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ABSTRACT
Introduction The diagnosis of mild cognitive 
impairment (MCI), that is, the transitory phase between 
normal age- related cognitive decline and dementia, 
remains a challenging task. It was observed that a 
multimodal approach (simultaneous analysis of several 
complementary modalities) can improve the classification 
accuracy. We will combine three noninvasive measurement 
modalities: functional near- infrared spectroscopy (fNIRS), 
electroencephalography and heart rate variability via 
ECG. Our aim is to explore neurophysiological correlates 
of cognitive performance and whether our multimodal 
approach can aid in early identification of individuals with 
MCI.
Methods and analysis This study will be a cross- 
sectional with patients with MCI and healthy controls (HC). 
The neurophysiological signals will be measured during 
rest and while performing cognitive tasks: (1) Stroop, (2) 
N- back and (3) verbal fluency test (VFT). Main aims of 
statistical analysis are to (1) determine the differences 
in neurophysiological responses of HC and MCI, (2) 
investigate relationships between measures of cognitive 
performance and neurophysiological responses and (3) 
investigate whether the classification accuracy can be 
improved by using our multimodal approach. To meet 
these targets, statistical analysis will include machine 
learning approaches.
This is, to the best of our knowledge, the first study that 
applies simultaneously these three modalities in MCI 
and HC. We hypothesise that the multimodal approach 
improves the classification accuracy between HC and MCI 
as compared with a unimodal approach. If our hypothesis 
is verified, this study paves the way for additional research 
on multimodal approaches for dementia research and 
fosters the exploration of new biomarkers for an early 
detection of nonphysiological age- related cognitive 
decline.
Ethics and dissemination Ethics approval was obtained 
from the local Ethics Committee (reference: 83/19). 
Data will be shared with the scientific community no 
more than 1 year following completion of study and data 
assembly.
Trial registration number  ClinicalTrials. gov, 
NCT04427436, registered on 10 June 2020, https:// 
clinicaltrials. gov/ ct2/ show/ study/ NCT04427436.

INTRODUCTION
Mild cognitive impairment (MCI) is consid-
ered as a prodromal stage of (or transition 
phase to) dementia. The most common 
cause of dementia is Alzheimer’s disease 
(AD).1 It is estimated that approximately 
50 million people are currently suffering 
from AD worldwide.2 AD is a neurological 
disease with specific neuropathological (eg, 
amyloid- plaques, neurofibrillary tangles) 
and neurochemical features (eg, neurotrans-
mitter deficits). On the behavioural level, AD 
is characterised by deficits of higher cortical 
functions such as memory, decision- making, 
visuospatial abilities, executive functioning 
and language.3 Individuals who suffer from 
dementia require a high level of care and 

Strengths and limitations of this study

 ► This study will be the first to use a multimodal mea-
suring approach to determine neurophysiological 
responses of elderly with mild cognitive impairment 
and healthy controls.

 ► Differences between these two groups will be in-
vestigated with electroencephalography, functional 
near- infrared spectroscopy and heart rate variabil-
ity at resting state and while performing cognitive 
tasks.

 ► This study will provide valuable information about 
certain neurophysiological parameters that are 
promising for an early identification of people who 
are at a higher risk of an overly age- related decline 
in cognitive performance.

 ► We hypothesise that this multimodal approach im-
proves the classification accuracy between elderly 
with mild cognitive impairment and healthy con-
trols as compared with a unimodal or a bimodal 
approach.

 ► Since this study is the first of its kind, it has an ex-
ploratory character with a relatively small sample 
size, but it should provide a basic concept for large- 
scale studies.

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2020-046879 on 25 M

ay 2021. D
ow

nloaded from
 

http://bmjopen.bmj.com/
http://orcid.org/0000-0003-0434-7194
http://dx.doi.org/10.1136/bmjopen-2020-046879
http://dx.doi.org/10.1136/bmjopen-2020-046879
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2020-046879&domain=pdf&date_stamp=2021-05-25
NCT04427436
https://clinicaltrials.gov/ct2/show/study/NCT04427436
https://clinicaltrials.gov/ct2/show/study/NCT04427436
http://bmjopen.bmj.com/


2 Grässler B, et al. BMJ Open 2021;11:e046879. doi:10.1136/bmjopen-2020-046879

Open access 

support, and, thus, the disease entails a substantial burden 
for the healthcare systems.4 For instance, in Germany, the 
annual costs are estimated at 42.6 billion Euros,5 whereas 
the global costs are considered to have crossed the 
US$1 trillion threshold in 2018.6 Given that the number 
of individuals with dementia will increase further as a 
consequence of the demographic change, these annual 
healthcare expenditures are expected to grow, too.

