, n (%)	79 (41)	59 (42)	20 (40)	0.848	71 (42)	8 (33)	0.408
Body mass index	21.2 ± 4.5	21.0 ± 4.5	21.8± 4.3	0.300	21.3 ± 4.6	20.6 ± 3.8	0.453

Table 1.	Patient	characteristics	before	discharge

BMJ Open

						12	
Cardiothoracic ratio, %	55.4 ± 7.5	54.8 ± 7.4	57.2 ± 7.7	0.093	54.9 ± 7.3	59.1 ± 8.0	0.010
Systolic blood pressure, mmHg	122 ± 18	120 ± 17	124 ± 21	0.078	122 ± 18	120 ± 21	0.690
Diastolic blood pressure, mmHg	64 ± 12	65 ± 12	62 ± 11	0.212	64 ± 12	62 ± 10	0.404
Heart rate, bpm	69 ± 14	69 ± 14	68 ± 12	0.576	69 ± 14	70 ± 13	0.542
Chronic obstructive pulmonary disease, n (%)	11 (6)	9 (7)	2 (4)	0.796	9 (6)	2 (10)	0.906
Coronary artery disease, n (%)	41 (21)	31 (22)	10 (20)	0.785	37 (22)	4 (17)	0.739
Diabetes mellitus, n (%)	73 (38)	48 (34)	25 (50)	0.043	63 (38)	10 (42)	0.694
Dyslipidemia, n (%)	92 (48)	65 (46)	27 (54)	0.316	83 (50)	9 (38)	0.274
Hypertension, n (%)	169 (88)	121 (85)	48 (96)	0.0 77	146 (87)	23 (96)	0.355
Laboratory data							
Hemoglobin, g/dL	11.0 ± 1.8	11.1 ± 1.8	10.5 ± 1.9	0.062	11.0 ± 1.8	10.4 ± 2.0	0.092
Albumin, g/dL	3.3 ± 0.5	3.4 ± 0.5	3.1 ± 0.6	<0.00 1	3.4 ± 0.5	3.0 ± 0.6	<0.001
eGFR, mL/min/1.73 m ²	42.3 ± 22.1	44.4 ± 21.7	36.3 ± 22.6	0.026	42.6 ± 21.2	40.0 ± 28.4	0.598
N-terminal pro- brain natriuretic peptide, pg/mL	2971 ± 8478	2096 ± 4832	5557 ± 14490	0.017	2318 ± 4902	7374 ± 19668	0.007
Medications Beta-blockers, n (%)	109 (57)	82 (58)	27 (54)	0.645	98 (58)	11 (46)	0.247

Calcium-channel blockers, n (%)	112 (58)	80 (56)	32 (64)	0.344	100 (60)	12 (50)	0.376
Diuretics, n (%)	146 (76)	105 (74)	41 (82)	0.251	125 (74)	21 (88)	0.250
RAAS inhibitors, n (%)	133 (69)	94 (66)	39 (78)	0.119	115 (68)	18 (75)	0.515
Statins, n (%)	72 (38)	50 (35)	22 (44)	0.269	62 (37)	10 (42)	0.652

Values are mean ± standard deviation or number (%).

eGFR, estimated glomerular filtration rate;

RAAS, renin-angiotensin-aldosterone system

Table 2. Echocardiographic data before discharge

All-cause mortality

		0	or					
			n for heart ure	p value	All-cause	All-cause mortality		
	All	-	+	(- vs +)	-	+	(- vs +)	
LAD, mm	41.2± 7.6	40.4±7.9	43.3±6.5	0.021	41.0±7.5	42.9±8.5	0.250	
LAVI, mL/m ²	50.5± 25.7	47.9±23. 2	57.6±30. 8	0.024	48.2±22. 2	67.1±40. 2	0.001	
LVEDVI, mL/m ²	56.1± 20.3	55.9±21. 2	56.8±17. 6	0.786	55.9±20. 3	57.7±20. 4	0.699	
LVESVI, mL/m ²	21.8± 10.8	21.8±10. 9	21.8±10. 7	0.993	21.6±10. 5	23.5±13. 3	0.439	
SVI, mL/m ²	34.3± 12.0	34.0±12. 7	35.0±10. 0	0.652	34.3±12. 4	34.2±9.4	0.963	
SV/LAV	0.809 ±0.37 6	0.835±0. 376	0.733±0. 373	0.125	0.831±0. 377	0.647±0. 335	0.039	
LVEF, %	61.4± 6.8	61.3±6.7	62.0±6.8	0.502	61.5±6.7	61.0±7.2	0.763	

	108.4	105.8±32	115.9±34		108.4±3	108.5±32
LVMI, g/m ²	±33.2	105.8±52 .5	.1	0.063	108.4±3 3.3	.6
TRPG, mmHg	27.2± 9.3	25.8±8.5	30.9±10. 4	<0.00 1	26.4±9.0	32.1±10. 1
E/A	1.00± 0.57	1.00±0.6 1	1.01±0.4 7	0.897	1.02±0.5 9	0.89±0.3 2
DcT of E wave	0.22± 0.06	0.22±0.0 6	0.22±0.0 7	0.468	0.22±0.0 6	0.22±0.0 7
Septal e'	0.051 ±0.01 9	0.052±0. 020	0.048±0. 016	0.189	0.052±0. 019	0.048±0. 015
Lateral e'	0.067 ±0.02 3	0.067±0. 024	0.067±0. 020	0.979	0.068±0. 024	0.064±0. 019
E/e'	14.0± 5.5	13.2±5.5	16.1±5.2	0.001	13.5±5.4	17.4±5.8
Ed	0.450 ±0.23 0	0.431±0. 227	0.505±0. 249	0.065	0.435±0. 235	0.553±0. 254
Ed/Ea	0.130 ±0.05 5	0.125±0. 055	0.146±0. 052	0.019	0.124±0. 053	0.164±0. 056

Values are mean ± standard deviation.

LAD, left atrial diameter; LAVI, left atrial volume index;

LVEDVI, left ventricular end-diastolic volume index;

LVESVI, left ventricular end-systolic volume index; SVI, stroke volume index;

SV, stroke volume; LAV, left atrial volume;

LVEF, left ventricular ejection fraction;

TRPG, tricuspid regurgitation pressure gradient; DcT, deceleration time; Ed diastolic elastance; Ea, arterial elastance.

Prognostic analysis

> In the ROC curve analysis for the prediction of all-cause mortality or admission for HF, area under the curve of LAVI was slightly smaller than that of the NT-proBNP level, TRPG, and Ed/Ea (Table 3). The Kaplan-Meier survival analysis clearly showed that LAVI > 38 mL/m² (p = 0.036), E/e² > 13.3 (p < 0.001), and Ed/Ea > 0.121 (p = 0.003) were significant factors when the cutoff points were evaluated in the ROC curve analysis (Figure 1). Although not shown, age > 85 years (p < 0.001), NT-proBNP level > 783 pg/mL (p < 0.001), eGFR < 39.8 mL/min/1.73 m² (p = 0.004), and TRPG > 28 mmHg (p < 0.001) were also determinant factors. The Cox hazard ratios were significant in all of these indices (Table 3). Albumin level was not a determinant factor (data not shown). The LVDD grade was also related to all-cause mortality or admission for HF in patients with HFpEF, as shown by the Kaplan-Meier survival curve analysis (Figure 1) and Cox hazard analysis (hazard ratio 3.063, 95% confidence interval 1.7-5.519, p < 0.001). In the multivariate analysis of Cox hazard ratio, Ed/Ea (p = 0.019) was significantly associated with poor outcome, independent of age, sex, eGFR, LAVI, the serum NT-proBNP level and TRPG (Table 3). With respect to all-cause mortality, LAVI, Ed/Ea ratio, and LVDD grade were all significant indices in the Kaplan-Meier survival analysis (Figure 2). Furthermore, the Ed/Ea ratio (p = 0.010) was significantly associated with all-cause mortality independent of the serum NT-proBNP levels after adjustments in the

BMJ Open

multivariate analysis of Cox hazard ratio (Table 4). Systolic blood pressure (hazard ratio 0.992, 95% confidence interval 0.970-1.015, p = 0.528) and hemoglobin level (hazard ratio 0.787, 95% confidence interval 0.610-1.016, p = 0.066) were not associated with the prognosis in a Cox univariate analysis. Although Ed (hazard ratio 4.769, 95% confidence interval 1.23-18.49, p = 0.023) and E/e' (hazard ratio 3.651, 95% confidence interval 1.562-8.532, p = 0.004) were significantly associated with the prognosis in a univariate model, the significancy was modest as compared to the Ed/Ea ratio.

Table 3. Analytical data of prognostic factors for all-cause mortality or admission for heart failure in patients with heart failure with preserved ejection fraction

					Cox haza	rd analysi	8	
	ROC anal			Univariat	e	Multivariate		
	Cutoff point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value
Age	85	0.628	2.855	1.634–4. 99	< 0.001	1.254	0.646–2. 433	0.502
Sex	-	-	0.965	0.547–1. 701	0.903	1.532	0.772–3. 038	0.221
NT- proBNP	783	0.695	3.432	1.652–7. 133	<0.001	2.73	1.173–6. 358	0.019
eGFR	39.8	0.631	0.464	0.261–0. 824	0.008	0.61	0.315- 1.179	0.141
LAVI	38	0.607	2.225	1.134–4. 366	0.02	1.08	0.497–2. 345	0.844
TRPG	28	0.662	2.722	1.552–4. 775	< 0.001	2.082	1.079–4. 018	0.028

Ed/Ea	0 1 3 1	0 (27	1.337-4.	0 002		^{35–4.} 0.010
Ed/Ea	0.121	0.637	2.424 394	0.003	2.182	94

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval;

NT-proBNP, N-terminal pro-brain natriuretic peptide; eGFR, estimated glomerular filtration rate;

LAVI, left atrial volume index; TRPG, tricuspid regurgitation pressure gradient; Ed, diastolic elastance; Ea, arterial elastance.

 Table 4. Analytical data of prognostic factors for all-cause mortality

 in patients with heart failure with preserved ejection fraction

					is			
	ROC curve analysis			Univariate			Multivariate	
	Cutoff point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value
Age	85	0.757	6.512	2.696-15.73	< 0.001	3.082	1.171-8.110	0.022
Sex	-	-	0.739	0.315-1.732	0.487	1.735	0.647-4.652	0.273
NT- proBNP	794	0.703	4.488	1.523–13.22	0.006	1.777	0.552-5.719	0.334
Albumin	3.2	0.714	0.284	0.126-0.639	0.002	0.366	0.150-0.893	0.027
TRPG	29	0.687	3.153	1.400-7.001	0.005	2.537	1.042-6.177	0.04
Ed/Ea	0.163	0.718	5.903	2.62–13.3	< 0.001	3.279	1.319-8.152	0.01

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; NT-proBNP, N-terminal pro-brain natriuretic peptide; TRPG, tricuspid regurgitation pressure gradient; Ed, diastolic elastance; Ea, arterial elastance.

In the Kaplan-Meier survival curve analysis for all-cause mortality with a stratified

examination using the NT-proBNP level and Ed/Ea, patients with a combination of NT-

BMJ Open

proBNP level > 794 pg/mL and Ed/Ea > 0.163 showed higher all-cause mortality (logrank test p < 0.001, Figure 3). In patients with a higher NT-proBNP level, the effect of higher Ed/Ea on all-cause mortality was significant (Bonferroni test, p < 0.001). Although the patients with NT-proBNP level > 783 pg/mL and Ed/Ea > 0.121 exhibited higher all-cause mortality or admission for HF in the Kaplan-Meier survival curve analysis (logrank test p < 0.001), the effect of higher Ed/Ea on all-cause mortality or admission for HF was not significant in patients with a higher NT-proBNP level (Bonferroni test, p = 0.202).

Discussion

In the present study, LA pressure overload, rather than LAV overload, was found to be a more useful marker of prognosis in patients with HFpEF. Our findings can help determine which single index of LA pressure overload shows a significant association with prognosis. Especially in patients with a higher NT-proBNP level, a higher Ed/Ea was associated with poor prognosis.

The heterogeneity of the cardiac structure in patients with HFpEF is well known. Notably, there were no significant differences in the deceleration time of E wave and E/A in patients with and without all-cause mortality and/or admission for HF. The LA structure and function most closely reflect hemodynamic stress and remodeling in HFpEF [17].

The E/e' ratio was reported to be a significant prognostic factor in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial [18] and in a systematic review [19]. However, there are many important differences between our study and the TOPCAT trial: (1) the TOPCAT trial was an intervention study; (2) subjects in our study were 10 years older; (3) the inclusion criteria were different (i.e., stable outpatients in the TOPCAT trial versus hospitalized patients with HFpEF in our study; patients with atrial fibrillation were included in the TOPCAT trial but excluded from our study); and (4) essential factors for prognosis, such as serum NT-proBNP and albumin levels, were included in the analysis of the Cox hazard ratio in our study.

As a single index of LA pressure overload among noninvasive echocardiographic findings, Ed/Ea may be more significantly associated with all-cause mortality and/or admission for HF. E/e' is known to be the best-fit index for LA pressure among echocardiographic indices in HFpEF [17]. Ed/Ea = $(E/e') / (0.9 \times \text{systolic blood pressure})$ is the LA pressure relative to systemic pressure and may show the ratio of preload to afterload pressure of the left ventricle. Thus, the Ed/Ea ratio may be an index that reflects the whole left-sided heart function including the atrio-ventriculo-arterial interaction under a preserved LV ejection fraction. This issue may be related to the fact that Ed/Ea was an

BMJ Open

20

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 22
22 23
25 24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 45
45 46
40
48
49
50
51
52
53
54
55
56
57
58
59
60

independent determinant factor for prognosis. Furthermore, patients with a higher NTproBNP level and higher Ed/Ea had the poorest prognosis. The NT-proBNP level has been shown to be a powerful prognostic factor in HFpEF [20]. Although NT-proBNP reflects cardiac morphology and function [21], it remains uncertain whether the NTproBNP levels solely reflect cardiac processes or whether it also has a role independent of cardiac remodeling. Several recent papers reported that NT-proBNP may be an additional marker of extracardiac vascular diseases [22, 23]. At least a part of the association of NT-proBNP with mortality is independent of measures of cardiac remodeling [24]. In combination with NT-proBNP level, the significance of higher Ed/Ea for the evaluation of prognosis was obvious in elderly patients with HFpEF. Among the indices of LAV overload, LAVI, but not SV/LAV, significantly differed between patients with and without all-cause mortality or admission for HF. As the areas under the curve of LAVI and SV/LAV in the ROC curve analysis were small and no significant findings were observed in the multivariate analysis of Cox hazard ratio for allcause mortality and/or admission for HF in patients with HFpEF, we conclude that LAVI and SV/LAV are not suitable factors for evaluating prognosis. LAVI is an indicator of long-term elevation of LV filling pressure, and an enlarged LAVI may be a secondary phenomenon. Even in patients without all-cause mortality or admission for HF, the mean

LAVI was 47.9 mL/m², which was considerably higher than the criterion for LVDD (> 34 mL/m^2).

LV Ed is expressed as (E/e') / SV [25] or (E/e') / LV end-diastolic volume [26]. Ea was calculated as (0.9 × systolic blood pressure)/SV [25]. Although Ed and Ea were reported to be negatively correlated in younger patients with hypertension [27], both indices were higher in elderly women than in men under stable conditions [25, 26]. Elevated Ed in elderly women could be an epiphenomenon because of the associated increase in Ea. We previously reported that Ed/Ea is an index of the LV diastolic function relative to afterload and can be calculated as $(E/e^{2}) / (0.9 \times$ systolic blood pressure) when Ed is $(E/e^{2}) / SV$ [8, 9]. Accordingly, Ed/Ea was not directly related to parameters of cardiac volume, such as LAV and SV. We recently reported a larger LAV and higher E/e² and Ed/Ea in elderly women with preserved ejection fraction regardless of the HF status [3, 8, 9]. Ed/Ea is a novel afterload-integrated parameter for LV diastolic function that may be useful as a severity index for prognosis in elderly patients with HFpEF.

Limitations

Further studies are required to investigate differences in the clinical significance of Ed/Ea for prognosis between younger patients with normal renal function and moderate-to-

BMJ Open

severe LV hypertrophy and elderly patients (mean age, 80 years) with renal dysfunction (mean eGFR, 42.3 mL/min/1.73 m²) and mild LV hypertrophy (mean LVMI, 108.4 g/m²) included in our study. We could not discuss echocardiographic parameters in patients with atrial fibrillation. The role of the right side of the heart in prognosis, as possibly reflected in the involvement of TRPG, remains unclear in this study. Since the sample size of this study was small, the multivariate Cox modelling was overfitted with the number of variables included/input exceeding the rough rule of 1 variable per 10 events. We examined all-cause mortality rather than cardiac death because the determination of cardiac death can be difficult in elderly patients.

Conclusions

LA pressure overload, rather than LAV overload, is a useful marker of prognosis in elderly patients with HFpEF showing a sinus rhythm. As an index for LA pressure overload among noninvasive echocardiographic findings, Ed/Ea provides additional prognostic information to serum NT-proBNP level for all-cause mortality.

Lich

Acknowledgments: The Osaka CardioVascular Conference-Heart Failure Investigators Shunsuke Tamaki, Masatake Fukunami, and Takahisa Yamada, Osaka General Medical Center, Osaka, Japan; Takaharu Hayashi and Yoshiharu Higuchi, Osaka Police Hospital, Osaka, Japan; Masaharu Masuda, Mitsutoshi Asai, and Toshiaki Mano, Kansai Rosai Hospital, Amagasaki, Japan; Hisakazu Fuji, Kobe Ekisaikai Hospital, Kobe, Japan; Daisaku Masuda, Yoshihiro Takeda, Yoshiyuki Nagai, and Shizuya Yamashita, Rinku General Medical Center, Izumisano, Japan; Masami Sairyo, Yusuke Nakagawa, and Shuichi Nozaki, Kawanishi City Hospital, Kawanishi, Japan; Haruhiko Abe, Yasunori Ueda, Masaaki Uematsu, and Yukihiro Koretsune, National Hospital Organization Osaka National Hospital, Osaka, Japan; Kunihiko Nagai, Ikeda Municipal Hospital, Ikeda, Japan; Masamichi Yano, Masami Nishino, and Jun Tanouchi, Osaka Rosai Hospital, Sakai, Japan; Yoh Arita and Shinji Hasegawa, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan; Takamaru Ishizu, Minoru Ichikawa, and Yuzuru Takano Higashiosaka City Medical Center, Higashiosaka, Japan; Eisai Rin, Kawachi General Hospital, Higashiosaka, Japan; Tetsuya Watanabe and Shiro Hoshida, Yao Municipal Hospital, Yao, Japan; Masahiro Izumi, Kinki Central Hospital, Itami, Japan; Hiroyoshi Yamamoto and Hiroyasu Kato, Japan Community Health Care Organization, Osaka Minato Central Hospital, Osaka, Japan; Kazuhiro Nakatani and Hisatoyo Hiraoka, Sumitomo Hospital, Osaka, Japan; Mayu Nishio and Keiji Hirooka, Saiseikai Senri Hospital, Suita, Japan; Takahiro Yoshimura and Yoshinori Yasuoka, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan; Akihiro Tani, Kano General Hospital, Osaka, Japan; Yasushi Okumoto and Hideharu Akagi, Kinan Hospital, Tanabe, Japan; Yasunaka Makino, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan; Toshinari Ohnishi and Katsuomi Iwakura, Sakurabashi Watanabe Hospital, Osaka, Japan; Nagahiro Nishikawa and Yoshiyuki Kijima, Japan Community Health Care Organization, Hoshigaoka Medical Center, Hirakata, Japan; Takashi Kitao and Hideyuki Kanai, Minoh City Hospital, Minoh, Japan; Wataru Shioyama and Masashi Fujita, Osaka International Cancer Institute, Osaka, Japan; Koichiro Harada, Suita Municipal Hospital, Suita, Japan; Masahiro Kumada and Osamu Nakagawa, Toyonaka Municipal Hospital, Toyonaka, Japan; Ryo Araki and Takayuki Yamada, Otemae Hospital, Osaka, Japan; Akito Nakagawa and Yoshio Yasumura, Amagasaki Chuo Hospital, Amagasaki, Japan; Fusako Sera, Kei Nakamoto, Hidetaka Kioka, Tomohito Ohtani, Katsuki Okada, Hiroya Mizuno, Tomoharu Dohi, Takayuki Kojima, Hirota Kida, Akihiro Sunaga, Oeun Bolrathanak, Shinichiro Suna, Daisaku Nakatani, Shungo Hikoso, Toshihiro Takeda, Yasushi Matsumura, and Yasushi Sakata, Osaka University Graduate School of Medicine, Suita, Japan.

Contributorship statement:

(1) Conception and design of the study, acquisition of, and/or analysis and interpretation of data: SH, KT, YS, TM, YH, YN, HA, HF.

(2) Discuss on the planning, drafting the article and/or revising it critically for important intellectual content: SH, TY, YY, SH, DN, YS.

(3) Final approval of the version to be submitted: all authors.

Competing interests:

None.

Sources of Funding:

This work was funded by Roche Diagnostics K.K. and FUJIFILM Toyama Chemical. Grant numbers are not applicable.

C

Data availability statement:

Data are available upon reasonable request. No additional data available.

References

[1] Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressure. J Am Coll Cardiol 1997; 30:1527-1533.

[2] Geske SR, Soralia P, Nishimura RA, Ommen SR. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: Correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 2007; 116:2702-2708.

[3] Hoshida S, Watanabe T, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Ueno K, Suna S, Nakatani D, Hikoso S, Yamada T, Yasumura Y, Fuji H, Sakata Y and on behalf of PURSUIT HFpEF Investigators. Sex-related differences in left ventricular diastolic function and arterial elastance during admission in patients with heart failure with preserved ejection fraction: The PURSUIT HFpEF study. Clin Cardiol 2018; 41:1529-1536. doi:10.1002/clc.23073.

[4] Santos M, Rivero J, McCullough SD, West E, Opotowski AR, Waxman AB, Systorom DM, Shah AM. E/e' ratio in patients with unexaplained dyspnea. Lack of accuracy in estimating left ventricular filling pressure. Circ Heart Fail 2015; 8:749-756.

[5] Sharifov OF, Schiros CG, Aban I, Denney TS Jr, Gupta H. Diagnostic accuracy of tissue Doppler index E/e' for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: A systematic review and metaanalysis. J Am Heart Assoc 2016; 5:e002530 doi: 10.1161.

[6] Obokata M, Kane G, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction. A simultaneous invasive-echocardiographic study. Circulation 2017; 135:825-838.

[7] Andersen OS, Smiseth OA, Dokainish H, Abudiab MM, Schutt RC, Kumar A, Sato K, Harb S, Gude E, Remme EW, Andreassen AK, Ha J-W, Xu J, Klein AI, Nagueh SF. Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol 2017; 69:1932-1948.

[8] Hoshida S, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Watanabe T. Age- and sexrelated differences in diastolic function and cardiac dimensions in a hypertensive population. ESC Heart Fail 2016; 3:270-277.

[9] Hoshida S, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Watanabe T. Fluctuation of dynamic diastolic function relative to static cardiac structure - New insights into the underlying mechanism of heart failure with preserved ejection fraction in elderly patients. Circ J 2017; 81:755-758.

[10] Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T,

Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino PN, Oh JK, Popescu BA, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29:277-314.

[11] Sanchis L, Andrea R, Falces C, Poyatos S, Vidal B, Sitges M. Differential clinical implications of current recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocariogr 2018; 31:1203-1208.

[12] Suna S, Hikoso S, Yamada T, Uematsu M, Yasumura Y, Nakagawa A, Takeda T, Kojima T, Kida H, Oeun B, Sunaga A, Kitamura T, Dohi T, Okada K, Mizuno H, Nakatani D, Iso H, Matsumura Y, Sakata Y, On behalf of the OCVC Heart Failure Investigators Study protocol for the PURSUIT-HFpEF study: a Prospective, Multicenter, Observational Study of Patients with Heart Failure with Preserved Ejection Fraction. BMJ Open 2020; 10: e038294. Doi: 10.1136/ bmjopen-2020-038294

[13] Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28:1-39.

[14] Minamisaka T, Watanabe T, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Ueno K, Inoue S, Mine K, Hoshida S. Transient manifestation of left ventricular diastolic dysfunction following ablation in patients with paroxysmal atrial fibrillation. Clin Cardiol 2018; 41:978-984. doi: 10.1002/clc.22990.

[15] Hoshida S, Watanabe T, Shinoda Y, Minamisaka T, Fukuoka H, Inui H, Ueno K, Yamada T, Uematsu M, Yasumura Y, Nakatani D, Suna S, Hikoso S, Higuchi Y, Sakata Y, on behalf of the Osaka CardioVascular Conference (OCVC) Investigators.
Considerable scatter in the relationship between left atrial volume and pressure in heart failure with preserved left ventricular ejection fraction. Sci Rep. 2020; 10:90. doi: 10.1038/s41598-019-56581-x.

BMJ Open

[16] Matsumura Y, Hattori A, Manabe S, Takahashi D, Yamamoto Y, Murata T, Nakagawa A. Mihara N, Takeda T. Case report form reporter: a key component for the integration of electronic medical records and the electronic data capture system. Stud Health Technol Inform 2017; 245:516–520.

[17] Abbasi SA, Shah RV, McNulty SE, Hernandez AF, Semigran MJ, Lewis GD, Jerosch-Herold M, Kim RJ, Redfield MM, Kwong RY. Left atrial structure and function in heart failure with preserved ejection fraction: A RELAX substudy. PLosOne 2016 doi: 10.1371/journal.pone.0164914.

[18] Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O'Meara E, Desai AS, Heitner JF, Li G, Fang J, Rouleau J, Zile MR, Markov V, Ryabov V, Reis G, Assmann SF, McKinlay SM, Pitt B, Pfeffer MA, Solomon SD. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circ Heart Fail 2014; 7:740-751. doi: 10.1161/CIRCHEARTFAILURE.114.001583.

[19] Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 2018; 20:1303-1311.

[20] Kang SH, Park JJ, Choi DJ, Yoon C-H, Oh H-Y, Kang S-M, Yoo B-S, Jeon E-S, Kim J-J, Cho M-C, Chae SC, Ryu K-H, Oh B-H, KorHF Registry. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 2015; 101:1881-1888.

[21] Luchner A, Burnett JC Jr, Jougasaki M, Hense HW, Heid IM, Muders F, Riegger GA, Schunkert H. Evaluation of brain natriuretic peptide as marker of left ventricular dysfunction and hypertrophy in the population. J Hypertens 2000; 18:1121-1128.

