

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Associations of subclinical heart failure and atrial fibrillation with mild cognitive impairment: Implications for screening

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045896
Article Type:	Original research
Date Submitted by the Author:	15-Oct-2020
Complete List of Authors:	Potter, Elizabeth ; Baker Heart and Diabetes Institute; Monash University School of Public Health and Preventive Medicine Ramkumar, Satish; Baker Heart and Diabetes Institute; Monash University School of Public Health and Preventive Medicine Wright, Leah; Baker Heart and Diabetes Institute Marwick, Tom; Baker Heart and Diabetes Institute; Monash University School of Public Health and Preventive Medicine
Keywords:	Heart failure < CARDIOLOGY, PREVENTIVE MEDICINE, Delirium & cognitive disorders < PSYCHIATRY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

Associations of subclinical heart failure and atrial fibrillation with mild cognitive impairment: Implications for screening Elizabeth L. Potter MBBS BSc^{1,2}, Satish Ramkumar MBBS^{1,2}, Leah Wright PhD¹, Thomas

H. Marwick MBBS, PhD, MPH^{1,2}

Baker Heart and Diabetes Institute, Melbourne¹; School of Public Health and Preventive

Medicine, Monash University, Melbourne²

Short title; Cognition in subclinical HF and AF

Address for correspondence;

Dr Elizabeth L. Potter

Baker Heart and Diabetes Institute 75 Commercial Road, Melbourne, Vic 3004, Australia Phone: +61385321185; Fax: +61385321899 <u>liz.potter@baker.edu.au</u> https://orcid.org/0000-0002-3789-9959

Word count: Abstract 266; text 3228

Abstract

Objectives. Effective identification and management of subclinical left ventricular dysfunction (LVD) and subclinical atrial fibrillation (AF) by screening elderly populations might be compromised by mild cognitive impairment (MCI). We sought to characterize the prevalence and profile of MCI and evaluate associations with LV and left atrial dysfunction and AF, in a trial of screening for subclinical LVD and AF.

Design. Cross-sectional.

Setting. Australian, community-based intervention trial.

Participants. Adults aged ≥ 65 years with ≥ 1 non-ischaemic LVD risk factors (n=337).

Outcome measures. The Montreal cognitive assessment (MoCA) was obtained Subclinical LVD was defined as echocardiographic global longitudinal strain (GLS) \leq 16%, diastolic dysfunction or left ventricular hypertrophy; abnormal left atrial reservoir strain (LARS) was defined as <24%. Subclinical AF was detected using a single-lead portable electrocardiographic device in those without pre-existing AF who gave consent (n=293).

Results. Subclinical LVD was found in 155 (46%), abnormal LARS in 9 (3.6%) and subclinical AF in 11 (3.8%). MoCA score consistent with MCI (<26) was found in 101 (30%); executive function (69%) and delayed recall (93%), were the most frequently abnormal domains. Compared with normal cognition, MCI was associated with non-adherence to AF screening (25% vs 40%, p=0.01). In multivariable logistic regression modelling, educational achievement, systolic blood pressure, body mass index and waist-to-hip ratio were independently associated with MCI. However, neither subclinical AF nor any measure of cardiac dysfunction, were associated with MCI.

Conclusions. The 30% prevalence of MCI among elderly subjects with risk factors for subclinical LVD and AF has important implications for screening strategies and management. However, MCI is not associated with subclinical myocardial dysfunction nor subclinical AF.

Article summary

Strengths and limitations of this study

- A community-based study representative of a cardiovascular screening population.
- A validated and easily applied cognitive assessment was used.
- The most sensitive measures of left ventricular and atrial function were evaluated.
- A longitudinal design would have provided additional insights into impact of subclinical left ventricular dysfunction and subclinical atrial fibrillation on incident cognitive impairment.
- Brain MRI may have provided mechanistic insight.

Keywords: Subclinical left ventricular dysfunction, subclinical atrial fibrillation, cognitive impairment

Introduction

Mild cognitive impairment (MCI) describes test-based evidence of cognitive impairment without significant compromise to independent functioning (1). It is a prelude to dementia - a major contributor to mortality and morbidity in our ageing population (2). Heart failure (HF) and atrial fibrillation (AF) increase risk of cognitive impairment (CI) (3,4), with between 54% and 74% of HF patients affected (5). Furthermore, MCI in HF compromises self-management and leads to worse outcomes (6). Early detection and prevention of HF and AF may consequently serve to reduce the burden of MCI. Trials evaluating screening for subclinical left ventricular dysfunction (LVD) and AF, should incorporate cognitive assessment, not only to inform future screening and prevention strategies but to elucidate clinical associations and mechanisms.

Cognitive impairment in symptomatic HF is largely attributed to cerebral hypoperfusion resulting from low cardiac output (7). While this is unlikely to play a significant role in subclinical HF other factors may predominate. Vascular risk factors, particularly hypertension, predispose to cerebral small-vessel disease, lacunar infarcts and compromise auto-regulatory responses that maintain cerebral perfusion (5). Limited data suggest subclinical LVD is independently associated with MCI (8), suggesting a direct causal relationship. In addition, reduced systolic function assessed by global longitudinal strain (GLS) has been associated with silent cerebral infarcts, independent of vascular risk factors (9). Left atrial (LA) enlargement has been linked with MCI but this does not appear independent of AF, particularly in longitudinal analyses (10). AF may exert its effect on cognitive function via silent cerebral infarcts, presumably due to cardiogenic embolism. What is not known is the impact of subclinical AF or LA function on cognition.

Should screening programs for subclinical HF and AF be advocated, the cognitive status of the target population must be quantified to inform effective program design and

implementation. Furthermore, the presence of an independent link between subclinical LV and LA dysfunction, subclinical AF, and cognitive impairment remains unclear. Accordingly, assessment of cognitive function was undertaken at baseline in participants enrolled in the Victorian Study of Echocardiographic detection of Subclinical Left Ventricular Dysfunction (Vic-ELF) to establish a) prevalence and profile of MCI in this population and b) identify associations between MCI and left ventricular (LV) function, LA function and subclinical AF.

Methods

Study population. All subjects were participants in the Victorian Study of Echocardiographic detection of Subclinical Left Ventricular Dysfunction (Vic-ELF; ACTRN:12617000116325). Baseline data were used for this cross-sectional sub-study. Subjects were recruited from the community via primary care and advertising. Those who were asymptomatic and \geq 65 years with hypertension (self-reported, on medication or systolic blood pressure (SBP) \geq 140/90mm Hg), type II diabetes mellitus or obesity (BMI \geq 30kg/m²) were eligible for inclusion. Those with a history or symptoms of HF or ischaemic heart disease (based on existing clinical indication for echocardiography), LV ejection fraction \leq 40%, > moderate valvular disease or oncologic life expectancy <1 year were excluded. The study was approved by a Human Research Ethics Committee (Bellberry, HREC number 2016-10-727) and all participants gave written informed consent.

Patient and public involvement. Patients were not involved in study design and no evaluation of patient involvement burden was undertaken. All participants will receive information regarding the impact of the research findings after study conclusion.

Clinical assessment. Comprehensive medical and medication history were taken along with clinical examination. Heart rate, resting averaged blood pressures, body mass index (BMI), waist and hip circumference and serum N-terminal pro-brain natriuretic peptide (NT-proBNP)

Page 7 of 28

BMJ Open

were recorded along with a six-minute walk test to assess functional capacity, in accordance with standard procedure (11). Patient-reported functional capacity was assessed using the Duke activity score index (DASI). Health-related quality of life, depression and anxiety were evaluated with the EQ-5D-5L, generalized anxiety disorder 7-item scale (GAD-7) and the patient health questionnaire-9 (PHQ-9), respectively. Habitual physical activity was measured (n=201) using waist-worn accelerometers (ActiLife, ActiGraph, Pensacola, FL) for 7 days. Recordings of less than 4 days were excluded, leaving a total of 190 suitable for analysis. **Cognitive assessment.** The MoCA was conducted in accordance with instructions (12). In brief the MoCA is a short (10-12 minutes) office-based assessment that evaluates the cognitive domains of executive and visuospatial function; attention, concentration and working memory; short term memory, language skills and orientation. It is validated in ages 55-85 years and is the preferred screening tool for mild cognitive impairment (13). MCI is diagnosed by a score of <26/30. Graded severity levels of 18-25, 10-17 and <10, are suggested for mild, moderate and severe CI respectively, although supportive data are lacking. Therefore, all cognitive impairment will be referred to as MCI. A deficit in a domain is defined herein as >1 point deficit in that domain. MoCA result was unknown to the investigator (SR) evaluating

subclinical AF and atrial function.

Echocardiography. Resting 2D and Doppler echocardiography was performed with standard equipment (ACUSON SC2000, Siemens Healthcare USA, Mountain View, CA) and transducer (4V1c, 1.25 to 4.5 MHz; 4Z1c, 1.5 to 3.5 MHz) in accordance with guidelines (14). A vector-velocity imaging algorithm (Syngo VVI, Siemens Medical Solutions, Siemens Healthcare USA, Mountain View, CA) was used for GLS quantification and averaged from apical, 2-, 3- and 4-chamber views. Diastolic function was assessed by measuring mitral inflow peak early diastolic velocity (E), peak late diastolic velocity (A), E/A ratio, septal and lateral mitral annular early diastolic velocities (e') and E/e' ratio. Biplane method of disks (Simpson's

modified rule) was used for left atrial volume quantification and indexed to body surface area (LAVI). Diastolic dysfunction was diagnosed using current recommendations (15). Left ventricular mass (LVM) was calculated using the 2D linear method and indexed to body surface area. LVH was defined as LVMI (LVM indexed to body surface area) 95 g/m² in women, 115 g/m² in men. Subclinical LVD was defined as presence of GLS $\leq 16\%$, DD or LVH.

LA reservoir strain (LARS) was assessed by speckle-tracking using a third-party software program (TomTec-ArenaTM (Version TTA2), Tomtec, Munich, Germany). Apical four and two chamber images were selected with a frame rate of 60-80 frames/sec. The endocardial border of the LA was manually traced, and strain analysis performed using the LV strain algorithm, with the average of both the four- and two-chamber values. The reference point for image analysis was taken at the onset of the QRS complex (R-R gating). Abnormal LARS was defined as <24 %.

Atrial fibrillation screening and echocardiographic risk markers for AF. Participants without a history of atrial fibrillation or flutter were asked to provide separate consent (n=293). Screening for subclinical AF was performed using a portable, single-lead ECG device (Remon RM-100; Semacare, Beijing, China) using three finger contact electrodes. Recordings lasted 60-seconds and were undertaken 3 times per day for 2 weeks (i.e. 42 recordings). Instructions were given verbally face-to-face and in written form. Battery failure, device malfunction or problems relating to dexterity were recorded. ECG recordings were exported as PDF files for interpretation, and all were assessed by a physician. The presence of AF was defined as an irregular rhythm of \geq 30 sec with a variable R-R interval and absent P waves.

A stepwise risk stratification tool for atrial fibrillation using GLS, LAVI and LA reservoir strain (LARS) has been devised (16). GLS >14.3% determines low risk; GLS <14.3% and LAVI >39ml/m² determines high risk; GLS <14.3% and LAVI \leq 39ml/m² determines

BMJ Open

intermediate risk, which can be reclassified to intermediate-high if LARS <33.9%. Participants were dichotomised by low/intermediate or high (including intermediate-high) risk based on these criteria. Association between this risk assessment with MCI was assessed individually and combined with detected subclinical AF i.e. a group combining those at high risk of subclinical AF plus those with detected subclinical AF.

Statistical analysis. Continuous variables are presented as median with interquartile ranges (IQR) or mean \pm standard deviation, based on distribution testing using the Shapiro-Wilk test. Categorical variables are presented as frequencies and percentages. Differences between two independent groups were determined using χ^2 and unpaired Student's t-test for categorical and continuous variables, respectively. Variables with a p-value <0.1 in univariable analysis were selected for inclusion in multivariable logistic regression modelling. Effect sizes are expressed as odds ratios (OR) with 95% confidence intervals (CI). Statistical significance was defined as a two-tailed p-value <0.05. Analyses were conducted using STATA 15.1 (StataCorp, College Station, TX).