In contrast to patients with dementia, patients with MCI 
have only marginal limitations in activities of daily living but 
show some deteriorations in specific cognitive domains.7 
A person is considered to suffer from MCI if the following 
criteria are fulfilled: memory complaint, normal activities 
of daily functioning, normal general cognitive function, 
abnormal memory for age and not demented.8 There are 
four types of MCI: amnestic MCI single domain, amnestic 
MCI multiple domain, nonamnestic MCI single domain 
and nonamnestic MCI multiple domain.9 Patients with 
amnestic MCI show impairments in the performance of 
neuropsychological tests of episodic memory. Patients 
with nonamnestic MCI show impairments in cognitive 
domains other than memory, such as executive functions, 
language or visuospatial abilities.8 For a correct detection 
of MCI, a careful and comprehensive neuropsychological 
test battery covering multiple cognitive domains is an 
important criterion.8 Therefore, a correct detection of 
MCI by clinical data, regardless of whether single- domain 
and multiple- domain MCI are present, is relevant for 
our investigation. Hence, individuals with amnestic and 
nonamnestic MCI, based on a comprehensive clinical and 
neuropsychological assessment, without differentiating 
between single and multiple domain MCI, will be consid-
ered in our investigation. As these MCI are often not 
evident on a behavioural level, individuals with MCI are 
difficult to identify. During the stage of MCI, reduction 
of lifestyle- related risk factors, such as physical inactivity, 
may slow down or postpone the progression of this neuro-
logical syndrome.10–12 So far, no drug has been approved 
for the symptomatic or causal treatment of MCI.13 Never-
theless, an early diagnosis of MCI is indispensable for a 
better understanding of the neurobiological mechanisms 
mediating the transition of the inexorable age- related 
cognitive decline to dementia. This, in turn, may allow 
for a timely initiation of preventive strategies slowing, 
postponing or, at best, counteracting the transition to a 
serious manifestation of dementia.

The diagnosis of MCI based on clinical features alone 
is often challenging and relatively unreliable. Therefore, 
the identification of biomarkers that aid an early iden-
tification of neurodegenerative processes has become 
a focus of current research.14 Neuroimaging methods 
such as MRI or positron emission tomography (PET) are 
popular tools in the investigation of neurodegenerative 
diseases. However, these methods have several disad-
vantages. They are expensive, have limited eligibility 
and the participant is not allowed to move. Addition-
ally, the use of radioisotopes in PET results in exposure 
to ionising radiation, which involves detrimental health 

risks.15 16 Biomarkers in the cerebrospinal fluid (CSF), 
such as Aβ42, constitute another approach for identifying 
AD pathology.1 However, drawing CSF is stressful for the 
patient, can entail complications and does not neces-
sarily yield unequivocal results. Thus, it is necessary to 
investigate other measurement methods able to detect a 
pathological cognitive decline timely while avoiding the 
above- mentioned limitations.

fNIRS is an optical neuroimaging technique that is 
based on the theory of neurovascular coupling and optical 
spectroscopy.17 fNIRS allows the noninvasive investiga-
tion of cortical haemodynamic changes associated with 
brain activity.18 In this regard, it is assumed that neuronal 
activity enhances the regional cerebral blood flow to the 
neuronal tissue at work which, in turn, leads to a local 
increase in the concentration of oxygenated haemoglobin 
(oxyHb) and decrease in deoxygenated haemoglobin 
(deoxyHb).17 Since oxyHb and deoxyHb have different 
light absorption spectra, the relative activity- dependent 
concentration changes of oxyHb and deoxyHb can be 
determined and allow us to make conclusions about 
cortical brain activity.16 More details on physiological and 
methodological background of fNIRS can be found in 
the referenced literature.17 19 20

The advantages of fNIRS are its portability, tolerance to 
motion artefacts (compared with EEG and MRI), higher 
temporal resolution (compared with MRI), low costs 
(compared with MRI and PET), it is easy to use and more 
participants are eligible than for MRI (eg, no restriction 
due to claustrophobia or metallic implants). The disad-
vantages are its lower spatial resolution (compared with 
MRI), low penetration depth, lack of standardisation in 
data analysis and, due to the delay in the haemodynamic 
response, there is a time delay in the signal curve, too.16

fNIRS has become a frequently used technique for the 
investigation of neurological diseases such as AD.21–23 
There is evidence in the literature showing that fNIRS 
offers a great potential to become a valuable tool to iden-
tify individuals with a higher risk of developing dementia 
as changes in cortical haemodynamic obtained during 
a standardised cognitive test allow to discern between 
healthy and diseased individuals.24–31 Young participants 
showed a stronger activation in the left hemisphere in 
the more difficult task conditions. Elderly participants 
showed no lateralisation and a decreased activation in 
the difficult task condition. This phenomenon is called 
‘Hemispheric Asymmetric Reduction in OLD adults’ 
model.32

Electroencephalogram (EEG) is another technique for 
quantifying neurophysiological processes. EEG measures 
electrical activity provoked by the firing of cortical 
neurons within the brain. EEG is an optimal tool for 
recording the complex dynamic neural activity due to the 
excellent temporal resolution in milliseconds and reason-
able spatial resolution.33 The potential to detect prede-
mentia AD/MCI condition has already been shown.34–37

In addition to the most commonly used method of 
frequency analysis, it is also recommended to apply other 
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more sophisticated EEG methods, like brain mapping, 
connectivity analysis or the analysis of event- related poten-
tials (ERPs), which can lead to a further specification of 
the diagnosis of dementia.38–42

The specific neural activity in response to a certain 
stimulus can be measured by ERPs. The most common 
component we can find in response to sensory, cogni-
tive or motor stimuli are P100, P200, P300, P600, N100 
and N400, which are used in cognitive science.43 Impor-
tantly, it is not sufficient to study the cortical modula-
tion in isolation. Cortical functions are influenced by 
functional integration. EEG is an optimal technique to 
understand the communication between different areas 
of the brain by functional and effective connectivity anal-
ysis. Functional connectivity is defined as the correlation 
between different areas of the brain. Effective connec-
tivity is defined as direct or indirect influence that one 
neural system exerts on the other neural system. The 
connectivity can be investigated by sources and EEG 
channels.44–46 Beside connectivity, it is also possible to 
construct the brain map from the recording of electrical 
potentials with electrode distribution over the skull. The 
brain mapping can be helpful to identify activated struc-
tures of the cortex during task execution.47 48

