

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Effect of Size/Time Lag Estimation and Determination of Association of Meteorological Factors and Air Pollutants with Fractures

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047000
Article Type:	Original research
Date Submitted by the Author:	16-Nov-2020
Complete List of Authors:	Kang, Taewook ; Korea University College of Medicine and School of Medicine, Department of Orthopedics Hong, Jinwook; Gachon University Gil Medical Center, Artificial Intelligence and Big-Data Convergence Center Radnaabaatar, Munkhzul ; Gachon University Gil Medical Center, Artificial Intelligence and Big-Data Convergence Center Park, Si Young ; Korea University College of Medicine and School of Medicine, Department of Orthopedics Jung, Jaehun; Gachon University Gil Medical Center, Artificial Intelligence and Big-Data Convergence Center; gachon university college of medicine, Department of Preventive Medicine
Keywords:	EPIDEMIOLOGY, Hip < ORTHOPAEDIC & TRAUMA SURGERY, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

Effect of Size/Time Lag Estimation and Determination of Association of Meteorological **Factors and Air Pollutants with Fractures**

Taewook Kang, MD¹, Jinwook Hong, MSF², Munkhzul Radnaabaatar DDS, MPH², Si Young Park, MD, PhD^{1*}, Jaehun Jung, MD, PhD^{2,3*}

¹ Department of Orthopedics, Korea University College of Medicine, Seoul, South Korea ificial Inten., lege of Medicine, Incheon, . Department of Preventive Medicine, Gacho. .orea 'TK and JH contributed equally to this work. ' ~tract): 284 ² Artificial Intelligence and Big-Data Convergence Center, Gil Medical Center, Gachon University ³ Department of Preventive Medicine, Gachon University College of Medicine, Incheon, South

* Corresponding authors:

Jaehun Jung, MD, PhD

Department of Preventive Medicine, Gachon University College of Medicine

38-13, Dokjeom-ro 3, Incheon, Korea

1 2	
3 4	
5	Tel: +82-10-6359-3201
6 7	Fax: +82-32-458-2608
8 9	E-mail: eastside1st@gmail.com
10 11	
12 13	Si Vour a Darle MD, DhD
14 15	Si Young Park, MD, PhD
16 17	Department of Orthopedics, Korea University College of Medicine
18 19	150-7, Anam-dong 5-ga, Seonbuk-gu, Seoul, Korea
20	
21 22	Tel: +82-02-920-5924
23 24	E-mail: drspine90@kumc.or.kr
25 26	
27	
28 29	Authors' e-mail: <u>thetaewook@gmail.com</u> (TK); <u>awesomehjw@gmail.com</u> (JH);
30 31	zulaa0247@korea.ac.kr (MR); drspine90@kumc.or.kr (SYP); eastside1st@gmail.com (J.J)
32 33	
34 35	
36 37	
38	
39 40	
41 42	
43 44	
45 46	
47	
48 49	
50 51	
52 53	
54	2
55 56	
57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ABSTRACT

Objective: To determine the association of MFAPs with fracture and to estimate the effect size/time lag.

Design: This was a nationwide population-based study from 2008 to 2017.

Setting: Eight large metropolitan areas in Korea.

Participants: Of 8,093,820 patients with fractures reported in the Korea National Health Insurance database, 2,129,955 were analyzed after the dataset containing the patients' data (age, sex, and site of fractures) were merged with MFAPs. Data on meteorological factors, obtained from the National Climate Data Center of the Korea Meteorological Administration. Additionally, data on air pollutants (atmospheric particulate matter of diameter \leq 2.5 µm [PM_{2.5}], PM₁₀, ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were obtained from the Air Korea database.

Primary and secondary outcome measures: We hypothesized that there would be the association between MFAPs and the incidence of fracture. A generalized additive model was used while factoring in the nonlinear relationship between MFAPs and fractures as well as a time $lag \leq 7$ days. Multivariate analysis was performed. Backward elimination with an Akaike information criterion was used for fitting the multivariate model.

Results: Overall, in eight urban areas, 2,129,955 patients with fractures were finally analyzed. These included 370,344; 187,370; 173,100; 140,358; 246,775; 6,501; 228,346; 57,183; and 719,978 patients with hip, knee, shoulder, elbow, wrist, hand, ankle, foot, and spine fractures, respectively. Various MFAPs (average temperature, daily rain, wind speed, daily snow, and PM_{2.5})

showed significant association fractures; with positive correlation at time lags 7, 5-7, 5-7, 3-7, and 6-7 days, respectively.

Conclusions: Fractures are affected by various MFAPs. Average temperature, daily rain, wind speed, daily snow, and PM_{2.5} were most closely associated with fracture; thus, improved public awareness are required on these MFAPs for the clinical prevention and management of fractures.

Article summary

Strengths and limitations of this study

- This study's main strength is that the first to investigate the relationship between various MFAPs and fractures, and investigated the interactions between all 13 MFAPs.
- Included 2,129,955 sample size, much larger than majority of other studies.
- The limitations are that study sampled patients who lived in major metroploitan cities and individual MFAPs exposure levels were not evaluated.

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

• Individual risk factors could not be covered in the analysis.

Keywords: Meteorological factor, air pollution, particulate matter, weather, fracture.

INTRODUCTION

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

Fractures are common globally, with reported increasing incidence; they are major public health issues, with a heavy burden on health resources.[1-3] The global annual number of fractures is expected to increase due to aging population.[4] In elderly populations, fractures can cause not only temporary dysfunction but also mortality.[2,5] Advances in surgical techniques and postoperative care have led to lower morbidity and mortality; but recently, attention has turned toward the prevention of fractures. Understanding the circumstances surrounding the occurrence of fractures may provide important information about when and why these injuries occur, and may improve fracture prevention.

The relationship between meteorological factors and air pollutants (MFAPs) and their impacts on fracture incidence have been the subject of many studies; most of which reported that more fractures occur during the winter.[6,7] Several hypotheses have been proposed to explain this association; one hypothesis suggest that MFAPs influence fracture incidence through bone metabolism effects. Reduced exposure to ultraviolet radiation may result in reduced vitamin D synthesis, thereby resulting in vitamin D and parathyroid hormone level changes.[8] It affects bone mineral density (BMD) and muscle strength, which can affect mobility and resistance to falls.[9] However, these effects on bone metabolism is long-term impact of MFAPs.[10]

Other hypotheses are based on the short-term relationship of MFAPs with the incidence of fracture. Increased risk of falling depends on the weather conditions due to slippery surfaces.[11] Freezing temperatures, rain, snow, and ice may increase the risk of slipping due to conditions underfoot, and frequent falling is a known risk factor for fractures.[12.13] In low temperatures, there is impaired thermoregulation, hypothermia, and consequent motor coordination deficits that predispose the elderly to falls.[14] Increased risk of falls occurs due to clumsiness in movements.

These can explain many occurrences of fractures, indoors and outdoors.[15] Increased risk of falls can be also due to reduced visual acuity.[16] The presence of haze is associated with increased incidence of fracture. In foggy weather, air pollutants (dust, ash, clay, sand, or ambient air pollutants) are suspended in the atmosphere.[17]

However, most previous studies are focused only on hip fracture or total fractures, without the discrimination of the sites of fractures, specific age groups, and the size and location of hospitals.[10,18,19] There is also insufficient nationwide population-based data. Although previous studies provided information on risk factors of fractures and possible preventive measures for fractures; risk factors, age-specific incidence, and prognoses may differ, depending on the site of fracture. Therefore, it is necessary to determine the association of MFAPs with the occurrence of fractures, by fracture site.[5,20,21]

These hypotheses could help in explaining the results of the association between MFAPs and fracture. Understanding the association between MFAPs and incidence of fracture may lead to improved risk management and the development of appropriate interventions. Thus, this study aimed to determine the association of MFAPs with fracture occurrence, and to estimate their effect size and lag time.

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

MATERIAL AND METHODS

Data acquisition

It should be mentioned that the study methodology was made based on reference with authors' previous study.[22] The records of patients with fractures were provided by the National Health Insurance Service (NHIS), a government-affiliated agency in Korea. We retrieved the clinical data on bone fractures for both inpatients and outpatients between 2008 and 2017. The sites of bone

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyrigh:

fractures are as defined in the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes with surgical codes: hip (S72.0-S72.3 and S72.7-S72.9); knee (S72.4 and S82.0-S82.2); shoulder (S42.0-S42.3); elbow (S42.4, S52.0-S52.4, and S52.7-S52.9); wrist (S52.5-S52.6); hand (S62 and T10); ankle (S82.3, and S82.5-S82.6); foot (S92, and T12); and spine (S32.0-S32.2, S32.7-S32.8, S22.0-S22.1, and T08). During the study period (2008-2017), we collected 8,093,820 diagnoses of patients with bone fractures and extracted data from the major metropolitan areas, including Seoul, Inchon, Daejeon, Gwangju, Daegu, Ulsan, Busan, and Jeju in Korea. The number of all the patients with fractures in 8 urban areas was 2,129,955 after the dataset containing the patients' data were merged with MFAPs. Data on the general meteorological factors were obtained from the Korea Meteorological Administration National Climate Data Center while those of air pollutants, such as particulate matter, carbon monoxide, and ozone were from Air 2/10 Korea, during the same period.

Patient and Public Involvement

The study was reviewed and exempted by the Institutional Review Board of Gachon University Gil Medical Center (approval number:GCIRB2019-039), and the requirement to obtain written consent was waived due to the retrospective nature of this study, patients and the public were not involved in the study. All study methods were carried out based on the Declaration of Helsinki.

Statistical analysis

Statistical analyses were conducted in SAS version 9.4 for Windows (SAS Institute, Cary, NC). The results are presented as the relative risk ratio (RR) with 95% confidence intervals (CIs). A pvalue of less than 0.05 was considered significant.

Models

We performed a time-series analysis that mainly used a generalized additive Poisson regression model (GAM) to control for trends, seasonality, covariates, and the day of the week. Meteorological and air pollutant data were used to calculated the daily average, excluding the outliers in pollution variables on the days when the levels of particulate matter $\leq 2.5 \,\mu\text{m}$ in diameter (PM_{2.5}) was > 120 $\mu\text{m/m}^3$. In the time-series analysis, GAM leads to unstable estimates due to autocorrelation between meteorological factors and the sites of bone fractures. Thus, we considered that the time lags until the autocorrelation are 'white noise' which showed 7 days after the sites of the bone fracture occurrences. The sum of autocorrelation terms was included as a covariate in GAM. Moreover, we compared the Akaike Information Criterion (AIC) value among meteorological factors and air pollutants for each candidate model using backward elimination for a better fit of the model. Each fracture site had the lowest AIC value when the model included average temperature (AT), daily rain (DR), wind speed (WS), daily snow (DS), and PM_{2.5}. Our final multivariable model is given as follows;

 $Log[E(Y)] = \alpha_0 + S (AT, df = 9) + S (DR, df = 9) + S (WS, df = 9) + S (DS, df = 9) + S (PM_{2.5}, df = 9) + offset (log (province population)) + \gamma (day of week) + \gamma (year) + \sum_{1 \le \theta \le 7} AR_7$

where Log[E(Y)] is the logged expected number of the daily fracture occurrences, α_0 is the intercept, *S* is the smooth functions of the meteorological factors using natural cubic splines, *offset* is for the provincial population; γ is the indicator variable for the day of the week and year, while overall autocorrelation effect can be expressed as AR₁ +... + AR₇ for 7 lag days.

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

RESULTS

From a total of 8,093,820 cases of fractures identified during the 10-year study period in 8 urban areas, there were 2,129,955 patients with fractures overall. These included 370,344; 187,370; 173,100; 140,358; 246,775; 6,501; 228,346; 57,183; and 719,978 patients with hip, knee, shoulder, elbow, wrist, hand, ankle, foot, and spine fractures, respectively (Figure 1). Of all the fractures, the spine (33.8%) and hip (17.4%) fractures had the largest proportions. The incidence of fractures increased continuously over the study period. Summaries of the number of fractures by age and sex, and the mean and SDs of MFAPs data, by years of exposure to MFAPs, are presented in Table 1.

			2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total
Fracture			167,501	171,787	196,470	205,022	216,995	225,692	224,339	227,886	240,130	254,133	2,129,95 5
Male			68,563	68,914	74,383	77,268	79,980	80,561	81,098	81,565	85,014	88,529	785,875
Female			98,938	102,873	122,087	127,754	137,015	145,131	143,241	146,321	155,116	165,604	1,344,08 0
Age	< 20		18,350	17,393	17,202	17,475	17,614	16,915	17,400	16,047	18,545	18,419	175,360
	20 - 60		58,315	59,256	66,217	67,717	69,232	71,297	68,321	66,544	67,723	69,005	663,627
60		>	90,836	95,138	113,051	119,830	130,149	137,480	138,618	145,295	153,862	166,709	1,290,96 8
Site of Fra	cture												
Нір			28,250	29,029	33,171	34,696	36,931	38,514	39,334	41,453	43,269	45,697	370,344
Male			9,282	9,357	10,571	10,806	11,413	11,596	11,591	11,976	12,445	12,777	111,814
Female			18,968	19,672	22,600	23,890	25,518	26,918	27,743	29,477	30,824	32,920	258,530
		I											

BMJ Open

0 3,75 23,76 16,17 9,11 7,06 2,18 5,81	59 3,76 50 24,654 72 15,974 10 8,803 52 7,166	1 4,169 4 28,326 4 17,661 8 9,488	4,120	605 4,172 32,154 18,690	610 4,255 33,649 19,367	547 4,143 34,644	462 4,033 36,958	477 4,044 38,748	443 4,102 41,152	5,80 40,55
3,75 23,76 16,17 9,11 7,06 2,18 50 8,17	50 24,654 72 15,974 10 8,809 52 7,160	4 28,326 4 17,661 8 9,488	29,936 18,163	32,154	33,649	34,644	-	-	-	
16,17 9,11 7,06 2,18 50 8,17	72 15,974 10 8,808 52 7,160	4 17,661 8 9,488	18,163	-	-	-	36,958	38,748	41,152	
9,11 7,06 2,18 60 8,17	10 8,808 52 7,160	8 9,488	-	18,690	19,367	10 675				323,98
7,06 2,18 8,17	52 7,160		9,581			19,073	19,619	20,544	21,505	187,37
2,18 8,17		6 8,173		9,442	9,362	9,474	9,203	9,325	9,506	93,29
8,17	35 1,970		8,582	9,248	10,005	10,201	10,416	11,219	11,999	94,07
8,17		5 2,086	2,036	2,011	2,029	1,917	1,800	2,025	1,924	19,98
5,81	70 7,993	3 8,656	8,710	8,654	8,774	8,602	8,473	8,445	8,625	85,10
1	6,00:	5 6,919	7,417	8,025	8,564	9,156	9,346	10,074	10,956	82,27
14,21	18 14,504	4 15,620	16,200	16,902	17,400	18,188	18,767	20,319	20,982	173,1
8,37	71 8,529	9 8,960	9,397	9,769	9,834	10,300	10,480	11,161	11,534	98,33
5,84	47 5,97:	5 6,660	6,803	7,133	7,566	7,888	8,287	9,158	9,448	74,70
2,52	27 2,297	7 2,385	2,533	2,512	2,317	2,508	2,415	3,130	3,084	25,70
6,86	55 7,148	8 7,536	7,752	8,178	8,486	8,771	8,750	8,992	9,130	81,60
4,82	26 5,059	9 5,699	5,915	6,212	6,597	6,909	7,602	8,197	8,768	65,78
13,87	79 13,573	3 13,731	13,701	14,058	14,016	13,895	13,535	14,810	15,160	140,3
7,92	22 7,61	1 7,276	7,229	7,503	7,334	7,478	7,185	7,873	7,954	75,30
5,95	57 5,962	2 6,455	6,472	6,555	6,682	6,417	6,350	6,937	7,206	64,99
5,94	43 5,610	6 4,959	4,959	5,107	4,960	5,128	4,604	5,612	5,453	52,34
⁵⁰ 4,84	14 4,78	7 5,235	5,074	5,126	5,186	5,107	5,119	5,129	5,264	50,8′
3,09	92 3,170	3,537	3,668	3,825	3,870	3,660	3,812	4,069	4,443	37,14
17,49	94 18,470	0 23,885	24,686	27,123	28,158	26,065	24,585	26,593	29,716	246,7
	39 6,300	6 6,630	6,949	7,186	7,198	7,464	7,145	7,767	8,384	71,1
6,08)5 12,164	4 17,255	17,737	19,937	20,960	18,601	17,440	18,826	21,332	175,6
)3 2,890	0 2,684	2,741	2,662	2,445	2,911	2,567	3,163	3,308	28,17
	11,40	11,405 12,164	11,405 12,164 17,255	11,405 12,164 17,255 17,737	11,405 12,164 17,255 17,737 19,937	11,405 12,164 17,255 17,737 19,937 20,960	11,405 12,164 17,255 17,737 19,937 20,960 18,601	11,405 12,164 17,255 17,737 19,937 20,960 18,601 17,440	11,405 12,164 17,255 17,737 19,937 20,960 18,601 17,440 18,826	11,405 12,164 17,255 17,737 19,937 20,960 18,601 17,440 18,826 21,332

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright.

	20 - 60	6,589	6,727	8,661	9,075	9,553	10,151	9,287	8,440	8,967	9,521	86,971
	> 60	8,102	8,853	12,540	12,870	14,908	15,562	13,867	13,578	14,463	16,887	131,630
Hand		507	543	589	624	640	617	732	759	697	793	6,501
Male		423	435	476	504	541	510	600	611	562	637	5,299
Female		84	108	113	120	99	107	132	148	135	156	1,202
Age	< 20	68	64	77	71	83	73	103	118	85	111	853
	20 - 60	399	420	446	482	486	480	549	568	524	557	4,911
	> 60	40	59	66	71	71	64	80	73	88	125	737
Ankle		18,884	19,613	23,044	23,767	24,037	24,862	23,439	23,001	23,210	24,489	228,34
Male		10,107	10,208	11,409	11,888	11,859	11,967	11,299	10,950	10,807	11,335	111,82
Female		8,777	9,405	11,635	11,879	12,178	12,895	12,140	12,051	12,403	13,154	116,51
Age	< 20	2,771	2,669	3,092	3,150	3,295	3,164	3,023	2,981	2,897	2,935	29,977
	20 - 60	11,817	12,305	13,872	14,198	14,179	14,524	13,569	13,046	12,863	13,197	133,57
	> 60	4,296	4,639	6,080	6,419	6,563	7,174	6,847	6,974	7,450	8,357	64,799
Foot		5,293	5,176	5,280	5,494	5,685	5,662	5,877	6,028	6,264	6,424	57,183
Male		3,956	3,759	3,769	3,853	4,075	3,986	4,028	4,019	4,290	4,276	40,011
Female		1,337	1,417	1,511	1,641	1,610	1,676	1,849	2,009	1,974	2,148	17,172
Age	< 20	345	314	274	289	245	250	232	197	195	189	2,530
	20 - 60	3,864	3,703	3,724	3,827	3,924	3,892	3,926	3,881	4,021	3,909	38,671
	> 60	1,084	1,159	1,282	1,378	1,516	1,520	1,719	1,950	2,048	2,326	15,982
Spine		52,804	54,905	63,489	67,691	72,929	77,096	77,134	80,139	84,424	89,367	719,97
Male		13,303	13,901	15,804	17,061	18,192	18,774	18,864	19,996	20,784	22,126	178,80
Female		39,501	41,004	47,685	50,630	54,737	58,322	58,270	60,143	63,640	67,241	541,17
Age	< 20	977	953	969	1,056	1,094	1,067	1,031	903	961	972	9,983
	20 - 60	12,008	12,412	13,918	14,479	14 960	15,549	14 367	14,234	14,738	14,700	141,36

BMJ Open

> 60	39,819	41,540	48,602	52,156	56,875	60,480	61,736	65,002	68,725	73,695
Meteorology (Mean, S D)										
Average Temperature (° C)	13.9(9.6	13.9(9.4	13.4(9.6	12.8(9.4	12.9(9.8	13.6(9.6	14.1(9.6	14.0(9.4	14.3(9.2	14.0(9.
High Temperature (°C)	18.4(9.8	18.4(9.6	17.8(9.7	17.2(9.5	17.4(9.9	18.1(9.7	18.9(9.7	18.9(9.6	19.0(9.3	18.8(9.
Low Temperature (°C)	10.1(9.7	10.1(9.5	9.8(10.9	9.2(10.6	9.1(11.0	9.8(9.9)	10.2(9.9	10.0(9.5	10.3(9.4	9.9(9.6
Daily Range (°C)	8.3(2.9)	8.3(3.0)	7.9(2.9)	8.0(3.0)	8.3(2.7)	8.2(3.1)	8.6(3.1)	8.8(3.2)	8.7(2.9)	8.8(3.0
Vapor Pressure (hPa)	11.9(7.8)	11.7(7.4)	12.5(8.9)	11.4(8.3	11.3(8.3	12.3(8.8	12.9(8.4	12.3(7.8	12.9(8.8	12.3(8.9
Solar Radiation (MJ/m ²)	13.5(6.8)	13.8(7.1	12.9(6.7	13.1(6.9)	12.8(6.4	13.0(6.8	12.9(6.3	13.1(6.6	13.2(6.4)	13.7(6.9
Sunshine Duration (hr)	12.2(1.7	12.2(1.7	12.2(1.7	12.1(1.7	12.2(1.7	12.2(1.7	12.2(1.7	12.1(1.7	12.2(1.7	12.2(1.7
Wind Speed (m/s)	2.4(0.9)	2.5(1.0)	2.5(1.0)	2.6(1.0)	2.7(1.0)	2.7(1.1)	2.5(1.0)	2.6(1.0)	2.4(1.0)	2.3(0.9)
Daily Rain (mm)	,)	13(31.5))))	7.9(16.9	
Dew Point Temperature (°C)	5.9(11.6	5.8(11.2)	6.1(12.2	4.6(12.5	4.4(12.5	5.8(12.1	7.1(11.7	6.8(10.6	6.8(12.0	5.8(12.3
Humidity (%)	61(15.2)	61(15.8)	64(15.6)	60(16.9)	59(16.1)	62(16.1)	65(16.9)	65(16.2)	64(16.4)	61(16.1)
Daily snow (cm)	3.7(3.0)	2.4(2.2)	8.2(6.8)	2.7(2.1)	3.6(2.9)	5.5(4.3)	2.1(1.8)	2.4(2.5)	1.9(2.9)	1.9(1.6)
Cloud (1/10)	4.7(3.0)	4.6(3.1)	5.1(3.2)	5.0(3.3)	4.9(3.0)	4.8(3.1)	4.8(3.1)	4.8(3.1)	4.8(2.9)	4.6(3.0)
Air Pollutants (Mean,										
SD)										
PM _{2.5} (ug/m ³)	-	-	-	-	28(12)	27(13)	25(14)	24(12)	25(14)	23(12)
$PM_{10}\left(ug/m^3\right)$	56(30)	54(29)	50(28)	49(30)	45(21)	47(23)	48(26)	47(34)	46(19)	45(20)
O ₃ (100ppb)	1.9(0.9)	2.1(1.0)	1.9(0.9)	1.9(1.0)	2.1(1.0)	2.2(1.0)	2.3(1.1)	2.2(1.0)	2.4(1.1)	2.5(1.1
NO ₂ (100ppb)	3.4(1.4)	3.3(1.3)	3.2(1.3)	3.2(1.3)	3.1(1.2)	3.2(1.3)	3.1(1.3)	3.1(1.3)	2.9(1.1)	2.8(1.1
SO ₂ (100ppb)	0.6(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.1)	0.4(0.1)	0.4(0.1
CO (10ppm)	0.6(0.2)	0.6(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.1)	0.5(0.1)	0.5(0.1)	0.4(0.1

SD denotes standard deviation; min, minimum; max, maximum; ppb, parts-per-billion; ppm, parts-per-million.

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

Among the 13 MFAPs, AT, DR, WS, DS, and PM_{2.5} had the lowest AIC and were selected for further analyses (Supplemental Table 1). Models including these five selected MFAPs showed statistically significant association with the incidence of fracture.

The predictive models for hip fracture incidence using the univariate GAM are shown in Figure 2. AT showed a typical significant inverted U-shape correlation (P<.001), and fracture was higher in both extremes of AT. A negative risk was seen, from -2°C to 21°C, with the highest risk at -7°C. Furthermore, there was an abrupt increase in the risk of hip fracture at extreme temperatures (<-2°C and >21°C). The risk associated with rising DR constantly increased, with a linear correlation, with the incidence of hip fractures (P<.001). DR had a negative and positive relative risks at <60 mm and >60 mm, respectively. There was a significant association between hip fracture and WS (P<.001), with the highest risk at 1.9 m/s². There was a significant association between hip fracture and DS (P<.001), with a gradual S-shape curve. Moreover, there was a significant association between hip fracture and PM_{2.5} levels (P<.001). An excess risk was seen in the most frequently observed interval (interquartile range [IQR]: 38–64 µg/m³).

Fractures at all other sites showed consistent patterns in relation to MFAPs (Supplemental Figure 1-8).

For the five selected variables, time lags were analyzed using multivariate GAM to identify in which prolonged exposure time lag for each variable affects the incidence of fracture (Supplemental Table 2). All the five selected MFAPs showed a maximum lag period of 7 days in

BMJ Open

the impulse response functions analysis, with no further effect beyond this time point. The boxplot models of the estimated risk for fracture for the five MFAPs are shown in Figure 3.

The multivariate analyses provided the time lags for the effects of the MFAPs on the risk of hip fracture. An increase in AT reflected a significant increase in the risk of hip fracture until 7 days later. The effect of DR, WS, DS, and $PM_{2.5}$ were inversely correlated with the lag time with significantly positive associations, 5–7 days before the occurrence of hip fracture.

The results for the time lags also showed consistent patterns in fractures at all other sites (Supplemental Figure 9-16).

DISCUSSION

In our analysis of the nationwide data of the association between fracture and MFAPs, we found AT, DR, WS, DS, and PM_{2.5} to be closely associated with fracture, among various MFAPs. These selected MFAPs were shown to affect fractures, up to 7 days later. Our evaluation was based on the short-term relationship between the daily variations in different MFAPs and the daily incidence of fractures, which occurred due to the increased risk of falling from adverse MFAPs. This would explain the significantly positive correlations between fractures and several MFAPs. Our study strengthens the importance of the association of various MFAPs in the incidence of fractures. Fractures at all other sites showed a consistent pattern in relation to MFAPs.

Globally, fractures are important public health problems because of the related morbidity and mortality, diminished health-related quality of life, and associated costs. Despite the development of effective surgical treatments, the cost and disabilities following surgery make the prevention of fractures an integral part of any strategy to reduce the impact of fractures, especially with considering the aging trend of the population.[23]

Most fractures are not due to a single cause, but from multiple interactions between individuals and the environment.[24] The reason for the increased number of fractures in adverse MFAPs is not well understood. Recent studies have shown that seasonal patterns observed in fractures may be related to weather patterns such as temperature, snow, or ice.[13.25] However, these previous studies reported associations between fractures and weather data driven by the seasonal factors, not by the daily variability in incidence of fractures. Moreover, analyses of the relationship between fractures and MFAPs using day as the unit of analysis are very rare in the literature.

Several mechanisms have been proposed for the short-term relationship between incidence of fractures and various MFAPs. The mechanisms of fractures in each site appeared to be similar, because fractures at all other sites showed a consistent pattern in relation to MFAPs.