Results

Of the 337 subjects (age 70 years (68-73), 58% female), 292 (87%) had hypertension with a median duration of 13 years, 108 (32%) had type 2 diabetes mellitus with a median duration of 8 years and 214 (64%) were obese (Table 1). The majority (65%) were dyslipidaemic, a significant proportion were current or ex-smokers (45%) and a small proportion had a history of stroke or transient ischaemic attack (6%) and alcohol abuse (7%). On average, the group spent 66% of waking time sedentary with levels of moderate to physical activity (MVPA) falling well below guideline recommendations. Serum NT-proBNP was, on average, in the low risk range i.e. <125pg/ml (51pg/ml (30-100)).

Page 9

With regards cognitive assessment by MoCA, 101 (30%) exhibited MCI with an overall average MoCA score of 27 (25-29). Of the 101 participants with MCI, severity staging showed none with severe CI and only 3 with moderate CI thus the majority had MCI corresponding to a MoCA score between 18 and 25. Overall, delayed recall and executive function had the highest proportion of deficits (237 (70%) and 145 (43%), respectively (Table 2). There were no differences in the proportion of cognitive domain deficits between those with and without subclinical LVD (Table 1), except for orientation, although only 2% of participants had deficits in this domain.

Those with MCI were less obese and reported significantly fewer years of formal education (Table 1). There was a non-significant trend towards higher blood pressure and longer duration of a diagnosis of hypertension and type II diabetes. The proportion with at least moderate anxiety or depression did not differ by presence of MCI, and while on average functional capacity by 6MWT and minutes per week of MVPA were less in those with MCI, neither were statistically significant (Table 1). Overall, 155 (46%) had subclinical LVD. Echocardiographic markers of systolic and diastolic LV function did not differ by presence of MCI (Table 3). However, LVMI was significantly higher in those with MCI compared to normal cognition (75g/m² (60-84) vs. $67g/m^2$ (55-79), p=0.04, respectively), although this did not translate into a greater proportion of those with MCI having LVH (7 (7%) vs. 13 (5.5%), p=0.62, respectively). LA function measured by LARS was abnormal (<24%) in 9 (3.6%) with a mean value of $36.2\pm7\%$. LARS did not differ by presence of MCI, nor did the proportion of those with abnormal LARS (Table 3).

Subclinical AF was detected in 11 (3.8%) of the 293 screened. Subclinical AF was equally incident in those with and without MCI, as was pre-existing AF (Table 1). In those with pre-existing AF, only 13 (57%) were taking an anticoagulant. By echocardiographic AF risk stratification, 9 (2.7%) were deemed high risk and again there was no association with

BMJ Open

MCI (Table 1). However, after instances of battery/device malfunction were excluded (n=10), MCI was significantly associated with a reduced number of recordings (<30 recordings), 51 (25%) and 33 (40%) for no MCI and MCI, respectively, p=0.01. Therefore, in those undergoing AF screening with a hand-held device a 12% (33/283) rate of non-adherence, related to MCI, was observed.

In univariable logistic regression modelling, prior cerebrovascular accident (CVA), education duration, SBP, BMI and waist-to-hip ratio (WHR) were associated with MCI, (p<0.1) (Table 4). No echocardiographic markers of LV or LA function, nor presence of atrial fibrillation showed an association. In multivariable analysis, MCI was independently associated with higher SBP (OR 1.02 (1.00-1.04), p=0.03) and WHR (OR 40 (2.3-708), p=0.01), while greater numbers of years in formal education (0.9 (0.86-0.98), p=0.01) and higher BMI (0.9 (0.85-0.95), p<0.001) were independently associated with normal cognition.

Discussion

Up to 30% of individuals included in a screening program for subclinical LVD and AF had MCI, manifest most commonly as executive dysfunction, and poor recall of recently delivered information. This is more prevalent than in unselected people aged >65 years, among whom the prevalence of MCI is 3-19% (17). The higher prevalence in our population supports the notion that MCI can be expected in people at risk of HF and AF. This is consistent with evidence that CV risk factors compromise executive function, which is especially true for hypertension – even at subclinical levels (18).

For the first time, associations were sought between sensitive deformation markers of LV and LA function (strain) and none were found, nor did we find evidence that subclinical AF or high AF risk was associated with MCI, although the number of subjects concerned was low. However, consistent with existing data, lower educational achievement, higher systolic

blood pressure and visceral adiposity, but lower BMI were independently associated with MCI (19,20) (Figure 1).

Cognition and cardiac disease. There is contemporary focus on cognitive dysfunction in the setting of cardiac diseases, principally HF and AF. Cognitive impairment, specifically vascular cognitive impairment shares well documented risk factors with HF and AF. Exposure to hypertension, diabetes, smoking and abdominal obesity in mid-life is associated with an accelerated decline in executive function a decade later. This is coupled with magnetic resonance imaging (MRI) evidence of cerebral vascular damage and atrophy (20).

Symptomatic heart failure is independently associated cognitive impairment, although data with robust adjustment for shared risk factors is sparse. Nevertheless, the impact is significant, with most recent estimates of incidence being around 30% over 3.5 years (21), with cerebral hypoperfusion and subclinical cardiogenic emboli likely mechanisms (22). Population studies demonstrate conflicting results regarding associations between LV function and cognition. Cross-sectional data from the Framingham Heart Study found a U-shaped relationship between LVEF quintiles and cognition with the extremes displaying worse cognitive performance (memory and executive function) (23). Conversely, longitudinal data from the Netherlands demonstrated that LAVI but not LVEF at baseline was associated with lower performances in attention and executive function at follow-up (24). Furthermore, another cross-sectional population study found lower systolic function, assessed by tissue Doppler early systolic peak velocity, was not associated with poor cognitive performance but was associated with lower total brain volume (25). With regards LA size, several studies have demonstrated an association between greater LA size and cognitive impairment by global assessment or specific domain testing (6,24,25). However, adjustment for atrial fibrillation is inconsistent and recent evidence suggests the association is not independent of known AF (10).

Page 13 of 28

BMJ Open

Less is known about the link between cardiac dysfunction and cognition in asymptomatic patients. In patients with chronic heart disease (e.g. coronary disease) but without symptomatic HF, diastolic filling pressure estimated by E/e', was associated with significantly higher odds of MCI after comprehensive adjustment for clinical factors, although effect size was small (OR 1.07, 1.01-1.13, p=0.022) (8). This finding did not extend to LVMI, LAVI or stroke volume index (8). In a population without symptomatic cardiac or cerebrovascular disease, those with silent cerebral infarcts (SCIs) on MRI had significantly lower systolic function, as assessed by GLS (26). Moreover, GLS in those with SCIs was in the abnormal range.

Atrial fibrillation is associated with a 42% increase in risk of dementia, independent of age and cardiovascular risk factors (4,27). Interestingly, this association appears strongest in those <70 years with data suggesting no association > 67 years, presumably due to the influence of neurodegenerative pathophysiology (27,28). This is significant given the median age in our study was 70 years. The most prominent mechanism behind the association between AF and cognitive impairment is SCIs, the presence of which determine cognitive decline associated with AF, and conversely those with AF without SCIs do not exhibit cognitive decline (29). However, no study has examined the distribution of SCIs preventing inference about the pathophysiologic mechanism i.e. small vessel versus embolic disease. Anticoagulation in AF is associated with up to a 60% reduction in cognitive decline and incident dementia, supporting a cardioembolic mechanism (30). Neuroimaging would have strengthened our study and revealed whether those with AF were free of SCIs thus potentially explaining the lack of association with MCI.

Clinical implications. Clinicians involved in management of patient with CV risk factors must be alert to the significant proportion of patients who will have MCI – affecting their ability to recall medical information and self-manage aspects of their condition. Indeed, those with MCI

Page 13

progress to dementia at a rate of over 50% in 5 years (17). Our data highlight that even in the early stages of cognitive compromise modifiable risk factors i.e. systolic hypertension and abdominal obesity are contributors, and it may be argued that cognitive screening be undertaken routinely in this scenario. We did not find evidence of an association between certain echocardiographic measures, even sensitive markers of LV and LA function. So, based on these data, echocardiographic abnormality alone should not prompt cognitive evaluation.

In terms of HF prevention, while management of subclinical disease largely rests on risk factor control, the onus is on the patient to recognize the often-insidious transition to a symptomatic state. Current ACC/AHA HF management guidelines suggest that patients with subclinical HF undertake self-surveillance for symptoms and our data highlight one of the problems with this approach i.e. the potential for under-recognition due to cognitive impairment. While screening for subclinical LVD is not currently advocated, it is plausible that early institution of therapy may preserve cognition if progression to symptomatic HF is delayed or prevented. Indeed, anticoagulation for AF, whether permanent or paroxysmal, is associated with a significant reduction in cognitive impairment (30), an observation that could extend to subclinical AF detected by screening.

One of the primary objectives of this study was to assess the prevalence of MCI and therefore the consequences to delivery of screening programs for HF and AF. This study population may have been subject to selection bias given they had sufficient cognition to apply for the trial, meaning the true prevalence is likely higher. However, for those with established dementia, prevention of HF or AF is not their primary care goal. Population-based screening for dementia or MCI is not presently advocated, however a novel proposal may be that HF/AF screening be used as a platform for cognitive screening given the high yield in this cohort. Our data suggest that strategies to optimize engagement and follow-up with a HF/AF screening program should be considered. For example, engagement of services beyond the screening

Page 15 of 28

BMJ Open

program and consideration given to the impact of reduced cognition and health literacy. When cognition is compromised, close relatives can assist with health literacy to promote use of health services. Our finding of a 12% rate of non-adherence to self-initiated AF screening, that related to MCI, is also of importance in considering the mode of delivery of AF screening. Technologies like monitoring patches or smartwatches may be more effective than devices that participants are required to operate.

Limitations. The study would have been strengthened by a longitudinal design, to additionally assess impact on incident MCI. While our sample size was not based on calculation, it is comparable to other studies in specific populations. As mentioned previously, brain MRI would have provided additional mechanistic insights. Our method of assessment for MCI was chosen both for its speed and validity. However, use of more detailed tests for individual cognitive domains may have added more depth to our results and made comparisons with other studies easier. Indeed, variation in the literature surrounding CV disease and cognition may be largely due to inconsistencies in methods. Finally, it should be borne in mind that while a significant proportion of subjects exhibited subclinical LVD, the number with reduced atrial function and/or subclinical AF was low, limiting the certainty of our observations.

Conclusion. Elderly subjects enrolled in a trial screening for subclinical LVD and AF exhibited a 30% prevalence of MCI. There was no association between sensitive measures of LV and LA function nor subclinical AF and presence of MCI.

Author contributions. ELP and THM contributed to the conception and design of the work. All authors contributed to the acquisition and interpretation of data. ELP analysed the data and drafted the manuscript. SR and LW critically revised the manuscript. THM obtained funding for the study and critically revised the manuscript. All gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

Funding. The work was partially supported by a Partnership grant (1149692) from the National Health and Medical Research Council, Canberra, the Ian Potter Foundation, Melbourne, and the Baker Heart and Diabetes Institute. Dr Potter is supported by a Monash University postgraduate scholarship.

Competing interests. None declared.

Patient consent for publication. Not required.

Data availability statement. Data available upon reasonable request.