ECG will be the third assessment method. In particular, 
we will determine the heart rate variability (HRV) from 
the ECG. The HRV describes the beat- to- beat variation of 
subsequent NN intervals. These fluctuations in the heart 
rate are regarded as an indicator of the functional state 
of the autonomic nervous system (ANS) and is related 
to psychophysiological aspects such as self- regulation 
on a cognitive, emotional, social and health level.49 50 
HRV is the result of the complex interaction between 
sympathetic and parasympathetic influences.51 52 A rela-
tively low HRV indicates an increased sympathetic state, 
an abnormal regulation and inadequate adaptation of 
the cardiovascular system and is a sign of depletion or 
pathology. Hence, HRV is a promising marker to diag-
nose pathological states52 and an optimal HRV is critical 
to health and well- being.53

HRV measurements provide the advantages that they 
are easy to use, not expensive, portable, noninvasive, and 
the recordings are relatively easy to interpret. However, 
on the downside, HRV values are strongly influenced by 
individual differences, there is a relatively large number 
of influencing factors that have to be controlled for, and 
there is still no generally accepted consensus concerning 
data acquisition and data processing.49 54 55

Measures of HRV have been used to index vagal activity.56 
Root mean square of successive differences (RMSSD) 
between adjacent normal NN intervals, percentage of 
successive normal NN intervals differing more than 50 ms 
(pNN50) and power in high (0.15–0.40 Hz) frequencies 
(HF) are supposed to reflect vagally mediated HRV.49 53 57 
According to the neurovisceral integration model, neural 
structures responsible for affective, cognitive and physi-
ological regulation are associated with vagally mediated 
cardiac function.58 Especially the prefrontal cortex is 

associated with HRV measures as it is connected with the 
amygdala and cardiovascular system.59 Vagally mediated 
HRV is supposed to be linked with ‘a set of neural struc-
tures that have been implicated in cognitive, especially 
executive function’.58 A positive connection between 
resting HRV and cognitive functioning has already been 
demonstrated.60–64 In a recent meta- analysis, the effect 
size (ES) magnitude of HRV measures in the evaluation 
of autonomic dysfunction in older people with dementia 
was investigated.65 Although the small ES does not 
support the use of HRV as a single biomarker to diagnose 
dementia, the results suggest autonomic dysfunction in 
dementia. Since biological processes such as ANS activity 
are complex and nonlinear, several authors suggest 
nonlinear HRV measures.66–70 In this context, sample 
entropy recorded at rest, was related to a better cognitive 
performance, but traditional time or frequency indices 
were not.69 The sensitivity and reliability of nonlinear 
measures such as Poincaré and detrended fluctuation 
analysis for mental effort tasks could be proved in healthy 
seniors.67 In a recent study, D2, the RRI dimension 
correlation, could be better related to the mental work-
load than time or frequency indices.66

Cognition relies on complex neurophysiological 
processes. In particular, the solving of a cognitive task is 
associated with task- related changes in cerebral haemo-
dynamics, cerebral electrical activity and changes in the 
ANS. These task- related neurophysiological changes 
can be assessed by fNIRS, EEG and HRV71 separately 
(unimodal approach) or simultaneously (multimodal 
approach). A clear advantage of the multimodal assess-
ment approach of task- related neurophysiological 
changes (eg, cognition- related brain activity) is its ability 
to reduce and/or to compensate for inherent limitations 
of a single measurement modality (eg, artefacts that are 
reflected in only one modality).72 As single tests, they 
might be not accurate enough for differentiating healthy 
controls (HC) from cognitively impaired participants. 
EEG, fNIRS and HRV provide complementary informa-
tion about different neurophysiological systems which, in 
turn, foster an improvement of the classification accuracy. 
Indeed, cognitive neuroscience research now focuses on 
the simultaneous acquisition by noninvasive modalities to 
improve their performance and information content.15 
Combined fNIRS- EEG,73 EEG- HRV74 75 and fNIRS- HRV76 
measurements were already applied in different fields of 
brain research. It was observed that classification accu-
racy can be improved when using different measurement 
modalities simultaneously.77–84 However, so far and to 
the best of our knowledge, there is no published study 
available, which uses the above- described multimodal 
approach to investigate the neurophysiological cognition- 
related differences between healthy older individuals and 
older individuals with MCI.

The primary aim of this study is to investigate the differ-
ence between HC and cognitively impaired participants 
in neurophysiological signals. We will use fNIRS, EEG 
and ECG since they are noninvasive and provide some 
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advantages compared with MRI, PET and measures of 
CSF. As the most of the currently available studies used, 
to the best of our knowledge, only two different measure-
ment modalities (mostly EEG and fNIRS), we hypothe-
sise that our approach improves classification accuracy 
considerably. The second aim of this study is to investigate 
possible neurobehavioral relationships between measures 
of cognitive performance and measures of fNIRS, EEG 
and HRV. The third aim of this study is to systematically 
compare the classification accuracy of uni-, bi- and multi-
modal measurement approaches. By saying that, we wish 
to emphasise that this study has an explorative character 
aiming to identify cognition- related neurophysiological 
parameters that are promising for MCI detection. This 
study should provide a basic concept for further studies 
using a multimodal measurement approach and promote 
research for a better understanding of the neurobiolog-
ical mechanisms leading to dementia.

METHODS AND ANALYSIS
Study design
This cross- sectional study will be conducted by a multidis-
ciplinary team of researchers from Department of Sport 
Science at the Otto von Guericke University Magdeburg, 
the Medical Faculty of the Otto von Guericke University 
Magdeburg and the German Center for Neurodegener-
ative Diseases. The study protocol was approved by the 
Ethics Committee of the Otto von Guericke University 
Magdeburg (reference: 83/19) and is in accordance with 
the Declaration of Helsinki. This study was registered in  
ClinicalTrials. gov on the 10 June 2020.