AT, DR, WS, and DS were shown in our study to correlate with a rise in incidence of fractures. Past research has shown that slippery conditions greatly enhance the incidence of fractures, explaining this relationship.[26] DR had a negative relative risk at >60 mm and a relatively positive risk at <60 mm. This can be explained by the fact that when it rains, although people do not go outside; however, with more rain, the road becomes more slippery and traffic accidents increase. DS showed a gradual S-shape curve or irregular pattern due to the few days of snow. Jacobsen et al. associated MFAPs (snow and ice) with the incidence of hip fractures, and observed a significant increase in its incidents, consistent with that of frozen rain.[6] Levy et al. reported a significant increase in the incidence of hip fractures on days with freezing precipitation.[25] Lau et al. concluded that AT is a more important independent risk factor of hip fracture.[27]

We found that AT was closely related to a higher incidence of fractures. A possible mechanism is that weather conditions affect activity levels.[28] Lower temperatures is a cause of blood

BMJ Open

pressure and hemodynamic changes, and dexterity decreases, leading to increased falls and fractures.[29] It can also reduce physical activity, leading to impaired coordination and consequently bone fragility.[30] The more cold people feel, the more likely they are to wear extra clothes, which may make them clumsier. Darker and colder weather may increase the number of falls.[15] Even though many falls occur indoors, changes in activity levels due to prevailing weather conditions lead to changes in the risk of falls and fracture rates. These provides plausible explanations for why fracture rates are higher on cold days.[28]

Several studies have included the wind as an MFAP variable, in the analysis. One possible explanation could be that the greater the exposure to wind, the greater the risk of falling. Lau et al. found an excessive incidence of hip fractures in more windy days.[27] Mirchandani et al. found a significant correlation between WS and the incidence of hip fractures.[30] Jacobsen et al. observed an increase in the risk of hip fractures with high WS days.[6] Tenias et al. also confirmed increased hip fracture risk with more windy days.[23]

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

The mechanisms of the relationship between air pollution and incidence of fracture is still unclear. Several studies have investigated the possible relationship between air pollution, BMD, and fractures.[31-33] Alvaer et al. found associations between osteoporosis, forearm fractures, and air pollution. An inverse association was found between BMD and air pollution.[32] Prada et al. found an association between long-term exposure to PM_{2.5} and osteoporosis-related fractures.[34] Chang et al. showed a tendency of increase in association between air pollution and risk of osteoporosis, suggesting that exposure to air pollution could increase the risk of osteoporosis.[31] Therefore, if reduced bone resistance is the mechanism by which air pollution is involved in hip fracture, there would be no effect in the short-term.

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

What we are actually observing is that air pollution increases the risk of falls.[17] Reduced visual acuity has long been regarded as a risk factor for fracture.[18,35] The reduced hours of sunlight and increased air pollution reduce visual acuity, which predisposes to falls and hip fracture.[16] In a large-scale cohort study, reduced visual acuity increased the likelihood of falls and fractures in the elderly population.[18] Also, acute exposure to PM_{2.5} can stimulate the autonomic nervous system (ANS), increasing the risk of arrhythmia, orthostasis, and syncope.[36] Therefore, PM_{2.5} exposure has been associated with changes in heart rate in the elderly.[37] Reduced heart rate variability due to impairment of ANS could increase the risk of falls.

Our observations on the association of MFAPs with fractures can help in developing the prevention strategies for fractures. The elevated incidence during winter implies that we should raise awareness on the risk of slippery conditions, the importance of keeping warm, improved lighting conditions, and avoiding the wearing of cumbersome clothing.[38]

There were also some limitations in our study. First, we sampled patients who lived in major metropolitan cities. Weather stations are sparsely placed in rural areas, thus we ruled to exclude rural areas owing to the concern of unreliable data. Second, individual MFAPs exposure levels were not evaluated, and we assumed that these individuals were exposed to the identical environment. Therefore, the possibility of ecological fallacy should be noted. Third, individual risk factors such as comorbidities and lifestyle which would affect fracture occurrence could not be covered in the analysis. Fourth, the decision on the occurrence of fracture was only dependent on the diagnostic codes, thus validity of healthcare claims data diagnosis in fracture was debatable. We included only inpatient records to reduce the possibility of coding inaccuracies in our dataset. Painless, undiagnosed, and self-resolved fractures were not included, and there may be a difference

between the actual incidence of fracture and the onset of symptoms. Fifth, if citizens tend to stay indoors depending on the level of fine dust, potential bias can be generated during special weather forecasts such as the fine dust warning service. Moreover, discordance between the actual residential areas and weather stations can be found. Finally, the mechanisms underlying the effect of each MFAPs on fracture occurrence could not be identified.

However, our study has several strengths. First, this study was the first to investigate the relationship between various MFAPs and fractures. Second, due to advantage of using nationallevel data from the NHIS, our study included 2,129,955 sample size, much larger than majority of other studies. As a result of single-payer universal healthcare coverage in Korea, the catchment of fractures was expected to be very high. These facilitated us to analyze a large and credible dataset, which is often hard to implement in other countries. Third, we investigated the interactions between all 13 MFAPs portrayed by the Korean Meteorological Administration, and this allowed a plausible review of the real-world influences and interactions of PM_{2.5} with diverse MFAPs. Fourth, current study covered the capital city and seven other areas in Korea, which could reduce bias by diminishing the region-specific effects such as race, ethnicity, economic levels, and accessibility to hospitals. Fifth, time series Poisson analysis was used with GAM to consider the interaction among MFAPs in terms of fracture occurrence. BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

CONCLUSIONS

In conclusion, we investigated the relationship between MFAPs and fracture based on healthcare claims and meteorological database. AT, DR, WS, DS, and $PM_{2.5}$ were identified as MFAPs that were most closely associated with fracture. These MFAPs maintained influence for a maximum of 7 days. Visualization of the effect-time association of MFAPs with fracture was possible with in

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

the model. In the future, further confirmatory studies and improved public awareness regarding the MFAPs that are related to the incidence of fracture are needed for the clinical prevention and management of fractures.

to beet eview only

Acknowledgements

Ethics approval and consent to participate: The study was reviewed and exempted by the Institutional Review Board of Gachon University Gil Medical Center (approval number:GCIRB2019-039), and the requirement to obtain written consent was waived due to the retrospective nature of this study, patients and the public were not involved in the study. All study methods were carried out based on the Declaration of Helsinki.

Availability of data and materials: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests: None

Funding: This study was supported by grants from the Gachon University Gil Medical Center [2019-11]

Authors' contributions: Conception and design (T.K., J.J.). Collection and assembly of data (J.H., J.J.). Data analysis and interpretation (T.K., J.H., J.J.). Writing manuscript (M.R., T.K., S.Y.P.) Final approval of manuscript (All authors). Accountable for all aspects of the work (All authors)

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

References

1.	Lee YK, Kim JW, Lee MH, et al. Trend in the Age-Adjusted Incidence of Hip Fractures
	in South Korea: Systematic Review. Clin Orthop Surg 2017;9(4):420-423.
2.	Compston JE, McClung MR, Leslie WD. Osteoporosis. <i>Lancet</i> 2019;393(10169):364-376.
3.	Braithwaite RS, Col NF, Wong JB. Estimating hip fracture morbidity, mortality and costs.
5.	J Am Geriatr Soc 2003;51(3):364-370.
4	
4.	Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. <i>Lancet</i>
	2002;359(9319):1761-1767.
5.	Abrahamsen B, van Staa T, Ariely R, et al. Excess mortality following hip fracture: a
	systematic epidemiological review. Osteoporos Int 2009;20(10):1633-1650.
6.	Jacobsen SJ, Sargent DJ, Atkinson EJ, et al 3rd. Population-based study of the contribution
	of weather to hip fracture seasonality. Am J Epidemiol 1995;141(1):79-83.
7.	Caniggia M, Morreale P. Epidemiology of hip fractures in Siena, Italy, 1975-1985. Clin
	Orthop Relat Res 1989(238):131-138.
8.	Pasco JA, Henry MJ, Kotowicz MA, et al. Seasonal periodicity of serum vitamin D and
	parathyroid hormone, bone resorption, and fractures: the Geelong Osteoporosis Study. J
	Bone Miner Res 2004;19(5):752-758.
9.	Dukas L, Staehelin HB, Schacht E, et al. Better functional mobility in community-
	dwelling elderly is related to D-hormone serum levels and to daily calcium intake. J Nutr
	Health Aging 2005;9(5):347-351.
10.	Kung AW, Lee KK, Ho AY, et al. Ten-year risk of osteoporotic fractures in
	21

1 2		
3		
4 5		postmenopausal Chinese women according to clinical risk factors and BMD T-scores: a
6 7		prospective study. J Bone Miner Res 2007;22(7):1080-1087.
8 9	11.	Roman Ortiz C, Tenias JM, Estarlich M, et al. Systematic review of the association
10 11 12		between climate and hip fractures. Int J Biometeorol 2015;59(10):1511-1522.
13 14	12.	Burger H, de Laet CE, Weel AE, et al. Added value of bone mineral density in hip fracture
15 16		risk scores. Bone 1999;25(3):369-374.
17 18	13.	Bulajic-Kopjar M. Seasonal variations in incidence of fractures among elderly people. <i>Inj</i>
19 20		<i>Prev</i> 2000;6(1):16-19.
21 22	14	
23 24	14.	Collins KJ, Easton JC, Belfield-Smith H,et al. Effects of age on body temperature and
25 26		blood pressure in cold environments. Clin Sci (Lond) 1985;69(4):465-470.
27 28	15.	Douglas S, Bunyan A, Chiu KH, et al. Seasonal variation of hip fracture at three latitudes.
29 30		<i>Injury</i> 2000;31(1):11-19.
31 32	16.	Jacobsen SJ, Goldberg J, Miles TP, et al. Seasonal variation in the incidence of hip fracture
33 34 35		among white persons aged 65 years and older in the United States, 1984-1987. Am J
36 37		<i>Epidemiol</i> 1991;133(10):996-1004.
38 39	17.	Mazzucchelli R, Villarias NC, Fernandez EP, et al. Short-term association between
40 41		outdoor air pollution and osteoporotic hip fracture. Osteoporos Int 2018;29(10):2231-
42 43 44		2241.
44 45 46	18.	Hong T, Mitchell P, Burlutsky G, et al. Visual impairment and the incidence of falls and
47 48		fractures among older people: longitudinal findings from the Blue Mountains Eye Study.
49 50		Invest Ophthalmol Vis Sci 2014;55(11):7589-7593.
51 52		Invest Optimumor v is Set 2014,55(11).1507-1575.
53 54	19.	Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white
55		22
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright.

women. N Engl J Med 1995;332(12):767-773.

20.	Nilsson M, Eriksson J, Larsson B, et al. Fall Risk Assessment Predicts Fall-Related Injury,
	Hip Fracture, and Head Injury in Older Adults. J Am Geriatr Soc 2016;64(11):2242-2250.
21.	Baron JA, Karagas M, Barrett J, et al. Basic epidemiology of fractures of the upper and
	lower limb among Americans over 65 years of age. <i>Epidemiology</i> 1996;7(6):612-618.
22.	Kim J, Hong J, Jung J, et al. Effect of meteorological factors and air pollutants on out-of-
	hospital cardiac arrests: a time series analysis. Heart 2020;106:1218-1227.
23.	Tenias JM, Estarlich M, Fuentes-Leonarte V, et al. Short-term relationship between
	meteorological variables and hip fractures: an analysis carried out in a health area of the
	Autonomous Region of Valencia, Spain (1996-2005). Bone 2009;45(4):794-798.
24.	Tinetti ME. Clinical practice. Preventing falls in elderly persons. N Engl J Med
	2003;348(1):42-49.
25.	Levy AR, Bensimon DR, Mayo NE, et al. Inclement weather and the risk of hip fracture.
	<i>Epidemiology</i> 1998;9(2):172-177.
26.	Campbell AJ, Spears GF, Borrie MJ, et al. Falls, elderly women and the cold. Gerontology
	1988;34(4):205-208.
27.	Lau EM, Gillespie BG, Valenti L, et al. The seasonality of hip fracture and its relationship
	with weather conditions in New South Wales. Aust J Public Health 1995;19(1):76-80.
28.	Turner RM, Hayen A, Dunsmuir WT, et al. Air temperature and the incidence of fall-
	related hip fracture hospitalisations in older people. Osteoporos Int 2011;22(4):1183-1189.
29.	Riley MW, Cochran DJ. Dexterity performance and reduced ambient temperature. Hum

BMJ Open

	Factorz 1984;26(2):207-214.
30.	Mirchandani S, Aharonoff GB, Hiebert R, et al. The effects of weather and seasonality on
	hip fracture incidence in older adults. Orthopedics 2005;28(2):149-155.
31.	Chang KH, Chang MY, Muo CH, et al. Exposure to air pollution increases the risk of
	osteoporosis: a nationwide longitudinal study. Medicine (Baltimore) 2015;94(17):e733.
32.	Alvaer K, Meyer HE, Falch JA, et al. Outdoor air pollution and bone mineral density in
	elderly men - the Oslo Health Study. Osteoporos Int 2007;18(12):1669-1674.
33.	Alver K, Meyer HE, Falch JA, et al. Outdoor air pollution, bone density and self-reported
	forearm fracture: the Oslo Health Study. Osteoporos Int 2010;21(10):1751-1760.
34.	Prada D, Zhong J, Colicino E, et al.
	Association of air particulate pollution with bone loss over time and bone fracture risk:
	analysis of data from two independent studies. Lancet Planet Health 2017;1(8):e337-e347.
35.	Luukinen H, Koski K, Laippala P, et al. Factors predicting fractures during falling impacts
	among home-dwelling older adults. J Am Geriatr Soc 1997;45(11):1302-1309.
36.	Liao D, Duan Y, Whitsel EA, et al. Association of higher levels of ambient criteria
	pollutants with impaired cardiac autonomic control: a population-based study. American
	journal of epidemiology 2004;159(8):768-777.
37.	Devlin RB, Ghio AJ, Kehrl H, et al. Elderly humans exposed to concentrated air pollution
	particles have decreased heart rate variability. Eur Respir J Suppl 2003;40:76s-80s.
38.	Koren L, Barak A, Norman D, et al. Effect of seasonality, weather and holidays on the
	incidence of proximal hip fracture. Isr Med Assoc J 2014;16(5):299-302.
	24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 <tr <="" th=""><th><image/></th></tr> <tr><th>57 58 59 60</th><th>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml</th></tr>	<image/>	57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
<image/>			
57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

Figure Legends

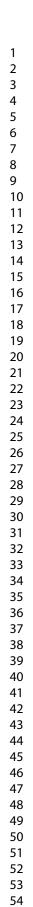

Figure 1. Flow chart of fracture case selection.

Figure 2. Generalized additive model for the effects of selected meteorological factors on hip fracture incidence. The bold line estimates the relative effect sizes for the hip fracture while the blue area estimates the 95% confidence intervals (Cis). The X-axes represents selected meteorological factors. The Y-axes shows the relative effect sizes for hip fracture. $PM_{2.5}$, particulate matter $\leq 2.5 \mu m$.

Figure 3. Level of selected meteorological factors and adjusted excess risk for hip fracture: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \mu$ m (PM_{2.5}). The Y-axes show the percentages of adjusted excess risk with 95% confidence intervals (Cis). *p<0.05.

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright.

60

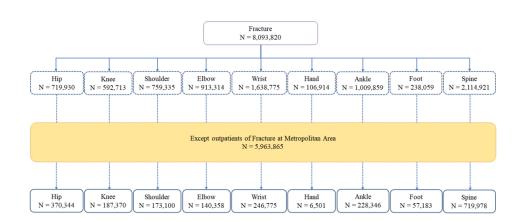


Figure 1. Flow chart of fracture case selection.

400x300mm (96 x 96 DPI)

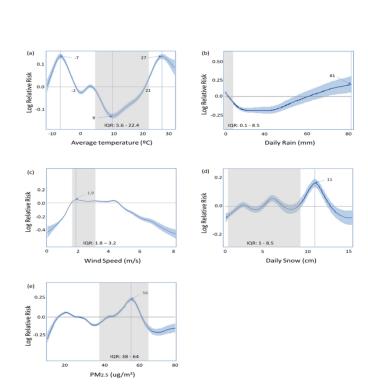
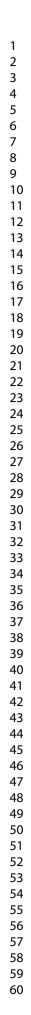



Figure 2. Generalized additive model for the effects of selected meteorological factors on hip fracture incidence. The bold line estimates the relative effect sizes for the hip fracture while the blue area estimates the 95% confidence intervals (Cis). The X-axes represents selected meteorological factors. The Y-axes shows the relative effect sizes for hip fracture. PM2.5, particulate matter \leq 2.5 µm.

400x300mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright.

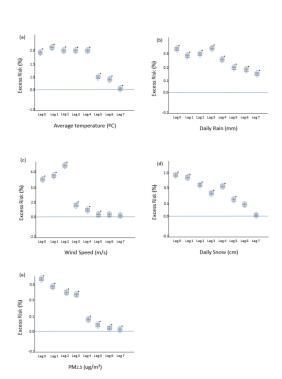


Figure 3. Level of selected meteorological factors and adjusted excess risk for hip fracture: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter \leq 2.5 µm (PM2.5). The Y-axes show the percentages of adjusted excess risk with 95% confidence intervals (Cis). *p<0.05.

400x300mm (96 x 96 DPI)

BMJ Open

Online supplements

Supplemental Table 1. Akaike Information Criterion (AIC) between site of fracture and meteorological factors including air pollutants (MFAPs)

Supplemental Table 2. Multivariate analysis of GAM with cubic splines for site of fracture depending on lags through from 2008 to 2017

Supplemental Figure 1. Generalized additive model for the effects of selected meteorological factors on the incidence of knee fracture

Supplemental Figure 2. Generalized additive model for the effects of selected meteorological factors on the incidence of shoulder fracture

Supplemental Figure 3. Generalized additive model for the effects of selected meteorological factors on the incidence of elbow fracture

Supplemental Figure 4. Generalized additive model for the effects of selected meteorological factors on the incidence of wrist fracture

Supplemental Figure 5. Generalized additive model for the effects of selected meteorological factors on the incidence of hand fracture

Supplemental Figure 6. Generalized additive model for the effects of selected meteorological factors on the incidence of ankle fracture

Supplemental Figure 7. Generalized additive model for the effects of selected meteorological factors on the incidence of foot fracture

Supplemental Figure 8. Generalized additive model for the effects of selected meteorological factors on the incidence of spine fracture

Supplemental Figure 9. Levels of the selected meteorological factors and adjusted excess risks of the knee fracture

Supplemental Figure 10. Levels of the selected meteorological factors and adjusted excess risks of the shoulder fracture

Supplemental Figure 11. Levels of the selected meteorological factors and adjusted excess risks of the elbow fracture

Supplemental Figure 12. Levels of the selected meteorological factors and adjusted excess risks of the wrist fracture

Supplemental Figure 13. Levels of the selected meteorological factors and adjusted excess risks of the hand fracture

Supplemental Figure 14. Levels of the selected meteorological factors and adjusted excess risks of the ankle fracture

Supplemental Figure 15. Levels of the selected meteorological factors and adjusted excess risks of the foot fracture

Supplemental Figure 16. Levels of the selected meteorological factors and adjusted excess risks of the spine fracture

BMJ Open BMJ Open Supplemental Table 1. Akaike Information Criterion (AIC) between site of fracture and meteorological factors including air pollutants (MFAPs)

	Hip	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vapor Pressure, Sunshine	197.
-	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	1771
2	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Dugation, Solar Radiation,	196.
	Daily Snow, PM_{10} , $PM_{2.5}$, CO, O_3 , NO_2	
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂	196.
4	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, PN 2.5, CO, NO2	191.
5	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂	189.
6	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5}	188.
7	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂ Image Temperature, Daily Rain, Wind Speed, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Image Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Image Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	188.
8	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	187.
	Knee	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vapgr Pressure, Sunshine	125.
	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	123.
2	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	123.
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM10, PM2.5, CO, NO2	123.
4	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO	123.
5		121.
6	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM _{2.5} , CO	121.
7	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM2.5, CO Volume Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM2.5, CO Volume Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM2.5, CO Volume	119.
	Shoulder	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	151.
	3	
	by copyright	

	BMJ Open 35 mj oppen-2020-0	
	ope e	
	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	
	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation,	
2	Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, NO ₂	149.
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, NO ₂	146.
4	Average Temperature Daily Rain Wind Speed Humidity Daily Snow Cloud PM to PMac CO NO2	146.
5	Average Temperature Daily Pain Wind Speed Humidity Daily Speev PM., PM.,	146.
6	Average Temperature, Daily Rain, Wind Speed, Tulindity, Daily Snow, PM _{2.5}	142.
0		
ſest	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	
	Duration, Solar Radiation, Daily Snow, Cloud, PM_{10} , $PM_{2.5}$, CO, SO ₂ , O ₃ , NO ₂	153.
2	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Vapor Pressure Sunshine Duration,	
	Solar Radiation, Daily Snow, Cloud, PM_{10} , $PM_{2.5}$, CO, NO ₂	153.
3	Average Temperature, Daily Rain, Wind Speed, Dew point Temperature, Vapor Pressure, Sunshine Duration, Daily Stow, Cloud, PM ₁₀ ,	149.
	PM _{2.5} , CO, NO ₂	
4	Average Temperature, Daily Rain, Wind Speed, Dew point Temperature, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} , NO ₂	148.
5	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5}	148.
6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	145.
	Wrist	
ſest	MFAP as effect	AIC
1	א שי יווי א איין א איין א איין א אייע אייע אייע	-
	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	400
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vapgr Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM_{10} , $PM_{2.5}$, CO, SO_2 , O_3 , NO_2	480.
1		
2	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	
23	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	480.
	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM _{2.5} , CO	480. 477.
3	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM _{2.5} , CO	480. 477. 473.
3 4	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} , CO	480. 477. 473. 469.
3 4 5 6	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} Hand	480. 477. 473. 469. 460.
3 4 5	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₂ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} MFAP as effect	480. 477. 473. 469. 460.
3 4 5 6	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₂ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} MFAP as effect	480. 477. 473. 469. 460.
3 4 5 6	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₂ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} MFAP as effect	480. 477. 473. 469. 460.
3 4 5 6	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₂ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} MFAP as effect	480. 477. 473. 469. 460.
3 4 5 6	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₂ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} MFAP as effect	480. 480. 477. 473. 469. 460. AIC

3 4

44 45

0	BMJ Open 2020	
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	1531.9
1	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	1551.5
2	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	1467.
3	Average Temperature, Daily Rain, Wind Speed, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM2.5, CO, 🔄, NO2	1465.
4	Average Temperature, Daily Rain, Wind Speed, Sunshine Duration, Daily Snow, $PM_{2.5}$, CO, NO_2	1455.
5	Average Temperature, Daily Rain, Wind Speed, Daily Snow, $PM_{2.5}$, NO_2	1458.
6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	1452.4
	Ankle	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	237.1
2	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , NO ₂	235.7
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM2.5, CO, NO2	231.2
4	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM _{2.5} , NO ₂	230.3
5	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM _{2.5}	230.2
6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	229.6
	Foot	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vapgr Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	299.2
2	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	290.8
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, Pol 25, CO, SO2, O3, NO2	290.5
4	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PA2.5, CO, NO2	290.3
5	Average Temperature Daily Bein Wind Speed Humidity Daily Speer Cloud DM - CO NO.	289.8
6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} , CO, NO ₂	289.6
7	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	289.1
	Spine d	
	Spine of cred by copyright	
	oyright.	

	BMJ Open 3000000000000000000000000000000000000	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	434.1
2	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	429.2
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PK110, PM2.5, CO, SO2, NO2	425.6
4	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, PM ₁₀ , PM	425.1
5	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂	424.7
6 7	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM _{2.5} , CO Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM _{2.5} G	424.5 422.1
	from http://binjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright	
	6 d by copyright.	

3 4

3/bmjopen-2020-04700

Supplemental Table 2.

			\sim
Nulfivariato analysis of (_ A NI w	uth cubic enlines for site of trac	tura dananding an lage thraud	sh trom /INIX to /III//
		נעדל עלטלחעוווצ טור ומצא נוודטעצ	
Multivariate analysis of GAM w		···· · ··· ··· ··· ··· ··· ··· ··· ···	,

Time	Variables			Нір			14K	Inee	
		RR	ER(%)	95% CI	P-value	RR	ER(%)	95% CI	P-value
	Avg. Temp.	1.0199	1.99	[1.0196-1.0202]	<.0001	1.0162	1.62 20 0.21 .	[1.0159-1.0165]	<.0001
	Daily Rain	1.0033	0.33	[1.0030-1.0036]	<.0001	1.0021		[1.0018-1.0024]	<.0001
Lag 0	Wind Speed	1.0354	3.54	[1.0324-1.0383]	<.0001	1.0242	2.42 Do 1.16 M	[1.0210-1.0275]	<.0001
	Daily Snow	1.0099	0.99	[1.0081-1.0117]	<.0001	1.0116	1.16	[1.0097-1.0135]	<.0001
	PM _{2.5}	1.0055	0.55	[1.0052-1.0057]	<.0001	1.0037	0.37 a	[1.0034-1.0040]	<.0001
	Avg. Temp.	1.0202	2.02	[1.0199-1.0204]	<.0001	1.0163	1.63	[1.0161-1.0166]	<.0001
	Daily Rain	1.0029	0.29	[1.0027-1.0031]	<.0001	1.0015	0.15 중	[1.0013-1.0017]	<.0001
Lag 1	Wind Speed	1.0379	3.79	[1.0359-1.0399]	<.0001	1.0298	0.15 for 2.98 1.15 for	[1.0274-1.0323]	<.0001
	Daily Snow	1.0083	0.83	[1.0070-1.0096]	0.0003	1.0115	1.15 👼	[1.0100-1.0129]	<.0001
	PM _{2.5}	1.0048	0.48	[1.0046-1.0050]	<.0001	1.0037	0.37	[1.0035-1.0040]	<.0001
	Avg. Temp.	1.0200	2.00	[1.0198-1.0203]	<.0001	1.0163	1.63	[1.0161-1.0166]	<.0001
	Daily Rain	1.0030	0.30	[1.0028-1.0032]	0.0002	1.0017	0.17 g	[1.0015-1.0019]	<.0001
Lag 2	Wind Speed	1.0442	4.42	[1.0422-1.0462]	<.0001	1.0343		[1.0319-1.0367]	<.0001
	Daily Snow	1.0058	0.58	[1.0045-1.0071]	<.0001	1.0099	3.43 0.99 0.29	[1.0085-1.0114]	<.0001
	PM _{2.5}	1.0039	0.39	[1.0037-1.0041]	<.0001	1.0029	0.29	[1.0027-1.0032]	0.0005
	Avg. Temp.	1.0200	2.00	[1.0198-1.0202]	<.0001	1.0163	1.63 g	[1.0161-1.0165]	<.0001
	Daily Rain	1.0034	0.34	[1.0032-1.0036]	0.0001	1.0018	0.18 중	[1.0015-1.0020]	0.0002
Lag 3	Wind Speed	1.0180	1.80	[1.0158-1.0201]	<.0001	1.0286	0.18 April 28, 0.58 0.58	[1.0262-1.0310]	<.0001
	Daily Snow	1.0036	0.36	[1.0023-1.0050]	0.0004	1.0058	0.58	[1.0043-1.0074]	<.0001
	PM _{2.5}	1.0034	0.34	[1.0032-1.0037]	<.0001	1.0031	0.30 NO	[1.0028-1.0034]	<.0001
	Avg. Temp.	1.0200	2.00	[1.0198-1.0202]	<.0001	1.0162	1.62 5	[1.0159-1.0164]	<.0001
	Daily Rain	1.0026	0.26	[1.0024-1.0028]	0.0002	1.0020	0.20 Q	[1.0017-1.0022]	0.0005
Lag 4	Wind Speed	1.0096	0.96	[1.0075-1.0118]	<.0001	1.0229	0.20 guest	[1.0204-1.0254]	<.0001
	Daily Snow	1.0052	0.52	[1.0039-1.0066]	<.0001	1.0026	0.26	[1.0010-1.0042]	<.0001
	PM _{2.5}	1.0009	0.09	[1.0007-1.0012]	0.0512	1.0024	0.24	[1.0021-1.0026]	<.0001
Lag 5	Avg. Temp.	1.0101	1.01	[1.0099-1.0103]	<.0001	1.0163	1.63 Ct	[1.0161-1.0165]	<.0001
-				-	7		d be	-	
							by copyright.		
							ору		
							rrigt		

