Article Text

Original research
Clinical trial transparency and data sharing among biopharmaceutical companies and the role of company size, location and product type: a cross-sectional descriptive analysis
  1. Sydney A Axson1,
  2. Michelle M Mello2,
  3. Deborah Lincow3,
  4. Catherine Yang4,
  5. Cary P Gross5,
  6. Joseph S Ross5,
  7. Jennifer Miller5
  1. 1Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
  2. 2Center for Health Policy/Primary Care and Outcomes Research, Department of Medicine, Stanford University School of Medicine; Stanford University Law School, Stanford, CA, USA
  3. 3Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
  4. 4University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
  5. 5Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
  1. Correspondence to Dr Jennifer Miller; jennifer.e.miller{at}yale.edu

Abstract

Objectives To examine company characteristics associated with better transparency and to apply a tool used to measure and improve clinical trial transparency among large companies and drugs, to smaller companies and biologics.

Design Cross-sectional descriptive analysis.

Setting and participants Novel drugs and biologics Food and Drug Administration (FDA) approved in 2016 and 2017 and their company sponsors.

Main outcome measures Using established Good Pharma Scorecard (GPS) measures, companies and products were evaluated on their clinical trial registration, results dissemination and FDA Amendments Act (FDAAA) implementation; companies were ranked using these measures and a multicomponent data sharing measure. Associations between company transparency scores with company size (large vs non-large), location (US vs non-US) and sponsored product type (drug vs biologic) were also examined.

Results 26% of products (16/62) had publicly available results for all clinical trials supporting their FDA approval and 67% (39/58) had public results for trials in patients by 6 months after their FDA approval; 58% (32/55) were FDAAA compliant. Large companies were significantly more transparent than non-large companies (overall median transparency score of 95% (IQR 91–100) vs 59% (IQR 41–70), p<0.001), attributable to higher FDAAA compliance (median of 100% (IQR 88–100) vs 57% (0–100), p=0.01) and better data sharing (median of 100% (IQR 80–100) vs 20% (IQR 20–40), p<0.01). No significant differences were observed by company location or product type.

Conclusions It was feasible to apply the GPS transparency measures and ranking tool to non-large companies and biologics. Large companies are significantly more transparent than non-large companies, driven by better data sharing procedures and implementation of FDAAA trial reporting requirements. Greater research transparency is needed, particularly among non-large companies, to maximise the benefits of research for patient care and scientific innovation.

  • health policy
  • clinical trials
  • ethics (see medical ethics)

Data availability statement

Data are available in a public, open access repository. Extra data can be accessed via the Dryad data repository at http://datadryad.org/ with the doi:10.5061/dryad.r2280gbdb.

http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

Data are available in a public, open access repository. Extra data can be accessed via the Dryad data repository at http://datadryad.org/ with the doi:10.5061/dryad.r2280gbdb.

View Full Text

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

Footnotes

  • Correction notice This article has been corrected since it was published. Author middle initials have been updated.

  • Contributors JM conceived the study. JM, MMM, SA, CG and JSR designed the study. CY, DL and SA extracted data. CY, DL, JM and SA analysed the data. JM, MMM, SA, CG and JSR interpreted the data. All authors had full access to the data and take responsibility for the integrity of the data and accuracy of the data analysis. JM and SA drafted the manuscript. MMM, CG, JSR, CY and DL critically revised the manuscript for important intellectual content. All authors approved the final manuscript. JM is the corresponding author and guarantor. The corresponding author attests that all listed authors meet authors criteria and that no others meeting the criteria have been omitted. The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence.

  • Funding This study was funded by Arnold Ventures, which had no role in study design; collection, analysis or interpretation of data; writing of this report; or decision to submit this article for publication.

  • Competing interests Dr SA receives funding from Arnold Ventures through Yale School of Medicine to establish the Good Pharma Scorecard at Bioethics International. Dr CG reports research grants from the NCCN Foundation (Pfizer/AstraZeneca), Johnson & Johnson, and Genentech. He also reports travel expenses from Flatiron. In the past 36 months, Dr JSR received research support through Yale University from the Laura and John Arnold Foundation for the Collaboration for Research Integrity and Transparency (CRIT) at Yale; Dr JSR currently receives research support through Yale University from Johnson and Johnson to develop methods of clinical trial data sharing, from the Medical Device Innovation Consortium as part of the National Evaluation System for Health Technology (NEST), from the Food and Drug Administration for the Yale-Mayo Clinic Center for Excellence in Regulatory Science and Innovation (CERSI) programme (U01FD005938); from the Agency for Healthcare Research and Quality (R01HS022882), from the National Heart, Lung and Blood Institute of the National Institutes of Health (NIH) (R01HS025164, R01HL144644), and from Arnold Ventures to establish the Good Pharma Scorecard at Bioethics International. Dr JM provides bioethics guidance to Alexion Pharmaceuticals on COVID-19 vaccine and drug development and Cambria Health on formulary ethics, co-founded the non-profit Bioethics International, and receives grant funding from the National Institutes of Health, Arnold Ventures and the Milken Institute. No other disclosures were reported.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.