Participants
This study has an explorative character as there is, to 
the best of our knowledge, no comparable study avail-
able, which used measures from multiple modalities (eg, 
EEG, fNIRS, HRV) to differentiate between individuals 
suffering from MCI and HC. Thus, we considered studies 
comparing individuals with MCI and HC using, at least, 
one measurement modality29 85 86 for our sample size esti-
mation. In this context, the following calculations have 
been performed.

Based on the means of oxyHb of individuals with MCI 
and HC during a cognitive task in the study of Yang et 
al,29 a sample size of 15 participants in each group will 
be needed to achieve a statistical power of 80%. Based 
on the HF nu values during standing position in one 
HRV study,85 a sample size of 49 participants in each 
group will be needed to achieve a statistical power of 
80%. Finally, based on the latency of P300 during an 
event- related task in one EEG study,85 a sample size of 
34 participants in each group will be needed to achieve 
a statistical power of 80%. All sample sizes were calcu-
lated a priori by using G*Power V.3.1.87 Furthermore, 
studies that had applied EEG, fNIRS and ECG simul-
taneously in a cohort of healthy subjects71 82 88 used 
sample sizes varying between 11 and 25 subjects. Given 

the explorative character of this study and the intention 
to pave the way for future investigations with a larger 
sample size, we chose a relatively small sample with 30 
MCI subjects and 30 HC constituting a tempered and 
conservative estimate to detect possible neurophysiolog-
ical effects and/or trends.

This study will involve patients with MCI who have 
been diagnosed by an experienced neurologist, based on 
standardised clinical and neuropsychological criteria.89 
Healthy participants will be recruited by advertisements in 
local newspapers. Interested individuals will be informed 
about the aim of the study and first be screened by tele-
phone to check for general eligibility according to our 
criteria. The two groups will be age, gender, handedness 
and education matched. At the beginning of the study, 
each participant will provide a personally signed and 
dated informed consent document indicating that the 
individual has been informed of all pertinent aspects of 
the study. Participants must be native German- speaking 
adults who are between 55 and 80 years old. All partici-
pants will be financially rewarded to compensate for their 
participation.

Exclusion criteria are:
 ► Other neurological diseases (ie, epilepsy, multiple 

sclerosis).
 ► Known severe cardiac diseases (ie, history of heart 

disease, severe cardiac insufficiency, heart failure, 
cardiac pacemaker, valvular defect, with or without 
stent implantation, heart attack).

 ► Stroke.
 ► Mental diseases (ie, schizophrenia, depression).
 ► Orthopaedic diseases (ie, bone fracture in last 

6 months, symptomatic slipped disc).
 ► Muscular diseases (ie, myositis, tendovaginitis).
 ► Severe endocrinologic diseases (ie, manifest hypo-

thyroidism or hyperthyroidism, adiposity (BMI >30), 
juvenile- onset diabetes).

 ► Injury or surgery in last 6 months.
 ► Use of illegal intoxicants or alcohol abuse (more than 

three times per week).
 ► Uncorrected poor eyesight or hearing.
 ► Colour blindness/red- green weakness.
 ► Pregnancy or breastfeeding.
 ► Using one of the following medications: betablocker, 

angiotensin- converting- enzyme inhibitor, antiar-
rhythmic drugs, neuroleptics, narcotic analgesics, 
benzodiazepines and psychoactive medications.

At the beginning of the study, all participants will be 
screened by using the CERAD (Consortium to estab-
lish a registry for Alzheimers’s Disease) test battery.90 
This cognitive test battery evaluates the performance in 
semantic verbal fluency, word retrieval, constructional 
praxis, visual memory, verbal memory, global cognition 
(mini mental state examination) and motor speed (trail 
making test A). The CERAD has been shown to be a valid 
and reliable assessment tool to identify individuals with 
cognitive impairments.91
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Assessments
Participants will attend three visits within 1 week and 
undergo the following assessments:
1. Clinical assessment: CERAD and medical examination, 

taking blood sample (ie, Apolipoprotein 4 and brain- 
derived neurotrophic factor).

2. Sociodemographic assessment: questionnaires.
3. Neurophysiological and neuropsychological assess-

ment: EEG/fNIRS/ECG simultaneously at resting 
state and during cognitive tasks.

Sociodemographic assessment
Sociodemographic data, family history of AD/dementia 
and lifestyle factors of the participants will be obtained 
before the measurements via several questionnaires. We 
will record medication, together with measurements of 
height, weight, educational and physical activity level. 
The level of physical activity will be assessed via the ques-
tionnaire German- PAQ50+.92 It will allow for this factor to 
be considered as a covariate. The health- related quality of 
life will be measured by the 36- Item Short Form Health 
Survey.93 Sleep quality will be assessed via the Pittsburgh 
Sleep Quality Index.94 Finally, the Food Frequency Ques-
tionnaire will be applied to assess the dietary habit of the 
participants.95

Neurophysiological and neuropsychological assessment
Research staff collecting data are blinded concerning 
the cognitive status (MCI or HC) of the participant to 
avoid bias. EEG, fNIRS and ECG will be recorded simul-
taneously at resting state for 10 min. The measurement 
standards for the resting state measurement follow the 
recommendations of Laborde et al.49 Accordingly, the 
participants are asked to sit on a comfortable chair with 
their knees bent at a 90° angle and their hands on their 
thighs. Furthermore, they are advised to relax, breath 
normally and move as little as possible. As recommended 
in the literature, the participants will rest in the above- 
described position for at least 5 min before the baseline 
recordings are obtained.49 Subsequently, the participants 
complete three cognitive tasks while their neurophys-
iological signals are measured. The cognitive tasks are 
Stroop, N- back and a VFT. This procedure is comparable 
to the study of Yang et al29 but in addition to this study, 
(1) we will conduct the assessment of EEG and ECG and 
(2) we will use modified versions of the cognitive tasks. 
Afterwards, a second resting- state measurement will be 
conducted (recovery phase).49