Page	38	of	60
------	----	----	----

					BMJ Open		6/bmjopen-2020-047000 0.17 2.04		
							open		
							-2020		
	Daily Rain	1.0020	0.20	[1.0018-1.0022]	0.0001	1.0017	0.17 0.17	[1.0015-1.0020]	<.0001
	Wind Speed	1.0023	0.23	[1.0001-1.0044]	0.0432	1.0204	2.04	[1.0179-1.0229]	<.0001
	Daily Snow	1.0018	0.18	[1.0003-1.0032]	<.0001	1.0024	0.24 9	[1.0007-1.0041]	0.0218
	PM _{2.5}	1.0006	0.06	[1.0003-1.0008]	<.0001	1.0019	0.19 1		<.0001
	Avg. Temp.	1.0099	0.99	[1.0097-1.0101]	<.0001	1.0163			<.0001
	Daily Rain	1.0019	0.19	[1.0017-1.0021]	0.0002	1.0016	0.16 N	[1.0014-1.0018]	<.0001
Lag 6	Wind Speed	1.0020	0.20	[0.9998-1.0041]	0.4289	1.0103	1.63 June 0.16 2021 1.03 21	[1.0079-1.0128]	<.0001
8 -	Daily Snow	1.0011	0.11	[0.9996-1.0025]	0.5743	1.0007			0.1976
	PM _{2.5}	1.0004	0.04	[1.0002-1.0006]	0.0012	1.0014	0.07 0.14 &	[1.0011-1.0017]	<.0001
	Avg. Temp.	1.0020	0.20	[1.0018-1.0022]	0.0023	1.0163			<.0001
	Daily Rain	1.0016	0.16	[1.0014-1.0018]	0.0005	1.0009	1.63 Noaded from 0.24 from 0.03 M	[1.0006-1.0011]	0.0356
Lag 7	Wind Speed	1.0014	0.14	[0.9993-1.0034]	0.4980	1.0024	0.24 Å	[0.9999-1.0048]	0.5569
e	Daily Snow	1.0009	0.09	[0.9995-1.0023]	0.5533	1.0003	0.03 OT	[0.9988-1.0019]	0.7635
	PM _{2.5}	1.0003	0.03	[1.0001-1.0005]	0.0045	1.0009	0.09		0.0144
-	·· · · · ·		Sh	noulder		07//: •	Elbow		
Time	Variables	RR	ER(%)	95% CI	P-value	RR	ER(%) 8	95% CI	P-value
	Avg. Temp.	1.0134	1.34	[1.0131-1.0137]	<.0001	1.0101	O	[1.0099-1.0104]	<.0001
	Daily Rain	1.0015	0.15	[1.0012-1.0018]	<.0001	1.0015	1.01 0.15 1.24 1.49 0.19	[1.0012-1.0018]	<.0001
Lag 0	Wind Speed	1.0165	1.65	[1.0134-1.0197]	<.0001	1.0124	1.24 8	[1.0093-1.0155]	<.0001
	Daily Snow	1.0128	1.28	[1.0110-1.0146]	<.0001	1.0149	1.49	[1.0132-1.0166]	<.0001
	PM _{2.5}	1.0032	0.32	[1.0029-1.0035]	<.0001	1.0019	0.19	[1.0016-1.0023]	<.0001
	Avg. Temp.	1.0136	1.36	[1.0134-1.0138]	<.0001	1.0103	1.03 0	[1.0101-1.0105]	<.0001
	Daily Rain	1.0013	0.13	[1.0012-1.0015]	<.0001	1.0008	1.03 0.08 1.78 1.44	[1.0006-1.0010]	0.0013
Lag 1	Wind Speed	1.0209	2.09	[1.0189-1.0230]	<.0001	1.0178	1.78 N	[1.0159-1.0196]	<.0001
	Daily Snow	1.0130	1.30	[1.0118-1.0142]	<.0001	1.0144	1.44 2	[1.0134-1.0155]	<.0001
	PM _{2.5}	1.0033	0.33	[1.0031-1.0035]	<.0001	1.0020	0.20 y	[1.0018-1.0022]	<.0001
Lag 2	Avg. Temp.	1.0135	1.35	[1.0133-1.0137]	<.0001	1.0104	1.04 g	[1.0102-1.0105]	<.0001
	Daily Rain	1.0014	0.14	[1.0012-1.0016]	<.0001	1.0008	1.04 guest	[1.0006-1.0009]	0.0017
	Wind Speed	1.0255	2.55	[1.0234-1.0275]	<.0001	1.0201		[1.0182-1.0219]	<.0001
	Daily Snow	1.0112	1.12	[1.0099-1.0124]	<.0001	1.0116	2.01 Protected by copyright	[1.0105-1.0126]	<.0001
					0		ted		
					8		by		
							сор		
							yri		

BMJ Open

					BMJ Open		6/bmjo		
							6/bmjopen-2020-047000 0.21 7000 1.03 00		
	PM _{2.5}	1.0034	0.34	[1.0031-1.0036]	<.0001	1.0021	0.21	[1.0019-1.0023]	0.0005
	Avg. Temp.	1.0135	1.35	[1.0133-1.0137]	<.0001	1.0103	1.03	[1.0101-1.0105]	<.0001
	Daily Rain	1.0012	0.12	[1.0010-1.0013]	0.0006	1.0009	0.09 9	[1.0007-1.0010]	0.0018
Lag 3	Wind Speed	1.0218	2.18	[1.0198-1.0239]	<.0001	1.0248	2.48	[1.0230-1.0266]	<.0001
e	Daily Snow	1.0075	0.75	[1.0062-1.0088]	<.0001	1.0097	0.97 Une	[1.0086-1.0108]	<.0001
	PM _{2.5}	1.0033	0.33	[1.0030-1.0035]	<.0001	1.0019	0.19 Pe	[1.0017-1.0021]	<.0001
	Avg. Temp.	1.0135	1.35	[1.0133-1.0137]	<.0001	1.0101	1.01 2	[1.0099-1.0103]	<.0001
	Daily Rain	1.0014	0.14	[1.0012-1.0016]	<.0001	1.0010	o 10	[1.0009-1.0012]	<.0001
Lag 4	Wind Speed	1.0181	1.81	[1.0160-1.0201]	<.0001	1.0188	1.88 ¥	[1.0170-1.0207]	<.0001
	Daily Snow	1.0028	0.28	[1.0015-1.0042]	<.0001	1.0070	0.70	[1.0059-1.0082]	<.0001
	PM _{2.5}	1.0023	0.23	[1.0021-1.0026]	<.0001	1.0017	0.10 Download 0.70 load 0.17 ded	[1.0015-1.0019]	<.0001
	Avg. Temp.	1.0137	1.37	[1.0135-1.0138]	<.0001	1.0102	1.02 =	[1.0101-1.0104]	<.0001
	Daily Rain	1.0014	0.14	[1.0012-1.0015]	0.0001	1.0009	1.02 from	[1.0007-1.0010]	0.0011
Lag 5	Wind Speed	1.0173	1.73	[1.0152-1.0194]	<.0001	1.0172		[1.0153-1.0190]	<.0001
	Daily Snow	1.0002	0.02	[0.9988-1.0017]	0.1489	1.0013	0.13	[1.0000-1.0025]	0.0561
	PM _{2.5}	1.0017	0.17	[1.0015-1.0020]	<.0001	1.0010	1.72 http://bmj 0.13 0.10 jj	[1.0008-1.0013]	0.0023
	Avg. Temp.	1.0136	1.36	[1.0134-1.0138]	<.0001	1.0103		[1.0101-1.0105]	<.0001
	Daily Rain	1.0008	0.08	[1.0007-1.0010]	0.0028	1.0009	0.09	[1.0007-1.0010]	0.0013
Lag 6	Wind Speed	1.0149	1.49	[1.0129-1.0170]	<.0001	1.0153	1.53 🚊	[1.0135-1.0171]	<.0001
	Daily Snow	1.0001	0.01	[0.9987-1.0015]	0.5731	1.0012	0.12	[0.9999-1.0024]	0.4791
	PM _{2.5}	1.0012	0.12	[1.0010-1.0015]	0.0010	1.0009	1.03 (0.09) 1.53 (0.12) 0.09 (0)	[1.0007-1.0011]	0.0031
	Avg. Temp.	1.0137	1.37	[1.0135-1.0139]	<.0001	1.0103	1.00	[1.0102-1.0105]	<.0001
	Daily Rain	1.0001	0.01	[1.0000-1.0003]	0.0556	1.0007	1.03 April	[1.0005-1.0008]	0.0033
Lag 7	Wind Speed	1.0111	1.11	[1.0090-1.0131]	<.0001	1.0119	1.19 🔀	[1.0100-1.0137]	0.5569
	Daily Snow	1.0001	0.01	[0.9988-1.0015]	0.7631	1.0009	0.09 2024 0.08 2024	[0.9997-1.0021]	0.6583
	PM _{2.5}	1.0003	0.03	[1.0000-1.0005]	0.0612	1.0008	0.08 24	[1.0006-1.0010]	0.0237
Time	Variables		v	Wrist			y gu	land	
	_	RR	ER(%)	95% CI	P-value	RR	ER(%) St	95% CI	P-value
Lag 0	Avg. Temp.	1.0148	1.48	[1.0146-1.0151]	<.0001	1.0203		[1.0195-1.0211]	<.0001
	Daily Rain	1.0023	0.23	[1.0020-1.0025]	<.0001	1.0025	0.25 ec	[1.0016-1.0033]	<.0001
					9		2.03 Protected by copyright.		
							opyri		
							ght.		

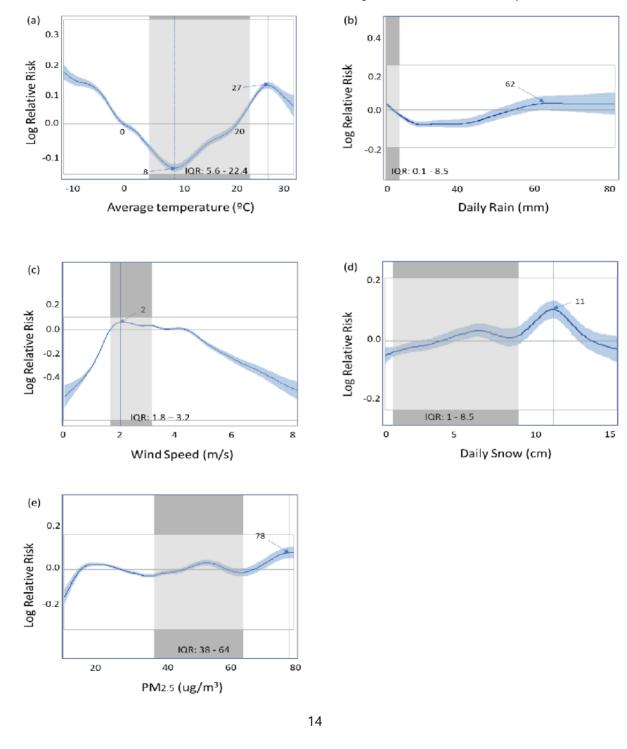
Page 40 o	f 60
-----------	------

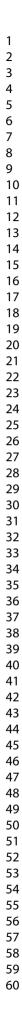
					BMJ Open		6/bmjop		
							5/bmjopen-2020-047000 0.58 2.41		
	Wind Speed	1.0174	1.74	[1.0147-1.0201]	<.0001	1.0058	0.58 7	[0.9959-1.0157]	<.000
	Daily Snow	1.0145	1.45	[1.0133-1.0158]	<.0001	1.0241	2.41 8	[1.0196-1.0285]	<.000
	PM _{2.5}	1.0020	0.20	[1.0017-1.0023]	<.0001	1.0047	0.47 g	[1.0038-1.0056]	<.000
	Avg. Temp.	1.0149	1.49	[1.0148-1.0150]	<.0001	1.0205	2.05	[1.0196-1.0213]	<.000
	Daily Rain	1.0020	0.20	[1.0019-1.0022]	<.0001	1.0027	0.27 June	[1.0019-1.0035]	0.001
Lag 1	Wind Speed	1.0218	2.18	[1.0206-1.0230]	<.0001	1.0157	1.57 ^D	[1.0061-1.0254]	<.000
	Daily Snow	1.0143	1.43	[1.0137-1.0148]	<.0001	1.0237	2.37 2021	[1.0188-1.0285]	<.000
	PM _{2.5}	1.0022	0.22	[1.0020-1.0023]	<.0001	1.0043	0.43	[1.0033-1.0052]	<.000
	Avg. Temp.	1.0149	1.49	[1.0148-1.0151]	<.0001	1.0207		[1.0198-1.0215]	<.000
	Daily Rain	1.0020	0.20	[1.0019-1.0021]	<.0001	1.0014	0.14 No	[1.0006-1.0021]	0.002
Lag 2	Wind Speed	1.0238	2.38	[1.0226-1.0250]	<.0001	1.0237	2.37	[1.0141-1.0332]	<.000
	Daily Snow	1.0116	1.16	[1.0110-1.0122]	<.0001	1.0172	1.72 d	[1.0122-1.0223]	<.000
	PM _{2.5}	1.0021	0.21	[1.0019-1.0022]	<.0001	1.0041	2.07 ownloaded 0.14 loaded from 1.72 0.41 om	[1.0031-1.0050]	<.000
	Avg. Temp.	1.0149	1.49	[1.0147-1.0150]	<.0001	1.0207		[1.0199-1.0215]	<.000
	Daily Rain	1.0018	0.18	[1.0017-1.0019]	<.0001	1.0019	0.19	[1.0012-1.0027]	<.000
Lag 3	Wind Speed	1.0282	2.82	[1.0270-1.0293]	<.0001	1.0308	3.08	[1.0214-1.0402]	<.000
	Daily Snow	1.0099	0.99	[1.0093-1.0105]	<.0001	1.0112	1.12	[1.0060-1.0165]	<.000
	PM _{2.5}	1.0025	0.25	[1.0023-1.0026]	<.0001	1.0049	2.07 http://bmj 0.19 ://bmj 3.08 jopen.b	[1.0039-1.0058]	<.000
	Avg. Temp.	1.0146	1.46	[1.0145-1.0147]	<.0001	1.0205		[1.0197-1.0213]	<.000
	Daily Rain	1.0019	0.19	[1.0018-1.0020]	<.0001	1.0032	0.32	[1.0023-1.0041]	<.000
Lag 4	Wind Speed	1.0197	1.97	[1.0185-1.0209]	<.0001	1.0335	3.35	[1.0240-1.0430]	<.000
	Daily Snow	1.0078	0.78	[1.0071-1.0084]	<.0001	1.0083	0.83	[1.0031-1.0135]	<.000
	PM _{2.5}	1.0025	0.25	[1.0023-1.0026]	<.0001	1.0039	2.05 <u>m</u> 0.32 <u>om</u> on April 0.83 0.39 pril	[1.0030-1.0049]	<.000
	Avg. Temp.	1.0146	1.46	[1.0145-1.0147]	<.0001	1.0205	2.05	[1.0197-1.0213]	<.000
	Daily Rain	1.0017	0.17	[1.0015-1.0018]	<.0001	1.0022		[1.0015-1.0030]	<.000
Lag 5	Wind Speed	1.0173	1.73	[1.0161-1.0185]	<.0001	1.0340	0.22 NO 3.40 4	[1.0245-1.0434]	<.000
	Daily Snow	1.0030	0.30	[1.0024-1.0037]	<.0001	1.0017	0.17 💐	[0.9961-1.0073]	0.146
	PM _{2.5}	1.0012	0.12	[1.0011-1.0014]	<.0001	1.0021	0.21 gu	[1.0010-1.0031]	<.000
Lag 6	Avg. Temp.	1.0146	1.46	[1.0145-1.0147]	<.0001	1.0206	2.06	[1.0198-1.0215]	<.000
	Daily Rain	1.0014	0.14	[1.0013-1.0015]	<.0001	1.0006	0.06 Pr	[0.9999-1.0012]	0.863
	Wind Speed	1.0124	1.24	[1.0112-1.0136]	<.0001	1.0184	1.84 ec	[1.0090-1.0278]	<.000
					10		0.06 1.84 copyright.		
							yrigh		

41 of 60						BMJ Open		6/bmjop		
								5/bmjopen-2020-047000 0.10 0.12		
-		Daily Snow	1.0026	0.26	[1.0020-1.0033]	<.0001	1.0010	0.10 047	[0.9954-1.0066]	0.7764
		PM _{2.5}	1.0010	0.10	[1.0009-1.0012]	0.0009	1.0012	0.12	[1.0002-1.0022]	0.0035
-		Avg. Temp.	1.0146	1.46	[1.0145-1.0147]	<.0001	1.0205	2.05 9	[1.0197-1.0214]	<.0001
		Daily Rain	1.0009	0.09	[1.0007-1.0010]	0.0004	1.0002	0.02	[0.9994-1.0011]	0.7490
	Lag 7	Wind Speed	1.0106	1.06	[1.0094-1.0118]	<.0001	1.0024	0.24 une	[0.9929-1.0118]	0.6931
	e	Daily Snow	1.0014	0.14	[1.0007-1.0020]	0.0012	1.0003	0.03	[0.9949-1.0057]	0.6132
		PM _{2.5}	1.0008	0.08	[1.0007-1.0010]	0.0011	1.0008	0.03 20 0.08 20	[0.9998-1.0018]	0.3885
-	Time	Variables		I	Ankle			Dow	Foot	
		_	RR	ER(%)	95% CI	P-value	RR	ER(%) no	95% CI	P-value
-		Avg. Temp.	1.0144	1.44	[1.0141-1.0146]	<.0001	1.0122		[1.0117-1.0126]	<.0001
		Daily Rain	1.0018	0.18	[1.0015-1.0021]	<.0001	1.0020	1.22 aded from 2.65 1.97 http: 0.41	[1.0015-1.0025]	<.0001
	Lag 0	Wind Speed	1.0210	2.10	[1.0181-1.0239]	<.0001	1.0265	2.65 G	[1.0215-1.0315]	<.0001
		Daily Snow	1.0115	1.15	[1.0100-1.0131]	<.0001	1.0197	1.97	[1.0166-1.0228]	<.0001
_		PM _{2.5}	1.0026	0.26	[1.0023-1.0029]	<.0001	1.0041		[1.0036-1.0046]	<.0001
		Avg. Temp.	1.0144	1.44	[1.0143-1.0146]	<.0001	1.0122	1.22 mi 0.09 pen.bmi 3.58 1.99 mi 0.44 8	[1.0118-1.0127]	<.0001
		Daily Rain	1.0015	0.15	[1.0013-1.0016]	<.0001	1.0009	0.09	[1.0004-1.0013]	0.0022
	Lag 1	Wind Speed	1.0257	2.57	[1.0241-1.0273]	<.0001	1.0358	3.58	[1.0309-1.0407]	<.0001
		Daily Snow	1.0119	1.19	[1.0110-1.0128]	<.0001	1.0199	1.99	[1.0168-1.0229]	<.0001
_		PM _{2.5}	1.0027	0.27	[1.0026-1.0029]	<.0001	1.0044		[1.0039-1.0049]	<.0001
		Avg. Temp.	1.0144	1.44	[1.0143-1.0146]	<.0001	1.0123	1.23 0.12 0.12 0n April 3.60 1.24	[1.0118-1.0127]	<.0001
		Daily Rain	1.0017	0.17	[1.0016-1.0019]	<.0001	1.0012	0.12	[1.0008-1.0016]	0.0031
	Lag 2	Wind Speed	1.0280	2.80	[1.0264-1.0296]	<.0001	1.0360	3.60 pr	[1.0312-1.0409]	<.0001
		Daily Snow	1.0105	1.05	[1.0096-1.0114]	<.0001	1.0124	1.24 28	[1.0091-1.0158]	<.0001
_		PM _{2.5}	1.0030	0.30	[1.0028-1.0032]	<.0001	1.0037	0.3/ N	[1.0032-1.0042]	<.0001
		Avg. Temp.	1.0143	1.43	[1.0141-1.0145]	<.0001	1.0122	1.22 24	[1.0118-1.0127]	<.0001
		Daily Rain	1.0016	0.16	[1.0014-1.0017]	<.0001	1.0010	0.10 g	[1.0006-1.0014]	0.0032
	Lag 3	Wind Speed	1.0280	2.80	[1.0264-1.0296]	<.0001	1.0350	3.50 Gue	[1.0301-1.0399]	<.0001
		Daily Snow	1.0079	0.79	[1.0070-1.0089]	<.0001	1.0069	0.69 St	[1.0034-1.0104]	<.0001
_		PM _{2.5}	1.0032	0.32	[1.0030-1.0034]	<.0001	1.0032	0.32 P	[1.0027-1.0038]	<.0001
_	Lag 4	Avg. Temp.	1.0142	1.42	[1.0140-1.0143]	<.0001	1.0122	1.22 e	[1.0117-1.0127]	<.0001
						11		1.22 tected by copyright.		
								pyright.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

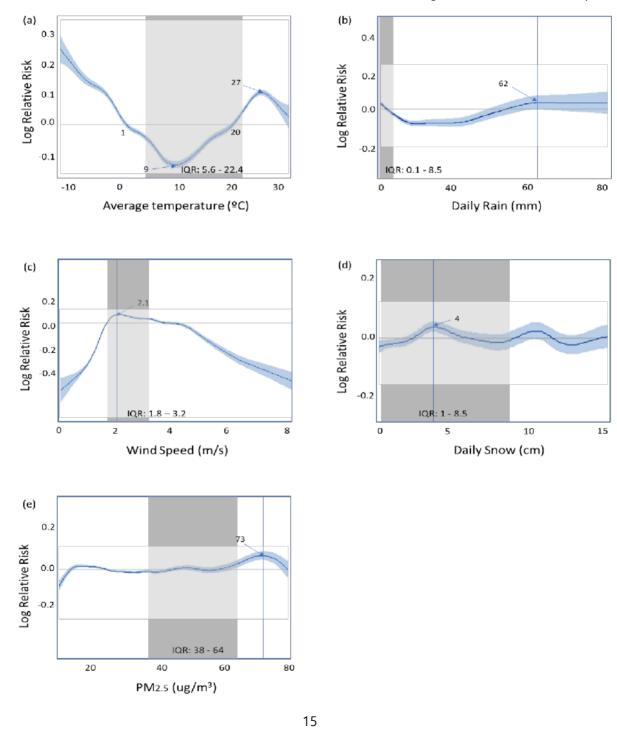
Page	42	of	60
------	----	----	----

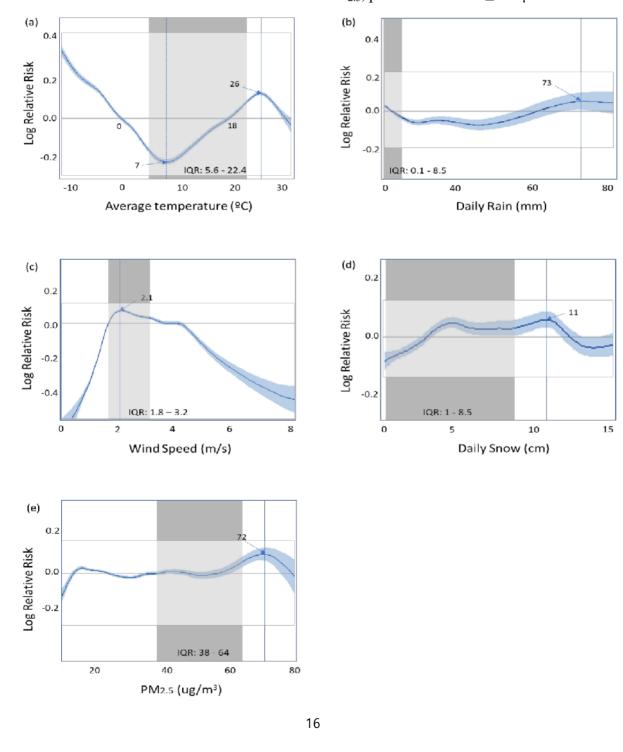

					BMJ Open			6/bmjopen-2020-047000		
								-2020-0		
	Daily Rain	1.0020	0.20	[1.0019-1.0022]	<.0001	1.0015	0.15	470	[1.0010-1.0019]	<.0001
	Wind Speed	1.0207	2.07	[1.0190-1.0223]	<.0001	1.0303	3.03	000	[1.0254-1.0352]	<.0001
	Daily Snow	1.0058	0.58	[1.0048-1.0067]	<.0001	1.0007	0.07	on	[0.9971-1.0044]	0.4638
	PM _{2.5}	1.0027	0.27	[1.0025-1.0029]	<.0001	1.0017	0.17	1	[1.0012-1.0023]	<.0001
	Avg. Temp.	1.0144	1.44	[1.0143-1.0146]	<.0001	1.0123	1.23	Jur	[1.0119-1.0128]	<.0001
	Daily Rain	1.0019	0.19	[1.0018-1.0021]	<.0001	1.0012	0.12	Ne N	[1.0008-1.0016]	0.0029
Lag 5	Wind Speed	1.0200	2.00	[1.0183-1.0216]	<.0001	1.0248	2.48	June 2021.	[1.0198-1.0297]	<.0001
	Daily Snow	1.0016	0.16	[1.0006-1.0027]	0.0004	1.0013	0.13		[0.9971-1.0055]	0.3975
	PM _{2.5}	1.0019	0.19	[1.0017-1.0021]	<.0001	1.0013	0.13	Dow	[1.0008-1.0019]	<.0001
	Avg. Temp.	1.0145	1.45	[1.0144-1.0147]	<.0001	1.0126	1.26		[1.0121-1.0130]	<.0001
	Daily Rain	1.0016	0.16	[1.0015-1.0017]	<.0001	1.0006	0.06	nloaded from	[1.0002-1.0010]	0.0015
Lag 6	Wind Speed	1.0189	1.89	[1.0173-1.0205]	<.0001	1.0230	2.30	d fi	[1.0181-1.0279]	<.0001
	Daily Snow	1.0011	0.11	[1.0001-1.0022]	0.0010	1.0011	0.11	Öm	[0.9970-1.0053]	0.6470
	PM _{2.5}	1.0014	0.14	[1.0012-1.0015]	<.0001	1.0011	0.11	htt	[1.0006-1.0017]	0.0041
	Avg. Temp.	1.0146	1.46	[1.0144-1.0147]	<.0001	1.0127	1.27		[1.0122-1.0131]	<.0001
	Daily Rain	1.0011	0.11	[1.0010-1.0013]	<.0001	1.0004	0.04	bmj.	[1.0000-1.0008]	0.0673
Lag 7	Wind Speed	1.0156	1.56	[1.0139-1.0172]	<.0001	1.0137	1.37	://bmjopen.bmj.	[1.0088-1.0186]	<.0001
	Daily Snow	1.0008	0.08	[0.9998-1.0018]	0.7763	1.0008	0.08	'n.b	[0.9969-1.0047]	0.5796
	PM _{2.5}	1.0005	0.05	[1.0003-1.0006]	0.0015	1.0001	0.01		[0.9995-1.0006]	0.4159
Time	Variables					Spine		:om/ c		
		RR		ER(%)		95% CI		en ⊁	P-value	
	Avg. Temp.	1.010	1	1.01		[1.0099-1.0104]		April 28, 2024 by	<.0001	
	Daily Rain	1.001	0	0.10		[1.0007-1.0012]		28	<.0001	
Lag 0	Wind Speed	1.020		2.09		[1.0183-1.0234]		, 20	<.0001	
	Daily Snow	1.008		0.87		[1.0069-1.0105]		024	<.0001	
	PM _{2.5}	1.002		0.25		[1.0022-1.0027]		by	<.0001	
Lag 1	Avg. Temp.	1.010	1	1.01		[1.0100-1.0102]		gue	<.0001	
	Daily Rain	1.000		0.07		[1.0006-1.0008]		est.	<.0001	
	Wind Speed	1.021		2.14		[1.0203-1.0225]		Pro	<.0001	
	Daily Snow	1.008	5	0.85		[1.0078-1.0093]		otect	<.0001	
					12			guest. Protected by copyright.		
								y c		
								ydc		
								⊐.		


