

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Risk factors for severity on admission and the disease progression during hospitalization in a large cohort of COVID-19 patients in Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047007
Article Type:	Original research
Date Submitted by the Author:	18-Nov-2020
Complete List of Authors:	Terada, Mari; National Center for Global Health and Medicine Ohtsu, Hiroshi; National Center for Global Health and Medicine, Clinical Epidemiology Section, Department of Data Science, Center for Clinical Sciences Saito, Sho; National Center for Global Health and Medicine Hayakawa, Kayoko; National Center for Global Health and Medicine Tsuzuki, Shinya; National Center for Global Health and Medicine Asai, Yusuke; National Center for Global Health and Medicine Matsunaga, Nobuaki; National Center for Global Health and Medicine, AMR Clinical Reference Center, Disease Control and Prevention Center Kutsuna, Satoshi; National Center for Global Health and Medicine Sugiura, Wataru; National Center for Global Health and Medicine Ohmagari, Norio; National Center for Global Health and Medicine
Keywords:	COVID-19, EPIDEMIOLOGY, VIROLOGY
	1

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Title: Risk factors for severity on admission and the disease progression during hospitalization in a large cohort of COVID-19 patients in Japan

Mari Terada (0000-0002-5171-1828), R.Ph., M.P.H.^{1,2}, Hiroshi Ohtsu, M.Sc.², Sho Saito,

M.D.¹, Kayoko Hayakawa, M.D., Ph.D.^{1,3}, Shinya Tsuzuki, M.D., M.Sc.^{3,4}, Yusuke Asai, Ph.D.³, Nobuaki Matsunaga, M.D., M.P.H., Ph.D.³, Satoshi Kutsuna, M.D., Ph.D.¹, Wataru Sugiura, M.D., Ph.D.², Norio Ohmagari, M.D., M.Sc., Ph.D.^{1,3}

- Department of Infectious Diseases, Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan.
- 2) Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan.
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan.
- 4) Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.

Center for Clinical Sciences/Disease Control and Prevention Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Mari Terada pharmacist

BMJ Open

Center for Clinical Sciences, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Hiroshi Ohtsu statistician

Department of Infectious Diseases, Disease Control and Prevention Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Sho Saito physician

Department of Infectious Diseases, Disease Control and Prevention Center/AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjukuku, Tokyo 162-8655, Japan. Kayoko Hayakawa chief physician

AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium. Shinya Tsuzuki senior researcher AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Yusuke Asai senior researcher AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Yusuke Asai senior researcher AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Nobuaki Matsunaga section head Department of Infectious Diseases, Disease Control and Prevention Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Satoshi

Kutsuna chief physician

Center for Clinical Sciences, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Wataru Sugiura director

Department of Infectious Diseases, Disease Control and Prevention Center/AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjukuku, Tokyo 162-8655, Japan. Norio Ohmagari director

Correspondence to: Sho Saito

Disease Control and Prevention Center

National Center for Global Health and Medicine, Tokyo, Japan

1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan

Tel: +81-3-3202-7181

Fax: +81-3-3207-1038

E-mail: ssaito@hosp.ncgm.go.jp

Word Count: 3025

Abstract

Objectives: To investigate the risk factors contributing to severity on admission.

Additionally, risk factors on worst severity and fatality were studied. Moreover, factors were

compared based on three points: early severity, worst severity, and fatality.

Design: A observational cohort study utilizing data entered in a Japan nationwide COVID-

19 inpatient registry, COVIREGI-JP.

Setting: As of August 31, 2020, 7,546 cases from 780 facilities have been registered.

Participating facilities cover a wide range of hospitals where COVID-19 patients are admitted in Japan.

Participants: Participants who had a positive test result on any applicable SARS-CoV-2 diagnostic tests, and were admitted to participating healthcare facilities. A total of 3,829 cases were identified from January 16 to May 31, 2020, of which 3,376 cases were included in this study.

Primary and secondary outcoe measures: Primary outcome was severe or non-severe on admission, determined by the requirement of mechanical ventilation or oxygen therapy, SpO2, or respiratory rate. Secondary outcome was the worst severity during hospitalization, judged by the requirement of oxygen and/or IMV/ECMO.

Results: Risk factors for severity on admission were older age, male, cardiovascular disease,

chronic respiratory disease, diabetes, obesity, and hypertension. Cerebrovascular disease, liver disease, renal disease or dialysis, solid tumor, and hyperlipidemia did not influence severity on admission ; however it influenced worst severity. Fatality rates for obesity, hypertension, and hyperlipidemia were relatively lower.

Conclusions: This study segregated the comorbidities driving severity and death. It is possible that risk factors for severity on admission, worst severity, and fatality are not consistent and may be propelled by different factors. Specifically, while hypertension, hyperlipidemia, and obesity had major effect on worst severity, their impact was mild on fatality in the Japanese population. Some studies contradict our results; therefore, detailed analyses, considering inhospital treatments, are needed for validation.

Trial registration: UMIN000039873. https://upload.umin.ac.jp/cgi-open-

bin/ctr e/ctr view.cgi?recptno=R000045453

Strengths and limitations of this study

- In this article, we studied the disease progression of COVID-19, by comparing the risk factors on three points: early severity, worst severity, and fatality.
- Our results are useful from a public health perspective, as we provide risk factors for predicting the severity on admission and disease progression from patients' background

factors.

- This study pointed out the possibility that risk factors of the severity on admission, worst severity, and fatality are not consistent and may be propelled by different factors.
- Our data were collected from hundreds of healthcare facilities; thus data accuracy may be questionable.
- Also, treatment type, dosage, duration, and combination varied immensely across the facilities and we did not consider treatments prior to and during hospitalization in the analysis.

Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused a major global public health crisis. As of October 3, 2020, >34 million people had been infected in over 230 countries^{1,2}. Japan experienced two pandemic waves after the first case reported on January 16, 2020. During the first wave, a state of emergency was declared on April 7, which ended on May 25, settling the first wave. Nearly thrice as many SARS-CoV-2 positive cases were detected in the second wave, which emerged from the end of June³. The fatality rate in the second wave has generally been lower in many countries, including Japan⁴.

When the number of patients explodes, hospital beds were in great shortage; hotels were utilized as isolation facilities in many countries⁵⁻⁷. Likewise, in Japan, mild patients were transferred to hotels from April 2020⁸. About two-thirds of cases did not require oxygen support throughout thier illness⁹. However, some cases initiated non-severe may instantly plunge into a serious state and require aggressive care¹⁰. Therefore, public health centers are in demand for indicators to identify those at a higher risk of aggravation in the early phase and determine the destination—hospital, hotel, or home. Depicting the clinical course—from onset to worst severity and the outcome—is imperative to appropriately allocate patients to healthcare resources. Analyses considering the severity on admission and the disease progression thereafter

BMJ Open

has not been conducted are of interest to physicians globally.

We obtained nationwide data from a COVID-19 inpatient registry, "COVID-19 REGISTRY JAPAN (COVIREGI-JP)"11, and conducted a study to identify the independent risk factors contributing towards severity on admission. We aimed to determine the risk factors on admission, namely demographics and comorbidities. Progression of severity was inspected in detail on different time points. Cases identified within the period of the first pandemic wave

were studied.

Methods

Study design and patients

This is an observational cohort study that utilizes the data accumulated in the nationwide "COVID-19 REGISTRY JAPAN (COVIREGI-JP)"¹¹. As of September 28, 2020, 10,048 cases from 802 facilities have been registered. Participating facitilies covers a wide range of hospitals where COVID-19 patients are admitted in Japan. Enrolled cases satisfied two eligibility criteria: a positive test result for COVID-19 and being admitted to a healthcare facility. Registration started on March 2, 2020, and is ongoing, at present.

Data collection and case report form

> Data were collected in a case report form (CRF) developed for COVIREGI-JP. This CRF includes modified information of the International Severe Acute Respiratory and Emerging Infection Consortium CRF on COVID-1912. Upon modification, we elaborated on data collection, especially on treatments, comorbidities, and symptoms. In addition, as of October 26, 2020, this CRF underwent revisions twice to update therapeutic options or definitions, as new evidence emerges. Study data were collected and managed using Research Electronic Data Capture (REDCap) electronic data capture tools^{13,14}, hosted at the datacenter in National Center for Global Health and Medicine. Data were either recorded on a CRF hard-copy or were entered directly into elen REDCap at each facility.

Comorbidities

Comorbidities were collected based on Charlson comorbidity index^{15,16} with modifications. Some comorbidities were combined as follows: Cardiovascular disease (CVD)-myocardial infarction, congestive heart failure, and peripheral vascular disease; Chronic respiratory disease (CRD)—chronic obstructive pulmonary disease (COPD) and other chronic lung diseases; Renal disease or dialysis—moderate to severe renal disorder (creatinine ≥ 3 mg/dL, nephropathy, postrenal transplantation, or on dialysis), and maintenance hemodialysis or peritoneal dialysis before hospitalization; and Solid tumor-solid tumor with or without metastasis. Obesity was

diagnosed based on physician's judgement, and body mass index (BMI) was not considered in this study.

Drug administration prior to and during hospitalization

Steroids, chemotherapy, and immunosuppressants administered prior to hospitalization were collected as pre-hospitalization treatments. Steroids included those equivalent to 20 mg/day prednisolone for \geq 1 month and are not considered as immunosuppressants. Chemotherapy and immunosuppressants was applicable if administered 3 months prior to hospitalization. Treatment during hospitalization was studied on systemic steroids, favipiravir, ciclesonide, heparin, and tocilizumab, due to the frequent use in Japan. Heparin use included those given for both prophylactic and treatment purposes.

Dataset

We defined the first wave period as January 16 to May 31, 2020¹⁷, and cases from the first wave was included in this analysis. Therefore, data extraction conditions were: (1) cases admitted to healthcare facilities between January 16 and May 31, 2020, and (2) all CRF items completed on dataset generation. The dataset was generated and fixed on September 2, 2020.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Definitions of severity

1) Severity on admission

Severity on admission was converted into bivariate variables: severe and non-severe. Cases met at least one of the following criteria were categorized as severe: (1) requiring invasive or non-invasive mechanical ventilation, (2) requiring supplemental oxygen, (3) SpO₂ \leq 94% in room air, or (4) tachypnea with respiratory rate (RR) \leq 24 breaths per minute¹⁸. Those who did not meet the aforementioned were classified as non-severe.

2) Worst severity

The worst severity was grouped into three categories: no-oxygen, oxygen, and IMV/ECMO. The worst state during hospitalization was adopted on categorization, and each was defined as follows:

No-oxygen—No requirement of supplemental oxygen throughout hospitalization.

Oxygen—Required supplemental oxygen (including high-flow oxygen devices) or non-invasive mechanical ventilation during hospitalization.

IMV/ECMO—Required invasive mechanical ventilation or extracorporeal membrane oxygenation during hospitalization.

Statistical analysis

BMJ Open

Continuous variables are presented in median and interquartile range (IQR) and categorical variables in number of cases and percentages. We classified the disease progression into three stages: severity on admission, worst severity, and clinical outcomes. We used Mann-Whitney U tests (for two groups) or Kruskal-Wallis tests (for three groups) for continuous variables and chi-squared tests for categorical variables. We conducted a multivariable logistic regression analysis to identify the factors associated with the patients' severity on admission. We included age, sex, comorbidities (CVD, cerebrovascular disease, CRD, asthma, liver disease, diabetes, obesity diagnosed by physicians, renal disease or dialysis, solid tumors, leukemia, lymphoma, hypertension, and hyperlipidemia), use of systemic steroids in the past month, chemotherapy in the past three months, and use of immunosuppressants other than steroids as independent variables. Multicollinearity was evaluated using the variance inflation factor (VIF). Variables of VIF > 3 were excluded from the model; however, no variables demonstrated obvious multicollinearity.

R version3.6.3 (R core team, 2020)¹⁹ was used for all the analyses performed in this study.

Ethics

The National Center for Global Health and Medicine ethics board approved this study (referral

number NCGM-G-003494-08), and waived the need for informed consent from individual patients owing to the non-invasive, non-interventional nature of this observational study according to the local Ethical Guidelines²⁰. Information regarding opting out of our study is available on the website¹¹. Although it is not mandatory, the study is also being registered on trial registration website (Unique ID: UMIN000039873, <u>https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000045453</u>).

Results

Within the study period, 3,829 cases were identified and 3,376 cases from 299 facilities were included in this study. Of them, 2,199 cases (65.1%) were non-severe, and 1,181 cases (34.9%) were severe at the time of admission. After categorizing the two groups further into no-oxygen, oxygen, and IMV/ECMO by worst severity, compositions were 1,758 (81.5%), 357 (16.5%), and 43 (2.0%) for the non-severe group and 190 (16.1%), 677 (57.5%), and 311 (26.4%) for the severe group, respectively. While categorizing the cases, 44 (1.3%) were unavailable due to missing values.

Demographics and clinical characteristics of the study population are shown in Table 1. Days between onset and admission were similar in both groups (non-severe 6.0 *vs* severe 7.0 days). Over ten times as many severe cases on admission underwent IMV/ECMO than non-

BMJ Open

severe cases (2.0% *vs* 26.4%). Severe cases were older (50.0 *vs* 67.0), had higher BMI (22.9 *vs* 24.1), greater male dominance (56.3% *vs* 70.5%), and a higher prevalence of comorbidities excluding leukemia, compared to the non-severe group. The most prevalent symptoms in both groups were fever (non-severe 49.5%, severe 73.7%), cough (non-severe 53.8%, severe 64.9%), and fatigue (non-severe 40.3%, 59.9%), but was greater in the severe group. Conversely, prevalence of dysgeusia (25.9% *vs* 13.2%), dysosmia (22.6% *vs* 11.5%), headache (18.1% *vs* 14.7%), and runny nose (11.9% *vs* 8.9%) was higher in the non-severe group.

Results of the multivariate logistic regression to determine the risk of severity on admission are shown in Table 2. Older age (OR 1.038 [1.032—1.044]) and male (OR 2.06 [1.69—2.51]) were considered a risk among the demographics and comorbidities included CVD (OR 1.61 [1.07—2.43]), respiratory disease (OR 2.59 [1.63—4.13]), diabetes (OR 1.39 [1.09— 1.76]), obesity (OR 1.62 [1.12—2.35]), and hypertension (OR 1.31 [1.03—1.67]). Days between onset to admission were non-significant (p = 0.376); the timing of admission did not affect the severity on admission.

Table 3 depicts the study population from a different angle and is categorized by the worst severity (n=3,336) and fatality (n=3,376). Oxygen and IMV/ECMO cases were predominantly severe at admission (65.5% and 87.9%, respectively), whereas most no-oxygen cases come from non-severe group (90.2%). Prevalence of comorbidities was lowest in no-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

oxygen cases; however, prominent difference was not observed for asthma. Similarly, fatal cases were more severe at admission (84.0% *vs* 31.1%) and had higher prevalence of oxygen and IMV/ECMO cases (oxygen: 56.4% *vs* 29.0%, IMV/ECMO: 41.9% *vs* 8.2%, respectively). Days between onset and admission was longer in non-fatal cases (5-days *vs* 7-days).

More non-severe cases with any comorbidity underwent treatment with oxygen or IMV/ECMO compared to non-severe cases with no comorbidities. In figure 1, only 11.9% underwent oxygen therapy or IMV/ECMO in non-severe cases without any comorbidities. However, among the non-severe cases with comorbidity, the rates of oxygen or IMV/ECMO were higher in most comorbidities, including CVD (34.7%), CRD (38.9%), liver disease (36.7%), diabetes (35.1%), obesity (35.8%), cerebrovascular disease (34.7%), renal disease (40.9%), solid tumor (27.3%), hypertension (31.2%), and hyperlipidemia (25.0%). Asthma alone followed a different trend; the chances of oxygen and IMV/ECMO requirement was lower.

Among the cases without comorbidity, 75.2% of cases that were severe on admission required oxygen or IMV/ECMO; however, the fatality rate was low, and only 8.0% resulted in death (Figure 2). Fatality rates were approximately 3—5 times higher when the following comorbidities were present: renal disease or dialysis (44%), CVD (40.5%), cerebrovascular disease (39.5%), CRD (30.4%), solid tumor (30.4%), diabetes (25.8%), and liver disease

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

(25.6%). Even among non-severe cases, relatively high fatality rate was observed in cases with solid tumor, CRD, cerebrovascular disease, CVD, and renal disease or dialysis, with fatality rates ranging from 8.1% to 11.1%. Collectively, obesity, hypertension, and hyperlipidemia influenced the worst severity; however, their influence on fatality was relatively lower than that mentioned earlier.

Older age was relevant to both worst severity and fatality, as shown in supplemental figures 1 and 2. The combined proportion of oxygen and IMV/ECMO increased gradually by age from 5.3% in 20s to 69.3% in \geq 80s. Conversely, the fatality rate leaped between 60s (2.2%) and 70s (8.6%). Likewise, supplemental figure 3 shows the combined proportion of oxygen and IMV/ECMO and fatality rates as higher in older individuals, irrespective of underlying comorbidities.

Predominant comorbid cases required more drug administration than those without comorbidities (Supplementary Table 1). Systemic steroids were most frequently used in cases with CRD (27.9%). Heparin was used most often in renal disease (12.8%), hypertension (11.2%), diabetes (10.9%), and CVD (10.4%).

Discussion

We took disease progression into consideration and evaluated the study population

> based on severity on admission, worst severity, and the outcome. To our knowledge, studies have predominantly reported worst severity, whereas disease progression has not been considered. Our findings, therefore, are novel, augmenting the evidence needed to depict the clinical course and trajectory from onset to worsening condition. Specifically, this study segregated the comorbidities influencing severity and death. Based on our findings, it may be possible that the early severity, worst severity, and death are propelled by different factors, whilst confirmation is necessary by multivariate analysis.