[22] Kara K, Lehmann N, Nuemann T, Kälsch H, Möhlenkamp S, Dykun I, Broecker-Preuss M, Pundt N, Moebus S, Jöckel K-H, Erbel R, Mahabadi AA. NT-proBNP is

superior to BNP for predicting first cardiovascular events in the general population: The Heinz Nixdorf Recall Studt. Int J Cardiol 2015; 183:155-161.

[23] Portegies MI, Kavousi M, Leening MJ, Bos MJ, van den Meiracker AH, Hofman A, Franco OH, Koudstaal PJ, Ikram MA. N-terminal pro-B-type natriuretic peptide and the risk of stroke and transient ischaemic attack: the Rotterdam Study. Eur J Neurol 2015; 22:695-701.

[24]DietlA,StarkK,ZimmermannME,Meisinger C, Schunkert H, Birner C, Maier LS, Peters A, Heid IM, Luchner A.NT-proBNPpredicts cardiovascular death in the general population independent of leftventricular mass and function:Insights from a large population-based study with long-term follow-up.PLoS One 2016 DOI: 10.1371/journal.pone.0164060.

[25] Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and genderrelated ventricular–vascular stiffening. A community-based study. Circulation 2005; 112: 2254-2262.

[26] Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, Claggett B, Zile MR, Kraigher-Krainer E, Pieske B, Voors AA, Packer M, Bransford T, Lefkowitz M, McMurray JJV, Solomon SD, PARAMOUNT Investigators. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 2014; 16:535-542.

[27] Mottram PM, Haluska, Leano R, Carlier S, Case C, Marwick TH. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005; 91:1551-1556.

Legends

Figure 1. Kaplan–Meier survival curve analysis of patients with heart failure with preserved ejection fraction. Left atrial volume index (LAVI) > 38 mL/m², E/e² > 13.3, ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.121, and left ventricular diastolic dysfunction (DD) grade (0–1 vs. 2–3) were significant factors for all-cause mortality or admission for heart failure. Criteria for left ventricular DD grade were adopted from the study by Nagueh et al. [10]. The Ed/Ea ratio was calculated as $(E/e^2)/(0.9 \times \text{systolic blood pressure})$ [3, 8].

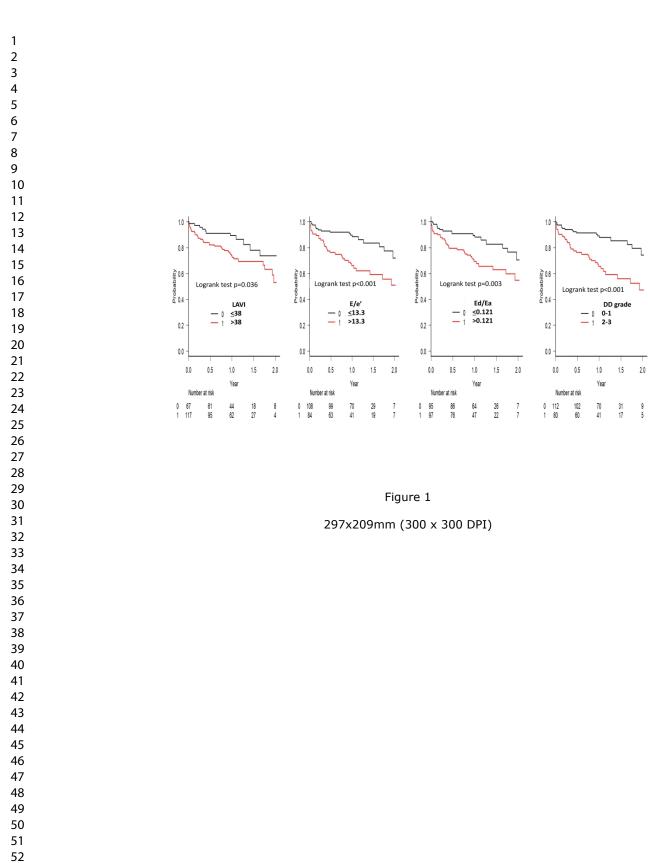

Figure 2. Kaplan–Meier survival curve analysis of patients with heart failure with preserved ejection fraction. Left atrial volume index (LAVI) > 69 mL/m², E/e' > 14.4, ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.163, and left ventricular diastolic dysfunction (DD) grade (0–1 vs. 2–3) were significant factors for all-cause mortality. Criteria for left ventricular DD grade were adopted from the study by Nagueh et al. [10]. The Ed/Ea ratio was calculated as $(E/e')/(0.9 \times \text{systolic blood pressure})$ [3, 8].

Figure 3. Kaplan-Meier survival curve analysis using the ratio of diastolic elastance

BMJ Open

(Ed)/arterial elastance (Ea), Ed/Ea, for all-cause mortality with stratified examination using N-terminal pro-brain natriuretic peptide (NT-proBNP) level in patients with heart failure with preserved ejection fraction. Patients with NT-proBNP level > 794 pg/mL and Ed/Ea > 0.163 exhibited higher all-cause mortality, and lines 1 and 3 were significantly different by Bonferroni test (p < 0.001). In patients with a higher NT-proBNP level, the d/Ea on an . effect of a higher Ed/Ea on all-cause mortality was significant.

BMJ Open: first published as 10.1136/bmjopen-2020-044605 on 30 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1.0

0.0 0.5 1.0 1.5 2.0

150 42 145 33 104 23 47 11

Number at risk

Logrank test p<0.001

Ed/Ea

≤0.163 >0.163

Year

1.0

0.8

£ 0.6

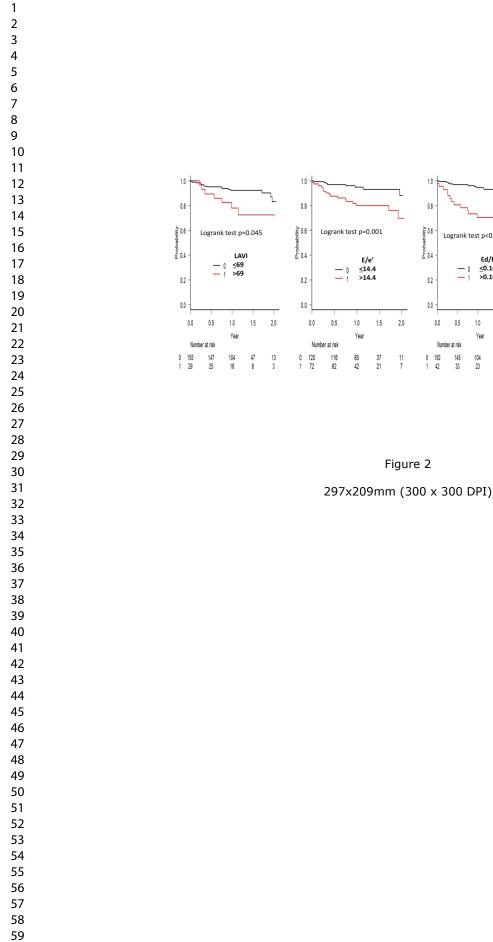
å 0.4

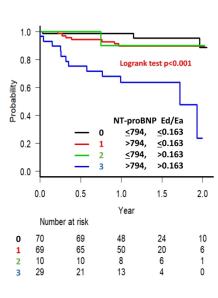
0.2

0.0

0.0 0.5 1.0 1.5 2.0

112 80 109 69 77 50 35 23 11 7


16 2


Number at risk

Logrank test p<0.001

Yea

DD grade 0-1 2-3

Figure 3

297x209mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3-4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5,6
Methods			I
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7,8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7,8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8,9
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8,9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8,9
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	8
		(<i>e</i>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
1		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9-1
-		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	11
		(c) Summarise follow-up time (eg, average and total amount)	9
Outcome data	15*	Report numbers of outcome events or summary measures over time	11-
			12

BMJ Open

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
∠ I 22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
50
51
52
53
54
54 55
56
57
58
50
59

60

1

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	11- 12
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12- 13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	16
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	13-
-		multiplicity of analyses, results from similar studies, and other relevant evidence	16
Generalisability	21	Discuss the generalisability (external validity) of the study results	14- 16
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	18
Funding			

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Prognosis in association with left atrial pressure overload in elderly patients with heart failure and preserved ejection fraction: A prospective multicenter observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044605.R2
Article Type:	Original research
Date Submitted by the Author:	09-Jun-2021
Complete List of Authors:	Hoshida, Shiro; Yao Shiritsu Byoin Tachibana, Koichi; Yao Shiritsu Byoin Shinoda, Yukinori; Yao Shiritsu Byoin Minamisaka, Tomoko; Yao Shiritsu Byoin Yamada, Takahisa; Osaka General Medical Center Higuchi, Yoshiharu; Osaka Police Hospital Nakagawa, Yusuke; Kawanishi City Hospital Abe, Haruhiko; National Hospital Organization Osaka National Hospital Fuji, Hisakazu; Kobe Ekisaikai Hospital Yasumura, Yoshio; Amagasaki Chuo Hospital Hikoso, Shungo; Osaka University Hospital, Department of Cardiovascular Medicine Nakatani, Daisaku; Osaka University Hospital, Department of Cardiovascular Medicine Sakata, Yasushi; Osaka University, Department of Cardiovascular Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Geriatric medicine, Epidemiology
Keywords:	Adult cardiology < CARDIOLOGY, Heart failure < CARDIOLOGY, CLINICAL PHYSIOLOGY, GERIATRIC MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

 Prognosis in association with left atrial pressure overload in elderly patients with heart failure and preserved ejection fraction: A prospective multicenter

observational study

Shiro Hoshida, MD¹; Koichi Tachibana, MD¹; Yukinori Shinoda, MD¹; Tomoko Minamisaka, MD¹; Takahisa Yamada, MD²; Yoshiharu Higuchi, MD³; Yusuke Nakagawa, MD⁴; Haruhiko Abe, MD⁵; Hisakazu Fuji, MD⁶; Yoshio Yasumura, MD⁷; Shungo Hikoso, MD⁸; Daisaku Nakatani, MD⁸; Yasushi Sakata, MD⁸; on behalf of the Osaka Cardiovascular Conference Investigators

¹ Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan
² Division of Cardiology, Osaka General Medical Center, Osaka, Japan
³ Department of Cardiovascular Medicine, Osaka Police Hospital, Osaka, Japan
⁴ Division of Cardiology, Kawanishi City Hospital, Kawanishi, Japan
⁵ Department of Cardiovascular Medicine, National Hospital Organization Osaka
National Hospital, Osaka, Japan
⁶ Cardiovascular Division, Kobe Ekisaikai Hospital, Kobe, Japan

⁷ Department of Cardiovascular Medicine, Amagasaki Chuo Hospital, Amagasaki, Japan ⁸ Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan *Corresponding author: Shiro Hoshida, MD, PhD Department of Cardiovascular Medicine, Yao Municipal Hospital 1-3-1 Ryuge-cho, Yao, Osaka 581-0069, Japan Tel.: +81-72-922-0881, Fax: +81-72-924-4820 iez oni E-mail: shiro.hoshida@hosp-yao.osaka.jp **Total word count of the manuscript:** 3787

ABSTRACT

Objectives: The severity of diastolic dysfunction is assessed using a combination of several indices of left atrial (LA) volume overload and LA pressure overload. We aimed to clarify which overload is more associated with the prognosis in patients with heart failure and preserved ejection fraction (HFpEF).

Setting: A prospective, multicenter observational registry of collaborating hospitals in Osaka, Japan.

Participants: We enrolled hospitalized patients with HFpEF showing sinus rhythm (men, 79; women, 113). Blood tests and transthoracic echocardiography were performed before discharge. The ratio of diastolic elastance (Ed) to arterial elastance (Ea) was used as a relative index of LA pressure overload.

Primary outcome measures: All-cause mortality and admission for heart failure were evaluated at >1 year after discharge.

Results: In the multivariable Cox regression analysis, Ed/Ea was significantly associated with all-cause mortality or admission for heart failure (p = 0.019), and allcause mortality (p = 0.010), independent of age, sex, LA volume index, and the serum N-terminal pro-brain natriuretic peptide (NT-proBNP) level. In patients with a higher NT-proBNP level, the effect of higher Ed/Ea on prognosis was prominent (p < 0.001).

Conclusions: Ed/Ea, an index of LA pressure overload, was significantly associated with the prognosis in elderly patients with HFpEF showing sinus rhythm.

Strengths and limitations

The severity of diastolic dysfunction is assessed by a combination of several indices of left atrial (LA) volume and pressure overload.

The ratio of diastolic elastance (Ed) to arterial elastance (Ea), that is, Ed/Ea, is a novel index of LA pressure overload.

Ed/Ea ratio and LA volume index are high in patients with heart failure and preserved ejection fraction (HFpEF).

It remains to be seen which LA overload is more associated with the prognosis in

elderly patients with HFpEF.

The limitation of this study is its small sample size.

Trial registration: Prospective Multicenter Observational Study of Patients with Heart

Failure and Preserved Ejection Fraction (PURSUIT HFpEF) registry.

UMIN-CTR ID: UMIN000021831

BMJ Open

 $\mathbf{5}$

Key words: diastolic function, left atrial overload, NT-proBNP

INTRODUCTION

Patients with heart failure and preserved ejection fraction (HFpEF) have an increased left atrial volume (LAV) and early transmitral flow velocity/the onset of early diastolic mitral annular velocity (E/e'), as shown by noninvasive echocardiographic findings.[1-3] E/e' is positively correlated with left atrial (LA) pressure or pulmonary capillary wedge pressure.[4-7] We previously reported that the LAV index (LAVI), a relative index of LAV overload, and the ratio of diastolic elastance (Ed) to arterial elastance (Ea) $[Ed/Ea = (E/e')/(0.9 \times systolic blood pressure)]$, a relative index of both LA pressure overload and left ventricular diastolic dysfunction (LVDD), are high in elderly patients with preserved ejection fraction with and without heart failure (HF).[3, 8, 9] In the recommendations for left ventricular (LV) diastolic evaluation using echocardiography, the severity of diastolic dysfunction (DD) is assessed using a combination of several indices, such as early transmitral flow (E)/late transmitral flow (A), deceleration time, E/e', tricuspid regurgitation velocity, and LAVI.[7, 10] Evaluation of disease severity based on these recommendations is useful for estimating the prognosis of patients with HFpEF.[11] However, these noninvasive indices are

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

related to either LA pressure overload or LAV overload, and which overload is more associated with the prognosis of these patients remains unclear. In this study, we aimed to identify a clinically significant echocardiographic index of LA pressure or volume overload for the prognosis of patients with HFpEF.

METHODS

Study subjects

Of the 353 patients with prognostic data who were recruited from the Prospective Multicenter Observational Study of Patients with Heart Failure and Preserved Ejection Fraction (PURSUIT HFpEF) registry,[3, 12] 129 patients were excluded because they showed atrial fibrillation before discharge and 32 patients were excluded because of poor echocardiographic data. Therefore, we enrolled 192 patients showing sinus rhythm (LV ejection fraction (LVEF) \geq 50%; men/women, 79/113; mean age, 80 years) at discharge during the index hospitalization with acute decompensated HF; patients were enrolled based on the Framingham criteria, and if they met the criteria of LVEF \geq 50% on transthoracic echocardiography (TTE) and N-terminal pro-brain natriuretic peptide (NT-proBNP) \geq 400 pg/mL on admission. We excluded patients with severe aortic

 $\overline{7}$

stenosis, aortic regurgitation, mitral stenosis, or mitral regurgitation due to structural changes in the valves detected by TTE on admission. The PURSUIT HFpEF registry is a prospective, multicenter observational registry in which collaborating hospitals in Osaka, Japan recorded clinical, echocardiographic, and outcome data of patients with HFpEF (UMIN-CTR ID: UMIN000021831). The registry was managed in accordance with the Declaration of Helsinki.

Echocardiography and laboratory testing

TTE was performed when the patients were in a stable condition before discharge. Echocardiographic measurements were obtained according to the American Society of Echocardiography or European Society of Echocardiography criteria during a stable sinus rhythm.[10, 13] Volumetry was standardized using the modified Simpson's method, and the index was calculated as the LAV divided by the body surface area. As a marker of LA pressure overload for estimating LV diastolic function, we examined E/e' and afterload-integrated Ed/Ea [(E/e')/($0.9 \times$ systolic blood pressure)].[3, 9, 14] As relative markers of LAV overload, we also evaluated LAVI and LA ejection fraction calculated as stroke volume (SV)/LAV.[15] The severity of LVDD was assessed according to a previous report.[11] In the first step, four parameters were used: E/e', e'

BMJ Open

velocity, tricuspid regurgitation velocity, and LAVI. In the second step, E/A, E wave, E/e', tricuspid regurgitation velocity, and LAVI were used to determine DD grades 1–3.[11] When DD was not observed in the first step, the patients were classified as DD grade 0. Serum NT-proBNP and albumin levels and the estimated glomerular filtration rate (eGFR) were also examined when patients were stable before discharge.

Follow-up/clinical outcome

After discharge, all patients were followed up at the respective hospital. Survival data were obtained by dedicated coordinators and investigators through direct contact with patients or their physicians at the hospital, or in an outpatient setting, or via a telephone interview with their families or by mail. Data collection was performed using an electronic data capture system integrated into the electronic medical records developed at the Osaka University.[16] In-hospital data were entered into the system and transferred to the data collection center via a secure Internet connection for processing and analysis. The primary endpoints of this study were both the composite of all-cause mortality and hospitalization for worsening HF and all-cause mortality.

Ethics approval

The study protocol was approved by the ethics committee of each participating hospital. The protocol (Osaka University Clinical Research Review Committee, R000024414) was approved by the ethics committee of Yao Municipal Hospital (2016-No.0006). All participants provided written informed consent.

Patient and public involvement

No patient involved.

Statistical analysis

.et Continuous variables are expressed as mean \pm standard deviation, whereas categorical variables are presented as frequencies and percentages. Differences in categorical variables between the groups were assessed using the chi-square test, and those in continuous variables were assessed using Student's t-test or Welch's t-test, as appropriate. Coefficients of correlations were assessed using the Pearson or Spearman model, and p-values were examined using regression analysis. Survival curves were estimated using the Kaplan-Meier product-limit estimator, and the groups were compared using the log-rank test and Bonferroni test. The Cox hazard ratio was evaluated using univariable and multivariable analyses. In the multivariable analysis,

age, sex, and variables that were significant in the univariable analysis were used. A pvalue of <0.05 was considered statistically significant. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Clinical and laboratory characteristics of patients with HFpEF

During a median follow-up of 452 days, 50 patients had all-cause mortality or admission for worsening HF, and 24 patients died. There were significant differences between patients with and without all-cause mortality or admission for HF in terms of age (p = 0.011), eGFR (p = 0.026), and serum NT-proBNP (p = 0.017) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension and dyslipidemia, except for diabetes mellitus, between the two groups. There were significant differences between patients with and without allcause mortality in terms of age (p < 0.001) and serum NT-proBNP (p = 0.007) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension, dyslipidemia, and diabetes mellitus

BMJ Open

between the two groups. With respect to echocardiographic parameters, LAVI (p =0.024), tricuspid regurgitation pressure gradient (TRPG, p < 0.001), E/e' (p = 0.001), and Ed/Ea (p = 0.019) but not SV/LAV, LV mass index (LVMI), LVEF, E/A, the deceleration time of the E wave, septal e', lateral e', or Ed at discharge, were significantly different between patients with and without all-cause mortality or admission for HF (Table 2). There were significant differences in LAVI (p = 0.001), TRPG (p = 0.005), E/e' (p = 0.001), Ed (p = 0.026), and Ed/Ea (p = 0.001) between patients with and without all-cause mortality (Table 2). In the correlations between the indices of LA pressure and volume overload, Ed/Ea was more modestly correlated with LAVI or SV/LAV than E/e' [correlation between E/e' and LAVI (r = 0.155, p = 0.034) or SV/LAV (r = -0.137, p=0.072); correlation between Ed/Ea and LAVI (r = 0.194, p = 0.008) or SV/LAV (r = -0.180, p = 0.017)]. E/e' (r = 0.233, p = 0.001) and Ed/Ea (r = 0.008) 0.222, p = 0.002) showed a modest positive correlation with the NT-proBNP logtransformed level, although TRPG did not correlate with the NT-proBNP logtransformed level (r = 0.147, p = 0.060). LAVI and the NT-proBNP log-transformed level were significantly correlated (r = 0.256, p < 0.001).

Table 1. Patient characteristics before discharge

	All-cause								
				mortality or					
	All	admission for		<i>p</i> -	All-cause mortality				
		heart fa	heart failure				p-value		
	(n = 192)	- (n =	+ (n =	(- vs.	- (n =	+ (n =	(- vs. +)		
	(11)2)	142)	50)	+)	168)	24)			
Age, years	80.0 ±	78.9 ±	83.1 ±	0.011	79.0 ±	87.1 ±	<0.001		
Age, years	10.0	10.1	9.1	0.011	10.0	7.2	-0.001		
Male sex, n (%)	79 (41)	59 (42)	20 (40)	0.848	71 (42)	8 (33)	0.408		
Body mass index	21.2 ± 4.5	21.0 ±	21.8 ±	0.300	21.3 ±	$20.6 \pm$	0.453		
Douy mass mucx	21.2 ± 4.5	4.5	4.3	0.300	4.6	3.8	0.433		
Cardiothoracic	55 4 ± 7 5	54.8 ± <	57.2 ±	0.093	$54.9 \pm$	59.1 ±	0.010		
ratio, %	55.4 ± 7.5	7.4	7.7	0.093	7.3	8.0	0.010		
Systolic blood	122 ± 18	$120 \pm$	124 ±	0.078	122 ± 18	120 ±	0.690		
pressure, mmHg	122 ± 10	17	21	0.078	122 ± 10	21	0.090		
Diastolic blood	64 ± 12	65 ±	62 ± 11	0.212	64 ± 12	62 ± 10	0.404		
pressure, mmHg	04 ± 12	12	02 ± 11	0.212	04 ± 12	02 ± 10	0.404		
Heart rate, bpm	69 ± 14	69 ±	68 ± 12	0.576	69 ± 14	70 ± 13	0.542		
meant rate, opin	09 ± 14	14	00 ± 12	0.370	07 ± 14	/0 ± 13	0.342		
Chronic									
obstructive	11 (6)	0 (7)	2 (1)	0.796	9 (6)	2 (10)	0.906		
pulmonary	11 (6)	9 (7)	2 (4)	0.790	9 (6)	2 (10)	0.900		
disease, n (%)									
Coronary artery	<i>41 (21</i>)	31 (22)	10 (20)	0.785	37 (22)	4 (17)	0.739		
disease, n (%)	41 (21)	31 (22)	10 (20)	0.703	57 (22)	4 (17)	0./37		
Diabetes mellitus,	73 (39)	18 (24)	25 (50)	0 0 1 2	63 (20)	10 (42)	0.694		
n (%)	73 (38)	48 (34)	25 (50)	0.043	63 (38)	10 (42)	0.094		

Dyslipidemia, n (%)	92 (48)	65 (46)	27 (54)	0.316	83 (50)	9 (38)	0.274
Hypertension, n (%)	169 (88)	121 (85)	48 (96)	0.0 77	146 (87)	23 (96)	0.355
Laboratory data							
Hemoglobin, g/dL	11.0 ± 1.8	11.1 ± 1.8	10.5 ± 1.9	0.062	11.0 ± 1.8	10.4 ± 2.0	0.092
Albumin, g/dL	3.3 ± 0.5	3.4 ± 0.5	3.1 ± 0.6	<0.00 1	3.4 ± 0.5	3.0 ± 0.6	<0.001
eGFR, mL/min/1.73 m ²	42.3 ± 22.1	44.4 ± 21.7	36.3 ± 22.6	0.026	42.6 ± 21.2	40.0 ± 28.4	0.598
N-terminal pro- brain natriuretic peptide, pg/mL	2971 ± 8478	2096 ± 4832	5557 ± 14490	0.017	2318 ± 4902	7374 ± 19668	0.007
Medications							
Beta-blockers, n (%)	109 (57)	82 (58)	27 (54)	0.645	98 (58)	11 (46)	0.247
Calcium-channel blockers, n (%)	112 (58)	80 (56)	32 (64)	0.344	100 (60)	12 (50)	0.376
Diuretics, n (%)	146 (76)	105 (74)	41 (82)	0.251	125 (74)	21 (88)	0.250
RAAS inhibitors, n (%)	133 (69)	94 (66)	39 (78)	0.119	115 (68)	18 (75)	0.515
Statins, n (%)	72 (38)	50 (35)	22 (44)	0.269	62 (37)	10 (42)	0.652

Values are mean ± standard deviation or number (%).

eGFR, estimated glomerular filtration rate;

RAAS, renin-angiotensin-aldosterone system

Table 2. Echocardiographic data before discharge

All-cause	mortal	ity
-----------	--------	-----

							1
		All-cause	mortality				
		admission failure	for heart	p- value	All-cause	mortality	p- va
	All	-	+	(- vs +)	-	+	(- 1 +)
LAD, mm	41.2 ± 7.6	40.4 ± 7.9	43.3 ± 6.5	0.021	41.0 ± 7.5	42.9 ± 8.5	0.2
LAVI, mL/m²	50.5 ± 25.7	47.9 ± 23.2	57.6 ± 30.8	0.024	48.2 ± 22.2	67.1 ± 40.2	0.0
LVEDVI, mL/m ²	56.1 ± 20.3	55.9 ± 21.2	56.8 ± 17.6	0.786	55.9 ± 20.3	57.7 ± 20.4	0.0
LVESVI, mL/m ²	21.8 ±	21.8 ± 10.9	21.8 ± 10.7	0.993	21.6 ± 10.5	23.5 ±	0. 4
SVI, mL/m ²	34.3 ± 12.0	34.0 ± 12.7	35.0 ±	0.652	34.3 ±	34.2 ± 9.4	0.9
SV/LAV	0.809 ± 0.376	0.835 ± 0.376	0.733 ± 0.373	0.125	0.831 ± 0.377	0.647 ± 0.335	0.0
LVEF, %	61.4 ±	61.3 ± 6.7	62.0 ± 6.8	0.502	61.5 ± 6.7	61.0 ± 7.2	0.7
LVMI, g/m ²	108.4 ± 33.2	105.8 ± 32.5	115.9 ± 34.1	0.063	108.4 ± 33.3	108.5 ± 32.6	0.9
TRPG, mmHg	27.2 ± 9.3	25.8 ± 8.5	30.9 ± 10.4	<0.00	26.4 ± 9.0	32.1 ± 10.1	0.0
E/A	1.00 ± 0.57	1.00 ± 0.61	1.01 ± 0.47	0.897	1.02 ± 0.59	0.89 ± 0.32	0. 3
DcT of E wave	0.22 ± 0.06	0.22 ± 0.06	0.22 ± 0.07	0.468	0.22 ± 0.06	0.22 ± 0.07	0.6
Septal e'	0.051 ± 0.019	0.052 ± 0.020	0.048 ± 0.016	0.189	0.052 ± 0.019	0.048 ± 0.015	0.3
Lateral e'	0.067 ± 0.023	0.067 ± 0.024	0.067 ± 0.020	0.979	0.068 ± 0.024	0.064 ± 0.019	0 .4

E/e'	14.0 ± 5.5	13.2 ± 5.5	16.1 ± 5.2	0.001	13.5 ± 5.4	17.4 ± 5.8	0.001
Ed	0.450 ± 0.230	0.431 ± 0.227	0.505 ± 0.249	0.065	0.435 ± 0.235	0.553 ± 0.254	0.026
Ed/Ea	0.130 ± 0.055	0.125 ± 0.055	0.146 ± 0.052	0.019	0.124 ± 0.053	0.164 ± 0.056	0.001

Values are mean ± standard deviation.