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

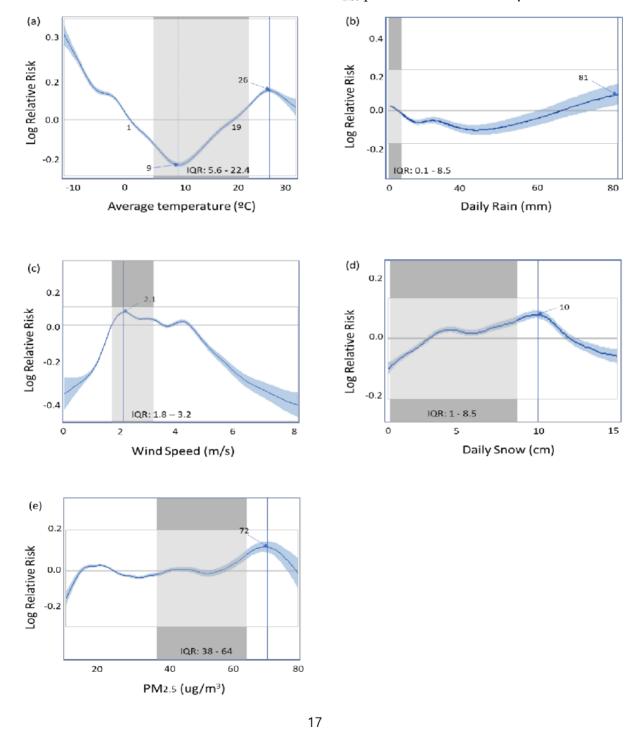
Page 43 of 60

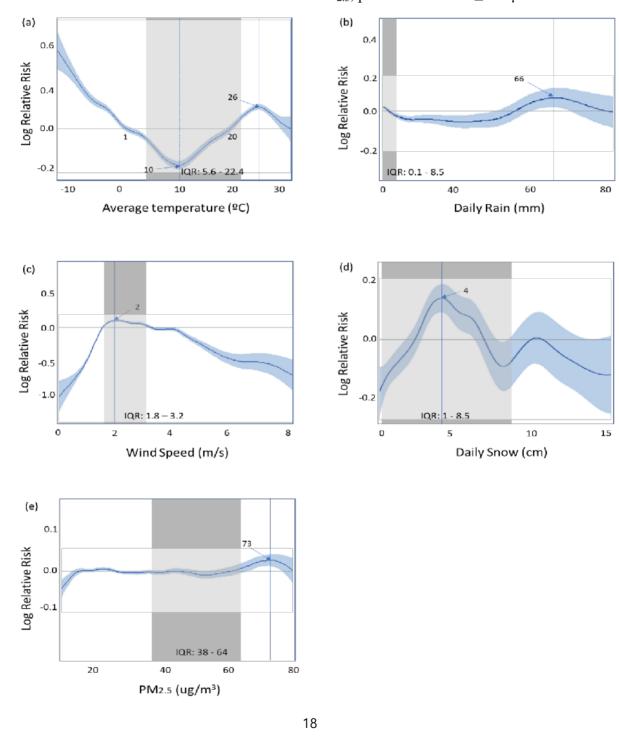
50			<pre></pre>		
					pen-2
					2020-
	PM _{2.5}	1.0025	0.25	[1.0024-1.0026]	04 <.0001
	Avg. Temp.	1.0102	1.02	[1.0101-1.0103]	8 <.0001
	Daily Rain	1.0008	0.08	[1.0007-1.0008]	9 <.0001
Lag 2	Wind Speed	1.0234	2.34	[1.0223-1.0245]	⇒ <.0001
	Daily Snow	1.0077	0.77	[1.0070-1.0085]	un <.0001
	PM _{2.5}	1.0021	0.21	[1.0020-1.0023]	
	Avg. Temp.	1.0102	1.02	[1.0101-1.0103]	×.0001
	Daily Rain	1.0008	0.08	[1.0007-1.0009]	- <.0001
Lag 3	Wind Speed	1.0230	2.30	[1.0220-1.0241]	<.0001
	Daily Snow	1.0056	0.56	[1.0048-1.0063]	no <.0001
	PM _{2.5}	1.0020	0.20	[1.0019-1.0021]	a <.0001
	Avg. Temp.	1.0102	1.02	[1.0101-1.0103]	ä. <.0001
	Daily Rain	1.0009	0.09	[1.0008-1.0010]	
Lag 4	Wind Speed	1.0205	2.05	[1.0194-1.0216]	<.0001
	Daily Snow	1.0046	0.46	[1.0038-1.0054]	<.0001
	PM _{2.5}	1.0016	0.16	[1.0015-1.0017]	<.0001
	Avg. Temp.	1.0103	1.03	[1.0102-1.0104]	No. <.0001
	Daily Rain	1.0009	0.09	[1.0008-1.0010]	en <.0001
Lag 5	Wind Speed	1.0176	1.76	[1.0165-1.0187]	<u> </u>
	Daily Snow	1.0005	0.05	[0.9996-1.0013]	0.6304
	PM _{2.5}	1.0015	0.15	[1.0014-1.0016]	<.0001
	Avg. Temp.	1.0103	1.03	[1.0101-1.0104]	<.0001
	Daily Rain	1.0008	0.08	[1.0007-1.0009]	Pr. <.0001
Lag 6	Wind Speed	1.0105	1.05	[1.0094-1.0116]	<u>≡</u> ≥ <.0001
C	Daily Snow	1.0003	0.03	[0.9995-1.0012]	N 0.7136
	PM _{2.5}	1.0012	0.12	[1.0011-1.0014]	0.7136 24 <.0001
	Avg. Temp.	1.0103	1.03	[1.0102-1.0105]	
	Daily Rain	1.0004	0.04	[1.0003-1.0005]	Q 0.0042
Lag 7	Wind Speed	1.0003	0.03	[0.9992-1.0013]	0.1597
c	Daily Snow	1.0001	0.01	[0.9993-1.0009]	P 0.8279
	PM _{2.5}	1.0002	0.02	[1.0001-1.0003]	0.0089
	2.5				e e
			1	3	by <.0001 guest 0.0042 0.1597 Protect 0.8279 0.0089 ed by copyright.
					ĉ
					фуг
					ġ

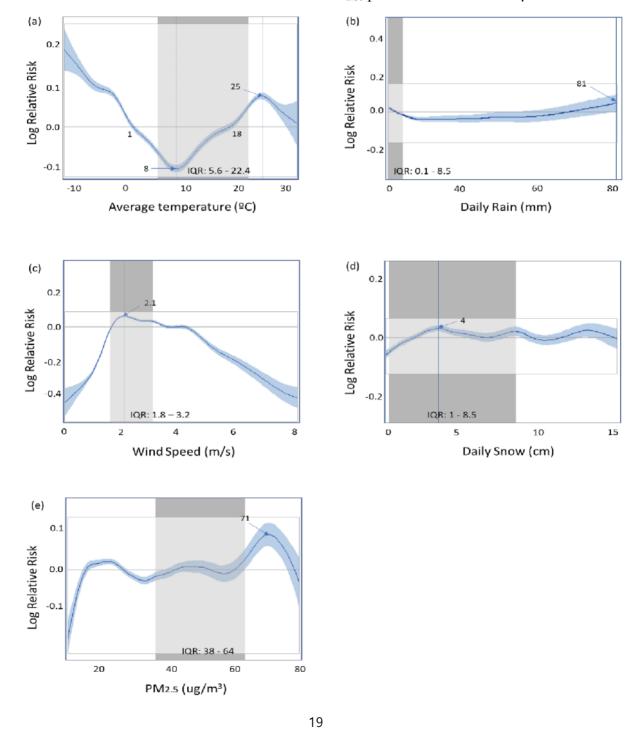

Supplemental Figure 1. Generalized additive model for the effects of selected meteorological factors on the incidence of knee fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for knee fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for knee fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

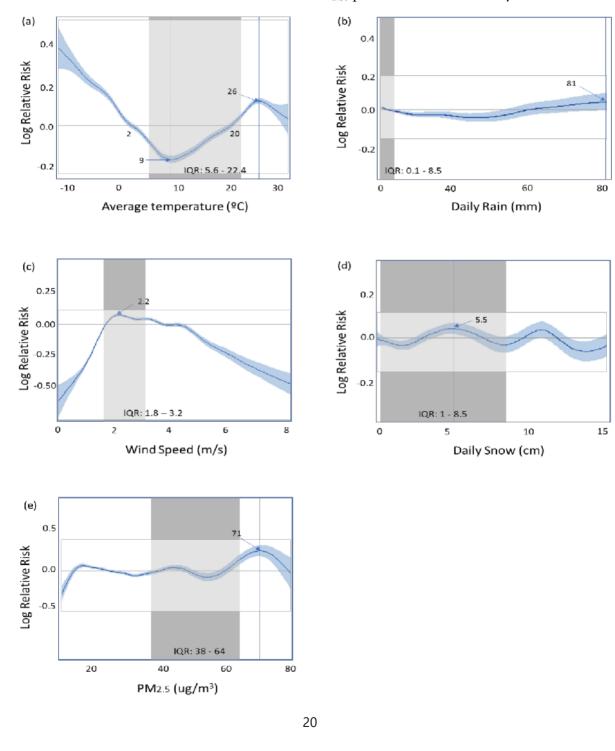


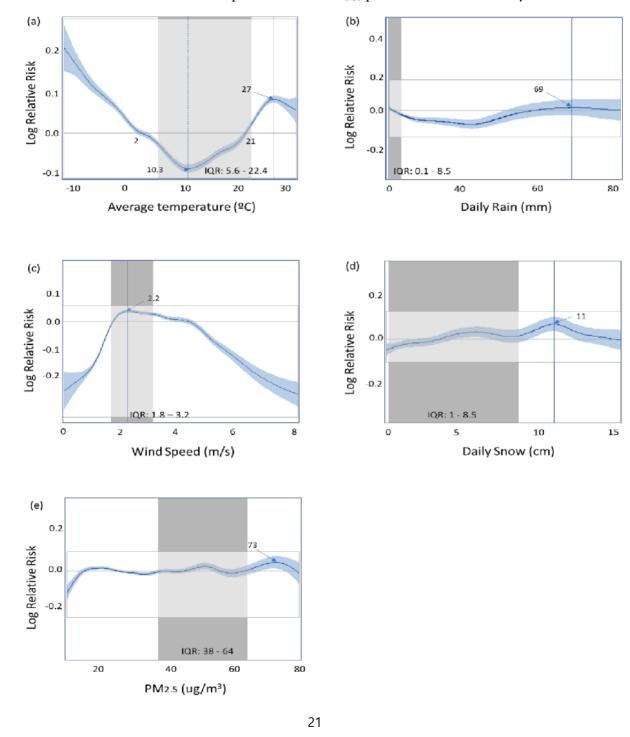
BMJ Open

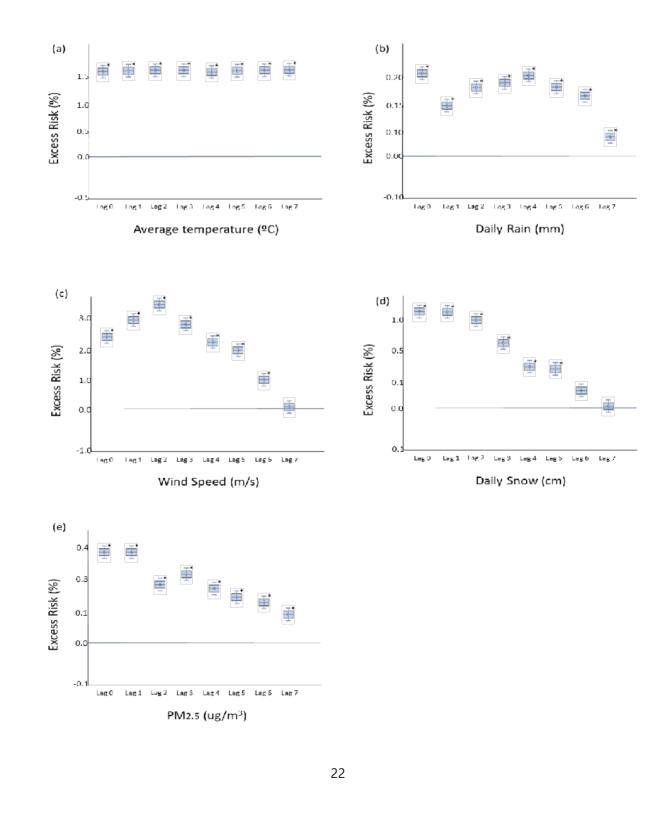

Supplemental Figure 2. Generalized additive model for the effects of selected meteorological factors on the incidence of shoulder fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for shoulder fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for shoulder fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

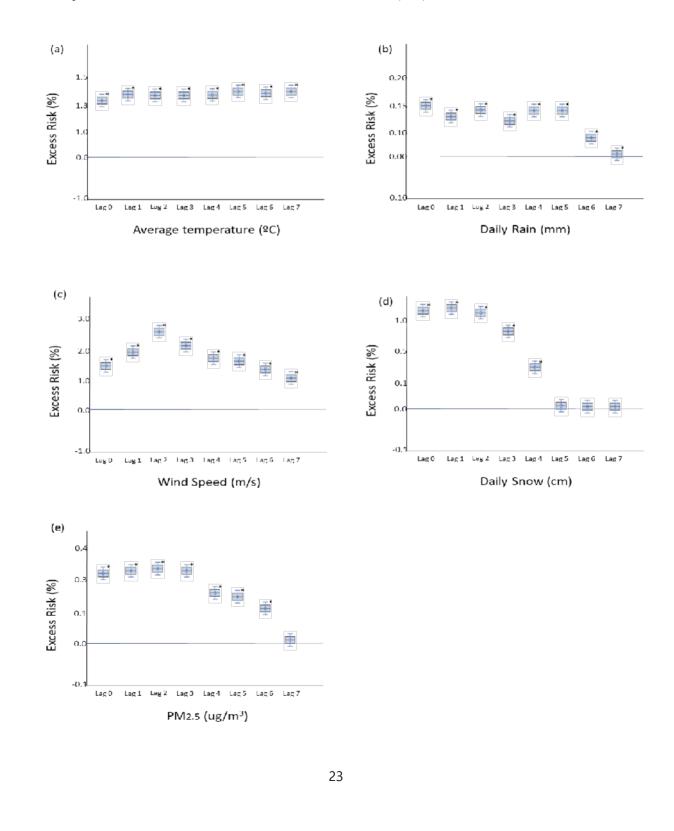

Supplemental Figure 3. Generalized additive model for the effects of selected meteorological factors on the incidence of elbow fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for elbow fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for elbow fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

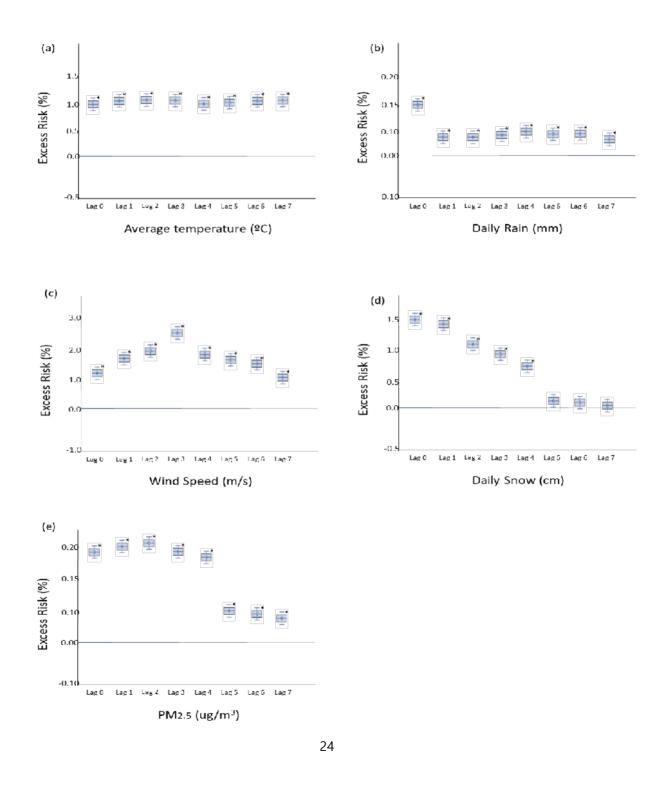

 Supplemental Figure 4. Generalized additive model for the effects of selected meteorological factors on the incidence of wrist fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for wrist fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for wrist fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

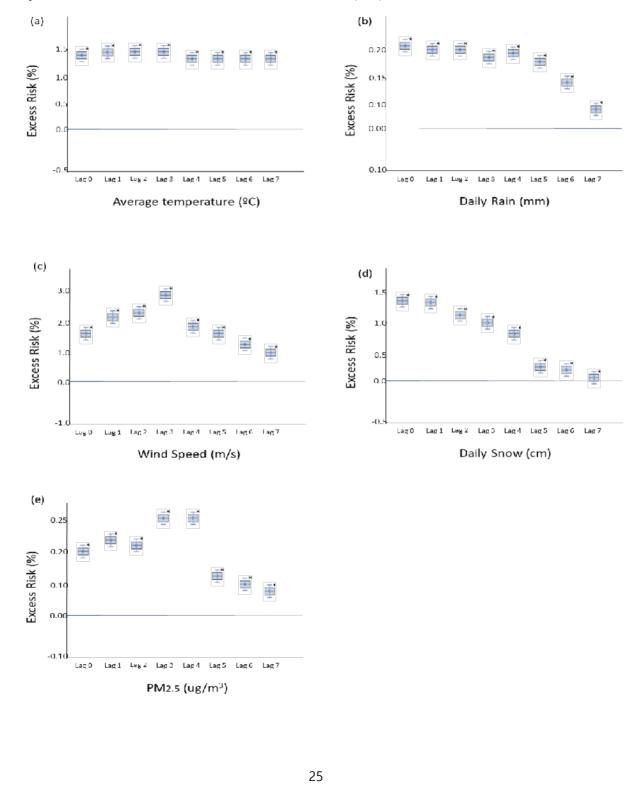

Supplemental Figure 5. Generalized additive model for the effects of selected meteorological factors on the incidence of hand fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for hand fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for hand fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

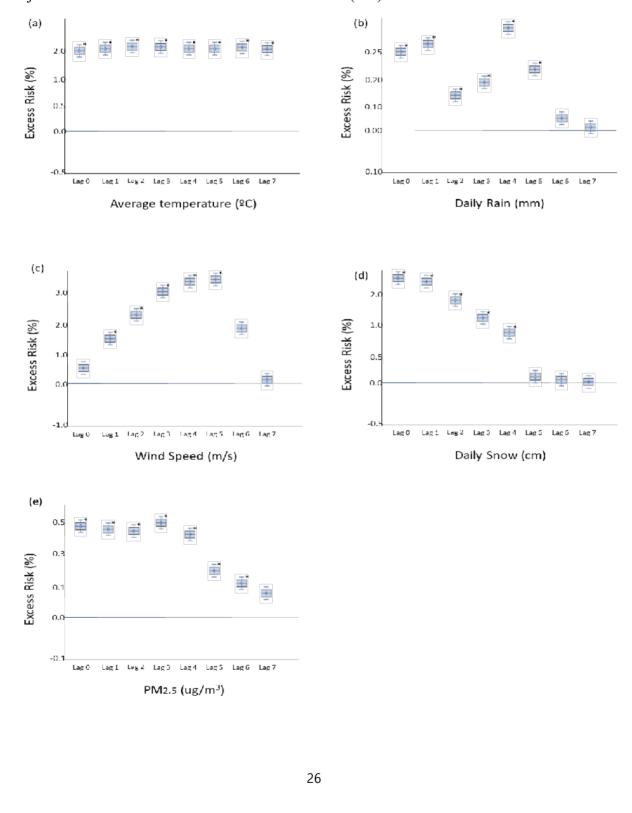

Supplemental Figure 6. Generalized additive model for the effects of selected meteorological factors on the incidence of ankle fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for ankle fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for ankle fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

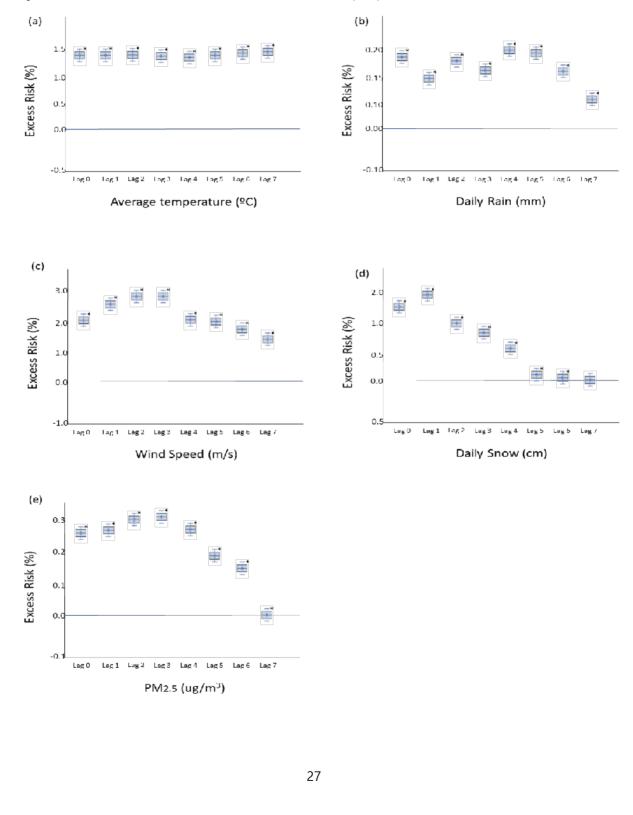

Supplemental Figure 7. Generalized additive model for the effects of selected meteorological factors on the incidence of foot fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for foot fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for foot fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.


Supplemental Figure 8. Generalized additive model for the effects of selected meteorological factors on the incidence of spine fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for spine fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for spine fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

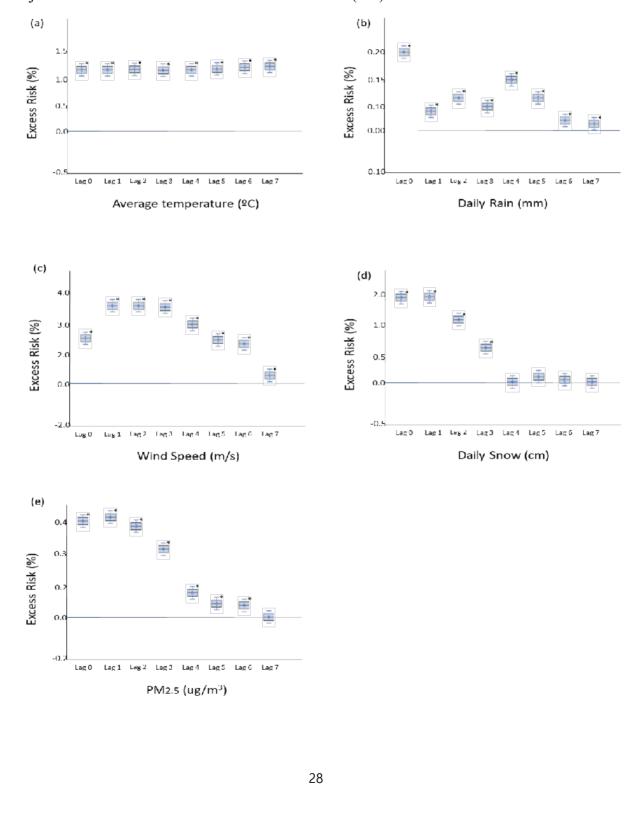

Supplemental Figure 9. Levels of the selected meteorological factors and adjusted excess risks of the knee fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.


Supplemental Figure 10. Levels of the selected meteorological factors and adjusted excess risks of the shoulder fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

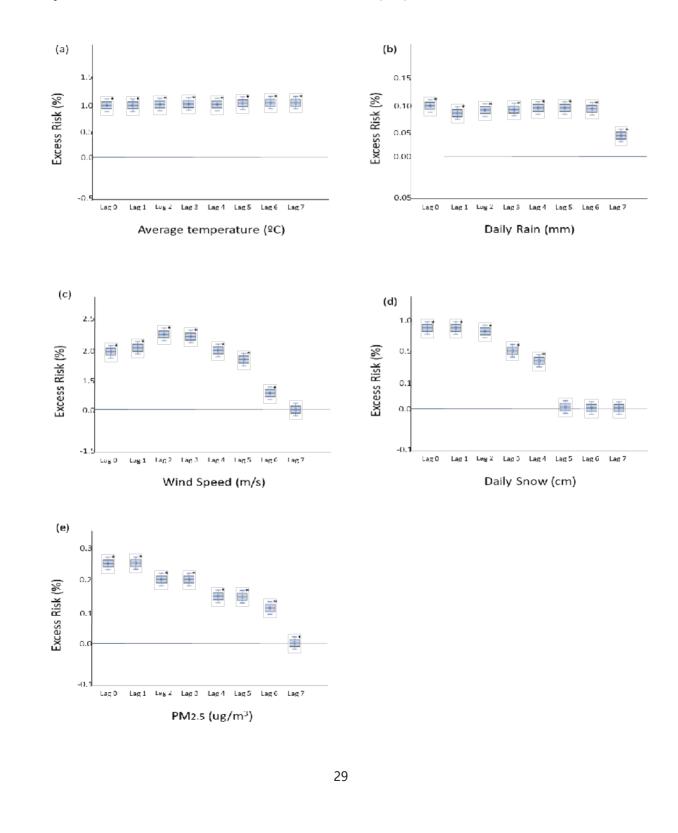

Supplemental Figure 11. Levels of the selected meteorological factors and adjusted excess risks of the elbow fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.


 Supplemental Figure 12. Levels of the selected meteorological factors and adjusted excess risks of the wrist fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

Supplemental Figure 13. Levels of the selected meteorological factors and adjusted excess risks of the hand fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.



 Supplemental Figure 14. Levels of the selected meteorological factors and adjusted excess risks of the ankle fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.