The majority of comorbidities we studied did not influence severity on admission. On admission, severity was driven by age, sex, CVD, CRD, diabetes, obesity, and hypertension. The trend was similar for the worst severity, as cases with these factors had higher rate of oxygen or IMV/ECMO. However, all comorbidities appeared to influence the worst severity.

Within the comorbidities, the prognosis of cases with obesity, hypertension, or hyperlipidemia was relatively favorable. In contrast to our results, hypertension and obesity are reportedly related to an increased risk of severity and mortality²¹⁻²⁴. However, a large cohort reported a trend similar to our results²⁵. Another study reported that obesity is be confounded by age and sex^{26,27}. Obesity was judged by a physician in our study, and the results may change after incorporating BMI. Several other evidences suggest that the association of these comorbidities with poorer outcome of COVID-19 needs further investigation. BMI, on average,

BMJ Open

is lower in the Asia-Pacific region than in other global regions²⁸; therefore, the degree of obesity may have been milder in our study population. Extreme obesity may worsen the prognosis, and confounders should be addressed in consecutive analyses. On the other hand, the presence of hypertension and the use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers act contrarily²⁹⁻³¹, while ACE2 mediates the entry of SARS-CoV-2 into host cells^{32,33}, making the COVID-19 pathophysiology in hypertensive patients intricate. Our study suggested that hypertension, hyperlipidemia, and obesity could be less detrimental on fatality. In accordance with previous studies, CVD, CRD, liver disease, diabetes, cerebrovascular disease, renal disease or dialysis, and solid tumor were associated with to fatality and worst severity. Two meta-analyses have reported common risk factors for worst severity during hospitalization, which include, diabetes, COPD, malignancy, CVD, and cerebrovascular disease^{34,35}. Other studies have also reported chronic liver disease and renal disease as risk factors³⁶⁻³⁸. Studies have elucidated that acute respiratory distress syndrome and coagulation dysfunction are related to the renin-angiotensin-aldosterone system and blood coagulation pathways, which are altered by SARS-CoV-2 host cell invasion via ACE2³⁹⁻⁴¹. Clinical and non-clinical studies revealed an association between these comorbidities; while SARS-CoV-2 infection decreases ACE2 expression, ACE2 deficiency is reported to cause cardiac overload and kidney inflammation⁴¹⁻⁴⁴. Elevated blood glucose is also associated with

 mortality⁴⁵. Although risk factors vary among studies, the comorbidities we identified are highly likely associated with fatality, backed up by clinical and non-clinical results.

Different trends were seen in the rates of IMV/ECMO and death for each comorbidity. Although rates of IMV/ECMO were comparable in all comorbid cases, those with obesity, asthma, hyperlipidemia, and hypertension showed a lower fatality rate, suggesting that the fatality rates within the IMV/ECMO cases with these comorbidities were lower than expected. Contrarily, fatality rates in cases with CVD, cerebrovascular disease, renal dysfunction, tumor, and CRD were comparable or higher than IMV/ECMO rates. The number of death actually exceeded the number of IMV/ECMO cases in patients with tumor, cerebrovascular disease, or CVD. These comorbidities likely have caused a higher risk of death and some even died without intubation. Healthcare nearly overwhelmed in the first wave in Japan but ICU capacity was maintained⁴⁶, and thus intubation may have been unperformed due to a medical judgment. A detailed examination of these issues is necessary in the future.

Our results did not show prominent difference in fatality between males and females. Oftentimes, males are considered to develop severe conditions and increased fatality^{37,38,47-49}. However, according to Global Health 5050, sexual disparity in incidence of COVID-19 is low⁵⁰. Additionally, ACE2 expression is affected by sexual hormones, whereby higher expression is observed in men, possibly explaining the sexual disparity⁵¹⁻⁵³. Moreover, the immunological

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

response to produce antibodies is more favorable in females⁵⁴. These studies support the rationale that males are more susceptible to severe COVID-19, which contravene our results. The lower-than-expected fatality rate in our male population may be attributed to comorbidity prevalence, treatments, age, and/or degree of obesity.

Fatality rates were comparable between asthmatic and cases without comorbidities in our results. Theoretically, COVID-19 can be a risk for asthmatic patients. A viral respiratory infection is presented as relatively worse and causes asthma exacerbation^{55,56}. Asthmatic patients reportedly require a longer duration of mechanical ventilation when intubated⁵⁷; however, no study, including ours, has found strong evidence on severity or mortality⁵⁸⁻⁶¹. Inhaled corticosteroids (ICS) are known to downregulate ACE2^{62,63} and are being investigated for treating COVID-19⁶⁴. ICS may have impeded aggravation in asthmatic patients with COVID-19⁶⁵. Overall, further studies are needed to elucidate the true risk of asthma on COVID-19.

Our results could be useful to roughly identify those at a risk of aggravation or death. Days from onset to admission was not a risk factor; early hospitalization will not influence the disease progression or outcome, and severity on admission was mostly driven by age and the presence of a few comorbidities. Several studies have created a scoring system to predict the risk of severity or mortality⁶⁶⁻⁶⁸. However, these utilize laboratory data collected on admission

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

and are seldom practical for estimating the severity of illness prior to medical visits or when test results are not promptly available. While these are useful to predict prognosis more precisely, our results are useful from a public health perspective, as they provide risk factors for predicting the severity on admission and disease progression from patients' background factors.

Our study has several limitations. In some of our analyses, confounders were not eliminated. We did not consider treatments prior to and during hospitalization. As our data were collected from hundreds of healthcare facilities, treatment type, dosage, duration, and combination varied immensely. We plan to deliberate the analytical methodology further to evaluate the outcomes which are prone to be affected by in-hospital treatments. Data were collected from numerous facilities; therefore, accuracy may be questionable. Additionally, hotels were utilized as isolation facilities from April 2020, and participant selection might have altered thereafter. COVIREGI-JP is continuously open for new entry; the number of registrations is increasing, and subsequent results may vary from ours.

Conclusion

On admission, factors that influence severity were age, sex, and comorbidities, including CVD, CRD, diabetes, obesity, and hypertension. Risk factors for severity on admission, worst severity, and fatality were not consistent, and it is likely that they are each

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

propelled by different factors. Our results are practically useful for predicting the progression and preparing for the worst, based on patients' backgrounds. Moreover, based on our predictions, healthcare resources can be allocated to patients in the most suitable way.

Acknowledgments

We thank all the participating facilities for their care towards COVID-19 patients and cooperation during data entry. We are especially grateful for the 299 facilities that contributed rez. to the dataset used in this study.

Contributorship statement

MT conceived and HO, SS, KH, ST and MT designed the study. ST, YA, SS, KH, and MT analyzed and interpreted the data. MT and ST drafted the first version of the manuscript. All the authors contributed to, read, and approved the final manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. SS is the guarantor.

Funding

This study was funded by Health and Labor Sciences Research Grant, "Research for

risk assessment and implementation of crisis management functions for emerging and reemerging infectious diseases", provided by the Japanese Ministry of Health, Labour, and Welfare. The funding agency did not assume any role in this study or COVIREGI-JP.

Competing Interests

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; H.O. reports personal fees as a statistician and as an external consultant for clinical trials from EPS International, outside the submitted work; no other relationships or activities that could appear to have influenced the submitted work.

Transparency Statement

The corresponding author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Data sharing

Data on an individual level is shared with limitation to participating healthcare facilities

through applications to COVIREGI-JP¹¹.

Patient and Public Involvement

No patient was involved in the setting of research question, outcome measures, or study design, nor were they involved in the recruitment to and conduct of the study.

Dissemination to participants and related patients and public communities

The study results will be shared with all the healthcare facilities which participated and

registered data in COVIREGI-JP. It will also be shared with the public on the website¹¹.

Reference

- World Health Organization. Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed October 3,
- Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30;:]. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
- Our World in Data. Japan: Coronavirus Pandemic Country Profile. https://ourworldindata.org/coronavirus/country/japan?country=~JPN. Accessed October 3, 2020.
- Fan G, Yang Z, Lin Q, Zhao S, Yang L, He D. Decreased Case Fatality Rate of COVID-19 in the Second Wave: A study in 53 countries or regions [published online ahead of print, 2020 Sep 6]. Transbound Emerg Dis. 2020;10.1111/tbed.13819. doi:10.1111/tbed.13819
- Bruni T, Lalvani A, Richeldi L. Telemedicine-enabled Accelerated Discharge of Patients Hospitalized with COVID-19 to Isolation in Repurposed Hotel Rooms. Am J Respir Crit Care Med. 2020;202(4):508-510. doi:10.1164/rccm.202004-12380E
- Fenton ME, Wasko K, Behl V, Froh J, Schmalenberg M. An Expanded COVID-19 Telemedicine Intermediate Care Model Utilizing Repurposed Hotel Rooms [published

BMJ Open

	online ahead of print, 2020 Aug 13]. Am J Respir Crit Care Med.
	2020;10.1164/rccm.202007-2902LE. doi:10.1164/rccm.202007-2902LE
7.	Ramírez-Cervantes KL, Romero-Pardo V, Pérez-Tovar C, Martínez-Alés G, Quintana-Diaz
	M. A medicalized hotel as a public health resource for the containment of Covid-19: more
	than a place for quarantining [published online ahead of print, 2020 Aug 10]. J Public Health
	(Oxf). 2020;fdaa129. doi:10.1093/pubmed/fdaa129
8.	Hayasaki E. Covid-19: how Japan squandered its early jump on the pandemic. BMJ.
	2020;369:m1625. Published 2020 Apr 24. doi:10.1136/bmj.m1625
9.	Matsunaga N, Hayakawa K, Terada M, et al. Clinical epidemiology of hospitalized patients
	with COVID-19 in Japan: Report of the COVID-19 REGISTRY JAPAN [published online
	ahead of print, 2020 Sep 28]. Clin Infect Dis. 2020;ciaa1470. doi:10.1093/cid/ciaa1470
10.	Duan J, Wang X, Chi J, et al. Correlation between the variables collected at admission and
	progression to severe cases during hospitalization among patients with COVID-19 in
	Chongqing [published online ahead of print, 2020 May 29]. J Med Virol.

2020;10.1002/jmv.26082. doi:10.1002/jmv.26082

COVID-19 REGISTRY JAPAN. https://covid-registry.ncgm.go.jp/. Accessed October 3, 2020.

12. International Severe Acute Respiratory and Emerging Infection Consortium ISARIC).

COVID-19 Clinical Research Resources. https://isaric.tghn.org/covid-19-clinical-researchresources/. Accessed October 3, 2020.

- Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-381. doi:10.1016/j.jbi.2008.08.010
- Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208. doi:10.1016/j.jbi.2019.103208
- Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-383. doi:10.1016/0021-9681(87)90171-8
- Schneeweiss S, Wang PS, Avorn J, Glynn RJ. Improved comorbidity adjustment for predicting mortality in Medicare populations. Health Serv Res. 2003;38(4):1103-1120. doi:10.1111/1475-6773.00165
- Ministry of Health, Labour, and Welfare. Fatality and Severity risk factor of COVID-19 (Article in Japanese). https://www.mhlw.go.jp/content/10900000/000662183.pdf. Accessed October 3, 2020.

Page 29 of 55

- Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 Final Report [published online ahead of print, 2020 Oct 8]. N Engl J Med. 2020;NEJMoa2007764. doi:10.1056/NEJMoa2007764
- R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Ministry of Education, Culture, Sports, Science and Technology, Ministry of Health, Labour and Welfare. Ethical Guidelines for Medical Research Involving Human Subjects (Provisional translation). https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf. Accessed October 26, 2020.
- Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract. 2020;14(4):295-300. doi:10.1016/j.orcp.2020.07.002
- de Siqueira JVV, Almeida LG, Zica BO, Brum IB, Barceló A, de Siqueira Galil AG. Impact of obesity on hospitalizations and mortality, due to COVID-19: A systematic review [published online ahead of print, 2020 Jul 23]. Obes Res Clin Pract. 2020;S1871-403X(20)30553-6. doi:10.1016/j.orcp.2020.07.005
- 23. Pranata R, Lim MA, Huang I, Raharjo SB, Lukito AA. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: A systematic review, meta-analysis and meta-regression. J Renin Angiotensin Aldosterone Syst.

BMJ Open

2020;21(2):1470320320926899. doi:10.1177/1470320320926899

- Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020;130(4):304-309. doi:10.20452/pamw.15272
- 25. Fried MW, Crawford JM, Mospan AR, et al. Patient Characteristics and Outcomes of 11,721 Patients with COVID19 Hospitalized Across the United States [published online ahead of print, 2020 Aug 28]. Clin Infect Dis. 2020;ciaa1268. doi:10.1093/cid/ciaa1268
- 26. Tartof SY, Qian L, Hong V, Wei R, Nadjafi RF, Fischer H, Li Z, Shaw SF, Caparosa SL, Nau CL, Saxena T, Rieg GK, Ackerson BK, Sharp AL, Skarbinski J, Naik TK, Murali SB. Obesity and Mortality Among Patients Diagnosed With COVID-19: Results From an Integrated Health Care Organization. Ann Intern Med. 2020 Aug 12:M20-3742. doi: 10.7326/M20-3742. Epub ahead of print. PMID: 32783686; PMCID: PMC7429998.
- 27. Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108:154262. doi:10.1016/j.metabol.2020.154262
- 28. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement

BMJ Open

studies with 19·2 million participants [published correction appears in Lancet. 2016 May 14;387(10032):1998]. Lancet. 2016;387(10026):1377-1396. doi:10.1016/S0140-6736(16)30054-X

- 29. Tikellis C, Bernardi S, Burns WC. Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease. Curr Opin Nephrol Hypertens. 2011;20(1):62-68. doi:10.1097/MNH.0b013e328341164a
- Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? [published correction appears in Lancet Respir Med. 2020 Jun;8(6):e54]. Lancet Respir Med. 2020;8(4):e21. doi:10.1016/S2213-2600(20)30116-
- 31. Yang G, Tan Z, Zhou L, et al. Effects of Angiotensin II Receptor Blockers and ACE (Angiotensin-Converting Enzyme) Inhibitors on Virus Infection, Inflammatory Status, and Clinical Outcomes in Patients With COVID-19 and Hypertension: A Single-Center Retrospective Study. Hypertension. 2020;76(1):51-58. doi:10.1161/HYPERTENSIONAHA.120.15143
- 32. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi:10.1038/s41586-020-2012-7
- 33. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on

ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. doi:10.1016/j.cell.2020.02.052

- 34. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-
 - 19: evidence from meta-analysis. Aging (Albany NY). 2020;12(7):6049-6057. doi:10.18632/aging.103000
- Fang X, Li S, Yu H, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging (Albany NY). 2020;12(13):12493-12503. doi:10.18632/aging.103579
- 36. Zhou Y, He Y, Yang H, et al. Development and validation a nomogram for predicting the risk of severe COVID-19: A multi-center study in Sichuan, China. PLoS One. 2020;15(5):e0233328. Published 2020 May 18. doi:10.1371/journal.pone.0233328
- 37. Patel U, Malik P, Usman MS, et al. Age-Adjusted Risk Factors Associated with Mortality and Mechanical Ventilation Utilization Amongst COVID-19 Hospitalizations-a Systematic Review and Meta-Analysis [published online ahead of print, 2020 Aug 29]. SN Compr Clin Med. 2020;1-10. doi:10.1007/s42399-020-00476-w
- 38. Harrison SL, Fazio-Eynullayeva E, Lane DA, Underhill P, Lip GYH. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLoS Med. 2020;17(9):e1003321. Published 2020 Sep

BMJ Open

10. doi:10.1371/journal.pmed.1003321

- Lazzaroni MG, Piantoni S, Masneri S, et al. Coagulation dysfunction in COVID-19: The interplay between inflammation, viral infection and the coagulation system [published online ahead of print, 2020 Aug 24]. Blood Rev. 2020;100745. doi:10.1016/j.blre.2020.100745
- 40. Sathler PC. Hemostatic abnormalities in COVID-19: A guided review. An Acad Bras Cienc. 2020;92(4):e20200834. doi:10.1590/0001-376520202020834
- 41. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-879. doi:10.1038/nm1267
- 42. Oudit GY, Kassiri Z, Patel MP, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res. 2007;75(1):29-39. doi:10.1016/j.cardiores.2007.04.007
- 43. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822-828. doi:10.1038/nature00786
- 44. Liu Z, Huang XR, Chen HY, Penninger JM, Lan HY. Loss of angiotensin-converting enzyme
 2 enhances TGF-β/Smad-mediated renal fibrosis and NF-κB-driven renal inflammation in a
 mouse model of obstructive nephropathy. Lab Invest. 2012;92(5):650-661.
 doi:10.1038/labinvest.2012.2
- 45. Wu J, Huang J, Zhu G, et al. Elevation of blood glucose level predicts worse outcomes in

hospitalized patients with COVID-19: a retrospective cohort study. BMJ Open Diabetes Res Care. 2020;8(1):e001476. doi:10.1136/bmjdrc-2020-001476