LAD, left atrial diameter; LAVI, left atrial volume index;

LVEDVI, left ventricular end-diastolic volume index;

LVESVI, left ventricular end-systolic volume index; SVI, stroke volume index;

SV, stroke volume; LAV, left atrial volume;

LVEF, left ventricular ejection fraction;

TRPG, tricuspid regurgitation pressure gradient; DcT, deceleration time;

E, early transmitral flow velocity; e', onset of early diastolic mitral annular velocity; Ed diastolic elastance; Ea, arterial elastance.

Prognostic analysis

In the receiver operating characteristic (ROC) curve analysis for the prediction of allcause mortality or admission for HF, the area under the curve of LAVI was slightly smaller than that of the NT-proBNP level, TRPG, and Ed/Ea (Table 3). The Kaplan-Meier survival analysis clearly showed that LAVI > 38 mL/m² (p = 0.036), E/e² > 13.3 (p < 0.001), and Ed/Ea > 0.121 (p = 0.003) were significant factors when the cut-off points were evaluated in the ROC curve analysis (Figure 1). Although not shown, age > 85 years (p < 0.001), NT-proBNP level > 783 pg/mL (p < 0.001), eGFR < 39.8

BMJ Open

mL/min/1.73 m² (p = 0.004), and TRPG > 28 mmHg (p < 0.001) were also determinant factors. The Cox hazard ratios were significant for all indices (Table 3). The albumin level was not a determinant factor (data not shown). The LVDD grade was also related to all-cause mortality or admission for HF in patients with HFpEF, as shown by the Kaplan-Meier survival curve analysis (Figure 1) and Cox hazard analysis (hazard ratio 3.063, 95% confidence interval 1.7-5.519, p < 0.001). In the multivariable analysis of the Cox hazard ratio, Ed/Ea (p = 0.019) was significantly associated with poor outcome, independent of age, sex, eGFR, LAVI, serum NT-proBNP level, and TRPG (Table 3). With respect to all-cause mortality, LAVI, Ed/Ea ratio, and LVDD grade were all significant indices in the Kaplan-Meier survival analysis (Figure 2). Furthermore, the Ed/Ea ratio (p = 0.010) was significantly associated with all-cause mortality independent of the serum NT-proBNP levels after adjustments in the multivariable analysis of the Cox hazard ratio (Table 4). Systolic blood pressure (hazard ratio 0.992, 95% confidence interval 0.970-1.015, p = 0.528) and hemoglobin level (hazard ratio 0.787, 95% confidence interval 0.610-1.016, p = 0.066) were not associated with prognosis in a Cox univariable analysis. Although Ed (hazard ratio 4.769, 95% confidence interval 1.23-18.49, p = 0.023) and E/e' (hazard ratio 3.651, 95% confidence interval 1.562-8.532, p = 0.004) were significantly associated with prognosis in a

univariable model, the significance was modest compared with the Ed/Ea ratio.

Table 3. Analytical data of prognostic factors for all-cause mortality or admission for heart failure in patients with heart failure and preserved ejection fraction

			Cox ha	nzard analy	ysis					
	ROC curve analysis		Univar	Univariable			Multivariable			
	Cut- off point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value		
Age	85	0.628	2.855	1.634- 4.99	< 0.001	1.254	0.646- 2.433	0.502		
Sex	-	-	0.965	0.547- 1.701	0.903	1.532	0.772- 3.038	0.221		
NT- proBNP	783	0.695	3.432	1.652- 7.133	<0.001	2.73	1.173- 6.358	0.019		
eGFR	39.8	0.631	0.464	0.261- 0.824	0.008	0.61	0.315- 1.179	0.141		
LAVI	38	0.607	2.225	1.134- 4.366	0.02	1.08	0.497- 2.345	0.844		
TRPG	28	0.662	2.722	1.552- 4.775	< 0.001	2.082	1.079- 4.018	0.028		
Ed/Ea	0.121	0.637	2.424	1.337- 4.394	0.003	2.182	1.135- 4.194	0.019		

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval;

NT-proBNP, N-terminal pro-brain natriuretic peptide; eGFR, estimated glomerular filtration rate;

LAVI, left atrial volume index; TRPG, tricuspid regurgitation pressure gradient; Ed, diastolic elastance; Ea, arterial elastance.

 Table 4. Analytical data of prognostic factors for all-cause mortality

 in patients with heart failure and preserved ejection fraction

			Cox hazard analysis							
	ROC c analysi		Univa	riable		Multivariable				
	Cut- off point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value		
Age	85	0.757	6.512	2.696-15.73	< 0.001	3.082	1.171-8.110	0.022		
Sex	-	-	0.739	0.315-1.732	0.487	1.735	0.647-4.652	0.273		
NT- proBNP	794	0.703	4.488	1.523-13.22	0.006	1.777	0.552-5.719	0.334		
Albumin	3.2	0.714	0.284	0.126-0.639	0.002	0.366	0.150-0.893	0.027		
TRPG	29	0.687	3.153	1.400-7.001	0.005	2.537	1.042-6.177	0.04		
Ed/Ea	0.163	0.718	5.903	2.62-13.3	< 0.001	3.279	1.319-8.152	0.01		

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; NT-proBNP, N-terminal pro-brain natriuretic peptide; TRPG, tricuspid regurgitation pressure gradient; Ed, diastolic elastance; Ea, arterial elastance.

In the Kaplan-Meier survival curve analysis for all-cause mortality with a stratified

examination using the NT-proBNP level and Ed/Ea, patients with a combination of NT-

proBNP level > 794 pg/mL and Ed/Ea > 0.163 showed higher all-cause mortality (log-

rank test p < 0.001, Figure 3). In patients with a higher NT-proBNP level, the effect of

higher Ed/Ea on all-cause mortality was significant (Bonferroni test, p < 0.001). Although the patients with NT-proBNP level > 783 pg/mL and Ed/Ea > 0.121 exhibited higher all-cause mortality or admission for HF in the Kaplan-Meier survival curve analysis (log-rank test, p < 0.001), the effect of higher Ed/Ea on all-cause mortality or admission for HF was not significant in patients with a higher NT-proBNP level (Bonferroni test, p = 0.202).

DISCUSSION

In the present study, LA pressure overload, rather than LAV overload, was found to be a more useful marker of prognosis in patients with HFpEF. Our findings can help determine which single index of LA pressure overload is significantly associated with the prognosis. In particular, in patients with a higher NT-proBNP level, a higher Ed/Ea was associated with a poor prognosis.

The heterogeneity of the cardiac structure in patients with HFpEF is well known. Notably, there were no significant differences in the deceleration time of the E wave and E/A in patients with and without all-cause mortality and/or admission for HF. The LA structure and function most closely reflect hemodynamic stress and remodeling in HFpEF.[17] The E/e' ratio was reported to be a significant prognostic factor in the

BMJ Open

Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial [18] and a systematic review.[19] However, there are many important differences between our study and the TOPCAT trial: (1) the TOPCAT trial was an intervention study; (2) subjects in our study were 10 years older; (3) the inclusion criteria were different (i.e., stable outpatients in the TOPCAT trial vs. hospitalized patients with HFpEF in our study and patients with atrial fibrillation were included in the TOPCAT trial but excluded from our study); (4) essential factors for prognosis, such as serum NT-proBNP and albumin levels, were included in the analysis of the Cox hazard ratio in our study.

As a single index of LA pressure overload among noninvasive echocardiographic findings, Ed/Ea may be more significantly associated with all-cause mortality and/or admission for HF. E/e' is known to be the best-fit index for LA pressure among echocardiographic indices in HFpEF.[17] Ed/Ea = $(E/e')/(0.9 \times \text{systolic blood pressure})$ is the LA pressure relative to systemic pressure and may show the ratio of preload to afterload pressure of the left ventricle. Thus, the Ed/Ea ratio may be an index that reflects the whole left-sided heart function, including the atrio-ventriculo-arterial interaction under a preserved LVEF. This issue may be related to the fact that Ed/Ea is an independent determinant of prognosis. Furthermore, patients with a higher NT-

BMJ Open

proBNP level and higher Ed/Ea had the poorest prognosis. The NT-proBNP level is a powerful prognostic factor in HFpEF.[20] Although NT-proBNP reflects cardiac morphology and function, [21] it remains uncertain whether NT-proBNP levels solely reflect cardiac processes or whether it also plays a role independent of cardiac remodeling. Several recent studies have reported that NT-proBNP may be an additional marker of extracardiac vascular diseases. [22, 23] At least a part of the association of NT-proBNP with mortality is independent of cardiac remodeling measures.[24] In combination with the NT-proBNP level, the significance of higher Ed/Ea for evaluating the prognosis was obvious in elderly patients with HFpEF. Among the indices of LAV overload, LAVI but not SV/LAV significantly differed between patients with and without all-cause mortality or admission for HF. As the areas under the curve of LAVI and SV/LAV in the ROC curve analysis were small and no significant findings were observed in the multivariable analysis of the Cox hazard ratio for all-cause mortality and/or admission for HF in patients with HFpEF, we conclude that LAVI and SV/LAV are not suitable factors for evaluating prognosis. LAVI is an indicator of long-term elevation of LV filling pressure, and an enlarged LAVI may be a secondary phenomenon. Even in patients without all-cause mortality or admission for

BMJ Open

HF, the mean LAVI was 47.9 mL/m², which was considerably higher than the criterion for LVDD (> 34 mL/m^2).

LV Ed is expressed as $(E/e^{*})/SV$ [25] or $(E/e^{*})/LV$ end-diastolic volume.[26] Ea was calculated as $(0.9 \times systolic blood pressure)/SV.[25]$ Although Ed and Ea were reported to be negatively correlated in younger patients with hypertension,[27] both indices were higher in elderly women than in men under stable conditions.[25, 26] Elevated Ed in elderly women could be an epiphenomenon because of the associated increase in Ea. We previously reported that Ed/Ea is an index of the LV diastolic function relative to the afterload and can be calculated as $(E/e^{*})/(0.9 \times systolic blood pressure)$ when Ed is $(E/e^{*})/SV.[8, 9]$ Accordingly, Ed/Ea was not directly related to the parameters of cardiac volume, such as LAV and SV. We recently reported a larger LAV and higher E/e^{*} and Ed/Ea in elderly women with preserved ejection fraction, regardless of HF status.[3, 8, 9] Ed/Ea is a novel afterload-integrated parameter for LV diastolic function that may be useful as a severity index for prognosis in elderly patients with HFpEF.

LIMITATIONS

Further studies are required to investigate differences in the clinical significance of Ed/Ea for prognosis between younger patients with normal renal function and moderate-

BMJ Open

to-severe LV hypertrophy and elderly patients (mean age, 80 years) with renal dysfunction (mean eGFR, 42.3 mL/min/1.73 m²) and mild LV hypertrophy (mean LVMI, 108.4 g/m²) included in our study. We could not discuss echocardiographic parameters in patients with atrial fibrillation. The role of the right side of the heart in prognosis, as possibly reflected in the involvement of TRPG, remains unclear in this study. Since the sample size of this study was small, the multivariable Cox model was overfitted with the number of variables included/input exceeding the rough rule of one variable per ten events. Therefore, our results need to be interpreted carefully because of non-compliance with the assumption of Cox regression. We examined all-cause mortality rather than cardiac death because the determination of cardiac death can be challenging in elderly patients.

CONCLUSIONS

LA pressure overload, rather than LAV overload, is a useful marker of prognosis in elderly patients with HFpEF showing sinus rhythm. As an index for LA pressure overload among noninvasive echocardiographic findings, Ed/Ea provides additional prognostic information on the serum NT-proBNP level for all-cause mortality.

ACKNOWLEDGMENTS:

We thank Hiroyuki Kurakami and Tomomi Yamada for their statistical support, Nagisa Yoshioka, Kyoko Tatsumi, Satomi Kishimoto, Noriko Murakami and Sugako Mitsuoka for their excellent assistance with data collection.

The Osaka CardioVascular Conference-Heart Failure Investigators

Shunsuke Tamaki, Masatake Fukunami, and Takahisa Yamada, Osaka General Medical Center, Osaka, Japan; Takaharu Hayashi and Yoshiharu Higuchi, Osaka Police Hospital, Osaka, Japan; Masaharu Masuda, Mitsutoshi Asai, and Toshiaki Mano, Kansai Rosai Hospital, Amagasaki, Japan; Hisakazu Fuji, Kobe Ekisaikai Hospital, Kobe, Japan; Daisaku Masuda, Yoshihiro Takeda, Yoshiyuki Nagai, and Shizuya Yamashita, Rinku General Medical Center, Izumisano, Japan; Masami Sairyo, Yusuke Nakagawa, and Shuichi Nozaki, Kawanishi City Hospital, Kawanishi, Japan; Haruhiko Abe, Yasunori Ueda, Masaaki Uematsu, and Yukihiro Koretsune, National Hospital Organization Osaka National Hospital, Osaka, Japan; Kunihiko Nagai, Ikeda Municipal Hospital, Ikeda, Japan; Masamichi Yano, Masami Nishino, and Jun Tanouchi, Osaka Rosai Hospital, Sakai, Japan; Yoh Arita and Shinji Hasegawa, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan; Takamaru Ishizu, Minoru Ichikawa, and Yuzuru Takano Higashiosaka City Medical Center, Higashiosaka, Japan; Eisai Rin, Kawachi General Hospital, Higashiosaka, Japan; Tetsuya Watanabe and Shiro Hoshida, Yao Municipal Hospital, Yao, Japan; Masahiro Izumi, Kinki Central Hospital, Itami, Japan; Hiroyoshi Yamamoto and Hiroyasu Kato, Japan Community Health Care Organization, Osaka Minato Central Hospital, Osaka, Japan; Kazuhiro Nakatani and Hisatoyo Hiraoka, Sumitomo Hospital, Osaka, Japan; Mayu Nishio and Keiji Hirooka, Saiseikai Senri Hospital, Suita, Japan; Takahiro Yoshimura and Yoshinori Yasuoka, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan; Akihiro Tani, Kano General Hospital, Osaka, Japan; Yasushi Okumoto and Hideharu Akagi, Kinan Hospital, Tanabe, Japan; Yasunaka Makino, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan; Toshinari Ohnishi and Katsuomi Iwakura, Sakurabashi Watanabe Hospital, Osaka, Japan; Nagahiro Nishikawa and Yoshiyuki Kijima, Japan Community Health Care Organization, Hoshigaoka Medical Center, Hirakata, Japan; Takashi Kitao and Hideyuki Kanai, Minoh City Hospital, Minoh, Japan; Wataru Shioyama and Masashi Fujita, Osaka International Cancer Institute, Osaka, Japan; Koichiro Harada, Suita Municipal Hospital, Suita, Japan; Masahiro Kumada and Osamu Nakagawa, Toyonaka Municipal Hospital, Toyonaka, Japan; Ryo Araki and Takayuki Yamada, Otemae Hospital, Osaka, Japan; Akito Nakagawa and

Yoshio Yasumura, Amagasaki Chuo Hospital, Amagasaki, Japan; Fusako Sera, Kei Nakamoto, Hidetaka Kioka, Tomohito Ohtani, Katsuki Okada, Hiroya Mizuno, Tomoharu Dohi, Takayuki Kojima, Hirota Kida, Akihiro Sunaga, Oeun Bolrathanak, Shinichiro Suna, Daisaku Nakatani, Shungo Hikoso, Toshihiro Takeda, Yasushi Matsumura, and Yasushi Sakata, Osaka University Graduate School of Medicine, Suita, Japan.

Contributorship statement:

(1) Conception and design of the study, acquisition of, and/or analysis and interpretation

of data: SH, KT, YS, TM, YH, YN, HA, HF.

(2) Discussion regarding the planning, drafting the article, and/or revising it critically

for important intellectual content: SH, TY, YY, SH, DN, YS.

(3) Final approval of the version to be submitted: All authors.

Competing interests:

None.

Sources of Funding:

This work was funded by Roche Diagnostics K.K. and FUJIFILM Toyama Chemical.

No grant numbers were applicable.

Data availability statement:

Data are available upon reasonable request. No additional data available.

REFERENCES

[1] Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressure. J Am Coll Cardiol 1997; 30:1527-1533.

[2] Geske SR, Soralia P, Nishimura RA, Ommen SR. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: Correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 2007; 116:2702-2708.

[3] Hoshida S, Watanabe T, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Ueno K, Suna S, Nakatani D, Hikoso S, Yamada T, Yasumura Y, Fuji H, Sakata Y and on behalf of PURSUIT HFpEF Investigators. Sex-related differences in left ventricular diastolic function and arterial elastance during admission in patients with heart failure with preserved ejection fraction: The PURSUIT HFpEF study. Clin Cardiol 2018; 41:1529-1536. doi:10.1002/clc.23073.

[4] Santos M, Rivero J, McCullough SD, West E, Opotowski AR, Waxman AB, Systorom DM, Shah AM. E/e' ratio in patients with unexaplained dyspnea. Lack of accuracy in estimating left ventricular filling pressure. Circ Heart Fail 2015; 8:749-756.

[5] Sharifov OF, Schiros CG, Aban I, Denney TS Jr, Gupta H. Diagnostic accuracy of tissue Doppler index E/e' for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: A systematic review and meta-analysis. J Am Heart Assoc 2016; 5:e002530 doi: 10.1161.

[6] Obokata M, Kane G, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction. A simultaneous invasive-echocardiographic study. Circulation 2017; 135:825-838.

[7] Andersen OS, Smiseth OA, Dokainish H, Abudiab MM, Schutt RC, Kumar A, Sato K, Harb S, Gude E, Remme EW, Andreassen AK, Ha J-W, Xu J, Klein AI, Nagueh SF. Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol 2017; 69:1932-1948.

[8] Hoshida S, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Watanabe T. Age- and sexrelated differences in diastolic function and cardiac dimensions in a hypertensive population. ESC Heart Fail 2016; 3:270-277.

[9] Hoshida S, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Watanabe T. Fluctuation of dynamic diastolic function relative to static cardiac structure - New insights into the underlying mechanism of heart failure with preserved ejection fraction in elderly patients. Circ J 2017; 81:755-758.

[10] Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino PN, Oh JK, Popescu BA, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29:277-314.

[11] Sanchis L, Andrea R, Falces C, Poyatos S, Vidal B, Sitges M. Differential clinical implications of current recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocariogr 2018; 31:1203-1208.

[12] Suna S, Hikoso S, Yamada T, Uematsu M, Yasumura Y, Nakagawa A, Takeda T, Kojima T, Kida H, Oeun B, Sunaga A, Kitamura T, Dohi T, Okada K, Mizuno H, Nakatani D, Iso H, Matsumura Y, Sakata Y, On behalf of the OCVC Heart Failure Investigators. Study protocol for the PURSUIT-HFpEF study: a Prospective, Multicenter, Observational Study of Patients with Heart Failure with Preserved Ejection Fraction. BMJ Open 2020; 10: e038294. Doi: 10.1136/ bmjopen-2020-038294

 [13] Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L,
Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D,
Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU.
Recommendations for cardiac chamber quantification by echocardiography in adults: an
update from the American Society of Echocardiography and the European Association
of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28:1-39.

[14] Minamisaka T, Watanabe T, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Ueno K, Inoue S, Mine K, Hoshida S. Transient manifestation of left ventricular diastolic dysfunction following ablation in patients with paroxysmal atrial fibrillation. Clin Cardiol 2018; 41:978-984. doi: 10.1002/clc.22990.

[15] Hoshida S, Watanabe T, Shinoda Y, Minamisaka T, Fukuoka H, Inui H, Ueno K, Yamada T, Uematsu M, Yasumura Y, Nakatani D, Suna S, Hikoso S, Higuchi Y, Sakata Y, on behalf of the Osaka CardioVascular Conference (OCVC) Investigators.
Considerable scatter in the relationship between left atrial volume and pressure in heart failure with preserved left ventricular ejection fraction. Sci Rep. 2020; 10:90. doi: 10.1038/s41598-019-56581-x.

[16] Matsumura Y, Hattori A, Manabe S, Takahashi D, Yamamoto Y, Murata T, Nakagawa A. Mihara N, Takeda T. Case report form reporter: a key component for the integration of electronic medical records and the electronic data capture system. Stud Health Technol Inform 2017; 245:516–520.

[17] Abbasi SA, Shah RV, McNulty SE, Hernandez AF, Semigran MJ, Lewis GD, Jerosch-Herold M, Kim RJ, Redfield MM, Kwong RY. Left atrial structure and function in heart failure with preserved ejection fraction: A RELAX substudy. PLosOne 2016 doi: 10.1371/journal.pone.0164914.

[18] Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O'Meara E, Desai AS, Heitner JF, Li G, Fang J, Rouleau J, Zile MR, Markov V, Ryabov V, Reis G, Assmann SF, McKinlay SM, Pitt B, Pfeffer MA, Solomon SD. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circ Heart Fail 2014; 7:740-751. doi: 10.1161/CIRCHEARTFAILURE.114.001583. [19] Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 2018; 20:1303-1311.

[20] Kang SH, Park JJ, Choi DJ, Yoon C-H, Oh H-Y, Kang S-M, Yoo B-S, Jeon E-S, Kim J-J, Cho M-C, Chae SC, Ryu K-H, Oh B-H, KorHF Registry. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 2015; 101:1881-1888.

[21] Luchner A, Burnett JC Jr, Jougasaki M, Hense HW, Heid IM, Muders F, Riegger GA, Schunkert H. Evaluation of brain natriuretic peptide as marker of left ventricular dysfunction and hypertrophy in the population. J Hypertens 2000; 18:1121-1128.

[22] Kara K, Lehmann N, Nuemann T, Kälsch H, Möhlenkamp S, Dykun I, Broecker-Preuss M, Pundt N, Moebus S, Jöckel K-H, Erbel R, Mahabadi AA. NT-proBNP is superior to BNP for predicting first cardiovascular events in the general population: The Heinz Nixdorf Recall Studt. Int J Cardiol 2015; 183:155-161.

[23] Portegies MI, Kavousi M, Leening MJ, Bos MJ, van den Meiracker AH, Hofman A, Franco OH, Koudstaal PJ, Ikram MA. N-terminal pro-B-type natriuretic peptide and the risk of stroke and transient ischaemic attack: the Rotterdam Study. Eur J Neurol 2015; 22:695-701.

[24] Dietl A, Stark K, Zimmermann ME,

Meisinger C, Schunkert H, Birner C, Maier LS, Peters A, Heid IM, Luchner A. NTproBNP predicts cardiovascular death in the general population independent of left ventricular mass and function: Insights from a large population-based study with longterm follow-up. PLoS One 2016 DOI: 10.1371/journal.pone.0164060.

[25] Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening. A community-based study. Circulation 2005; 112: 2254-2262.

 [26] Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, Claggett B, Zile MR, Kraigher-Krainer E, Pieske B, Voors AA, Packer M, Bransford T, Lefkowitz M, McMurray JJV, Solomon SD, PARAMOUNT Investigators. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 2014; 16:535-542.

[27] Mottram PM, Haluska, Leano R, Carlier S, Case C, Marwick TH. Relation of laston. arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005; 91:1551-1556.

Legends

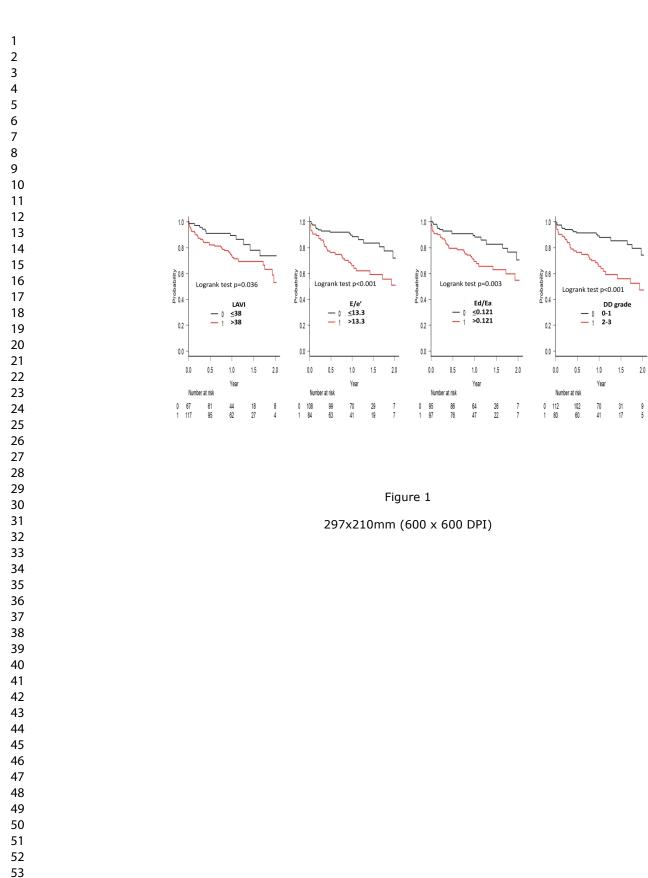
Figure 1. The Kaplan-Meier survival curve analysis of patients with heart failure and preserved ejection fraction. Left atrial volume index (LAVI) $> 38 \text{ mL/m}^2$, early transmitral flow velocity/the onset of early diastolic mitral annular velocity (E/e^2) > 13.3, ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.121, and left ventricular diastolic dysfunction (DD) grade (0-1 vs. 2-3) were significant factors for all-cause mortality or admission for heart failure. Criteria for left ventricular DD grade were

BMJ Open

adopted from the study by Nagueh et al.[10] The Ed/Ea ratio was calculated as $(E/e^2)/(0.9 \times systolic blood pressure).[3, 8]$

Figure 2. The Kaplan-Meier survival curve analysis of patients with heart failure and preserved ejection fraction. Left atrial volume index (LAVI) > 69 mL/m², early transmitral flow velocity/the onset of early diastolic mitral annular velocity (E/e') > 14.4, ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.163, and left ventricular diastolic dysfunction (DD) grade (0-1 vs. 2-3) were significant factors for all-cause mortality. Criteria for left ventricular DD grade were adopted from the study by Nagueh et al.[10] The Ed/Ea ratio was calculated as $(E/e')/(0.9 \times$ systolic blood pressure).[3, 8]

Figure 3. The Kaplan-Meier survival curve analysis using the ratio of diastolic elastance (Ed)/arterial elastance (Ea). Ed/Ea, for all-cause mortality with stratified examination using N-terminal pro-brain natriuretic peptide (NT-proBNP) level in patients with heart failure and preserved ejection fraction. Patients with NT-proBNP level > 794 pg/mL and Ed/Ea > 0.163 exhibited higher all-cause mortality, and lines 1 and 3 were significantly different by the Bonferroni test (p < 0.001). In patients with a


higher NT-proBNP level, the effect of a higher Ed/Ea on all-cause mortality was

for peer teriew only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

significant.