According to the multistage concept in psychophys-
iology of Fahrenberg, objective data of the cognitive 
performance, objective physiological data and subjec-
tive data of the personal feeling will be collected.96 The 
latter will be recorded by the NASA- TLX questionnaire 
(National Aeronautics and Space Administration - Task 
Load Index). The NASA- TLX provides an overall work-
load score with six dimensions: mental demands, physical 
demands, temporal demands, own performance, effort 
and frustration.97 The overall workload is the weighted 

average of these dimensions. After the cognitive tests, 
participants will be instructed to rate each dimension on 
a visual scale from 1 to 20 points. It is an easy to use tool 
and its results can be compared with participants’ perfor-
mance and their neurophysiological responses. The 
NASA- TLX is a widely used tool with a high reliability and 
validity.98

Cognitive tasks
During the whole assessment, the participants are 
sitting in front of a computer screen on a comfortable 
chair and are asked to avoid head movements as much 
as possible. Before the experiment, the participants will 
be briefed on the task instructions and experimental 
design. The instructions are presented on a printed 
paper and explained verbally by the investigator. Each 
task block begins with a 5 s instruction cue that informs 
the participant about the task condition. All tasks will be 
administered via computer, which allows to measure reac-
tion times and responses of the participants exactly. To 
synchronise all signals, temporal triggers are delivered 
simultaneously to EEG and fNIRS systems via the software 
Presentation (Neurobehavioral Systems, USA).

Stroop
A computerised version of the Stroop test will be applied.99 
This widely used test requires the executive functions 
inhibition and cognitive control. These are crucial for 
completion of complex cognitive tasks and everyday activ-
ities.100 The classic Stroop test elicits a conflict situation 
since the meaning of a colour- word and the ink colour 
do not match. Behavioural responses to these incon-
gruent stimuli are usually slower and less accurate than 
responses to congruent stimuli. The behavioural differ-
ence between incongruent and congruent stimuli is 
called the Stroop effect, which has been used as an index 
of cognitive control.101 Since the prefrontal cortex plays 
a predominant role in cognitive control102 and has shown 
to be affected by MCI,23 fNIRS optodes will be placed on 
the prefrontal cortex.

Our Stroop test includes three experimental condi-
tions (pure congruent, pure incongruent and mixed 
congruent and incongruent stimuli) with three blocks 
in each condition (see figure 1). Prior to each block, a 
baseline measurement having nearly the same length as 
the task blocks will be applied in order to assess a base-
line for the haemodynamic activity. During the baseline 
measurement, participants are requested to sit still and 
relax. According to the recent recommendations,17 the 
duration of the baseline measurement should not be 
a multiple of 10 s to avoid the overlap with the Mayer 
waves. In each block, colour- words are consecutively 
presented in the middle of the computer screen. A black 
background was chosen to avoid overstraining the eyes. 
Each colour has a corresponding button. Four different 
colour- words will appear: ‘RED’, ‘GREEN’, ‘BLUE’ or 
‘YELLOW’ in German language. In the congruent condi-
tion, the meaning of the colour- word and the ink colour 
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matches. In the incongruent condition, the colour- word 
is printed in an incongruent ink colour, for example, the 
word ‘RED’ is presented in blue colour. Participants are 
instructed to identify the colour of the word by pressing 
the appropriate button and not reacting on the meaning 
of the word. In this example, the participant must press 
the button for the ink colour (blue). Participants should 
react as fast and as correct as possible. In the third block, 
congruent and incongruent stimuli are presented. Partic-
ipants are instructed to react on the colour of the word. 
Although the typical clinical version of the Stroop tests 
includes a pure block of neutral (congruent) stimuli 
and a pure block of incongruent stimuli, some authors 

criticise this pure- block design since it has some limita-
tions.100 Therefore,a mixed block design with congruent 
stimuli within anincongruent condition demanding 
the cognitive function goal- maintenancecapacities will 
be applied. The congruent stimuli within this condi-
tion promotethe inappropriate but more automatically 
response of reading the word andproduce larger Stroop 
effects than pure incongruent blocks.100 This mixed 
design was already used in some studies.103–107 Hence, we 
will use a pure incongruent and a mixed block. The mixed 
block consists of 50% congruent and 50% incongruent 
stimuli. The participants should react in both variants to 
the colour of the word. Prior to task, the participants will 
be adequately familiarised with the test by performing a 
sufficient number of practice trials.

N-back
The N- back was first introduced by Kirchner108 and is a 
frequently used task to measure working memory capacity. 
In our study, three conditions (0- back, 1- back and 2- back) 
will be used (see figure 2). Single- digit numbers with a 
presentation time of 1500 ms are presented consecutively 
in three blocks in the middle of the screen. The interstim-
ulus interval is 500 ms. As in the Stroop test, a baseline 
measurement will be included prior to each task block 
and after the last block.