- 46. Fujii Y, Hirota K. Critical care demand and intensive care supply for patients in japan with covid-19 at the time of the state of emergency declaration in april 2020: a descriptive analysis. Medicina. 2020;56(10):530.
- Xu L, Mao Y, Chen G. Risk factors for 2019 novel coronavirus disease (COVID-19) patients progressing to critical illness: a systematic review and meta-analysis. Aging (Albany NY). 2020;12(12):12410-12421. doi:10.18632/aging.103383
- Zhao J, Li X, Gao Y, Huang W. Risk factors for the exacerbation of patients with 2019 Novel Coronavirus: A meta-analysis. Int J Med Sci. 2020;17(12):1744-1750. Published 2020 Jul 6. doi:10.7150/ijms.47052
- 49. Yu C, Lei Q, Li W, et al. Clinical Characteristics, Associated Factors, and Predicting COVID-19 Mortality Risk: A Retrospective Study in Wuhan, China. Am J Prev Med. 2020;59(2):168-175. doi:10.1016/j.amepre.2020.05.002
- Global Health 5050. The COVID-19 Sex-Disaggregated Data Tracker. 2020. https://globalhealth5050.org/the-sex-gender-and-covid-19-project/. Accessed October 3, 2020.
- 51. Gupte M, Thatcher SE, Boustany-Kari CM, et al. Angiotensin converting enzyme 2

BMJ Open

2						
3						
4						
5						
6		contributes to say	differences in the	development	f oberity by	pertension in C57BL/6 mice.
7		contributes to sex	unificiences in the	development d	of obesity hyp	beitension in C3/BL/0 inice.
8						
9		A	T11.	V	D:-1	2012-22/()-1202-1200
10		Arterioscler	Thromb	Vasc	Biol.	2012;32(6):1392-1399.
11						
12		1				
13		doi:10.1161/ATV	BAHA.112.24855	9		
14						
15						
16	52.	Zhou X, Zhang P,	, Liang T, Chen Y,	Liu D, Yu H. I	Relationship l	between circulating levels of
17						
18						
		angiotensin-conve	erting enzyme 2-a	ngiotensin-(1-7	')-MAS axis	and coronary heart disease.
19		-			-	-
20						
21		Heart Vessels. 202	20:35(2):153-161	doi:10.1007/s0	0380-019-01	478-v
22						
23						
24	53	Liu I Ii H Zheng	W et al Sex diffe	rences in renal	angiotensin c	onverting enzyme 2 (ACE2)
25	55.		w, et al. Sex ante	renees in renar	ungiotensine	onverting enzyme 2 (reel2)
26						
27		activity are 178 c	astrodial depende	nt and say ahr	omosoma in	dependent. Biol Sex Differ.
28		activity are 1/p-c	Jestiauloi-depende	int and sex chi	01110501116-1110	dependent. Bioi Sex Diffei.
29						
30		2010 1(1) (D 11	· 1 1 2010 M 5	1:10.1100/0	042 (410 1 4	~
31		2010;1(1):6. Publ	ished 2010 Nov 5.	doi:10.1186/2	042-6410-1-6)
32						
33		~			•	
34	54.	Cook IF. Sexual	l dimorphism of	humoral imm	nunity with	human vaccines. Vaccine.
35						
36						
37		2008;26(29-30):3	551-3555. doi:10.	1016/j.vaccine.	2008.04.054	
38						
39						
40	55.	Zheng XY, Xu Y	YJ, Guan WJ, Lii	n LF. Regiona	l, age and re	espiratory-secretion-specific
				-		
41						
42		prevalence of resp	piratory viruses as	sociated with a	asthma exace	erbation: a literature review.
43		1	I J			
44						
45		Arch Virol 2018.	163(4):845-853. d	oj·10 1007/s00	705-017-370	0-v
46		7 Hen vitol. 2010,	,105(1).015 055. u	01.10.1007/500	105 017 570	
47						
48	56	Panadonoulos NC	G Christodoulou I	Robde G et	al Viruses a	nd bacteria in acute asthma
49	50.		J, Chilistodoulou I	, Ronde O, et	ai. viruses a	ne bacteria in acute astinna
50						
51		avaarbations a	CA2 LEN DAD	E austamatia	rouiou Al	lergy. 2011;66(4):458-468.
52		exactionationsa	UA LEN-DAK	E systematic	Itview. Al	lengy. $2011,00(4).438-408.$
53						
54		dai:10.1111/: 120	0 0005 2010 0250	5		
55		u01.10.1111/J.139	8-9995.2010.0250	U.X		
56						
57				·	1	
58	57.	Mandavinia M, F	oster KJ, Jauregu	IE, et al. Asth	ma prolongs	intubation in COVID-19. J
59						
60						

Allergy Clin Immunol Pract. 2020;8(7):2388-2391. doi:10.1016/j.jaip.2020.05.006

- Johnston SL. Asthma and COVID-19: Is asthma a risk factor for severe outcomes?. Allergy. 2020;75(7):1543-1545. doi:10.1111/all.14348
- 59. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110-118. doi:10.1016/j.jaci.2020.04.006
- Liu S, Zhi Y, Ying S. COVID-19 and Asthma: Reflection During the Pandemic. Clin Rev Allergy Immunol. 2020;59(1):78-88. doi:10.1007/s12016-020-08797-3
- 61. Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One. 2020;15(8):e0238215. Published 2020 Aug 26. doi:10.1371/journal.pone.0238215
- 62. Kimura H, Francisco D, Conway M, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020;146(1):80-88.e8. doi:10.1016/j.jaci.2020.05.004
- Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020;146(1):203-206.e3. doi:10.1016/j.jaci.2020.04.009
- 64. Nicolau DV, Bafadhel M. Inhaled corticosteroids in virus pandemics: a treatment for

BMJ Open

5
4
5
6
7
/
8
9
10
11
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 4 35 36 37 8 9
24
25
26
27
28
20
29
30
31
32
22
22
34
35
36
37
20
38
39
40
41
42
12
43
44
45
46
47
••
48
49
50
51
51
52
53
54
55
56
50
57
58
59
60
~ ~

COVID-19?. Lancet Respir Med. 2020;8(9):846-847. doi:10.1016/S2213-2600(20)30314-3

- Johnson RM, Vinetz JM. Dexamethasone in the management of covid-19. BMJ.
 2020;370:m2648. Published 2020 Jul 3. doi:10.1136/bmj.m2648
- 66. Zhao Z, Chen A, Hou W, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS One. 2020;15(7):e0236618. Published 2020 Jul 30. doi:10.1371/journal.pone.0236618
- Shang Y, Liu T, Wei Y, et al. Scoring systems for predicting mortality for severe patients with COVID-19. EClinicalMedicine. 2020;24:100426. Published 2020 Jul 3. doi:10.1016/j.eclinm.2020.100426
- 68. Dong Y, Zhou H, Li M, et al. A novel simple scoring model for predicting severity of patients with SARS-CoV-2 infection [published online ahead of print, 2020 May 29]. Transbound Emerg Dis. 2020;10.1111/tbed.13651. doi:10.1111/tbed.13651

	Non-severe (n=2196)	Severe (n=1180)	
Fatal cases	39 (2)	204 (17)	
Worst severity during hospitalization			
No oxygen	1796 (82)	192 (16)	
Oxygen	357 (16)	678 (58)	
IMV/ECMO ^a	43 (2)	310 (26)	
Days between onset and admission (median [IQR])	6 [4, 10]	7 [4, 10]	
Age (median [IQR])	50 [35, 64]	67 [53, 78]	
Male	1232 (56)	830 (71)	
BMI (median [IQR])	22.9 [20.3, 25.7]	24.1 [21.5, 27.1]	
Comorbidities	5		
Cardiovascular disease	62 (3)	121 (10)	
Respiratory disease	36 (2)	104 (9)	
Liver disease	49 (2)	39 (3)	
Cerebrovascular disease	72 (3)	115 (10)	
Asthma	102 (5)	64 (5)	

1 2 3	
1 2 3 4 5 6 7 8 9 10 11	
o 9 10 11	
13 14 15	
16 17 18 19	
 18 19 20 21 22 23 24 25 26 27 28 29 30 	
24 25 26 27	
31	
32 33 34 35 36 37	
36 37 38 39	
40 41 42 43	
44 45 46 47	
48 49 50 51	
52 53 54 55	
56 57 58 59	
60	

Diabetes	262 (12)	300 (25)
Obesity	95 (4)	83 (7)
Severe renal disease or dialysis	22 (1)	25 (2)
Solid tumor	66 (3)	79 (7)
Leukemia	10 (1)	3 (0)
Lymphoma	16 (1)	9 (1)
Hypertension	292 (13)	331 (28)
Hyperlipidemia	176 (8)	157 (13)
Treatments prior to COVID-19		
Use of steroid in one month	6 (0)	10 (1)
Chemotherapy in three months	32 (2)	24 (2)
Immunosuppressants ^b use in three months	26 (1)	18 (2)
Symptoms on admission	2/	
Fever (≥37.5°C)	1078 (49)	862 (74)
Cough	1167 (54)	716 (65)
Sore throat	340 (17)	142 (16)
Runny nose	239 (12)	86 (9)
Chest pain	95 (5)	44 (5)

BMJ Open

Myalgia	172 (9)	79 (9)
Headache	361 (18)	136 (15)
Confusion	21 (1)	68 (6)
Fatigue	834 (40)	595 (60)
Abdominal pain	60 (3)	24 (3)
Vomit	88 (4)	59 (6)
Diarrhea	251 (12)	164 (16)
Dysgeusia	494 (26)	113 (13)
Dysosmia	422 (23)	96 (12)
Dysosmia	422 (23)	96 (12)

^ainvasive mechanical ventilation/extracorporeal membrane oxygenation ^bimmunosupprenssants other than steroids

	Odds ratio	95% CI ^a	P valu
Days between onset and admission	1.0	0.99-1.01	0.960
Age	1.04	1.03-1.04	< 0.00
Male	2.09	1.76-2.48	< 0.00
Comorbidities			
Cardiovascular disease	1.48	1.04-2.10	0.028
Cerebrovascular disease	1.33	0.95-1.85	0.097
Chronic respiratory disease	2.51	1.67-3.78	< 0.00
Asthma	1.24	0.87-1.77	0.240
Liver disease	0.97	0.61-1.54	0.892
Diabetes	1.34	1.09-1.64	0.006
Obesity diagnosed by physicians	1.75	1.26-2.45	0.001
Severe renal disease or dialysis	1.0	0.54-1.88	0.991
Solid tumor	1.20	0.82-1.77	0.351
Leukemia	0.34	0.08-1.39	0.132
Lymphoma	0.42	0.16-1.11	0.081
Hypertension	1.33	1.08-1.64	0.008

Hyperlipidemia	0.91	0.70-1.19	0.490
Treatments prior to COVID-19			
Use of steroid in one month	1.65	0.52-5.22	0.394
Chemotherapy in three months	1.47	0.72-3.0	0.286
Immunosuppressants ^b use in three months	1.35	0.69-2.64	0.384

^aconfidence interval

^bimmunosupprenssants other than steroids

Table 3. Characteristics of patients stratified by non-fatal/fatal cases and severity during	
hospitalization	

	Non-fatal	Fatal	No-oxygen	Oxgen	IMV/ECMO ^a
	(n=3129)	(n=243)	(n=1988)	(n=1035)	(n=353)
Fatal cases			6 (0)	137 (13)	100 (28)
Severity on admission					
Non-severe	2155 (69)	39 (16)	1796 (90)	357 (35)	43 (12)
Severe	974 (31)	204 (84)	192 (10)	678 (66)	310 (88)
Worst severity during	0	4			
hospitalization					
No-oxygen	1980 (63)	6 (3)			
Oxygen	897 (29)	137 (56)			
IMV/ECMO	252 (8)	100 (41)	0,		
Days between onset and					
admission (median	7 [4, 10]	5 [2, 8]	7 [4, 10]	6 [3, 9]	7 [5, 10]
[IQR])					
	CA FAO (01	00 [71 0/]	40 [22 (1]	68 [53,	
Age (median [IQR])	54 [40, 68]	80 [71, 86]	48 [33, 61]	80]	65 [56, 74]
Male	1899 (61)	161 (66)	1083 (55)	694 (67)	285 (81)

BMI (median IQR)23.3 [20.8, 23.3 [20.8, 26.3]22.7 [19.4, 22.6 [21.6, 27.0]24.8 [22.6, 21.6] 27.0]24.8 [22.6, 21.6] 27.0]Cardiovascular diseas129 (4)54 (22)48 (2)10.10029 (8)Respiratory disease103 (3)35 (14)29 (2)78 (8)33 (9)Liver disease75 (2)13 (5)36 (2)32 (3)20 (6)Carebrovascular diseas135 (4)51 (21)57 (3)105 (10)25 (7)Ashma157 (5)9 (4)92 (5)52 (5)22 (6)Diabetes169 (5)9 (4)92 (5)52 (5)22 (6)Gaisyi169 (5)9 (4)70 (4)75 (7)33 (9)Sever ernal disease or dialysi34 (1)13 (5)14 (1)21 (2)21 (3)Solid tumor14 (4)31 (13)60 (3)63 (6)22 (6)Lukemia10 (0)12 (5)6(0)16 (2)3 (1)Hypertension51 (18)70 (29)24 (12)15 (3)Hypertension50 (10)26 (11)148 (7)12 (12)61 (17)						
Respiratory disease 103 (3) 35 (14) 29 (2) 78 (8) 33 (9) Liver disease 75 (2) 13 (5) 36 (2) 32 (3) 20 (6) Cerebrovascular disease 135 (4) 51 (21) 57 (3) 105 (10) 25 (7) Asthma 157 (5) 9 (4) 92 (5) 52 (5) 22 (6) Diabetes 475 (15) 86 (35) 197 (10) 244 (24) 121 (34) Obesity 169 (5) 9 (4) 70 (4) 75 (7) 33 (9) Severe renal disease or dialysis 34 (1) 13 (5) 14 (1) 21 (2) 12 (3) Solid tumor 114 (4) 31 (13) 60 (3) 63 (6) 22 (6) Leukemia 9 (0) 4 (2) 6 (0) 7 (1) 0 (0) Lymphoma 13 (0) 12 (5) 6 (0) 7 (1) 0 (0) Lymphoma 551 (18) 70 (29) 234 (12) 274 (27) 115 (33)	BMI (median [IQR])		-	-	[21.5,	-
Liver disease 75 (2) 13 (5) 36 (2) 32 (3) 20 (6) Cerebrovascular disease 135 (4) 51 (21) 57 (3) 105 (10) 25 (7) Asthma 157 (5) 9 (4) 92 (5) 52 (5) 22 (6) Diabetes 475 (15) 86 (35) 197 (10) 244 (24) 121 (34) Obesity 169 (5) 9 (4) 70 (4) 75 (7) 33 (9) Severe renal disease or dialysis 34 (1) 13 (5) 14 (1) 21 (2) 12 (3) Solid tumor 114 (4) 31 (13) 60 (3) 63 (6) 22 (6) Leukemia 9 (0) 4 (2) 6 (0) 7 (1) 0 (0) Lymphoma 13 (0) 12 (5) 6 (0) 16 (2) 3 (1)	Cardiovascular disease	129 (4)	54 (22)	48 (2)	106 (10)	29 (8)
Cerebrovascular disease 135 (4) 51 (21) 57 (3) 105 (10) 25 (7) Asthma 157 (5) 9 (4) 92 (5) 52 (5) 22 (6) Diabetes 475 (15) 86 (35) 197 (10) 244 (24) 121 (34) Obesity 169 (5) 9 (4) 70 (4) 75 (7) 33 (9) Severe renal disease or dialysis 34 (1) 13 (5) 14 (1) 21 (2) 12 (3) Solid tumor 114 (4) 31 (13) 60 (3) 63 (6) 22 (6) Leukemia 9 (0) 4 (2) 6 (0) 7 (1) 0 (0) Lymphoma 13 (0) 12 (5) 6 (0) 16 (2) 3 (1)	Respiratory disease	103 (3)	35 (14)	29 (2)	78 (8)	33 (9)
Asthma 157 (5) 9 (4) 92 (5) 52 (5) 22 (6) Diabetes 475 (15) 86 (35) 197 (10) 244 (24) 121 (34) Obesity 169 (5) 9 (4) 70 (4) 75 (7) 33 (9) Severe renal disease or dialysis 34 (1) 13 (5) 14 (1) 21 (2) 12 (3) Solid tumor 114 (4) 31 (13) 60 (3) 63 (6) 22 (6) Leukemia 9 (0) 4 (2) 6 (0) 7 (1) 0 (0) Lymphoma 13 (0) 12 (5) 6 (0) 16 (2) 3 (1)	Liver disease	75 (2)	13 (5)	36 (2)	32 (3)	20 (6)
Diabetes 475 (15) 86 (35) 197 (10) 244 (24) 121 (34) Obesity 169 (5) 9 (4) 70 (4) 75 (7) 33 (9) Severe renal disease or dialysis 34 (1) 13 (5) 14 (1) 21 (2) 12 (3) Solid tumor 114 (4) 31 (13) 60 (3) 63 (6) 22 (6) Leukemia 9 (0) 4 (2) 6 (0) 7 (1) 0 (0) Lymphoma 13 (0) 12 (5) 6 (0) 16 (2) 3 (1)	Cerebrovascular disease	135 (4)	51 (21)	57 (3)	105 (10)	25 (7)
Obesity 169 (5) 9 (4) 70 (4) 75 (7) 33 (9) Severe renal disease or dialysis 34 (1) 13 (5) 14 (1) 21 (2) 12 (3) Solid tumor 114 (4) 31 (13) 60 (3) 63 (6) 22 (6) Leukemia 9 (0) 4 (2) 6 (0) 7 (1) 0 (0) Lymphoma 13 (0) 12 (5) 6 (0) 16 (2) 3 (1)	Asthma	157 (5)	9 (4)	92 (5)	52 (5)	22 (6)
Severe renal disease or dialysis 34 (1) 13 (5) 14 (1) 21 (2) 12 (3) Solid tumor 114 (4) 31 (13) 60 (3) 63 (6) 22 (6) Leukemia 9 (0) 4 (2) 6 (0) 7 (1) 0 (0) Lymphoma 13 (0) 12 (5) 6 (0) 16 (2) 3 (1) Hypertension 551 (18) 70 (29) 234 (12) 274 (27) 115 (33)	Diabetes	475 (15)	86 (35)	197 (10)	244 (24)	121 (34)
34 (1)13 (5)14 (1)21 (2)12 (3)Solid tumor114 (4)31 (13)60 (3)63 (6)22 (6)Leukemia9 (0)4 (2)6 (0)7 (1)0 (0)Lymphoma13 (0)12 (5)6 (0)16 (2)3 (1)Hypertension551 (18)70 (29)234 (12)274 (27)115 (33)	Obesity	169 (5)	9 (4)	70 (4)	75 (7)	33 (9)
Leukemia 9 (0) 4 (2) 6 (0) 7 (1) 0 (0) Lymphoma 13 (0) 12 (5) 6 (0) 16 (2) 3 (1) Hypertension 551 (18) 70 (29) 234 (12) 274 (27) 115 (33)		34 (1)	13 (5)	14 (1)	21 (2)	12 (3)
Lymphoma 13 (0) 12 (5) 6 (0) 16 (2) 3 (1) Hypertension 551 (18) 70 (29) 234 (12) 274 (27) 115 (33)	Solid tumor	114 (4)	31 (13)	60 (3)	63 (6)	22 (6)
Hypertension 551 (18) 70 (29) 234 (12) 274 (27) 115 (33)	Leukemia	9 (0)	4 (2)	6 (0)	7 (1)	0 (0)
	Lymphoma	13 (0)	12 (5)	6 (0)	16 (2)	3 (1)
Hyperlipidemia 305 (10) 26 (11) 148 (7) 124 (12) 61 (17)	Hypertension	551 (18)	70 (29)	234 (12)	274 (27)	115 (33)
	Hyperlipidemia	305 (10)	26 (11)	148 (7)	124 (12)	61 (17)