BMJ Open: first published as 10.1136/bmjopen-2020-044605 on 30 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1.0

0.8

£ 0.6

å 0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0

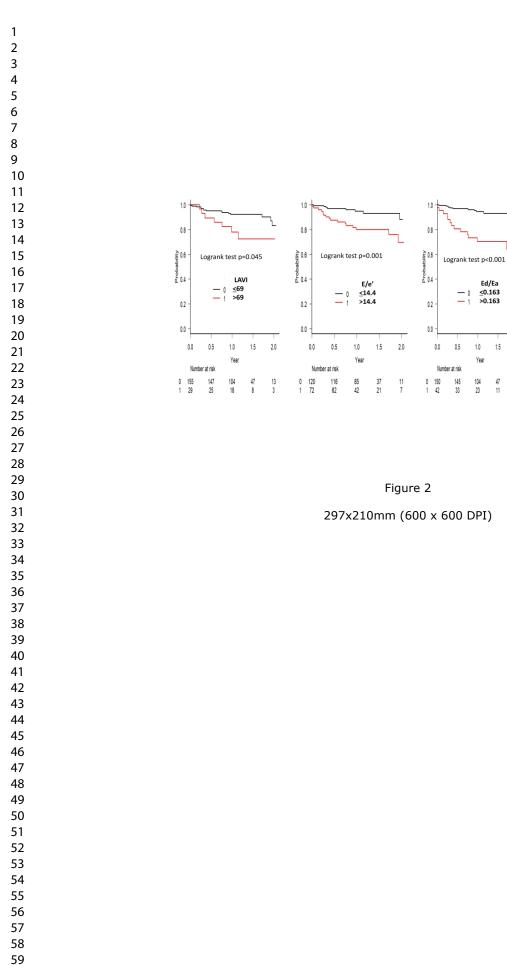
112 80 109 69 77 50 35 23 11 7

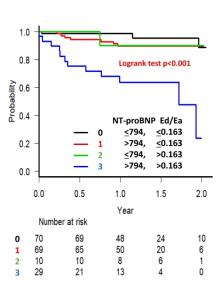
16

Number at risk

Ed/Ea

≤0.163 >0.163


1.0 1.5 2.0


Year

104 23 47 11 Logrank test p<0.001

Yea

DD grade 0-1 2-3

Figure 3

297x210mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3-4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
<u></u>		reported	5,6
Objectives	3	State specific objectives, including any prespecified hypotheses	5,0
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7,8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7,8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8,9
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8,9
		(b) Describe any methods used to examine subgroups and interactions	8,9
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	8
		(<i>e</i>) Describe any sensitivity analyses	
Results		(E) Describe any sensitivity analyses	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
i ui tioipunto	15	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9-1
2 compare autu	1 f	and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	11
		(c) Summarise follow-up time (eg, average and total amount)	9
Outcome data	15*	Report numbers of outcome events or summary measures over time	11-
Sucome uata	15	Report numbers of outcome events of summary measures over time	12

BMJ Open

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
∠ I 22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
50
59

60

1

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	11- 12
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12- 13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	16
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	13-
		multiplicity of analyses, results from similar studies, and other relevant evidence	16
Generalisability	21	Discuss the generalisability (external validity) of the study results	14- 16
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	18
			1

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

BMJ Open

Left atrial pressure overload and prognosis in elderly patients with heart failure and preserved ejection fraction: A prospective multicenter observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044605.R3
Article Type:	Original research
Date Submitted by the Author:	16-Aug-2021
Complete List of Authors:	Hoshida, Shiro; Yao Shiritsu Byoin Tachibana, Koichi; Yao Shiritsu Byoin Shinoda, Yukinori; Yao Shiritsu Byoin Minamisaka, Tomoko; Yao Shiritsu Byoin Yamada, Takahisa; Osaka General Medical Center Higuchi, Yoshiharu; Osaka Police Hospital Nakagawa, Yusuke; Kawanishi City Hospital Abe, Haruhiko; National Hospital Organization Osaka National Hospital Fuji, Hisakazu; Kobe Ekisaikai Hospital Yasumura, Yoshio; Amagasaki Chuo Hospital Hikoso, Shungo; Osaka University Hospital, Department of Cardiovascular Medicine Nakatani, Daisaku; Osaka University Hospital, Department of Cardiovascular Medicine Sakata, Yasushi; Osaka University, Department of Cardiovascular Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Geriatric medicine, Epidemiology
Keywords:	Adult cardiology < CARDIOLOGY, Heart failure < CARDIOLOGY, CLINICAL PHYSIOLOGY, GERIATRIC MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Left atrial pressure overload and prognosis in elderly patients with heart failure and preserved ejection fraction: A prospective multicenter observational study

Shiro Hoshida, MD¹; Koichi Tachibana, MD¹; Yukinori Shinoda, MD¹; Tomoko Minamisaka, MD¹; Takahisa Yamada, MD²; Yoshiharu Higuchi, MD³; Yusuke Nakagawa, MD⁴; Haruhiko Abe, MD⁵; Hisakazu Fuji, MD⁶; Yoshio Yasumura, MD⁷; Shungo Hikoso, MD⁸; Daisaku Nakatani, MD⁸; Yasushi Sakata, MD⁸; on behalf of the Osaka Cardiovascular Conference Investigators

¹ Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan
² Division of Cardiology, Osaka General Medical Center, Osaka, Japan
³ Department of Cardiovascular Medicine, Osaka Police Hospital, Osaka, Japan
⁴ Division of Cardiology, Kawanishi City Hospital, Kawanishi, Japan
⁵ Department of Cardiovascular Medicine, National Hospital Organization Osaka
National Hospital, Osaka, Japan
⁶ Cardiovascular Division, Kobe Ekisaikai Hospital, Kobe, Japan

⁷ Department of Cardiovascular Medicine, Amagasaki Chuo Hospital, Amagasaki, Japan

⁸ Department of Cardiovascular Medicine, Osaka University Graduate School of

Medicine, Suita, Japan

*Corresponding author: Shiro Hoshida, MD, PhD

Department of Cardiovascular Medicine, Yao Municipal Hospital

1-3-1 Ryuge-cho, Yao, Osaka 581-0069, Japan

Tel.: +81-72-922-0881, Fax: +81-72-924-4820

E-mail: shiro.hoshida@hosp-yao.osaka.jp

iez oni **Total word count of the manuscript:** 3787

ABSTRACT

Objectives: The severity of diastolic dysfunction is assessed using a combination of several indices of left atrial (LA) volume overload and LA pressure overload. We aimed to clarify which overload is more associated with the prognosis in patients with heart failure and preserved ejection fraction (HFpEF).

Setting: A prospective, multicenter observational registry of collaborating hospitals in Osaka, Japan.

Participants: We enrolled hospitalized patients with HFpEF showing sinus rhythm (men, 79; women, 113). Blood tests and transthoracic echocardiography were performed before discharge. The ratio of diastolic elastance (Ed) to arterial elastance (Ea) was used as a relative index of LA pressure overload.

Primary outcome measures: All-cause mortality and admission for heart failure were evaluated at >1 year after discharge.

Results: In the multivariable Cox regression analysis, Ed/Ea, but not LA volume index, was significantly associated with all-cause mortality or admission for heart failure (hazard ratio 2.304, 95% confidence interval 1.059-3.907, p = 0.032), and all-cause mortality (hazard ratio 3.639, 95% confidence interval 1.468-9.018, p = 0.005), independent of age, sex, LA volume index, and the serum N-terminal pro-brain

BMJ Open

natriuretic peptide (NT-proBNP) level. In patients with a higher NT-proBNP level, the effect of higher Ed/Ea on prognosis was prominent (p < 0.001).

Conclusions: Ed/Ea, an index of LA pressure overload, was significantly associated with the prognosis in elderly patients with HFpEF showing sinus rhythm.

Strengths and limitations

The severity of diastolic dysfunction is assessed by a combination of several indices of left atrial (LA) volume and pressure overload.

The ratio of diastolic elastance (Ed) to arterial elastance (Ea), that is, Ed/Ea, is a novel index of LA pressure overload.

Although the indices of LA pressure and volume overload are high in patients with heart failure and preserved ejection fraction (HFpEF), it remains to be seen which LA overload is more associated with the prognosis in elderly patients with HFpEF. The limitation of this study is its small sample size.

Trial registration: Prospective Multicenter Observational Study of Patients with Heart Failure and Preserved Ejection Fraction (PURSUIT HFpEF) registry.

UMIN-CTR ID: UMIN000021831

Key words: diastolic function, left atrial overload, NT-proBNP

INTRODUCTION

Patients with heart failure and preserved ejection fraction (HFpEF) have an increased left atrial volume (LAV) and early transmitral flow velocity/the onset of early diastolic mitral annular velocity (E/e'), as shown by noninvasive echocardiographic findings.[1-3] E/e' is positively correlated with left atrial (LA) pressure or pulmonary capillary wedge pressure.[4-7] We previously reported that the LAV index (LAVI), a relative index of LAV overload, and the ratio of diastolic elastance (Ed) to arterial elastance (Ea) $[Ed/Ea = (E/e^2)/(0.9 \times systolic blood pressure)]$, a relative index of LA pressure overload, are high in elderly patients with preserved ejection fraction with and without heart failure (HF).[3, 8, 9] In the recommendations for left ventricular (LV) diastolic evaluation using echocardiography, the severity of diastolic dysfunction (DD) is assessed using a combination of several indices, such as early transmitral flow (E)/late transmitral flow (A), deceleration time, E/e', tricuspid regurgitation velocity, and LAVI.[7, 10] Evaluation of disease severity based on these recommendations is useful for estimating the prognosis of patients with HFpEF.[11] However, these noninvasive

indices are related to either LA pressure overload or LAV overload, and which overload is more associated with the prognosis of these patients remains unclear. In this study, we aimed to identify a clinically significant echocardiographic index of LA pressure or volume overload for the prognosis of patients with HFpEF.

METHODS

Study subjects

Of the 353 patients with prognostic data who were recruited from the Prospective Multicenter Observational Study of Patients with Heart Failure and Preserved Ejection Fraction (PURSUIT HFpEF) registry,[3, 12] 129 patients were excluded because they showed atrial fibrillation before discharge and 32 patients were excluded because of poor echocardiographic data. Therefore, we enrolled 192 patients showing sinus rhythm (LV ejection fraction (LVEF) \geq 50%; men/women, 79/113; mean age, 80 years) at discharge during the index hospitalization with acute decompensated HF; patients were enrolled based on the Framingham criteria, and if they met the criteria of LVEF \geq 50% on transthoracic echocardiography (TTE) and N-terminal pro-brain natriuretic peptide (NT-proBNP) \geq 400 pg/mL on admission. We excluded patients with severe aortic

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 $\overline{7}$

stenosis, aortic regurgitation, mitral stenosis, or mitral regurgitation due to structural changes in the valves detected by TTE on admission. The PURSUIT HFpEF registry is a prospective, multicenter observational registry in which collaborating hospitals in Osaka, Japan recorded clinical, echocardiographic, and outcome data of patients with HFpEF (UMIN-CTR ID: UMIN000021831). The registry was managed in accordance with the Declaration of Helsinki.

Echocardiography and laboratory testing

TTE was performed when the patients were in a stable condition before discharge. Echocardiographic measurements were obtained according to the American Society of Echocardiography or European Society of Echocardiography criteria during a stable sinus rhythm.[10, 13] Volumetry was standardized using the modified Simpson's method, and the index was calculated as the LAV divided by the body surface area. As a marker of LA pressure overload for estimating LV diastolic function, we examined E/e' and afterload-integrated Ed/Ea [(E/e')/($0.9 \times$ systolic blood pressure)].[3, 9, 14] As relative markers of LAV overload, we also evaluated LAVI and LA ejection fraction calculated as stroke volume (SV)/LAV.[15] The severity of LVDD was assessed according to the previous reports.[10, 11] In the first step, four parameters were used:

BMJ Open

E/e', e' velocity, tricuspid regurgitation velocity, and LAVI. In the second step, E/A, E wave, E/e', tricuspid regurgitation velocity, and LAVI were used to determine DD grades 1–3.[10, 11] When DD was not observed in the first step, the patients were classified as DD grade 0. Laboratory data were examined when patients were stable before discharge.

Follow-up/clinical outcome

After discharge, all patients were followed up at the respective hospital. Survival data were obtained by dedicated coordinators and investigators through direct contact with patients or their physicians at the hospital, or in an outpatient setting, or via a telephone interview with their families or by mail. Data collection was performed using an electronic data capture system integrated into the electronic medical records developed at the Osaka University.[16] In-hospital data were entered into the system and transferred to the data collection center via a secure Internet connection for processing and analysis. The primary endpoints of this study were both the composite of all-cause mortality and hospitalization for worsening HF and all-cause mortality.

Ethics approval

The study protocol was approved by the ethics committee of each participating hospital. The protocol (Osaka University Clinical Research Review Committee, R000024414) was approved by the ethics committee of Yao Municipal Hospital (2016-No.0006). All participants provided written informed consent.

Patient and public involvement

No patient involved.

Statistical analysis

ref Continuous variables are expressed as mean \pm standard deviation, whereas categorical variables are presented as frequencies and percentages. Differences in categorical variables between the groups were assessed using the chi-square test, and those in continuous variables were assessed using Student's t-test or Welch's t-test, as appropriate. Coefficients of correlations were assessed using the Pearson or Spearman model, and p-values were examined using regression analysis. Survival curves were estimated using the Kaplan-Meier product-limit estimator, and the groups were compared using the log-rank test and Bonferroni test. The Cox hazard ratio was evaluated using univariable and multivariable analyses. In the multivariable analysis,

 age, sex, NT-proBNP level and variables of LA overload that were significant in the univariable analysis were used. A p-value of <0.05 was considered statistically significant. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Clinical and laboratory characteristics of patients with HFpEF

During a median follow-up of 452 days, 50 patients had all-cause mortality or admission for worsening HF, and 24 patients died. There were significant differences between patients with and without all-cause mortality or admission for HF in terms of age (p = 0.011), eGFR (p = 0.026), and serum NT-proBNP (p = 0.017) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension and dyslipidemia, except for diabetes mellitus, between the two groups. There were significant differences between patients with and without allcause mortality in terms of age (p < 0.001) and serum NT-proBNP (p = 0.007) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension, dyslipidemia, and diabetes mellitus

BMJ Open

between the two groups. With respect to echocardiographic parameters, LAVI (p =0.024), tricuspid regurgitation pressure gradient (TRPG, p < 0.001), E/e' (p = 0.001), and Ed/Ea (p = 0.019) but not SV/LAV, LV mass index (LVMI), LVEF, E/A, the deceleration time of the E wave, septal e', lateral e', or Ed at discharge, were significantly different between patients with and without all-cause mortality or admission for HF (Table 2). There were significant differences in LAVI (p = 0.001), TRPG (p = 0.005), E/e' (p = 0.001), Ed (p = 0.026), and Ed/Ea (p = 0.001) between patients with and without all-cause mortality (Table 2). The correlations between Ed/Ea and LAVI (r = 0.194, p = 0.008) or SV/LAV (r = -0.180, p = 0.017) were more significant than those between E/e' and LAVI (r = 0.155, p = 0.034) or SV/LAV (r =-0.137, p=0.072). E/e' (r = 0.233, p = 0.001) and Ed/Ea (r = 0.222, p = 0.002) showed a modest positive correlation with the NT-proBNP log-transformed level, although TRPG did not correlate with the NT-proBNP log-transformed level (r = 0.147, p = 0.060). LAVI and the NT-proBNP log-transformed level were significantly correlated (r = 0.256, p < 0.001).

Table 1. Patient characteristics before discharge

		All-caus					
	All	mortali admissi heart fa	on for	p- value	All-cause mortality		p-value
	(n = 192)	- (n = 142)	+ (n = 50)	- (- vs. +)	- (n = 168)	+ (n = 24)	(- vs. +)
Age, years	80.0 ± 10.0	78.9 ± 10.1	83.1 ± 9.1	0.011	79.0 ± 10.0	87.1 ± 7.2	<0.001
Male sex, n (%)	79 (41)	59 (42)	20 (40)	0.848	71 (42)	8 (33)	0.408
Body mass index	21.2 ± 4.5	21.0 ± 4.5	21.8 ± 4.3	0.300	21.3 ± 4.6	20.6 ± 3.8	0.453
Cardiothoracic ratio, %	55.4 ± 7.5	54.8 ± 7.4	57.2 ± 7.7	0.093	54.9 ± 7.3	59.1 ± 8.0	0.010
Systolic blood pressure, mmHg	122 ± 18	120 ± 17	124 ± 21	0.078	122 ± 18	120 ± 21	0.690
Diastolic blood pressure, mmHg	64 ± 12	65 ± 12	62 ± 11	0.212	64 ± 12	62 ± 10	0.404
Heart rate, bpm	69 ± 14	69 ± 2 14	68 ± 12	0.576	69 ± 14	70 ± 13	0.542
Chronic							
obstructive pulmonary disease, n (%)	11 (6)	9 (7)	2 (4)	0.796	9 (6)	2 (10)	0.906
Coronary artery disease, n (%)	41 (21)	31 (22)	10 (20)	0.785	37 (22)	4 (17)	0.739
Diabetes mellitus n (%)	^{5,} 73 (38)	48 (34)	25 (50)	0.043	63 (38)	10 (42)	0.694
Dyslipidemia, n (%)	92 (48)	65 (46)	27 (54)	0.316	83 (50)	9 (38)	0.274
Hypertension, n (%)	169 (88)	121 (85)	48 (96)	0.077	146 (87)	23 (96)	0.355

Laboratory data

Hemoglobin, g/dL	11.0 ± 1.8	11.1 ± 1.8	10.5 ± 1.9	0.062	11.0 ± 1.8	10.4 ± 2.0	0.092
Albumin, g/dL	3.3 ± 0.5	3.4 ± 0.5	3.1 ± 0.6	<0.00 1	$\textbf{3.4} \pm \textbf{0.5}$	3.0 ± 0.6	<0.001
eGFR,	42.3 ±	44.4 ±	36.3 ±	0.026	42.6 ±	$40.0 \pm$	0 500
mL/min/1.73 m ²	22.1	21.7	22.6	0.020	21.2	28.4	0.598
N-terminal pro- brain natriuretic peptide, pg/mL	2971 ± 8478	2096 ± 4832	5557 ± 14490	0.017	2318 ± 4902	7374 ± 19668	0.007
Medications							
Beta-blockers, n (%)	109 (57)	82 (58)	27 (54)	0.645	98 (58)	11 (46)	0.247
Calcium-channel blockers, n (%)	112 (58)	80 (56)	32 (64)	0.344	100 (60)	12 (50)	0.376
Diuretics, n (%)	146 (76)	105 (74)	41 (82)	0.251	125 (74)	21 (88)	0.250
RAAS inhibitors, n (%)	133 (69)	94 (66)	39 (78)	0.119	115 (68)	18 (75)	0.515
Statins, n (%)	72 (38)	50 (35)	22 (44)	0.269	62 (37)	10 (42)	0.652

Values are mean ± standard deviation or number (%).

eGFR, estimated glomerular filtration rate;

RAAS, renin-angiotensin-aldosterone system

Table 2. Echocardiographic data before discharge

	All-caus	se mortality			
	or				
	admissi	on for heart	р-	All-cause mortality	<i>p</i> -
	failure		value	An-cause mortanty	value
All		I	(- vs		(- vs
AII	-	Т	+)	- +	+)

	41.2 ±	40.4 ±	43.3 ±		41.0 ±	42.9 ±	
LAD, mm	41.2 ± 7.6	40.4 ± 7.9	43.3 ±	0.021	41.0 ± 7.5	42.9 ±	0.25
LAVI,	50.5 ±	47.9 ±	57.6 ±		48.2 ±	67.1 ±	
mL/m ²	25.7	23.2	30.8	0.024	22.2	40.2	0.00
LVEDVI,	56.1 ±	55.9 ±	56.8±	0.707	55.9 ±	57.7 ±	0.70
mL/m ²	20.3	21.2	17.6	0.786	20.3	20.4	0.69
LVESVI,	21.8 ±	21.8 ±	21.8 ±	0.002	21.6 ±	23.5 ±	0 12
mL/m ²	10.8	10.9	10.7	0.993	10.5	13.3	0.43
CV/I I /?	34.3 ±	34.0 ±	35.0 ±	0 (52	34.3 ±	34.2 ±	0.07
SVI, mL/m ²	12.0	12.7	10.0	0.652	12.4	9.4	0.96
	0.809	0.025	0 522		0.021	0 (17)	
SV/LAV	±	$0.835 \pm$	0.733 ±	0.125	0.831 ±	0.647 ±	0.03
	0.376	0.376	0.373		0.377	0.335	
	61.4 ±	61.3 ±	62.0 ±	0.503	61.5 ±	61.0 ±	0.74
LVEF, %	6.8	6.7	6.8	0.502	6.7	7.2	0.76
	108.4	105.8 ±	115.9 ±	0.0(2	$108.4 \pm$	108.5 ±	0 00
LVMI, g/m ²	± 33.2	32.5	34.1	0.063	33.3	32.6	0.99
TRPG,	$\textbf{27.2} \pm$	25.8 ±	30.9 ±	<0.00	26.4 ±	32.1 ±	0 00
mmHg	9.3	8.5	10.4	1	9.0	10.1	0.00
F/A	$1.00 \pm$	1.00 ±	1.01 ±	0.897	1.02 ±	0.89 ±	A 20
E/A	0.57	0.61	0.47	0.897	0.59	0.32	0.38
DcT of E	$0.22 \pm$	$0.22 \pm$	$0.22 \pm$	0.100	$0.22 \pm$	$0.22 \pm$	0.70
wave	0.06	0.06	0.07	0.468	0.06	0.07	0.68
	0.051	0.052	0.040		0.052	0.040	
Septal e'	±	$0.052 \pm$	$0.048 \pm$	0.189	$0.052 \pm$	0.048 ±	0.32
	0.019	0.020	0.016		0.019	0.015	
	0.067	0.0(7.)	0.067		0.0(0.)	0.064	
Lateral e'	±	$0.067 \pm$	0.067 ±	0.979	$0.068 \pm$	0.064 ±	0.45
	0.023	0.024	0.020		0.024	0.019	
	$14.0 \pm$	13.2 ±	16.1 ±	0.001	13.5 ±	17.4 ±	0.00
E/e'	5.5	5.5	5.2	0.001	5.4	5.8	0.00
	0.450	0.421	0.505		0.425 .	0.552	
Ed	±	0.431 ± 0.227	0.505 ± 0.249	0.065	0.435 ± 0.235	0.553 ± 0.254	0.02

Ed/Ea	0.130 ± 0.055	0.125 ± 0.055	0.146 ± 0.052	0.019	0.124 ± 0.053	0.164 ± 0.056	0.001
	0.022						

Values are mean ± standard deviation.

LAD, left atrial diameter; LAVI, left atrial volume index; LVEDVI, left ventricular end-diastolic volume index; LVESVI, left ventricular end-systolic volume index; SVI, stroke volume index; SV, stroke volume; LAV, left atrial volume; LVEF, left ventricular ejection fraction; TRPG, tricuspid regurgitation pressure gradient; DcT, deceleration time; E, early transmitral flow velocity; e', onset of early diastolic mitral annular velocity; Ed diastolic elastance; Ea, arterial elastance.

Prognostic analysis

In the receiver operating characteristic (ROC) curve analysis for the prediction of allcause mortality or admission for HF, the area under the curve of LAVI was slightly smaller than that of the NT-proBNP level and Ed/Ea (Table 3). The Kaplan-Meier survival analysis clearly showed that LAVI > 38 mL/m² (p = 0.036), E/e² > 13.3 (p < 0.001), and Ed/Ea > 0.121 (p = 0.003) were significant for prognosis (Figure 1). Although not shown, age > 85 years (p < 0.001), NT-proBNP level > 783 pg/mL (p < 0.001), eGFR < 39.8 mL/min/1.73 m² (p = 0.004), and TRPG > 28 mmHg (p < 0.001) were also determinant factors. The albumin level was not a determinant factor (data not shown). The LVDD grade was also related to all-cause mortality or admission for HF in

BMJ Open

patients with HFpEF, as shown by the Kaplan-Meier survival curve analysis (Figure 1) and Cox hazard analysis (hazard ratio 3.063, 95% confidence interval 1.7-5.519, p < (0.001). In the multivariable analysis of the Cox hazard ratio, Ed/Ea (p = 0.032) was significantly associated with poor outcome, independent of age, sex, LAVI, and serum NT-proBNP level (Table 3). With respect to all-cause mortality, LAVI, Ed/Ea ratio, and LVDD grade were all significant indices in the Kaplan-Meier survival analysis (Figure 2). Furthermore, the Ed/Ea ratio (p = 0.005) was significantly associated with all-cause mortality independent of the serum NT-proBNP levels after adjustments in the multivariable analysis of the Cox hazard ratio (Table 4). Systolic blood pressure (hazard ratio 0.992, 95% confidence interval 0.970-1.015, p = 0.528) and hemoglobin level (hazard ratio 0.787, 95% confidence interval 0.610-1.016, p = 0.066) were not associated with prognosis in a Cox univariable analysis. Although Ed (hazard ratio 4.769, 95% confidence interval 1.23-18.49, p = 0.023) and E/e' (hazard ratio 3.651, 95% confidence interval 1.562-8.532, p = 0.004) were significantly associated with allcause mortality in a univariable model, the significance was modest compared with the Ed/Ea ratio (hazard ratio 5.903, 95% confidence interval 2.62-13.3, p < 0.001).