References

- 1. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551-2561.
- 2. 2019 AIoHaW. Hospital care for people with dementia 2016–17. Cat no AGE 94 Canberra: AIHW.
- 3. Vogels RLC, Scheltens P, Schroeder-Tanka JM, Weinstein HC. Cognitive impairment in heart failure: A systematic review of the literature. Eur J Heart Fail 2007;9:440-449.
- 4. Santangeli P, Di Biase L, Bai R et al. Atrial fibrillation and the risk of incident dementia: A meta-analysis. Heart Rhythm 2012;9:1761-1768
- 5. Leto L, Feola M. Cognitive impairment in heart failure patients. J Geriatric Cardiol 2014;11:316-328.
- 6. Huynh Quan L, Negishi K, De Pasquale Carmine G et al. Cognitive Domains and Postdischarge Outcomes in Hospitalized Patients With Heart Failure. Circ Heart Fail 2019;12:e006086.
- 7. Eggermont LHP, de Boer K, Muller M, Jaschke AC, Kamp O, Scherder EJA. Cardiac disease and cognitive impairment: a systematic review. Heart 2012;98:1334.
- 8. Sacre JW, Ball J, Wong C et al. Mild cognitive impairment is associated with subclinical diastolic dysfunction in patients with chronic heart disease. Eur Heart J Cardiovasc Imaging 2017;19:285-92.
- 9. Russo C, Jin Z, Homma S et al. Subclinical left ventricular dysfunction and silent cerebrovascular disease: The cardiovascular abnormalities and brain lesions (CABL) study. Circulation 2013;128:1105-1111.
- 10. Zhang Michael J, Norby Faye L, Lutsey Pamela L et al. Association of Left Atrial Enlargement and Atrial Fibrillation With Cognitive Function and Decline: The ARIC-NCS. J Am Heart Assoc 2019;8:e013197.
- 11. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111-117.
- 12. <u>https://www.mocatest.org</u>.
- 13. Abd Razak MA, Ahmad NA, Chan YY et al. Validity of screening tools for dementia and mild cognitive impairment among the elderly in primary health care: a systematic review. Public Health 2019;169:84-92.
- Lang RM, Badano LP, Mor-Avi V et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiog 2015;28:1-39.e14.
- 15. Nagueh SF, Smiseth OA, Appleton CP et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiog 2016;29:277-314.
- 16. Ramkumar S, Ochi A, Kawakami H et al. Echocardiographic Risk Assessment to Guide Screening for Atrial Fibrillation. J Am Soc Echocardiogr 2019;32:1259-67.
- 17. Gauthier S, Reisberg B, Zaudig M et al. Mild cognitive impairment. Lancet 2006;367:1262-1270.
- 18. Leritz EC, McGlinchey RE, Kellison I, Rudolph JL, Milberg WP. Cardiovascular Disease Risk Factors and Cognition in the Elderly. Curr Cardiovasc Risk Rep 2011;5:407-412.

7

- 19. Hou Q, Guan Y, Yu W et al. Associations between obesity and cognitive impairment in the Chinese elderly: an observational study. Clin Interv Aging 2019;14:367-373.
 - 20. Debette S, Seshadri S, Beiser A et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 2011;77:461-468.
 - 21. Lee TC, Qian M, Liu Y et al. Cognitive Decline Over Time in Patients With Systolic Heart Failure. JACC Heart Fail 2019;7:1042-1053.
 - 22. Cannon JA, McMurray JJV, Quinn TJ. 'Hearts and minds': association, causation and implication of cognitive impairment in heart failure. Alzheimers Res Ther 2015;7:22.
 - 23. Jefferson AL, Himali J, Au R et al. Relation of left ventricular ejection fraction to cognitive aging (from the Framingham Heart Study). Am J Cardiol;108:1346-51.
 - 24. van den Hurk K, Reijmer YD, van den Berg E et al. Heart failure and cognitive function in the general population: the Hoorn Study. Eur J Heart Fail 2011;13:1362-1369.
 - 25. Park CM, Williams ED, Chaturvedi N et al. Associations Between Left Ventricular Dysfunction and Brain Structure and Function: Findings From the SABRE (Southall and Brent Revisited) Study. J Am Heart Assoc 2017;6:e004898.
 - Prins ND, van Dijk EJ, den Heijer T, et al. Cerebral white matter lesions and the risk of 26. dementia. Arch Neurol 2004;61:1531-1534.
 - 27. de Bruijn RF, Heeringa J, Wolters FJ et al. Association Between Atrial Fibrillation and Dementia in the General Population. JAMA Neurol 2015;72:1288-94.
 - Marengoni A, Qiu C, Winblad B, Fratiglioni L. Atrial fibrillation, stroke and dementia in the 28. very old: a population-based study. Neurobiol Aging 2011;32:1336-7.
 - 29. Chen LY, Lopez FL, Gottesman RF et al. Atrial fibrillation and cognitive decline-the role of subclinical cerebral infarcts: the atherosclerosis risk in communities study. Stroke 2014:45:2568-2574.
 - 30. Ding M, Fratiglioni L, Johnell K et al. Atrial fibrillation, antithrombotic treatment, and cognitive aging. Neurology 2018;91:e1732-40.

eller only

	All (n=337)	No MCI	MCI	p-valı
		(n=236)	(n=101)	
Age, yrs (IQR)	70 (68-73)	70 (68-73)	70 (67-73)	0.83
Gender, female (%)	194 (58)	140 (59)	54 (54)	0.32
Hypertension (%)	292 (87)	201 (85)	91 (90.1)	0.22
Hypertension duration, years (IQR)	13 (7-20)	12 (7-20)	15 (7-20)	0.56
Type II Diabetes (%)	108 (32)	72 (31)	36 (36)	0.36
Diabetes duration, years (IQR)	8 (5-15)	7 (4.5-12.5)	10 (5-18)	0.1
Obesity (%)	214 (64)	158 (68)	56 (56)	0.04
Dyslipidaemia (%)	208 (62)	145 (62)	63 (62)	0.9
Ever smoker (%)	152 (45)	110 (47)	42 (42)	0.34
AF, known (%)	23 (7)	14 (6)	9 (9)	0.32
AF, detected by screening* (%)	11 (4)	8 (4)	3 (4)	0.88
High risk for AF† (%)	9 (3)	8 (3)	1 (1)	0.21
Stroke/TIA	21 (6)	11 (5)	10 (10)	0.07
Alcohol abuse (%)	25 (7)	21 (9)	4 (4)	0.12
ACE-I/ARB (%)	264 (78)	183 (78)	81 (80)	0.59
Beta blocker (%)	37 (11)	22 (9)	15 (15)	0.14
Statin (%)	179 (53)	123 (52)	56 (55)	0.58
Antiplatelet agent (%)	68 (20)	43 (18)	25 (25)	0.17
Anticoagulant (%)	16 (5)	10 (4)	6 (6)	0.5
Education, years (IQR)	12 (10-15)	12 (10-15)	11 (10-14)	0.02
PHQ9 >6 (moderate depression)	27 (8)	20 (8.5)	7 (6.9)	0.63
GAD7 >6 (moderate anxiety)	26 (8)	19 (8)	7 (6.9)	0.72
EQ-5D-L score (IQR)	1 (0-2)	1 (0-2)	1 (0-2)	0.77
Systolic BP, mm Hg (IQR)	138 (131-150)	137 (129-149)	141 (133-151)	0.07
Diastolic BP, mm Hg (IQR)	83 (78-90)	83 (77-89)	85 (79-91)	0.09
BMI, kg/m ² (IQR)	31 (28-35)	32 (28-36)	30 (27-33)	0.002
Waist-hip ratio (SD)	0.93 (0.09)	0.92 (0.09)	0.94 (0.09)	0.07
Duke activity score index (IQR)	51.7 (46.7- 52.7)	52 (49.5-52.7)	50.7 (46-52.7)	0.39
Six-minute walk test, m (IQR)	441 (403-476)	445 (403-477)	438 (405-472)	0.49
MVPA, minutes/week (IQR)	63 (18-144)	65 (18-135)	48 (17-152)	0.89
Sedentary time, % (SD)	66 (10)	67 (10)	64 (9)	0.15
NT-proBNP, pg/ml (IQR)	51 (30-100)	55 (31-101)	49 (24-95)	0.34

Table 1: Clinical, anthropometric, functional, and physical activity measures by presence or absence of mild cognitive impairment (MCI).

TIA – transient ischaemic attack, ACE-I/ARB – angiotensin converting enzyme inhibitor/receptor blocker, BP – blood pressure, BMI – body mass index, MVPA – moderate-vigorous physical activity, NT-proBNP – N terminal pro-brain natriuretic peptide.

For orect review only

Table 2: Mild cognitive impairment (MCI) and deficits in individual cognitive domains according to presence or absence of subclinical left ventricular dysfunction (LVD). P-value for comparison of normal LV function vs. subclinical LVD.

MCI (MoCA 101 (30) 52 (29.7) 49 (30.2) 0.9 <26) Moderate CI 3 (3) 2 (4) 1 (2) 0.7 (MoCA <18) 2 (4) 1 (2) 0.7 (MoCA <18) 0.9 visuospatial (%) Executive and 145 (43) 70 (69) 75 (43) 70 (43) 0.9 visuospatial (%) 15 (4.5) 9 (9) 6 (3.4) 9 (5.6) 0.34 Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	MCI (MoCA 101 (30) 52 (29.7) 49 (30.2) 0.9 <26)	MCI (MoCA 101 (30) 52 (29.7) 49 (30.2) 0.9 <26) Moderate CI 3 (3) 2 (4) 1 (2) 0.7 (MoCA <18) 2 (4) 1 (2) 0.7 0.9 0.9 Executive and 145 (43) 70 (69) 75 (43) 70 (43) 0.9 visuospatial (%) 15 (4.5) 9 (9) 6 (3.4) 9 (5.6) 0.34 Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01		Overall (n=337)	MCI (n=101)	Normal LV function (n=175)	Subclinical LVD (n=162)	p-value
(MoCA <18)	(MoCA <18)	(MoCA <18)	· ·	101 (30)			49 (30.2)	0.9
visuospatial (%) 15 (4.5) 9 (9) 6 (3.4) 9 (5.6) 0.34 Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%)	visuospatial (%) 15 (4.5) 9 (9) 6 (3.4) 9 (5.6) 0.34 Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%)	visuospatial (%) 15 (4.5) 9 (9) 6 (3.4) 9 (5.6) 0.34 Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%)		3 (3)		2 (4)	1 (2)	0.7
Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Executive and	145 (43)	70 (69)	75 (43)	70 (43)	0.9
Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Attention (%) 5 (1.5) 5 (5) 4 (2.3) 1 (0.62) 0.21 Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	· · · · · ·	15 (4.5)	9 (9)	6 (3.4)	9 (5.6)	0.34
Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Language (%) 124 (37) 69 (68) 70 (40) 54 (33) 0.2 Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01				/		
Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) 0 0 0 0.01	Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) 0 0 0 0 0.01	Abstraction (%) 88 (26) 61 (60) 50 (29) 38 (23) 0.29 Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) 0 0 0 0.01					<i>(</i>	
Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01	Delayed recall 237 (70) 94 (93) 121 (69) 116 (72) 0.62 (%) Orientation (%) 7 (2) 6 (6) 7 (4) 0 (0) 0.01			` <i>_</i>			
Ċ,	C.	Ċ,	Delayed recall		94 (93)	\ /	` <i>`</i>	0.62
			Orientation (%)	7 (2)	6 (6)	7 (4)	0 (0)	0.01

	No MCI	MCI	p-value
	(n=236)	(n=101)	
LV ejection fraction, % (SD)	62 (6.8)	62 (5.8)	0.7
GLS, % (IQR)	18.7 (17-20)	18.7 (17-20)	0.87
EA, (IQR)	0.8 (0.68-0.95)	0.82 (0.69-0.99)	0.63
e', cm/s (IQR)	7.5 (6.3-8.9)	7.5 (6.5-8.7)	0.67
E/e' (IQR)	8.2 (6.9-10.2)	8.7 (7.2-11)	0.32
LAVI, ml/m ² (IQR)	34 (28-40)	33 (29-42)	0.56
LA reservoir strain*, % (SD)	36.2 (7)	36.1 (7)	0.9
LARS <24%* (%)	7 (4)	2 (3)	0.61
Relative wall thickness (IQR)	0.37 (0.34-0.43)	0.39 (0.33-0.43)	0.96
LV mass indexed, g/m ² (IQR)	67 (55-79)	75 (60-84)	0.04
Subclinical LV dysfunction (%)	113 (48)	49 (48.5)	0.9
Systolic dysfunction (GLS≤16%)	42 (18)	13 (13)	0.26
Diastolic dysfunction (%)	54 (23)	26 (26)	0.54
LV hypertrophy (%)	13 (5.5)	7 (7)	0.62