Page 45 of 55

BMJ Open

Use of steroid in one month	10 (0)	5 (2)	4 (0)	8 (1)	4 (1)
Chemotherapy in three months	38 (1)	18 (7)	21 (1)	30 (3)	5 (1)
Immunosuppressants ^b					
use in three months	37 (1)	7 (3)	18 (1)	18 (2)	8 (2)
Fever (≥37.5°C)	1737 (56)	199 (82)	897 (45)	758 (74)	285 (82)
Cough	1770 (58)	112 (52)	1034 (53)	643 (64)	206 (69)
Sore throat	459 (17)	23 (16)	316 (18)	125 (15)	41 (16)
Runny nose	311 (11)	13 (7)	224 (12)	79 (9)	22 (8)
Chest pain	136 (5)	3 (2)	88 (5)	46 (6)	5 (2)
Myalgia	242 (9)	9 (7)	148 (8)	84 (10)	19 (7)
Headache	486 (18)	11 (8)	333 (18)	138 (17)	26 (10)
Confusion	60 (2)	29 (14)	19 (1)	54 (6)	16 (5)
Fatigue	1323 (46)	104 (62)	709 (38)	560 (62)	160 (58)
Abdominal pain	79 (3)	5 (3)	53 (3)	25 (3)	6 (2)
Vomit	139 (5)	8 (5)	80 (4)	51 (6)	16 (6)
Diarrhea	397 (14)	18 (9)	236 (13)	143 (15)	36 (13)

Dysgeusia	128 (17)	25 (10)	454 (26)	128 (17)	25 (10)
Dysosmia	103 (14)	13 (6)	402 (23)	103 (14)	13 (6)
^a invasive mechar	nical ventilation/extra	acorporeal me	mbrane oxyge	nation	
^b immunosupprei	nssants other than sto	eroids			

Figure Legends

Figure 1. Distribution of the worst severity arranged by severe/non-severe at admission and

presence/absence of comorbidities.

Top bars represent non-severe cases at admission and bottom bars represent severe cases at admission.

Each group of cases was divided based on the presence of comorbidities. Bars represent different

categories of worst severity: light gray - no-oxygen, darker gray - oxygen, and darkest gray -

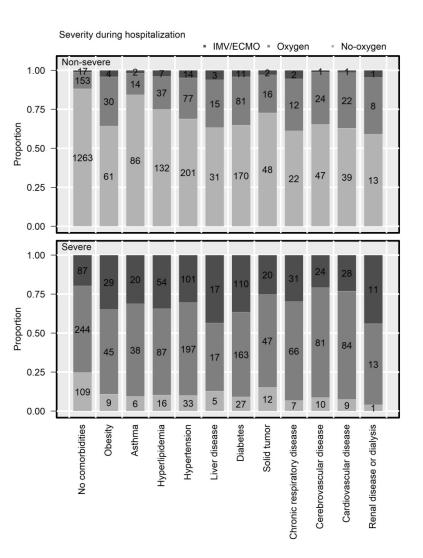
IMV/ECMO.

Figure 2. Distribution of the fatality arranged by severe/non-severe at admission and presence/non-presence of comorbidities

Top bars represent non-severe cases at admission and bottom bars represent severe cases at admission.

Each group of cases was divided based on the presence of comorbidities. Dark gray represents fatal

cases while light gray represents non-fatal cases.


Supplementary Figure 1. Distribution of worst severity by age group

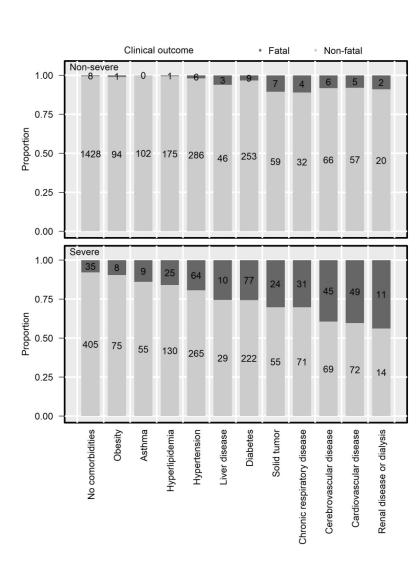
Supplementary Figure 2. Distribution of fatality by age group

Supplementary Figure 3. (a) Worst severity of cases aged <65 and ≥65 with no comorbidities

(b) Fatality in cases aged <65 and ≥65 with no comorbidities

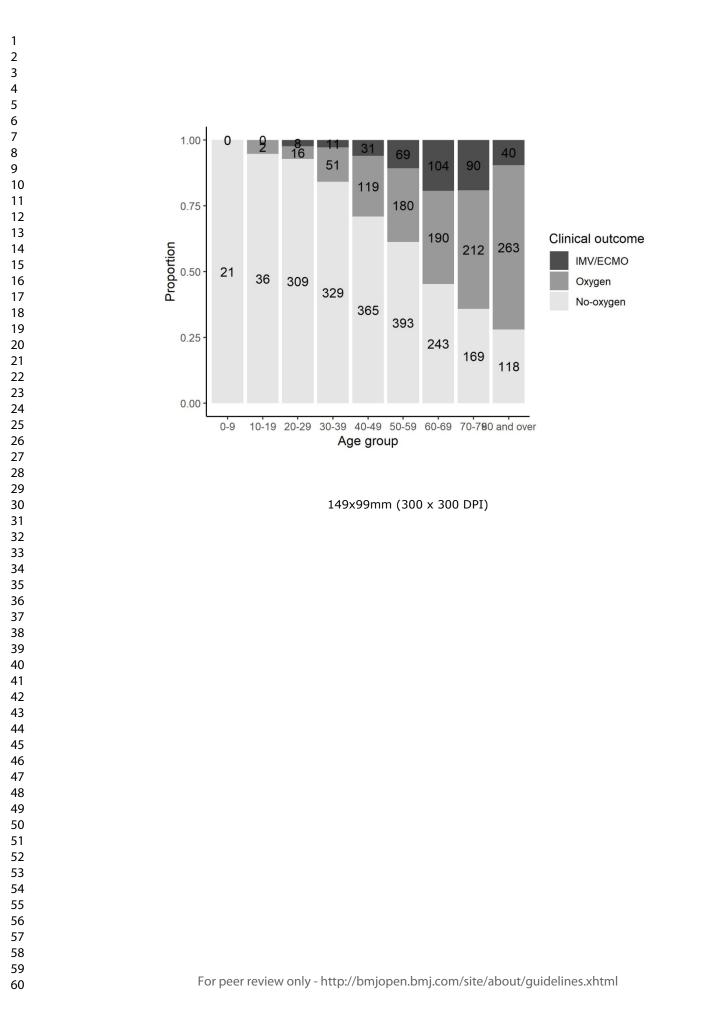
tor peer terien ont

Distribution of the worst severity arranged by severe/non-severe at admission and presence/absence of comorbidities

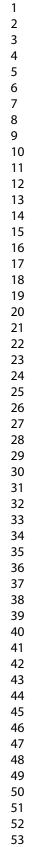

179x269mm (300 x 300 DPI)

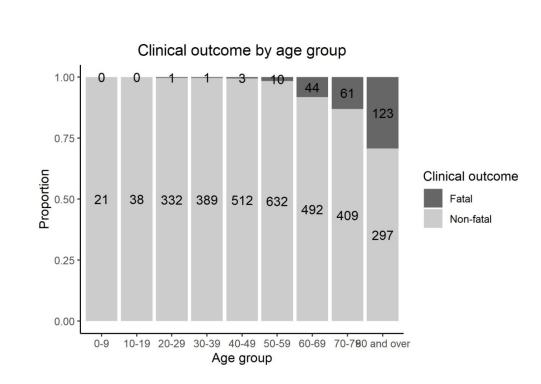
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

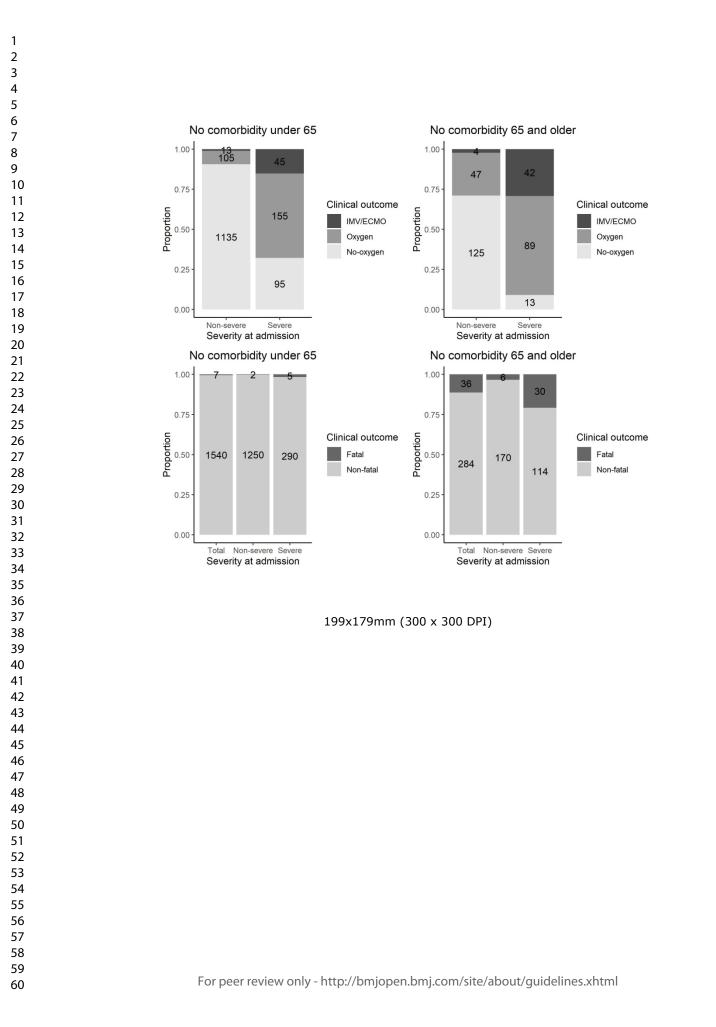


BMJ Open: first published as 10.1136/bmjopen-2020-047007 on 15 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.




Distribution of the fatality arranged by severe/non-severe at admission and presence/non-presence of comorbidities

179x269mm (300 x 300 DPI)



BMJ Open: first published as 10.1136/bmjopen-2020-047007 on 15 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

149x99mm (300 x 300 DPI)

Supplementary Table. Proportion of therapeutics used for each comorbidity

	Number of patients	Systemic steroid	Favipiravir	Ciclesonide	Heparin	Tocilizumab	
	patients	steroiu					
No comorbidity	1873	105 (6)	606 (32)	562 (30)	48 (3)	22 (1)	
Obesity	178	34 (19)	109 (61)	72 (40)	17 (10)	5 (3)	
Cardiovascular	183	30 (16)	86 (47)	46 (25)	19 (10)	6 (3)	
disease							
Chronic respiratory	140	39 (28)	94 (67)	52 (37)	10 (7)	5 (4)	
disease							
Diabetes	562	98 (17)	325 (58)	197 (35)	61 (11)	12 (2)	
Hypertension	623	120 (19)	338 (54)	200 (32)	70 (11)	20 (3)	
Cerebrovascular	187	34 (18)	93 (50)	42 (23)	15 (8)	7 (4)	
disease	107	54 (10)	95 (50)	T ² (23)	15 (0)	7 (4)	
Liver disease	88	15 (17)	57 (65)	32 (36)	5 (6)	3 (3)	
Severe renal disease	47	0 (10)	31 (45)	12 (26)	6 (12)	2 (6)	
or dialysis	47	9 (19)	21 (45)	12 (26)	6 (13)	3 (6)	
Solid tumor	145	20 (14)	68 (47)	34 (23)	6 (4)	1 (1)	

Numbers in brackets represent percentages.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	7
Objectives	3	State specific objectives, including any prespecified hypotheses	8
Methods			•
Study design	4	Present key elements of study design early in the paper	8
Setting	5	Describe the setting, locations, and relevant dates, including periods of	8
8		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	8
1	-	participants. Describe methods of follow-up	1
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	9
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	12
Study size	10	Explain how the study size was arrived at	13
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	11
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	12
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	12
		(c) Explain how missing data were addressed	13
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	13
- with pulles	10	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	14
Descriptive data	17	and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	13
		(c) Summarise follow-up time (eg, average and total amount)	10
Quita ama data	15*		14
Outcome data	15*	Report numbers of outcome events or summary measures over time	<u> </u>

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	14
		(b) Report category boundaries when continuous variables were categorized	14
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	17
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	21
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	21
Generalisability	21	Discuss the generalisability (external validity) of the study results	21
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	22

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Risk factors for severity on admission and the disease progression during hospitalization in a large cohort of COVID-19 patients in Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047007.R1
Article Type:	Original research
Date Submitted by the Author:	10-May-2021
Complete List of Authors:	Terada, Mari; National Center for Global Health and Medicine Ohtsu, Hiroshi; National Center for Global Health and Medicine, Clinical Epidemiology Section, Department of Data Science, Center for Clinical Sciences Saito, Sho; National Center for Global Health and Medicine Hayakawa, Kayoko; National Center for Global Health and Medicine Tsuzuki, Shinya; National Center for Global Health and Medicine Asai, Yusuke; National Center for Global Health and Medicine Matsunaga, Nobuaki; National Center for Global Health and Medicine, AMR Clinical Reference Center, Disease Control and Prevention Center Kutsuna, Satoshi; National Center for Global Health and Medicine Sugiura, Wataru; National Center for Global Health and Medicine
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology
Keywords:	COVID-19, EPIDEMIOLOGY, VIROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12 13	
13	
14	
15	
16	
17	
16 17 18	
10	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
3Z	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
27	

1	Title: Risk factors for severity on admission and the disease progression during
2	hospitalization in a large cohort of COVID-19 patients in Japan
3	
4	Mari Terada (0000-0002-5171-1828), R.Ph., M.P.H. ^{1,2} , Hiroshi Ohtsu, M.Sc. ² , Sho Saito,
5	M.D. ¹ , Kayoko Hayakawa, M.D., Ph.D. ^{1,3} , Shinya Tsuzuki, M.D., M.Sc. ^{3,4} , Yusuke Asai,
6	Ph.D. ³ , Nobuaki Matsunaga, M.D., M.P.H., Ph.D. ³ , Satoshi Kutsuna, M.D., Ph.D. ¹ , Wataru
7	Sugiura, M.D., Ph.D. ² , Norio Ohmagari, M.D., M.Sc., Ph.D. ^{1,3}
8	
9	1) Department of Infectious Diseases, Disease Control and Prevention Center, National Center
10	for Global Health and Medicine, Tokyo, Japan.
11	2) Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan.
12	3) AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo,
13	Japan.
14	4) Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
15	
16	Center for Clinical Sciences/Disease Control and Prevention Center, National Center for Global
17	Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Mari Terada
18	pharmacist

BMJ Open

19	Center for Clinical Sciences, National Center for Global Health and Medicine, 1-21-1 Toyama,
20	Shinjuku-ku, Tokyo 162-8655, Japan. Hiroshi Ohtsu statistician
21	Department of Infectious Diseases, Disease Control and Prevention Center, National Center for
22	Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Sho Saito
23	physician
24	Department of Infectious Diseases, Disease Control and Prevention Center/AMR Clinical
25	Reference Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-
26	ku, Tokyo 162-8655, Japan. Kayoko Hayakawa chief physician
27	AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1
28	Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Faculty of Medicine and Health Sciences,
29	University of Antwerp, Antwerp, Belgium. Shinya Tsuzuki senior researcher
30	AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1
31	Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Yusuke Asai senior researcher
32	AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1
33	Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Nobuaki Matsunaga section head
34	Department of Infectious Diseases, Disease Control and Prevention Center, National Center for
35	Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Satoshi
36	Kutsuna chief physician