Table 3. Analytical data of prognostic factors for all-cause mortality or admission for heart failure in patients with heart failure and preserved ejection fraction

			Cox ha	azard anal	ysis					
		ROC curve analysis		Univariable			Multivariable			
	Cut- off point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value		
Age	85	0.628	2.855	1.634- 4.99	< 0.001	1.736	0.934- 3.225	0.081		
Sex	-		0.965	0.547- 1.701	0.903	1.223	0.638- 2.345	0.544		
NT- proBNP	783	0.695	3.432	1.652- 7.133	<0.001	3.152	1.422- 6.987	0.004		
LAVI	38	0.607	2.225	1.134- 4.366	0.02	1.298	0.599- 2.813	0.508		
Ed/Ea	0.121	0.637	2.424	1.337- 4.394	0.003	2.034	1.059- 3.907	0.032		

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval;

NT-proBNP, N-terminal pro-brain natriuretic peptide;

LAVI, left atrial volume index; Ed, diastolic elastance; Ea, arterial elastance.

 Table 4. Analytical data of prognostic factors for all-cause mortality

 in patients with heart failure and preserved ejection fraction

			Cox h	azard analysis				
	ROC (analys		Univa	riable		Multi	variable	
	Cut- off point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value
Age	85	0.757	6.512	2.696-15.73	< 0.001	2.946	1.100-7.891	0.031

Sex	-	-	0.739	0.315-1.732	0.487	1.135	0.424-3.037	0.801
NT- proBNP	794	0.703	4.488	1.523-13.22	0.006	3.839	1.074-13.72	0.038
LAVI	69	0.642	2.572	1.048-6.315	0.039	1.215	0.439-3.361	0.707
Ed/Ea	0.163	0.718	5.903	2.62-13.3	< 0.001	3.639	1.468-9.018	0.005

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; NT-proBNP, N-terminal pro-brain natriuretic peptide; LAVI, left atrial volume index; Ed, diastolic elastance; Ea, arterial elastance.

In the Kaplan-Meier survival curve analysis for all-cause mortality with a stratified examination using the NT-proBNP level and Ed/Ea, patients with a combination of NTproBNP level > 794 pg/mL and Ed/Ea > 0.163 showed higher all-cause mortality (logrank test p < 0.001, Figure 3). In patients with a higher NT-proBNP level, the effect of higher Ed/Ea on all-cause mortality was significant (Bonferroni test, p < 0.001). Although the patients with NT-proBNP level > 783 pg/mL and Ed/Ea > 0.121 exhibited higher all-cause mortality or admission for HF in the Kaplan-Meier survival curve analysis (log-rank test, p < 0.001), the effect of higher Ed/Ea on all-cause mortality or admission for HF was modest in patients with a higher NT-proBNP level (Bonferroni test, p = 0.202).

DISCUSSION

 In the present study, LA pressure overload, rather than LAV overload, was found to be a more useful marker of prognosis in patients with HFpEF. Our findings can help determine which single index of LA pressure overload is significantly associated with the prognosis. In particular, in patients with a higher NT-proBNP level, a higher Ed/Ea was associated with a poor prognosis.

The heterogeneity of the cardiac structure in patients with HFpEF is well known. Notably, there were no significant differences in the deceleration time of the E wave and E/A in patients with and without all-cause mortality and/or admission for HF. The LA structure and function most closely reflect hemodynamic stress and remodeling in HFpEF.[17] The E/e' ratio was reported to be a significant prognostic factor in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial [18] and a systematic review.[19] However, there are many important differences between our study and the TOPCAT trial: (1) the TOPCAT trial was an intervention study; (2) subjects in our study were 10 years older; (3) the inclusion criteria were different (i.e., stable outpatients in the TOPCAT trial vs. hospitalized patients with HFpEF in our study and patients with atrial fibrillation were included in the TOPCAT trial but excluded from our study); (4) an essential factor for prognosis,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

such as serum NT-proBNP level, was included in the analysis of the Cox hazard ratio in our study.

As a single index of LA pressure overload among noninvasive echocardiographic findings, Ed/Ea may be more significantly associated with all-cause mortality and/or admission for HF. E/e' is known to be the best-fit index for LA pressure among echocardiographic indices in HFpEF.[17] Ed/Ea = $(E/e^2)/(0.9 \times \text{systolic blood pressure})$ is the LA pressure relative to systemic pressure and may show the ratio of preload to afterload pressure of the left ventricle. Thus, the Ed/Ea ratio may be an index that reflects the whole left-sided heart function, including the atrioventricular-arterial interaction under a preserved LVEF. Furthermore, patients with a higher NT-proBNP level and higher Ed/Ea had the poorest prognosis. The NT-proBNP level is a powerful prognostic factor in HFpEF.[20] Although NT-proBNP reflects cardiac morphology and function,[21] it remains uncertain whether NT-proBNP levels solely reflect cardiac processes or whether it also plays a role independent of cardiac remodeling. Several recent studies have reported that NT-proBNP may be an additional marker of extracardiac vascular diseases.[22, 23] At least a part of the association of NT-proBNP with mortality is independent of cardiac remodeling measures.[24] In combination with

 the NT-proBNP level, the significance of higher Ed/Ea for evaluating the prognosis was obvious in elderly patients with HFpEF.

Among the indices of LAV overload, LAVI but not SV/LAV significantly differed between patients with and without all-cause mortality or admission for HF. As the areas under the curve of LAVI and SV/LAV in the ROC curve analysis were small and no significant findings were observed in the multivariable analysis of the Cox hazard ratio for all-cause mortality and/or admission for HF in patients with HFpEF, we conclude that LAVI and SV/LAV are not suitable factors for evaluating prognosis. LAVI is an indicator of long-term elevation of LV filling pressure, and an enlarged LAVI may be a secondary phenomenon. Even in patients without all-cause mortality or admission for HF, the mean LAVI was 47.9 mL/m², which was considerably higher than the criterion for LVDD (> 34 mL/m²).

LV Ed is expressed as $(E/e^2)/SV$ [25] or $(E/e^2)/LV$ end-diastolic volume.[26] Ea was calculated as $(0.9 \times \text{systolic blood pressure})/SV.[25]$ Although Ed and Ea were reported to be negatively correlated in younger patients with hypertension,[27] both indices were higher in elderly women than in men under stable conditions.[25, 26] Elevated Ed in elderly women could be an epiphenomenon because of the associated increase in Ea. We previously reported that Ed/Ea is an index of the LV diastolic function relative to

BMJ Open

the afterload and can be calculated as $(E/e')/(0.9 \times \text{systolic blood pressure})$ when Ed is (E/e')/SV.[8, 9] Accordingly, Ed/Ea was not directly related to the parameters of cardiac volume, such as LAV and SV. We recently reported a larger LAV and higher E/e' and Ed/Ea in elderly women with preserved ejection fraction, regardless of HF status.[3, 8, 9] Ed/Ea is a novel afterload-integrated parameter for LV diastolic function that may be useful as a severity index for prognosis in elderly patients with HFpEF.

LIMITATIONS

Further studies are required to investigate differences in the clinical significance of Ed/Ea for prognosis between younger patients with normal renal function and moderateto-severe LV hypertrophy and elderly patients (mean age, 80 years) with renal dysfunction (mean eGFR, 42.3 mL/min/1.73 m²) and mild LV hypertrophy (mean LVMI, 108.4 g/m²) included in our study. We could not discuss echocardiographic parameters in patients with atrial fibrillation. The role of the right side of the heart in prognosis, as possibly reflected in the involvement of TRPG, remains unclear in this study. The multivariable Cox model was overfitted with the number of variables included/input exceeding the rough rule of one variable per ten events. However, Ed/Ea was a significant prognostic factor, independent of NT-proBNP level, even in the small sample size. Although our results need to be interpreted carefully because of noncompliance with the assumption of Cox regression, our finding that a higher Ed/Ea was associated with a poor prognosis in patients with a higher NT-proBNP level may be clinically important. We examined all-cause mortality rather than cardiac death because the determination of cardiac death can be challenging in elderly patients.

CONCLUSIONS

LA pressure overload, rather than LAV overload, is a useful marker of prognosis in elderly patients with HFpEF showing sinus rhythm. As an index for LA pressure overload among noninvasive echocardiographic findings, Ed/Ea provides additional prognostic information on the serum NT-proBNP level for all-cause mortality.

ACKNOWLEDGMENTS:

We thank Hiroyuki Kurakami and Tomomi Yamada for their statistical support, Nagisa Yoshioka, Kyoko Tatsumi, Satomi Kishimoto, Noriko Murakami and Sugako Mitsuoka for their excellent assistance with data collection.

The Osaka CardioVascular Conference-Heart Failure Investigators

Shunsuke Tamaki, Masatake Fukunami, and Takahisa Yamada, Osaka General Medical Center, Osaka, Japan; Takaharu Hayashi and Yoshiharu Higuchi, Osaka Police Hospital, Osaka, Japan; Masaharu Masuda, Mitsutoshi Asai, and Toshiaki Mano, Kansai Rosai Hospital, Amagasaki, Japan; Hisakazu Fuji, Kobe Ekisaikai Hospital, Kobe, Japan; Daisaku Masuda, Yoshihiro Takeda, Yoshiyuki Nagai, and Shizuya Yamashita, Rinku General Medical Center, Izumisano, Japan; Masami Sairyo, Yusuke

Nakagawa, and Shuichi Nozaki, Kawanishi City Hospital, Kawanishi, Japan; Haruhiko Abe, Yasunori Ueda, Masaaki Uematsu, and Yukihiro Koretsune, National Hospital Organization Osaka National Hospital, Osaka, Japan; Kunihiko Nagai, Ikeda Municipal Hospital, Ikeda, Japan; Masamichi Yano, Masami Nishino, and Jun Tanouchi, Osaka Rosai Hospital, Sakai, Japan; Yoh Arita and Shinji Hasegawa, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan; Takamaru Ishizu, Minoru Ichikawa, and Yuzuru Takano Higashiosaka City Medical Center, Higashiosaka, Japan; Eisai Rin, Kawachi General Hospital, Higashiosaka, Japan; Tetsuya Watanabe and Shiro Hoshida, Yao Municipal Hospital, Yao, Japan; Masahiro Izumi, Kinki Central Hospital, Itami, Japan; Hiroyoshi Yamamoto and Hiroyasu Kato, Japan Community Health Care Organization, Osaka Minato Central Hospital, Osaka, Japan; Kazuhiro Nakatani and Hisatoyo Hiraoka, Sumitomo Hospital, Osaka, Japan; Mayu Nishio and Keiji Hirooka, Saiseikai Senri Hospital, Suita, Japan; Takahiro Yoshimura and Yoshinori Yasuoka, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan; Akihiro Tani, Kano General Hospital, Osaka, Japan; Yasushi Okumoto and Hideharu Akagi, Kinan Hospital, Tanabe, Japan; Yasunaka Makino, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan; Toshinari Ohnishi and Katsuomi Iwakura, Sakurabashi Watanabe Hospital, Osaka, Japan; Nagahiro Nishikawa and Yoshiyuki Kijima, Japan Community Health Care Organization, Hoshigaoka Medical Center, Hirakata, Japan; Takashi Kitao and Hideyuki Kanai, Minoh City Hospital, Minoh, Japan; Wataru Shioyama and Masashi Fujita, Osaka International Cancer Institute, Osaka, Japan; Koichiro Harada, Suita Municipal Hospital, Suita, Japan; Masahiro Kumada and Osamu Nakagawa, Toyonaka Municipal Hospital, Toyonaka, Japan; Ryo Araki and Takayuki Yamada, Otemae Hospital, Osaka, Japan; Akito Nakagawa and Yoshio Yasumura, Amagasaki Chuo Hospital, Amagasaki, Japan; Fusako Sera, Kei Nakamoto, Hidetaka Kioka, Tomohito Ohtani, Katsuki Okada, Hiroya Mizuno, Tomoharu Dohi, Takayuki Kojima, Hirota Kida, Akihiro Sunaga, Oeun Bolrathanak, Shinichiro Suna, Daisaku Nakatani, Shungo Hikoso, Toshihiro Takeda, Yasushi Matsumura, and Yasushi Sakata, Osaka University Graduate School of Medicine, Suita, Japan.

Contributorship statement:

(1) Conception and design of the study, acquisition of, and/or analysis and interpretation of data: SH, KT, YS, TM, YH, YN, HA, HF.

(2) Discussion regarding the planning, drafting the article, and/or revising it critically

for important intellectual content: SH, TY, YY, SH, DN, YS.

(3) Final approval of the version to be submitted: All authors.

Competing interests:

None.

Sources of Funding:

This work was funded by Roche Diagnostics K.K. and FUJIFILM Toyama Chemical.

No grant numbers were applicable.

Data availability statement:

Data are available upon reasonable request. No additional data available.

REFERENCES

BMJ Open

[1] Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressure. J Am Coll Cardiol 1997; 30:1527-1533.

[2] Geske SR, Soralia P, Nishimura RA, Ommen SR. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: Correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 2007; 116:2702-2708.

[3] Hoshida S, Watanabe T, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Ueno K, Suna S, Nakatani D, Hikoso S, Yamada T, Yasumura Y, Fuji H, Sakata Y and on behalf of PURSUIT HFpEF Investigators. Sex-related differences in left ventricular diastolic function and arterial elastance during admission in patients with heart failure with preserved ejection fraction: The PURSUIT HFpEF study. Clin Cardiol 2018; 41:1529-1536. doi:10.1002/clc.23073.

[4] Santos M, Rivero J, McCullough SD, West E, Opotowski AR, Waxman AB, Systorom DM, Shah AM. E/e' ratio in patients with unexaplained dyspnea. Lack of accuracy in estimating left ventricular filling pressure. Circ Heart Fail 2015; 8:749-756.

[5] Sharifov OF, Schiros CG, Aban I, Denney TS Jr, Gupta H. Diagnostic accuracy of tissue Doppler index E/e' for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: A systematic review and meta-analysis. J Am Heart Assoc 2016; 5:e002530 doi: 10.1161.

[6] Obokata M, Kane G, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction. A simultaneous invasive-echocardiographic study. Circulation 2017; 135:825-838.

[7] Andersen OS, Smiseth OA, Dokainish H, Abudiab MM, Schutt RC, Kumar A, Sato K, Harb S, Gude E, Remme EW, Andreassen AK, Ha J-W, Xu J, Klein AI, Nagueh SF. Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol 2017; 69:1932-1948.

BMJ Open

[8] Hoshida S, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Watanabe T. Age- and sexrelated differences in diastolic function and cardiac dimensions in a hypertensive population. ESC Heart Fail 2016; 3:270-277.

[9] Hoshida S, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Watanabe T. Fluctuation of dynamic diastolic function relative to static cardiac structure - New insights into the underlying mechanism of heart failure with preserved ejection fraction in elderly patients. Circ J 2017; 81:755-758.

[10] Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino PN, Oh JK, Popescu BA, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29:277-314.

[11] Sanchis L, Andrea R, Falces C, Poyatos S, Vidal B, Sitges M. Differential clinical implications of current recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocariogr 2018; 31:1203-1208.

[12] Suna S, Hikoso S, Yamada T, Uematsu M, Yasumura Y, Nakagawa A, Takeda T, Kojima T, Kida H, Oeun B, Sunaga A, Kitamura T, Dohi T, Okada K, Mizuno H, Nakatani D, Iso H, Matsumura Y, Sakata Y, On behalf of the OCVC Heart Failure Investigators. Study protocol for the PURSUIT-HFpEF study: a Prospective, Multicenter, Observational Study of Patients with Heart Failure with Preserved Ejection Fraction. BMJ Open 2020; 10: e038294. Doi: 10.1136/ bmjopen-2020-038294

[13] Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L,
Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D,
Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU.
Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28:1-39.

[14] Minamisaka T, Watanabe T, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Ueno K, Inoue S, Mine K, Hoshida S. Transient manifestation of left ventricular diastolic

BMJ Open

dysfunction following ablation in patients with paroxysmal atrial fibrillation. Clin Cardiol 2018; 41:978-984. doi: 10.1002/clc.22990.

[15] Hoshida S, Watanabe T, Shinoda Y, Minamisaka T, Fukuoka H, Inui H, Ueno K,
Yamada T, Uematsu M, Yasumura Y, Nakatani D, Suna S, Hikoso S, Higuchi Y, Sakata Y, on behalf of the Osaka CardioVascular Conference (OCVC) Investigators.
Considerable scatter in the relationship between left atrial volume and pressure in heart failure with preserved left ventricular ejection fraction. Sci Rep. 2020; 10:90. doi: 10.1038/s41598-019-56581-x.

[16] Matsumura Y, Hattori A, Manabe S, Takahashi D, Yamamoto Y, Murata T, Nakagawa A. Mihara N, Takeda T. Case report form reporter: a key component for the integration of electronic medical records and the electronic data capture system. Stud Health Technol Inform 2017; 245:516–520.

[17] Abbasi SA, Shah RV, McNulty SE, Hernandez AF, Semigran MJ, Lewis GD, Jerosch-Herold M, Kim RJ, Redfield MM, Kwong RY. Left atrial structure and function in heart failure with preserved ejection fraction: A RELAX substudy. PLosOne 2016 doi: 10.1371/journal.pone.0164914.

[18] Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O'Meara E, Desai AS, Heitner JF, Li G, Fang J, Rouleau J, Zile MR, Markov V, Ryabov V, Reis G, Assmann SF, McKinlay SM, Pitt B, Pfeffer MA, Solomon SD. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circ Heart Fail 2014; 7:740-751. doi: 10.1161/CIRCHEARTFAILURE.114.001583.

[19] Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 2018; 20:1303-1311. [20] Kang SH, Park JJ, Choi DJ, Yoon C-H, Oh H-Y, Kang S-M, Yoo B-S, Jeon E-S, Kim J-J, Cho M-C, Chae SC, Ryu K-H, Oh B-H, KorHF Registry. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 2015; 101:1881-1888.

[21] Luchner A, Burnett JC Jr, Jougasaki M, Hense HW, Heid IM, Muders F, Riegger GA, Schunkert H. Evaluation of brain natriuretic peptide as marker of left ventricular dysfunction and hypertrophy in the population. J Hypertens 2000; 18:1121-1128.

[22] Kara K, Lehmann N, Nuemann T, Kälsch H, Möhlenkamp S, Dykun I, Broecker-Preuss M, Pundt N, Moebus S, Jöckel K-H, Erbel R, Mahabadi AA. NT-proBNP is superior to BNP for predicting first cardiovascular events in the general population: The Heinz Nixdorf Recall Studt. Int J Cardiol 2015; 183:155-161.

[23] Portegies MI, Kavousi M, Leening MJ, Bos MJ, van den Meiracker AH, Hofman A, Franco OH, Koudstaal PJ, Ikram MA. N-terminal pro-B-type natriuretic peptide and the risk of stroke and transient ischaemic attack: the Rotterdam Study. Eur J Neurol 2015; 22:695-701.

[24] Dietl A, Stark K, Zimmermann ME,

Meisinger C, Schunkert H, Birner C, Maier LS, Peters A, Heid IM, Luchner A. NTproBNP predicts cardiovascular death in the general population independent of left ventricular mass and function: Insights from a large population-based study with longterm follow-up. PLoS One 2016 DOI: 10.1371/journal.pone.0164060.

[25] Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular–vascular stiffening. A community-based study. Circulation 2005; 112: 2254-2262.

[26] Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, Claggett B, Zile MR, Kraigher-Krainer E, Pieske B, Voors AA, Packer M, Bransford T, Lefkowitz M, McMurray JJV, Solomon SD, PARAMOUNT Investigators. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 2014; 16:535-542.

[27] Mottram PM, Haluska, Leano R, Carlier S, Case C, Marwick TH. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005; 91:1551-1556.

Legends

Figure 1. The Kaplan-Meier survival curve analysis of patients with heart failure and preserved ejection fraction. Left atrial volume index (LAVI) > 38 mL/m², early transmitral flow velocity/the onset of early diastolic mitral annular velocity (E/e') > 13.3, ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.121, and left ventricular diastolic dysfunction (DD) grade (0-1 vs. 2-3) were significant factors for all-cause mortality or admission for heart failure. Criteria for left ventricular DD grade were adopted from the previous reports. [10, 11] The Ed/Ea ratio was calculated as (E/e')/(0.9 × systolic blood pressure).[3, 8]

Figure 2. The Kaplan-Meier survival curve analysis of patients with heart failure and preserved ejection fraction. Left atrial volume index (LAVI) > 69 mL/m², early transmitral flow velocity/the onset of early diastolic mitral annular velocity (E/e') > 14.4, ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.163, and left ventricular diastolic dysfunction (DD) grade (0-1 vs. 2-3) were significant factors for all-cause mortality. Criteria for left ventricular DD grade were adopted from the previous reports. [10, 11] The Ed/Ea ratio was calculated as (E/e')/(0.9 × systolic blood pressure).[3, 8]

Figure 3. The Kaplan-Meier survival curve analysis using the ratio of diastolic elastance (Ed)/arterial elastance (Ea). Ed/Ea, for all-cause mortality with stratified examination using N-terminal pro-brain natriuretic peptide (NT-proBNP) level in patients with heart failure and preserved ejection fraction. Patients with NT-proBNP level > 794 pg/mL and Ed/Ea > 0.163 exhibited higher all-cause mortality, and lines 1 and 3 were significantly different by the Bonferroni test (p < 0.001). In patients with a higher NT-proBNP level, the effect of a higher Ed/Ea on all-cause mortality was significant.

1.0 -

0.8

£ € 0.6

Å 0.4

0.2

0.0

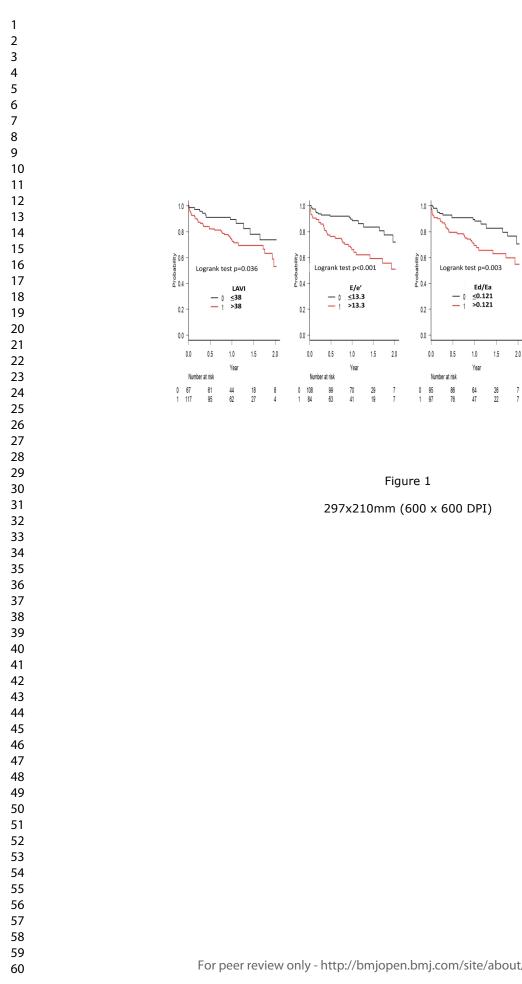
0.0 0.5 1.0 1.5 2.0

112 80 102 60 70 41 31 17

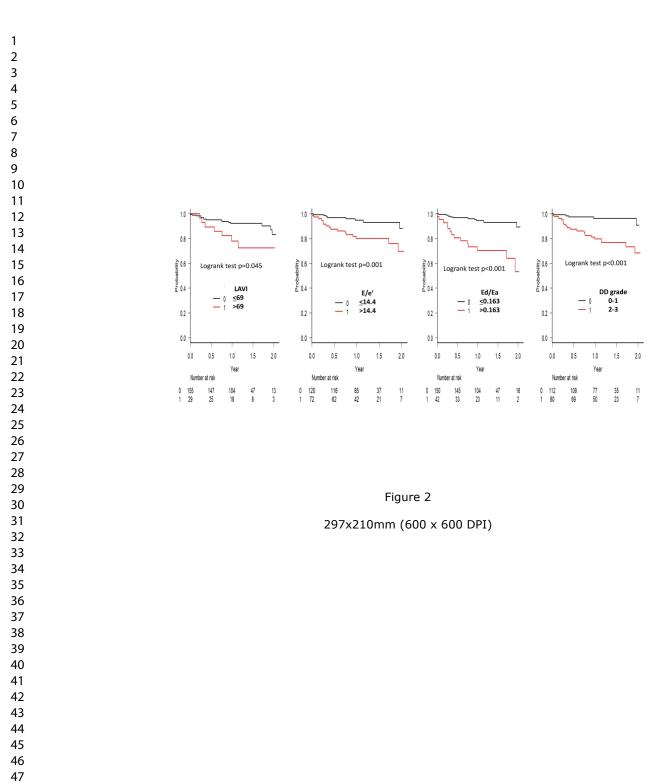
0

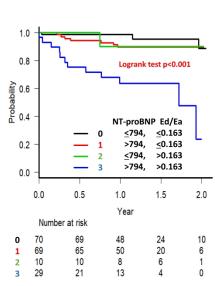
Number at risk

Logrank test p<0.001


— 0 — 1

DD grade


0-1 2-3


Year

9

BMJ Open: first published as 10.1136/bmjopen-2020-044605 on 30 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Figure 3

297x210mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1	
		abstract		
		(b) Provide in the abstract an informative and balanced summary of what was	3-4	
		done and what was found		
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5	
Objectives	3	State specific objectives, including any prespecified hypotheses	5,6	
Methods				
Study design	4	Present key elements of study design early in the paper	6	
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6	
C		recruitment, exposure, follow-up, and data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6	
1		participants. Describe methods of follow-up		
		(b) For matched studies, give matching criteria and number of exposed and		
		unexposed		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7, 8	
		effect modifiers. Give diagnostic criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7, 8	
measurement		assessment (measurement). Describe comparability of assessment methods if		
		there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias	8	
Study size	10	Explain how the study size was arrived at	7	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8,9	
		describe which groupings were chosen and why		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8,9	
		confounding		
		(b) Describe any methods used to examine subgroups and interactions	8,9	
		(c) Explain how missing data were addressed	9	
		(d) If applicable, explain how loss to follow-up was addressed	8	
		(e) Describe any sensitivity analyses		
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9	
1		eligible, examined for eligibility, confirmed eligible, included in the study,		
		completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	9	
		(c) Consider use of a flow diagram		
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9-11	
±		and information on exposures and potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest	11	
		(c) Summarise follow-up time (eg, average and total amount)	9	
Outcome data	15*	Report numbers of outcome events or summary measures over time	11-	
	-	· · · · · · · · · · · · · · · · · · ·	12	

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	+
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	1
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	1
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	1
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

BMJ Open

Left atrial pressure overload and prognosis in elderly patients with heart failure and preserved ejection fraction: A prospective multicenter observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044605.R4
Article Type:	Original research
Date Submitted by the Author:	27-Aug-2021
Complete List of Authors:	Hoshida, Shiro; Yao Shiritsu Byoin Tachibana, Koichi; Yao Shiritsu Byoin Shinoda, Yukinori; Yao Shiritsu Byoin Minamisaka, Tomoko; Yao Shiritsu Byoin Yamada, Takahisa; Osaka General Medical Center Higuchi, Yoshiharu; Osaka Police Hospital Nakagawa, Yusuke; Kawanishi City Hospital Abe, Haruhiko; National Hospital Organization Osaka National Hospital Fuji, Hisakazu; Kobe Ekisaikai Hospital Yasumura, Yoshio; Amagasaki Chuo Hospital Hikoso, Shungo; Osaka University Hospital, Department of Cardiovascular Medicine Nakatani, Daisaku; Osaka University Hospital, Department of Cardiovascular Medicine Sakata, Yasushi; Osaka University, Department of Cardiovascular Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Geriatric medicine, Epidemiology
Keywords:	Adult cardiology < CARDIOLOGY, Heart failure < CARDIOLOGY, CLINICAL PHYSIOLOGY, GERIATRIC MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Left atrial pressure overload and prognosis in elderly patients with heart failure and preserved ejection fraction: A prospective multicenter observational study

Shiro Hoshida, MD¹; Koichi Tachibana, MD¹; Yukinori Shinoda, MD¹; Tomoko Minamisaka, MD¹; Takahisa Yamada, MD²; Yoshiharu Higuchi, MD³; Yusuke Nakagawa, MD⁴; Haruhiko Abe, MD⁵; Hisakazu Fuji, MD⁶; Yoshio Yasumura, MD⁷; Shungo Hikoso, MD⁸; Daisaku Nakatani, MD⁸; Yasushi Sakata, MD⁸; on behalf of the Osaka Cardiovascular Conference Investigators

¹ Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan
² Division of Cardiology, Osaka General Medical Center, Osaka, Japan
³ Department of Cardiovascular Medicine, Osaka Police Hospital, Osaka, Japan
⁴ Division of Cardiology, Kawanishi City Hospital, Kawanishi, Japan
⁵ Department of Cardiovascular Medicine, National Hospital Organization Osaka
National Hospital, Osaka, Japan
⁶ Cardiovascular Division, Kobe Ekisaikai Hospital, Kobe, Japan

⁷ Department of Cardiovascular Medicine, Amagasaki Chuo Hospital, Amagasaki, Japan ⁸ Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan *Corresponding author: Shiro Hoshida, MD, PhD Department of Cardiovascular Medicine, Yao Municipal Hospital 1-3-1 Ryuge-cho, Yao, Osaka 581-0069, Japan Tel.: +81-72-922-0881, Fax: +81-72-924-4820 Ter oni E-mail: shiro.hoshida@hosp-yao.osaka.jp **Total word count of the manuscript:** 3053

ABSTRACT

Objectives: The severity of diastolic dysfunction is assessed using a combination of several indices of left atrial (LA) volume overload and LA pressure overload. We aimed to clarify which overload is more associated with the prognosis in patients with heart failure and preserved ejection fraction (HFpEF).