Table 3: Echocardiographic variables by presence or absence of mild cognitive impairment (MCI)

*available in 248 participants

LV - left ventricular, GLS - global longitudinal strain, LAVI - left atrial volume indexed to

body surface area, LARS – left atrial reservoir strain

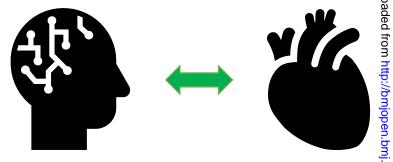

	Univariable		Multivariable	
	OR (95% CI)	p- value	OR (95% CI)	p-value
Age, years	1.00 (0.95-1.06)	0.88		
Female gender	0.8 (0.49-1.26)	0.32		
Hypertension	1.58 (0.75-3.33)	0.23		
Hypertension duration	1.00 (0.97-1.03)	0.76		
Type II diabetes	1.26 (0.77-2.06)	0.36		
Diabetes duration	1.03 (0.98-1.09)	0.22		
Dyslipidaemia	1.03 (0.63-1.66)	0.9		
Ever smoker	0.88 (0.23-3.44)	0.86		
Stroke/TIA	2.2 (0.87-5.6)	0.09	2.5 (0.93-6.8)	0.07
AF (known)	1.54 (0.65-3.69)	0.33		
AF (detected or high risk)	0.63 (0.2-1.96)	0.43		
Education, years	0.92 (0.86-0.98)	0.02	0.9 (0.86-0.98)	0.011
Depression (PHQ9 >6),	0.8 (0.32-2)	0.6		
<u>%</u>		0.50		
Anxiety (GAD7 >6), %	0.85 (0.33-2.1)	0.72		
ACE-I/ARB	1.17 (0.65-2)	0.59		
Beta blocker	1.7 (0.84-3.4)	0.14		
Statin	1.14 (0.7-1.8)	0.58		
Antiplatelet	1.47 (0.84-2.59)	0.17		
Anticoagulant	1.43 (0.5-4)	0.5		
Systolic BP, mm Hg	1.02 (0.99-1.03)		1.02 (1.00-1.04)	0.03
Diastolic BP, mm Hg	1.02 (0.99-1.04)	0.2		
BMI, kg/m ²	0.93 (0.88-0.97)	0.001	0.9 (0.85-0.95)	< 0.001
Waist-hip ratio	11 (0.8-161)	0.07	40 (2.3-708)	0.01
NT-proBNP, pg/ml	0.99 (0.99-1.00)	0.7		
MVPA, hr/week	0.99 (0.99-1.00)	0.98		
Sedentary time, %	0.98 (0.94-1.01)	0.15		
Echocardiographic classifications				
Subclinical LV dysfunction	1.03 (0.64-1.63)	0.9	1	
Systolic dysfunction (GLS ≤16%)	0.68 (0.35-1.33)	0.26		
Diastolic dysfunction	1.18 (0.69-2)	0.54		
LV hypertrophy	1.27 (0.49-3.3)	0.62		
Echocardiographic continuous measures				
LV ejection fraction, %	0.99 (0.95-1.03)	0.7		
GLS, %	1.01 (0.92-1.11)	0.82		
e', cm/s	0.96 (0.84-1.09)	0.57		
E/e'	1.03 (0.94-1.12)	0.4		
LAVI ml/m ²	1 (0.98-1.03)	0.56		
LA reservoir strain, %	0.98 (0.96-1.04)	0.91		
LARS <24%	0.66 (0.13-3.27)	0.61		

 Table 4: Logistic regression modelling for prediction of mild cognitive impairment (abbreviations as per tables 1 and 3)

Page 24 of 28

ELDERLY WITH RISK FACTORS FOR LEFT VENTRICULAR DYSFUNCTION AND ATRIAL FIBRILLATION UNDERGOING SCREENING

30% prevalence of mild cognitive impairment

Implications for screening

- 1.6 x more likely to be non-adherent to handheld AF screening
- Consideration of strategies to optimise engagement e.g. wearables, family involvement

Associations with clinical factors and cardiac function

• No association with subclinical AF

20-045896

- No association with LV global longitudinal strain or diastolic parameters
- No association with left atrial reservoir strain
- Systolic blood pressure, educational attainment, body mass index and abdominal adiposity are independently associated

Rep
Based or
Instruc
Complete
each of t
Your arti
include t
provide a
Upload y
In your n
them as:
von Elm
the Repo
reporting
Title and
Title

orting checklist for cross sectional study.

n the STROBE cross sectional guidelines.

ctions to authors

e this checklist by entering the page numbers from your manuscript where readers will find he items listed below. cle may not currently address all the items on the checklist. Please modify your text to the missing information. If you are certain that an item does not apply, please write "n/a" and a short explanation. our completed checklist as an extra file when you submit to a journal. nethods section, say that you used the STROBE cross sectional reporting guidelines, and cite E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening orting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for observational studies. Page Reporting Item Number d abstract #1a Indicate the study's design with a commonly used term in the 2 title or the abstract

1 2 3	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2
4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13	rationale		investigation being reported	
14 15 16 17	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
18 19			hypotheses	
20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
26 27	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5
28 29 30			periods of recruitment, exposure, follow-up, and data	
31 32			collection	
33 34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	5
36 37 38			selection of participants.	
39 40		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5-7
41 42 43			confounders, and effect modifiers. Give diagnostic criteria, if	
44 45			applicable	
46 47 48	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	5-7
49 50	measurement		of methods of assessment (measurement). Describe	
51 52 53			comparability of assessment methods if there is more than	
54 55			one group. Give information separately for for exposed and	
56 57 58			unexposed groups if applicable.	
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	6
4 5 6	Study size	<u>#10</u>	Explain how the study size was arrived at	14
7 8 9	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	6,7
10	variables		analyses. If applicable, describe which groupings were	
11 12 13 14			chosen, and why	
15 16	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	8
17 18	methods		control for confounding	
19 20 21 22	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	NA
23 24	methods		interactions	
25 26 27	Statistical	<u>#12c</u>	Explain how missing data were addressed	NA
28 29	methods			
30 31 32	Statistical	<u>#12d</u>	If applicable, describe analytical methods taking account of	NA
33 34 35	methods		sampling strategy	
36 37 38	Statistical	<u>#12e</u>	Describe any sensitivity analyses	NA
38 39 40	methods			
41 42 43	Results			
44 45 46	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	8,9
47 48			numbers potentially eligible, examined for eligibility,	
49 50			confirmed eligible, included in the study, completing follow-	
51 52 53			up, and analysed. Give information separately for for	
54 55			exposed and unexposed groups if applicable.	
56 57 58	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	NA
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3	Participants	<u>#13c</u>	Consider use of a flow diagram	NA
4 5	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	8
6 7			clinical, social) and information on exposures and potential	
8 9 10			confounders. Give information separately for exposed and	
10 11 12			unexposed groups if applicable.	
13 14	Descriptive data	#14b	Indicate number of participants with missing data for each	9
15 16	Descriptive data	<u>#140</u>		9
17 18			variable of interest	
19 20	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures.	9
21 22 23			Give information separately for exposed and unexposed	
23 24 25			groups if applicable.	
26				
27 28	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	10
29 30			adjusted estimates and their precision (eg, 95% confidence	
31 32			interval). Make clear which confounders were adjusted for	
33 34 35			and why they were included	
36				
37 38	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	NA
39 40 41			categorized	
42 43	Main results	#16c	If relevant, consider translating estimates of relative risk into	NA
44				
45 46			absolute risk for a meaningful time period	
47 48	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups	NA
49 50 51			and interactions, and sensitivity analyses	
52				
53 54	Discussion			
55 56 57	Key results	<u>#18</u>	Summarise key results with reference to study objectives	10
58 59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
		-	-	

1 2	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	14
3 4			of potential bias or imprecision. Discuss both direction and	
5 6 7			magnitude of any potential bias.	
8 9 10	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	13-14
11 12			limitations, multiplicity of analyses, results from similar	
13 14 15			studies, and other relevant evidence.	
16 17	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	13
18 19 20			results	
21 22 23	Other Information			
24 25	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	14
26 27 28			present study and, if applicable, for the original study on	
29 30			which the present article is based	
31 32 33	None The STROBE	E check	ist is distributed under the terms of the Creative Commons Attrik	oution
34 35			klist can be completed online using <u>https://www.goodreports.org</u>	
36 37 38	made by the <u>EQUA</u>		etwork in collaboration with Penelope.ai	
39 40				
41 42 43				
43 44 45				
46 47				
48 49				
50 51				
52 53				
54 55				
56 57				
58				
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Associations of Subclinical Heart Failure and Atrial Fibrillation with Mild Cognitive Impairment: A Cross-Sectional Study in a Subclinical Heart Failure Screening Program

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045896.R1
Article Type:	Original research
Date Submitted by the Author:	03-Mar-2021
Complete List of Authors:	Potter, Elizabeth ; Baker Heart and Diabetes Institute; Monash University School of Public Health and Preventive Medicine Ramkumar, Satish; Baker Heart and Diabetes Institute; Monash University School of Public Health and Preventive Medicine Wright, Leah; Baker Heart and Diabetes Institute Marwick, Tom; Baker Heart and Diabetes Institute; Monash University School of Public Health and Preventive Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Geriatric medicine
Keywords:	Heart failure < CARDIOLOGY, PREVENTIVE MEDICINE, Delirium & cognitive disorders < PSYCHIATRY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

Page 2 of 30

BMJ Open

2		
3 4	1	Associations of Subclinical Heart Failure and Atrial Fibrillation with Mild Cognitive
5 6 7	2	Impairment: A Cross-Sectional Study in a Subclinical Heart Failure Screening Program
, 8 9	3	
9 10 11	4	Elizabeth L. Potter MBBS BSc ^{1,2} , Satish Ramkumar MBBS ^{1,2} , Leah Wright PhD ¹ , Thomas
12 13	5	H. Marwick MBBS, PhD, MPH ^{1,2}
14 15 16	6	Baker Heart and Diabetes Institute, Melbourne ¹ ; School of Public Health and Preventive
17 18	7	Medicine, Monash University, Melbourne ²
19 20 21	8	
21 22 23	9	Short title; Cognition in subclinical HF and AF
24 25	10	
26 27	11	Address for correspondence; Dr Elizabeth L. Potter
28 29 30	12	Baker Heart and Diabetes Institute
31 32	13	75 Commercial Road, Melbourne, Vic 3004, Australia
33 34	14	Phone: +61385321185; Fax: +61385321899
35 36 37	15	liz.potter@baker.edu.au
38 39	16	https://orcid.org/0000-0002-3789-9959
40 41	17	
42 43 44	18	Wand around: All stread 2000 tont 2000
45 46	19	Word count: Abstract 266; text 3228
47 48	20	
49	21	
50	22	
51	23	
52	24	
53	25	
54	26	
55	27	
56	28	
57	28	
58	30	Abstract
59 60	50	ADSUTACL
60		

59 60

BMJ Open

Page 2

2		
3 4	1	
5 6	2	Objectives. Effective identification and management of subclinical left ventricular dysfunction
7 8 9	3	(LVD) and subclinical atrial fibrillation (AF) by screening elderly populations might be
10 11	4	compromised by mild cognitive impairment (MCI). We sought to characterize the prevalence
12 13	5	and profile of MCI and evaluate associations with LV and left atrial dysfunction and AF, in a
14 15	6	trial of screening for subclinical LVD and AF.
16 17 18	7	Design. Cross-sectional.
19 20	8	Setting. Australian, community-based intervention trial.
21 22	9	Participants. Adults aged \geq 65 years with \geq 1 LVD risk factors without ischaemic heart disease
23 24 25	10	(n=337).
23 26 27	11	Outcome measures. The Montreal cognitive assessment (MoCA) was obtained Subclinical
28 29	12	LVD was defined as echocardiographic global longitudinal strain (GLS) ≤16%, diastolic
30 31	13	dysfunction or left ventricular hypertrophy; abnormal left atrial reservoir strain (LARS) was
32 33 34	14	defined as <24%. Subclinical AF was detected using a single-lead portable
35 36	15	electrocardiographic device in those without pre-existing AF who gave consent (n=293).
37 38	16	Results. Subclinical LVD was found in 155 (46%), abnormal LARS in 9 (3.6%) and subclinical
39 40 41	17	AF in 11 (3.8%). MoCA score consistent with MCI (<26) was found in 101 (30%); executive
42 43	18	function (69%) and delayed recall (93%), were the most frequently abnormal domains.
44 45	19	Compared with normal cognition, MCI was associated with non-adherence to AF screening
46 47	20	(25% vs 40%, p=0.01). In multivariable logistic regression modelling, educational
48 49 50	21	achievement, systolic blood pressure, body mass index and waist-to-hip ratio were
51 52	22	independently associated with MCI. However, neither subclinical AF nor any measure of
53 54 55 56 57 58	23	cardiac dysfunction, were associated with MCI.