37	Center for Clinical Sciences, National Center for Global Health and Medicine, 1-21-1 Toyama,
38	Shinjuku-ku, Tokyo 162-8655, Japan. Wataru Sugiura director
39	Department of Infectious Diseases, Disease Control and Prevention Center/AMR Clinical
40	Reference Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-
41	ku, Tokyo 162-8655, Japan. Norio Ohmagari director
42	
43	
44	Correspondence to: Sho Saito
45	Disease Control and Prevention Center
46	National Center for Global Health and Medicine, Tokyo, Japan
47	1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
48	Tel: +81-3-3202-7181
49	Fax: +81-3-3207-1038
50	E-mail: ssaito@hosp.ncgm.go.jp
51	
52	Word Count: 3877
53	
54	

55	Abstract
56	Objectives : To investigate the risk factors contributing to severity on admission.
57	Additionally, risk factors of worst severity and fatality were studied. Moreover, factors were
58	compared based on three points: early severity, worst severity, and fatality.
59	Design: A observational cohort study utilizing data entered in a Japan nationwide COVID-
60	19 inpatient registry, COVIREGI-JP.
61	Setting: As of August 31, 2020, 7,546 cases from 780 facilities have been registered.
62	Participating facilities cover a wide range of hospitals where COVID-19 patients are admitted in
63	Japan.
64	Participants: Participants who had a positive test result on any applicable SARS-CoV-2
65	diagnostic tests, and were admitted to participating healthcare facilities. A total of 3,829 cases
66	were identified from January 16 to May 31, 2020, of which 3,376 cases were included in this
67	study.
68	Primary and secondary outcoe measures: Primary outcome was severe or non-severe on
69	admission, determined by the requirement of mechanical ventilation or oxygen therapy, SpO2,
70	or respiratory rate. Secondary outcome was the worst severity during hospitalization, judged by
71	the requirement of oxygen and/or IMV/ECMO.
72	Results: Risk factors for severity on admission were older age, male, cardiovascular disease,

73	chronic respiratory disease, diabetes, obesity, and hypertension. Cerebrovascular disease, liver
74	disease, renal disease or dialysis, solid tumor, and hyperlipidemia did not influence severity on
75	admission ; however it influenced worst severity. Fatality rates for obesity, hypertension, and
76	hyperlipidemia were relatively lower.
77	Conclusions: This study segregated the comorbidities influencing severity and death. It is
78	possible that risk factors for severity on admission, worst severity, and fatality are not consistent
79	and may be propelled by different factors. Specifically, while hypertension, hyperlipidemia, and
80	obesity had major effect on worst severity, their impact was mild on fatality in the Japanese
81	population. Some studies contradict our results; therefore, detailed analyses, considering in-
82	hospital treatments, are needed for validation.
83	Trial registration: UMIN000039873. https://upload.umin.ac.jp/cgi-open-
84	bin/ctr_e/ctr_view.cgi?recptno=R000045453
85	
86	Strengths and limitations of this study
87	• This study investigated the disease progression of COVID-19, by comparing the risk factors
88	on three points: early severity, worst severity throughout hospitalization, and fatality,
89	whereas previous studies have predominantly reported worst severity.
90	• Categorization used for worst severity may differ from those used in other studies as most

2			
3 4			
5			
6 7 8	91		cases in our dataset did not include lung infiltration rate judged from radiological
9 10	92		examination, SpO ₂ :FiO ₂ ratio or PaO ₂ :FiO ₂ ratio.
11 12 13 14	93	•	The dataset was derived from a large COVID-19 patient registry in Japan which involves
15 16 17	94		299 facilities in Japan, which is both a strength and a limitation, as treatment methods and
18 19 20	95		severity may vary.
21 22 23	96	•	As treatment type, dosage, duration, and combination varied immensely across the facilities,
24 25	97		we did not consider treatments prior to and during hospitalization.
26 27	98		
28 29			
30			
31			
32			
33			
34 35			
36			
37			
38			
39 40			
40 41			
42			
43			
44			
45 46			
47			
48			
49			
50 51			
52			
53			
54			
55 56			
50 57			
58			
59			
60			

99 Introduction

100	Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
101	coronavirus-2 (SARS-CoV-2), has caused a major global public health crisis. As of October 3,
102	2020, >34 million people had been infected in over 230 countries ^{1,2} . Japan experienced two
103	pandemic waves after the first case reported on January 16, 2020. During the first wave, a state
104	of emergency was declared on April 7, which ended on May 25, settling the first wave. Nearly
105	thrice as many SARS-CoV-2 positive cases were detected in the second wave, which emerged
106	from the end of June ³ . The fatality rate in the second wave has generally been lower in many
107	countries, including Japan ⁴ .
108	When the number of patients explodes, hospital beds were in great shortage; hotels were
109	utilized as isolation facilities in many countries ⁵⁻⁷ . Likewise, in Japan, mild patients were
110	transferred to hotels from April 20208. About two-thirds of cases did not require oxygen support
111	throughout thier illness9. However, some cases initiated non-severe may instantly plunge into a
112	serious state and require aggressive care ¹⁰ . Therefore, public health centers are in demand for
113	indicators to identify those at a higher risk of aggravation in the early phase and determine the
114	destination-hospital, hotel, or home. Depicting the clinical course-from onset to worst
115	severity and the outcome—is imperative to appropriately allocate patients to healthcare
116	resources. Analyses considering the severity on admission and the disease progression thereafter

BMJ Open

2 3		
4		
5 6 7 8	117	has not been conducted are of interest to physicians globally.
9 10 11	118	We obtained nationwide data from a COVID-19 inpatient registry, "COVID-19 REGISTRY
12 13 14 15 16 17 18 19 20 21 22 23	119	JAPAN (COVIREGI-JP)", and conducted a study to identify the independent risk factors
	120	contributing towards severity on admission. We aimed to determine the risk factors on
	121	admission, namely demographics and comorbidities. Progression of severity was inspected in
	122	detail on different time points. Cases identified within the period of the first pandemic wave
24 25 26	123	were studied.
27 28 29	124	
30 31 32	125	Methods
33 34 35	126	Study design and patients
36 37	127	This is an observational cohort study that utilizes the data accumulated in the
38 39 40 41	128	nationwide "COVID-19 REGISTRY JAPAN (COVIREGI-JP)". As of September 28, 2020,
42 43 44	129	10,048 cases from 802 facilities have been registered. Participating facitilies covers a wide
45 46 47	130	range of hospitals where COVID-19 patients are admitted in Japan. Enrolled cases satisfied two
48 49 50	131	eligibility criteria: a positive test result for COVID-19 and being admitted to a healthcare
51 52 53	132	facility. Registration started on March 2, 2020, and is ongoing, at present.
54 55 56	133	
57 58 59 60	134	Patient and Public Involvement

BMJ Open

No patient involved.

136	
137	Data collection and case report form
138	Data were collected in a case report form (CRF) developed for COVIREGI-JP. This CRF
139	includes modified information of the International Severe Acute Respiratory and Emerging
140	Infection Consortium CRF on COVID-19 ¹¹ . Upon modification, we elaborated on data
141	collection, especially on treatments, comorbidities, and symptoms. In addition, as of October
142	26, 2020, this CRF underwent revisions twice to update therapeutic options or definitions, as
143	new evidence emerges. Study data were collected and managed using Research Electronic Data
144	Capture (REDCap) electronic data capture tools ^{12,13} , hosted at the datacenter in National Center
145	for Global Health and Medicine. Data were either recorded on a CRF hard-copy or were entered
146	directly into REDCap at each facility.
147	
148	Comorbidities
149	Comorbidities were collected based on Charlson comorbidity index ^{14,15} with modifications.
150	Some comorbidities were combined as follows: Cardiovascular disease (CVD)-myocardial
151	infarction, congestive heart failure, and peripheral vascular disease; Chronic respiratory disease
152	(CRD)—chronic obstructive pulmonary disease (COPD) and other chronic lung diseases; Renal

BMJ Open

153	disease or dialysis—moderate to severe renal disorder (creatinine ≥ 3 mg/dL, nephropathy, post-
154	renal transplantation, or on dialysis), and maintenance hemodialysis or peritoneal dialysis before
155	hospitalization; and Solid tumor-solid tumor with or without metastasis. Obesity was
156	diagnosed based on physician's judgement, and body mass index (BMI) was not considered in
157	this study.
158	
159	Drug administration prior to and during hospitalization
160	Steroids, chemotherapy, and immunosuppressants administered prior to hospitalization were
161	collected as pre-hospitalization treatments. Steroids included those equivalent to 20 mg/day
162	prednisolone for ≥ 1 month and are not considered as immunosuppressants. Chemotherapy and
163	immunosuppressants was applicable if administered 3 months prior to hospitalization.
164	Treatment during hospitalization was studied on systemic steroids, favipiravir, ciclesonide,
165	heparin, and tocilizumab, due to the frequent use in Japan. Heparin use included those given for
166	both prophylactic and treatment purposes.
167	
168	Dataset
169	We defined the first wave period as January 16 to May 31, 2020 ¹⁶ , and cases from the first
170	wave was included in this analysis. Therefore, data extraction conditions were: (1) cases
	154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 168

BMJ Open

4 5		
6 7 8	171	admitted to healthcare facilities between January 16 and May 31, 2020, and (2) all CRF items
9 10 11	172	completed on dataset generation. The dataset was generated and fixed on September 2, 2020.
12 13 14	173	
15 16 17	174	Definitions of severity
18 19 20 21 22 23 24 25 26 27 28	175	1) Severity on admission
	176	Severity on admission was converted into bivariate variables: severe and non-severe. Cases
	177	met at least one of the following criteria were categorized as severe: (1) requiring invasive or
	178	non-invasive mechanical ventilation, (2) requiring supplemental oxygen, (3) SpO ₂ \leq 94% in
29 30 31	179	room air, or (4) tachypnea with respiratory rate (RR) \leq 24 breaths per minute ¹⁷ . Those who did
32 33 34	180	not meet the aforementioned were classified as non-severe.
35 36 37	181	2) Worst severity
 38 39 40 41 42 43 44 45 46 	182	The worst severity was grouped into three categories: no-oxygen, oxygen, and IMV/ECMO.
	183	The worst state during hospitalization was adopted on categorization, and each was defined as
	184	follows:
47 48 49	185	No-oxygen—No requirement of supplemental oxygen throughout hospitalization.
50 51 52	186	Oxygen—Required supplemental oxygen (including high-flow oxygen devices) or non-
53 54 55	187	invasive mechanical ventilation during hospitalization.
56 57 58	188	IMV/ECMO—Required invasive mechanical ventilation or extracorporeal membrane
59 60		

BMJ Open

1 2		
3 4		
5		
6 7	189	oxygenation during hospitalization.
8		
9 10	190	
11		
12 13	191	Statistical analysis
14 15		
15 16	192	Continuous variables are presented in median and interquartile range (IQR) and
17 18		
18	193	categorical variables in number of cases and percentages. We classified the disease progression
20		
21 22	194	into three stages: severity on admission, worst severity, and clinical outcomes. We used Mann-
23		
24 25	195	Whitney U tests (for two groups) or Kruskal-Wallis tests (for three groups) for continuous
26 27		
27 28	196	variables and chi-squared tests for categorical variables.
29		
30 31	197	We conducted univariate analyses and a multivariable logistic regression analysis to
32		
33 34	198	identify the factors associated with the patients' severity on admission. We included age, sex,
35 36		
30 37	199	comorbidities (CVD, cerebrovascular disease, CRD, asthma, liver disease, diabetes, obesity
38 39		
40	200	diagnosed by physicians, renal disease or dialysis, solid tumors, leukemia, lymphoma,
41 42		
42	201	hypertension, and hyperlipidemia), use of systemic steroids in the past month, chemotherapy in
44 45		
46	202	the past three months, and use of immunosuppressants other than steroids as independent
47 48		
49	203	variables. As for univariate analysis, we conducted logistic regression analysis about days
50 51		
52	204	between onset and admission and age. As for multivariate analysis, multicollinearity was
53 54		
55	205	evaluated using the variance inflation factor (VIF). Variables of $VIF > 3$ were excluded from
56 57	222	
58	206	the model; however, no variables demonstrated obvious multicollinearity. The variables
59 60		

Page 14 of 62

BMJ Open

207	included in the model were chosen based on the previous findings ¹⁸⁻²⁰ , and expert opinions.
208	R version 3.6.3 (R core team, 2020) ²¹ was used for all the analyses performed in this
209	study.
210	
211	Ethics
212	The National Center for Global Health and Medicine ethics board approved this study (referral
213	number NCGM-G-003494-08), and waived the need for informed consent from individual
214	patients owing to the non-invasive, non-interventional nature of this observational study
215	according to the local Ethical Guidelines ²² . Information regarding opting out of our study is
216	available on the COVIREGI-JP website (https://covid-registry.ncgm.go.jp/). Although it is not
217	mandatory, the study is also being registered on trial registration website (Unique ID:
218	UMIN000039873, https://upload.umin.ac.jp/cgi-open-
219	bin/ctr_e/ctr_view.cgi?recptno=R000045453).
220	
221	Results
222	Within the study period, 3,829 cases were identified and 3,376 cases from 299
223	facilities were included in this study. Of them, 2,199 cases (65.1%) were non-severe, and 1,181
224	cases (34.9%) were severe at the time of admission. After categorizing the two groups further

2 3		
4		
5 6 7 8	225	into no-oxygen, oxygen, and IMV/ECMO by worst severity, compositions were 1,758 (81.5 %),
9 10 11	226	357 (16.5%), and 43 (2.0%) for the non-severe group and 190 (16.1%), 677 (57.5%), and 311
12 13 14	227	(26.4%) for the severe group, respectively. While categorizing the cases, 44 (1.3%) were
15 16 17	228	unavailable due to missing values.
18 19 20	229	Demographics and clinical characteristics of the study population are shown in Table
20 21 22 23	230	1. Days between onset and admission were similar in both groups (non-severe 6.0 vs severe 7.0
23 24 25 26	231	days). Over ten times as many severe cases on admission underwent IMV/ECMO than non-
20 27 28 29	232	severe cases (2.0% vs 26.4%). Severe cases were older (50.0 vs 67.0), had higher BMI (22.9 vs
30 31	233	24.1), greater male dominance (56.3% vs 70.5%), and a higher prevalence of comorbidities
32 33 34	234	excluding leukemia, compared to the non-severe group. The most prevalent symptoms in both
35 36 37	235	groups were fever (non-severe 49.5%, severe 73.7%), cough (non-severe 53.8%, severe 64.9%),
38 39 40	236	and fatigue (non-severe 40.3%, 59.9%), but was greater in the severe group. Conversely,
41 42 43	237	prevalence of dysgeusia (25.9% vs 13.2%), dysosmia (22.6% vs 11.5%), headache (18.1% vs
44 45 46	238	14.7%), and runny nose (11.9% vs 8.9%) was higher in the non-severe group.
47 48 49	239	Results of univariate analyses about factors associated with being severe cases on
50 51 52	240	admission was described in Table 2-a. In most variables, univariate analysis showed similar
53 54 55	241	results compared with the multivariate analysis. Results of the multivariate logistic regression to
56 57 58 59 60	242	determine the risk of severity on admission are shown in Table 2-b. Older age (OR 1.04 [1.03—

BMJ Open

Page 16 of 62

2	
2	
4 5	
6	
7	
8	
9 10	
11	
12	
13	
14	
16	
17	
18	
20	
21	
22	
23 24	
25	
26	
27 29	
20 29	
30	
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 37\\ 38\end{array}$	
32 33	
34	
35	
36 37	
38	
39	
40 41	
42	
43	
44 45	
46	
47	
48 49	
49 50	
51	
52 53	
53 54	
55	
56	
57 58	
58 59	
60	

243	1.04]) and male (OR 2.09 [1.76-2.48]) were considered a risk among the demographics and
244	comorbidities included CVD (OR 1.48 [1.04-2.10]), respiratory disease (OR 2.51 [1.67-
245	3.78]), diabetes (OR 1.34 [1.09—1.64]), obesity (OR 1.75 [1.26—2.45]), and hypertension (OR
246	1.33 [1.08—1.64]). Days between onset to admission were non-significant ($p = 0.960$); the
247	timing of admission did not affect the severity on admission. Cerebrovascular disease and
248	hyperlipidemia were not associated with the severity at admission after other confounding
249	factors were considered, although they showed different results in univariate analyses.
250	Table 3 depicts the study population from a different angle and is categorized by the
251	worst severity (n=3,336) and fatality (n=3,376). Oxygen and IMV/ECMO cases were
252	predominantly severe at admission (65.5% and 87.9%, respectively), whereas most no-oxygen
253	cases come from non-severe group (90.2%). Prevalence of comorbidities was lowest in no-
254	oxygen cases; however, prominent difference was not observed for asthma. Similarly, fatal
255	cases were more severe at admission (84.0% vs 31.1%) and had higher prevalence of oxygen
256	and IMV/ECMO cases (oxygen: 56.4% vs 29.0%, IMV/ECMO: 41.9% vs 8.2%, respectively).
257	Days between onset and admission was longer in non-fatal cases (5-days vs 7-days).
258	More non-severe cases with any comorbidity underwent treatment with oxygen or
259	IMV/ECMO compared to non-severe cases with no comorbidities. In figure 1, only 11.9%
260	underwent oxygen therapy or IMV/ECMO in non-severe cases without any comorbidities.