Supplemental Figure 15. Levels of the selected meteorological factors and adjusted excess risks of the foot fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

Supplemental Figure 16. Levels of the selected meteorological factors and adjusted excess risks of the spine fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1,3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	fig1
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7,8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	17
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
		(<u>e</u>) Describe any sensitivity analyses	
Results	1.2 *	(a) Demont numbers of individuals at each store of study.	9
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	fig1
		eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
Descriptions 1-1	1 1 4	(c) Consider use of a flow diagram	9-13
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	1-13
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
	4	(c) Summarise follow-up time (eg, average and total amount)	9-13
Outcome data	15*	Report numbers of outcome events or summary measures over time	13-13

BMJ Open

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	1.
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	1
		analyses	1
Discussion			
Key results	18	Summarise key results with reference to study objectives	14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	1
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	1
		multiplicity of analyses, results from similar studies, and other relevant evidence	1
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	2
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Effect of Meteorological Factors and Air Pollutants on Fractures: A Nationwide Population-based Ecological Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047000.R1
Article Type:	Original research
Date Submitted by the Author:	06-Apr-2021
Complete List of Authors:	Kang, Taewook ; Korea University College of Medicine and School of Medicine, Department of Orthopedics Hong, Jinwook; Gachon University Gil Medical Center, Artificial Intelligence and Big-Data Convergence Center Radnaabaatar, Munkhzul ; Gachon University Gil Medical Center, Artificial Intelligence and Big-Data Convergence Center Park, Si Young ; Korea University College of Medicine and School of Medicine, Department of Orthopedics Jung, Jaehun; Gachon University Gil Medical Center, Artificial Intelligence and Big-Data Convergence Center
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Research methods
Keywords:	EPIDEMIOLOGY, Hip < ORTHOPAEDIC & TRAUMA SURGERY, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

Effect of Meteorological Factors and Air Pollutants on Fractures: A Nationwide Populationbased Ecological Study

Taewook Kang, MD¹, Jinwook Hong, MSF², Munkhzul Radnaabaatar DDS, MPH², Si Young Park, MD, PhD^{1*}, Jaehun Jung, MD, PhD^{2,3*}

¹ Department of Orthopedics, Korea University College of Medicine, Seoul, South Korea ificial Intenne lege of Medicine, Incheon, .. Department of Preventive Medicine, Gachon. .orea 'TK and JH contributed equally to this work. '-atract): 294 ² Artificial Intelligence and Big-Data Convergence Center, Gil Medical Center, Gachon University ³ Department of Preventive Medicine, Gachon University College of Medicine, Incheon, South

* Corresponding authors:

Jaehun Jung, MD, PhD

Department of Preventive Medicine, Gachon University College of Medicine

38-13, Dokjeom-ro 3, Incheon, Korea

1 2 2	
3 4 5 Tel: +82-10-6359-3201	
6 7 Fax: +82-32-458-2608	
8 9 E-mail: eastside1st@gmail.com 10	
11 12	
13 14 Si Young Park, MD, PhD 15	
16 Department of Orthopedics, Korea University College of Medicine 17	
 18 150-7, Anam-dong 5-ga, Seonbuk-gu, Seoul, Korea 19 	
20 21 Tel: +82-02-920-5924	
E-mail: drspine90@kumc.or.kr	
24 25 26	
 Authors' e-mail: thetaewook@gmail.com (TK); awesomehjw@gmail 	.com (JH);
 zulaa0247@korea.ac.kr (MR); drspine90@kumc.or.kr (SYP); eastside1st@gmail.c 	om (J.J)
32 33	
34 35	
36 37	
38 39	
39 40 41 42	
43 44	
45 46	
47 48	
49 50	
51 52 53	
54 2 55 2	
56 57	
585960For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

ABSTRACT

Objective: To determine the association of meteorological factors and air pollutants (MFAPs) with fracture and to estimate the effect size/time lag.

Design: This was a nationwide population-based ecological study from 2008 to 2017.

Setting: Eight large metropolitan areas in Korea.

Participants: Of 8,093,820 patients with fractures reported in the Korea National Health Insurance database, 2,129,955 were analyzed after the dataset containing the patients' data (age, sex, and site of fractures) were merged with MFAPs. Data on meteorological factors, obtained from the National Climate Data Center of the Korea Meteorological Administration. Additionally, data on air pollutants (atmospheric particulate matter of diameter \leq 2.5 µm [PM_{2.5}], PM₁₀, ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were obtained from the Air Korea database.

Primary and secondary outcome measures: We hypothesized that there would be an association between MFAPs and the incidence of fracture. A generalized additive model was used while factoring in the nonlinear relationship between MFAPs and fractures as well as a time lag \leq 7 days. Multivariate analysis was performed. Backward elimination with an Akaike information criterion was used for fitting the multivariate model.

Results: Overall, in eight urban areas, 2,129,955 patients with fractures were finally analyzed. These included 370,344; 187,370; 173,100; 140,358; 246,775; 6,501; 228,346; 57,183; and 719,978 patients with hip, knee, shoulder, elbow, wrist, hand, ankle, foot, and spine fractures,

BMJ Open

respectively. Various MFAPs (average temperature, daily rain, wind speed, daily snow, and PM_{2.5}) showed significant association with fractures; with positive correlations at time lags 7, 5-7, 5-7, 3-7, and 6-7 days, respectively.

Conclusions: Various MFAPs could affect the occurrence of fractures. The average temperature, daily rain, wind speed, daily snow, and $PM_{2.5}$ were most closely associated with fracture; thus, improved public awareness are required on these MFAPs for the clinical prevention and management of fractures.

Article summary

Strengths and limitations of this study

- This study's main strength is that it is the first to investigate the relationship between various MFAPs and fractures.
- Included 2,129,955 sample size, much larger than that of the majority of other studies.
- The limitation included that the study sampled patients who lived in major metropolitan cities, and individual MFAPs exposure levels were not evaluated.
- Individual risk factors could not be covered in the analysis.

Keywords: Meteorological factor, air pollution, particulate matter, weather, fracture.

INTRODUCTION

Fractures are common globally, with reported increasing incidence; they are major public health

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

issues, with a heavy burden on health resources.[1-3] The annual global number of fractures is expected to increase due to aging population.[4] In elderly populations, fractures can not only cause temporary dysfunction but also mortality.[2,5] Advances in surgical techniques and postoperative care have led to lower morbidity and mortality; but recently, attention has turned toward the prevention of fractures. Understanding the circumstances surrounding the occurrence of fractures may provide important information about when and why these injuries occur, and may improve fracture prevention.

The relationship between meteorological factors and air pollutants (MFAPs) and their impacts on fracture incidence have been the subject of many studies; most of which reported that more fractures occur during the winter.[6,7] Several hypotheses have been proposed to explain this association; one hypothesis suggests that MFAPs influence fracture incidence through bone metabolism effects. Reduced exposure to ultraviolet radiation may result in reduced vitamin D synthesis, thereby resulting in vitamin D and parathyroid hormone level changes.[8] It affects bone mineral density (BMD) and muscle strength, which can affect mobility and resistance to falls.[9] However, these effects on bone metabolism are long-term impacts of MFAPs.[10]

Other hypotheses are based on the short-term relationship of MFAPs with the incidence of fracture. Increased risk of falling depends on the weather conditions due to slippery surfaces.[11] Freezing temperatures, rain, snow, and ice may increase the risk of slipping due to the conditions underfoot, and frequent falling is a known risk factor for fractures.[12.13] In low temperatures, there is impaired thermoregulation, hypothermia, and consequent motor coordination deficits that predispose the elderly to falls.[14] Increased risk of falls occurs due to clumsiness in movements. These can explain the many occurrences of fractures, indoors and outdoors.[15] Increased risk of

BMJ Open

falls can also be due to reduced visual acuity.[16] The presence of haze is associated with increased incidence of fracture. In foggy weather, air pollutants (dust, ash, clay, sand, or ambient air pollutants) are suspended in the atmosphere.[17]

However, most previous studies are focused only on hip fracture or total fractures, without the discrimination of the sites of fractures, specific age groups, and the size and location of hospitals.[10,18,19] There is also insufficient nationwide population-based data. Although previous studies provided information on risk factors of fractures and possible preventive measures for fractures; risk factors, age-specific incidence, and prognoses may differ, depending on the site of fracture. Therefore, it is necessary to determine the association of MFAPs with the occurrence of fractures, by fracture site.[5,20,21]

These hypotheses could help in explaining the results of the association between MFAPs and fracture. Understanding the association between MFAPs and incidence of fracture may lead to improved risk management and the development of appropriate interventions. Thus, this study aimed to determine the association of MFAPs with fracture occurrence, and to estimate their effect size and lag time.

MATERIAL AND METHODS

Data acquisition

It should be mentioned that the study methodology was based on the authors' previous study.[22] The records of patients with fractures were provided by the National Health Insurance Service (NHIS), a government-affiliated agency in Korea. We retrieved the clinical data on bone fractures for both inpatients and outpatients between 2008 and 2017. The sites of bone fractures are as

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyrigh:

defined in the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes with surgical codes: hip (S72.0-S72.3 and S72.7-S72.9); knee (S72.4 and S82.0-S82.2); shoulder (S42.0-S42.3); elbow (S42.4, S52.0-S52.4, and S52.7-S52.9); wrist (S52.5-S52.6); hand (S62 and T10); ankle (S82.3, and S82.5-S82.6); foot (S92, and T12); and spine (S32.0-S32.2, S32.7-S32.8, S22.0-S22.1, and T08). During the study period (2008-2017), we collected 8,093,820 diagnoses of patients with bone fractures and extracted data from the major metropolitan areas, including Seoul, Inchon, Daejeon, Gwangju, Daegu, Ulsan, Busan, and Jeju in Korea. The number of all the patients with fractures in 8 urban areas was 2,129,955 after the dataset containing the patients' data were merged with MFAPs. Data on the general meteorological factors were obtained from the Korea Meteorological Administration National Climate Data Center while those of air pollutants, such as particulate matter, carbon monoxide, and ozone were from Air 21R Korea, during the same period.

Ethical consideration

The study was reviewed and exempted from the requirement of written informed consent by the Institutional Review Board of Gachon University Gil Medical Center (approval number:GCIRB2019-039), which was waived due to the retrospective nature of this study. The study methods were carried out based on the Declaration of Helsinki.

Patient and public involvement

The patients and the public were not involved in the study.

Statistical analysis

Statistical analyses were conducted in SAS version 9.4 for Windows (SAS Institute, Cary, NC). The results are presented as the relative risk ratio (RR) with 95% confidence intervals (CIs). A *P*-value of less than 0.05 was considered significant.

Models

We performed a time-series analysis that mainly used a generalized additive Poisson regression model (GAM) to control for trends, seasonality, covariates, and the day of the week. Meteorological and air pollutant data were used to calculate the daily average, excluding the outliers in pollution variables on the days when the levels of particulate matter $\leq 2.5 \,\mu\text{m}$ in diameter (PM_{2.5}) was > 120 $\mu\text{m/m}^3$. In the time-series analysis, GAM leads to unstable estimates due to autocorrelation between meteorological factors and the sites of bone fractures. Thus, we considered that the time lags until the autocorrelation are 'white noise,' shown 7 days after the sites of the bone fracture occurrences. The sum of autocorrelation terms was included as a covariate in GAM. Moreover, we compared the Akaike Information Criterion (AIC) value among meteorological factors and air pollutants for each candidate model using backward elimination for a better fit of the model. Each fracture site had the lowest AIC value when the model included average temperature (AT), daily rain (DR), wind speed (WS), daily snow (DS), and PM_{2.5}. Our final multivariable model is given as follows;

 $Log[E(Y)] = \alpha_0 + S (AT, df = 9) + S (DR, df = 9) + S (WS, df = 9) + S (DS, df = 9) + S (PM_{2.5}, df = 9) + offset (log (province population)) + \gamma (day of week) + \gamma (year) + \sum_{1 \le \theta \le 7} AR_7$

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyrigh:

where Log[E(Y)] is the logged expected number of the daily fracture occurrences, α_0 is the intercept, *S* are the smooth functions of the meteorological factors using natural cubic splines, *offset* is for the provincial population; γ is the indicator variable for the day of the week and year, while overall autocorrelation effect can be expressed as AR₁+...+AR₇ for 7 lag days.

RESULTS

From a total of 8,093,820 cases of fractures identified during the 10-year study period in 8 urban areas, there were 2,129,955 patients with fractures overall. These included 370,344; 187,370; 173,100; 140,358; 246,775; 6,501; 228,346; 57,183; and 719,978 patients with hip, knee, shoulder, elbow, wrist, hand, ankle, foot, and spine fractures, respectively (Figure 1). Of all the fractures, the spine (33.8%) and hip (17.4%) fractures had the largest proportions. The incidence of fractures increased continuously over the study period. Summaries of the number of fractures by age and sex, are presented in Figure 2. And the mean and SDs of MFAPs data, by years of exposure to MFAPs, are presented in Supplemental Table 1. Among the 13 MFAPs, AT, DR, WS, DS, and PM_{2.5} had the lowest AIC and were selected for further analyses (Supplemental Table 2). Models including these five selected MFAPs showed statistically significant association with the incidence of fracture.

The predictive models for hip fracture incidence using the univariate GAM are shown in Figure 3. AT showed a typical significantly inverted U-shape correlation (P< .001), and fracture was higher in both extremes of AT. A negative risk was seen, from -2°C to 21°C, with the highest risk at -7°C. Furthermore, there was an abrupt increase in the risk of hip fracture at extreme temperatures (<-2°C and >21°C). The risk associated with rising DR constantly increased, with a

linear correlation, with the incidence of hip fractures (P<.001). DR had a negative and positive relative risks at <60 mm and >60 mm, respectively. There was a significant association between hip fracture and WS (P<.001), with the highest risk at 1.9 m/s². There was a significant association between hip fracture and DS (P<.001), with a gradual S-shape curve. Moreover, there was a significant association between hip fracture and PM_{2.5} levels (P<.001). An excess risk was seen in the most frequently observed interval (interquartile range [IQR]: 38–64 µg/m³).

Fractures at all other sites showed consistent patterns in relation to MFAPs (Supplemental Figures 1-8).

For the five selected variables, time lags were analyzed using multivariate GAM to identify in which prolonged exposure time lag for each variable affects the incidence of fracture (Supplemental Table 3). All the five selected MFAPs showed a maximum lag period of 7 days in the impulse response functions analysis, with no further effect beyond this time point. The boxplot models of the estimated risk for fracture for the five MFAPs are shown in Figure 4.

The multivariate analyses provided the time lags for the effects of the MFAPs on the risk of hip fracture. An increase in AT reflected a significant increase in the risk of hip fracture until 7 days later. The effect of DR, WS, DS, and PM_{2.5} were inversely correlated with the lag time with significantly positive associations, 5–7 days before the occurrence of hip fracture.

The results for the time lags also showed consistent patterns in fractures at all other sites (Supplemental Figures 9-16).

DISCUSSION

In our analysis of the nationwide data of the association between fracture and MFAPs, we found

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

AT, DR, WS, DS, and PM_{2.5} to be closely associated with fracture, among various MFAPs. These selected MFAPs were shown to affect fractures, up to 7 days later. Our evaluation was based on the short-term relationship between the daily variations in different MFAPs and the daily incidence of fractures, which occurred due to the increased risk of falling from adverse MFAPs. This would explain the significantly positive correlations between fractures and several MFAPs. Our study strengthens the importance of the association of various MFAPs in the incidence of fractures. Fractures at all other sites showed a consistent pattern in relation to MFAPs.

Globally, fractures are important public health problems because of the related morbidity and mortality, diminished health-related quality of life, and associated costs. Despite the development of effective surgical treatments, the cost of surgery and subsequent disabilities, make the prevention of fractures an integral part of any strategy to reduce the impact of fractures, especially considering the aging trend of the population.[23]

Most fractures are not due to a single cause, but from multiple interactions between individuals and the environment.[24] The reason for the increased number of fractures in adverse MFAPs is not well understood. Recent studies have shown that seasonal patterns observed in fractures may be related to weather patterns such as temperature, snow, or ice.[13,25] However, these previous studies reported associations between fractures and weather data driven by the seasonal factors, not by the daily variability in incidence of fractures. Moreover, analyses of the relationship between fractures and MFAPs using day as the unit of analysis are very rare in the literature.

Several mechanisms have been proposed for the short-term relationship between incidence of fractures and various MFAPs. The mechanisms of fractures in each site appeared to be similar, because fractures at all other sites showed a consistent pattern in relation to MFAPs.

AT, DR, WS, and DS were shown in our study to correlate with a rise in incidence of fractures. Past research has shown that slippery conditions greatly enhance the incidence of fractures, explaining this relationship.[26] DR had a negative relative risk at >60 mm and a relatively positive risk at <60 mm. This can be explained by the fact that when it rains, although people do not go outside; however, with more rain, the road becomes more slippery and traffic accidents increase. DS showed a gradual S-shape curve, or an irregular pattern, due to the few days of snow. Jacobsen et al. associated MFAPs (snow and ice) with the incidence of hip fractures, and observed a significant increase in its incidents, consistent with that with frozen rain.[6] Levy et al. reported a significant increase in the incidence of hip fractures on days with freezing precipitation.[25] Lau et al. concluded that AT is a more important independent risk factor of hip fracture.[27]

We found that AT was closely related to a higher incidence of fractures. A possible mechanism is that weather conditions affect activity levels.[28] Lower temperatures is a cause of blood pressure and hemodynamic changes, and dexterity decreases, leading to increased falls and fractures.[29] It can also reduce physical activity, leading to impaired coordination and consequently, bone fragility.[30] The more cold people feel, the more likely they are to wear extra clothes, which may make them clumsier. Darker and colder weather may increase the number of falls.[15] Even though many falls occur indoors, changes in activity levels due to prevailing weather conditions lead to changes in the risk of falls and fracture rates. These provides plausible explanations for why fracture rates are higher on cold days.[28] BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

Several studies have included the wind as an MFAP variable, in their analyses. One possible explanation could be that the greater the exposure to the wind, the greater the risk of falling. Lau et al. found an excessive incidence of hip fractures in more windy days.[27] Mirchandani et al.

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

found a significant correlation between WS and the incidence of hip fractures.[30] Jacobsen et al. observed an increase in the risk of hip fractures with high WS days.[6] Tenias et al. also confirmed increased hip fracture risk in more windy days.[23]

The mechanisms of the relationship between air pollution and incidence of fracture is still unclear. Several studies have investigated the possible relationship between air pollution, BMD, and fractures.[31-33] Alvaer et al. found associations between osteoporosis, forearm fractures, and air pollution. An inverse association was found between BMD and air pollution.[32] Prada et al. found an association between long-term exposure to PM_{2.5} and osteoporosis-related fractures.[34] Chang et al. showed a tendency of increase in association between air pollution and risk of osteoporosis, suggesting that exposure to air pollution could increase the risk of osteoporosis.[31] Therefore, if reduced bone resistance is the mechanism by which air pollution is involved in hip fracture, there would be no effect in the short-term.

What we are actually observing is that air pollution increases the risk of falls.[17] Reduced visual acuity has long been regarded as a risk factor for fracture.[18,35] The reduced hours of sunlight and increased air pollution reduce visual acuity, which predisposes to falls and hip fracture.[16] In a large-scale cohort study, reduced visual acuity increased the likelihood of falls and fractures in the elderly population.[18] Also, acute exposure to PM_{2.5} can stimulate the autonomic nervous system (ANS), increasing the risk of arrhythmia, orthostasis, and syncope.[36] Therefore, PM_{2.5} exposure has been associated with changes in heart rate in the elderly.[37] Reduced heart rate variability due to impairment of ANS could increase the risk of falls.

Our observations on the association of MFAPs with fractures can help in developing the prevention strategies for fractures. The elevated incidence during winter implies that we should

Page 15 of 57

BMJ Open

raise awareness on the risk of slippery conditions, the importance of keeping warm, improved lighting conditions, and avoiding the wearing of cumbersome clothing.[38]

There were also some limitations in our study. First, we sampled patients who lived in major metropolitan cities. Weather stations are sparsely placed in rural areas, thus we ruled to exclude rural areas owing to the concern of unreliable data. Second, individual MFAPs exposure levels were not evaluated, and we assumed that individuals were exposed to identical environments. Therefore, the possibility of ecological fallacy should be noted. Third, individual risk factors such as comorbidities and lifestyle, which would affect fracture occurrence could not be controlled in the analysis. Fourth, the decision of whether fracture occurred was only dependent on the diagnostic codes, thus the validity of healthcare claims data diagnosis on fracture is debatable. We included only inpatient records to reduce the possibility of coding inaccuracies in our dataset. Painless, undiagnosed, and self-resolved fractures were not included, and there may be a difference between the actual incidence of fracture and the onset of symptoms. Fifth, if citizens tend to stay indoors depending on the level of fine dust, potential bias can occur when special weather forecasts are announced such as by the fine dust warning service. Moreover, discordance between the actual residential areas and weather stations could be found. Finally, the mechanisms underlying the effect of each MFAPs on fracture occurrence could not be identified.

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

However, our study has several strengths. First, this study was the first to investigate the relationship between various MFAPs and fractures. Second, because we used national-level NHIS data, we had the advantage that our study included a sample size of 2,129,955, much larger than that in the majority of other studies. As a result of the single-payer universal healthcare coverage in Korea, the catchment of fractures was expected to be very high. These facilitated the analyses

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

of a large and credible dataset, which is often hard to implement in other countries. Third, we investigated the relationship between all 13 MFAPs portrayed by the Korean Meteorological Administration, and this allowed a plausible review of the real-world influences and interactions of PM_{2.5} with diverse MFAPs. Fourth, the current study was representative of the capital city and seven other areas in Korea, which could reduce bias by diminishing the region-specific effects such as race, ethnicity, economic levels, and accessibility to the hospitals. Fifth, time series Poisson analysis was used with GAM to consider the interaction among MFAPs in terms of fracture occurrence.

CONCLUSIONS

In conclusion, we investigated the relationship between MFAPs and fracture based on healthcare claims and data from a meteorological database. AT, DR, WS, DS, and PM_{2.5} were identified as MFAPs that were most closely associated with fracture. These MFAPs maintained influence for a maximum of 7 days. Visualization of the effect-time association of MFAPs with fracture was possible in the model. In the future, further confirmatory studies and improved public awareness regarding the MFAPs that are related to the incidence of fracture are needed for the clinical prevention and management of fractures.

Acknowledgements

Ethics approval and consent to participate: The study was reviewed and exempted from the requirement of written informed consent by the Institutional Review Board of Gachon University Gil Medical Center (approval number:GCIRB2019-039), which was waived due to the

BMJ Open

retrospective nature of this study. The study methods were carried out based on the Declaration of Helsinki.

Availability of data and materials: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests: None declared.

Funding: This study was supported by grants from the Gachon University Gil Medical Center [2019-11]

Authors' contributions: Conception and design (T.K., J.J.). Collection and assembly of data (J.H., J.J.). Data analysis and interpretation (T.K., J.H., J.J.). Writing manuscript (M.R., T.K., S.Y.P.) Final approval of manuscript (All authors). Accountable for all aspects of the work (All authors)

BMJ Open: first published as 10.1136/bmjopen-2020-047000 on 11 June 2021. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by guest. Protected by copyright

References

1.	Lee YK, Kim JW, Lee MH, et al. Trend in the Age-Adjusted Incidence of Hip Fractures
	in South Korea: Systematic Review. Clin Orthop Surg 2017;9:420-23.
2.	Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet 2019;393:364-76.
3.	Braithwaite RS, Col NF, Wong JB. Estimating hip fracture morbidity, mortality and costs.
	J Am Geriatr Soc 2003;51:364-70.
4.	Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet
	2002;359:1761-7.
5.	Abrahamsen B, van Staa T, Ariely R, et al. Excess mortality following hip fracture: a
	systematic epidemiological review. Osteoporos Int 2009;20:1633-50.
6.	Jacobsen SJ, Sargent DJ, Atkinson EJ, et al 3rd. Population-based study of the contribution
	of weather to hip fracture seasonality. Am J Epidemiol 1995;141:79-83.
7.	Caniggia M, Morreale P. Epidemiology of hip fractures in Siena, Italy, 1975-1985. Clin
	Orthop Relat Res 1989:131-8.
8.	Pasco JA, Henry MJ, Kotowicz MA, et al. Seasonal periodicity of serum vitamin D and
	parathyroid hormone, bone resorption, and fractures: the Geelong Osteoporosis Study. J
	Bone Miner Res 2004;19:752-8.
0	
9.	Dukas L, Staehelin HB, Schacht E, et al. Better functional mobility in community-
	dwelling elderly is related to D-hormone serum levels and to daily calcium intake. J Nutr
	Health Aging 2005;9:347-51.
10.	Kung AW, Lee KK, Ho AY, et al. Ten-year risk of osteoporotic fractures in
	17

BMJ Open

	postmenopausal Chinese women according to clinical risk factors and BMD T-scores: a
	prospective study. J Bone Miner Res 2007;22:1080-7.
11.	Roman Ortiz C, Tenias JM, Estarlich M, et al. Systematic review of the association
	between climate and hip fractures. Int J Biometeorol 2015;59:1511-22.
12.	Burger H, de Laet CE, Weel AE, et al. Added value of bone mineral density in hip fracture
	risk scores. <i>Bone</i> 1999;25:369-74.
13.	Bulajic-Kopjar M. Seasonal variations in incidence of fractures among elderly people. Inj
	<i>Prev</i> 2000;6:16-9.
14.	Collins KJ, Easton JC, Belfield-Smith H,et al. Effects of age on body temperature and
	blood pressure in cold environments. Clin Sci (Lond) 1985;69:465-70.
15.	Douglas S, Bunyan A, Chiu KH, et al. Seasonal variation of hip fracture at three latitudes.
	<i>Injury</i> 2000;31:11-9.
16.	Jacobsen SJ, Goldberg J, Miles TP, et al. Seasonal variation in the incidence of hip fracture
	among white persons aged 65 years and older in the United States, 1984-1987. Am J
	<i>Epidemiol</i> 1991;133:996-1004.
17.	Mazzucchelli R, Villarias NC, Fernandez EP, et al. Short-term association between
	outdoor air pollution and osteoporotic hip fracture. Osteoporos Int 2018;29:2231-41.
18.	Hong T, Mitchell P, Burlutsky G, et al. Visual impairment and the incidence of falls and
	fractures among older people: longitudinal findings from the Blue Mountains Eye Study.
	Invest Ophthalmol Vis Sci 2014;55:7589-93.
19.	Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white
	women. N Engl J Med 1995;332:767-73.
	18

20.	Nilsson M, Eriksson J, Larsson B, et al. Fall Risk Assessment Predicts Fall-Related Injury,
	Hip Fracture, and Head Injury in Older Adults. J Am Geriatr Soc 2016;64:2242-50.
21.	Baron JA, Karagas M, Barrett J, et al. Basic epidemiology of fractures of the upper and
	lower limb among Americans over 65 years of age. Epidemiology 1996;7:612-8.
22.	Kim J, Hong J, Jung J, et al. Effect of meteorological factors and air pollutants on out-of-
	hospital cardiac arrests: a time series analysis. Heart 2020;106:1218-27.
23.	Tenias JM, Estarlich M, Fuentes-Leonarte V, et al. Short-term relationship between
	meteorological variables and hip fractures: an analysis carried out in a health area of the
	Autonomous Region of Valencia, Spain (1996-2005). Bone 2009;45:794-8.
24.	Tinetti ME. Clinical practice. Preventing falls in elderly persons. N Engl J Med
	2003;348:42-9.
25.	Levy AR, Bensimon DR, Mayo NE, et al. Inclement weather and the risk of hip fracture.
	Epidemiology 1998;9:172-7.
26.	Campbell AJ, Spears GF, Borrie MJ, et al. Falls, elderly women and the cold. Gerontology
	1988;34:205-8.
27.	Lau EM, Gillespie BG, Valenti L, et al. The seasonality of hip fracture and its relationship
	with weather conditions in New South Wales. Aust J Public Health 1995;19:76-80.
28.	Turner RM, Hayen A, Dunsmuir WT, et al. Air temperature and the incidence of fall-
	related hip fracture hospitalisations in older people. Osteoporos Int 2011;22:1183-9.
29.	Riley MW, Cochran DJ. Dexterity performance and reduced ambient temperature. Hum
	Factorz 1984;26:207-14.
30.	Mirchandani S, Aharonoff GB, Hiebert R, et al. The effects of weather and seasonality on
	19

BMJ Open

	hip fracture incidence in older adults. Orthopedics 2005;28:149-55.
31.	Chang KH, Chang MY, Muo CH, et al. Exposure to air pollution increases the
	osteoporosis: a nationwide longitudinal study. Medicine (Baltimore) 2015;94:e733
32.	Alvaer K, Meyer HE, Falch JA, et al. Outdoor air pollution and bone mineral den
	elderly men - the Oslo Health Study. Osteoporos Int 2007;18:1669-74.
33.	Alver K, Meyer HE, Falch JA, et al. Outdoor air pollution, bone density and self-re
	forearm fracture: the Oslo Health Study. Osteoporos Int 2010;21:1751-60.
34.	Prada D, Zhong J, Colicino E, et al.
	Association of air particulate pollution with bone loss over time and bone fractur
	analysis of data from two independent studies. Lancet Planet Health 2017;1:e337
35.	Luukinen H, Koski K, Laippala P, et al. Factors predicting fractures during falling in
	among home-dwelling older adults. J Am Geriatr Soc 1997;45:1302-9.
36.	Liao D, Duan Y, Whitsel EA, et al. Association of higher levels of ambient criteria
	pollutants with impaired cardiac autonomic control: a population-based study. Am
	journal of epidemiology 2004;159:768-77.
37.	Devlin RB, Ghio AJ, Kehrl H, et al. Elderly humans exposed to concentrated air po
	particles have decreased heart rate variability. Eur Respir J Suppl 2003;40:76s-80s
38.	Koren L, Barak A, Norman D, et al. Effect of seasonality, weather and holidays
	incidence of proximal hip fracture. Isr Med Assoc J 2014;16:299-302.