Setting: A prospective, multicenter observational registry of collaborating hospitals in Osaka, Japan.

Participants: We enrolled hospitalized patients with HFpEF showing sinus rhythm (men, 79; women, 113). Blood tests and transthoracic echocardiography were performed before discharge. The ratio of diastolic elastance (Ed) to arterial elastance (Ea) was used as a relative index of LA pressure overload.

Primary outcome measures: All-cause mortality and admission for heart failure were evaluated at >1 year after discharge.

Results: In the multivariable Cox regression analysis, Ed/Ea, but not LA volume index, was significantly associated with all-cause mortality or admission for heart failure (hazard ratio 2.034, 95% confidence interval 1.059-3.907, p = 0.032), independent of age, sex, and the serum N-terminal pro-brain natriuretic peptide (NT-proBNP) level. In

patients with a higher NT-proBNP level, the effect of higher Ed/Ea on prognosis was prominent (p = 0.015).

Conclusions: Ed/Ea, an index of LA pressure overload, was significantly associated with the prognosis in elderly patients with HFpEF showing sinus rhythm.

Strengths and limitations

The severity of diastolic dysfunction is assessed by a combination of several indices of left atrial (LA) volume and pressure overload.

The ratio of diastolic elastance (Ed) to arterial elastance (Ea), that is, Ed/Ea, is a novel index of LA pressure overload.

Although the indices of LA pressure and volume overload are high in patients with heart failure and preserved ejection fraction (HFpEF), it remains to be seen which LA overload is more associated with the prognosis in elderly patients with HFpEF. The limitation of this study is its small sample size.

Trial registration: Prospective Multicenter Observational Study of Patients with Heart Failure and Preserved Ejection Fraction (PURSUIT HFpEF) registry.

UMIN-CTR ID: UMIN000021831

 $\mathbf{5}$

Key words: diastolic function, left atrial overload, NT-proBNP

INTRODUCTION

Patients with heart failure and preserved ejection fraction (HFpEF) have an increased left atrial volume (LAV) and early transmitral flow velocity/the onset of early diastolic mitral annular velocity (E/e'), as shown by noninvasive echocardiographic findings.[1-3] E/e' is positively correlated with left atrial (LA) pressure or pulmonary capillary wedge pressure.[4-7] We previously reported that the LAV index (LAVI), a relative index of LAV overload, and the ratio of diastolic elastance (Ed) to arterial elastance (Ea) $[Ed/Ea = (E/e^2)/(0.9 \times systolic blood pressure)]$, a relative index of LA pressure overload, are high in elderly patients with preserved ejection fraction with and without heart failure (HF).[3, 8, 9] In the recommendations for left ventricular (LV) diastolic evaluation using echocardiography, the severity of diastolic dysfunction (DD) is assessed using a combination of several indices, such as early transmitral flow (E)/late transmitral flow (A), deceleration time, E/e', tricuspid regurgitation velocity, and LAVI.[7, 10] Evaluation of disease severity based on these recommendations is useful for estimating the prognosis of patients with HFpEF.[11] However, these noninvasive

indices are related to either LA pressure overload or LAV overload, and which overload is more associated with the prognosis of these patients remains unclear. In this study, we aimed to identify a clinically significant echocardiographic index of LA pressure or volume overload for the prognosis of patients with HFpEF.

METHODS

Study subjects

Of the 353 patients with prognostic data who were recruited from the Prospective Multicenter Observational Study of Patients with Heart Failure and Preserved Ejection Fraction (PURSUIT HFpEF) registry,[3, 12] 129 patients were excluded because they showed atrial fibrillation before discharge and 32 patients were excluded because of poor echocardiographic data. Therefore, we enrolled 192 patients showing sinus rhythm (LV ejection fraction (LVEF) \geq 50%; men/women, 79/113; mean age, 80 years) at discharge during the index hospitalization with acute decompensated HF; patients were enrolled based on the Framingham criteria, and if they met the criteria of LVEF \geq 50% on transthoracic echocardiography (TTE) and N-terminal pro-brain natriuretic peptide (NT-proBNP) \geq 400 pg/mL on admission. We excluded patients with severe aortic

 $\overline{7}$

stenosis, aortic regurgitation, mitral stenosis, or mitral regurgitation due to structural changes in the valves detected by TTE on admission. The PURSUIT HFpEF registry is a prospective, multicenter observational registry in which collaborating hospitals in Osaka, Japan recorded clinical, echocardiographic, and outcome data of patients with HFpEF (UMIN-CTR ID: UMIN000021831). The registry was managed in accordance with the Declaration of Helsinki.

Echocardiography and laboratory testing

TTE was performed when the patients were in a stable condition before discharge. Echocardiographic measurements were obtained according to the American Society of Echocardiography or European Society of Echocardiography criteria during a stable sinus rhythm.[10, 13] Volumetry was standardized using the modified Simpson's method, and the index was calculated as the LAV divided by the body surface area. As a marker of LA pressure overload for estimating LV diastolic function, we examined afterload-integrated Ed/Ea [(E/e')/($0.9 \times$ systolic blood pressure)].[3, 9, 14] As relative markers of LAV overload, we also evaluated LAVI and LA ejection fraction calculated as stroke volume (SV)/LAV.[15] The severity of LVDD was assessed according to the previous reports.[10, 11] In the first step, four parameters were used: E/e', e' velocity,

BMJ Open

tricuspid regurgitation velocity, and LAVI. In the second step, E/A, E wave, E/e', tricuspid regurgitation velocity, and LAVI were used to determine DD grades 1–3.[10, 11] When DD was not observed in the first step, the patients were classified as DD grade 0. Laboratory data were examined when patients were stable before discharge.

Follow-up/clinical outcome

After discharge, all patients were followed up at the respective hospital. Survival data were obtained by dedicated coordinators and investigators through direct contact with patients or their physicians at the hospital, or in an outpatient setting, or via a telephone interview with their families or by mail. Data collection was performed using an electronic data capture system integrated into the electronic medical records developed at the Osaka University.[16] In-hospital data were entered into the system and transferred to the data collection center via a secure Internet connection for processing and analysis. The primary endpoints of this study were the composite of all-cause mortality and hospitalization for worsening HF.

Ethics approval

The study protocol was approved by the ethics committee of each participating hospital. The protocol (Osaka University Clinical Research Review Committee, R000024414) was approved by the ethics committee of Yao Municipal Hospital (2016-No.0006). All participants provided written informed consent.

Patient and public involvement

No patient involved.

Statistical analysis

.et Continuous variables are expressed as mean \pm standard deviation, whereas categorical variables are presented as frequencies and percentages. Differences in categorical variables between the groups were assessed using the chi-square test, and those in continuous variables were assessed using Student's t-test or Welch's t-test, as appropriate. Coefficients of correlations were assessed using the Pearson or Spearman model, and p-values were examined using regression analysis. Survival curves were estimated using the Kaplan-Meier product-limit estimator, and the groups were compared using the log-rank test. The Cox hazard ratio was evaluated using univariable and multivariable analyses. In the multivariable analysis, age, sex, NT-proBNP level

BMJ Open

and each variable of LA pressure or volume overload that was significant in the univariable analysis were used, because there should be 10 events per variable in multivariable Cox regression analysis to obtain reliable results. A p-value of <0.05 was considered statistically significant. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Clinical and laboratory characteristics of patients with HFpEF

During a median follow-up of 452 days, 50 patients had all-cause mortality or admission for worsening HF. There were significant differences between patients with and without all-cause mortality or admission for HF in terms of age (p = 0.011), eGFR (p = 0.026), and serum NT-proBNP (p = 0.017) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension and dyslipidemia, except for diabetes mellitus, between the two groups. With respect to echocardiographic parameters, LAVI (p = 0.024), tricuspid regurgitation pressure gradient (TRPG, p < 0.001), and Ed/Ea (p = 0.019) but not SV/LAV, LV mass

BMJ Open

index (LVMI), LVEF, E/A, the deceleration time of the E wave, septal e', lateral e', or Ed = (E/e')/SV at discharge, were significantly different between patients with and without all-cause mortality or admission for HF (Table 2). The correlations between Ed/Ea and LAVI (r = 0.194, p = 0.008) or SV/LAV (r =-0.180, p = 0.017) were more significant than those between E/e' and LAVI (r = 0.155, p = 0.034) or SV/LAV (r = -0.137, p=0.072). E/e' (r = 0.233, p = 0.001) and Ed/Ea (r =0.222, p = 0.002) showed a modest positive correlation with the NT-proBNP logtransformed level, although TRPG did not correlate with the NT-proBNP logtransformed level (r = 0.147, p = 0.060). LAVI and the NT-proBNP log-transformed level were significantly correlated (r = 0.256, p < 0.001).

Table 1. Patient characteristics before discharge	

	All	All-cause mo admission fo failure		p- value	
	(n = 192)	- (n = 142)	+ (n = 50)	(- vs. +)	
Age, years	80.0 ± 10.0	$\textbf{78.9} \pm \textbf{10.1}$	83.1 ± 9.1	0.011	
Male sex, n (%)	79 (41)	59 (42)	20 (40)	0.848	
Cardiothoracic ratio, %	55.4 ± 7.5	54.8 ± 7.4	57.2 ± 7.7	0.093	
Systolic blood pressure, mmHg	122 ± 18	120 ± 17	124 ± 21	0.078	

BMJ Open

Diastolic blood	64 ± 12	65 ± 12	62 ± 11	0.21
pressure, mmHg				
Heart rate, bpm	69 ± 14	69 ± 14	68 ± 12	0.57
Chronic				
obstructive	11 (6)	9 (7)	2 (4)	0.79
pulmonary		<i>y</i> (1)	-(.)	0.79
disease, n (%)				
Coronary artery	41 (21)	31 (22)	10 (20)	0.78
disease, n (%)				
Diabetes mellitus,	73 (38)	48 (34)	25 (50)	0.04
n (%)				
Dyslipidemia, n	92 (48)	65 (46)	27 (54)	0.31
(%) Hypertension, n				
(%)	169 (88)	121 (85)	48 (96)	0.07
(70)				
Laboratory data				
Hemoglobin, g/dL	11.0 ± 1.8	11.1 ± 1.8	10.5 ± 1.9	0.06
Albumin, g/dL	$\textbf{3.3} \pm \textbf{0.5}$	3.4 ± 0.5	$\textbf{3.1} \pm \textbf{0.6}$	<0.0
eGFR,	42.3 ± 22.1	44.4 ± 21.7	36.3 ± 22.6	0.02
mL/min/1.73 m ²	72.0 - 22.1	44.4 ± 21.7	50.5 ± 22.0	0.02
N-terminal pro-		2096 ±	5557 ±	
brain natriuretic	2971 ± 8478	4832	14490	0.01
peptide, pg/mL				
Medications				
Beta-blockers, n	100 (55)	00 (50)		
(%)	109 (57)	82 (58)	27 (54)	0.64
Calcium-channel	117 (50)	91 (5 1)	22 ((4)	A 2.
blockers, n (%)	112 (58)	80 (56)	32 (64)	0.34
Diuretics, n (%)	146 (76)	105 (74)	41 (82)	0.25
RAAS inhibitors,	133 (69)	94 (66)	39 (78)	0.11
n (%)	133 (07))+ (UU)	J7 (10)	0.11
Statins, n (%)	72 (38)	50 (35)	22 (44)	0.26

Values are mean ± standard deviation or number (%). eGFR, estimated glomerular filtration rate; RAAS, renin-angiotensin-aldosterone system

Table 2. Echocardiographic data before discharge

		All-cause mortality or				
		admission for	heart failure	p- value (- vs +)		
	All	-	+			
LAD, mm	41.2 ± 7.6	40.4 ± 7.9	43.3 ± 6.5	0.021		
LAVI, mL/m ²	50.5 ± 25.7	47.9 ± 23.2	57.6 ± 30.8	0.024		
LVEDVI, mL/m ²	56.1 ± 20.3	55.9 ± 21.2	56.8 ± 17.6	0.786		
LVESVI, mL/m ²	21.8 ± 10.8	21.8 ± 10.9	21.8 ± 10.7	0.993		
SVI, mL/m ²	$\textbf{34.3} \pm \textbf{12.0}$	34.0 ± 12.7	35.0 ± 10.0	0.652		
SV/LAV	$\boldsymbol{0.809 \pm 0.376}$	0.835 ± 0.376	0.733 ± 0.373	0.125		
LVEF, %	61.4 ± 6.8	61.3 ± 6.7	62.0 ± 6.8	0.502		
LVMI, g/m ²	108.4 ± 33.2	105.8 ± 32.5	115.9 ± 34.1	0.063		
TRPG, mmHg	27.2 ± 9.3	25.8 ± 8.5	30.9 ± 10.4	<0.001		
E/A	$\boldsymbol{1.00 \pm 0.57}$	1.00 ± 0.61	1.01 ± 0.47	0.897		
DcT of E wave	0.22 ± 0.06	0.22 ± 0.06	$\boldsymbol{0.22\pm0.07}$	0.468		
Septal e'	0.051 ± 0.019	$\textbf{0.052} \pm \textbf{0.020}$	$\boldsymbol{0.048 \pm 0.016}$	0.189		
Lateral e'	$\boldsymbol{0.067 \pm 0.023}$	$\boldsymbol{0.067 \pm 0.024}$	$\boldsymbol{0.067 \pm 0.020}$	0.979		
Ed = (E/e')/SV	0.450 ± 0.230	0.431 ± 0.227	0.505 ± 0.249	0.065		

Ed/Ea 0.130 ± 0.055 0.125 ± 0.055 0.146 ± 0.052	0.019
---	-------

Values are mean ± standard deviation. LAD, left atrial diameter; LAVI, left atrial volume index; LVEDVI, left ventricular end-diastolic volume index; LVESVI, left ventricular end-systolic volume index; SVI, stroke volume index; SV, stroke volume; LAV, left atrial volume; LVEF, left ventricular ejection fraction; TRPG, tricuspid regurgitation pressure gradient; E, early transmitral flow velocity; DcT, deceleration time; e', onset of early diastolic mitral annular velocity; Ed, diastolic elastance; Ea, arterial elastance

Prognostic analysis

In the receiver operating characteristic (ROC) curve analysis for the prediction of allcause mortality or admission for HF, the area under the curve of LAVI was slightly smaller than that of the NT-proBNP level and Ed/Ea (Table 3). The Kaplan-Meier survival analysis clearly showed that LAVI > 38 mL/m² (p = 0.016), Ed/Ea > 0.121 (p =0.002), and NT-proBNP level > 783 pg/mL (p < 0.001) were significant for prognosis (Figure 1). Although not shown, age > 85 years (p < 0.001), eGFR < 39.8 mL/min/1.73 m² (p = 0.004), and TRPG > 28 mmHg (p < 0.001) were also determinant factors. The albumin level was not a determinant factor (data not shown). The LVDD grade was also related to all-cause mortality or admission for HF in patients with HFpEF, as shown by the Kaplan-Meier survival curve analysis (Figure 1) and Cox hazard analysis (hazard ratio 3.164, 95% confidence interval 1.761-5.683, p < 0.001). In the multivariable analysis of the Cox hazard ratio, Ed/Ea (p = 0.032) was significantly associated with poor outcome, independent of age, sex, LAVI, and serum NT-proBNP level (Table 3).

Table 3. Analytical data of prognostic factors for all-cause mortality or admission for heart failure in patients with heart failure and preserved ejection fraction

			Cox ha	zard analy	ysis			
	ROC curve analysis		Univar	Univariable		Multivariable		
	Cut- off point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value
Age	85	0.628	2.855	1.634- 4.99	< 0.001	1.736	0.934- 3.225	0.081
Sex	-	-	0.965	0.547- 1.701	0.903	1.223	0.638- 2.345	0.544
NT- proBNP	783	0.695	3.432	1.652- 7.133	<0.001	3.152	1.422- 6.987	0.004
LAVI	38	0.607	2.225	1.134- 4.366	0.02	1.298	0.599- 2.813	0.508
Ed/Ea	0.121	0.637	2.424	1.337- 4.394	0.003	2.034	1.059- 3.907	0.032

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval;

NT-proBNP, N-terminal pro-brain natriuretic peptide;

LAVI, left atrial volume index; Ed, diastolic elastance; Ea, arterial elastance.

BMJ Open

In the Kaplan-Meier survival curve analysis for all-cause mortality or admission for HF with a stratified examination using the NT-proBNP level and Ed/Ea, the patients with NT-proBNP level > 783 pg/mL and Ed/Ea > 0.121 exhibited the highest event rate (Figure 2, log-rank test, p = 0.015). The effect of higher Ed/Ea on all-cause mortality or admission for HF was obvious in patients with a higher NT-proBNP level.

DISCUSSION

In the present study, LA pressure overload, rather than LAV overload, was found to be a more useful marker of prognosis in patients with HFpEF. Our findings can help determine which single index of LA pressure overload is significantly associated with the prognosis. In particular, in patients with a higher NT-proBNP level, a higher Ed/Ea was associated with a poor prognosis.

The heterogeneity of the cardiac structure in patients with HFpEF is well known. Notably, there were no significant differences in the deceleration time of the E wave and E/A in patients with and without all-cause mortality or admission for HF. The LA structure and function most closely reflect hemodynamic stress and remodeling in HFpEF.[17] The E/e' ratio was reported to be a significant prognostic factor in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist

(TOPCAT) trial [18] and a systematic review.[19] However, there are many important differences between our study and the TOPCAT trial: (1) the TOPCAT trial was an intervention study; (2) subjects in our study were 10 years older; (3) the inclusion criteria were different (i.e., stable outpatients in the TOPCAT trial vs. hospitalized patients with HFpEF in our study and patients with atrial fibrillation were included in the TOPCAT trial but excluded from our study); (4) an essential factor for prognosis, such as serum NT-proBNP level, was included in the multivariable analysis of the Cox hazard ratio in our study.

As a single index of LA pressure overload among noninvasive echocardiographic findings, Ed/Ea may be more significantly associated with all-cause mortality or admission for HF. E/e' is known to be the best-fit index for LA pressure among echocardiographic indices in HFpEF.[17] Ed/Ea = $(E/e')/(0.9 \times \text{systolic blood pressure})$ is the LA pressure relative to systemic pressure and may show the ratio of preload to afterload pressure of the left ventricle. Thus, the Ed/Ea ratio may be an index that reflects the whole left-sided heart function, including the atrioventricular-arterial interaction under a preserved LVEF. Furthermore, patients with a higher NT-proBNP level and higher Ed/Ea had the poorest prognosis. The NT-proBNP level is a powerful prognostic factor in HFpEF.[20] Although NT-proBNP reflects cardiac morphology and

BMJ Open

function,[21] it remains uncertain whether NT-proBNP levels solely reflect cardiac processes or whether it also plays a role independent of cardiac remodeling. Several recent studies have reported that NT-proBNP may be an additional marker of extracardiac vascular diseases.[22, 23] At least a part of the association of NT-proBNP with prognosis is independent of cardiac remodeling measures.[24] In combination with the NT-proBNP level, the significance of higher Ed/Ea for evaluating the prognosis was obvious in elderly patients with HFpEF. Among the indices of LAV overload, LAVI but not SV/LAV significantly differed between patients with and without all-cause mortality or admission for HF. As the area under the curve of LAVI in the ROC curve analysis was small and no significant finding was observed in the multivariable analysis of the Cox hazard ratio for all-cause mortality or admission for HF in patients with HFpEF, we conclude that an index of LA volume overload such as LAVI is not a suitable factor for evaluating prognosis. LAVI is an indicator of long-term elevation of LV filling pressure, and an enlarged LAVI may be a secondary phenomenon. Even in patients without all-cause mortality or admission for HF, the mean LAVI was 47.9 mL/m², which was considerably higher than the criterion for LVDD (> 34 mL/m^2).

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20
30
31
32
33
34
35
36
37
38
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> LV Ed is expressed as (E/e')/SV [25] or (E/e')/LV end-diastolic volume.[26] Ea was calculated as (0.9 × systolic blood pressure)/SV.[25] Although Ed and Ea were reported to be negatively correlated in younger patients with hypertension,[27] both indices were higher in elderly women than in men under stable conditions.[25, 26] Elevated Ed in elderly women could be an epiphenomenon because of the associated increase in Ea. We previously reported that Ed/Ea is an index of the LV diastolic function relative to the afterload and can be calculated as (E/e')/(0.9 × systolic blood pressure) when Ed is (E/e')/SV.[8, 9] Accordingly, Ed/Ea was not directly related to the parameters of cardiac volume, such as LAV and SV. We recently reported a larger LAV and higher Ed/Ea in elderly women with preserved ejection fraction, regardless of HF status.[3, 8, 9] Ed/Ea is a novel afterload-integrated parameter for LV diastolic function that may be useful as a severity index for prognosis in elderly patients with HFpEF.

LIMITATIONS

Further studies are required to investigate differences in the clinical significance of Ed/Ea for prognosis between younger patients with normal renal function and moderate-to-severe LV hypertrophy and elderly patients (mean age, 80 years) with renal dysfunction (mean eGFR, 42.3 mL/min/1.73 m²) and mild LV hypertrophy (mean

BMJ Open

LVMI, 108.4 g/m²) included in our study. We could not discuss echocardiographic parameters in patients with atrial fibrillation. The role of the right side of the heart in prognosis, as possibly reflected in the involvement of TRPG, remains unclear in this study. Even in the small sample size, the multivariable Cox model with the number of variables included/input was within the rough rule of one variable per ten events. Under this condition, Ed/Ea was a significant prognostic factor, independent of NT-proBNP level. Although our results need to be interpreted carefully, our finding that a higher Ed/Ea was associated with a poor prognosis in patients with a higher NT-proBNP level may be clinically important. We examined all-cause mortality rather than cardiac death because the determination of cardiac death can be challenging in elderly patients.

CONCLUSIONS

LA pressure overload, rather than LAV overload, is a useful marker of prognosis in elderly patients with HFpEF showing sinus rhythm. As an index for LA pressure overload among noninvasive echocardiographic findings, Ed/Ea provides additional prognostic information on the serum NT-proBNP level.

ACKNOWLEDGMENTS:

We thank Hiroyuki Kurakami and Tomomi Yamada for their statistical support, Nagisa

Yoshioka, Kyoko Tatsumi, Satomi Kishimoto, Noriko Murakami and Sugako Mitsuoka for their excellent assistance with data collection.