2	
2	
5	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 37 38 37 38 37 38 37 38 39 31 32 33 34 37 38 37 38 37 38	
23	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
74	
55	
56	
57	
58	
59	
60	

261	However, among the non-severe cases with comorbidity, the rates of oxygen or IMV/ECMO
262	were higher in most comorbidities, including CVD (34.7%), CRD (38.9%), liver disease
263	(36.7%), diabetes (35.1%), obesity (35.8%), cerebrovascular disease (34.7%), renal disease
264	(40.9%), solid tumor (27.3%), hypertension (31.2%), and hyperlipidemia (25.0%). Asthma
265	alone followed a different trend; the chances of oxygen and IMV/ECMO requirement was
266	lower.
267	Among the cases without comorbidity, 75.2% of cases that were severe on admission
268	required oxygen or IMV/ECMO; however, the fatality rate was low, and only 8.0% resulted in
269	death (Figure 2). Fatality rates were approximately 3—5 times higher when the following
270	comorbidities were present: renal disease or dialysis (44%), CVD (40.5%), cerebrovascular
271	disease (39.5%), CRD (30.4%), solid tumor (30.4%), diabetes (25.8%), and liver disease
272	(25.6%). Even among non-severe cases, relatively high fatality rate was observed in cases with
273	solid tumor, CRD, cerebrovascular disease, CVD, and renal disease or dialysis, with fatality
274	rates ranging from 8.1% to 11.1%. Collectively, obesity, hypertension, and hyperlipidemia
275	influenced the worst severity; however, their influence on fatality was relatively lower than that
276	mentioned earlier.
277	Older age was relevant to both worst severity and fatality, as shown in supplemental
278	figures 1 and 2. The combined proportion of oxygen and IMV/ECMO increased gradually by

279	age from 5.3% in 20s to 69.3% in \geq 80s. Conversely, the fatality rate leaped between 60s (2.2%)
280	and 70s (8.6%). Likewise, supplemental figure 3 shows the combined proportion of oxygen and
281	IMV/ECMO and fatality rates as higher in older individuals, irrespective of underlying
282	comorbidities.
283	Predominant comorbid cases required more drug administration than those without
284	comorbidities (Supplementary Table 1). Systemic steroids were most frequently used in cases
285	with CRD (27.9%). Heparin was used most often in renal disease (12.8%), hypertension
286	(11.2%), diabetes (10.9%), and CVD (10.4%).
287	
288	Discussion
289	We took disease progression into consideration and evaluated the study population
290	based on severity on admission, worst severity, and the outcome. To our knowledge, studies
291	have predominantly reported worst severity, whereas disease progression has not been
292	considered. Our findings, therefore, are novel, augmenting the evidence needed to depict the
293	clinical course and trajectory from onset to worsening condition. Specifically, this study
294	segregated the comorbidities influencing severity and death. Based on our findings, it may be
295	possible that the early severity, worst severity, and death are propelled by different factors,
296	whilst confirmation is necessary by multivariate analysis.
	280 281 282 283 284 285 286 287 288 289 289 290 291 291 291 291 291 291 291 291

3 4		
5 6 7 8	297	The majority of comorbidities we studied did not influence severity on admission. On
9 10	298	admission, severity was driven by age, sex, CVD, CRD, diabetes, obesity, and hypertension.
11 12 13	299	The trend was similar for the worst severity, as cases with these factors had higher rate of
14 15 16	300	oxygen or IMV/ECMO. However, all comorbidities appeared to influence the worst severity.
17 18 19	301	Within the comorbidities, the prognosis of cases with obesity, hypertension, or
20 21 22	302	hyperlipidemia was relatively favorable. In contrast to our results, hypertension and obesity are
23 24 25	303	reportedly related to an increased risk of severity and mortality ²³⁻²⁶ . A large cohort reported a
26 27 28	304	trend similar to our results ¹⁸ , whereas other studies reported that obesity is being confounded by
29 30 31	305	age and sex ^{27,28} . The presence of hypertension and the use of angiotensin-converting enzyme
32 33 34	306	(ACE) inhibitors and angiotensin II receptor blockers act contrarily ²⁹⁻³¹ while ACE2 mediates
35 36 37	307	the entry of SARS-CoV-2 into host cells ^{32,33} ; thus, COVID-19 pathophysiology in hypertensive
38 39 40	308	patients become intricate.
41 42 43	309	In accordance with previous studies, CVD, CRD, liver disease, diabetes,
44 45 46	310	cerebrovascular disease, renal disease or dialysis, and solid tumor were associated with to
47 48 49	311	fatality and worst severity. Two meta-analyses have reported common risk factors for worst
50 51 52	312	severity during hospitalization, which include, diabetes, COPD, malignancy, CVD, and
53 54 55	313	cerebrovascular disease ^{34,35} . Other studies have also reported chronic liver disease and renal
56 57 58 59 60	314	disease as risk factors ³⁶⁻³⁸ . Studies have elucidated that acute respiratory distress syndrome and

Page 20 of 62

BMJ Open

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
20	
∠ I วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

315	coagulation dysfunction are related to the renin-angiotensin-aldosterone system and blood
316	coagulation pathways, which are altered by SARS-CoV-2 host cell invasion via ACE2 ³⁹⁻⁴¹ .
317	Clinical and non-clinical studies revealed an association between these comorbidities; while
318	SARS-CoV-2 infection decreases ACE2 expression, ACE2 deficiency is reported to cause
319	cardiac overload and kidney inflammation ⁴¹⁻⁴⁴ . Elevated blood glucose is also associated with
320	mortality ⁴⁵ . Although risk factors vary among studies, the comorbidities we identified are highly
321	likely associated with fatality, backed up by clinical and non-clinical results.
322	Different trends were seen in the rates of IMV/ECMO and death for each comorbidity.
323	Although rates of IMV/ECMO were comparable in all comorbid cases, those with obesity,
324	asthma, hyperlipidemia, and hypertension showed a lower fatality rate, suggesting that the
325	fatality rates within the IMV/ECMO cases with these comorbidities were lower than expected.
326	Contrarily, fatality rates in cases with CVD, cerebrovascular disease, renal dysfunction, tumor,
327	and CRD were comparable or higher than IMV/ECMO rates. The number of death actually
328	exceeded the number of IMV/ECMO cases in patients with tumor, cerebrovascular disease, or
329	CVD. These comorbidities likely have caused a higher risk of death and some even died without
330	intubation. Healthcare nearly overwhelmed in the first wave in Japan but ICU capacity was
331	maintained ⁴⁶ , and thus intubation may have been unperformed due to a medical judgment. A
332	detailed examination of these issues is necessary in the future.

2 3		
4 5		
6 7 8	333	Our results did not show prominent difference in fatality between males and females.
9 10	334	Oftentimes, males are considered to develop severe conditions and increased fatality ^{37,38,47-49} .
11 12 13	335	However, according to Global Health 5050, sexual disparity in incidence of COVID-19 is low ⁵⁰ .
14 15 16	336	Additionally, ACE2 expression is affected by sexual hormones, whereby higher expression is
17 18 19	337	observed in men, possibly explaining the sexual disparity ⁵¹⁻⁵³ . Moreover, the immunological
20 21 22	338	response to produce antibodies is more favorable in females ⁵⁴ . These studies support the
23 24 25	339	rationale that males are more susceptible to severe COVID-19, which contravene our results.
26 27 28	340	The lower-than-expected fatality rate in our male population may be attributed to comorbidity
29 30 31	341	prevalence, treatments, age, and/or degree of obesity.
32 33 34	342	Fatality rates were comparable between asthmatic and cases without comorbidities in
35 36 37	343	our results. Theoretically, COVID-19 can be a risk for asthmatic patients. A viral respiratory
38 39 40	344	infection is presented as relatively worse and causes asthma exacerbation ^{55,56} . Asthmatic
41 42 43	345	patients reportedly require a longer duration of mechanical ventilation when intubated ⁵⁷ ;
44 45 46	346	however, no study, including ours, has found strong evidence on severity or mortality ⁵⁸⁻⁶¹ .
47 48 49	347	Inhaled corticosteroids (ICS) are known to downregulate ACE2 ^{62,63} and are being investigated
50 51 52	348	for treating COVID-1964. ICS may have impeded aggravation in asthmatic patients with
53 54 55	349	COVID-1965. Overall, further studies are needed to elucidate the true risk of asthma on COVID-
56 57 58 59 60	350	19.

Page 22 of 62

BMJ Open

1

1 2		
3 4		
5 6 7	351	The variability in the risk factors may be explained by the differences in study
8 9 10	352	population, definition for comorbidities, and ethnicity. First, the rate of comorbid patients had
11 12 13 14	353	been lower in our cohort as suggested by extensive cohort studies ^{19,20,66} . The degree of obesity
14 15 16 17	354	may also have been milder, as the average BMI is lower in the Asia-Pacific region than in other
17 18 19 20	355	global regions ⁶⁷ . Secondly, obesity was judged by a physician in our study, and the results may
20 21 22 23	356	change if BMI was incorporated. Ethnic differences due to genetic properties are also plausible.
24 25 26	357	Individuals with stronger binding affinities of human leukocyte antigen (HLA) proteins to
20 27 28 29	358	SARS-CoV-2 virus peptides are less likely become severe or fatal ⁶⁸⁻⁷¹ , and ethnic differences
30 31 32	359	are present in HLA allele frequency ⁷² . A few strong binder alleles were more frequent in
33 34 35	360	Northeast Asians; however, the complete picture is complicated. ACE1 polymorphism ⁷³ and
36 37 38	361	Neanderthal haplotype ⁷⁴ were also suggestive of lower risk of COVID-19 among Asians and
39 40 41	362	East Asians, respectively. Additionally, ethnic differences other than genetic traits are also
42 43 44	363	anticipated. Vitamin D deficiency is postulated to increase COVID-19 severity, whereas vitamin
45 46 47	364	D deficiency is correlated to Northern latitude ⁷⁵ . Within the elderly population, higher rates of
48 49 50	365	deficiencies were observed in North America and Europe compared to Japan ⁷⁶ . Although our
51 52 53	366	study did not examine vitamin D, these facts also allow us to expect lower severity and fatality
54 55 56	367	in Japan.
57 58 59	368	The period of when the COVID-19 occurred, and the situation of pandemic and

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
42 43	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

369	healthcare provision should also be noted when discussing severity and fatality. The longer our
370	struggle against COVID-19 pandemic becomes, the more complicated interpretation be required
371	due to chronological, regional, and viral transition. In the two pandemic waves of COVID-19 in
372	Japan, the patient population altered; median age, rates of comorbidities, and fatality rate had
373	become smaller in the second than the first ⁷⁷ . Similar trend was observed in other countries ^{78,79} .
374	These differences might be explained, at least partially, by the timing of drug approval for
375	remdesivir (approved in May, 2020) and newly revealed efficacy of dexamethasone against
376	COVID-19 in June. Our dataset includes nationwide data during the first wave, and articles
377	referred elsewhere for comparison included data from a period close to ours.
378	Our results could be useful to roughly identify those at a risk of aggravation or death.
379	Days from onset to admission was not a risk factor; early hospitalization will not influence the
380	disease progression or outcome, and severity on admission was mostly driven by age and the
381	presence of a few comorbidities. Several studies have created a scoring system to predict the
382	risk of severity or mortality ⁸⁰⁻⁸² . However, these utilize laboratory data collected on admission
383	and are seldom practical for estimating the severity of illness prior to medical visits or when test
384	results are not promptly available. While these are useful to predict prognosis more precisely,
385	our results are useful from a public health perspective, as they provide risk factors for predicting
386	the severity on admission and disease progression from patients' background factors.

BMJ Open

1

1 2		
3		
4 5		
6 7	387	Our study has several limitations. Although the definition of severe and non-severe
8 9 10 11	388	was adopted from a previous study ¹⁷ , such definition is not common as worst severity is used
12 13	389	frequently or otherwise point of evaluation is unspecified. Our categorization of worst severity
14 15 16 17	390	also differs from other definitions ^{83,84} . We did not adopt radiological criteria as lung infiltration
18 19 20	391	rate was not collected in the registry where our dataset was extracted. Ratio of arterial oxygen
21 22 23	392	saturation (SaO2) or arterial partial oxygen pressure (PaO2) to the fraction of inspired oxygen
24 25	393	(FiO2) was not utilized as data was available for limited number of cases. This fact may have
26 27 28	394	caused differences in risk factors. We did not consider treatments prior to and during
29 30 31	395	hospitalization nor did we incorporate laboratory test results in the analysis which may be
32 33 34 35	396	persisting as confounders. As our data were collected from hundreds of healthcare facilities,
36 37 38	397	treatment type, dosage, duration, and combination varied immensely; laboratory tests also
39 40 41	398	varied as reporting units and standard reference ranges were different across facilities.
42 43	399	Treatments may be confounding also in terms of drug approval, as explained elsewhere.
44 45 46	400	Thorough data verification and analytical deliberation is required before usage of these data;
47 48 49	401	thus, we did not include it in the current analysis. Moreover, hotels were utilized as isolation
50 51 52	402	facilities from April 2020, and participant selection might have altered thereafter. COVIREGI-
53 54 55	403	JP is continuously open for new entry; the number of registrations is increasing, and subsequent
56 57 58 59	404	results may vary from ours.
60		

2 3		
4		
5 6 7	405	
8 9 10 11	406	Conclusion
12 13 14	407	On admission, factors that influence severity were age, sex, and comorbidities,
15 16 17	408	including CVD, CRD, diabetes, obesity, and hypertension. Risk factors for severity on
18 19 20	409	admission, worst severity, and fatality were not consistent, and it is likely that they are each
21 22 23	410	propelled by different factors. Our results are practically useful for predicting the progression
24 25 26	411	and preparing for the worst, based on patients' backgrounds. Moreover, based on our
27 28 29	412	predictions, healthcare resources can be allocated to patients in the most suitable way.
30 31 32	413	
33 34 35	414	Acknowledgments
36 37 38	415	We thank all the participating facilities for their care towards COVID-19 patients and
39 40 41	416	cooperation during data entry. We are especially grateful for the 299 facilities that contributed
42 43 44	417	to the dataset used in this study.
45 46 47	418	
48 49 50	419	Contributorship statement
51 52 53	420	MT conceived and HO, SS, KH, ST and MT designed the study. ST, YA, SS, KH, and
54 55 56	421	MT analyzed and interpreted the data. MT and ST drafted the first version of the manuscript.
57 58 59 60	422	All the authors including NM, SK, SW, NO, and those stated above contributed to, read, and

BMJ Open

423	approved the final manuscript. The corresponding author attests that all listed authors meet
424	authorship criteria and that no others meeting the criteria have been omitted. SS is the guarantor.
425	
426	Funding
427	This study was funded by Health and Labor Sciences Research Grant, "Research for
428	risk assessment and implementation of crisis management functions for emerging and re-
429	emerging infectious diseases", provided by the Japanese Ministry of Health, Labour, and
430	Welfare (grand number 19HA1003). The funding agency did not assume any role in this study
431	or COVIREGI-JP.
432	
433	or COVIREGI-JP. Competing Interests
434	All authors have completed the ICMJE uniform disclosure form at
435	www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the
436	submitted work; H.O. reports personal fees as a statistician and as an external consultant for
437	clinical trials from EPS International, outside the submitted work; no other relationships or
438	activities that could appear to have influenced the submitted work.
439	
440	Transparency Statement

441	The corresponding author affirms that this manuscript is an honest, accurate, and
442	transparent account of the study being reported; that no important aspects of the study have been
443	omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have
444	been explained.
445	
446	Data sharing
447	Data on an individual level is shared with limitation to participating healthcare
448	facilities through applications to COVIREGI-JP.
449	
450	
450	Dissemination to participants and related patients and public communities
451	The study results will be showed with all the health are facilities which mentions to d
451	The study results will be shared with all the healthcare facilities which participated
450	and registered data in COVIREGI-JP. It will also be shared with the public on the website.
452	
453	
755	
	442

Reference

1. World Health Organization. Coronavirus disease (COVID-19) pandemic.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed October 3,

- Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30;:].
 Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
- Our World in Data. Japan: Coronavirus Pandemic Country Profile.
 https://ourworldindata.org/coronavirus/country/japan?country=~JPN. Accessed October 3, 2020.
- Fan G, Yang Z, Lin Q, Zhao S, Yang L, He D. Decreased Case Fatality Rate of COVID-19 in the Second Wave: A study in 53 countries or regions [published online ahead of print, 2020 Sep 6]. Transbound Emerg Dis. 2020;10.1111/tbed.13819. doi:10.1111/tbed.13819
- Bruni T, Lalvani A, Richeldi L. Telemedicine-enabled Accelerated Discharge of Patients Hospitalized with COVID-19 to Isolation in Repurposed Hotel Rooms. Am J Respir Crit Care Med. 2020;202(4):508-510. doi:10.1164/rccm.202004-12380E
- Fenton ME, Wasko K, Behl V, Froh J, Schmalenberg M. An Expanded COVID-19
 Telemedicine Intermediate Care Model Utilizing Repurposed Hotel Rooms [published

2		BMJ Open		
		online ahead of print, 2020 Aug 13]. Am J Respir Crit Care Med.		
		2020;10.1164/rccm.202007-2902LE. doi:10.1164/rccm.202007-2902LE		
	7.	Ramírez-Cervantes KL, Romero-Pardo V, Pérez-Tovar C, Martínez-Alés G, Quintana-Diaz		
		M. A medicalized hotel as a public health resource for the containment of Covid-19: more		
		than a place for quarantining [published online ahead of print, 2020 Aug 10]. J Public		
		Health (Oxf). 2020;fdaa129. doi:10.1093/pubmed/fdaa129		
	8.	Hayasaki E. Covid-19: how Japan squandered its early jump on the pandemic. BMJ.		
		2020;369:m1625. Published 2020 Apr 24. doi:10.1136/bmj.m1625		
	9.	Matsunaga N, Hayakawa K, Terada M, et al. Clinical epidemiology of hospitalized patients		
		with COVID-19 in Japan: Report of the COVID-19 REGISTRY JAPAN [published online		
		ahead of print, 2020 Sep 28]. Clin Infect Dis. 2020;ciaa1470. doi:10.1093/cid/ciaa1470		
	10.	Duan J, Wang X, Chi J, et al. Correlation between the variables collected at admission and		
		progression to severe cases during hospitalization among patients with COVID-19 in		
		Chongqing [published online ahead of print, 2020 May 29]. J Med Virol.		
		2020;10.1002/jmv.26082. doi:10.1002/jmv.26082		
	11.	International Severe Acute Respiratory and Emerging Infection Consortium ISARIC).		
		COVID-19 Clinical Research Resources. https://isaric.tghn.org/covid-19-clinical-research-		
		resources/. Accessed October 3, 2020.		

12. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-381.

doi:10.1016/j.jbi.2008.08.010

 Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208.

doi:10.1016/j.jbi.2019.103208

- Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-383. doi:10.1016/0021-9681(87)90171-8
- Schneeweiss S, Wang PS, Avorn J, Glynn RJ. Improved comorbidity adjustment for predicting mortality in Medicare populations. Health Serv Res. 2003;38(4):1103-1120. doi:10.1111/1475-6773.00165
- Ministry of Health, Labour, and Welfare. Fatality and Severity risk factor of COVID-19 (Article in Japanese). https://www.mhlw.go.jp/content/10900000/000662183.pdf. Accessed October 3, 2020.
- Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 Final Report [published online ahead of print, 2020 Oct 8]. N Engl J Med.

	2020;NEJMoa2007764. doi:10.1056/NEJMoa2007764
18.	Fried MW, Crawford JM, Mospan AR, et al. Patient Characteristics and Outcomes of
	11,721 Patients with COVID19 Hospitalized Across the United States [published online
	ahead of print, 2020 Aug 28]. Clin Infect Dis. 2020;ciaa1268. doi:10.1093/cid/ciaa1268
19.	Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and
	outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an
	observational study. Lancet Respir Med. 2020;8(9):853-862. doi:10.1016/S2213-
	2600(20)30316-7
20.	Kalyanaraman Marcello R, Dolle J, Grami S, et al. Characteristics and outcomes of
	COVID-19 patients in New York City's public hospital system. PLoS One.
	2020;15(12):e0243027. Published 2020 Dec 17. doi:10.1371/journal.pone.0243027

- R Core Team (2020). R: A language and environment for statistical computing. R
 Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- 22. Ministry of Education, Culture, Sports, Science and Technology, Ministry of Health, Labour and Welfare. Ethical Guidelines for Medical Research Involving Human Subjects (Provisional translation). https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf. Accessed October 26, 2020.
- 23. Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19.

Meta-analysis. Obes Res Clin Pract. 2020;14(4):295-300. doi:10.1016/j.orcp.2020.07.002
24. de Siqueira JVV, Almeida LG, Zica BO, Brum IB, Barceló A, de Siqueira Galil AG. Impact of obesity on hospitalizations and mortality, due to COVID-19: A systematic review [published online ahead of print, 2020 Jul 23]. Obes Res Clin Pract. 2020;S1871-403X(20)30553-6. doi:10.1016/j.orcp.2020.07.005
25. Pranata R, Lim MA, Huang I, Raharjo SB, Lukito AA. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: A systematic review,

meta-analysis and meta-regression. J Renin Angiotensin Aldosterone Syst.

2020;21(2):1470320320926899. doi:10.1177/1470320320926899

- 26. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020;130(4):304-309. doi:10.20452/pamw.15272
- Tartof SY, Qian L, Hong V, Wei R, Nadjafi RF, Fischer H, Li Z, Shaw SF, Caparosa SL, Nau CL, Saxena T, Rieg GK, Ackerson BK, Sharp AL, Skarbinski J, Naik TK, Murali SB. Obesity and Mortality Among Patients Diagnosed With COVID-19: Results From an Integrated Health Care Organization. Ann Intern Med. 2020 Aug 12:M20-3742. doi: 10.7326/M20-3742. Epub ahead of print. PMID: 32783686; PMCID: PMC7429998.
 Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

	are independently associated with worse in-hospital outcomes, and higher in-hospital
	mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism.
	2020;108:154262. doi:10.1016/j.metabol.2020.154262
29.	Tikellis C, Bernardi S, Burns WC. Angiotensin-converting enzyme 2 is a key modulator of
	the renin-angiotensin system in cardiovascular and renal disease. Curr Opin Nephrol
	Hypertens. 2011;20(1):62-68. doi:10.1097/MNH.0b013e328341164a
30.	Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at
	increased risk for COVID-19 infection? [published correction appears in Lancet Respir
	Med. 2020 Jun;8(6):e54]. Lancet Respir Med. 2020;8(4):e21. doi:10.1016/S2213-
	2600(20)30116-8
31.	Yang G, Tan Z, Zhou L, et al. Effects of Angiotensin II Receptor Blockers and ACE
	(Angiotensin-Converting Enzyme) Inhibitors on Virus Infection, Inflammatory Status, and
	Clinical Outcomes in Patients With COVID-19 and Hypertension: A Single-Center
	Retrospective Study. Hypertension. 2020;76(1):51-58.
	doi:10.1161/HYPERTENSIONAHA.120.15143
32.	Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new

020-2012-7

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi:10.1038/s41586-

33. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. doi:10.1016/j.cell.2020.02.052 34. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY). 2020;12(7):6049-6057. doi:10.18632/aging.103000 35. Fang X, Li S, Yu H, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging (Albany NY). 2020;12(13):12493-12503. doi:10.18632/aging.103579 36. Zhou Y, He Y, Yang H, et al. Development and validation a nomogram for predicting the risk of severe COVID-19: A multi-center study in Sichuan, China. PLoS One. 2020;15(5):e0233328. Published 2020 May 18. doi:10.1371/journal.pone.0233328 37. Patel U, Malik P, Usman MS, et al. Age-Adjusted Risk Factors Associated with Mortality and Mechanical Ventilation Utilization Amongst COVID-19 Hospitalizations-a Systematic Review and Meta-Analysis [published online ahead of print, 2020 Aug 29]. SN Compr Clin

Med. 2020;1-10. doi:10.1007/s42399-020-00476-w

38. Harrison SL, Fazio-Eynullayeva E, Lane DA, Underhill P, Lip GYH. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A

39.

1

BMJ Open

3		
4		
5		
6 7		
7 8		
9		
10		
11		
12		
13 14		
15		
16		
17		
18 10		
19 20		
21		
22		
23		
24 25		
26		
27		
28		
29 30		
31		
32		
33		
34 25		
35 36		
37		
38		
39		
40 41		
42		
43		
44		
45 46		
40 47		
48		
49		
50 51		
51 52		
53		
54		
55		
56 57		
57 58		
59		
60		

federated electronic medical record analysis. PLoS Med. 2020;17(9):e1003321. Published
2020 Sep 10. doi:10.1371/journal.pmed.1003321
Lazzaroni MG, Piantoni S, Masneri S, et al. Coagulation dysfunction in COVID-19: The
interplay between inflammation, viral infection and the coagulation system [published

online ahead of print, 2020 Aug 24]. Blood Rev. 2020;100745.

doi:10.1016/j.blre.2020.100745

- 40. Sathler PC. Hemostatic abnormalities in COVID-19: A guided review. An Acad Bras Cienc. 2020;92(4):e20200834. doi:10.1590/0001-3765202020200834
- Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-879.

doi:10.1038/nm1267

- Oudit GY, Kassiri Z, Patel MP, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res. 2007;75(1):29-39. doi:10.1016/j.cardiores.2007.04.007
- 43. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822-828. doi:10.1038/nature00786
- 44. Liu Z, Huang XR, Chen HY, Penninger JM, Lan HY. Loss of angiotensin-converting enzyme 2 enhances TGF-β/Smad-mediated renal fibrosis and NF-κB-driven renal

inflammation in a mouse model of obstructive nephropathy. Lab Invest. 2012;92(5):650-661. doi:10.1038/labinvest.2012.2

- 45. Wu J, Huang J, Zhu G, et al. Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study. BMJ Open Diabetes Res Care. 2020;8(1):e001476. doi:10.1136/bmjdrc-2020-001476
- 46. Fujii Y, Hirota K. Critical care demand and intensive care supply for patients in japan with covid-19 at the time of the state of emergency declaration in april 2020: a descriptive analysis. Medicina. 2020;56(10):530.
- 47. Xu L, Mao Y, Chen G. Risk factors for 2019 novel coronavirus disease (COVID-19) patients progressing to critical illness: a systematic review and meta-analysis. Aging (Albany NY). 2020;12(12):12410-12421. doi:10.18632/aging.103383
- Zhao J, Li X, Gao Y, Huang W. Risk factors for the exacerbation of patients with 2019 Novel Coronavirus: A meta-analysis. Int J Med Sci. 2020;17(12):1744-1750. Published 2020 Jul 6. doi:10.7150/ijms.47052
- Yu C, Lei Q, Li W, et al. Clinical Characteristics, Associated Factors, and Predicting COVID-19 Mortality Risk: A Retrospective Study in Wuhan, China. Am J Prev Med. 2020;59(2):168-175. doi:10.1016/j.amepre.2020.05.002
- 50. Global Health 5050. The COVID-19 Sex-Disaggregated Data Tracker. 2020.

BMJ Open

https://globalhealth5050.org/the-sex-gender-and-covid-19-project/. Accessed October 3, 2020.

 Gupte M, Thatcher SE, Boustany-Kari CM, et al. Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice. Arterioscler Thromb Vasc Biol. 2012;32(6):1392-1399.

doi:10.1161/ATVBAHA.112.248559

- 52. Zhou X, Zhang P, Liang T, Chen Y, Liu D, Yu H. Relationship between circulating levels of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis and coronary heart disease. Heart Vessels. 2020;35(2):153-161. doi:10.1007/s00380-019-01478-y
- 53. Liu J, Ji H, Zheng W, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ. 2010;1(1):6. Published 2010 Nov 5. doi:10.1186/2042-6410-1-6
- Cook IF. Sexual dimorphism of humoral immunity with human vaccines. Vaccine.
 2008;26(29-30):3551-3555. doi:10.1016/j.vaccine.2008.04.054
- 55. Zheng XY, Xu YJ, Guan WJ, Lin LF. Regional, age and respiratory-secretion-specific prevalence of respiratory viruses associated with asthma exacerbation: a literature review. Arch Virol. 2018;163(4):845-853. doi:10.1007/s00705-017-3700-y
- 56. Papadopoulos NG, Christodoulou I, Rohde G, et al. Viruses and bacteria in acute asthma

exacerbations--a GA² LEN-DARE systematic review. Allergy. 2011;66(4):458-468. doi:10.1111/j.1398-9995.2010.02505.x 57. Mahdavinia M, Foster KJ, Jauregui E, et al. Asthma prolongs intubation in COVID-19. J Allergy Clin Immunol Pract. 2020;8(7):2388-2391. doi:10.1016/j.jaip.2020.05.006 58. Johnston SL. Asthma and COVID-19: Is asthma a risk factor for severe outcomes?. Allergy. 2020;75(7):1543-1545. doi:10.1111/all.14348 59. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110-118. doi:10.1016/j.jaci.2020.04.006 60. Liu S, Zhi Y, Ying S. COVID-19 and Asthma: Reflection During the Pandemic. Clin Rev Allergy Immunol. 2020;59(1):78-88. doi:10.1007/s12016-020-08797-3 61. Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One. 2020;15(8):e0238215. Published 2020 Aug 26. doi:10.1371/journal.pone.0238215 62. Kimura H, Francisco D, Conway M, et al. Type 2 inflammation modulates ACE2 and

TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020;146(1):80-88.e8.

doi:10.1016/j.jaci.2020.05.004

63.	Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma,
	and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol.
	2020;146(1):203-206.e3. doi:10.1016/j.jaci.2020.04.009
64.	Nicolau DV, Bafadhel M. Inhaled corticosteroids in virus pandemics: a treatment for
	COVID-19?. Lancet Respir Med. 2020;8(9):846-847. doi:10.1016/S2213-2600(20)30314-3
65.	Johnson RM, Vinetz JM. Dexamethasone in the management of covid-19. BMJ.
	2020;370:m2648. Published 2020 Jul 3. doi:10.1136/bmj.m2648
66.	Perez-Guzman PN, Daunt A, Mukherjee S, et al. Clinical Characteristics and Predictors of
	Outcomes of Hospitalized Patients With Coronavirus Disease 2019 in a Multiethnic
	London National Health Service Trust: A Retrospective Cohort Study. Clinical Infectious
	Diseases. 2020. doi:10.1093/cid/ciaa1091.
67.	NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200
	countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement
	studies with 19.2 million participants [published correction appears in Lancet. 2016 May
	14;387(10032):1998]. Lancet. 2016;387(10026):1377-1396. doi:10.1016/S0140-
	6736(16)30054-X
68.	Amoroso A, Magistroni P, Vespasiano F, et al. HLA and AB0 Polymorphisms May

Influence SARS-CoV-2 Infection and COVID-19 Severity. Transplantation.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2021;105(1):193-200. doi:10.1097/TP.000000000003507

 Novelli A, Andreani M, Biancolella M, et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. HLA. 2020;96(5):610-614.

doi:10.1111/tan.14047

- Lorente L, Martín MM, Franco A, et al. HLA genetic polymorphisms and prognosis of patients with COVID-19. Polimorfismos genéticos de los HLA y pronóstico de pacientes con COVID-19. Med Intensiva. 2021;45(2):96-103. doi:10.1016/j.medin.2020.08.004
- 71. Wang W, Zhang W, Zhang J, He J, Zhu F. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (COVID-19). HLA. 2020;96(2):194-196. doi:10.1111/tan.13941
- 72. Barquera R, Collen E, Di D, et al. Binding affinities of 438 HLA proteins to complete proteomes of seven pandemic viruses and distributions of strongest and weakest HLA peptide binders in populations worldwide. HLA. 2020;96(3):277-298. doi:10.1111/tan.13956
- Yamamoto N, Ariumi Y, Nishida N, et al. SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene. 2020;758:144944. doi:10.1016/j.gene.2020.144944
- 74. Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from

BMJ Open

Neanderthals. Nature. 2020;587(7835):610-612. doi:10.1038/s41586-020-2818-3

- 75. Rhodes JM, Subramanian S, Laird E, Griffin G, Kenny RA. Perspective: Vitamin D deficiency and COVID-19 severity plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J Intern Med. 2021;289(1):97-115. doi:10.1111/joim.13149
- Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem?. J Steroid Biochem Mol Biol. 2014;144 Pt A:138-145. doi:10.1016/j.jsbmb.2013.11.003
- 77. Saito S, Asai Y, Matsunaga N, et al. First and second COVID-19 waves in Japan: A comparison of disease severity and characteristics. J Infect. 2021;82(4):84-123. doi:10.1016/j.jinf.2020.10.033
- Ioannidis JPA, Axfors C, Contopoulos-Ioannidis DG. Second versus first wave of COVID-19 deaths: Shifts in age distribution and in nursing home fatalities. Environ Res. 2021;195:110856. doi:10.1016/j.envres.2021.110856
- 79. Jalali SF, Ghassemzadeh M, Mouodi S, Javanian M, Akbari Kani M, Ghadimi R, Bijani A. Epidemiologic comparison of the first and second waves of coronavirus disease in Babol, North of Iran. Caspian J Intern Med. 2020 Fall;11(Suppl 1):544-550. doi: 10.22088/cjim.11.0.544. PMID: 33425273; PMCID: PMC7780865.
- 80. Zhao Z, Chen A, Hou W, et al. Prediction model and risk scores of ICU admission and

mortality in COVID-19. PLoS One. 2020;15(7):e0236618. Published 2020 Jul 30. doi:10.1371/journal.pone.0236618

- Shang Y, Liu T, Wei Y, et al. Scoring systems for predicting mortality for severe patients with COVID-19. EClinicalMedicine. 2020;24:100426. Published 2020 Jul 3. doi:10.1016/j.eclinm.2020.100426
- 82. Dong Y, Zhou H, Li M, et al. A novel simple scoring model for predicting severity of patients with SARS-CoV-2 infection [published online ahead of print, 2020 May 29]. Transbound Emerg Dis. 2020;10.1111/tbed.13651. doi:10.1111/tbed.13651
- National Institute of Health. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/. Accessed April 8, 2021.
- 84. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648

	Non-severe (n=2196)	Severe (n=118
Fatal cases	39 (2)	204 (17)
Worst severity during hospitalization		
No oxygen	1796 (82)	192 (16)
Oxygen	357 (16)	678 (58)
IMV/ECMO ^a	43 (2)	310 (26)
Days between onset and admission	6 [4, 10]	7 [4, 10]
(median [IQR]) Age (median [IQR])	50 [35, 64]	67 [53, 78]
Male	1232 (56)	830 (71)
Ethnicity	2	
Japanese	2074 (94)	1135 (96)
Non-Japanese Asian	75 (3)	33 (3)
Others	29 (1)	8 (1)
Unknown	11 (1)	4 (0)
BMI (median [IQR])	22.9 [20.3, 25.7]	24.1 [21.5, 27.