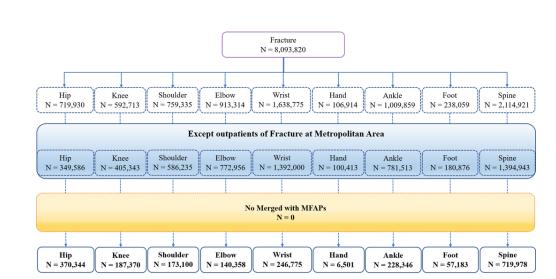
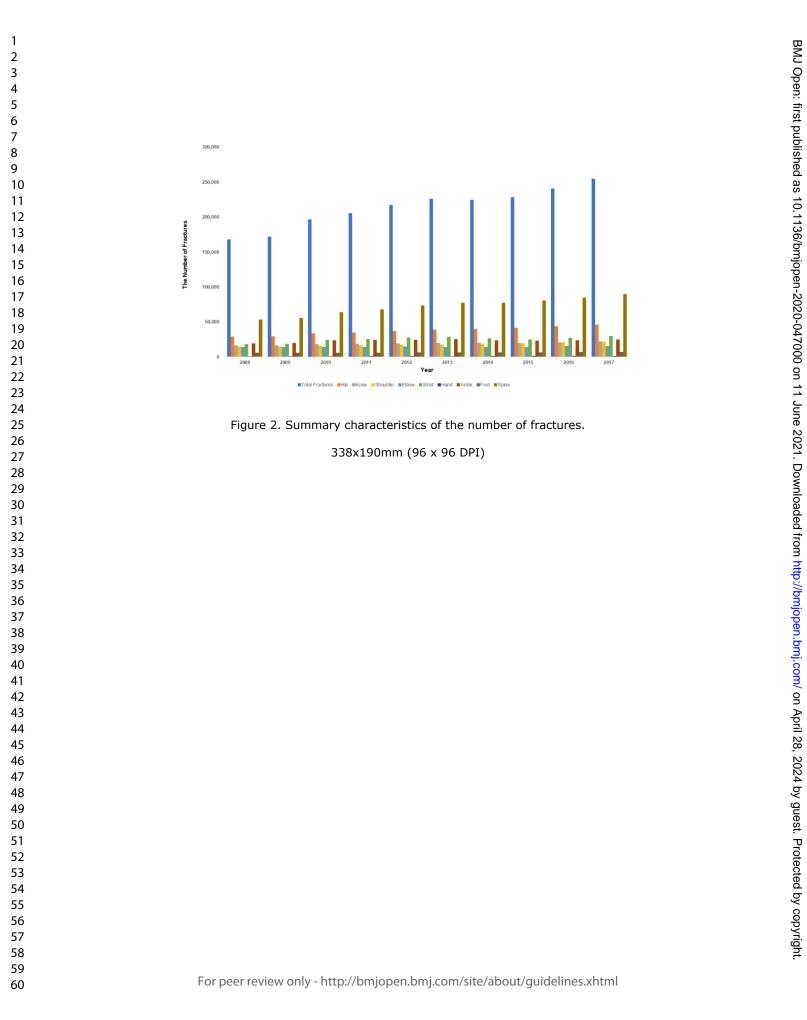
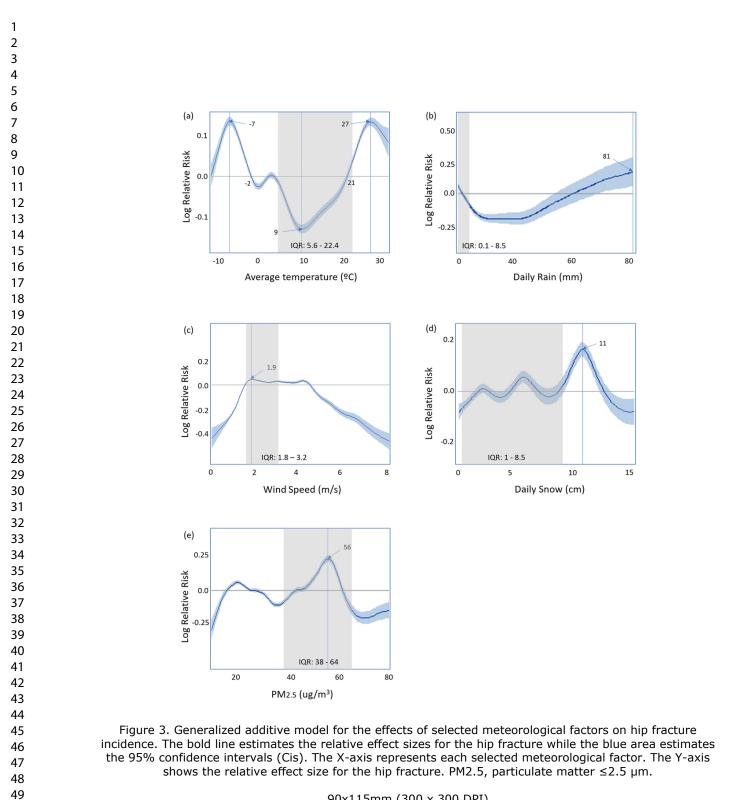
Figure Legends

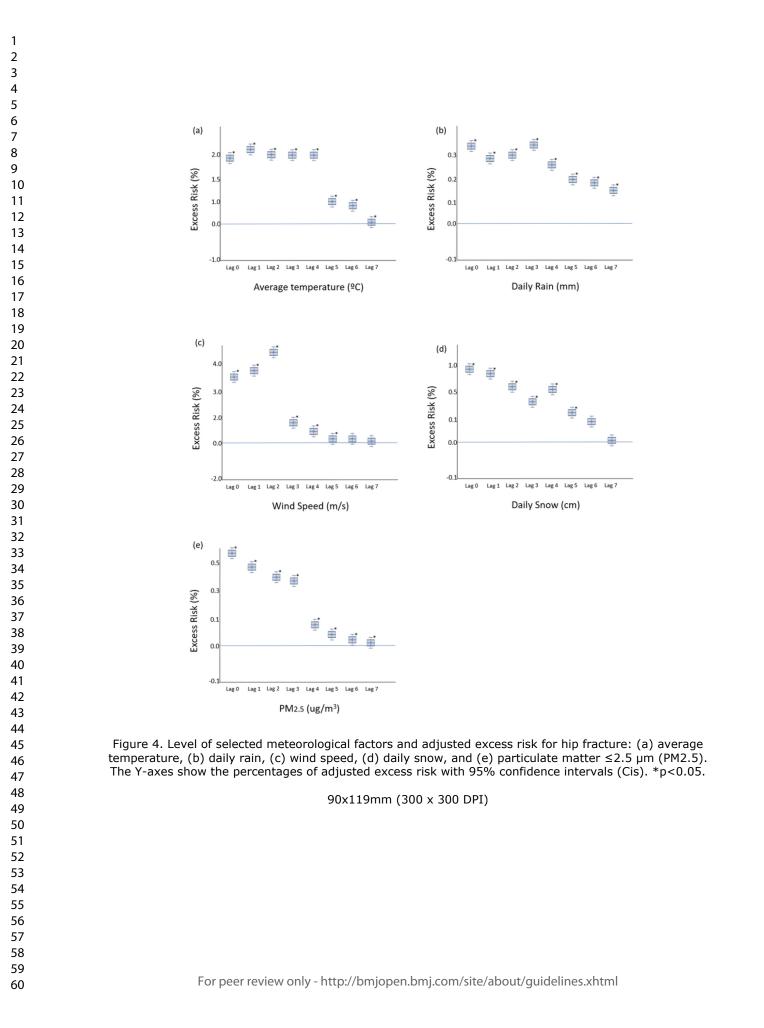
Figure 1. Flow chart of fracture case selection.

Figure 2. Summary characteristics of the number of fractures.

Figure 3. Generalized additive model for the effects of selected meteorological factors on hip fracture incidence. The bold line estimates the relative effect sizes for the hip fracture while the blue area estimates the 95% confidence intervals (Cis). The X-axis represents each selected meteorological factor. The Y-axis shows the relative effect size for the hip fracture. $PM_{2.5}$, particulate matter $\leq 2.5 \mu m$.

Figure 4. Level of selected meteorological factors and adjusted excess risk for hip fracture: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter ≤ 2.5 µm (PM_{2.5}). The Y-axes show the percentages of adjusted excess risk with 95% confidence intervals (Cis). *p<0.05.


Figure 1. Flow chart of fracture case selection.

90x43mm (300 x 300 DPI)

90x115mm (300 x 300 DPI)

BMJ Open

Online supplements

Supplemental Table 1. Data description on the meteorological factors and air pollution Supplemental Table 2. Akaike Information Criterion (AIC) between site of fracture and meteorological factors including air pollutants (MFAPs)

Supplemental Table 3. Multivariate analysis of GAM with cubic splines for site of fracture depending on lags through from 2008 to 2017

Supplemental Figure 1. Generalized additive model for the effects of selected meteorological factors on the incidence of knee fracture

Supplemental Figure 2. Generalized additive model for the effects of selected meteorological factors on the incidence of shoulder fracture

Supplemental Figure 3. Generalized additive model for the effects of selected meteorological factors on the incidence of elbow fracture

Supplemental Figure 4. Generalized additive model for the effects of selected meteorological factors on the incidence of wrist fracture

Supplemental Figure 5. Generalized additive model for the effects of selected meteorological factors on the incidence of hand fracture

Supplemental Figure 6. Generalized additive model for the effects of selected meteorological factors on the incidence of ankle fracture

Supplemental Figure 7. Generalized additive model for the effects of selected meteorological factors on the incidence of foot fracture

Supplemental Figure 8. Generalized additive model for the effects of selected meteorological factors on the incidence of spine fracture

Supplemental Figure 9. Levels of the selected meteorological factors and adjusted excess risks of the knee fracture

Supplemental Figure 10. Levels of the selected meteorological factors and adjusted excess risks of the shoulder fracture

Supplemental Figure 11. Levels of the selected meteorological factors and adjusted excess risks of the elbow fracture

Supplemental Figure 12. Levels of the selected meteorological factors and adjusted excess risks of the wrist fracture

Supplemental Figure 13. Levels of the selected meteorological factors and adjusted excess risks of the hand fracture

Supplemental Figure 14. Levels of the selected meteorological factors and adjusted excess risks of the ankle fracture

Supplemental Figure 15. Levels of the selected meteorological factors and adjusted excess risks of the foot fracture

Supplemental Figure 16. Levels of the selected meteorological factors and adjusted excess risks of the spine fracture

1	
2	
3	Su
4	~~~
5	
6	Μ
7	A
8	H
9	Lo
10	Da
11	V: Sc
12	Su
13	W
14	Da
15	D
16	H
17	D
18 10	Cl
19 20	A
20 21	PI
21	PI
22	0
23 24	N
25	SC
26	<u> </u>
27	03
28	SI
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	

44 45 46

Supplemental Table 1.	Data description on th	e meteorological factors	and air pollution
	····· ··· · · · · · · · · · · · · · ·		······································

				BMJ Op	en		5/bmjopen-2020-04700		
							Jen-2		
							2020		
							0-0		
Supplemental Table 1. Dat	a descriptio	n on the m	eteorologic	al factors a	ind air poll	ution	470		
	2008	2009	2010	2011	2012	2013	2014 0 2015	2016	20
Meteorology (Mean, SD)									
Average Temperature (°C)	13.9(9.6)	13.9(9.4)	13.4(9.6)	12.8(9.4)	12.9(9.8)	13.6(9.6)	14.1(9.6) 14.0(9.4)	14.3(9.2)	14.0
High Temperature (°C)	18.4(9.8)	18.4(9.6)	17.8(9.7)	17.2(9.5)	17.4(9.9)	18.1(9.7)	18.9(9.7) 5 18.9(9.6)	19.0(9.3)	18.8
Low Temperature (°C)	10.1(9.7)	10.1(9.5)	9.8(10.9)	9.2(10.6)	9.1(11.0)	9.8(9.9)	$10.2(9.9) \stackrel{\text{tr}}{\sim} 10.0(9.5)$	10.3(9.4)	9.
Daily Range (°C)	8.3(2.9)	8.3(3.0)	7.9(2.9)	8.0(3.0)	8.3(2.7)	8.2(3.1)	$\begin{array}{c} 10.2(9.9) \\ 8.6(3.1) \\ \end{array} \xrightarrow{N} \begin{array}{c} 10.0(9.5) \\ 8.8(3.2) \end{array}$	8.7(2.9)	8.
Vapor Pressure (hPa)	11.9(7.8)	11.7(7.4)	12.5(8.9)	11.4(8.3)	11.3(8.3)	12.3(8.8)	$\begin{array}{c} 12.9(8.4) & \overrightarrow{} & 12.3(7.8) \\ 12.9(6.3) & \overrightarrow{} & 13.1(6.6) \end{array}$	12.9(8.8)	12.
Solar Radiation (MJ/m ²)	13.5(6.8)	13.8(7.1)	12.9(6.7)	13.1(6.9)	12.8(6.4)	13.0(6.8)	12.9(6.3) § 13.1(6.6)	13.2(6.4)	13.
Sunshine Duration (hr)	12.2(1.7)	12.2(1.7)	12.2(1.7)	12.1(1.7)	12.2(1.7)	12.2(1.7)	12.2(1.7) 호 12.1(1.7)	12.2(1.7)	12.2
Wind Speed (m/s)	2.4(0.9)	2.5(1.0)	2.5(1.0)	2.6(1.0)	2.7(1.0)	2.7(1.1)	2.5(1.0) g 2.6(1.0)	2.4(1.0)	2.
Daily Rain (mm)	8.8(18.8)	13(31.5)	10(19.9)	12.8(31)	10.8(21)	9.5(18.1)	8.3(16.7) 📱 6.1(10.6)	7.9(16.9)	6.2
Dew Point Temperature (°C)	5.9(11.6)	5.8(11.2)	6.1(12.2)	4.6(12.5)	4.4(12.5)	5.8(12.1)	7.1(11.7) 중 6.8(10.6)	6.8(12.0)	5.8
Humidity (%)	61(15.2)	61(15.8)	64(15.6)	60(16.9)	59(16.1)	62(16.1)	$65(16.9) \exists 65(16.2)$	64(16.4)	61(
Daily snow (cm)	3.7(3.0)	2.4(2.2)	8.2(6.8)	2.7(2.1)	3.6(2.9)	5.5(4.3)	$2.1(1.8) \stackrel{2}{=} 2.4(2.5)$	1.9(2.9)	1.
Cloud (1/10)	4.7(3.0)	4.6(3.1)	5.1(3.2)	5.0(3.3)	4.9(3.0)	4.8(3.1)	$4.8(3.1) \stackrel{2}{\leq} 4.8(3.1)$	4.8(2.9)	4.
Air Pollutants (Mean, SD)							bm		
$PM_{2.5}(ug/m^3)$	-	-	-	-	28(12)	27(13)	25(14) 8 24(12)	25(14)	2
$PM_{10}(ug/m^3)$	56(30)	54(29)	50(28)	49(30)	45(21)	47(23)	48(26) 9 47(34)	46(19)	4
O ₃ (100ppb)	1.9(0.9)	2.1(1.0)	1.9(0.9)	1.9(1.0)	2.1(1.0)	2.2(1.0)	2.3(1.1) = 2.2(1.0)	2.4(1.1)	2.:
NO ₂ (100ppb)	3.4(1.4)	3.3(1.3)	3.2(1.3)	3.2(1.3)	3.1(1.2)	3.2(1.3)	3.1(1.3) 5 3.1(1.3)	2.9(1.1)	2.
SO ₂ (100ppb)	0.6(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2) $\stackrel{\textbf{O}}{=}$ 0.5(0.1)	0.4(0.1)	0.4
CO (10ppm)	0.6(0.2)	0.6(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	0.5(0.2)	$0.5(0.1)$ \circ $0.5(0.1)$	0.5(0.1)	0.4

 D_3 was analyzed by the 8-hour maximum per time or day.

SD denotes standard deviation; min, minimum; max, maximum; ppb, parts-per-billion; ppm, parts-per-million.

April 28, 2024 by guest. Protected by copyright.

BMJ Open BMJ Open Supplemental Table 2. Akaike Information Criterion (AIC) between site of fracture and meteorological factors including air pollutants (MFAPs)

	Hip	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	197.
2	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Dugation, Solar Radiation, Daily Snow, PM ₁₀ , PM _{2.5} , CO, O ₃ , NO ₂	196.
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Dail Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂	196.2
4	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, PN 2.5, CO, NO2	191.
5	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂	189.
6	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5}	188.
7	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5}	188.
8	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂ Image Temperature, Daily Rain, Wind Speed, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Image Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5} Image Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	187.
	Knee	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	125
1	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	125.
2	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, $P_{M_{10}}$, PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	123.
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM10, PM2.5, CO, NO2	123.
4	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO	123.
5	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM _{2.5} , CO	121.
6	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM _{2.5} , CO	121.
7	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM _{2.5} , CO Yes Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} Yes Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} Yes	119.
	Shoulder	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	151.
	4 Š	
	4 by copyright	

Page 31 of 57		BMJ Open 3/bmjopen-2020-0	
1			
2			
3		Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	
4		Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Ducation, Solar Radiation,	1.40.0
5	2	Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, NO ₂	149.9
6 7	3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, P 🕅 10, PM 2.5, CO, NO 2	146.6
8	4	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, NO ₂	146.3
9	5	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM_{10} , $PM_{2.5}$	146.2
10	6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM2.5 No.2	142.8
11		Elbow	
12	Test	MFAP as effect	AIC
13 - 14	1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Var ar Pressure, Sunshine	153.7
15		Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	
16	2	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Vapor Pressure, Sunshine Duration,	153.5
17		Solar Radiation, Daily Snow, Cloud, PM_{10} , $PM_{2.5}$, CO, NO ₂	
18	3	Average Temperature, Daily Rain, Wind Speed, Dew point Temperature, Vapor Pressure, Sunshine Duration, Daily Stow, Cloud, PM ₁₀ ,	149.1
19	4	PM _{2.5} , CO, NO ₂ Average Temperature, Daily Rain, Wind Speed, Dew point Temperature, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5} , NO ₂	148.2
20 21	4 5	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5}	148.2
22	6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	145.8
23		Wrist	
24 -	Test	MFAP as effect	AIC
25 - 26	1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	400.2
20 27	1	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	480.2
28	2	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Dail Snow, Cloud, PM ₁₀ ,	490.1
29	2	$PM_{2.5}, CO, O_3, NO_2$	480.1
30	3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, Point, PM2.5, CO	477.8
31	4	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM ₁₀ , PM _{2.5}	473.4
32 33	5	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM ₁₀ , PM _{2.5}	469.6
34 -	6	······································	460.5
35 -	T (Hand D	
36	Test	MFAP as effect	AIC
37	1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	1531.9
38		5	
39 40			
40		5 by copyright	
42			
43		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
44			
//5			

	BMJ Open <u>3</u> .	
	BMJ Open 5/bmjopen-2020-0	
	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	
2	Average Temperature, Daily Rain, Wind Speed, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	1467.
3	Average Temperature, Daily Rain, Wind Speed, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM _{2.5} , CO, $\vec{\Theta}_3$, NO ₂	1465.
4	Average Temperature, Daily Rain, Wind Speed, Sunshine Duration, Daily Snow, PM _{2.5} , CO, NO ₂	1455.
5	Average Temperature Daily Rain Wind Speed Daily Snow PMac NOa	1458.
6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	1452.
	Ankle	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vap 🛱 Pressure, Sunshine	237.
1	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	237.
2	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , NO ₂	235.
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM2.5, CO, NO2	231.
4	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Daily Snow, PM _{2.5} , NO ₂	230.
5	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM _{2.5}	230.
6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5}	229.
	Foot	
Test	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	299.2
2	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	290.
3	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PM2.5, CO, SO2, O3, NO2	290.:
4	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, Pol 25, CO, NO2	290.
5	Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, Cloud, PM _{2.5} , CO, NO ₂	289.
6	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM _{2.5} , CO, NO ₂	289.
7	Average Temperature, Daily Rain, Wind Speed, Daily Snow, PM2.5, CO, NO2CoAverage Temperature, Daily Rain, Wind Speed, Daily Snow, PM2.5Image: Co	289.
	Spine U	
Гest	MFAP as effect	AIC
1	Average Temperature, Diurnal Temperature Range, Daily Rain, Wind Speed, Dew point Temperature, Humidity, Vaper Pressure, Sunshine	434.
	6	
	0 <u>8</u>	
	6 by copyright	

Page 33 of 57	BMJ Open 5/bmjopen-2020-0	
1 2	2020-	
3 -	Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ , PM _{2.5} , CO, SO ₂ , O ₃ , NO ₂	
4 5	Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Solar Radiation, Daily Snow, Cloud, PM ₁₀ ,	429.2
6	 PM_{2.5}, CO, SO₂, O₃, NO₂ Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, Cloud, PÅ₁₀, PM_{2.5}, CO, SO₂, 	
7 8	3 NO ₂	425.6
9	4 Average Temperature, Daily Rain, Wind Speed, Humidity, Vapor Pressure, Sunshine Duration, Daily Snow, PM ₁₀ , PM 3, 5, CO, NO ₂	425.1
10	5 Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM ₁₀ , PM _{2.5} , CO, NO ₂	424.7
11 12	 Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM_{2.5}, CO Average Temperature, Daily Rain, Wind Speed, Humidity, Daily Snow, PM_{2.5} 	424.5 422.1
13		722,1
14 15	loaded from http://bmjopen.bmj.com/ on April 28, 2024 by gue	
16		
17		
18 19		
20		
21		
22		
23 24		
25		
26		
27 28		
29		
30	202.	
31 32	by by	
33		
34	st statistical statistic	
35	7 7	
36 37	ecte	
38		
39	7 ~ 8	
40		
41 42	ght.	
43	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
44	For peer review only - http://binjopen.binj.com/site/about/guidelines.xittini	
45		
46		

Supplemental Table 3.

BMJ Open	6/bmjc
	ppen-2
	2020-0
Supplemental Table 3.	04700
Multivariate analysis of GAM with cubic splines for site of fracture depending on lags throu	ugh from 2∰8 to 2017