The Osaka CardioVascular Conference-Heart Failure Investigators

Shunsuke Tamaki, Masatake Fukunami, and Takahisa Yamada, Osaka General Medical Center, Osaka, Japan; Takaharu Hayashi and Yoshiharu Higuchi, Osaka Police Hospital, Osaka, Japan; Masaharu Masuda, Mitsutoshi Asai, and Toshiaki Mano, Kansai Rosai Hospital, Amagasaki, Japan; Hisakazu Fuji, Kobe Ekisaikai Hospital, Kobe, Japan; Daisaku Masuda, Yoshihiro Takeda, Yoshiyuki Nagai, and Shizuya Yamashita, Rinku General Medical Center, Izumisano, Japan; Masami Sairyo, Yusuke Nakagawa, and Shuichi Nozaki, Kawanishi City Hospital, Kawanishi, Japan; Haruhiko Abe, Yasunori Ueda, Masaaki Uematsu, and Yukihiro Koretsune, National Hospital Organization Osaka National Hospital, Osaka, Japan; Kunihiko Nagai, Ikeda Municipal Hospital, Ikeda, Japan; Masamichi Yano, Masami Nishino, and Jun Tanouchi, Osaka Rosai Hospital, Sakai, Japan; Yoh Arita and Shinji Hasegawa, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan; Takamaru Ishizu, Minoru Ichikawa, and Yuzuru Takano Higashiosaka City Medical Center, Higashiosaka, Japan; Eisai Rin, Kawachi General Hospital, Higashiosaka, Japan; Tetsuya Watanabe and Shiro Hoshida, Yao Municipal Hospital, Yao, Japan; Masahiro Izumi, Kinki Central Hospital, Itami, Japan; Hiroyoshi Yamamoto and Hiroyasu Kato, Japan Community Health Care Organization, Osaka Minato Central Hospital, Osaka, Japan; Kazuhiro Nakatani and Hisatoyo Hiraoka, Sumitomo Hospital, Osaka, Japan; Mayu Nishio and Keiji Hirooka, Saiseikai Senri Hospital, Suita, Japan; Takahiro Yoshimura and Yoshinori Yasuoka, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan; Akihiro Tani, Kano General Hospital, Osaka, Japan; Yasushi Okumoto and Hideharu Akagi, Kinan Hospital, Tanabe, Japan; Yasunaka Makino, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan; Toshinari Ohnishi and Katsuomi Iwakura, Sakurabashi Watanabe Hospital, Osaka, Japan; Nagahiro Nishikawa and Yoshiyuki Kijima, Japan Community Health Care Organization, Hoshigaoka Medical Center, Hirakata, Japan; Takashi Kitao and Hideyuki Kanai, Minoh City Hospital, Minoh, Japan; Wataru Shioyama and Masashi Fujita, Osaka International Cancer Institute, Osaka, Japan; Koichiro Harada, Suita Municipal Hospital, Suita, Japan; Masahiro Kumada and Osamu Nakagawa, Toyonaka Municipal Hospital, Toyonaka, Japan; Ryo Araki and Takayuki Yamada, Otemae Hospital, Osaka, Japan; Akito Nakagawa and Yoshio Yasumura, Amagasaki Chuo Hospital, Amagasaki, Japan; Fusako Sera, Kei Nakamoto, Hidetaka Kioka, Tomohito Ohtani, Katsuki Okada, Hiroya Mizuno,

Tomoharu Dohi, Takayuki Kojima, Hirota Kida, Akihiro Sunaga, Oeun Bolrathanak, Shinichiro Suna, Daisaku Nakatani, Shungo Hikoso, Toshihiro Takeda, Yasushi Matsumura, and Yasushi Sakata, Osaka University Graduate School of Medicine, Suita, Japan.

Contributorship statement:

(1) Conception and design of the study, acquisition of, and/or analysis and interpretation of data: SH, KT, YS, TM, YH, YN, HA, HF.

(2) Discussion regarding the planning, drafting the article, and/or revising it critically

for important intellectual content: SH, TY, YY, SH, DN, YS.

(3) Final approval of the version to be submitted: All authors.

Competing interests:

None.

Sources of Funding:

This work was funded by Roche Diagnostics K.K. and FUJIFILM Toyama Chemical.

No grant numbers were applicable.

Data availability statement:

Data are available upon reasonable request. No additional data available.

REFERENCES

[1] Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressure. J Am Coll Cardiol 1997; 30:1527-1533.

[2] Geske SR, Soralia P, Nishimura RA, Ommen SR. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: Correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 2007; 116:2702-2708.

[3] Hoshida S, Watanabe T, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Ueno K, Suna S, Nakatani D, Hikoso S, Yamada T, Yasumura Y, Fuji H, Sakata Y and on behalf of PURSUIT HFpEF Investigators. Sex-related differences in left ventricular diastolic function and arterial elastance during admission in patients with heart failure with preserved ejection fraction: The PURSUIT HFpEF study. Clin Cardiol 2018; 41:1529-1536. doi:10.1002/clc.23073.

[4] Santos M, Rivero J, McCullough SD, West E, Opotowski AR, Waxman AB, Systorom DM, Shah AM. E/e' ratio in patients with unexaplained dyspnea. Lack of accuracy in estimating left ventricular filling pressure. Circ Heart Fail 2015; 8:749-756.

[5] Sharifov OF, Schiros CG, Aban I, Denney TS Jr, Gupta H. Diagnostic accuracy of tissue Doppler index E/e' for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: A systematic review and meta-analysis. J Am Heart Assoc 2016; 5:e002530 doi: 10.1161.

[6] Obokata M, Kane G, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction. A simultaneous invasive-echocardiographic study. Circulation 2017; 135:825-838.

BMJ Open

[7] Andersen OS, Smiseth OA, Dokainish H, Abudiab MM, Schutt RC, Kumar A, Sato K, Harb S, Gude E, Remme EW, Andreassen AK, Ha J-W, Xu J, Klein AI, Nagueh SF. Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol 2017; 69:1932-1948.

[8] Hoshida S, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Watanabe T. Age- and sexrelated differences in diastolic function and cardiac dimensions in a hypertensive population. ESC Heart Fail 2016; 3:270-277.

[9] Hoshida S, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Watanabe T. Fluctuation of dynamic diastolic function relative to static cardiac structure - New insights into the underlying mechanism of heart failure with preserved ejection fraction in elderly patients. Circ J 2017; 81:755-758.

[10] Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino PN, Oh JK, Popescu BA, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29:277-314.

[11] Sanchis L, Andrea R, Falces C, Poyatos S, Vidal B, Sitges M. Differential clinical implications of current recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocariogr 2018; 31:1203-1208.

[12] Suna S, Hikoso S, Yamada T, Uematsu M, Yasumura Y, Nakagawa A, Takeda T, Kojima T, Kida H, Oeun B, Sunaga A, Kitamura T, Dohi T, Okada K, Mizuno H, Nakatani D, Iso H, Matsumura Y, Sakata Y, On behalf of the OCVC Heart Failure Investigators. Study protocol for the PURSUIT-HFpEF study: a Prospective, Multicenter, Observational Study of Patients with Heart Failure with Preserved Ejection Fraction. BMJ Open 2020; 10: e038294. Doi: 10.1136/ bmjopen-2020-038294

[13] Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L,Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D,Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU.Recommendations for cardiac chamber quantification by echocardiography in adults: an

BMJ Open

update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28:1-39.

[14] Minamisaka T, Watanabe T, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Ueno K, Inoue S, Mine K, Hoshida S. Transient manifestation of left ventricular diastolic dysfunction following ablation in patients with paroxysmal atrial fibrillation. Clin Cardiol 2018; 41:978-984. doi: 10.1002/clc.22990.

[15] Hoshida S, Watanabe T, Shinoda Y, Minamisaka T, Fukuoka H, Inui H, Ueno K,
Yamada T, Uematsu M, Yasumura Y, Nakatani D, Suna S, Hikoso S, Higuchi Y, Sakata Y, on behalf of the Osaka CardioVascular Conference (OCVC) Investigators.
Considerable scatter in the relationship between left atrial volume and pressure in heart failure with preserved left ventricular ejection fraction. Sci Rep. 2020; 10:90. doi: 10.1038/s41598-019-56581-x.

[16] Matsumura Y, Hattori A, Manabe S, Takahashi D, Yamamoto Y, Murata T, Nakagawa A. Mihara N, Takeda T. Case report form reporter: a key component for the integration of electronic medical records and the electronic data capture system. Stud Health Technol Inform 2017; 245:516–520.

[17] Abbasi SA, Shah RV, McNulty SE, Hernandez AF, Semigran MJ, Lewis GD, Jerosch-Herold M, Kim RJ, Redfield MM, Kwong RY. Left atrial structure and function in heart failure with preserved ejection fraction: A RELAX substudy. PLosOne 2016 doi: 10.1371/journal.pone.0164914.

[18] Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O'Meara E, Desai AS, Heitner JF, Li G, Fang J, Rouleau J, Zile MR, Markov V, Ryabov V, Reis G, Assmann SF, McKinlay SM, Pitt B, Pfeffer MA, Solomon SD. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circ Heart Fail 2014; 7:740-751. doi: 10.1161/CIRCHEARTFAILURE.114.001583.

[19] Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure

BMJ Open

guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 2018; 20:1303-1311.

[20] Kang SH, Park JJ, Choi DJ, Yoon C-H, Oh H-Y, Kang S-M, Yoo B-S, Jeon E-S, Kim J-J, Cho M-C, Chae SC, Ryu K-H, Oh B-H, KorHF Registry. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 2015; 101:1881-1888.

[21] Luchner A, Burnett JC Jr, Jougasaki M, Hense HW, Heid IM, Muders F, Riegger GA, Schunkert H. Evaluation of brain natriuretic peptide as marker of left ventricular dysfunction and hypertrophy in the population. J Hypertens 2000; 18:1121-1128.

[22] Kara K, Lehmann N, Nuemann T, Kälsch H, Möhlenkamp S, Dykun I, Broecker-Preuss M, Pundt N, Moebus S, Jöckel K-H, Erbel R, Mahabadi AA. NT-proBNP is superior to BNP for predicting first cardiovascular events in the general population: The Heinz Nixdorf Recall Studt. Int J Cardiol 2015; 183:155-161.

[23] Portegies MI, Kavousi M, Leening MJ, Bos MJ, van den Meiracker AH, Hofman A, Franco OH, Koudstaal PJ, Ikram MA. N-terminal pro-B-type natriuretic peptide and the risk of stroke and transient ischaemic attack: the Rotterdam Study. Eur J Neurol 2015; 22:695-701.

[24] Dietl A, Stark K, Zimmermann ME,

Meisinger C, Schunkert H, Birner C, Maier LS, Peters A, Heid IM, Luchner A. NTproBNP predicts cardiovascular death in the general population independent of left ventricular mass and function: Insights from a large population-based study with longterm follow-up. PLoS One 2016 DOI: 10.1371/journal.pone.0164060.

[25] Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening. A community-based study. Circulation 2005; 112: 2254-2262.

[26] Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, Claggett B, Zile MR, Kraigher-Krainer E, Pieske B, Voors AA, Packer M, Bransford T, Lefkowitz M, McMurray JJV, Solomon SD, PARAMOUNT Investigators. Sex-specific

cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 2014; 16:535-542.

[27] Mottram PM, Haluska, Leano R, Carlier S, Case C, Marwick TH. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005; 91:1551-1556.

for peer teries only

LEGENDS

Figure 1. The Kaplan-Meier survival curve analysis of patients with heart failure and preserved ejection fraction. Left atrial volume index (LAVI) > 38 mL/m², ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.121, N-terminal pro-brain natriuretic peptide (NT-proBNP) level > 783 pg/mL, and left ventricular diastolic dysfunction (DD) grade (0-1 vs. 2-3) were significant factors for all-cause mortality or admission for heart failure. Criteria for left ventricular DD grade were adopted from the previous reports. [10, 11] The Ed/Ea ratio was calculated as (E/e²)/(0.9 × systolic blood pressure).[3, 8]

Figure 2. The Kaplan-Meier survival curve analysis for all-cause mortality or admission for heart failure with stratified examination using the ratio of diastolic elastance (Ed)/arterial elastance (Ea), Ed/Ea, and N-terminal pro-brain natriuretic peptide (NT-proBNP) level in patients with heart failure and preserved ejection fraction. Patients with NT-proBNP level > 783 pg/mL and Ed/Ea > 0.121 exhibited higher allcause mortality or admission for heart failure. In patients with a higher NT-proBNP level, the effect of a higher Ed/Ea on all-cause mortality or admission for heart failure was obvious.

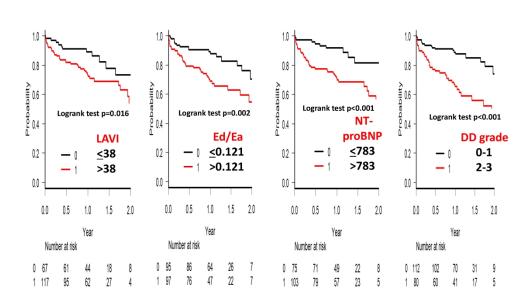
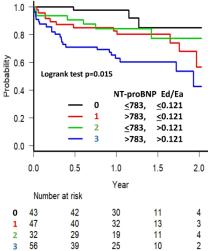



Figure 1

297x210mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

297x210mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2020-044605 on 30 September 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	Numbe	r at risk	Year
0	43	42	30
1	47	40	32
2	32	29	19
3	56	39	25

STROBE Statement-Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3-4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5,6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
-		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7, 8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7, 8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8,9
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8,9
		(b) Describe any methods used to examine subgroups and interactions	8,9
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	8
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
1		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9-11
-		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	11
		(c) Summarise follow-up time (eg, average and total amount)	9
Outcome data	15*	Report numbers of outcome events or summary measures over time	11-
			12

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	1
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	1
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	1
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	1
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
-		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

BMJ Open

Left atrial pressure overload and prognosis in elderly patients with heart failure and preserved ejection fraction: A prospective multicenter observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044605.R5
Article Type:	Original research
Date Submitted by the Author:	06-Sep-2021
Complete List of Authors:	Hoshida, Shiro; Yao Shiritsu Byoin Tachibana, Koichi; Yao Shiritsu Byoin Shinoda, Yukinori; Yao Shiritsu Byoin Minamisaka, Tomoko; Yao Shiritsu Byoin Yamada, Takahisa; Osaka General Medical Center Higuchi, Yoshiharu; Osaka Police Hospital Nakagawa, Yusuke; Kawanishi City Hospital Abe, Haruhiko; National Hospital Organization Osaka National Hospital Fuji, Hisakazu; Kobe Ekisaikai Hospital Yasumura, Yoshio; Amagasaki Chuo Hospital Hikoso, Shungo; Osaka University Hospital, Department of Cardiovascular Medicine Nakatani, Daisaku; Osaka University Hospital, Department of Cardiovascular Medicine Sakata, Yasushi; Osaka University, Department of Cardiovascular Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Geriatric medicine, Epidemiology
Keywords:	Adult cardiology < CARDIOLOGY, Heart failure < CARDIOLOGY, CLINICAL PHYSIOLOGY, GERIATRIC MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Left atrial pressure overload and prognosis in elderly patients with heart failure and preserved ejection fraction: A prospective multicenter observational study

Shiro Hoshida, MD¹; Koichi Tachibana, MD¹; Yukinori Shinoda, MD¹; Tomoko Minamisaka, MD¹; Takahisa Yamada, MD²; Yoshiharu Higuchi, MD³; Yusuke Nakagawa, MD⁴; Haruhiko Abe, MD⁵; Hisakazu Fuji, MD⁶; Yoshio Yasumura, MD⁷; Shungo Hikoso, MD⁸; Daisaku Nakatani, MD⁸; Yasushi Sakata, MD⁸; on behalf of the Osaka Cardiovascular Conference Investigators

¹ Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan
² Division of Cardiology, Osaka General Medical Center, Osaka, Japan
³ Department of Cardiovascular Medicine, Osaka Police Hospital, Osaka, Japan
⁴ Division of Cardiology, Kawanishi City Hospital, Kawanishi, Japan
⁵ Department of Cardiovascular Medicine, National Hospital Organization Osaka
National Hospital, Osaka, Japan
⁶ Cardiovascular Division, Kobe Ekisaikai Hospital, Kobe, Japan

⁷ Department of Cardiovascular Medicine, Amagasaki Chuo Hospital, Amagasaki, Japan ⁸ Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan *Corresponding author: Shiro Hoshida, MD, PhD Department of Cardiovascular Medicine, Yao Municipal Hospital 1-3-1 Ryuge-cho, Yao, Osaka 581-0069, Japan Tel.: +81-72-922-0881, Fax: +81-72-924-4820 Ter oni E-mail: shiro.hoshida@hosp-yao.osaka.jp **Total word count of the manuscript:** 3053

ABSTRACT

Objectives: The severity of diastolic dysfunction is assessed using a combination of several indices of left atrial (LA) volume overload and LA pressure overload. We aimed to clarify which overload is more associated with the prognosis in patients with heart failure and preserved ejection fraction (HFpEF).

Setting: A prospective, multicenter observational registry of collaborating hospitals in Osaka, Japan.

Participants: We enrolled hospitalized patients with HFpEF showing sinus rhythm (men, 79; women, 113). Blood tests and transthoracic echocardiography were performed before discharge. The ratio of diastolic elastance (Ed) to arterial elastance (Ea) was used as a relative index of LA pressure overload.

Primary outcome measures: All-cause mortality and admission for heart failure were evaluated at >1 year after discharge.

Results: In the multivariable Cox regression analysis, Ed/Ea, but not LA volume index, was significantly associated with all-cause mortality or admission for heart failure (hazard ratio 2.034, 95% confidence interval 1.059-3.907, p = 0.032), independent of age, sex, and the serum N-terminal pro-brain natriuretic peptide (NT-proBNP) level. In

patients with a higher NT-proBNP level, the effect of higher Ed/Ea on prognosis was prominent (p = 0.015).

Conclusions: Ed/Ea, an index of LA pressure overload, was significantly associated with the prognosis in elderly patients with HFpEF showing sinus rhythm.

Strengths and limitations

The severity of diastolic dysfunction is assessed by a combination of several indices of left atrial (LA) volume and pressure overload.

The ratio of diastolic elastance (Ed) to arterial elastance (Ea), that is, Ed/Ea, is a novel index of LA pressure overload.

Although the indices of LA pressure and volume overload are high in patients with heart failure and preserved ejection fraction (HFpEF), it remains to be seen which LA overload is more associated with the prognosis in elderly patients with HFpEF. The limitation of this study is its small sample size.

Trial registration: Prospective Multicenter Observational Study of Patients with Heart Failure and Preserved Ejection Fraction (PURSUIT HFpEF) registry.

UMIN-CTR ID: UMIN000021831

 $\mathbf{5}$

Key words: diastolic function, left atrial overload, NT-proBNP

INTRODUCTION

Patients with heart failure and preserved ejection fraction (HFpEF) have an increased left atrial volume (LAV) and early transmitral flow velocity/the onset of early diastolic mitral annular velocity (E/e'), as shown by noninvasive echocardiographic findings.[1-3] E/e' is positively correlated with left atrial (LA) pressure or pulmonary capillary wedge pressure.[4-7] We previously reported that the LAV index (LAVI), a relative index of LAV overload, and the ratio of diastolic elastance (Ed) to arterial elastance (Ea) $[Ed/Ea = (E/e^2)/(0.9 \times systolic blood pressure)]$, a relative index of LA pressure overload, are high in elderly patients with preserved ejection fraction with and without heart failure (HF).[3, 8, 9] In the recommendations for left ventricular (LV) diastolic evaluation using echocardiography, the severity of diastolic dysfunction (DD) is assessed using a combination of several indices, such as early transmitral flow (E)/late transmitral flow (A), deceleration time, E/e', tricuspid regurgitation velocity, and LAVI.[7, 10] Evaluation of disease severity based on these recommendations is useful for estimating the prognosis of patients with HFpEF.[11] However, these noninvasive

indices are related to either LA pressure overload or LAV overload, and which overload is more associated with the prognosis of these patients remains unclear. In this study, we aimed to identify a clinically significant echocardiographic index of LA pressure or volume overload for the prognosis of patients with HFpEF.

METHODS

Study subjects

Of the 353 patients with prognostic data who were recruited from the Prospective Multicenter Observational Study of Patients with Heart Failure and Preserved Ejection Fraction (PURSUIT HFpEF) registry,[3, 12] 129 patients were excluded because they showed atrial fibrillation before discharge and 32 patients were excluded because of poor echocardiographic data. Therefore, we enrolled 192 patients showing sinus rhythm (LV ejection fraction (LVEF) \geq 50%; men/women, 79/113; mean age, 80 years) at discharge during the index hospitalization with acute decompensated HF; patients were enrolled based on the Framingham criteria, and if they met the criteria of LVEF \geq 50% on transthoracic echocardiography (TTE) and N-terminal pro-brain natriuretic peptide (NT-proBNP) \geq 400 pg/mL on admission. We excluded patients with severe aortic

 $\overline{7}$

stenosis, aortic regurgitation, mitral stenosis, or mitral regurgitation due to structural changes in the valves detected by TTE on admission. The PURSUIT HFpEF registry is a prospective, multicenter observational registry in which collaborating hospitals in Osaka, Japan recorded clinical, echocardiographic, and outcome data of patients with HFpEF (UMIN-CTR ID: UMIN000021831). The registry was managed in accordance with the Declaration of Helsinki.

Echocardiography and laboratory testing

TTE was performed when the patients were in a stable condition before discharge. Echocardiographic measurements were obtained according to the American Society of Echocardiography or European Society of Echocardiography criteria during a stable sinus rhythm.[10, 13] Volumetry was standardized using the modified Simpson's method, and the index was calculated as the LAV divided by the body surface area. As a marker of LA pressure overload for estimating LV diastolic function, we examined afterload-integrated Ed/Ea [(E/e')/($0.9 \times$ systolic blood pressure)].[3, 9, 14] As relative markers of LAV overload, we also evaluated LAVI and LA ejection fraction calculated as stroke volume (SV)/LAV.[15] The severity of LVDD was assessed according to the previous reports.[10, 11] In the first step, four parameters were used: E/e', e' velocity,

BMJ Open

tricuspid regurgitation velocity, and LAVI. In the second step, E/A, E wave, E/e', tricuspid regurgitation velocity, and LAVI were used to determine DD grades 1–3.[10, 11] When DD was not observed in the first step, the patients were classified as DD grade 0. Laboratory data were examined when patients were stable before discharge.

Follow-up/clinical outcome

After discharge, all patients were followed up at the respective hospital. Survival data were obtained by dedicated coordinators and investigators through direct contact with patients or their physicians at the hospital, or in an outpatient setting, or via a telephone interview with their families or by mail. Data collection was performed using an electronic data capture system integrated into the electronic medical records developed at the Osaka University.[16] In-hospital data were entered into the system and transferred to the data collection center via a secure Internet connection for processing and analysis. The primary endpoints of this study were the composite of all-cause mortality and hospitalization for worsening HF.

Ethics approval

The study protocol was approved by the ethics committee of each participating hospital. The protocol (Osaka University Clinical Research Review Committee, R000024414) was approved by the ethics committee of Yao Municipal Hospital (2016-No.0006). All participants provided written informed consent.

Patient and public involvement

No patient involved.

Statistical analysis

9 Continuous variables are expressed as mean \pm standard deviation, whereas categorical variables are presented as frequencies and percentages. Differences in categorical variables between the groups were assessed using the chi-square test, and those in continuous variables were assessed using Student's t-test or Welch's t-test, as appropriate. Coefficients of correlations were assessed using the Pearson or Spearman model, and p-values were examined using regression analysis. Survival curves were estimated using the Kaplan-Meier product-limit estimator, and the groups were compared using the log-rank test. The Cox hazard ratio was evaluated using univariable and multivariable analyses. In the multivariable analysis, age and sex, and NT-proBNP

10

2			
3			
4			
5			
6			
7			
, 0			
8			
9			
1	0		
1	1		
1	2		
1	2		
1	1 2 3 4 5 6		
1	4		
1	5		
1	6		
1	7		
1	, Q		
1	8		
1	9		
2	0		
2	1		
2	2		
2	3		
	4		
2	5		
	6		
2	7		
2	8		
	9		
2	0		
	1		
3			
3	3		
	4		
	5		
с 2	6		
3	7		
3	8		
3	9		
	0		
	1		
	2		
	3		
4	4		
4	5		
	6		
4			
	8		
	9		
5	0		
5	1		
	2		
	2 3		
	4		
	5		
5	6		
5	7		
	8		
	9		
د	9		

60

level, LAVI and Ed/Ea that were significantly associated with outcome in the univariable analysis were included. A p-value of <0.05 was considered statistically significant. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Clinical and laboratory characteristics of patients with HFpEF

During a median follow-up of 452 days, 50 patients had all-cause mortality or admission for worsening HF. There were significant differences between patients with and without all-cause mortality or admission for HF in terms of age (p = 0.011), eGFR (p = 0.026), and serum NT-proBNP (p = 0.017) and albumin (p < 0.001) levels (Table 1). There were no significant differences in medications or the incidence of hypertension and dyslipidemia, except for diabetes mellitus, between the two groups. With respect to echocardiographic parameters, LAVI (p = 0.024), tricuspid regurgitation pressure gradient (TRPG, p < 0.001), and Ed/Ea (p = 0.019) but not SV/LAV, LV mass index (LVMI), LVEF, E/A, the deceleration time of the E wave, septal e', lateral e', or BMJ Open

$Ed = (E/e^2)/SV$ at discharge, were significantly different between patients with and
without all-cause mortality or admission for HF (Table 2).
The correlations between Ed/Ea and LAVI ($r = 0.194$, $p = 0.008$) or SV/LAV ($r =$
-0.180, p = 0.017) were more significant than those between E/e' and LAVI (r = 0.155,
p = 0.034) or SV/LAV (r = -0.137, p=0.072). E/e' (r = 0.233, p = 0.001) and Ed/Ea (r =
0.222, $p = 0.002$) showed a modest positive correlation with the NT-proBNP log-
transformed level, although TRPG did not correlate with the NT-proBNP log-
transformed level (r = 0.147, p = 0.060). LAVI and the NT-proBNP log-transformed
level were significantly correlated (r = 0.256 , p < 0.001).
Table 1. Patient characteristics before discharge
All-cause mortality or
admission for heart <i>p</i> -

	All	All-cause m admission f failure		p- value
	(n = 192)	- (n = 142)	+(n=50)	(- vs. +)
Age, years	$\textbf{80.0} \pm \textbf{10.0}$	$\textbf{78.9} \pm \textbf{10.1}$	83.1 ± 9.1	0.011
Male sex, n (%)	79 (41)	59 (42)	20 (40)	0.848
Cardiothoracic ratio, %	55.4 ± 7.5	54.8 ± 7.4	57.2 ± 7.7	0.093
Systolic blood pressure, mmHg	122 ± 18	120 ± 17	124 ± 21	0.078
Diastolic blood pressure, mmHg	64 ± 12	65 ± 12	62 ± 11	0.212
Heart rate, bpm	69 ± 14	69 ± 14	68 ± 12	0.576

Table 1. Patient characteristics before discharge

Page 13 of 32

BMJ Open

Chronic				
obstructive	11 (6)	9 (7)	2 (4)	0.796
pulmonary				
disease, n (%) Coronary artery				
disease, n (%)	41 (21)	31 (22)	10 (20)	0.785
Diabetes mellitus,				
n (%)	73 (38)	48 (34)	25 (50)	0.043
Dyslipidemia, n	02 (48)	(5 (1()	27 (54)	0.316
(%)	92 (48)	65 (46)	27 (34)	0.310
Hypertension, n	169 (88)	121 (85)	48 (96)	0.077
(%)			()	
Laboratory data				
Laboratory data Hemoglobin, g/dL	11.0 ± 1.8	11.1 ± 1.8	10.5 ± 1.9	0.062
Albumin, g/dL	11.0 ± 1.0 3.3 ± 0.5	11.1 ± 1.0 3.4 ± 0.5	10.3 ± 1.9 3.1 ± 0.6	<0.002
eGFR,	3.3 ± 0.3	5.4 ± 0.5	5.1 ± 0.0	-0.00
mL/min/1.73 m ²	42.3 ± 22.1	44.4 ± 21.7	36.3 ± 22.6	0.026
N-terminal pro-		2006		
brain natriuretic	2971 ± 8478	2096 ±	5557 ±	0.017
peptide, pg/mL		4832	14490	
Medications				
Beta-blockers, n	109 (57)	82 (58)	27 (54)	0.645
(%) Calaium abannal				
Calcium-channel blockers, n (%)	112 (58)	80 (56)	32 (64)	0.344
Diuretics, n (%)	146 (76)	105 (74)	41 (82)	0.251
RAAS inhibitors,				
n (%)	133 (69)	94 (66)	39 (78)	0.119
Statins, n (%)	72 (38)	50 (35)	22 (44)	0.269

Values are mean ± standard deviation or number (%).

eGFR, estimated glomerular filtration rate;

RAAS, renin-angiotensin-aldosterone system

BMJ Open

		All-cause mor	tality or	
		admission for	heart failure	p- value
				(- vs +)
	All	-	+	
LAD, mm	41.2 ± 7.6	40.4 ± 7.9	43.3 ± 6.5	0.021
LAVI, mL/m ²	50.5 ± 25.7	47.9 ± 23.2	57.6 ± 30.8	0.024
LVEDVI, mL/m ²	56.1 ± 20.3	55.9 ± 21.2	56.8 ± 17.6	0.786
LVESVI, mL/m ²	21.8 ± 10.8	21.8 ± 10.9	21.8 ± 10.7	0.993
SVI, mL/m ²	34.3 ± 12.0	34.0 ± 12.7	35.0 ± 10.0	0.652
SV/LAV	$\boldsymbol{0.809 \pm 0.376}$	0.835 ± 0.376	$\textbf{0.733} \pm \textbf{0.373}$	0.125
LVEF, %	61.4 ± 6.8	61.3 ± 6.7	62.0 ± 6.8	0.502
LVMI, g/m ²	108.4 ± 33.2	105.8 ± 32.5	115.9 ± 34.1	0.063
TRPG, mmHg	27.2 ± 9.3	25.8 ± 8.5	30.9 ± 10.4	<0.001
E/A	$\boldsymbol{1.00 \pm 0.57}$	1.00 ± 0.61	1.01 ± 0.47	0.897
DcT of E wave	0.22 ± 0.06	0.22 ± 0.06	0.22 ± 0.07	0.468
Septal e'	0.051 ± 0.019	$\boldsymbol{0.052 \pm 0.020}$	$\boldsymbol{0.048 \pm 0.016}$	0.189
Lateral e'	$\boldsymbol{0.067 \pm 0.023}$	$\boldsymbol{0.067 \pm 0.024}$	$\boldsymbol{0.067 \pm 0.020}$	0.979
Ed = (E/e')/SV	0.450 ± 0.230	$\textbf{0.431} \pm \textbf{0.227}$	0.505 ± 0.249	0.065
Ed/Ea	0.130 ± 0.055	0.125 ± 0.055	0.146 ± 0.052	0.019

Table 2. Echocardiographic data before discharge

Values are mean ± standard deviation.