Page 4 of 30

BMJ Open

1		rage S
2 3		
5 4 5	1	Conclusions. The 30% prevalence of MCI among elderly subjects with risk factors for
6 7	2	subclinical LVD and AF has important implications for screening strategies and management.
8 9	3	However, MCI is not associated with subclinical myocardial dysfunction nor subclinical AF.
10 11	4	
12 13	5	Article summary
14 15 16	6	Strengths and limitations of this study
17 18	7	• A community-based study representative of a cardiovascular screening population.
19 20	8	• A validated and easily applied cognitive assessment was used.
21 22 23	9	• The most sensitive measures of left ventricular and atrial function were evaluated.
24 25	10	• A longitudinal design would have provided additional insights into impact of
26 27	11	subclinical left ventricular dysfunction and subclinical atrial fibrillation on incident
28 29 30	12	cognitive impairment.
31 32	13	Brain MRI may have provided mechanistic insight.
33 34	14	
35 36 37	15	Keywords: Subclinical left ventricular dysfunction, subclinical atrial fibrillation, cognitive
37 38 39	16	impairment
40 41	17	
42 43 44	18	
45 46		
47 48	19	
49 50	20	
51 52 53	21	
54 55	22	
56 57	23	
58 59 60	24	
	- ·	

BMJ Open

Introduction

т	Introduction
2	Mild cognitive impairment (MCI) describes objective evidence of cognitive
3	impairment without significant compromise to independent functioning (1). It is a prelude to
4	dementia - a major contributor to mortality and morbidity in our ageing population (2). Heart
5	failure (HF) and atrial fibrillation (AF) increase risk of cognitive impairment (CI) (3,4), with
6	between 54% and 74% of HF patients affected (5). Furthermore, MCI in HF compromises self-
7	management and leads to worse outcomes (6). Early detection and prevention of HF and AF
8	may consequently serve to reduce the burden of MCI. Trials evaluating screening for
9	subclinical left ventricular dysfunction (LVD) and AF, should incorporate cognitive
10	assessment, not only to inform future screening and prevention strategies but to elucidate
11	clinical associations and mechanisms.
12	Cognitive impairment in HF is associated with medial temporal lobe atrophy and lower
13	cerebral grey matter volume on neuroimaging (7,8), changes that are more marked compared
14	with those with risk factors but without HF. Whether this is the case in the subclinical phase of
15	HF failure i.e., LVD without HF symptoms, is uncertain. Limited data suggest subclinical LVD
16	is independently associated with MCI (9). In addition, reduced systolic function assessed by
17	global longitudinal strain (GLS) has been associated with silent cerebral infarcts, independent
18	of vascular risk factors (10). Left atrial (LA) enlargement has been linked with MCI but this
19	does not appear independent of AF, particularly in longitudinal analyses (11). AF may exert its

effect on cognitive function via silent cerebral infarcts, presumably due to cardiogenic
embolism. The impact of subclinical AF (asymptomatic AF, unrecognised without screening)
or LA function on cognition are unknown.

Should screening programs for subclinical HF and AF be advocated, the cognitive
status of the target population must be quantified to inform effective program design and
implementation. Furthermore, the presence of an independent link between subclinical LV and

LA dysfunction, subclinical AF, and cognitive impairment remains unclear. Accordingly, assessment of cognitive function was undertaken at baseline in participants enrolled in the Victorian Study of Echocardiographic detection of Subclinical Left Ventricular Dysfunction (Vic-ELF) to establish a) prevalence and profile of MCI in this population and b) identify associations between MCI and left ventricular (LV) function, LA function and subclinical AF.

Methods

Study population. All subjects were participants in the Victorian Study of Echocardiographic detection of Subclinical Left Ventricular Dysfunction (Vic-ELF; ACTRN:12617000116325). Baseline data were used for this cross-sectional sub-study. Subjects were recruited from the community via primary care and advertising. Those who were asymptomatic and ≥ 65 years with hypertension (self-reported, on medication or systolic blood pressure (SBP) \geq 140/90mm Hg), type II diabetes mellitus or obesity (BMI ≥ 30 kg/m²) were eligible for inclusion. Those with a history or symptoms of HF or ischaemic heart disease (based on existing clinical indication for echocardiography), LV ejection fraction <40%, > moderate valvular disease or oncologic life expectancy <1 year were excluded. The study was approved by a Human Research Ethics Committee (Bellberry, HREC number 2016-10-727) and all participants gave written informed consent.

Patient and public involvement. Patients were not involved in study design and no evaluation
of patient involvement burden was undertaken. All participants will receive information
regarding the impact of the research findings after study conclusion.

Clinical assessment. Comprehensive medical and medication history were taken along with
 clinical examination. Heart rate, resting averaged blood pressures, body mass index (BMI),
 waist and hip circumference and serum N-terminal pro-brain natriuretic peptide (NT-proBNP)
 were recorded along with a six-minute walk test to assess functional capacity, in accordance

BMJ Open

with standard procedure (12). Patient-reported functional capacity was assessed using the Duke activity score index (DASI), which has shown good correlation with peak oxygen uptake, and is readily expressed in metabolic equivalents (METS), a metric familiar to most cardiologists. Health-related quality of life, depression and anxiety were evaluated with the EQ-5D-5L, generalized anxiety disorder 7-item scale (GAD-7) and the patient health questionnaire-9 (PHQ-9), respectively. Habitual physical activity was measured (n=201) using waist-worn accelerometers (ActiLife, ActiGraph, Pensacola, FL) for 7 days. Recordings of less than 4 days were excluded, leaving a total of 190 suitable for analysis.

Cognitive assessment. The MoCA was conducted in accordance with instructions (13). In brief the MoCA is a short (10-12 minutes) office-based assessment that evaluates the cognitive domains of executive and visuospatial function; attention, concentration and working memory; short term memory, language skills and orientation (supplemental material). It is validated in ages 55-85 years and is the preferred screening tool for mild cognitive impairment (14). MCI is diagnosed by a score of <26/30. Graded severity levels of 18-25, 10-17 and <10, are suggested for mild, moderate and severe CI respectively, although supportive data are lacking. Therefore, all cognitive impairment will be referred to as MCI. A deficit in a domain is defined herein as ≥ 1 point loss in that domain. MoCA result was unknown to the investigator (SR) evaluating subclinical AF and atrial function.

Echocardiography. Resting 2D and Doppler echocardiography was performed with standard
equipment (ACUSON SC2000, Siemens Healthcare USA, Mountain View, CA) and
transducer (4V1c, 1.25 to 4.5 MHz; 4Z1c, 1.5 to 3.5 MHz) in accordance with guidelines (15).
A vector-velocity imaging algorithm (Syngo VVI, Siemens Medical Solutions, Siemens
Healthcare USA, Mountain View, CA) was used for GLS quantification and averaged from
apical, 2-, 3- and 4-chamber views. Diastolic function was assessed by measuring mitral inflow
peak early diastolic velocity (E), peak late diastolic velocity (A), E/A ratio, septal and lateral

mitral annular early diastolic velocities (e') and E/e' ratio. Biplane method of disks (Simpson's
modified rule) was used for left atrial volume quantification and indexed to body surface area
(LAVI). Diastolic dysfunction was diagnosed using current recommendations (16). Left
ventricular mass (LVM) was calculated using the 2D linear method and indexed to body
surface area. LVH was defined as LVMI (LVM indexed to body surface area) 95 g/m² in
women, 115 g/m² in men. Subclinical LVD was defined as presence of GLS ≤16%, DD or
LVH.

LA reservoir strain (LARS) measures passive LA stretch during LA filling and is associated with diastolic dysfunction grade, may improve diastolic assessment and is independently predicts incident HF (17-19). LARS was assessed by speckle-tracking using a third-party software program (TomTec-Arena[™] (Version TTA2), Tomtec, Munich, Germany). Apical four and two chamber images were selected with a frame rate of 60-80 frames/sec. The endocardial border of the LA was manually traced, and strain analysis performed using the LV strain algorithm, with the average of both the four- and two-chamber values. The reference point for image analysis was taken at the onset of the QRS complex (R-R gating). Abnormal LARS was defined as <24 %.

Atrial fibrillation screening and echocardiographic risk markers for AF. Participants without a history of atrial fibrillation or flutter were asked to provide separate consent (n=293). Screening for subclinical AF was performed using a portable, single-lead ECG device (Remon RM-100; Semacare, Beijing, China) using three finger contact electrodes. Recordings lasted 60-seconds and were undertaken 3 times per day for 2 weeks (i.e. 42 recordings). Instructions were given verbally face-to-face and in written form. Battery failure, device malfunction or problems relating to dexterity were recorded. ECG recordings were exported as PDF files for interpretation, and all were assessed by a physician. The presence of AF was defined as a

BMJ Open

continuous episode of an irregular rhythm \geq 30 sec with a variable R-R interval and absent P waves.

A stepwise risk stratification tool for atrial fibrillation using GLS, LAVI and LA reservoir strain (LARS) has been devised (20). GLS >14.3% determines low risk; GLS <14.3% and LAVI >39ml/m² determines high risk; GLS <14.3% and LAVI ≤39ml/m² determines intermediate risk, which can be reclassified to intermediate-high if LARS <33.9%. Participants were dichotomised by low/intermediate or high (including intermediate-high) risk based on these criteria. Association between this risk assessment with MCI was assessed individually and combined with detected subclinical AF i.e. a group combining those at high risk of subclinical AF plus those with detected subclinical AF.

Statistical analysis. Continuous variables are presented as median with interquartile ranges (IQR) or mean \pm standard deviation, based on distribution testing using the Shapiro-Wilk test. Categorical variables are presented as frequencies and percentages. Differences between two independent groups were determined using χ^2 and unpaired Student's t-test for categorical and continuous variables, respectively. Variables with a p-value <0.1 in univariable analysis were selected for inclusion in multivariable logistic regression modelling. Effect sizes are expressed as odds ratios (OR) with 95% confidence intervals (CI). Statistical significance was defined as a two-tailed p-value <0.05. Analyses were conducted using STATA 15.1 (StataCorp, College Station, TX).

Results

Participant characteristics. Of the 337 subjects (age 70 years (IQR 68-73), 58% female), 292 (87%) had hypertension with a median duration of 13 years, 108 (32%) had type 2 diabetes mellitus with a median duration of 8 years and 214 (64%) were obese (Table 1). The majority (65%) were dyslipidaemic, a significant proportion were current or ex-smokers (45%) and a

small proportion had a history of stroke or transient ischaemic attack (6%) and alcohol abuse
(7%). On average, the group spent 66% of waking time sedentary with levels of moderate to
physical activity (MVPA) falling well below guideline recommendations. Serum NT-proBNP
was, on average, in the low-risk range i.e. <125pg/ml (51pg/ml (IQR 30-100)).