Time Va	Variables			Нір		→Knee					
Thile	-	RR	ER(%)	95% CI	P-value	RR	ER(%)	95% CI	P-value		
	Avg. Temp.	1.0199	1.99	[1.0196-1.0202]	<.0001	1.0162	1.62 20 0.21	[1.0159-1.0165]	<.0001		
	Daily Rain	1.0033	0.33	[1.0030-1.0036]	<.0001	1.0021		[1.0018-1.0024]	<.0001		
Lag 0	Wind Speed	1.0354	3.54	[1.0324-1.0383]	<.0001	1.0242	2.42 Down	[1.0210-1.0275]	<.0001		
	Daily Snow	1.0099	0.99	[1.0081-1.0117]	<.0001	1.0116	1.16 <u>5</u>	[1.0097-1.0135]	<.0001		
	PM _{2.5}	1.0055	0.55	[1.0052-1.0057]	<.0001	1.0037	0.37 log	[1.0034-1.0040]	<.0001		
	Avg. Temp.	1.0202	2.02	[1.0199-1.0204]	<.0001	1.0163	1.63	[1.0161-1.0166]	<.0001		
	Daily Rain	1.0029	0.29	[1.0027-1.0031]	<.0001	1.0015	0.15 ਰੋ	[1.0013-1.0017]	<.0001		
Lag 1	Wind Speed	1.0379	3.79	[1.0359-1.0399]	<.0001	1.0298	2.98	[1.0274-1.0323]	<.0001		
	Daily Snow	1.0083	0.83	[1.0070-1.0096]	0.0003	1.0115	0.15 from http://doi.org/10.15 2.98 1.15 0.37 b	[1.0100-1.0129]	<.0001		
	PM _{2.5}	1.0048	0.48	[1.0046-1.0050]	<.0001	1.0037		[1.0035-1.0040]	<.0001		
	Avg. Temp.	1.0200	2.00	[1.0198-1.0203]	<.0001	1.0163	1.63 jop 0.17 en	[1.0161-1.0166]	<.0001		
	Daily Rain	1.0030	0.30	[1.0028-1.0032]	0.0002	1.0017	0.17	[1.0015-1.0019]	<.0001		
Lag 2	Wind Speed	1.0442	4.42	[1.0422-1.0462]	<.0001	1.0343		[1.0319-1.0367]	<.0001		
	Daily Snow	1.0058	0.58	[1.0045-1.0071]	<.0001	1.0099	3.43 bm 0.99 co 0.29 m	[1.0085-1.0114]	<.0001		
	PM _{2.5}	1.0039	0.39	[1.0037-1.0041]	<.0001	1.0029	0.29	[1.0027-1.0032]	0.0005		
	Avg. Temp.	1.0200	2.00	[1.0198-1.0202]	<.0001	1.0163	1.63 S	[1.0161-1.0165]	<.0001		
	Daily Rain	1.0034	0.34	[1.0032-1.0036]	0.0001	1.0018		[1.0015-1.0020]	0.0002		
Lag 3	Wind Speed	1.0180	1.80	[1.0158-1.0201]	<.0001	1.0286	0.18 April 2.86 2.86 0.58 ,0.58	[1.0262-1.0310]	<.0001		
	Daily Snow	1.0036	0.36	[1.0023-1.0050]	0.0004	1.0058	0.58	[1.0043-1.0074]	<.0001		
	PM _{2.5}	1.0034	0.34	[1.0032-1.0037]	<.0001	1.0031	0.31	[1.0028-1.0034]	<.0001		
	Avg. Temp.	1.0200	2.00	[1.0198-1.0202]	<.0001	1.0162	0.31 NN 1.62 by	[1.0159-1.0164]	<.0001		
	Daily Rain	1.0026	0.26	[1.0024-1.0028]	0.0002	1.0020	0.20 g	[1.0017-1.0022]	0.0005		
Lag 4	Wind Speed	1.0096	0.96	[1.0075-1.0118]	<.0001	1.0229	0.20 guest	[1.0204-1.0254]	<.0001		
	Daily Snow	1.0052	0.52	[1.0039-1.0066]	<.0001	1.0026	0.26 P	[1.0010-1.0042]	<.0001		
	PM _{2.5}	1.0009	0.09	[1.0007-1.0012]	0.0512	1.0024		[1.0021-1.0026]	<.0001		
Lag 5	Avg. Temp.	1.0101	1.01	[1.0099-1.0103]	<.0001	1.0163	0.24 Tote 1.63 Cte	[1.0161-1.0165]	<.0001		
	_				8		d by				
					0		by copyright.				
							oyriç				
							ght.				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ge 35 of 57						BMJ Open		6/bmjop		
								6/bmjopen-2020-047000 0.17 2.04		
-		Daily Rain	1.0020	0.20	[1.0018-1.0022]	0.0001	1.0017	0.17 47	[1.0015-1.0020]	<.0001
		Wind Speed	1.0023	0.23	[1.0001-1.0044]	0.0432	1.0204	2.04 8	[1.0179-1.0229]	<.0001
		Daily Snow	1.0018	0.18	[1.0003-1.0032]	<.0001	1.0024	0.24 9	[1.0007-1.0041]	0.0218
		PM _{2.5}	1.0006	0.06	[1.0003-1.0008]	<.0001	1.0019	0.19 🛋	[1.0017-1.0022]	<.0001
-		Avg. Temp.	1.0099	0.99	[1.0097-1.0101]	<.0001	1.0163	1.63	[1.0160-1.0165]	<.0001
		Daily Rain	1.0019	0.19	[1.0017-1.0021]	0.0002	1.0016	1.63 Une 0.16 2021 1.03 2021	[1.0014-1.0018]	<.0001
	Lag 6	Wind Speed	1.0020	0.20	[0.9998-1.0041]	0.4289	1.0103	1.03	[1.0079-1.0128]	<.0001
	e	Daily Snow	1.0011	0.11	[0.9996-1.0025]	0.5743	1.0007	0.07	[0.9990-1.0023]	0.1976
		PM _{2.5}	1.0004	0.04	[1.0002-1.0006]	0.0012	1.0014	0.07 0.14 Q	[1.0011-1.0017]	<.0001
-		Avg. Temp.	1.0020	0.20	[1.0018-1.0022]	0.0023	1.0163		[1.0161-1.0165]	<.0001
		Daily Rain	1.0016	0.16	[1.0014-1.0018]	0.0005	1.0009	1.63 hoaded 0.09 ded from 0.24 from	[1.0006-1.0011]	0.0356
	Lag 7	Wind Speed	1.0014	0.14	[0.9993-1.0034]	0.4980	1.0024	0.24 a	[0.9999-1.0048]	0.5569
	e	Daily Snow	1.0009	0.09	[0.9995-1.0023]	0.5533	1.0003	0.03 P	[0.9988-1.0019]	0.7635
		PM _{2.5}	1.0003	0.03	[1.0001-1.0005]	0.0045	1.0009	0.09	[1.0006-1.0012]	0.0144
-				Sh	oulder		1		lbow	
	Time	Variables	RR	ER(%)	95% CI	P-value	RR	ER(%) 8	95% CI	P-value
-		Avg. Temp.	1.0134	1.34	[1.0131-1.0137]	<.0001	1.0101	0	[1.0099-1.0104]	<.0001
		Daily Rain	1.0015	0.15	[1.0012-1.0018]	<.0001	1.0015	1.01 5 0.15 1.24 6 1.49 0.19 9	[1.0012-1.0018]	<.0001
	Lag 0	Wind Speed	1.0165	1.65	[1.0134-1.0197]	<.0001	1.0124	1.24 8	[1.0093-1.0155]	<.0001
	e	Daily Snow	1.0128	1.28	[1.0110-1.0146]	<.0001	1.0149	1.49 Ž	[1.0132-1.0166]	<.0001
		PM _{2.5}	1.0032	0.32	[1.0029-1.0035]	<.0001	1.0019	0.19 S	[1.0016-1.0023]	<.0001
-		Avg. Temp.	1.0136	1.36	[1.0134-1.0138]	<.0001	1.0103	1.03 P	[1.0101-1.0105]	<.0001
		Daily Rain	1.0013	0.13	[1.0012-1.0015]	<.0001	1.0008	1.03 April 28 0.08 2024 1.78 2024	[1.0006-1.0010]	0.0013
	Lag 1	Wind Speed	1.0209	2.09	[1.0189-1.0230]	<.0001	1.0178	1.78 _N	[1.0159-1.0196]	<.0001
		Daily Snow	1.0130	1.30	[1.0118-1.0142]	<.0001	1.0144	1.44 R	[1.0134-1.0155]	<.0001
		PM _{2.5}	1.0033	0.33	[1.0031-1.0035]	<.0001	1.0020	0.20 by	[1.0018-1.0022]	<.0001
-		Avg. Temp.	1.0135	1.35	[1.0133-1.0137]	<.0001	1.0104		[1.0102-1.0105]	<.0001
		Daily Rain	1.0014	0.14	[1.0012-1.0016]	<.0001	1.0008	1.04 Guest	[1.0006-1.0009]	0.0017
	Lag 2	Wind Speed	1.0255	2.55	[1.0234-1.0275]	<.0001	1.0201		[1.0182-1.0219]	<.0001
	e	Daily Snow	1.0112	1.12	[1.0099-1.0124]	<.0001	1.0116	1.16 e	[1.0105-1.0126]	<.0001
		PM _{2.5}	1.0034	0.34	[1.0031-1.0036]	<.0001	1.0021	2.01 Protected	[1.0019-1.0023]	0.0005
					. ,		11			
						9		by copyright.		
								ору		
								righ		
								Ē.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3	36 of	57
--------	-------	----

					BMJ Open		omjo		
							pen		
							o/pmJopen-∠uzu-u		
	Avg. Temp.	1.0135	1.35	[1.0133-1.0137]	<.0001	1.0103	1.03	[1.0101-1.0105]	<.000
	Daily Rain	1.0012	0.12	[1.0010-1.0013]	0.0006	1.0009	1.03 100 0.09 C	[1.0007-1.0010]	0.0018
Lag 3	Wind Speed	1.0218	2.18	[1.0198-1.0239]	<.0001	1.0248	2.48		<.000
	Daily Snow	1.0075	0.75	[1.0062-1.0088]	<.0001	1.0097	0.97	[1.0086-1.0108]	<.000
	PM _{2.5}	1.0033	0.33	[1.0030-1.0035]	<.0001	1.0019	0.19 L	[1.0017-1.0021]	<.000
	Avg. Temp.	1.0135	1.35	[1.0133-1.0137]	<.0001	1.0101	1.01	[1.0099-1.0103]	<.000
	Daily Rain	1.0014	0.14	[1.0012-1.0016]	<.0001	1.0010	0.10	[1.0009-1.0012]	<.000
Lag 4	Wind Speed	1.0181	1.81	[1.0160-1.0201]	<.0001	1.0188	1 00 '		<.000
	Daily Snow	1.0028	0.28	[1.0015-1.0042]	<.0001	1.0070	0.70 0.17	[1.0059-1.0082]	<.000
Lag 3 Lag 4 Lag 4 Lag 4 Lag 5 Lag 5 Lag 6 Lag 7 Lag 0 Lag 0	PM _{2.5}	1.0023	0.23	[1.0021-1.0026]	<.0001	1.0017	0.17	[1.0015-1.0019]	<.000
	Avg. Temp.	1.0137	1.37	[1.0135-1.0138]	<.0001	1.0102	1.02	[1.0101-1.0104]	<.000
	Daily Rain	1.0014	0.14	[1.0012-1.0015]	0.0001	1.0009	1.02 Geo 0.09 Tro 1.72 m	[1.0007-1.0010]	0.001
Lag 5	Wind Speed	1.0173	1.73	[1.0152-1.0194]	<.0001	1.0172	1.72	[1.0153-1.0190]	<.000
	Daily Snow	1.0002	0.02	[0.9988-1.0017]	0.1489	1.0013			0.0561
	PM _{2.5}	1.0017	0.17	[1.0015-1.0020]	<.0001	1.0010	0.13 0.10	[1.0008-1.0013]	0.0023
	Avg. Temp.	1.0136	1.36	[1.0134-1.0138]	<.0001	1.0103	<u>_</u>		<.000
	Daily Rain	1.0008	0.08	[1.0007-1.0010]	0.0028	1.0009	0.09	[1.0007-1.0010]	0.0013
Lag 6	Wind Speed	1.0149	1.49	[1.0129-1.0170]	<.0001	1.0153	1.53	[1.0135-1.0171]	<.000
	Daily Snow	1.0001	0.01	[0.9987-1.0015]	0.5731	1.0012	0.12	[0.9999-1.0024]	0.4791
	PM _{2.5}	1.0012	0.12	[1.0010-1.0015]	0.0010	1.0009	1.03 mo 0.09 1.53 b 0.12	[1.0007-1.0011]	0.003
	Avg. Temp.	1.0137	1.37	[1.0135-1.0139]	<.0001	1.0103	1.03		<.000
	Daily Rain	1.0001	0.01	[1.0000-1.0003]	0.0556	1.0007	0.07	[1.0005-1.0008]	0.0033
	Wind Speed	1.0111	1.11	[1.0090-1.0131]	<.0001	1.0119	0.07 1.19	[1.0100-1.0137]	0.5569
-	Daily Snow	1.0001	0.01	[0.9988-1.0015]	0.7631	1.0009	0.09		0.6583
	PM _{2.5}	1.0003	0.03	[1.0000-1.0005]	0.0612	1.0008	0.08		0.0237
Time	Variables		•	Wrist			24 by	Hand	
1		RR	ER(%)	95% CI	P-value	RR	ER(%)	95% CI	P-valu
Lag 0	Avg. Temp.	1.0148	1.48	[1.0146-1.0151]	<.0001	1.0203	2.03	[1.0195-1.0211]	<.000
	Daily Rain	1.0023	0.23	[1.0020-1.0025]	<.0001	1.0025			<.000
	Wind Speed	1.0174	1.74	[1.0147-1.0201]	<.0001	1.0058	0.58 0	[0.9959-1.0157]	<.000
	Daily Snow	1.0145	1.45	[1.0133-1.0158]	<.0001	1.0241	0.25 Protected 0.58 cred 2.41 cred		<.000
					10		ву сорупдпт		
							op		
							yriq Yriq		

Page 37 of 57	
---------------	--

BMJ Open

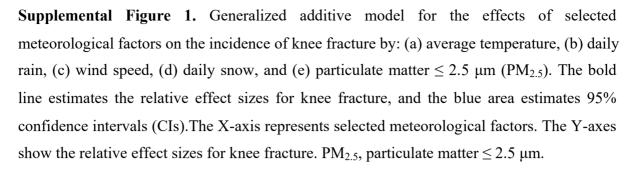
0.20 1.49 0.20 2.18 1.43 0.22 1.49 0.20	[1.0017-1.0023] [1.0148-1.0150] [1.0019-1.0022] [1.0206-1.0230] [1.0137-1.0148] [1.0020-1.0023]	<.0001 <.0001 <.0001 <.0001 <.0001	1.0047 1.0205 1.0027	0.47 0.47 2.05 0.27 0.27	[1.0038-1.0056] [1.0196-1.0213]	<.0001
1.49 0.20 2.18 1.43 0.22 1.49 0.20	[1.0148-1.0150] [1.0019-1.0022] [1.0206-1.0230] [1.0137-1.0148]	<.0001 <.0001 <.0001	1.0205 1.0027		[1.0038-1.0056] [1.0196-1.0213]	
0.20 2.18 1.43 0.22 1.49 0.20	[1.0019-1.0022] [1.0206-1.0230] [1.0137-1.0148]	<.0001 <.0001	1.0027		[1.0196-1.0213]	. 0001
2.18 1.43 0.22 1.49 0.20	[1.0206-1.0230] [1.0137-1.0148]	<.0001		0.27 9		<.0001
1.43 0.22 1.49 0.20	[1.0137-1.0148]		1 0157		[1.0019-1.0035]	0.0013
0.22 1.49 0.20		<.0001	1.0157	1.57 🛋	[1.0061-1.0254]	<.0001
1.49 0.20	[1.0020-1.0023]		1.0237	2.37 Une	[1.0188-1.0285]	<.0001
0.20		<.0001	1.0043	0.43 ^{to}	[1.0033-1.0052]	<.0001
	[1.0148-1.0151]	<.0001	1.0207	2.07 N	[1.0198-1.0215]	<.0001
	[1.0019-1.0021]	<.0001	1.0014	0.14	[1.0006-1.0021]	0.0024
2.38	[1.0226-1.0250]	<.0001	1.0237	2.37 🛯	[1.0141-1.0332]	<.0001
1.16	[1.0110-1.0122]	<.0001	1.0172	1.72 no	[1.0122-1.0223]	<.0001
0.21	[1.0019-1.0022]	<.0001	1.0041	0.14 Downloade 2.37 Uno ade 0.41 do from 0.19 m	[1.0031-1.0050]	<.0001
1.49	[1.0147-1.0150]	<.0001	1.0207	2.07	[1.0199-1.0215]	<.0001
0.18	[1.0017-1.0019]	<.0001	1.0019	0.19 A	[1.0012-1.0027]	<.0001
2.82	[1.0270-1.0293]	<.0001	1.0308			<.0001
0.99	[1.0093-1.0105]	<.0001	1.0112	1.12	[1.0060-1.0165]	<.0001
0.25	[1.0023-1.0026]	<.0001	1.0049	0.49	[1.0039-1.0058]	<.0001
1.46	[1.0145-1.0147]	<.0001	1.0205	3.08 1.12 0.49 2.05 p	[1.0197-1.0213]	<.0001
0.19	[1.0018-1.0020]	<.0001	1.0032	0.32	[1.0023-1.0041]	<.0001
1.97	[1.0185-1.0209]	<.0001	1.0335	3.35	[1.0240-1.0430]	<.0001
0.78	[1.0071-1.0084]	<.0001	1.0083	0.83	[1.0031-1.0135]	<.0001
0.25	[1.0023-1.0026]	<.0001	1.0039	0.39	[1.0030-1.0049]	<.0001
1.46	[1.0145-1.0147]	<.0001	1.0205	0.32 3.35 0.83 0.39 2.05 0.22	[1.0197-1.0213]	<.0001
0.17	[1.0015-1.0018]	<.0001	1.0022	0.22	[1.0015-1.0030]	<.0001
1.73	[1.0161-1.0185]	<.0001	1.0340	3.40 No	[1.0245-1.0434]	<.0001
0.30	[1.0024-1.0037]	<.0001	1.0017			0.1469
0.12	[1.0011-1.0014]	<.0001	1.0021	0.17 202 0.21 4		<.0001
1.46	[1.0145-1.0147]	<.0001	1.0206	2.06 y gue	[1.0198-1.0215]	<.0001
0.14	[1.0013-1.0015]	<.0001	1.0006	0.06 gue	[0.9999-1.0012]	0.8631
1.24	[1.0112-1.0136]	<.0001	1.0184	1.84 st	[1.0090-1.0278]	<.0001
0.26	[1.0020-1.0033]	<.0001	1.0010	0.10 B	[0.9954-1.0066]	0.7764
0.10	[1.0009-1.0012]	0.0009	1.0012	0.12 Ē	[1.0002-1.0022]	0.0035
		11		ed by copy		
			0.10 [1.0009-1.0012] 0.0009	0.10 [1.0009-1.0012] 0.0009 1.0012	0.10 [1.0009-1.0012] 0.0009 1.0012 0.12 et de by copyright.	0.10 [1.0009-1.0012] 0.0009 1.0012 0.12 0.12 0.12 0.12 0.0002-1.0022]

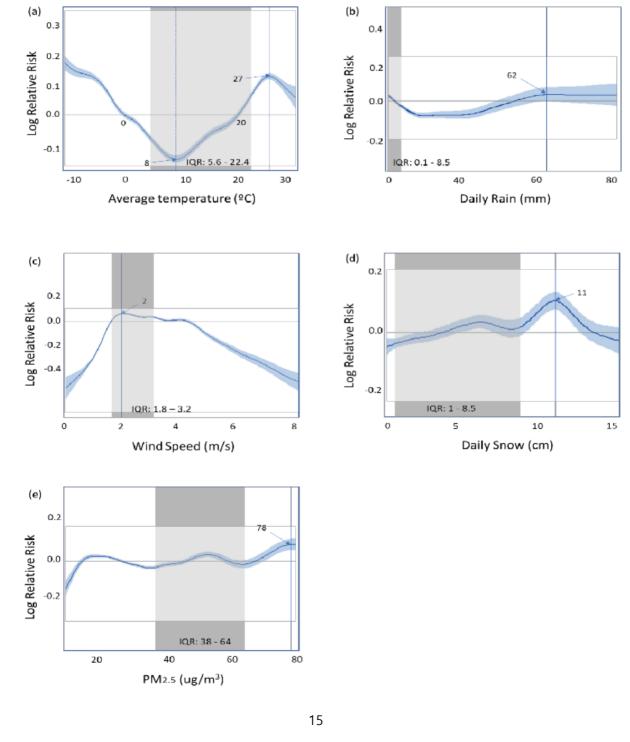
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3	38 of 57
--------	----------

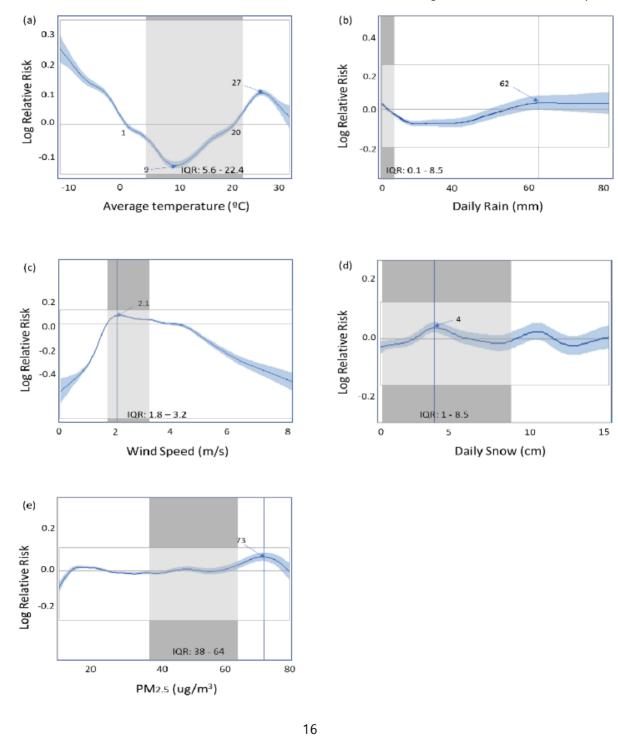
					BMJ Open		omjop		
							5/bmjopen-2020-0		
	Avg. Temp.	1.0146	1.46	[1.0145-1.0147]	<.0001	1.0205	2.05	[1.0197-1.0214]	<.0001
	Daily Rain	1.0009	0.09	[1.0007-1.0010]	0.0004	1.0002	2.05 17000 0.02 00	[0.9994-1.0011]	0.7490
Lag 7	Wind Speed	1.0106	1.06	[1.0094-1.0118]	<.0001	1.0024	0.24 g	[0.9929-1.0118]	0.6931
C	Daily Snow	1.0014	0.14	[1.0007-1.0020]	0.0012	1.0003	0.03 🛋		0.6132
	PM _{2.5}	1.0008	0.08	[1.0007-1.0010]	0.0011	1.0008	0.08 Jun	[0.9998-1.0018]	0.3885
Time	Variables		1	Ankle			e 202	Foot	
	_	RR	ER(%)	95% CI	P-value	RR	ER(%) .	95% CI	P-value
	Avg. Temp.	1.0144	1.44	[1.0141-1.0146]	<.0001	1.0122	1.22	[1.0117-1.0126]	<.0001
	Daily Rain	1.0018	0.18	[1.0015-1.0021]	<.0001	1.0020	1.22 0wnloade 0.20 2.65 de 1.97 de	[1.0015-1.0025]	<.0001
Lag 0	Wind Speed	1.0210	2.10	[1.0181-1.0239]	<.0001	1.0265	2.65 a	[1.0215-1.0315]	<.0001
	Daily Snow	1.0115	1.15	[1.0100-1.0131]	<.0001	1.0197	<u> </u>	[1.0166-1.0228]	<.0001
	PM _{2.5}	1.0026	0.26	[1.0023-1.0029]	<.0001	1.0041	0.41	[1.0036-1.0046]	<.0001
	Avg. Temp.	1.0144	1.44	[1.0143-1.0146]	<.0001	1.0122	1.22	[1.0118-1.0127]	<.0001
	Daily Rain	1.0015	0.15	[1.0013-1.0016]	<.0001	1.0009	1.22 http://bmj 0.09 3.58 mj 1.99 0.44 m	[1.0004-1.0013]	0.0022
Lag 1	Wind Speed	1.0257	2.57	[1.0241-1.0273]	<.0001	1.0358	3.58	[1.0309-1.0407]	<.0001
	Daily Snow	1.0119	1.19	[1.0110-1.0128]	<.0001	1.0199	1.99	[1.0168-1.0229]	<.0001
	PM _{2.5}	1.0027	0.27	[1.0026-1.0029]	<.0001	1.0044	0.44	[1.0039-1.0049]	<.0001
	Avg. Temp.	1.0144	1.44	[1.0143-1.0146]	<.0001	1.0123	1.23	[1.0118-1.0127]	<.0001
	Daily Rain	1.0017	0.17	[1.0016-1.0019]	<.0001	1.0012	1.23 <u>1.23</u> 0.12 <u>3.60</u> 1.24 <u>9</u>	[1.0008-1.0016]	0.0031
Lag 2	Wind Speed	1.0280	2.80	[1.0264-1.0296]	<.0001	1.0360	3.60	[1.0312-1.0409]	<.0001
	Daily Snow	1.0105	1.05	[1.0096-1.0114]	<.0001	1.0124		[1.0091-1.0158]	<.0001
	PM _{2.5}	1.0030	0.30	[1.0028-1.0032]	<.0001	1.0037	0.37 Pri	[1.0032-1.0042]	<.0001
	Avg. Temp.	1.0143	1.43	[1.0141-1.0145]	<.0001	1.0122	1.22 8	[1.0118-1.0127]	<.0001
	Daily Rain	1.0016	0.16	[1.0014-1.0017]	<.0001	1.0010			0.0032
Lag 3	Wind Speed	1.0280	2.80	[1.0264-1.0296]	<.0001	1.0350	0.10 N 3.50 N 4	[1.0301-1.0399]	<.0001
	Daily Snow	1.0079	0.79	[1.0070-1.0089]	<.0001	1.0069	0.69 by		<.0001
	PM _{2.5}	1.0032	0.32	[1.0030-1.0034]	<.0001	1.0032	0.32 g		<.0001
Lag 4	Avg. Temp.	1.0142	1.42	[1.0140-1.0143]	<.0001	1.0122	1.22 <u>St</u>		<.0001
	Daily Rain	1.0020	0.20	[1.0019-1.0022]	<.0001	1.0015			<.0001
	Wind Speed	1.0207	2.07	[1.0190-1.0223]	<.0001	1.0303	3.03	[1.0254-1.0352]	<.0001
	Daily Snow	1.0058	0.58	[1.0048-1.0067]	<.0001	1.0007	0.15 Protected	[0.9971-1.0044]	0.4638
					12		l by copyright.		
							ору		
							rig		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

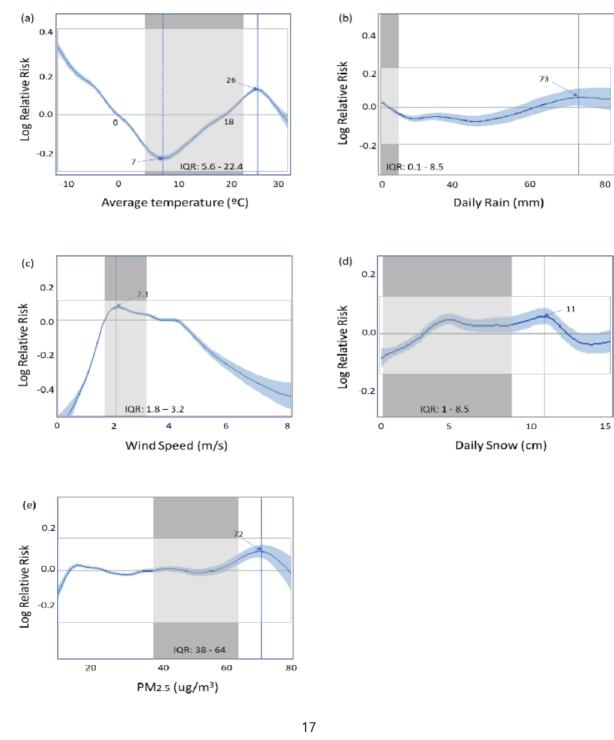

Page	39	of	57
------	----	----	----

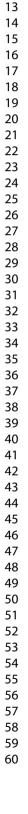

BMJ Open

					BMJ Open				
							0.17 1.23		
	PM _{2.5}	1.0027	0.27	[1.0025-1.0029]	<.0001	1.0017	0.17	[1.0012-1.0023]	<.0001
	Avg. Temp.	1.0144	1.44	[1.0143-1.0146]	<.0001	1.0123	1.23	[1.0119-1.0128]	<.0001
	Daily Rain	1.0019	0.19	[1.0018-1.0021]	<.0001	1.0012	0.12		0.0029
Lag 5	Wind Speed	1.0200	2.00	[1.0183-1.0216]	<.0001	1.0248	2.48	[1.0198-1.0297]	<.0001
	Daily Snow	1.0016	0.16	[1.0006-1.0027]	0.0004	1.0013	0.13	[0.9971-1.0055]	0.3975
	PM _{2.5}	1.0019	0.19	[1.0017-1.0021]	<.0001	1.0013	0.13	[1.0008-1.0019]	<.0001
	Avg. Temp.	1.0145	1.45	[1.0144-1.0147]	<.0001	1.0126	1.26		<.0001
	Daily Rain	1.0016	0.16	[1.0015-1.0017]	<.0001	1.0006		F4 0000 4 00403	0.0015
Lag 5 Lag 5 V P A Lag 6 V C P A Lag 7 V C P Time Lag 0 Lag 1	Wind Speed	1.0189	1.89	[1.0173-1.0205]	<.0001	1.0230	2.30	[1.0181-1.0279]	<.0001
	Daily Snow	1.0011	0.11	[1.0001-1.0022]	0.0010	1.0011	0.11	[0.9970-1.0053]	0.6470
	PM _{2.5}	1.0014	0.14	[1.0012-1.0015]	<.0001	1.0011	0.06 2.30 0.11 0.11	[1.0006-1.0017]	0.0041
	Avg. Temp.	1.0146	1.46	[1.0144-1.0147]	<.0001	1.0127	1.27	[1.0122-1.0131]	<.0001
	Daily Rain	1.0011	0.11	[1.0010-1.0013]	<.0001	1.0004	1.27 0.04	[1.0000-1.0008]	0.0673
Lag 7	Wind Speed	1.0156	1.56	[1.0139-1.0172]	<.0001	1.0137			<.0001
-	Daily Snow	1.0008	0.08	[0.9998-1.0018]	0.7763	1.0008	1.37 0.08 0.01	[0.9969-1.0047]	0.5796
	PM _{2.5}	1.0005	0.05	[1.0003-1.0006]	0.0015	1.0001	0.01	[0.9995-1.0006]	0.4159
т:	V					Spine			
Time	Variables	RR		ER(%)		95% CI		F	
	Avg. Temp.	1.0101		1.01		[1.0099-1.0104]			
	Daily Rain	1.0010		0.10		[1.0007-1.0012]		<.0001	
Lag 5 Lag 6 Lag 7 Time Lag 0 Lag 1	Wind Speed	1.0209		2.09		[1.0183-1.0234]		<.0001	
	Daily Snow	1.0087		0.87		[1.0069-1.0105]		<.0001	
	PM _{2.5}	1.0025		0.25		[1.0022-1.0027]		<.0001	
	Avg. Temp.	1.0101		1.01		[1.0100-1.0102]	, z	<.0001	
	Daily Rain	1.0007		0.07		[1.0006-1.0008]	524	<.0001	
Lag 1	Wind Speed	1.0214		2.14		[1.0203-1.0225]	∠∪∠4 by guest	<.0001	
	Daily Snow	1.0085		0.85		[1.0078-1.0093]	gu	<.0001	
	PM _{2.5}	1.0025		0.25		[1.0024-1.0026]			
Lag 2	Avg. Temp.	1.0102		1.02		[1.0101-1.0103]		<.0001	
	Daily Rain	1.0008		0.08		[1.0007-1.0008]		<.0001	
	Wind Speed	1.0234		2.34		[1.0223-1.0245]	Jac	<.0001	
					13		רוסופטופע שץ מסטיווקווו		
Lag 6 Lag 7 Time Lag 0 Lag 1					15		<u> </u>		
							руп		
							ÿ	2	