LAD, left atrial diameter; LAVI, left atrial volume index; LVEDVI, left ventricular end-diastolic volume index; LVESVI, left ventricular end-systolic volume index; SVI, stroke volume index; SV, stroke volume; LAV, left atrial volume; LVEF, left ventricular ejection fraction; TRPG, tricuspid regurgitation pressure gradient; E, early transmitral flow velocity; DcT, deceleration time; e', onset of early diastolic mitral annular velocity; Ed, diastolic elastance; Ea, arterial elastance

Prognostic analysis

In the receiver operating characteristic (ROC) curve analysis for the prediction of allcause mortality or admission for HF, the area under the curve of LAVI was slightly smaller than that of the NT-proBNP level and Ed/Ea (Table 3). The Kaplan-Meier survival analysis clearly showed that LAVI > 38 mL/m² (p = 0.016), Ed/Ea > 0.121 (p = 0.002), and NT-proBNP level > 783 pg/mL (p < 0.001) were significant for prognosis (Figure 1). Although not shown, age > 85 years (p < 0.001), eGFR < 39.8 mL/min/1.73 m² (p = 0.004), and TRPG > 28 mmHg (p < 0.001) were also determinant factors. The albumin level was not a determinant factor (data not shown). The LVDD grade was also related to all-cause mortality or admission for HF in patients with HFpEF, as shown by the Kaplan-Meier survival curve analysis (Figure 1) and Cox hazard analysis (hazard ratio 3.164, 95% confidence interval 1.761-5.683, p < 0.001). In the multivariable

analysis of the Cox hazard ratio, Ed/Ea (p = 0.032) was significantly associated with poor outcome, independent of age, sex, LAVI, and serum NT-proBNP level (Table 3).

Table 3. Analytical data of prognostic factors for all-cause mortality or admission for heart failure in patients with heart failure and preserved ejection fraction

			Cox ha	izard anal	ysis			
	ROC curve analysis		Univar	Univariable		Multivariable		
	Cut- off point	AUC	Ratio	95% CI	p-value	Ratio	95% CI	p-value
Age	85	0.628	2.855	1.634- 4.99	< 0.001	1.736	0.934- 3.225	0.081
Sex	-	-	0.965	0.547- 1.701	0.903	1.223	0.638- 2.345	0.544
NT- proBNP	783	0.695	3.432	1.652- 7.133	<0.001	3.152	1.422- 6.987	0.004
LAVI	38	0.607	2.225	1.134- 4.366	0.02	1.298	0.599- 2.813	0.508
Ed/Ea	0.121	0.637	2.424	1.337- 4.394	0.003	2.034	1.059- 3.907	0.032

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval;

NT-proBNP, N-terminal pro-brain natriuretic peptide;

LAVI, left atrial volume index; Ed, diastolic elastance; Ea, arterial elastance.

BMJ Open

In the Kaplan-Meier survival curve analysis for all-cause mortality or admission for HF with a stratified examination using the NT-proBNP level and Ed/Ea, the patients with NT-proBNP level > 783 pg/mL and Ed/Ea > 0.121 exhibited the highest event rate (Figure 2, log-rank test, p = 0.015). The effect of higher Ed/Ea on all-cause mortality or admission for HF was obvious in patients with a higher NT-proBNP level.

DISCUSSION

In the present study, LA pressure overload, rather than LAV overload, was found to be a more useful marker of prognosis in patients with HFpEF. Our findings can help determine which single index of LA pressure overload is significantly associated with the prognosis. In particular, in patients with a higher NT-proBNP level, a higher Ed/Ea was associated with a poor prognosis.

The heterogeneity of the cardiac structure in patients with HFpEF is well known. Notably, there were no significant differences in the deceleration time of the E wave and E/A in patients with and without all-cause mortality or admission for HF. The LA structure and function most closely reflect hemodynamic stress and remodeling in HFpEF.[17] The E/e' ratio was reported to be a significant prognostic factor in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist

(TOPCAT) trial [18] and a systematic review.[19] However, there are many important differences between our study and the TOPCAT trial: (1) the TOPCAT trial was an intervention study; (2) subjects in our study were 10 years older; (3) the inclusion criteria were different (i.e., stable outpatients in the TOPCAT trial vs. hospitalized patients with HFpEF in our study and patients with atrial fibrillation were included in the TOPCAT trial but excluded from our study); (4) an essential factor for prognosis, such as serum NT-proBNP level, was included in the multivariable analysis of the Cox hazard ratio in our study.

As a single index of LA pressure overload among noninvasive echocardiographic findings, Ed/Ea may be more significantly associated with all-cause mortality or admission for HF. E/e' is known to be the best-fit index for LA pressure among echocardiographic indices in HFpEF.[17] Ed/Ea = $(E/e')/(0.9 \times \text{systolic blood pressure})$ is the LA pressure relative to systemic pressure and may show the ratio of preload to afterload pressure of the left ventricle. Thus, the Ed/Ea ratio may be an index that reflects the whole left-sided heart function, including the atrioventricular-arterial interaction under a preserved LVEF. Furthermore, patients with a higher NT-proBNP level and higher Ed/Ea had the poorest prognosis. The NT-proBNP level is a powerful prognostic factor in HFpEF.[20] Although NT-proBNP reflects cardiac morphology and

BMJ Open

function,[21] it remains uncertain whether NT-proBNP levels solely reflect cardiac processes or whether it also plays a role independent of cardiac remodeling. Several recent studies have reported that NT-proBNP may be an additional marker of extracardiac vascular diseases.[22, 23] At least a part of the association of NT-proBNP with prognosis is independent of cardiac remodeling measures.[24] In combination with the NT-proBNP level, the significance of higher Ed/Ea for evaluating the prognosis was obvious in elderly patients with HFpEF. Among the indices of LAV overload, LAVI but not SV/LAV significantly differed between patients with and without all-cause mortality or admission for HF. As the area under the curve of LAVI in the ROC curve analysis was small and no significant finding was observed in the multivariable analysis of the Cox hazard ratio for all-cause mortality or admission for HF in patients with HFpEF, we conclude that an index of LA volume overload such as LAVI is not a suitable factor for evaluating prognosis. LAVI is an indicator of long-term elevation of LV filling pressure, and an enlarged LAVI may be a secondary phenomenon. Even in patients without all-cause mortality or admission for HF, the mean LAVI was 47.9 mL/m², which was considerably higher than the criterion for LVDD (> 34 mL/m^2).

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20
30
31
32
33
34
35
36
37
38
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> LV Ed is expressed as (E/e')/SV [25] or (E/e')/LV end-diastolic volume.[26] Ea was calculated as (0.9 × systolic blood pressure)/SV.[25] Although Ed and Ea were reported to be negatively correlated in younger patients with hypertension,[27] both indices were higher in elderly women than in men under stable conditions.[25, 26] Elevated Ed in elderly women could be an epiphenomenon because of the associated increase in Ea. We previously reported that Ed/Ea is an index of the LV diastolic function relative to the afterload and can be calculated as (E/e')/(0.9 × systolic blood pressure) when Ed is (E/e')/SV.[8, 9] Accordingly, Ed/Ea was not directly related to the parameters of cardiac volume, such as LAV and SV. We recently reported a larger LAV and higher Ed/Ea in elderly women with preserved ejection fraction, regardless of HF status.[3, 8, 9] Ed/Ea is a novel afterload-integrated parameter for LV diastolic function that may be useful as a severity index for prognosis in elderly patients with HFpEF.

LIMITATIONS

Further studies are required to investigate differences in the clinical significance of Ed/Ea for prognosis between younger patients with normal renal function and moderate-to-severe LV hypertrophy and elderly patients (mean age, 80 years) with renal dysfunction (mean eGFR, 42.3 mL/min/1.73 m²) and mild LV hypertrophy (mean

BMJ Open

LVMI, 108.4 g/m²) included in our study. We could not discuss echocardiographic parameters in patients with atrial fibrillation. The role of the right side of the heart in prognosis, as possibly reflected in the involvement of TRPG, remains unclear in this study. Even in the small sample size, the multivariable Cox model with the number of variables included/input was within the rough rule of one variable per ten events. Under this condition, Ed/Ea was a significant prognostic factor, independent of NT-proBNP level. Although our results need to be interpreted carefully, our finding that a higher Ed/Ea was associated with a poor prognosis in patients with a higher NT-proBNP level may be clinically important. We examined all-cause mortality rather than cardiac death because the determination of cardiac death can be challenging in elderly patients.

CONCLUSIONS

LA pressure overload, rather than LAV overload, is a useful marker of prognosis in elderly patients with HFpEF showing sinus rhythm. As an index for LA pressure overload among noninvasive echocardiographic findings, Ed/Ea provides additional prognostic information on the serum NT-proBNP level.

ACKNOWLEDGMENTS:

We thank Hiroyuki Kurakami and Tomomi Yamada for their statistical support, Nagisa

Yoshioka, Kyoko Tatsumi, Satomi Kishimoto, Noriko Murakami and Sugako Mitsuoka for their excellent assistance with data collection.

The Osaka CardioVascular Conference-Heart Failure Investigators

Shunsuke Tamaki, Masatake Fukunami, and Takahisa Yamada, Osaka General Medical Center, Osaka, Japan; Takaharu Hayashi and Yoshiharu Higuchi, Osaka Police Hospital, Osaka, Japan; Masaharu Masuda, Mitsutoshi Asai, and Toshiaki Mano, Kansai Rosai Hospital, Amagasaki, Japan; Hisakazu Fuji, Kobe Ekisaikai Hospital, Kobe, Japan; Daisaku Masuda, Yoshihiro Takeda, Yoshiyuki Nagai, and Shizuya Yamashita, Rinku General Medical Center, Izumisano, Japan; Masami Sairyo, Yusuke Nakagawa, and Shuichi Nozaki, Kawanishi City Hospital, Kawanishi, Japan; Haruhiko Abe, Yasunori Ueda, Masaaki Uematsu, and Yukihiro Koretsune, National Hospital Organization Osaka National Hospital, Osaka, Japan; Kunihiko Nagai, Ikeda Municipal Hospital, Ikeda, Japan; Masamichi Yano, Masami Nishino, and Jun Tanouchi, Osaka Rosai Hospital, Sakai, Japan; Yoh Arita and Shinji Hasegawa, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan; Takamaru Ishizu, Minoru Ichikawa, and Yuzuru Takano Higashiosaka City Medical Center, Higashiosaka, Japan; Eisai Rin, Kawachi General Hospital, Higashiosaka, Japan; Tetsuya Watanabe and Shiro Hoshida, Yao Municipal Hospital, Yao, Japan; Masahiro Izumi, Kinki Central Hospital, Itami, Japan; Hiroyoshi Yamamoto and Hiroyasu Kato, Japan Community Health Care Organization, Osaka Minato Central Hospital, Osaka, Japan; Kazuhiro Nakatani and Hisatoyo Hiraoka, Sumitomo Hospital, Osaka, Japan; Mayu Nishio and Keiji Hirooka, Saiseikai Senri Hospital, Suita, Japan; Takahiro Yoshimura and Yoshinori Yasuoka, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan; Akihiro Tani, Kano General Hospital, Osaka, Japan; Yasushi Okumoto and Hideharu Akagi, Kinan Hospital, Tanabe, Japan; Yasunaka Makino, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan; Toshinari Ohnishi and Katsuomi Iwakura, Sakurabashi Watanabe Hospital, Osaka, Japan; Nagahiro Nishikawa and Yoshiyuki Kijima, Japan Community Health Care Organization, Hoshigaoka Medical Center, Hirakata, Japan; Takashi Kitao and Hideyuki Kanai, Minoh City Hospital, Minoh, Japan; Wataru Shioyama and Masashi Fujita, Osaka International Cancer Institute, Osaka, Japan; Koichiro Harada, Suita Municipal Hospital, Suita, Japan; Masahiro Kumada and Osamu Nakagawa, Toyonaka Municipal Hospital, Toyonaka, Japan; Ryo Araki and Takayuki Yamada, Otemae Hospital, Osaka, Japan; Akito Nakagawa and Yoshio Yasumura, Amagasaki Chuo Hospital, Amagasaki, Japan; Fusako Sera, Kei Nakamoto, Hidetaka Kioka, Tomohito Ohtani, Katsuki Okada, Hiroya Mizuno,

Tomoharu Dohi, Takayuki Kojima, Hirota Kida, Akihiro Sunaga, Oeun Bolrathanak, Shinichiro Suna, Daisaku Nakatani, Shungo Hikoso, Toshihiro Takeda, Yasushi Matsumura, and Yasushi Sakata, Osaka University Graduate School of Medicine, Suita, Japan.

Contributorship statement:

(1) Conception and design of the study, acquisition of, and/or analysis and interpretation of data: SH, KT, YS, TM, YH, YN, HA, HF.

(2) Discussion regarding the planning, drafting the article, and/or revising it critically

for important intellectual content: SH, TY, YY, SH, DN, YS.

(3) Final approval of the version to be submitted: All authors.

Competing interests:

None.

Sources of Funding:

This work was funded by Roche Diagnostics K.K. and FUJIFILM Toyama Chemical.

No grant numbers were applicable.

Data availability statement:

Data are available upon reasonable request. No additional data available.

REFERENCES

[1] Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressure. J Am Coll Cardiol 1997; 30:1527-1533.

[2] Geske SR, Soralia P, Nishimura RA, Ommen SR. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: Correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 2007; 116:2702-2708.

[3] Hoshida S, Watanabe T, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Ueno K, Suna S, Nakatani D, Hikoso S, Yamada T, Yasumura Y, Fuji H, Sakata Y and on behalf of PURSUIT HFpEF Investigators. Sex-related differences in left ventricular diastolic function and arterial elastance during admission in patients with heart failure with preserved ejection fraction: The PURSUIT HFpEF study. Clin Cardiol 2018; 41:1529-1536. doi:10.1002/clc.23073.

[4] Santos M, Rivero J, McCullough SD, West E, Opotowski AR, Waxman AB, Systorom DM, Shah AM. E/e' ratio in patients with unexaplained dyspnea. Lack of accuracy in estimating left ventricular filling pressure. Circ Heart Fail 2015; 8:749-756.

[5] Sharifov OF, Schiros CG, Aban I, Denney TS Jr, Gupta H. Diagnostic accuracy of tissue Doppler index E/e' for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: A systematic review and meta-analysis. J Am Heart Assoc 2016; 5:e002530 doi: 10.1161.

[6] Obokata M, Kane G, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction. A simultaneous invasive-echocardiographic study. Circulation 2017; 135:825-838.

BMJ Open

[7] Andersen OS, Smiseth OA, Dokainish H, Abudiab MM, Schutt RC, Kumar A, Sato K, Harb S, Gude E, Remme EW, Andreassen AK, Ha J-W, Xu J, Klein AI, Nagueh SF. Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol 2017; 69:1932-1948.

[8] Hoshida S, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Watanabe T. Age- and sexrelated differences in diastolic function and cardiac dimensions in a hypertensive population. ESC Heart Fail 2016; 3:270-277.

[9] Hoshida S, Shinoda Y, Ikeoka K, Minamisaka T, Fukuoka H, Inui H, Watanabe T. Fluctuation of dynamic diastolic function relative to static cardiac structure - New insights into the underlying mechanism of heart failure with preserved ejection fraction in elderly patients. Circ J 2017; 81:755-758.

[10] Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino PN, Oh JK, Popescu BA, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29:277-314.

[11] Sanchis L, Andrea R, Falces C, Poyatos S, Vidal B, Sitges M. Differential clinical implications of current recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocariogr 2018; 31:1203-1208.

[12] Suna S, Hikoso S, Yamada T, Uematsu M, Yasumura Y, Nakagawa A, Takeda T, Kojima T, Kida H, Oeun B, Sunaga A, Kitamura T, Dohi T, Okada K, Mizuno H, Nakatani D, Iso H, Matsumura Y, Sakata Y, On behalf of the OCVC Heart Failure Investigators. Study protocol for the PURSUIT-HFpEF study: a Prospective, Multicenter, Observational Study of Patients with Heart Failure with Preserved Ejection Fraction. BMJ Open 2020; 10: e038294. Doi: 10.1136/ bmjopen-2020-038294

[13] Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L,Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D,Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU.Recommendations for cardiac chamber quantification by echocardiography in adults: an

BMJ Open

update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28:1-39.

[14] Minamisaka T, Watanabe T, Shinoda Y, Ikeoka K, Fukuoka H, Inui H, Ueno K, Inoue S, Mine K, Hoshida S. Transient manifestation of left ventricular diastolic dysfunction following ablation in patients with paroxysmal atrial fibrillation. Clin Cardiol 2018; 41:978-984. doi: 10.1002/clc.22990.

[15] Hoshida S, Watanabe T, Shinoda Y, Minamisaka T, Fukuoka H, Inui H, Ueno K,
Yamada T, Uematsu M, Yasumura Y, Nakatani D, Suna S, Hikoso S, Higuchi Y, Sakata Y, on behalf of the Osaka CardioVascular Conference (OCVC) Investigators.
Considerable scatter in the relationship between left atrial volume and pressure in heart failure with preserved left ventricular ejection fraction. Sci Rep. 2020; 10:90. doi: 10.1038/s41598-019-56581-x.

[16] Matsumura Y, Hattori A, Manabe S, Takahashi D, Yamamoto Y, Murata T, Nakagawa A. Mihara N, Takeda T. Case report form reporter: a key component for the integration of electronic medical records and the electronic data capture system. Stud Health Technol Inform 2017; 245:516–520.

[17] Abbasi SA, Shah RV, McNulty SE, Hernandez AF, Semigran MJ, Lewis GD, Jerosch-Herold M, Kim RJ, Redfield MM, Kwong RY. Left atrial structure and function in heart failure with preserved ejection fraction: A RELAX substudy. PLosOne 2016 doi: 10.1371/journal.pone.0164914.

[18] Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O'Meara E, Desai AS, Heitner JF, Li G, Fang J, Rouleau J, Zile MR, Markov V, Ryabov V, Reis G, Assmann SF, McKinlay SM, Pitt B, Pfeffer MA, Solomon SD. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circ Heart Fail 2014; 7:740-751. doi: 10.1161/CIRCHEARTFAILURE.114.001583.

[19] Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure

BMJ Open

guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 2018; 20:1303-1311.

[20] Kang SH, Park JJ, Choi DJ, Yoon C-H, Oh H-Y, Kang S-M, Yoo B-S, Jeon E-S, Kim J-J, Cho M-C, Chae SC, Ryu K-H, Oh B-H, KorHF Registry. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 2015; 101:1881-1888.

[21] Luchner A, Burnett JC Jr, Jougasaki M, Hense HW, Heid IM, Muders F, Riegger GA, Schunkert H. Evaluation of brain natriuretic peptide as marker of left ventricular dysfunction and hypertrophy in the population. J Hypertens 2000; 18:1121-1128.

[22] Kara K, Lehmann N, Nuemann T, Kälsch H, Möhlenkamp S, Dykun I, Broecker-Preuss M, Pundt N, Moebus S, Jöckel K-H, Erbel R, Mahabadi AA. NT-proBNP is superior to BNP for predicting first cardiovascular events in the general population: The Heinz Nixdorf Recall Studt. Int J Cardiol 2015; 183:155-161.

[23] Portegies MI, Kavousi M, Leening MJ, Bos MJ, van den Meiracker AH, Hofman A, Franco OH, Koudstaal PJ, Ikram MA. N-terminal pro-B-type natriuretic peptide and the risk of stroke and transient ischaemic attack: the Rotterdam Study. Eur J Neurol 2015; 22:695-701.

[24] Dietl A, Stark K, Zimmermann ME,

Meisinger C, Schunkert H, Birner C, Maier LS, Peters A, Heid IM, Luchner A. NTproBNP predicts cardiovascular death in the general population independent of left ventricular mass and function: Insights from a large population-based study with longterm follow-up. PLoS One 2016 DOI: 10.1371/journal.pone.0164060.

[25] Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening. A community-based study. Circulation 2005; 112: 2254-2262.

[26] Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, Claggett B, Zile MR, Kraigher-Krainer E, Pieske B, Voors AA, Packer M, Bransford T, Lefkowitz M, McMurray JJV, Solomon SD, PARAMOUNT Investigators. Sex-specific

cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 2014; 16:535-542.

[27] Mottram PM, Haluska, Leano R, Carlier S, Case C, Marwick TH. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005; 91:1551-1556.

for peer teries only

LEGENDS

Figure 1. The Kaplan-Meier survival curve analysis of patients with heart failure and preserved ejection fraction. Left atrial volume index (LAVI) > 38 mL/m², ratio of diastolic elastance (Ed)/arterial elastance (Ea) > 0.121, N-terminal pro-brain natriuretic peptide (NT-proBNP) level > 783 pg/mL, and left ventricular diastolic dysfunction (DD) grade (0-1 vs. 2-3) were significant factors for all-cause mortality or admission for heart failure. Criteria for left ventricular DD grade were adopted from the previous reports. [10, 11] The Ed/Ea ratio was calculated as (E/e²)/(0.9 × systolic blood pressure).[3, 8]

Figure 2. The Kaplan-Meier survival curve analysis for all-cause mortality or admission for heart failure with stratified examination using the ratio of diastolic elastance (Ed)/arterial elastance (Ea), Ed/Ea, and N-terminal pro-brain natriuretic peptide (NT-proBNP) level in patients with heart failure and preserved ejection fraction. Patients with NT-proBNP level > 783 pg/mL and Ed/Ea > 0.121 exhibited higher allcause mortality or admission for heart failure. In patients with a higher NT-proBNP level, the effect of a higher Ed/Ea on all-cause mortality or admission for heart failure was obvious.

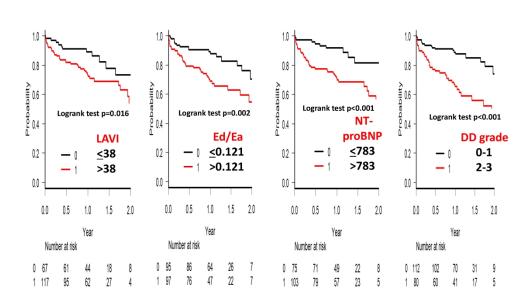
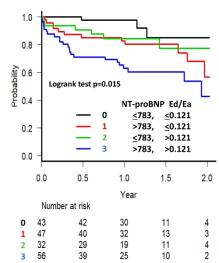



Figure 1

297x210mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2

297x210mm (300 x 300 DPI)

STROBE Statement-Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3-4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5,6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
-		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7, 8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7, 8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8,9
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8,9
		(b) Describe any methods used to examine subgroups and interactions	8,9
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	8
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
1		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9-11
-		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	11
		(c) Summarise follow-up time (eg, average and total amount)	9
Outcome data	15*	Report numbers of outcome events or summary measures over time	11-
			12

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	1
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	1
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	1
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	1
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.