Characteristics of cognitive impairment and relation to LV function. With regards cognitive assessment by MoCA, 101 (30%) exhibited MCI with an overall average MoCA score of 27 (IQR 25-29). Of the 101 participants with MCI, severity staging showed none with severe CI and only 3 with moderate CI thus the majority had MCI corresponding to a MoCA score between 18 and 25. Overall, delayed recall and executive function had the highest proportion of deficits (237 (70%) and 145 (43%), respectively (Table 2). There were no differences in the proportion of cognitive domain deficits between those with and without subclinical LVD (Table 1), except for orientation, although only 2% of participants had deficits in this domain.

Subclinical AF screening and cognitive impairment. Of the 293 screened, there were 10 instances of device malfunction leaving 283 for analysis. Subclinical AF was detected in 11 (3.9%). Subclinical AF was equally incident in those with and without MCI, as was pre-existing AF (Table 1). In those with pre-existing AF, only 13 (57%) were taking an anticoagulant. By echocardiographic AF risk stratification, 9 (2.7%) were deemed high risk and again there was no association with MCI (Table 1). MCI was significantly associated with a reduced number of recordings (<30 recordings), 51 (25%) and 33 (40%) for no MCI and MCI, respectively, p=0.01. Therefore, in those undergoing AF screening with a hand-held device a 12% (33/283) rate of non-adherence, related to MCI, was observed.

Clinical and echocardiographic associations with cognitive impairment. Those with MCI
were less obese and reported significantly fewer years of formal education (Table 1). There
was a non-significant trend towards higher blood pressure and longer duration of a diagnosis

BMJ Open

of hypertension and type II diabetes. The proportion with at least moderate anxiety or depression did not differ by presence of MCI, and while on average functional capacity by 6MWT and minutes per week of MVPA were less in those with MCI, neither were statistically significant (Table 1). Overall, 155 (46%) had subclinical LVD. Echocardiographic markers of systolic and diastolic LV function did not differ by presence of MCI (Table 3). However, LVMI was significantly higher in those with MCI compared to normal cognition (75g/m² (IQR 60-84) vs. 67g/m² (IQR 55-79), p=0.04, respectively), although this did not translate into a greater proportion of those with MCI having LVH (7 (7%) vs. 13 (5.5%), p=0.62, respectively). LA function measured by LARS was abnormal (<24%) in 9 (3.6%) with a mean value of 36.2 $\pm7\%$. LARS did not differ by presence of MCI, nor did the proportion of those with abnormal LARS (Table 3).

In univariable logistic regression modelling, no echocardiographic markers of LV or LA function, nor presence of atrial fibrillation showed an association with MCI (Table 4). Prior cerebrovascular accident (CVA), education duration, SBP, BMI and waist-to-hip ratio (WHR) were associated with MCI, (p<0.1) (Table 4). In multivariable analysis, MCI was independently associated with higher SBP (OR 1.02 (1.00-1.04), p=0.03) and WHR (OR 40 (2.3-708), p=0.01), while greater numbers of years in formal education (0.9 (0.86-0.98), p=0.01) and higher BMI (0.9 (0.85-0.95), p<0.001) were independently associated with normal cognition.

Discussion

Up to 30% of individuals included in a screening program for subclinical LVD and AF
had MCI, manifest most commonly as executive dysfunction, and poor recall of recently
delivered information. This is more prevalent than in unselected people aged >65 years, among

Page 11

whom the prevalence of MCI is 3-19% (21). The higher prevalence in our population supports
the notion that MCI can be expected in people at risk of HF and AF. This is consistent with
evidence that CV risk factors compromise executive function, which is especially true for
hypertension – even at subclinical levels (22).

For the first time, associations were sought between sensitive deformation markers of
LV and LA function (strain) and none were found, nor did we find evidence that subclinical
AF or high AF risk was associated with MCI, although the number of subjects concerned was
low. However, consistent with existing data, lower educational achievement, higher systolic
blood pressure and visceral adiposity, but lower BMI were independently associated with MCI
(23,24) (Figure 1). If an independent association exists between HF and cognitive impairment,
then our data suggest this is not apparent in the subclinical phase of HF.

Cognition and cardiac disease. There is contemporary focus on cognitive dysfunction in the setting of cardiac diseases, principally HF and AF. Cognitive impairment, specifically vascular cognitive impairment shares well documented risk factors with HF and AF. Exposure to hypertension, diabetes, smoking and abdominal obesity in mid-life is associated with an accelerated decline in executive function a decade later. This is coupled with magnetic resonance imaging (MRI) evidence of cerebral vascular damage and atrophy (24).

19 Symptomatic heart failure is independently associated cognitive impairment, although 20 data with robust adjustment for shared risk factors is sparse. Nevertheless, the impact is 21 significant, with most recent estimates of incidence being around 30% over 3.5 years (25), with 22 cerebral hypoperfusion and subclinical cardiogenic emboli likely mechanisms (26). Population 23 studies demonstrate conflicting results regarding associations between LV function and 24 cognition. Cross-sectional data from the Framingham Heart Study found a U-shaped 25 relationship between LVEF quintiles and cognition with the extremes displaying worse Page 13 of 30

BMJ Open

cognitive performance (memory and executive function) (27). Conversely, longitudinal data from the Netherlands demonstrated that LAVI but not LVEF at baseline was associated with lower performances in attention and executive function at follow-up (28). Furthermore, another cross-sectional population study found lower systolic function, assessed by tissue Doppler early systolic peak velocity, was not associated with poor cognitive performance but was associated with lower total brain volume (29). With regards LA size, several studies have demonstrated an association between greater LA size and cognitive impairment by global assessment or specific domain testing (6,28,29). However, adjustment for atrial fibrillation is inconsistent and recent evidence suggests the association is not independent of known AF (11). Less is known about the link between cardiac dysfunction and cognition in asymptomatic patients. In patients with chronic heart disease (e.g. coronary disease) but without symptomatic HF, diastolic filling pressure estimated by E/e', was associated with significantly higher odds of MCI after comprehensive adjustment for clinical factors, although effect size was small (OR 1.07, 1.01-1.13, p=0.022) (9). This finding did not extend to LVMI, LAVI or stroke volume index (9). In a population without symptomatic cardiac or cerebrovascular disease, those with silent cerebral infarcts (SCIs) on MRI had significantly lower systolic function, as assessed by GLS (30). Moreover, GLS in those with SCIs was in the abnormal range.

Atrial fibrillation is associated with a 42% increase in risk of dementia, independent of age and cardiovascular risk factors (4,31). Interestingly, this association appears strongest in those <70 years with data suggesting no association > 67 years, presumably due to the influence of neurodegenerative pathophysiology (31,32). This is significant given the median age in our study was 70 years. The most prominent mechanism behind the association between AF and cognitive impairment is SCIs, the presence of which determine cognitive decline associated with AF, and conversely those with AF without SCIs do not exhibit cognitive decline (33).

Page 13

However, no study has examined the distribution of SCIs preventing inference about the pathophysiologic mechanism i.e. small vessel versus embolic disease. Anticoagulation in AF is associated with up to a 60% reduction in cognitive decline and incident dementia, supporting a cardioembolic mechanism (34). Neuroimaging would have strengthened our study and revealed whether those with AF were free of SCIs thus potentially explaining the lack of association with MCI.

Clinical implications. Clinicians involved in management of patient with CV risk factors must be alert to the significant proportion of patients who will have MCI – affecting their ability to recall medical information and self-manage aspects of their condition. Indeed, those with MCI progress to dementia at a rate of over 50% in 5 years (21). Our data highlight that even in the early stages of cognitive compromise modifiable risk factors i.e. systolic hypertension and abdominal obesity are contributors, and it may be argued that cognitive screening be undertaken routinely in this scenario. We did not find evidence of an association between certain echocardiographic measures, even sensitive markers of LV and LA function. So, based on these data, echocardiographic abnormality alone should not prompt cognitive evaluation.

In terms of HF prevention, while management of subclinical disease largely rests on risk factor control, the onus is on the patient to recognize the often-insidious transition to a symptomatic state. Current ACC/AHA HF management guidelines suggest that patients with subclinical HF undertake self-surveillance for symptoms and our data highlight one of the problems with this approach i.e. the potential for under-recognition due to cognitive impairment. While screening for subclinical LVD is not currently advocated, it is plausible that early institution of therapy may preserve cognition if progression to symptomatic HF is delayed or prevented. Indeed, anticoagulation for AF, whether permanent or paroxysmal, is associated with a significant reduction in cognitive impairment (34), an observation that could extend to subclinical AF detected by screening.

Page 15 of 30

BMJ Open

One of the primary objectives of this study was to assess the prevalence of MCI and therefore the consequences to delivery of screening programs for HF and AF. This study population may have been subject to selection bias given they had sufficient cognition to apply for the trial, meaning the true prevalence is likely higher. However, for those with established dementia, prevention of HF or AF is not their primary care goal. Population-based screening for dementia or MCI is not presently advocated, however a novel proposal may be that HF/AF screening be used as a platform for cognitive screening given the high yield in this cohort. Our data suggest that strategies to optimize engagement and follow-up with a HF/AF screening program should be considered. For example, engagement of services beyond the screening program and consideration given to the impact of reduced cognition and health literacy. When cognition is compromised, close relatives can assist with health literacy to promote use of health services. Our finding of a 12% rate of non-adherence to self-initiated AF screening, that related to MCI, is also of importance in considering the mode of delivery of AF screening. Technologies like monitoring patches or smartwatches may be more effective than devices that participants are required to operate.

Limitations. The study would have been strengthened by a longitudinal design, to additionally assess impact on incident MCI. While our sample size was not based on calculation, it is comparable to other studies in specific populations. Furthermore, a larger sample size would have yielded more accurate effect sizes. As mentioned previously, brain MRI would have provided additional mechanistic insights. Our method of assessment for MCI was chosen both for its speed and validity. However, use of more detailed tests for individual cognitive domains may have added more depth to our results and made comparisons with other studies easier. Indeed, variation in the literature surrounding CV disease and cognition may be largely due to inconsistencies in methods. Finally, it should be borne in mind that while a significant

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
22	
23	
20 21 22 23 24 25 26	
24 25	
25	
26 27	
27	
28	
29	
30	
31	
32	
33	
31	
34 35	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

5

6

12 13

14 15

16 17

18 19

20 21

22

27

1 proportion of subjects exhibited subclinical LVD, the number with reduced atrial function

2 and/or subclinical AF was low, limiting the certainty of our observations.

3 Conclusion. Elderly subjects enrolled in a trial screening for subclinical LVD and AF

- 4 exhibited a 30% prevalence of MCI. There was no association between sensitive measures of
 - LV and LA function nor subclinical AF and presence of MCI.

Author contributions. ELP and THM contributed to the conception and design of the work. All authors
 contributed to the acquisition and interpretation of data. ELP analysed the data and drafted the
 manuscript. SR and LW critically revised the manuscript. THM obtained funding for the study and
 critically revised the manuscript. All gave final approval and agree to be accountable for all aspects of
 work ensuring integrity and accuracy.

Funding. The work was partially supported by a Partnership grant (1149692) from the National Health and Medical Research Council, Canberra, the Ian Potter Foundation, Melbourne, and the Baker Heart and Diabetes Institute. Dr Potter is supported by a Monash University postgraduate scholarship.

4.6

Competing interests. None declared.

Patient consent for publication. Not required.

Data availability statement. Data available upon reasonable request.

References

- Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551-2561.
 2. 2019 AIoHaW. Hospital care for people with dementia 2016–17. Cat no AGE 94 Canberra: AIHW.
- Vogels RLC, Scheltens P, Schroeder-Tanka JM, Weinstein HC. Cognitive impairment in heart failure: A systematic review of the literature. Eur J Heart Fail 2007;9:440-449.
- 34 4. Santangeli P, Di Biase L, Bai R et al. Atrial fibrillation and the risk of incident dementia: A
 35 meta-analysis. Heart Rhythm 2012;9:1761-1768
- 36 5. Leto L, Feola M. Cognitive impairment in heart failure patients. J Geriatric Cardiol 2014;11:316-328.
- 38 6. Huynh Quan L, Negishi K, De Pasquale Carmine G et al. Cognitive Domains and
 39 Postdischarge Outcomes in Hospitalized Patients With Heart Failure. Circ Heart Fail
 40 2019;12:e006086.
- 41 7. Almeida OP, Garrido GJ, Beer C, Lautenschlager NT, Arnolda L, Flicker L. Cognitive and
 42 brain changes associated with ischaemic heart disease and heart failure. Eur Heart J
 43 2012;33:1769-1776.
- 55448.Frey A, Sell R, Homola György A et al. Cognitive Deficits and Related Brain Lesions in5645Patients With Chronic Heart Failure. J Am Coll Cardiol Heart Fail 2018;6:583-592.
- 46 9. Sacre JW, Ball J, Wong C et al. Mild cognitive impairment is associated with subclinical diastolic dysfunction in patients with chronic heart disease. Eur Heart J Cardiovasc Imaging 2017;19:285-92.