Cardiovascular disease	62 (3)	121 (10)
Respiratory disease	36 (2)	104 (9)
Liver disease	49 (2)	39 (3)
Cerebrovascular disease	72 (3)	115 (10)
Asthma	102 (5)	64 (5)
Diabetes	262 (12)	300 (25)
Obesity	95 (4)	83 (7)
Severe renal disease or dialysis	22 (1)	25 (2)
Solid tumor	66 (3)	79 (7)
Leukemia	10 (1)	3 (0)
Lymphoma	16 (1)	9 (1)
Hypertension	292 (13)	331 (28)
Hyperlipidemia	176 (8)	157 (13)
Treatments prior to COVID-19		
Use of steroid in one month	6 (0)	10 (1)
Chemotherapy in three months	32 (2)	24 (2)
Immunosuppressants ^b use in three months	26 (1)	18 (2)
Symptoms on admission		

2 3 4			
5 6 7	Fever (≥37.5°C)	1078 (49)	862 (74)
8 9 10	Cough	1167 (54)	716 (65)
11 12 13 14	Sore throat	340 (17)	142 (16)
15 16 17	Runny nose	239 (12)	86 (9)
18 19 20	Chest pain	95 (5)	44 (5)
21 22 23	Myalgia	172 (9)	79 (9)
24 25 26	Headache	361 (18)	136 (15)
27 28 29	Confusion	21 (1)	68 (6)
30 31 32	Fatigue	834 (40)	595 (60)
33 34 35 36	Abdominal pain	60 (3)	24 (3)
37 38 39	Vomit	88 (4)	59 (6)
40 41 42	Diarrhea	251 (12)	164 (16)
43 44 45	Dysgeusia	494 (26)	113 (13)
46	Dysosmia ive mechanical ventilation/extracorpore	422 (23)	96 (12) genation
	ive meenamear ventilation/extracorport	cai memorane oxy	Schation

^bimmunosupprenssants other than steroids

Table 2-a. Factors associated with being "severe" at the time of admission (univariate

analysis)

		Odds ratio	95% CI ^a	P value
Days betw	een onset and admission	1.0	0.99-1.01	0.897
	Age	1.04	1.04-1.05	< 0.001
	Male	1.85	1.59-2.16	< 0.001
Comorbidities	6			
	Cardiovascular disease	3.93	2.84-5.48	< 0.001
	Cerebrovascular disease	3.18	2.33-4.38	< 0.001
	Chronic respiratory disease	5.80	3.90-8.78	< 0.001
	Asthma	1.18	0.84-1.64	0.318
	Liver disease	1.50	0.95-2.34	0.070
	Diabetes	2.52	2.08-3.04	< 0.001
(Dbesity diagnosed by physicians	1.67	1.22-2.29	0.001
	Severe renal disease or dialysis	2.14	1.15-4.00	0.013
	Solid tumor	2.32	1.63-3.29	< 0.001
	Leukemia	0.56	0.10-2.17	0.562
	Lymphoma	1.05	0.41-2.53	0.999

Hypertension	2.54	2.12-3.05	< 0.00
Hyperlipidemia	1.76	1.39-2.23	< 0.00
Freatments prior to COVID-19			
Use of steroid in one month	3.12	1.02-10.47	0.032
Chemotherapy in three months	1.40	0.79-2.47	0.258

^bimmunosupprenssants other than steroids

	Odds ratio	95% CI ^a	P val
Days between onset and admission	1.0	0.99-1.01	0.96
Age	1.04	1.03-1.04	< 0.0
Male	2.09	1.76-2.48	< 0.0
Comorbidities			
Cardiovascular disease	1.48	1.04-2.10	0.02
Cerebrovascular disease	1.33	0.95-1.85	0.09
Chronic respiratory disease	2.51	1.67-3.78	< 0.0
Asthma	1.24	0.87-1.77	0.24
Liver disease	0.97	0.61-1.54	0.89
Diabetes	1.34	1.09-1.64	0.00
Obesity diagnosed by physicians	1.75	1.26-2.45	0.00
Severe renal disease or dialysis	1.0	0.54-1.88	0.99
Solid tumor	1.20	0.82-1.77	0.35
Leukemia	0.34	0.08-1.39	0.13
Lymphoma	0.42	0.16-1.11	0.08
Hypertension	1.33	1.08-1.64	0.00

Hyperlipidemia	0.91	0.70-1.19	0.490
Treatments prior to COVID-19			
Use of steroid in one month	1.65	0.52-5.22	0.394
Chemotherapy in three months	1.47	0.72-3.0	0.286
Immunosuppressants ^b use in three months	1.35	0.69-2.64	0.384
^b immunosupprenssants other than steroids			

1
2
3
4
5
5 6 7 8 9 10 11 12
7
, o
0
y 10
10
11
12
13
14
12 13 14 15 16
16
17
17
16 17 18 19
19
20
21
22
20 21 22 23 24 25 26 27 28 29 30 31
24
25
26
27
∠/ 20
28
29
30
31
32
33
34 35
36
36 37
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

Table 3. Characteristics of patients stratified by non-fatal/fatal cases and severity during	
hospitalization	

	Non-fatal	Fatal	No-oxygen	Oxgen	IMV/ECMO ^a
	(n=3129)	(n=243)	(n=1988)	(n=1035)	(n=353)
Fatal cases			6 (0)	137 (13)	100 (28)
Severity on admission					
Non-severe	2155 (69)	39 (16)	1796 (90)	357 (35)	43 (12)
Severe	974 (31)	204 (84)	192 (10)	678 (66)	310 (88)
Worst severity during	0	4			
hospitalization	<				
No-oxygen	1980 (63)	6 (3)			
Oxygen	897 (29)	137 (56)			
IMV/ECMO	252 (8)	100 (41)			
Days between onset and			2		
admission (median	7 [4, 10]	5 [2, 8]	7 [4, 10]	6 [3, 9]	7 [5, 10]
[IQR])					
		0.0 [=1.0.5]		68 [53,	
Age (median [IQR])	54 [40, 68]	80 [71, 86]	48 [33, 61]	80]	65 [56, 74]
Male	1899 (61)	161 (66)	1083 (55)	694 (67)	285 (81)

Page 51 of 62

BMI (median [IQR])	23.3 [20.8, 26.3]	-		24.0 [21.5, 27.0]	24.8 [22.6, 27.8]
Cardiovascular disease	129 (4)	54 (22)	48 (2)	106 (10)	29 (8)
Respiratory disease	103 (3)	35 (14)	29 (2)	78 (8)	33 (9)
Liver disease	75 (2)	13 (5)	36 (2)	32 (3)	20 (6)
Cerebrovascular disease	135 (4)	51 (21)	57 (3)	105 (10)	25 (7)
Asthma	157 (5)	9 (4)	92 (5)	52 (5)	22 (6)
Diabetes	475 (15)	86 (35)	197 (10)	244 (24)	121 (34)
Obesity	169 (5)	9 (4)	70 (4)	75 (7)	33 (9)
Severe renal disease or dialysis	34 (1)	13 (5)	14 (1)	21 (2)	12 (3)
Solid tumor	114 (4)	31 (13)	60 (3)	63 (6)	22 (6)
Leukemia	9 (0)	4 (2)	6 (0)	7 (1)	0 (0)
Lymphoma	13 (0)	12 (5)	6 (0)	16 (2)	3 (1)
Hypertension	551 (18)	70 (29)	234 (12)	274 (27)	115 (33)
Hyperlipidemia	305 (10)	26 (11)	148 (7)	124 (12)	61 (17)

BMJ Open

Ρ	ad	e	52	of	62
•	uy	C	52	U,	02

Use of steroid in one month	10 (0)	5 (2)	4 (0)	8 (1)	4 (1)
Chemotherapy in three months	38 (1)	18 (7)	21 (1)	30 (3)	5 (1)
Immunosuppressants ^b use in three months	37 (1)	7 (3)	18 (1)	18 (2)	8 (2)
Fever (≥37.5°C)	1737 (56)	199 (82)	897 (45)	758 (74)	285 (82)
Cough	1770 (58)	112 (52)	1034 (53)	643 (64)	206 (69)
Sore throat	459 (17)	23 (16)	316 (18)	125 (15)	41 (16)
Runny nose	311 (11)	13 (7)	224 (12)	79 (9)	22 (8)
Chest pain	136 (5)	3 (2)	88 (5)	46 (6)	5 (2)
Myalgia	242 (9)	9 (7)	148 (8)	84 (10)	19 (7)
Headache	486 (18)	11 (8)	333 (18)	138 (17)	26 (10)
Confusion	60 (2)	29 (14)	19 (1)	54 (6)	16 (5)
Fatigue	1323 (46)	104 (62)	709 (38)	560 (62)	160 (58)
Abdominal pain	79 (3)	5 (3)	53 (3)	25 (3)	6 (2)
Vomit	139 (5)	8 (5)	80 (4)	51 (6)	16 (6)
Diarrhea	397 (14)	18 (9)	236 (13)	143 (15)	36 (13)

BMJ Open

Dysgeusia	128 (17)	25 (10)	454 (26)	128 (17)	25 (10
Dysosmia	103 (14)	13 (6)	402 (23)	103 (14)	13 (6)
	ical ventilation/extra ssants other than sto		mbrane oxyge	nation	
-immunosuppi en	ssants other than su				

Figure Legends

Figure 1. Distribution of the worst severity arranged by severe/non-severe at admission and

presence/absence of comorbidities.

Top bars represent non-severe cases at admission and bottom bars represent severe cases at admission.

Each group of cases was divided based on the presence of comorbidities. Bars represent different

categories of worst severity: light gray - no-oxygen, darker gray - oxygen, and darkest gray -

IMV/ECMO.

Figure 2. Distribution of the fatality arranged by severe/non-severe at admission and presence/non-presence of comorbidities

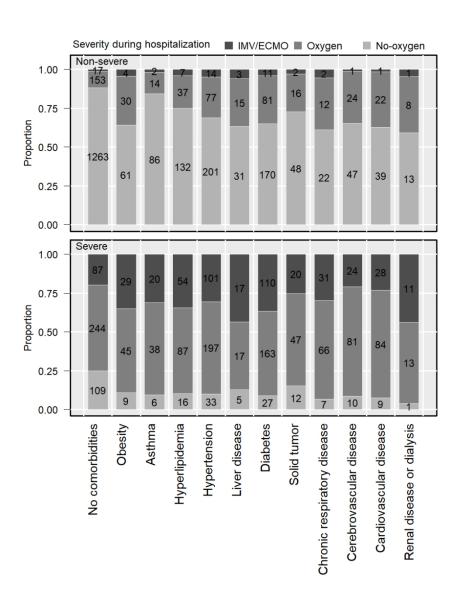
Top bars represent non-severe cases at admission and bottom bars represent severe cases at admission.

Each group of cases was divided based on the presence of comorbidities. Dark gray represents fatal

cases while light gray represents non-fatal cases.

Supplementary Figure 1. Distribution of worst severity by age group

Supplementary Figure 2. Distribution of fatality by age group


BMJ Open

Supplementary Figure 3. (a) Worst severity of cases aged <65 and ≥65 with no comorbidities

(b) Fatality in cases aged <65 and ≥65 with no comorbidities

For peer terier only

BMJ Open

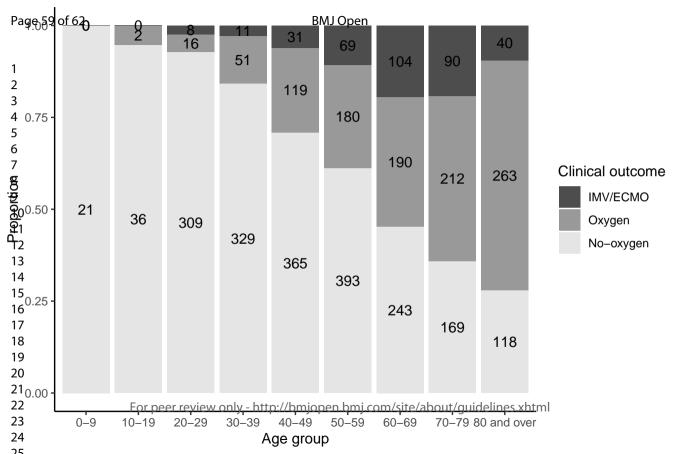
Distribution of the worst severity arranged by severe/non-severe at admission and presence/absence of comorbidities.

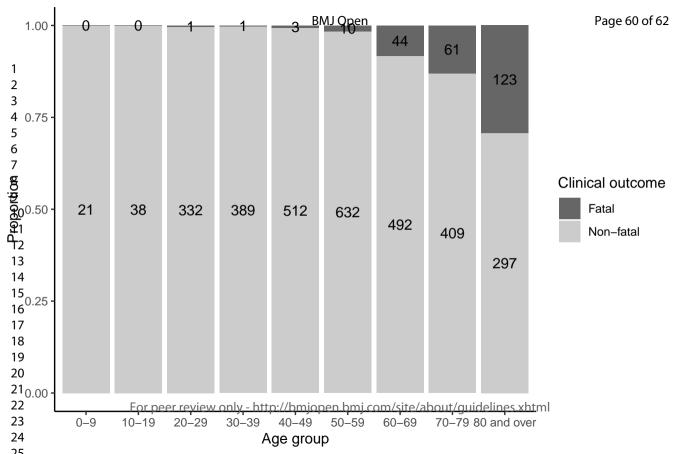
352x493mm (72 x 72 DPI)

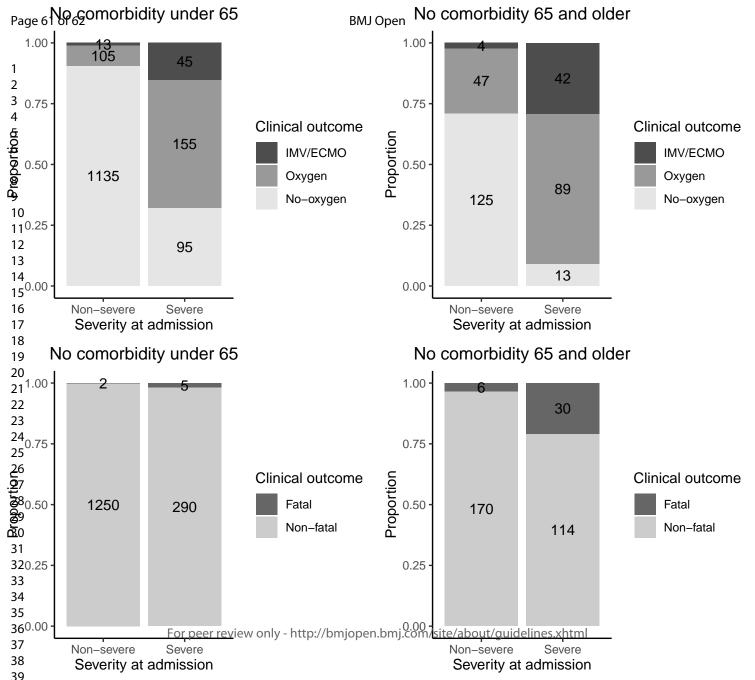
- 39
 40
 41
 42
 43
 44
 45

Clinical outcome Fatal Non-fatal Non-severe 1.00 0.75 Proportion 0.50 0.25 0.00 Severe 1.00 0.75 Proportion 0.50 0.25 0.00 Obesity Asthma Diabetes No comorbidities Hyperlipidemia Hypertension Liver disease Solid tumor Chronic respiratory disease Cerebrovascular disease Cardiovascular disease Renal disease or dialysis

Distribution of the fatality arranged by severe/non-severe at admission and presence/non-presence of comorbidities


352x493mm (72 x 72 DPI)


Supplementary Table. Proportion of therapeutics used for each comorbidity


	Number of	Systemic	Favipiravir	Ciclesonide	Heparin	Tocilizumab
	patients	steroid				
No comorbidity	1873	105 (6)	606 (32)	562 (30)	48 (3)	22 (1)
Obesity	178	34 (19)	109 (61)	72 (40)	17 (10)	5 (3)
Cardiovascular	183	30 (16)	86 (47)	46 (25)	19 (10)	6 (3)
disease	0					
Chronic respiratory	140	39 (28)	94 (67)	52 (37)	10 (7)	5 (4)
disease						
Diabetes	562	98 (17)	325 (58)	197 (35)	61 (11)	12 (2)
Hypertension	623	120 (19)	338 (54)	200 (32)	70 (11)	20 (3)
Cerebrovascular	197	24 (19)	02 (50)	42 (22)	15 (9)	7 (4)
disease	187	34 (18)	93 (50)	42 (23)	15 (8)	7 (4)
Liver disease	88	15 (17)	57 (65)	32 (36)	5 (6)	3 (3)
Severe renal disease	47	0 (10)	01 (45)	12 (20)	((12)	2(0)
or dialysis	47	9 (19)	21 (45)	12 (26)	6 (13)	3 (6)
Solid tumor	145	20 (14)	68 (47)	34 (23)	6 (4)	1 (1)

Numbers in brackets represent percentages.

Convalescent Plasma therapy was not utilized in Japan at the time of data collection.

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	7
Objectives	3	State specific objectives, including any prespecified hypotheses	8
Methods		Suite speeme objectives, menualing any prespectived hypotheses	
Study design	4	Present key elements of study design early in the paper	8
Setting	5	Describe the setting, locations, and relevant dates, including periods of	8
Setting		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	8
1 articipants	0	participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	9
v artables	,	effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	9
measurement	0	assessment (measurement). Describe comparability of assessment methods if	
mousurement		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	12
Study size	10	Explain how the study size was arrived at	13
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	11
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	12
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	12
		(c) Explain how missing data were addressed	13
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
D			
Results Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	13
Farticipants	13	eligible, examined for eligibility, confirmed eligible, included in the study,	10
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
Descriptive data	14*	(c) Consider use of a flow diagram (a) Give characteristics of study participants (eq demographic clinical social)	14
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	
		and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest.	13
		(b) Indicate number of participants with missing data for each variable of interest	10
Outcome 1-t-	1 ~ 4	(c) Summarise follow-up time (eg, average and total amount)	10
Outcome data	15*	Report numbers of outcome events or summary measures over time	1 1

BMJ Open

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.