In the 0- back condition, the participants are asked to 
press the target button only when the number ‘7’ appears. 
All other numbers must be ignored. In the 1- back condi-
tion, the participants are asked to press the target button 
only when two identical numbers appear in succession. In 
the 2- back condition, the participants are asked to press 
the target button only when the current number matches 
the second- last number displayed before. In all three 
conditions, 25% of stimuli are targets. As in the Stroop 
test, participants will be instructed to react as fast and as 
correct as possible. Prior to task, the participants will be 
adequately familiarised with the test by completing a suffi-
cient number of practice trials.

Verbal fluency test
Verbal fluency is a cognitive domain that worsens with the 
development of AD.109 Therefore, we plan to use a VFT, 
which is based on the ‘Regensburger Wortflüssigkeit-
stest’.110 This test is frequently used in fNIRS studies inves-
tigating neurological diseases.24 30 109 111 Based on these 
studies, our test consists of two conditions. Both condi-
tions will be presented three times in a row for 30 s with a 
resting block for 31–34 s between each block. See figure 3 
for a detailed description of the VFT paradigm. During 
the resting blocks, the participants are requested to sit 
still and avoid speaking. We use a phonological (letter) 
and a semantic (category) condition. The instructions 
will be displayed on a screen to avoid instruction bias. 
Participants are requested to avoid movements during 
this test.

In the phonological condition, the participants 
are instructed to pronounce as many German words 

Figure 1 Description of the Stroop paradigm. C, congruent 
condition; In, incongruent condition; M, mixed condition; s, 
seconds.
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(nouns, verbs, adjectives) as possible beginning with a 
specific letter (‘A’, ‘F’, ‘P’) without using proper names, 
numbers, repetitions or words in different forms or with 
different endings. In the semantic condition, participants 
are instructed to pronounce as many words as possible 
belonging to a specific category (‘forenames’, ‘fruits’, 
‘flowers’).

Neurophysiological assessment
fNIRS
In this study, a portable continuous wave fNIRS system 
(NIRSport, NIRx Medical Technologies, Glen Head, 
New York, USA) will be used to record cortical haemo-
dynamics with a frequency of 10.2 Hz. The fNIRS- system 
consists of the following: eight light sources which emit 
light at wavelengths of 760 and 850 nm, eight light detec-
tors and a short- distance detector bundle (NIRx Medical 
Technologies, Glen Head, New York, USA), which allows 
to quantify changes in extracerebral layer (ie, blood flow 
in the scalp). As shown in figure 4, the fNIRS optodes will 

be positioned according to the 10–20 EEG system112 by 
using a standardised cap (EasyCap GmbH, Herrsching, 
Germany). We will perform a virtual and probabilistic 
spatial registration using the software fOLD (fNIRS 
Optodes’ Location Decider)113 and the Broadmann 
atlas114 to assign the fNIRS measurement channels with 
long source- detector separation to specific brain regions 
(see online supplemental additional file 1 for detailed 
overview).

The data processing of fNIRS follows recent recom-
mendations17 115 116 and will be conducted using the latest 
version of the ‘Homer’ software package.117 In brief, we 
will conduct the following processing steps: (1) exclude 
noisy channels by using enPruneChannels function, (2) 
convert raw light intensity changes into changes in optical 
density by using hmrIntensity2OD function, (3) perform 
motion artefact correction by using sophisticated filter 
methods (eg, wavlet filter—hmrMotionCorrectWavelet 
filtering function),118 (4) perform a correction for phys-
iological artefacts such as heart beat and instrumental 
noise by using hmrBandpassFilt function, (5) convert 
optical density data of both wavelengths via the modified 
Beer- Lambert law into concentration changes of oxyHb 
and deoxyHb by using the hmrOD2Conc function and an 
individually calculated differential path length factor,119 
(6) correct for extracerebral blood flow by using hmrDe-
convHRRF_DriftSS function120 121 and (7) perform a 
baseline correction and calculation of block averages for 
oxyHb and deoxyHb changes over all trials and for each 
measurement channel by using hmrBlockAvg function. 
In the final step, the preprocessed time series of oxyHb 
and deoxyHb are exported and the cognition- related 

Figure 2 Description of N- back paradigm. 0, 0- back; 1, 1- 
back; 2, 2- back; s, seconds.

Figure 3 Description of verbal fluency test paradigm. s, 
seconds.
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changes in these two chromophores are used for further 
statistical analysis.

EEG
EEG data will be acquired by the Brain Vision wireless 
MOVE system (Brain Products GmbH, Munich, Germany) 
along with Brain Vision Recorder V.1.21.0102 (Brain 
Products GmbH, Munich, Germany). The system will be 
triggered by the computer running the Presentation soft-
ware. The EEG/fNIRS cap will be customised according 
to the 10–20 system with the provision of fNIRS optodes 
and 34 EEG channel slim- active electrodes (AFp1, AFp2, 
AFF5h, AFF1h, AFF2h, AFF6h, F7, F8, FFC5h, FFC1h, 
FFC2h, FFC6h, FTT7h, FCC3h, FCC4h, FTT8h, TTP7h, 
CCP3h, CCP4h, TTP8h, TP9, TP10, P7, P3, Pz, P4, P8, 
Po9, O1, Oz, PO10, Fz (reference) and ground).80 The 
electrode location will be customised in the Brain Vision 
Recorder workspace according to the EEG elastic cap 
channel position in consideration of Theta and Phi 
values.122 The impedance will be kept below 5 KΩ before 
EEG data recording. The cognitive tasks will be recorded 
following a baseline measurement of 10 min. The EEG 
data will be recorded at 1.000 Hz. The outcome of the 
results will be focused on time and frequency domain of 
ERPs, power spectrum analysis, source localisation and 
connectivity.