1			rage 10
2			
3	1	10	Ducco C. Jin Z. Hamma S. et al. Subalinical left ventricular ducturation and cilent
4	1	10.	Russo C, Jin Z, Homma S et al. Subclinical left ventricular dysfunction and silent
5	2		cerebrovascular disease: The cardiovascular abnormalities and brain lesions (CABL) study.
6	3		Circulation 2013;128:1105-1111.
7	4	11.	Zhang Michael J, Norby Faye L, Lutsey Pamela L et al. Association of Left Atrial
8	5		Enlargement and Atrial Fibrillation With Cognitive Function and Decline: The ARIC-NCS. J
9	6		Am Heart Assoc 2019;8:e013197.
9 10	7	12.	ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med
	8		2002;166:111-117.
11	9	13.	https://www.mocatest.org.
12	10	14.	Abd Razak MA, Ahmad NA, Chan YY et al. Validity of screening tools for dementia and
13	11	1 1.	mild cognitive impairment among the elderly in primary health care: a systematic review.
14	12		Public Health 2019;169:84-92.
15		15	
16	13	15.	Lang RM, Badano LP, Mor-Avi V et al. Recommendations for Cardiac Chamber
17	14		Quantification by Echocardiography in Adults: An Update from the American Society of
18	15		Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc
19	16		Echocardiog 2015;28:1-39.e14.
20	17	16.	Nagueh SF, Smiseth OA, Appleton CP et al. Recommendations for the Evaluation of Left
21	18		Ventricular Diastolic Function by Echocardiography: An Update from the American Society
22	19		of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc
23	20		Echocardiog 2016;29:277-314.
24	21	17.	Singh A, Addetia K, Maffessanti F, Mor-Avi V, Lang RM. LA Strain for Categorization of
25	22	- / •	LV Diastolic Dysfunction. J Am Coll Cardiol Cardiovasc Img 2017;10:735.
26	23	18.	Morris D, Belyavskiy E, Aravind-Kumar R et al. Potential Usefulness and Clinical
27	24	10.	Relevance of Adding Left Atrial Strain to Left Atrial Volume Index in the Detection of Left
28	24		
29		10	Ventricular Diastolic Dysfunction. J Am Coll Cardiol Cardiovasc Img 2018;11:1405-1415.
30	26	19.	Potter Elizabeth L, Ramkumar S, Kawakami H et al. Association of Asymptomatic Diastolic
31	27		Dysfunction Assessed by Left Atrial Strain With Incident Heart Failure. J Am Coll Cardiol
32	28		Imag 2020;13:2316-2326.
33	29	20.	Ramkumar S, Ochi A, Kawakami H et al. Echocardiographic Risk Assessment to Guide
34	30		Screening for Atrial Fibrillation. J Am Soc Echocardiogr 2019;32:1259-67.
35	31	21.	Gauthier S, Reisberg B, Zaudig M et al. Mild cognitive impairment. Lancet 2006;367:1262-
36	32		1270.
37	33	22.	Leritz EC, McGlinchey RE, Kellison I, Rudolph JL, Milberg WP. Cardiovascular Disease
38	34		Risk Factors and Cognition in the Elderly. Current Cardiovasc Risk Reports 2011;5:407-412.
39	35	23.	Hou Q, Guan Y, Yu W et al. Associations between obesity and cognitive impairment in the
40	36	_0.	Chinese elderly: an observational study. Clinical Interv Aging 2019;14:367-373.
41	37	24.	Debette S, Seshadri S, Beiser A et al. Midlife vascular risk factor exposure accelerates
42	38	27.	structural brain aging and cognitive decline. Neurology 2011;77:461-468.
43	39	25.	Lee TC, Qian M, Liu Y et al. Cognitive Decline Over Time in Patients With Systolic
44		23.	
45	40	26	Heart Failure. J Am Coll Cardiol Heart Fail 2019;7:1042-1053.
46	41	26.	Cannon JA, McMurray JJV, Quinn TJ. 'Hearts and minds': association, causation and
47	42		implication of cognitive impairment in heart failure. Alzheimers Res Ther 2015;7:22.
48	43	27.	Jefferson AL, Himali J, Au R et al. Relation of left ventricular ejection fraction to cognitive
49	44		aging (from the Framingham Heart Study). Am J Cardiol;108:1346-51.
50	45	28.	van den Hurk K, Reijmer YD, van den Berg E et al. Heart failure and cognitive function in
51	46		the general population: the Hoorn Study. Eur J Heart Fail 2011;13:1362-1369.
52	47	29.	Park CM, Williams ED, Chaturvedi N et al. Associations Between Left Ventricular
53	48		Dysfunction and Brain Structure and Function: Findings From the SABRE (Southall and
54	49		Brent Revisited) Study. J Am Heart Assoc 2017;6:e004898.
55	50	30.	Prins ND, van Dijk EJ, den Heijer T, et al. Cerebral white matter lesions and the risk of
55 56	51	50.	dementia. Arch Neurol 2004;61:1531-1534.
50 57	51	21	
		31.	de Bruijn RF, Heeringa J, Wolters FJ et al. Association Between Atrial Fibrillation and
58 50	53	22	Dementia in the General Population. JAMA Neurol 2015;72:1288-94.
59 60	54	32.	Marengoni A, Qiu C, Winblad B, Fratiglioni L. Atrial fibrillation, stroke and dementia in the
60	55		very old: a population-based study. Neurobiol Aging 2011;32:1336-7.

Page 18 of 30

BMJ Open

2			
3 4	1	33.	Chen LY, Lopez FL, Gottesman RF et al. Atrial fibrillation and cognitive decline-the role of
5	2		subclinical cerebral infarcts: the atherosclerosis risk in communities study. Stroke
6	3	24	2014;45:2568-2574.
7	4 5	34.	Ding M, Fratiglioni L, Johnell K et al. Atrial fibrillation, antithrombotic treatment, and cognitive aging. Neurology 2018;91:e1732-40.
8	6		ognitive aging. Totatology 2010,71.01/32-40.
9	7		
10 11	8		
12	9		
13	10		
14	11		
15	12		
16 17	13		
18	14		
19	15		
20	16		
21	17		
22 23	18		
23	19		
25	20		
26	21		
27 28	22		
28 29	23 24		
30	24 25		
31	25 26		
32 33	27		
34	28		
35	29		
36	30		
37 38	31		
30 39	32		
40	33		
41	34		
42 42			
43 44			
45			
46			
47			
48 49			
49 50			
51			
52			
53 54			
54 55			
56			
57			
58 50			
59 60			
00			

	All (n=337)	No MCI (n=236)	MCI (n=101)	p-value
Age, yrs (IQR)	70 (68-73)	70 (68-73)	70 (67-73)	0.83
Gender, female (%)	194 (58)	140 (59)	54 (54)	0.32
Hypertension (%)	292 (87)	201 (85)	91 (90.1)	0.22
Hypertension duration, years (IQR)	13 (7-20)	12 (7-20)	15 (7-20)	0.56
`` `` ´	108 (32)	72 (31)	36 (36)	0.36
	8 (5-15)	7 (4.5-12.5)	10 (5-18)	0.1
	214 (64)	158 (68)	56 (56)	0.04
• • • • •	208 (62)	145 (62)	63 (62)	0.9
	152 (45)	110 (47)	42 (42)	0.34
	23 (7)	14 (6)	9 (9)	0.32
AF, detected by screening* (%)	11 (4)	8 (4)	3 (4)	0.88
High risk for AF† (%)	9 (3)	8 (3)	1(1)	0.21
Stroke/TIA	21 (6)	11 (5)	10 (10)	0.07
Alcohol abuse (%)	25 (7)	21 (9)	4 (4)	0.12
ACE-I/ARB (%)	264 (78)	183 (78)	81 (80)	0.59
Beta blocker (%)	37 (11)	22 (9)	15 (15)	0.14
Statin (%)	179 (53)	123 (52)	56 (55)	0.58
Antiplatelet agent (%)	68 (20)	43 (18)	25 (25)	0.17
Anticoagulant (%)	16 (5)	10 (4)	6 (6)	0.5
Education, years (IQR)	12 (10-15)	12 (10-15)	11 (10-14)	0.02
E (27 (8)	20 (8.5)	7 (6.9)	0.63
depression)				
GAD7 >6 (moderate	26 (8)	19 (8)	7 (6.9)	0.72
anxiety)	1 (2 2)	1 (0.0)		~
	$\frac{1(0-2)}{120(121-150)}$	1 (0-2)	1 (0-2)	0.77
	138 (131-150)	137 (129-149)	141 (133-151)	0.07
	83 (78-90)	83 (77-89)	85 (79-91)	0.09
	31 (28-35)	32 (28-36)	30 (27-33)	0.002
i	$\frac{0.93(0.09)}{51.7}$	0.92 (0.09)	$\frac{0.94\ (0.09)}{50\ 7\ (4(52\ 7))}$	0.07
e e	51.7 (46.7-	52 (49.5-52.7)	50.7 (46-52.7)	0.39
	52.7)	115 (102 177)	438 (405-472)	0.40
-	441 (403-476)	445 (403-477)	438 (403-472)	0.49
(IQR) MVPA, minutes/week	63 (18-144)	65 (18-135)	48 (17-152)	0.89
(IQR)	((10))	(7(10))	$(\Lambda (0))$	0.15
Sedentary time, % (SD)	66 (10)	67 (10)	64 (9)	0.15

TIA – transient ischaemic attack, ACE-I/ARB – angiotensin converting enzyme
 inhibitor/receptor blocker, BP – blood pressure, BMI – body mass index, MVPA – moderate vigorous physical activity, NT-proBNP – N terminal pro-brain natriuretic peptide.

For beer teriew only

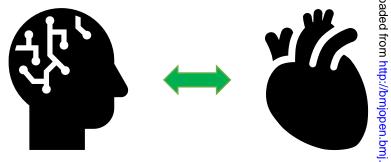
Table 2: Mild cognitive impairment (MCI) and deficits in individual cognitive domains

according to presence or absence of subclinical left ventricular dysfunction (LVD). P-value

for comparison of normal LV function vs. subclinical LVD.