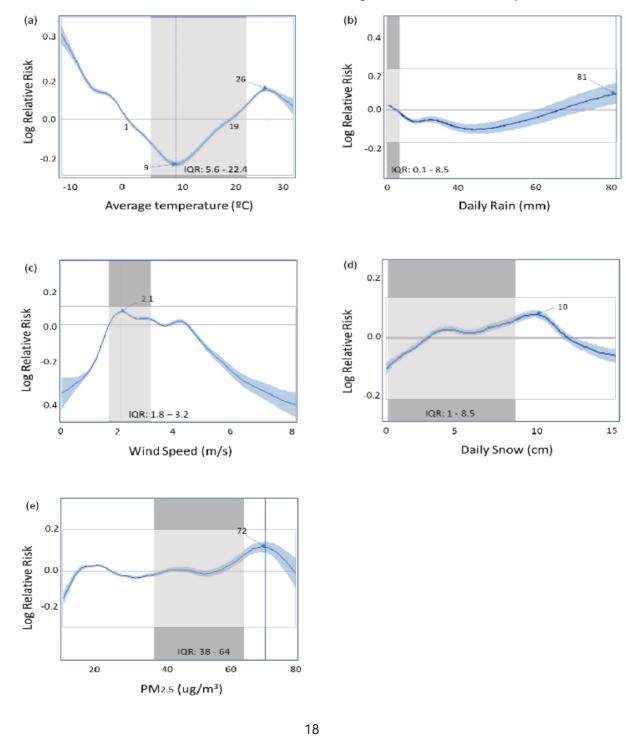

			BM.	Open	5/bmjopen-2020-047000 on 11 June 202		
					ope		
					n-2(
					020-		
	Daily Snow	1.0077	0.77	[1.0070-1.0085]	.047	<.0001	
	PM _{2.5}	1.0021	0.21	[1.0020-1.0023]	7000	<.0001	
	Avg. Temp.	1.0102	1.02	[1.0101-1.0103]	 or	<.0001	
	Daily Rain	1.0008	0.08	[1.0007-1.0009]	11	<.0001	
Lag 3	Wind Speed	1.0230	2.30	[1.0220-1.0241]	Ju	<.0001	
U	Daily Snow	1.0056	0.56	[1.0048-1.0063]	ne	<.0001	
	PM _{2.5}	1.0020	0.20	[1.0019-1.0021]	202	<.0001	
	Avg. Temp.	1.0102	1.02	[1.0101-1.0103]		<.0001	
	Daily Rain	1.0009	0.09	[1.0008-1.0010]	Dow	<.0001	
Lag 4	Wind Speed	1.0205	2.05	[1.0194-1.0216]	nlo	<.0001	
	Daily Snow	1.0046	0.46	[1.0038-1.0054]	ade	<.0001	
	PM _{2.5}	1.0016	0.16	[1.0015-1.0017]	id fr	<.0001	
	Avg. Temp.	1.0103	1.03	[1.0102-1.0104]	mo	<.0001	
	Daily Rain	1.0009	0.09	[1.0008-1.0010]	h t	<.0001	
Lag 5	Wind Speed	1.0176	1.76	[1.0165-1.0187]	p://	<.0001	
	Daily Snow	1.0005	0.05	[0.9996-1.0013]	bmj	0.6304	
	PM _{2.5}	1.0015	0.15	[1.0014-1.0016]	. Downloaded from http://bmjopen.bmj.com/ on April 28, 2024 by	<.0001	
	Avg. Temp.	1.0103	1.03	[1.0101-1.0104]	n.b	<.0001	
	Daily Rain	1.0008	0.08	[1.0007-1.0009]	, <u>ä</u> ,	<.0001	
Lag 6	Wind Speed	1.0105	1.05	[1.0094-1.0116]	S S	<.0001	
	Daily Snow	1.0003	0.03	[0.9995-1.0012]	N 0	0.7136	
	PM _{2.5}	1.0012	0.12	[1.0011-1.0014]	n A	<.0001	
	Avg. Temp.	1.0103	1.03	[1.0102-1.0105]	pril	<.0001	
	Daily Rain	1.0004	0.04	[1.0003-1.0005]	28,	0.0042	
Lag 6 Lag 7	Wind Speed	1.0003	0.03	[0.9992-1.0013]	20	0.1597	
	Daily Snow	1.0001	0.01	[0.9993-1.0009]	24	0.8279	
	PM _{2.5}	1.0002	0.02	[1.0001-1.0003]	by g	0.0089	
					guest.		
					<u>;</u> ;		
					rot		
					ecte		
					Protected by copyright.		
			1	4	У О		
					ору		
					rig		

BMJ Open

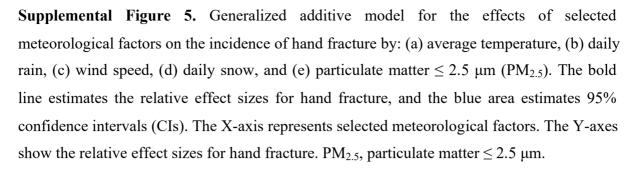


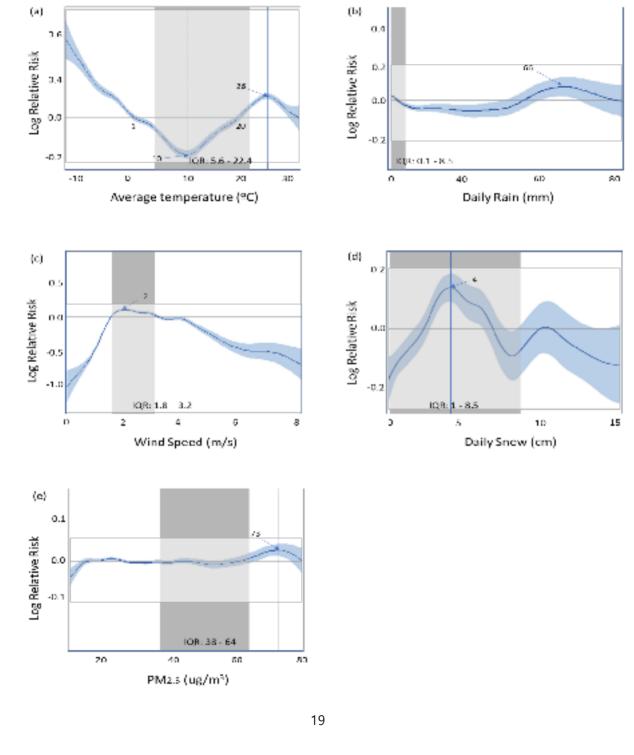


Supplemental Figure 2. Generalized additive model for the effects of selected meteorological factors on the incidence of shoulder fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for shoulder fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for shoulder fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

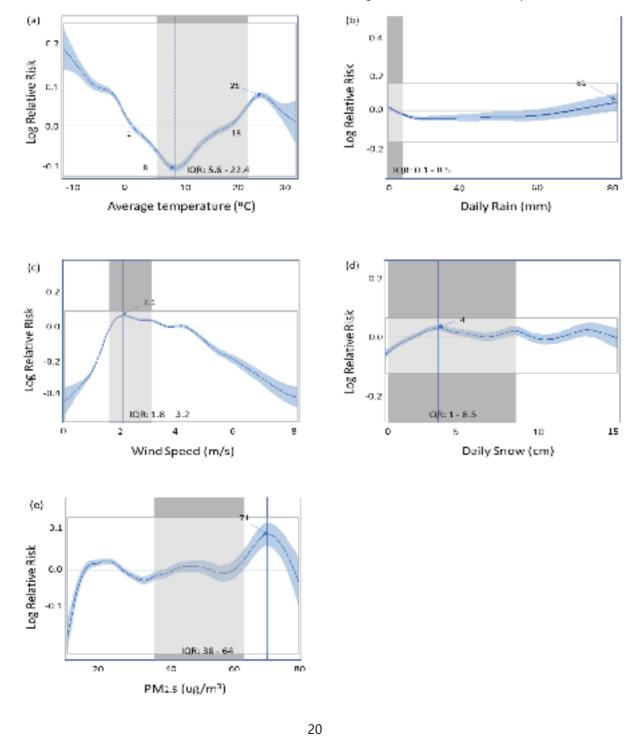


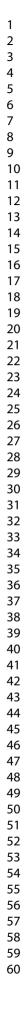
Supplemental Figure 3. Generalized additive model for the effects of selected meteorological factors on the incidence of elbow fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for elbow fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for elbow fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

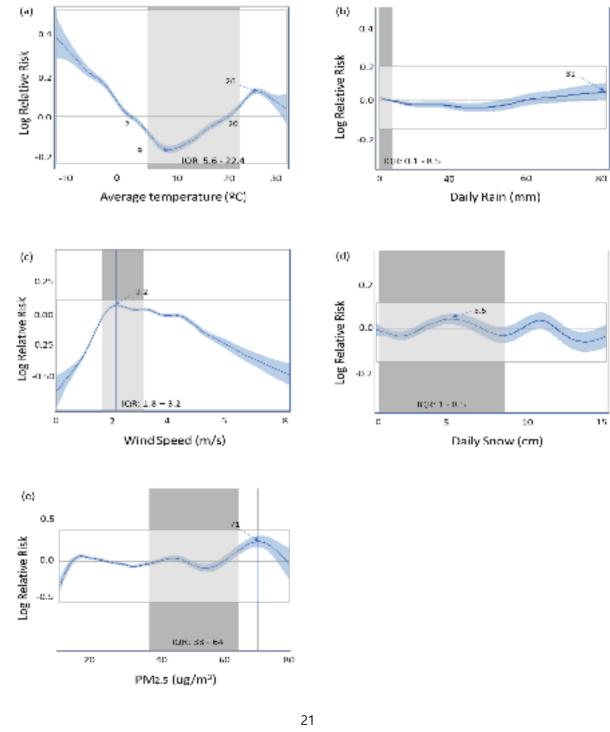




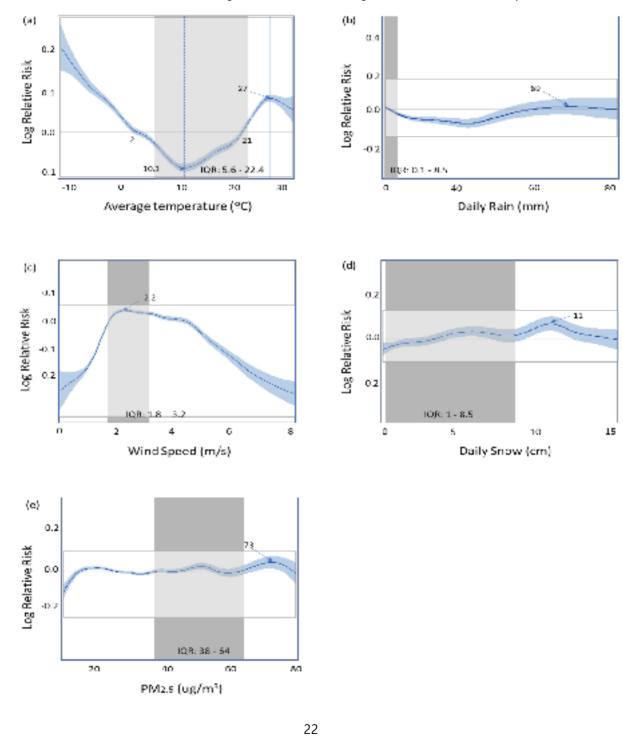
Supplemental Figure 4. Generalized additive model for the effects of selected meteorological factors on the incidence of wrist fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for wrist fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for wrist fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.



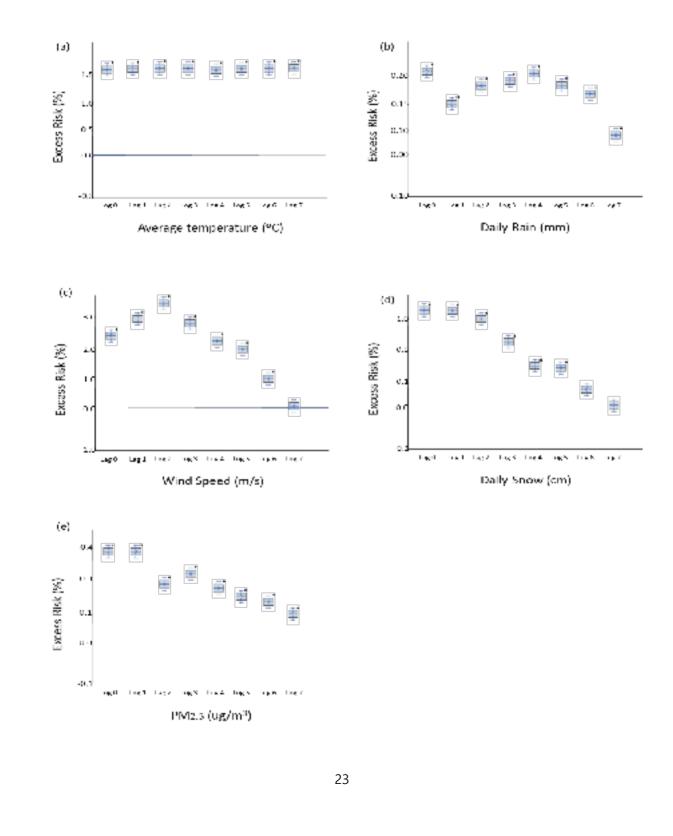


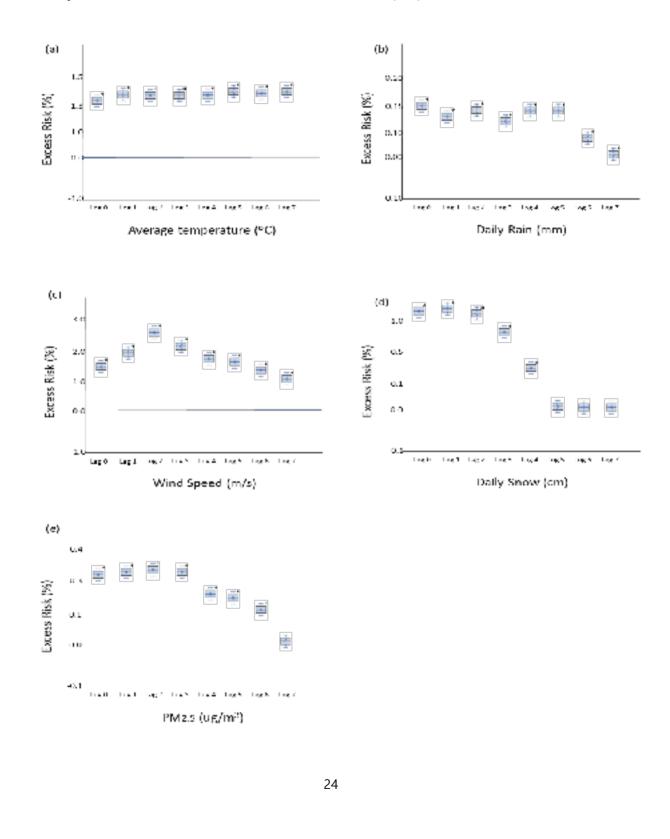


Supplemental Figure 6. Generalized additive model for the effects of selected meteorological factors on the incidence of ankle fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for ankle fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for ankle fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

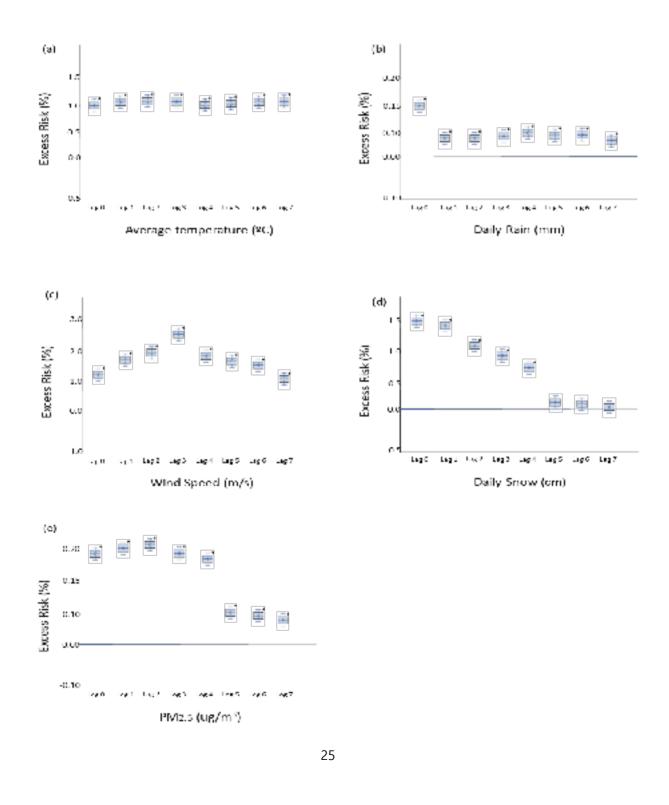


Supplemental Figure 7. Generalized additive model for the effects of selected meteorological factors on the incidence of foot fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for foot fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for foot fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

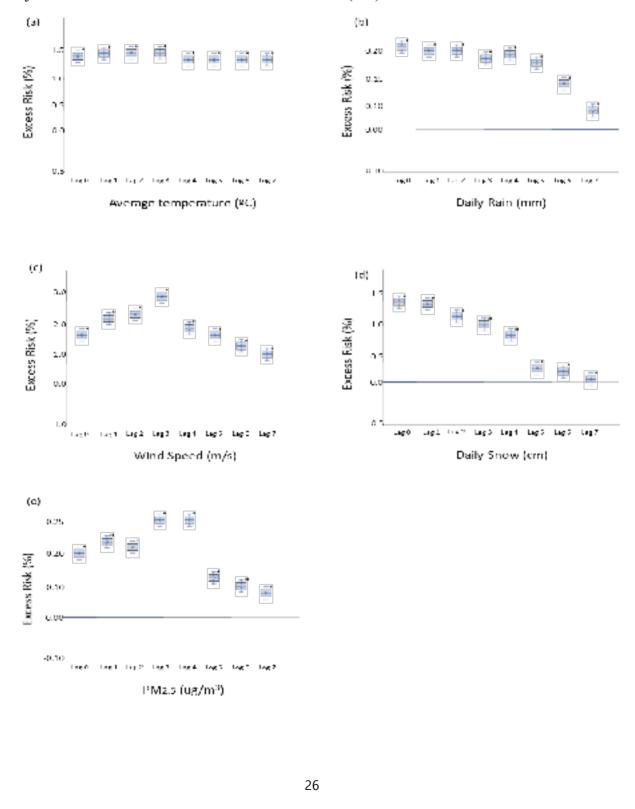



Supplemental Figure 8. Generalized additive model for the effects of selected meteorological factors on the incidence of spine fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The bold line estimates the relative effect sizes for spine fracture, and the blue area estimates 95% confidence intervals (CIs). The X-axis represents selected meteorological factors. The Y-axes show the relative effect sizes for spine fracture. PM_{2.5}, particulate matter $\leq 2.5 \ \mu m$.

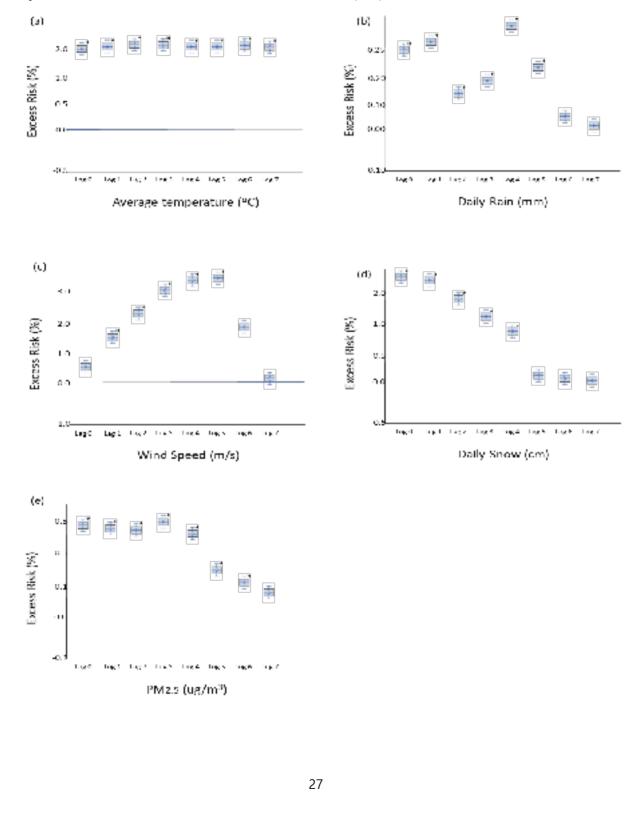
Supplemental Figure 9. Levels of the selected meteorological factors and adjusted excess risks of the knee fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

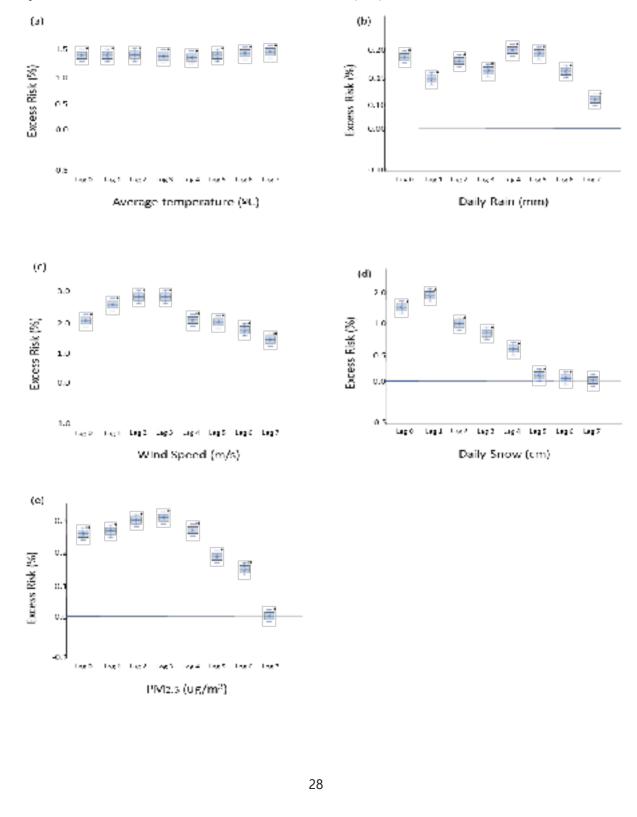


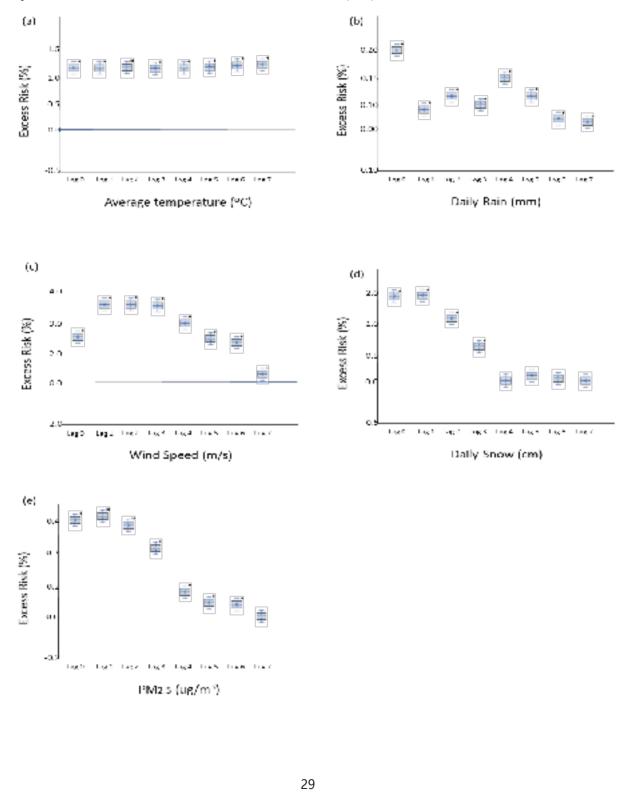
Supplemental Figure 10. Levels of the selected meteorological factors and adjusted excess risks of the shoulder fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

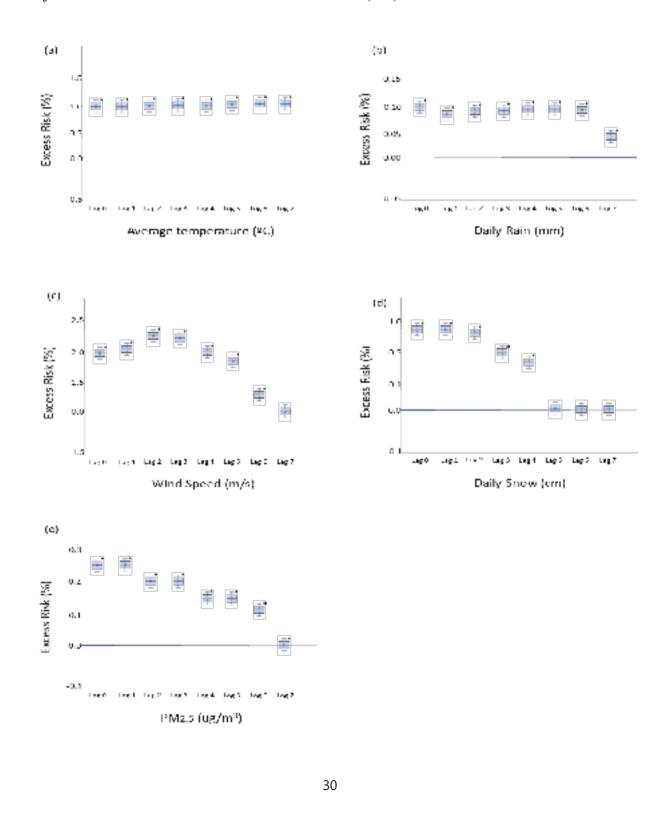


BMJ Open


Supplemental Figure 11. Levels of the selected meteorological factors and adjusted excess risks of the elbow fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.


Supplemental Figure 12. Levels of the selected meteorological factors and adjusted excess risks of the wrist fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.


Supplemental Figure 13. Levels of the selected meteorological factors and adjusted excess risks of the hand fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.


Supplemental Figure 14. Levels of the selected meteorological factors and adjusted excess risks of the ankle fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

Supplemental Figure 15. Levels of the selected meteorological factors and adjusted excess risks of the foot fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

Supplemental Figure 16. Levels of the selected meteorological factors and adjusted excess risks of the spine fracture by: (a) average temperature, (b) daily rain, (c) wind speed, (d) daily snow, and (e) particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$. The Y-axes show the percentages of the adjusted excess risks with 95% confidence intervals (CIs). **P*<.05.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1,3,4
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	fig1
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7,8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	14
Study size	10	Explain how the study size was arrived at	fig1
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	
		(b) Describe any methods used to examine subgroups and interactions	8,9
		(c) Explain how missing data were addressed	- ,-
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>a</i>) It applicable, explain how loss to follow-up was addressed (<i><u>e</u></i>) Describe any sensitivity analyses	
		(<u>e</u>) Describe any sensitivity analyses	
Results	1.2*		9
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	fig1
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	0
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9, fig2
		and information on exposures and potential confounders	Sup
			Tab
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	9,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
-
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
44
45
46
47
48
49
5 0
51
52
53
54
55
56
57
57 58
59 60
60

1 2

Main results 1		6 (<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	16

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.