The EEG recorded data will be analysed by the Brain 
Vision Analyzer V.2.2.0 (Brain Products GmbH, Munich, 
Germany). The EEG postprocessing will be divided into 
two blocks, whereas P100, P200, P300, P600, N100 and 
N400 ERPs,2 power spectral density (PSD), connectivity 
and source localisation will be done for the N- back and 
Stroop, and PSD will be done for the VFT. The prere-
corded EEG data will be resampled at 256 Hz and will be 
rereferenced to mean mastoids.123 The referenced data 
will be filtered for ERPs high pass at 0.1 Hz and low pass 
at 40 Hz with 50 Hz notch filter. For PSD, connectivity and 
source localisation, a low- pass filter of 85 Hz will be used. 
The EEG data processing pipeline after rereferencing 
and filtering is shown in figure 5.

ECG
We will record the ECG of the participants during the 
experimental session with an ECG medilog AR12 plus 
(Schiller, Baar, Switzerland). This device consists of three 
channels with a sampling rate of 1.000 Hz. By using this 
device, we can record the NN intervals in millisecond 
range, which enables us to accurately calculate the HRV 
and to precisely identify cardiac arrhythmia. The raw ECG 
data will be uploaded to the Medilog Darwin Analysis Soft-
ware package and analysed using the Kubios premium 
V.3.3 software package (University of Kuopio, Finland). 

Figure 4 Visualization of the positions of the EEG electrodes and fNIRS optodes. IZ, inion; LPA, left preauricular point; NZ, 
nasion; RPA, right preauricular point.
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The HRV analysis will focus on the following parameters: 
root mean square of successive differences beetween adja-
cent NN intervals (RMSSD), percentage of adjacent NN 
intervals differing more than 50 ms (pNN50) and power 
in HF (0.15–0.4 Hz). Further time and frequency domain 
parameters124 125 will be analysed as well. In addition, we 
will also consider nonlinear HRV parameters to study the 
nonlinear dynamic properties that influence heart rate.66 
Due to the relatively long latency of the cardiac system,53 
the HRV (as the fNIRS parameters) will be averaged over 
each block of the three cognitive tasks. Following the 
recommendations of Laborde et al49 we plan to record 
and analyse the HRV at three timepoints:

 ► At resting state before the cognitive tasks,
 ► During the cognitive tasks for each block.
 ► After the cognitive tasks at resting state in the recovery 

phase.
The baseline measurement before the cognitive tasks 

will serve as assessment of the vagal tone of the partic-
ipants. The assessment of the vagal tone is important 
because ‘vagally mediated HRV may serve to index 
the functional capacity of a set of brain structures that 
support the effective and efficient performance of cogni-
tive executive function tasks including working memory 
and inhibitory control’.58 The ‘phasic HRV’ will be evalu-
ated through comparing the HRV at rest with the values 
recorded during the cognitive tasks.49 It shows how the 
ANS reacts and how the participant adapts to cognitive 
demands. Finally, the HRV will be recorded after the 
cognitive tasks at resting state (recovery phase). This 
experimental design allows for investigation of tonic 
HRV for each of the three measurement points (baseline, 
during and after the cognitive tasks). Furthermore, we can 
assess the phasic HRV because we will be able to detect 
the change between baseline and event (‘reactivity’), the 
change between task and post- event (‘recovery’) and the 
change between baseline and post- event.49

Statistical analysis
The current study is designed to investigate biomarkers 
that can identify participants with an increased risk for 
cognitive deterioration. Thereto, several biomarkers will 

be evaluated, as possible candidates, for an early identi-
fication of MCI. We are interested in the transition state 
between healthy ageing and MCI. Consequently, our 
statistical analysis will include:

 ► Analysis of the differences between HC and MCI with 
respect to cognitive performance and physiological 
parameters.

 ► Correlational analysis between cognitive performance 
and physiological parameters.

 ► Machine- learning- based logistic regression approach 
for classification into HC and MCI.

To investigate effects of group, t- test for normal distrib-
uted variables will be used, in other cases, the Mann- 
Whitney U test. Correction for multiple comparisons 
will be taken into account with false discovery rate.126 
To investigate the correlations, we will use Pearson or 
Spearman correlation analysis. To control for effects of 
age, gender, regular physical activity and education as 
confounders, partial correlation will be applied. Table 1 
shows the measured physiological parameters of all three 
cognitive tasks. Concerning ECG analysis, we will also 
measure the HRV in resting state before (baseline) and 
after the cognitive tasks (recovery).

The main aim of our study is to develop EEG/fNIRS/HRV 
measures that discriminate among HC and MCI and show 
that this multimodal measuring approach is promising and 
accurate for identification of MCI. For that purpose, we will 
use and adapt the machine- learning algorithm already used 
for bimodal approaches.77–79 81 82 84 In a first step, after prepro-
cessing and artefact correction, parameters from the three 
modalities will be extracted and the most discriminating 
ones playing a role in the development of neurodegenera-
tive diseases will be selected. Principal component analysis 
can help to reduce parameters to a manageable amount 
by removing components with the highest variance.127 
Following parameter extraction, multimodal combining 
algorithm will be used for classification. To classify the signals, 
support vector machine (SVM) will be applied. SVM is one 
of the most commonly used supervised classifiers in the field 
of pattern recognition and has been widely adopted in many 
brain signal studies.72 77–79 81 128 SVM can define two or more 

Figure 5 EEG data processing pipeline. ICA, independent component analysis; Loreta, low- resolution electromagnetic 
tomography analysis.
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classes by constructing an optimal hyperplane maximising 
the margin of separation between the closest data points 
belonging to different classes. SVM can be used in linear 
as well as in non- linear classification scenarios based on the 
kernel trick.129

Another aim of the study is to compare the performance 
of unimodal, bimodal and multimodal systems. For that 
reason, classification should be performed separately using 
different kinds of parameter sets for comparison: EEG- only, 
fNIRS- only, HRV- only, bimodal (EEG +fNIRS, EEG +HRV, 
fNIRS +HRV) and a multimodal parameter set (EEG +fNIRS 
+HRV).