	Overall (n=337)	MCI (n=101)	Normal LV function (n=175)	Subclinical LVD (n=162)	p-value
MCI (MoCA <26)	101 (30)		52 (29.7)	49 (30.2)	0.9
	3 (3)		2 (4)	1 (2)	0.7
Executive and visuospatial (%)	145 (43)	70 (69)	75 (43)	70 (43)	0.9
Naming (%)	15 (4.5)	9 (9)	6 (3.4)	9 (5.6)	0.34
Attention (%)	5 (1.5)	5 (5)	4 (2.3)	1 (0.62)	0.21
Language (%)	124 (37)	69 (68)	70 (40)	54 (33)	0.2
Abstraction (%)	88 (26)	61 (60)	50 (29)	38 (23)	0.29
Delayed recall (%)	237 (70)	94 (93)	121 (69)	116 (72)	0.62
Orientation (%)	7 (2)	6 (6)	7 (4)	0 (0)	0.01

	No MCI (n=236)	MCI (n=101)	p-value
LV ejection fraction, % (SD)	62 (6.8)	62 (5.8)	0.7
GLS, % (IQR)	18.7 (17-20)	18.7 (17-20)	0.87
EA, (IQR)	0.8 (0.68-0.95)	0.82 (0.69-0.99)	0.63
e', cm/s (IQR)	7.5 (6.3-8.9)	7.5 (6.5-8.7)	0.67
E/e' (IQR)	8.2 (6.9-10.2)	8.7 (7.2-11)	0.32
LAVI, ml/m ² (IQR)	34 (28-40)	33 (29-42)	0.56
LA reservoir strain*, % (SD)	36.2 (7)	36.1 (7)	0.9
LARS <24%* (%)	7 (4)	2 (3)	0.61
Relative wall thickness (IQR)	0.37 (0.34-0.43)	0.39 (0.33-0.43)	0.96
LV mass indexed, g/m ² (IQR)	67 (55-79)	75 (60-84)	0.04
Subclinical LV dysfunction (%)	113 (48)	49 (48.5)	0.9
Systolic dysfunction (GLS≤16%)	42 (18)	13 (13)	0.26
Diastolic dysfunction (%)	54 (23)	26 (26)	0.54
LV hypertrophy (%)	13 (5.5)	7 (7)	0.62


abbreviations as per tables	Univariable		Multivariable	
	OR (95% CI)	p-	OR (95% CI)	p-value
		value	011 (90 / 001)	P with
Age, years	1.00 (0.95-1.06)	0.88		
Female gender	0.8 (0.49-1.26)	0.32		
Hypertension	1.58 (0.75-3.33)	0.23		
Hypertension duration	1.00 (0.97-1.03)	0.76		
Type II diabetes	1.26 (0.77-2.06)	0.36		
Diabetes duration	1.03 (0.98-1.09)	0.22		
Dyslipidaemia	1.03 (0.63-1.66)	0.9		
Ever smoker	0.88 (0.23-3.44)	0.86		
Stroke/TIA	2.2 (0.87-5.6)	0.09	2.5 (0.93-6.8)	0.07
AF (known)	1.54 (0.65-3.69)	0.33		,
AF (detected or high risk)	0.63 (0.2-1.96)	0.43		
Education, years	0.92 (0.86-0.98)	0.02	0.9 (0.86-0.98)	0.011
Depression (PHQ9 >6),	0.8 (0.32-2)	0.6		
%				
Anxiety (GAD7 >6), %	0.85 (0.33-2.1)	0.72		
ACE-I/ARB	1.17 (0.65-2)	0.59		
Beta blocker	1.7 (0.84-3.4)	0.14		
Statin	1.14 (0.7-1.8)	0.58		
Antiplatelet	1.47 (0.84-2.59)	0.17		
Anticoagulant	1.43 (0.5-4)	0.5		
Systolic BP, mm Hg	1.02 (0.99-1.03)	0.07	1.02 (1.00-1.04)	0.03
Diastolic BP, mm Hg	1.02 (0.99-1.04)	0.2		
BMI, kg/m ²	0.93 (0.88-0.97)	0.001	0.9 (0.85-0.95)	< 0.001
Waist-hip ratio	11 (0.8-161)	0.07	40 (2.3-708)	0.01
NT-proBNP, pg/ml	0.99 (0.99-1.00)	0.7		
MVPA, hr/week	0.99 (0.99-1.00)	0.98		
Sedentary time, %	0.98 (0.94-1.01)	0.15		
Echocardiographic			~	
classifications				
Subclinical LV	1.03 (0.64-1.63)	0.9		
dysfunction	· · · · ·			
Systolic dysfunction	0.68 (0.35-1.33)	0.26		
(GLS ≤16%)				
Diastolic dysfunction	1.18 (0.69-2)	0.54		
LV hypertrophy	1.27 (0.49-3.3)	0.62		
Echocardiographic	,			
continuous measures				
LV ejection fraction, %	0.99 (0.95-1.03)	0.7		
GLS, %	1.01 (0.92-1.11)	0.82		
e', cm/s	0.96 (0.84-1.09)	0.57		
	1.03 (0.94-1.12)	0.4		
E/e'	1.03(0.94-1.12)	0.1		
E/e' LAVI ml/m ²	1 (0.98-1.03)	0.56		
	· · · · /			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

LV mass indexed, g/m ² 1.00 (0.99-1.02) 0.13	
Figure legends:	
Figure 1: Summary of study findings.	

 ELDERLY WITH RISK FACTORS FOR LEFT VENTRICULAR DYSFUNCTION AND ATRIAL FIBRILLATION UNDERGOING SCREENING

30% prevalence of mild cognitive impairment

Implications for screening

- 1.6 x more likely to be non-adherent to handheld AF screening
- Consideration of strategies to optimise engagement e.g. wearables, family involvement

Associations with clinical factors and cardiac function

• No association with subclinical AF

)20-045896

- No association with LV global longitudinal strain or diastolic parameters
- No association with left atrial reservoir strain
- Systolic blood pressure, educational attainment, body mass index and abdominal adiposity are independently associated

MONTREAL COO Version 7.1 Or	GNITIVE ASSESSM	ENT (MO	CA) ^{BMJ Oper}	n Ed	NAME : ucation : Sex :		Date of birth : DATE :	Page 26 of 30
VISUOSPATIAL / EX 4 5 6 7 8 9 10 11 12 13 D 14 14	CECUTIVE A B 2 (4) (3)			Copy cube	Drav (3 po		Ten past eleven)	POINTS
15 16 17 18 19	[]			[]	[] Conto	[ur Nu] [mbers Ha]/5 nds
20 NAMING 21 22 23 24 25 26 27 28 29 30					A A A A A A A A A A A A A A A A A A A			[]_/3
31 32 MEMORY 33epeat them. Do 2 trials 34Do a recall after 5 minu 35	Read list of words, subject , even if 1st trial is successful. tes.	1	FAG st trial nd trial	CE VEL	VET C	HURCH	DAISY F	RED No points
 ³⁶ ATTENTION 37 38 	Read list of digits (1 digit/	Si	ubject has to rep ubject has to rep	eat them in th			[] 2 1 8 5 [] 7 4 2	5 4/2
³⁹ Read list of letters. The 40 41	subject must tap with his h	and at each	letter A. No poin	ts if ≥ 2 errors CMNAAJ	K L B A F A	K D E A A	AJAMOFA	ав/1
42 _{Serial} 7 subtraction sta 43	rting at 100 [] 93 40	[] 86 or 5 correct subtrac	[]] tions: 3 pts , 2		[] 72 2 pts , 1 corr	[] 65 rect: 1 pt , 0 correct:	0 pt/3
45 LANGUAGE	Repeat : I only know that The cat always		one to help today e couch when de		e room. []			/2
47 Fluency / Name r	naximum number of words		-	_		[]_	(N ≥ 11 word	
ABSTRACTION	Similarity between e.g. ba] train – bic		watch - ru		/2
DELAYED RECALL	Has to recall words WITH NO CUE	FACE []	VELVET	CHURCH	DAISY []	RED	Points for UNCUED recall only	/5
⁵³ ₅₄ Optional	Category cue Multiple choice cue							
55 56 ORIENTATION		Month	[] Year	[] Da	ay [] Place	[] City	/6
57 58 [©] Z.Nasreddine MD	For peer review of	www.teps	96 atestaorg	.com/site/ort	nalt/2026de			/30
59 dministered by:							Add 1 point if ≤ 12	2 yr edu

1 2 3 4 5	Reporti	ng che	ecklist for cross sectional stud	ły.					
6 7 8 9	Based on the S	TROBE cro	oss sectional guidelines.						
10 11 12	Instructions	Instructions to authors							
13 14	Complete this c	hecklist by	entering the page numbers from your manuscript where re	aders will find					
15 16 17 18	each of the iten	ns listed be	low.						
19 20	Your article ma	y not currer	ntly address all the items on the checklist. Please modify ye	our text to					
21 22	include the miss	sing informa	ation. If you are certain that an item does not apply, please	write "n/a" an					
22 23 24 25	provide a short	provide a short explanation.							
26 27 28 29	Upload your completed checklist as an extra file when you submit to a journal.								
29 30 31	In your methods	s section, s	ay that you used the STROBE cross sectionalreporting gui	delines, and c					
32 33 34	them as:	them as:							
35 36	von Elm E, Altr	nan DG, Eg	ger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The	Strengthening					
37 38	the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for								
39 40 41 42	reporting obser	vational stu	idies.						
42 43 44				Pag					
45 46			Reporting Item	Numb					
47 48 49 50	Title and abstr	act							
50 51 52	Title	<u>#1a</u>	Indicate the study's design with a commonly used term ir	n the 2					
53 54 55 56 57			title or the abstract						
58 59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

rting checklist for cross sectional study.

ons to authors

1 2 3	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2
4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13	rationale		investigation being reported	
14 15 16 17	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
18 19			hypotheses	
20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
26 27	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5
28 29 30			periods of recruitment, exposure, follow-up, and data	
31 32			collection	
33 34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	5
36 37 38			selection of participants.	
39 40		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5-7
41 42 43			confounders, and effect modifiers. Give diagnostic criteria, if	
44 45			applicable	
46 47 48	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	5-7
49 50	measurement		of methods of assessment (measurement). Describe	
51 52 53			comparability of assessment methods if there is more than	
54 55			one group. Give information separately for for exposed and	
56 57 58			unexposed groups if applicable.	
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6 7 8 9 10 11 12 13 14	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	6
	Study size	<u>#10</u>	Explain how the study size was arrived at	14
	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	6,7
	variables		analyses. If applicable, describe which groupings were	
			chosen, and why	
15 16	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	8
17 18 19 20 21	methods		control for confounding	
	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	NA
22 23 24	methods		interactions	
25 26 27	Statistical	<u>#12c</u>	Explain how missing data were addressed	NA
28 29	methods			
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Statistical	<u>#12d</u>	If applicable, describe analytical methods taking account of	NA
	methods		sampling strategy	
	Statistical	<u>#12e</u>	Describe any sensitivity analyses	NA
	methods			
	Results			
	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	8,9
			numbers potentially eligible, examined for eligibility,	
			confirmed eligible, included in the study, completing follow-	
			up, and analysed. Give information separately for for	
			exposed and unexposed groups if applicable.	
	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	NA
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6 7 8 9 10 11 12 13 14	Participants	<u>#13c</u>	Consider use of a flow diagram	NA
	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	8
			clinical, social) and information on exposures and potential	
			confounders. Give information separately for exposed and	
			unexposed groups if applicable.	
	Descriptive data	#14b	Indicate number of participants with missing data for each	9
15 16	Descriptive data	<u>#140</u>		9
17 18 19 20			variable of interest	
	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures.	9
21 22 23			Give information separately for exposed and unexposed	
24 25			groups if applicable.	
26				
27 28	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	10
29 30			adjusted estimates and their precision (eg, 95% confidence	
31 32 33			interval). Make clear which confounders were adjusted for	
33 34 35			and why they were included	
36				
37 38	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	NA
39 40			categorized	
41 42	Main results	#16c	If relevant, consider translating estimates of relative risk into	NA
43 44	Main results	<u>#100</u>		
45 46			absolute risk for a meaningful time period	
47 48	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups	NA
49 50 51			and interactions, and sensitivity analyses	
52 53 54 55 56 57 58				
	Discussion			
	Key results	<u>#18</u>	Summarise key results with reference to study objectives	10
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	14		
3 4 5 6 7 8 9 10			of potential bias or imprecision. Discuss both direction and			
			magnitude of any potential bias.			
	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	13-14		
11 12			limitations, multiplicity of analyses, results from similar			
13 14 15			studies, and other relevant evidence.			
16 17	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	13		
18 19 20 21 22 23 24			results			
	Other Information					
24 25 26	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	14		
27 28			present study and, if applicable, for the original study on			
29 30 31 32 33 34 35 36 37 38 39			which the present article is based			
	None The STROBE checklist is distributed under the terms of the Creative Commons Attribution					
	License CC-BY. This checklist can be completed online using https://www.goodreports.org/, a tool					
	made by the EQUATOR Network in collaboration with Penelope.ai					
40 41 42						
43 44						
45 46						
47 48						
49 50						
51 52						
53 54						
55 56						
57 58						
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			