Data management and safety
All participants will be assigned a code independently 
from their group allocation ensuring their anonymity. In 
order to guarantee the security of all data, the personal 
information and the data of this study will be collected 
and handled exclusively by the involved researchers. 
All data and participants’ information will be handled 
according to the institutional data management policy of 
the University of Magdeburg. The original documents will 
be kept by the main investigators of the study at the Otto 

von Guericke University Magdeburg and the German 
Center for Neurodegenerative Diseases.

Patient and public involvement
Subjects will be involved in the study as we will evaluate 
their acceptability for our measurement procedure. We 
will collect feedback on the study procedure from the 
participants. We will continue to work with stakeholders 
including the medical faculty and companies working in 
the field of neurodegeneration and dementia.

SUMMARY
Due to the demographic change and the increase in the 
individual life expectancy, the worldwide economic health-
care costs to treat individuals suffering from dementia will 
increase considerably. Currently, there is no treatment avail-
able, which would allow to heal this neurological disease. 
Consequently, researchers now focus more on an early diag-
nosis of preclinical stages of AD (eg, MCI) in order to initiate 
preventive actions timely. In this regard, neurophysiological 
signals could be promising biomarkers of such preclinical 
AD stages because they are, unlike behavioural performance, 
deemed to be less affected by learning or practice effects and 
provide insights into possible compensatory processes being 
not readily observable at the behavioural level. Hence, physi-
ological signals can be helpful to detect changes in cognitive 
performance more precisely.130 In this context, it is assumed 
that the investigation of new neurophysiological biomarkers, 
which allows to identify MCI more easily and accurately, are 
necessary to better understand and monitor the disease 
progression.11

In line with the previous mentioned assumptions, the aim 
of this study is threefold. At first, this investigation aims to 
determine the differences in neurophysiological responses of 
HC and MCI participants. The second aim is to investigate 
possible neurobehavioral relationships between measures of 
cognitive performance and neurophysiological responses. 
The third aim is to elucidate whether a multimodal measure-
ment approach can help to identify individuals with MCI 
more accurately and reliable than a unimodal or bimodal 
approach. Thereto, three complementary measuring modal-
ities, namely, fNIRS, EEG and ECG/HRV, will be used simul-
taneously to assess different neurophysiological responses, 
which are associated with cognitive processes. To the best of 
our knowledge, this is the first study using these three modal-
ities simultaneously in patients with MCI and cognitive HC. 
Given the explorative character of our study, our sample 
consists of 30 healthy controls (HC) and 30 patients with MCI 
whose neurophysiological signals will be recorded at a resting 
state and while performing three established cognitive tasks 
(Stroop, N- back and a VFT). We are aiming to detect certain 
neurophysiological parameters that are promising for an 
early identification of people who are at a higher risk of an 
overly age- related decline in cognitive performance (ie, MCI 
detection).

In this regard, we hypothesise that the multimodal 
approach improves the classification accuracy between 

Table 1 Physiological parameters of each device in all 
three cognitive tasks

Cognitive task

Physiological 
measurement 
device Main parameters

Stroop 
(congruent and 
incongruent)

ECG RMSSD, pNN50, HF (absolute 
and nu), non- linear parameters 
(SD1, SD2, ApEn, SampEn, DFA, 
D2, RPA, MSE)

  fNIRS oxyHb, deoxyHb, totHb

  EEG ERPs, PSD, connectivity and 
source localisation

N- back (0-, 1- 
and 2- back)

ECG RMSSD, pNN50, HF (absolute 
and nu), non- linear parameters 
(SD1, SD2, ApEn, SampEn, DFA, 
D2, RPA, MSE)

  fNIRS oxyHb, deoxyHb, totHb

  EEG ERPs, PSD, connectivity and 
source localisation

VFT 
(semantic and 
phonological)

ECG RMSSD, pNN50, HF (absolute 
and nu), non- linear parameters 
(SD1, SD2, ApEn, SampEn, DFA, 
D2, RPAn, MSE)

  fNIRS oxyHb, deoxyHb, totHb

  EEG PSD

ApEn, approximate entropy; D2, correlation dimension; deoxyHb, 
deoxygenated haemoglobin; DFA, detrended fluctuation analysis; 
ERPs, event related potentials; HF, high frequency power in absolute 
and normalised units (nu) [0.15–0.4 Hz]; MSE, mutliscale entropy; 
oxyHb, oxygenated haemoglobin; pNN50, NN50 divided by the 
total number of NN intervals; PSD, power spectral density; RMSSD, 
root mean square of the successive differences between adjacent 
normal RR intervals; RPAn, recurrence plot analysis; SampEn, sample 
entropy; SD1, in Poincaré plot, the standard deviation perpendicular to 
the line- of- identity; SD2, in Poincaré plot, the standard deviation along 
the line- of- identity; totHb, total haemoglobin.
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patients with HC and MCI as compared with a unimodal 
or a bimodal approach. If our hypothesis is verified, this 
study will pave the way for further research on multi-
modal measurement approaches for dementia research. 
Such upcoming research will use a larger sample size to 
examine the noninvasive biomarkers characterising an 
early detection of nonphysiological decline in cognitive 
performance in more detail.
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